

1 **Two birds with one stone: human SIRP α nanobodies for functional modulation and in
2 vivo imaging of myeloid cells**

3 *Teresa R. Wagner¹, Simone Blaess², Inga B. Leske³, Desiree I. Frecot^{1,3}, Marius Gramlich¹,
4 Bjoern Traenkle¹, Philipp D. Kaiser¹, Dominik Seyfried², Sandra Maier¹, Amélie Rezza⁴,
5 Fabiane Sônego⁴, Kader Thiam⁴, Stefania Pezzana², Anne Zeck¹, Cécile Gouttefangeas^{5,7,9},
6 Armin M. Scholz⁶, Stefan Nueske⁶, Andreas Maurer^{2,7}, Manfred Kneilling^{2,7,8}, Bernd J.
7 Pichler^{2,7,9}, Dominik Sonanini^{2,10}, Ulrich Rothbauer^{1,3,7#}*

8

9 **Affiliations**

10 ¹ NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen,
11 Germany

12 ² Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
13 University of Tübingen, Tübingen, Germany

14 ³ Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Germany

15 ⁴ genOway, Lyon, France

16 ⁵ Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen,
17 Germany

18 ⁶ Livestock Center of the Faculty of Veterinary Medicine, Ludwig Maximilians University
19 Munich, Oberschleissheim, Germany

20 ⁷ Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor
21 Therapies", University of Tübingen, Germany

22 ⁸ Department of Dermatology, University of Tübingen, Tübingen, Germany

23 ⁹ German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner
24 site Tübingen, Tübingen, Germany

25 ¹⁰ Department of Medical Oncology and Pneumology, University of Tübingen, Tübingen,
26 Germany

27

28

29 # corresponding author
30 Prof. Dr. Ulrich Rothbauer, Pharmaceutical Biotechnology, Eberhard Karls University
31 Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
32 E-mail: ulrich.rothbauer@uni-tuebingen.de
33 Phone: +49 7071 29 72469
34 Fax: +49 7071 29-2476
35 Orcid ID: 0000-0001-5923-8986

36 **Abstract**

37 Signal-regulatory protein α (SIRP α) expressed by myeloid cells is of particular interest for
38 therapeutic strategies targeting the interaction between SIRP α and the "don't eat me" ligand
39 CD47 and as a marker to monitor macrophage infiltration into tumor lesions. To address both
40 approaches, we developed a set of novel human SIRP α (hSIRP α) -specific nanobodies (Nbs).
41 We identified three high-affinity Nbs targeting the hSIRP α /hCD47 interface, thereby enhancing
42 antibody-dependent cellular phagocytosis (ADCP). For non-invasive *in vivo* imaging, we chose
43 S36 Nb as a non-modulating binder. By quantitative positron emission tomography (PET) in
44 novel hSIRP α /hCD47 knock-in (KI) mice, we demonstrated the applicability of ^{64}Cu -hSIRP α -
45 S36 Nb to visualize tumor infiltration of myeloid cells. We envision that the hSIRP α -Nbs
46 presented in this study have potential as versatile probes, including novel myeloid-specific
47 checkpoint inhibitors for combinatorial treatment approaches and for *in vivo* stratification and
48 monitoring of individual responses during cancer immunotherapies.

49

50 **Introduction**

51 During tumor development, there is a continuous exchange between malignant cells,
52 neighboring parenchymal cells, stromal cells and immune cells. Together with the extracellular
53 matrix and soluble mediators, these cells constitute the tumor microenvironment (TME). The
54 composition of the immune infiltrate within the TME largely determines cancer progression and
55 sensitivity to immunotherapies (1). Myeloid cells are known to regulate T cell responses
56 thereby bridging innate and adaptive immunity (2-4). Tumor cells further utilize myeloid cells
57 to create a pro-tumorigenic milieu by exploiting their ability to produce immune-regulating
58 mediators (e.g. interleukin-6, IL-6; tumor necrosis factor, TNF), growth factors influencing
59 tumor proliferation and vascularization (e.g. transforming growth factor- β , TGF- β ; vascular
60 endothelial growth factor, VEGF), as well as matrix-degrading enzymes (e.g. matrix
61 metalloproteinases, MMPs) (5). Within the myeloid cell population, tumor-associated
62 macrophages (TAMs) are highly abundant, and widely varying densities of up to 50% of the
63 tumor mass are observed (6). At the same time, depending on their polarization state, TAMs
64 exhibit partially opposing effects either as key drivers for tumor progression or by exerting
65 potent antitumor activity (7, 8). Consequently, monitoring tumor infiltration of TAMs is of great
66 importance for patient stratification and companion diagnostic (9-11) and targeted recruitment
67 or activation of anti-tumor TAMs opens new strategies to achieve persisting anti-tumor immune
68 responses (12).

69 In this context, the myeloid-specific immune checkpoint signal-regulatory protein α (SIRPa),
70 expressed by monocytes, macrophages, dendritic cells and neutrophils (13, 14), represents
71 an interesting theranostic target. Interaction with its ligand CD47, a "marker of self" virtually
72 expressed by all cells of the body, mediates a "don't eat me" signal that inhibits phagocytosis
73 and prevents subsequent autoimmune responses. Exploiting this physiological checkpoint,
74 tumor cells often upregulate CD47 and thereby escape recognition and removal by
75 macrophages (15, 16). Similarly, enhanced expression of SIRPa by intratumoral
76 monocytes/macrophages has recently been shown to be associated with poorer survival in

77 follicular lymphoma, colorectal cancer, intrahepatic cholangiocarcinoma, and esophageal
78 cancer (17-20).

79 To address the potential as a biomarker and immune modulating target, we generated human
80 SIRP α (hSIRP α)-specific nanobodies (Nbs) for diagnostic and therapeutic applications. Nbs
81 are single-domain antibodies derived from heavy-chain antibodies of camelids (21, 22) and
82 have emerged as versatile biologicals for therapeutic as well as diagnostic purposes (23-25).
83 Compared to conventional antibodies, Nbs exhibit superior characteristics concerning
84 chemical stability, solubility, and tissue penetration due to their small size and compact folding
85 (21). Following a binary screening strategy, in-depths biochemical characterization, epitope
86 mapping and functional studies, we identified two hSIRP α -Nb subsets that either block the
87 hSIRP α /hCD47 interface or serve as inert probes for molecular imaging.

88

89 **Results**

90 *Selection of high-affinity anti-human SIRP α nanobodies*

91 To generate Nbs against hSIRP α that can be used either as probes for diagnostic imaging or
92 to modulate interaction with human CD47, we immunized an alpaca (*Vicugna pacos*) with the
93 recombinant extracellular portion of hSIRP α and established a Nb phagemid library (2×10^7
94 clones). This Nb library was subjected to phage display-based selection campaigns targeting
95 either the entire extracellular portion or exclusively domain 1 (D1) of hSIRP α (hSIRP α D1) to
96 guide the selection of Nbs that specifically block the hSIRP α /hCD47 interaction. Sequencing
97 of individual clones resulted in 14 unique hSIRP α Nbs with high diversity in the
98 complementarity-determining region 3 (CDR3) (**Figure 1A**). Nbs S7 to S36 were derived from
99 the full-lengths hSIRP α screening, whereas Nbs S41 to S45 were identified as hSIRP α D1
100 binders. Individual Nbs were produced in *Escherichia coli* (*E. coli*) and isolated with high purity
101 (**Figure 1B**). Folding stability of all Nbs was analyzed by differential scanning fluorimetry. For
102 12 out of the 14 Nb candidates, melting temperatures ranging from $\sim 55^\circ\text{C}$ to $\sim 75^\circ\text{C}$ without
103 aggregation (**Figure 1C, D; Supplementary Figure 1A**) were determined while affinity
104 measurements against recombinant hSIRP α by biolayer interferometry (BLI) revealed K_D
105 values between ~ 0.12 and ~ 27 nM for 11 out of the 12 Nbs (**Figure 1C, D; Supplementary**
106 **Figure 1B**). In addition, live-cell immunofluorescence staining of U2OS cells stably expressing
107 full-length hSIRP α showed that all selected Nbs recognize hSIRP α localized at the plasma
108 membrane (**Figure 1E; Supplementary Figure 2A**).

109

110 *Domain mapping of hSIRP α Nbs*

111 While Nbs targeting hSIRP α D1 have a higher chance to block interaction with CD47, Nbs
112 targeting domain D2 or D3 (hSIRP α D2, hSIRP α D3) might be functionally inert, which is
113 preferable for diagnostic approaches. Thus, we assessed domain specificity using U2OS cells
114 expressing the individual domains of hSIRP α by immunofluorescence staining (**Figure 2A**,
115 **Supplementary Figure 2B**). Eight Nbs (S12, S14, S17, S41, S42, S43, S44, and S45) stained
116 hSIRP α D1, whereas Nbs S14 and S17 additionally stained hSIRP α D2. Five Nbs (S8, S21,

117 S29, S33 and S36) revealed specific binding to hSIRPaD2, whereas only Nb S7 stained cells
118 expressing hSIRPaD3. Based on their respective production yield, stability, affinity, domain
119 specificity and developability, we selected Nbs S7, S8, S12, S33, S36, S41, S44 and S45 for
120 further characterization. To determine the diversity of epitopes recognized by this subset in
121 more detail, we performed an epitope binning analysis using BLI (**Figure 2B; Supplementary**
122 **Figure 3A, B**). Based on the results, we grouped the Nbs according to shared or overlapping
123 epitopes and found two groups each for hSIRPaD1- (Nbs S12 & S41 and Nbs S44 & S45) and
124 hSIRPaD2-targeting Nbs (Nb S8 and Nbs S33 & S36) (**Supplementary Figure 3A, B**).
125

126 *Specificity of hSIRPa Nbs for allelic variants and closely related SIRP family members*
127 hSIRPa belongs to the hSIRP family of immune receptors, which also includes the highly
128 homologous activating receptor hSIRP β 1 present on macrophages, and the decoy receptor
129 hSIRPy, which is expressed mainly on T cells (14). Moreover, hSIRPa allelic variants,
130 hSIRPaV1 and hSIRPaV2, are expressed either homozygously (v1/v1 or v2/v2) or
131 heterozygously (v1/v2) (26). To address potential cross-reactivity, binding of selected hSIRPa
132 Nbs to hSIRP β 1, hSIRPy, the hSIRPa variants hSIRPa-V1 and hSIRPa-V2, and murine SIRPa
133 was visualized using immunofluorescence staining (**Figure 3A; Supplementary Figure 2C**).
134 Cellular imaging revealed that all Nbs recognized the homologous hSIRP β 1 whereas hSIRPy
135 was detected with Nbs S12 and S44 (both hSIRPaD1-targeting Nbs) as well as Nbs S8 and
136 S36 (both hSIRPaD2-targeting Nbs). Furthermore, all hSIRPaD2- and D3-targeting Nbs
137 recognized hSIRPa-V1 and -V2, whereas S45 was the only hSIRPaD1-targeting Nb to show
138 binding to both variants. Notably, none of the selected Nbs revealed any cross-reactivity
139 towards murine SIRPa.
140

141 *Binding of hSIRPa Nbs to primary human monocytes/macrophages cells*
142 To evaluate whether our hSIRPa Nbs recognize endogenously expressed hSIRPa, we
143 performed flow cytometry analysis of peripheral blood mononuclear cells (PBMCs) from three
144 different donors (K1-3). In addition to the monocyte/macrophage marker CD14, we also

145 included the T cell marker CD3 to evaluate potential recognition of T cells by hSIRPy-cross-
146 reactive Nbs (**Figure 3B**). All hSIRPa Nbs, except S7, stained comparably on CD14⁺ PBMCs
147 from all tested donors, whereas none of the Nbs stained CD3⁺ T cells (**Figure 3B, C**).
148 Considering our binary strategy to select hSIRPa Nbs (i) which are eligible to inhibit the
149 hSIRPa/hCD47 interaction and (ii) as probes for PET-based *in vivo* imaging of myeloid cells,
150 we divided the identified Nbs into two subgroups. In the following, hSIRPaD1-targeting Nbs
151 S12, S41, S44, and S45 were further investigated with respect to their inhibitory properties,
152 and hSIRPaD2-targeting Nbs S8, S33 and S36 for their applicability as *in vivo* imaging probes.
153

154 *hSIRPaD1 Nbs functionally block the interaction with hCD47*

155 To evaluate potential inhibition of the interaction between hSIRPa and hCD47 (**Figure 4A**), we
156 first performed a competitive BLI-based binding assay. As control, we used the anti-human
157 SIRPa-blocking antibody KWAR23 (27). After incubation with Nbs S44 or S45, binding of
158 hSIRPa to CD47 was inhibited to a similar extent as upon addition of KWAR23, whereas only
159 partial blocking was observed for S41, while S12 showed no effect (**Figure 4B**). For functional
160 analysis, we next tested the ability of hSIRPaD1-targeting Nbs to potentiate macrophage-
161 mediated antibody-dependent cellular phagocytosis (ADCP) (**Figure 4C**). To this end, human
162 monocyte-derived macrophages (MDMs) isolated from three different donors (K1-3) were
163 incubated with EGFR⁺ human colorectal adenocarcinoma DLD-1 cells preloaded with
164 carboxyfluorescein diacetate succinimidyl ester (CFSE) alone or in the presence of the
165 opsonizing EGFR-specific antibody cetuximab and hSIRPaD1-targeting Nbs or the KWAR23
166 antibody as positive control. The degree of ADCP was determined based on the detection of
167 CD206⁺CFSE⁺ cells by flow cytometry analysis (**Figure 4D**). For all tested donors,
168 macrophages exhibited minimal phagocytosis of DLD-1 cells without treatment, whereas
169 phagocytic activity was significantly increased upon addition of cetuximab. In the presence of
170 the hSIRPa-blocking antibody KWAR23, phagocytosis was further induced, which is in line
171 with previous findings (27). Similarly, the hSIRPa-blocking Nbs S44 and S45, but also the
172 partially hSIRPa-blocking Nb S41, augmented ADCP in all three tested donors, whereas Nb

173 S12 had no effect on macrophage-mediated phagocytosis (**Figure 4E**). From these results,
174 we concluded that Nbs S41, S44, and S45 represent promising candidates for further
175 development as novel hSIRPa/CD47-inhibitory biologicals for potential therapeutic
176 applications.

177

178 *Inert hSIRPa-S36 Nb as lead candidate for non-invasive in vivo imaging*

179 For the application as non-invasive PET tracer, immunologically inert hSIRPa Nbs are
180 preferred. Thus, we selected Nbs S8, S33 and S36, which bind to hSIRPaD2, and performed
181 a detailed analysis of the recognized epitopes by hydrogen-deuterium exchange mass
182 spectrometry (HDX-MS). All selected Nbs recognized three-dimensional epitopes within
183 hSIRPaD2, which are spatially distant from the hSIRPa/hCD47 interface (**Supplementary**
184 **Table 1; Supplementary Figure 4A, B**). In particular, S36 Nb showed the strongest
185 deuteration protection (< -15%) for amino acid (aa) D163 - L187 and aa H202 - G207 of
186 hSIRPa, whereas an additional slightly lower protection was observed for the region ranging
187 from aa C140 - K153 (**Supplementary Figure 4A, B**). Considering its detailed epitope
188 mapping, strong binding affinity, and good production yield, we selected S36 Nb as the lead
189 candidate for imaging.

190 For radiolabeling, we conceived a novel protein engineering approach that enables site-
191 specific chemical conjugation. We first adapted the sequence of the original S36 Nb by
192 replacing all four lysine residues with arginine (hSIRPa-S36_{K>R} Nb) (**Supplementary Figure**
193 **5A**) and conjugated the chelator via isothiocyanate (p-NCS-benzyl-NODA-GA) to the
194 remaining primary NH₂-group at the N-terminus (**Supplementary Figure 5A**). The hSIRPa-
195 S36_{K>R} Nb was producible with comparable yield and purity to the original version in *E.coli*
196 (**Supplementary Figure 5B**) and efficient site-specific chelator conjugation (~96%) was
197 confirmed by mass spectrometry. Most importantly, the hSIRPa-S36_{K>R} Nb showed
198 comparable affinities and characteristics to the original S36 Nb (**Supplementary Figure 5C-**
199 **E**). Finally, we examined the hSIRPa-S36_{K>R} Nb in the macrophage-dependent phagocytosis
200 assay. As expected, we observed only a negligible effect on macrophage-mediated

201 phagocytosis (**Supplementary Figure 5F**). From these results, we concluded that hSIRPa-
202 S36_{K>R} Nb, represents a lead candidate suitable for non-invasive *in vivo* PET imaging of SIRPa
203 expression.

204

205 *PET/MR imaging with ⁶⁴Cu-hSIRPa-S36_{K>R} Nb*

206 For *in vivo* validation, the hSIRPa-S36_{K>R} Nb and the non-specific GFP_{K>R} Nb (6) as control
207 were radiolabeled with ⁶⁴Cu yielding high radiolabeling efficiencies of $\geq 95\%$ (**Figure 5A**), and
208 an *in vitro* immunoreactive fraction of $\sim 82\%$ (B_{max}) of the ⁶⁴Cu-labeled hSIRPa-S36_{K>R} Nb
209 (⁶⁴Cu-hSIRPa-S36_{K>R} Nb) to HT1080 hSIRPa knock-in (KI) (HT1080-hSIRPa) cells (**Figure**
210 **5B**). To visualize the distribution of hSIRPa-positive cells in a tumor-relevant system, we
211 employed a novel immunocompetent hSIRPa/hCD47 KI mouse model (hSIRPa/hCD47 mice),
212 expressing the extracellular domain of hSIRPa, and C57BL/6 wildtype (wt) mice as controls.
213 In both models, tumors were generated by subcutaneous (s.c.) injection of hCD47-
214 overexpressing MC38 (MC38-hCD47) colon adenocarcinoma cells. Nine days after tumor
215 inoculation, we intravenously (*i.v.*) injected ⁶⁴Cu-hSIRPa-S36_{K>R} Nb into both groups. As
216 additional control, the non-specific ⁶⁴Cu-GFP_{K>R} Nb was injected in tumor-bearing
217 hSIRPa/hCD47 mice. Non-invasive *in vivo* PET/MR imaging revealed a strongly enhanced
218 ⁶⁴Cu-hSIRPa-S36_{K>R} Nb accumulation in the tumors of hSIRPa/hCD47 mice within the first
219 minutes after injection, which remained stable at a high level for 6 h. In contrast, both control
220 groups, ⁶⁴Cu-GFP_{K>R} Nb injected hSIRPa/hCD47 mice and ⁶⁴Cu-hSIRPa-S36_{K>R} Nb injected
221 wt mice, showed rapid tracer clearance in the tumors and blood (**Figure 5C**). Importantly, ⁶⁴Cu-
222 hSIRPa-S36_{K>R} Nb-injected in hSIRPa/hCD47 mice exhibited a constantly higher PET signal
223 in the blood over time, indicating a specific binding to circulating hSIRPa⁺ myeloid cells (**Figure**
224 **5C**). Quantification of the PET images 3 h after injection revealed a significantly higher uptake
225 in the tumors of hSIRPa/hCD47 mice ($1.89 \pm 0.09\% \text{ID/cc}$) compared to wt mice (0.60 ± 0.05
226 $\% \text{ID/cc}$) and to ⁶⁴Cu-GFP_{K>R} Nb injected hSIRPa/hCD47 mice ($0.57 \pm 0.05\% \text{ID/cc}$) (**Figure**
227 **5C-E**). Furthermore, we observed a ~ 7 -fold enhanced uptake in the spleen, a ~ 2 -fold enhanced
228 uptake in the blood and liver, and a ~ 3 -fold enhanced uptake in the salivary glands and bone

229 in hSIRPa/hCD47 mice (**Figure 5D, E**), whereas no significant differences were identified in
230 the kidney and the muscle tissue between the ^{64}Cu -hSIRPa-S36_{K>R} Nb injected
231 hSIRPa/hCD47 mice and both control groups (**Figure 5D, E**). From these results, we
232 concluded that the novel ^{64}Cu -hSIRPa-S36_{K>R} Nb-based PET-tracer is applicable to visualize
233 and monitor the distribution of SIRPa⁺ cells by non-invasive *in vivo* imaging.

234

235 **Discussion**

236 Immunotherapies have considerably improved therapeutic options for cancer patients (28).
237 However, achieving complete remission with durable response in a large number of patients
238 remains a major challenge (29-32). This highlights the urgent need for new classes and
239 combinations of advanced immunotherapeutics and diagnostic tools for individual patient
240 stratification and treatment monitoring. Myeloid cells, particularly macrophages, frequently
241 infiltrate tumors, modulate tumor angiogenesis, promote metastasis, and have been
242 associated with tumor resistance to chemotherapy and immune checkpoint blockade (33, 34).
243 A characteristic marker for myeloid cells is the immune checkpoint SIRP α and targeting the
244 SIRP α /CD47 signaling axis is considered a promising strategy for the treatment of advanced
245 cancers. Recent *in vivo* data have demonstrated a strong synergistic anti-tumor effect of
246 SIRP α -specific antibodies in combination with tumor-opsonizing antibodies such as cetuximab
247 (EGFR), rituximab (CD20) and trastuzumab (HER2) (7, 26, 27, 35, 36), and currently two anti-
248 hSIRP α monoclonal antibodies, BI 765063 and GS-0189 (FIS-189), are in clinical trials for
249 mono- and combination therapies (37). Beside serving as therapeutic target, SIRP α also
250 represents a biomarker, which can be used to stratify patients by myeloid cell expression
251 patterns, and to track the migration and dynamics of myeloid cells in the context of cancer.
252 Thus, murine-specific SIRP α Nbs were recently successfully employed for non-invasive single
253 photon emission tomography (SPECT) imaging of myeloid cells in intracranial glioblastoma
254 tumors of experimental mice (38).
255 Here, we developed human SIRP α -specific Nbs, either as modulatory biologics blocking the
256 hSIRP α /hCD47 axis or for monitoring TAMs as the most abundant myeloid cell type within the
257 TME (6). Following a binary screening strategy, we identified the first hSIRP α -specific Nbs
258 which exclusively bind the D1 domain of hSIRP α , and thus selectively block the interaction
259 with CD47 and enhance ADCP in combination with the tumor-opsonizing antibody cetuximab.
260 In particular, the selectivity of Nb S45 for binding hSIRP α , but not hSIRP γ might be
261 advantageous, as recent data showed that nonselective hSIRP α /hSIRP γ blockade can impair
262 T cell activation, proliferation, and endothelial transmigration (39). Notably, blocking efficacies

263 of the inhibitory hSIRPa-specific Nbs can be further improved by establishing bivalent or
264 biparatopic formats as previously shown (25, 40). Alternatively, bispecific binding molecules
265 could be generated, e.g. by fusing the hSIRPa-blocking Nbs with a tumor-opsonizing Nb and
266 Fc moiety (41, 42) or CD40L expressed by activated T cells to bridge innate and adaptive
267 immune responses (43). To address rapid renal clearance, which is a major drawback of small-
268 sized Nbs for therapeutic application, other modifications such as PEGylation, addition of an
269 albumin-binding moiety, or direct linkage to carrier proteins can be considered to extend their
270 systemic half-life ($t_{1/2}$) and efficacy (44, 45).

271 Beside developing inhibitory hSIRPa Nbs, we also identified binders to elucidate the presence
272 and infiltration of the myeloid cell population using PET-based non-invasive *in vivo* imaging.
273 Current diagnostic methods are based on histology and thus require biopsies through invasive
274 sampling or endpoint analyses. These methods can be associated with severe side effects and
275 limit the predictive value of such diagnostic approaches. In contrast, non-invasive *in vivo*
276 whole-body molecular imaging techniques, in particular PET, represent a powerful method to
277 monitor and quantify specific cell populations and thereby support individual therapy decisions
278 (46-48). Due to their ideal characteristics for PET imaging, including specific binding, fast tissue
279 penetration and rapid renal clearance, Nbs emerged as next-generation tracer molecules with
280 numerous candidates in preclinical and first candidates in clinical testing (49-51). With the
281 hSIRPa-S36 Nb, we selected a functionally inert but high-affinity binding candidate for which
282 we achieved site-directed chemical chelator labeling based on a unique protein engineering
283 approach that did not compromise the stability or binding properties. Compared to other, more
284 elaborate and less effective labeling strategies such as sortagging (52-54), this approach
285 resulted in rapid chelator conjugation by applying straightforward NCS chemistry.

286 ^{64}Cu -hSIRPa-S36_{K>R} Nb-PET/MR imaging in a novel tumor-bearing hSIRPa/hCD47 KI mouse
287 model revealed rapid recruitment and sustained accumulation of our radiotracer in myeloid-
288 enriched tumors and lymphatic organs with low background signal. We also observed a
289 significantly enhanced ^{64}Cu -hSIRPa-S36_{K>R} Nb uptake in MC38-hCD47 adenocarcinomas of
290 hSIRPa/hCD47 KI mice vs wt mice, suggesting specific targeting of myeloid cells within the

291 TME. Most importantly, no enhanced ^{64}Cu -hSIRP α -S36 $_{K>R}$ Nb uptake in tumors and lymphatic
292 organs of murine SIRP α and CD47 expressing wt mice was observed. Beyond the crucial role
293 of myeloid cells in tumor progression and cancer immunotherapy resistance, the occurrence
294 of myeloid cells in diseased tissues is a hallmark of several inflammatory diseases like SARS-
295 CoV-2 infection or autoimmune diseases such as systemic sclerosis, rheumatoid arthritis, and
296 inflammatory bowel disease (55, 56). Thus, the non-invasive *in vivo* monitoring of
297 biodistribution, density, and dynamic changes of the myeloid cell compartment presented in
298 this initial study would allow surveillance and early assessment of therapeutic response in a
299 variety of diseases (57). In comparison to established strategies typically targeting TAM
300 subpopulations such as TSPO and ^{68}Ga anti-MMR Nb, the ^{64}Cu -hSIRP α -S36 $_{K>R}$ Nb enables
301 the monitoring of the entire myeloid cell population (11, 58, 59). Furthermore, given that
302 hSIRP α -S36 Nb detects both hSIRP α allelic variants, its application is not restricted to patient
303 subpopulations.

304 In summary, this study demonstrates for the first time the generation and detailed
305 characterization of hSIRP α -specific Nbs for potential therapeutic and diagnostic applications.
306 Considering the important role of myeloid cells, particularly TAMs, the herein developed
307 hSIRP α -blocking Nbs have the potential to extend current macrophage-specific therapeutic
308 strategies (37, 60). Moreover, our novel ^{64}Cu -hSIRP α -S36 $_{K>R}$ Nb-based PET tracer will
309 broaden the growing pipeline of Nb-based radiotracers to selectively visualize tumor-
310 associated immune cells by non-invasive *in vivo* PET imaging (52, 54, 58, 61). Given the
311 increasing importance of personalized medicine, we anticipate that the presented hSIRP α -
312 specific Nbs might find widespread use as novel theranostics either integrated into or
313 accompanying emerging immunotherapies.

314

315 **Data availability**

316 The data that support the findings of this study are available from the corresponding author
317 upon reasonable request.

318

319 **Ethics Statement**

320 All animal experiments were carried out in accordance with the German Animal Welfare Act
321 and with consent of regulatory authorities (Regierungspräsidium Tübingen).

322

323 **Authorship Contributions**

324 TW, MK, BP, DSo and UR designed the study. SN and AS immunized the animal. TW, IL, DF
325 and PK performed Nb selection. TW, IL, DF, BT and PK performed biochemical
326 characterization and functionalization of Nbs. CG provided PBMC samples. MG and AZ
327 performed HDX-MS experiments and analysis. SM and AZ performed MS analysis. DSe and
328 AM radiolabeled the Nbs. SB, SP and DSo performed *in vivo* imaging. AR, FS and KT
329 generated hSIRPa/hCD47 KI mouse model and MC38-hCD47 cells. TW, BT, SB, MK, DSo
330 and UR drafted the article. MK, BP and UR supervised the study. All authors contributed to the
331 article and approved the submitted version.

332

333 **Competing financial interests**

334 DSo, MK, BP, TW, BT, PK, and UR are named as inventors on a patent application claiming
335 the use of the described nanobodies for diagnosis and therapeutics filed by the Natural and
336 Medical Sciences Institute and the Werner Siemens Imaging Center. AR, FS and KT are
337 employees of the company genOway. The remaining authors declare that the research was
338 conducted in the absence of any commercial or financial relationships that could be construed
339 as a potential conflict of interest.

340

341

342

343 **Acknowledgements**

344 This work received financial support from the State Ministry of Baden-Wuerttemberg for
345 Economic Affairs, Labour and Tourism (Grant: Predictive diagnostics of immune-associated
346 diseases for personalized medicine. FKZ: 35-4223.10/8). This work was supported by the
347 Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, Germany's
348 Excellence Strategy-EXC2180-390900677) and the Werner Siemens-Foundation. The RSLC
349 U3000 HPLC system and the maXis HD UHR-TOF mass spectrometer used for intact mass
350 analysis were funded by the State Ministry of Baden-Wuerttemberg for Economic Affairs, Labor
351 and Tourism (#7-4332.62-NMI/55). The RSLC U3000 HPLC system and the Orbitrap Eclipse
352 Tribrid Mass Spectrometer used for HDX-MS analysis were financed by the European
353 Regional Development Fund (ERDF) and the State Ministry of Baden-Wuerttemberg for
354 Economic Affairs, Labor and Tourism (#3-4332.62-NMI/69). The work was funded by the State
355 Ministry of Baden-Württemberg for Economic Affairs, Labor and Tourism, FKZ 3-4332.62-NMI-
356 68. The authors thank Johannes Kinzler for support in radiolabeling and all genOway SA
357 employees who participated in the generation of the models used in this work.

358

359 **Materials & Methods**

360 *Nanobody screening*

361 For the selection of hSIRPa-specific Nbs, two consecutive phage enrichment rounds either
362 with immobilized hSIRPa or hSIRPaD1 were performed. To generate Nb-presenting phages,
363 TG1 cells comprising the Nb-library in pHEN4 were infected with the M13K07 helper phage.
364 In each panning round, 1×10^{11} phages were applied to streptavidin or neutravidin plates
365 (Thermo Fisher Scientific) coated with biotinylated antigen (5 μ g/ml). For biotinylation, purified
366 antigen (Acrobiosystems) was reacted with Sulfo-NHS-LC-LC-Biotin (Thermo Fisher Scientific)
367 in 5 molar excess at ambient temperature for 30 min. Excess of biotin was removed by size
368 exclusion chromatography using ZebaTM Spin Desalting Columns 7K MWCO 0.5 ml (Thermo
369 Fisher Scientific) according to manufacturer's protocol. Blocking of antigen and phage was
370 performed alternatively with 5% milk or BSA in PBS-T and as the number of panning rounds
371 increased, the wash stringency with PBS-T was intensified. Bound phages were eluted in
372 100 mM triethylamine, TEA (pH10.0), followed by immediate neutralization with 1 M Tris/HCl
373 pH 7.4. Exponentially growing TG1 cells were infected with eluted phages and spread on
374 selection plates for subsequent selection rounds. In each round, antigen-specific enrichment
375 was monitored by counting colony forming units (CFUs).

376

377 *Whole-cell phage ELISA*

378 For the monoclonal phage ELISA individual clones were picked and phage production was
379 induced as described above. Moreover, 96-well cell culture plates (Corning) were coated with
380 poly-L-lysine (Sigma Aldrich) and washed once with H₂O. U2OS-wt and U2OS overexpressing
381 hSIRPa (U2OS-hSIRPa) or hSIRPaD1 (U2OS-hSIRPaD1) were plated at 2×10^4 cells per well
382 in 100 μ l and grown overnight. The next day, 70 μ l of phage supernatant was added to each
383 cell type and incubated at 4°C for 3 h. Cells were washed 5 times with 5% FBS in PBS, followed
384 by adding the M13-HRP-labeled detection antibody (Progen, 1:2000 Dilution) for 1 h, washed
385 3 times with 5% FBS in PBS. Finally, Onestep ultra TMB 32048 ELISA substrate (Thermo
386 Fisher Scientific) was added to each well and incubated until color change was visible before

387 stopping the reaction with 100 μ l of 1 M H₂SO₄. For detection, the Pherastar plate reader at
388 450 nm was applied and phage ELISA-positive clones were defined by a 2-fold signal above
389 wt control cells.

390

391 *Protein expression and purification*

392 hSIRP α Nbs were cloned into the pHEN6 vector (62) and expressed in XL-1 as previously
393 described (23, 63). Sortase A pentamutant (eSrtA) in pET29 was a gift from David Liu
394 (Addgene plasmid # 75144) and was expressed as published (64). Expressed proteins were
395 purified by immobilized metal affinity chromatography using a HisTrap^{FF} column followed by a
396 size exclusion chromatography (SEC, Superdex 75) on an Aekta pure system (Cytiva). Quality
397 of all purified proteins was analyzed via standard SDS-PAGE under denaturizing conditions (5
398 min, 95°C in 2x SDS-sample buffer containing 60 mM Tris/HCl, pH6.8; 2% (w/v) SDS; 5% (v/v)
399 2-mercaptoethanol, 10% (v/v) glycerol, 0.02% bromphenole blue). For protein visualization
400 InstantBlue Coomassie (Expedeon) staining or alternatively immunoblotting as previously
401 published (65) were performed. Protein concentration was determined by NanoDrop ND100
402 spectrophotometer.

403

404 *Biolayer interferometry (BLI)*

405 Analysis of binding kinetics of hSIRP α specific Nbs was performed using the Octet RED96e
406 system (Sartorius) as per the manufacturer's recommendations. In brief, 5 μ g/ml of biotinylated
407 hSIRP α diluted in Octet buffer (PBS, 0.1% BSA, 0.02% Tween20) was immobilized on
408 streptavidin coated biosensor tips (SA, Sartorius) for 40 s. In the association step, a dilution
409 series of Nbs ranging from 0.625 - 320 nM were reacted for 240 s followed by dissociation in
410 Octet buffer for 720 s. Every run was normalized to a reference run applying Octet buffer for
411 association. Data were analyzed using the Octet Data Analysis HT 12.0 software applying the
412 1:1 ligand-binding model and global fitting. For epitope binning, two consecutive association
413 steps with different Nbs were performed. By analyzing the binding behavior of the second Nb,
414 conclusions about shared epitopes were drawn. For the hCD47 competition assay hCD47 was

415 biotinylated and immobilized on SA biosensors followed by the application of pre-mixed
416 solutions containing hSIRP α (20 nM) and Nb (250 nM). hCD47-competing Ab KWAR23 (5 nM)
417 was used as control.

418

419 *Live-cell immunofluorescence*

420 Stably expressing hSIRP α U2OS cells, U2OS wt or U2OS cells transiently expressing
421 individual hSIRP α domains (D1-3) with SPOT-Tag or different hSIRP family members
422 (hSIRP α -V1, hSIRP α -V2, hSIRP β 1, hSIRPy, murine SIRP α) were plated at ~10,000 cells per
423 well of a μ Clear 96-well plate (Greiner Bio One, cat. #655090) and cultivated overnight in
424 standard conditions. For imaging, medium was replaced by live-cell visualization medium
425 DMEMgfp-2 (Evrogen, cat. #MC102) supplemented with 10% FBS, 2 mM L-glutamine, 2 μ g/ml
426 Hoechst33258 (Sigma Aldrich) for nuclear staining. 1-100 nM of unlabeled hSIRP α Nbs in
427 combination with 2.5 μ g/ml anti-VHH secondary Cy5 AffiniPure Goat Anti-Alpaca IgG (Jackson
428 Immuno Research) were added and incubated for 1 h at 37°C. For control staining, hSIRP α
429 Ab PE (SE5A5, BioLegend) and bivSPOT-Nb labeled with AlexaFluor647 (AF647) were used.
430 Images were acquired with a MetaXpress Micro XL system (Molecular Devices) at 20x or 40x
431 magnification.

432

433 *Stability analysis*

434 Stability analysis was performed by the Prometheus NT.48 (Nanotemper). In brief, freshly-
435 thawed hSIRP α Nbs were diluted to 0.25 mg/ml and measurements were carried out at time
436 point T_0 or after incubation for ten days at 37°C (T_{10}) using high-sensitivity capillaries. Thermal
437 unfolding and aggregation of the Nbs was induced by the application of a thermal ramp of
438 20 - 95°C, while measuring fluorescence ratios (F350/F330) and light scattering. Via the
439 PR. ThermControl v2.0.4, the melting temperature (T_m) and aggregation (T_{agg}) temperature
440 were determined.

441

442

443 *Fluorescent labeling*

444 For sortase coupling, 50 μ M Nb, 250 μ M sortase peptide (H-Gly-Gly-Gly-propyl-azide synthesized
445 by Andreas Maurer) dissolved in sortase buffer (50 mM Tris, pH 7.5, and 150 mM NaCl) and 10
446 μ M sortase were mixed in coupling buffer (sortase buffer with 10 mM CaCl₂) and incubated for 4 h
447 at 4°C. To stop the reaction and remove uncoupled Nb and sortase an IMAC was performed,
448 followed by protein concentration and unreacted sortase peptide depletion using Amicon ultra-
449 centrifugal filters MWCO 3 kDa. For fluorescent labeling, the SPAAC (strain-promoted azide-
450 alkyne cycloaddition) click chemistry reaction was employed by incubating azide-coupled Nbs
451 with 2-fold molar excess of DBCO-AF647 (Jena Bioscience) for 2 h at 25°C. Excess DBCO-
452 AF647 was subsequently removed by dialysis (GeBAflex-tube, 6-8 kDa, Scienova). Finally, a
453 hydrophobic interaction chromatography (HIC, HiTrap Butyl-S FF, Cytiva) was performed to
454 deplete unlabeled Nb.

455

456 *Flow cytometry*

457 For flow cytometry analysis, ~200,000 cells per staining condition were used in flow cytometry
458 buffer: PBS containing 0.02% sodium azide, 2 mM EDTA, 2% (v/v) FBS (Thermo Fisher
459 Scientific). Extracellular staining was performed with hSIRP α Nbs conjugated to AF647 (200
460 nM), CD3 Ab APC/Cy7 (HIT3a, BioLegend), CD14 Ab PE (HCD14, BioLegend), dead cell
461 marker Zombie Violet (BioLegend) or the respective unspecific fluorescently labeled Pep Nb
462 (PEP-Nb_{AF647}) (65) and isotype control Abs (BioLegend), by incubation for 45 min at 4°C. Cells
463 were washed three times with FACS buffer and data were acquired on the same day using a
464 LSRIFortessa™ flow cytometer (Becton Dickinson) equipped with the DIVA Software (Becton
465 Dickinson). Final data analysis was performed using the FlowJo10® software (Becton
466 Dickinson).

467

468 *Macrophage-mediated antibody dependent cellular phagocytosis assay*

469 CD14 $^{+}$ cells were purified from frozen PBMCs and CD14 positive selection (Miltenyi Biotec)
470 according to manufacturers' protocols. Monocyte-derived macrophages (MDM) were

471 generated by seeding three million CD14⁺ cells into one 6-well plate (NuncTM Thermo Fisher
472 Scientific) in IMDM (Thermo Fisher Scientific) supplemented with 10% (v/v) fetal bovine serum
473 (Thermo Fisher Scientific) and 50 ng/mL M-CSF (Miltenyi Biotec), and cultured for 7 to 9 days.
474 Cells were detached from culture plates with Accutase® (Sigma Aldrich). DLD-1 cells were
475 labeled with CFSE Cell Division Tracker Kit (BioLegend) according to manufacturer's
476 instructions. 100,000 DLD-1 cells and 50,000 MDMs were incubated in U-bottom 96-well plates
477 (Corning) with hSIRP α Nbs (1 μ M) or KWAR23 (100 nM) and Cetuximab (0.66 nM)
478 (MedChemExpress) for 2 h at 37° C, followed by detachment of adherent cells from culture
479 plates with Accutase® (Sigma Aldrich). For flow cytometry, cells were incubated with CD206
480 Ab AF647 (clone 15–2, BioLegend) and dead cell marker Zombie Violet (BioLegend). Percent
481 of phagocytosis indicates the percentage of viable CD206⁺CFSE⁺ macrophages.

482
483 *Chelator conjugation and radiolabeling*
484 For chelator conjugation and radiolabeling with ^{64}Cu , metal-free equipment and buffers
485 pretreated with Chelex 100 (Sigma-Aldrich) were used. Nbs (100 μg) were reacted with 100
486 molar equivalents of p-NCS-benzyl-NODA-GA (CheMatech) in 0.2 M sodium bicarbonate pH
487 8.7 for 24 h at RT. Excess of chelator was removed by ultrafiltration (Amicon Ultra 0.5 ml, 3
488 kDa MWCO, Merck Millipore) using the same buffer conditions. For neutralization of
489 [^{64}Cu]CuCl₂ (300 MBq in 0.1 M HCl) 1.5 volumes of 0.5 M ammonium acetate solution (pH 4.1)
490 were added, resulting in a pH of 4. 150 μg of conjugate were added to the solution and
491 incubated at 35°C for 30 min. 3 μl of a 0.2% diethylenetriaminepentaacetic acid (DTPA)
492 solution was added to quench the labeling reaction. Complete incorporation of the radioisotope
493 was confirmed after each radiosynthesis by thin-layer chromatography (iTLC-SA; Agilent
494 Technologies; mobile phase 0.1 M sodium citrate buffer pH 5) and high-performance size
495 exclusion chromatography (HPSEC; Superdex 75 Increase, 300 \times 10 mm, Cytiva; mobile
496 phase DPBS with 0.5 mM EDTA, adjusted to pH 6.9).

497
498

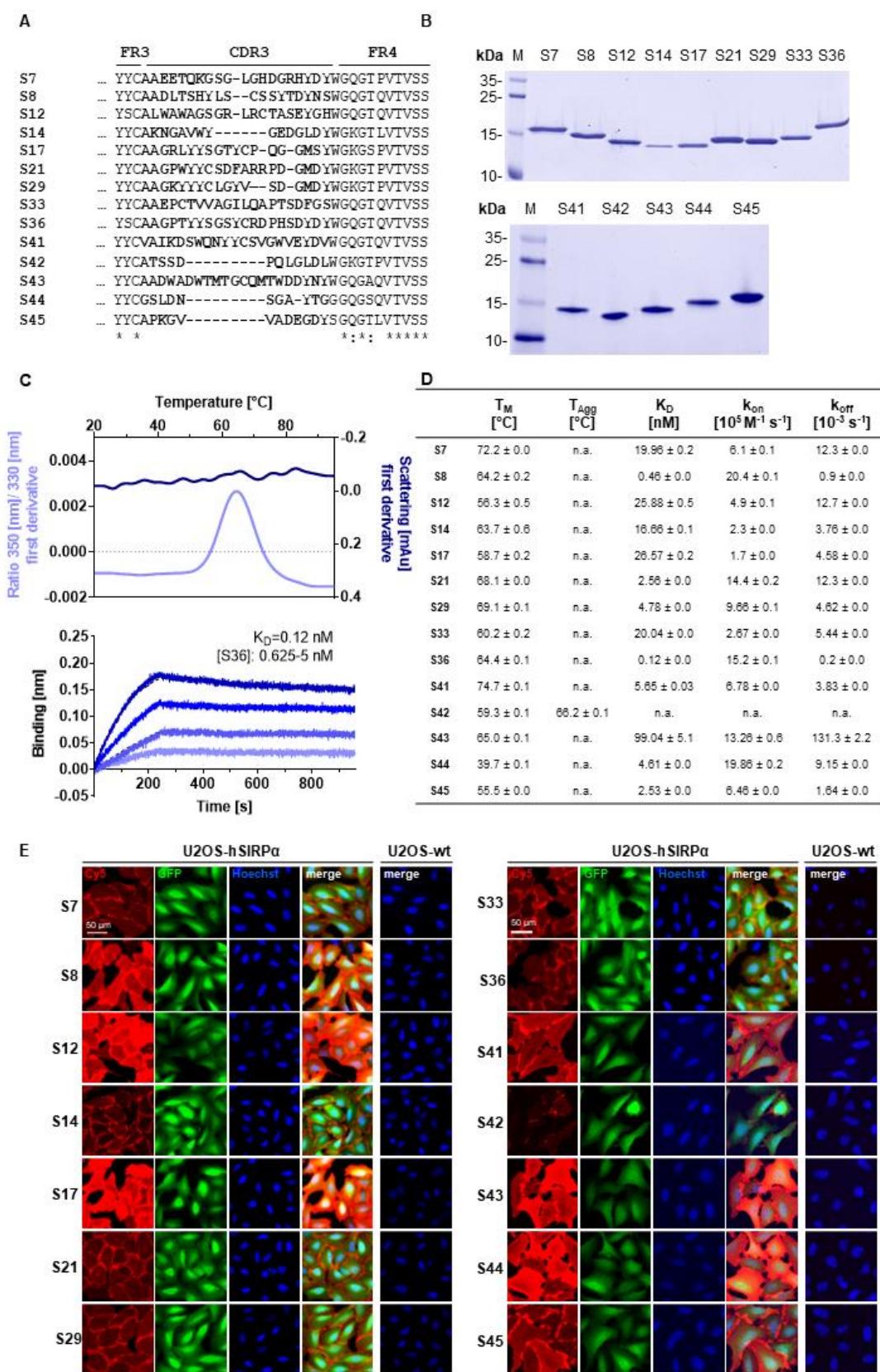
499 *In vitro radioimmunoassay*

500 To determine the immunoreactive fraction (maximum binding, B_{max}), an increasing number of
501 HT1080-hSIRPa cells were incubated in triplicates with 1 ng (2 MBq/μg) of ^{64}Cu -hSIRPa-
502 S36_{K>R} Nb for 1 h at 37°C and washed twice with PBS/1% FCS. The remaining cell-bound
503 radioactivity was measured using a Wizard² 2480 gamma counter (PerkinElmer Inc) and
504 quantified as percentage of the total added activity.

505

506 *Tumor-bearing mouse models and PET imaging*

507 Six-week-old female C57BL/6N wt mice were purchased from Charles River. C57BL/6
508 hSIRPa/ hCD47 KI (C57BL/6N^{CD47tm1.1(CD47)Geno;Sirpatm2.1(SIRPA)Geno}) mice (hSIRPa/hCD47) were
509 developed by genOway (manuscript in preparation). For tumor cell inoculation, 1×10^6 MC38-
510 hPD-L1-hCD47-luciferase-Zsgreen (MC38-hCD47) KI colon adenocarcinoma cells (developed
511 by genOway), were resuspended in 100 μl PBS, and subcutaneously injected into
512 hSIRPa/hCD47 or wt mice.


513 hSIRPa/hCD47 and wt mice were injected intravenously (*i.v.*) with 5 μg (~10 MBq) of ^{64}Cu -
514 hSIRPa-S36_{K>R} Nb or ^{64}Cu -GFP_{K>R} Nb 9 days after tumor cell inoculation. Mice were
515 anesthetized with 1.5% isoflurane in 100% oxygen during the scans. Ten-minute static PET
516 scans were performed after 5 min, 90 min, 3 h and 6 h in a dedicated small-animal Inveon
517 microPET scanner (Siemens Healthineers) with temperature-controlled heating mats. For
518 anatomical colocalization, sequential T2 TurboRARE MR images were acquired immediately
519 after the PET scans on a small animal 7 T ClinScan magnetic resonance scanner (Bruker
520 BioSpin GmbH). PET images were reconstructed using an ordered subset expectation
521 maximization (OSEM3D) algorithm and analyzed with Inveon Research Workplace (Siemens
522 Preclinical Solutions). The volumes of interest of each organ were defined based on anatomical
523 MRI to acquire the corresponding PET tracer uptake within the tumor and organs of interest.
524 The resulting radioactive concentration was measured per tissue volume (Becquerel/cubic
525 centimeter) decay-corrected and presented as percentage of injected dose per cubic
526 centimeter (%ID/cc).

527 *Analyses, statistics, and graphical illustrations*

528 Graph preparation and statistical analysis were performed using the GraphPad Prism Software
529 (Version 9.0.0 or higher). One-way ANOVA was performed for multiple comparisons using
530 Tukey as a post hoc test (mean and SEM). A value of $p < 0.05$ was considered statistically
531 significant and marked as * for $p < 0.05$, ** for $p < 0.01$, *** for $p < 0.001$, and **** for $p <$
532 0.0001. Graphical illustrations were created with BioRender.com.

533

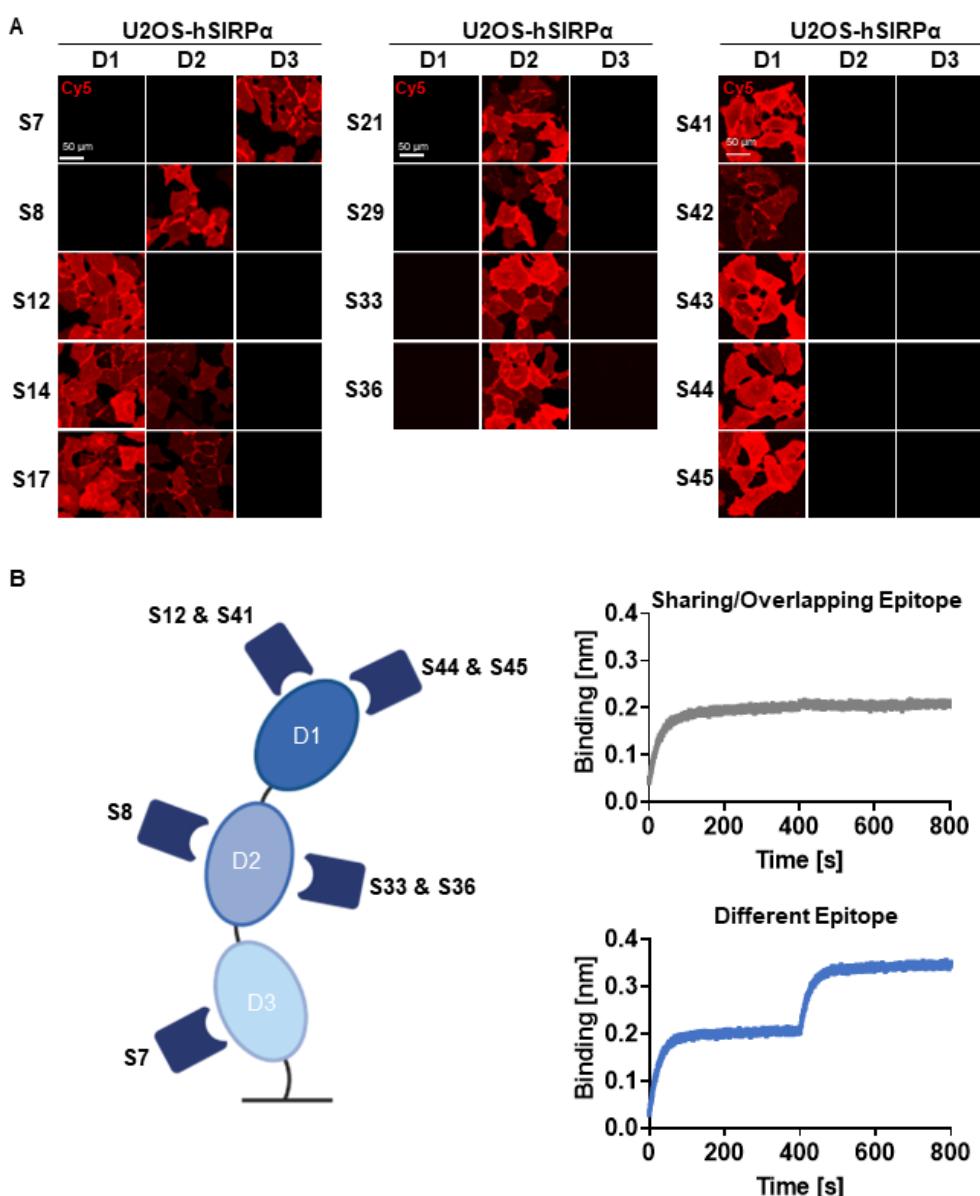
534 **Figures**

535

536

537 **Figure 1. Biochemical characterization of hSIRP α Nbs.**

538 **A** Amino acid (aa) sequences of the complementarity determining region (CDR) 3 from 14
539 unique hSIRP α Nbs identified by a bidirectional screening strategy. Nbs S7 – S36 were
540 selected against full-length hSIRP α and Nbs S41 – 45 against domain 1 of hSIRP α
541 (hSIRP α D1).

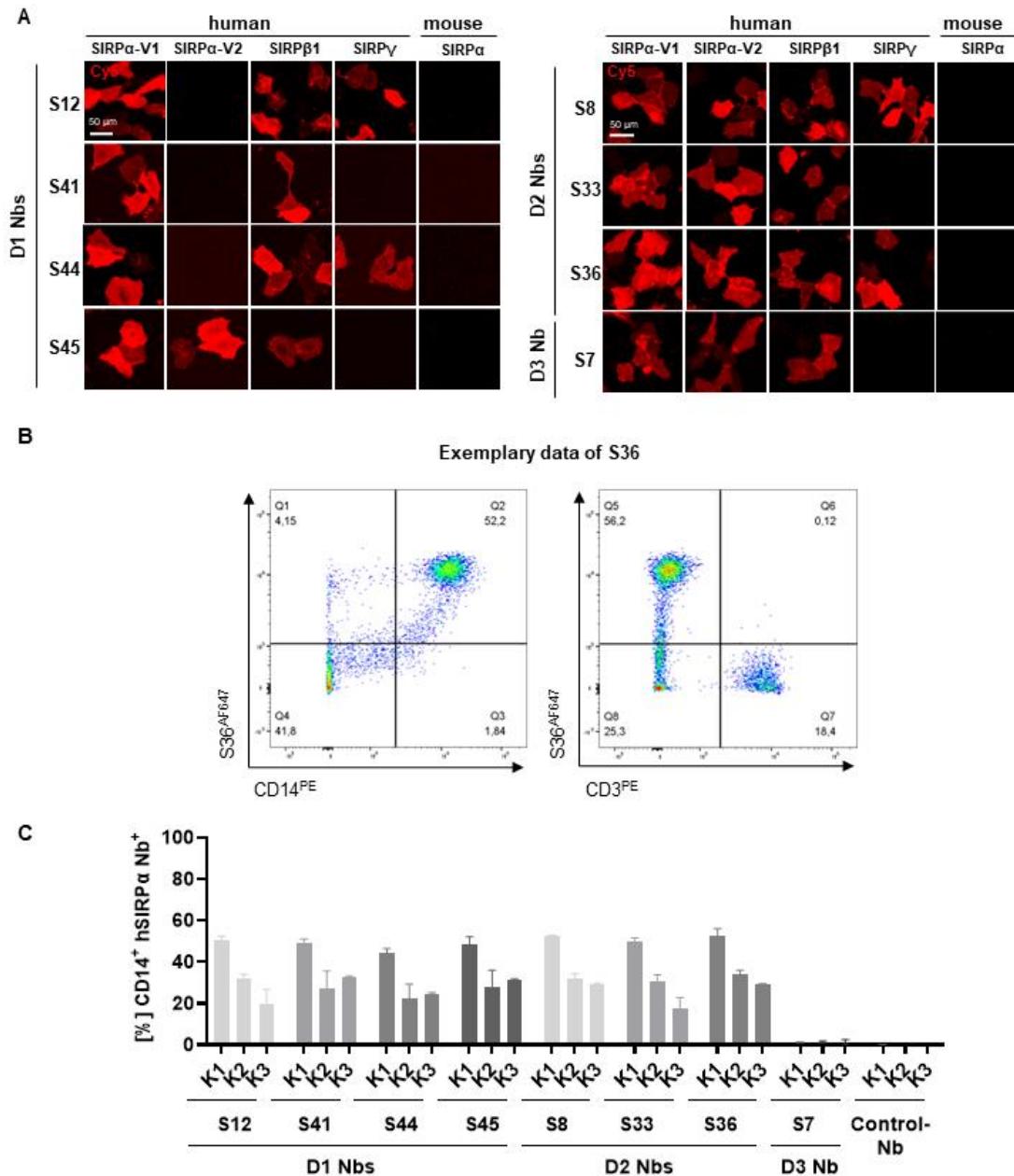

542 **B** Recombinant expression and purification of hSIRP α Nbs using immobilized metal affinity
543 chromatography (IMAC) and size exclusion chromatography (SEC). Coomassie staining of
544 purified Nbs is shown.

545 **C** Stability analysis using nano-differential scanning fluorimetry (nanoDSF) displaying
546 fluorescence ratio (350 nm/330 nm) and light intensity loss due to scattering shown as first
547 derivative exemplarily shown for Nb S36 (upper panel). Data are shown as mean value of three
548 technical replicates. Biolayer interferometry (BLI)-based affinity measurements exemplarily
549 shown for Nb S36 (bottom panel). Biotinylated hSIRP α was immobilized on streptavidin
550 biosensors. Kinetic measurements were performed using four concentrations of purified Nbs
551 ranging from 0.625 to 5 nM (displayed with gradually darker shades of color). The binding
552 affinity (K_D) was calculated from global 1:1 fits shown as dashed lines.

553 **D** Summary table of stability and affinity analysis of selected hSIRP α Nbs. Melting temperature
554 (T_M) and aggregation temperature (T_{Agg}) determined by nanoDSF shown as mean \pm SD of
555 three technical replicates. Affinities (K_D), association constants (k_{on}) and dissociation constants
556 (k_{off}) determined by BLI using four concentrations of purified Nbs shown as mean \pm SD.

557 **E** Representative images of hSIRP α and GFP-expressing U2OS cells stained with hSIRP α
558 Nbs of three technical replicates. Images show individual Nb staining detected with anti-VHH-
559 Cy5 (red), intracellular IRES-derived GFP signal (green), nuclei staining (Hoechst, blue) und
560 merged signals; scale bar: 50 μ m.

561



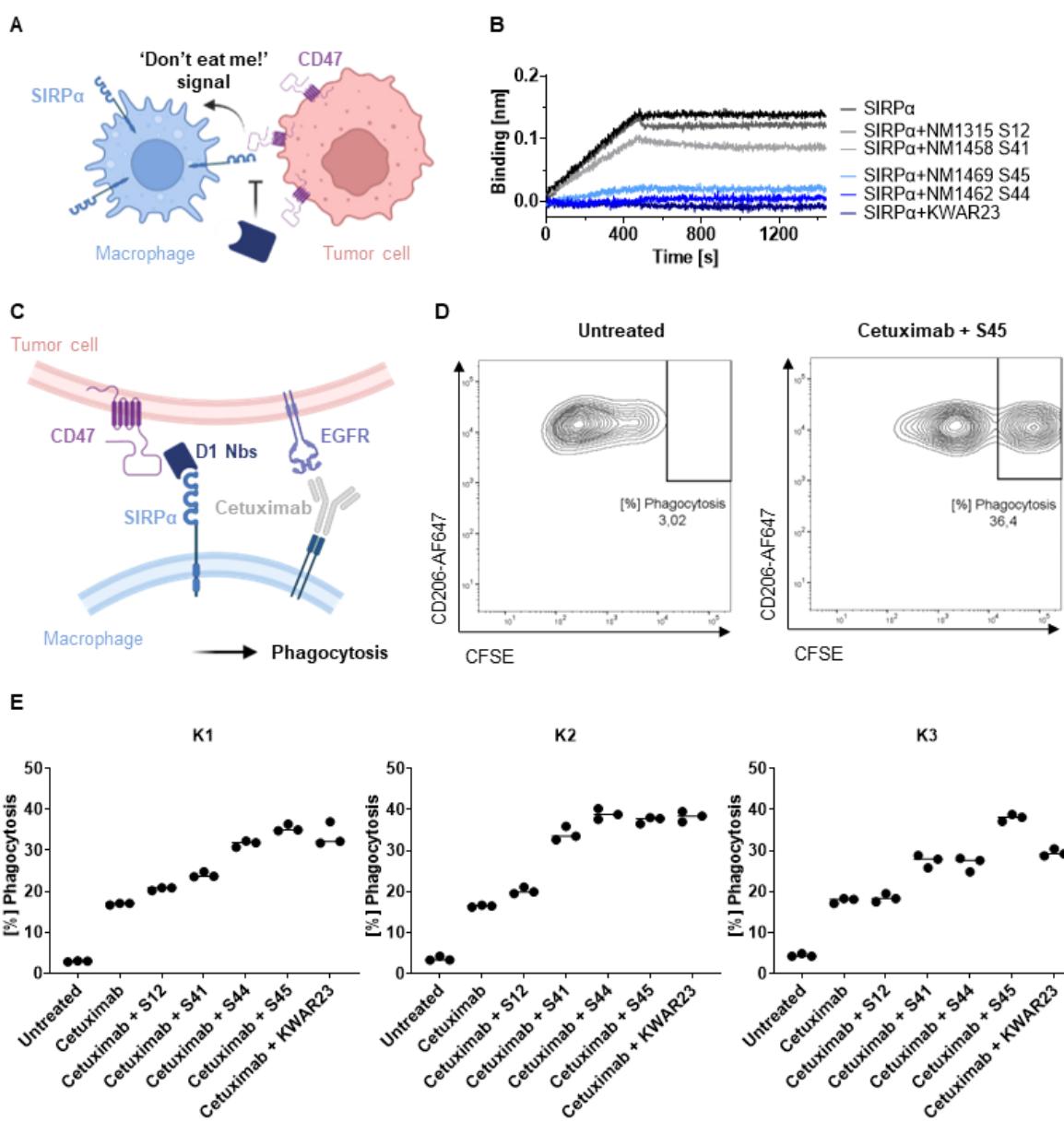
562

563 **Figure 2. Epitope characterization of hSIRP α Nbs.**

564 **A** Domain mapping analysis by immunofluorescence staining with hSIRP α Nbs on U2OS cells
565 displaying human hSIRP α domain 1 (D1), domain 2 (D2) or domain 3 (D3) at their surface.
566 Representative images of live cells stained with individual Nbs in combination with Cy5-labeled
567 anti-VHH of three technical replicates are shown; scale bar: 50 μ m.

568 **B** Epitope binning analysis of hSIRP α Nbs by BLI. Graphical summary of epitope binning
569 analysis on the different hSIRP α domains (left panel). Representative sensograms (n=1) of
570 combinatorial Nb binding to recombinant hSIRP α on sharing/overlapping epitopes or on
571 different epitopes (right panel).

572


573 **Figure 3. Cross-reactivity and binding specificity of hSIRP α Nbs.**

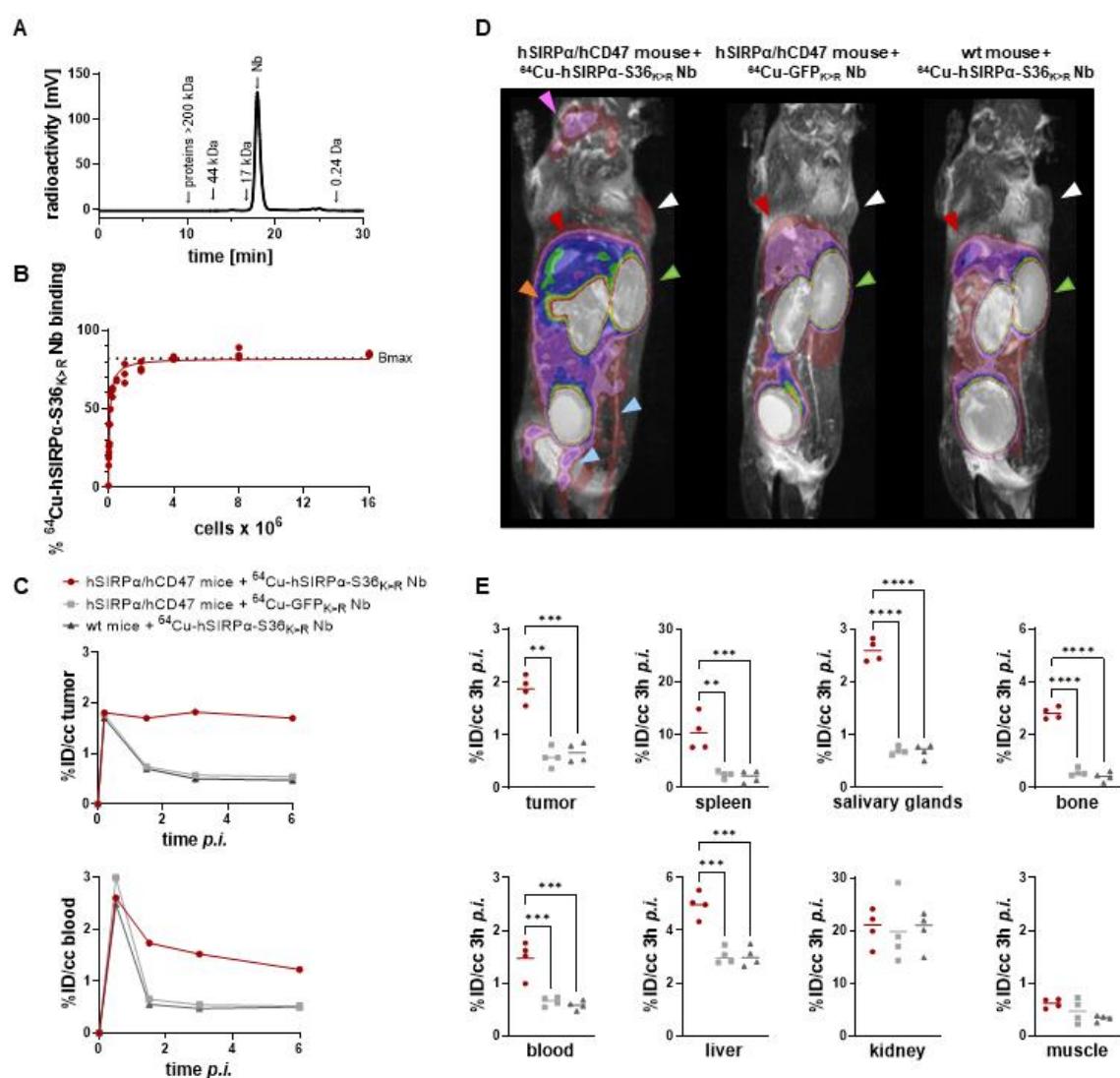
574 **A** Cross-reactivity analysis of hSIRP α Nbs by immunofluorescence staining on U2OS cells
575 displaying hSIRP α -V1, -V2, hSIRP β 1, hSIRP γ or mouse SIRP α at their surface.
576 Representative images of live cells stained with individual Nbs in combination with Cy5-labeled
577 anti-VHH are shown of three technical replicates; scale bar: 50 μ m.
578 **B** Flow cytometry analysis of human peripheral blood mononuclear cells (PBMCs) stained with
579 fluorescently labeled hSIRP α Nbs (AlexaFluor 647, AF647). Flow cytometry plots of Nb S36

580 staining on CD14⁺ and CD3⁺ PBMC populations derived from human donor K1 are shown as
581 an example.

582 **C** Flow cytometry analysis of hSIRPa Nbs staining CD14⁺ PBMCs of three different human
583 donors (K1, K2, K3). Data are presented as mean \pm SD of three technical replicates.

584

585


586 **Figure 4. Potential of hSIRP α D1 Nbs to augment phagocytosis of tumor cells.**

587 **A** Graphical illustration of hSIRP α /hCD47 interaction leading to suppression of macrophage-
588 mediated phagocytosis of tumor cells.

589 **B** Competition analysis of hSIRP α -binding to hCD47 in the presence of hSIRP α D1 Nbs (S12,
590 S41, S44, S45) by BLI (n=1). Biotinylated hCD47 was immobilized on streptavidin biosensors
591 and a mixture of 20 nM hSIRP α and 250 nM of hSIRP α D1 Nbs or 5 nM of KWAR23 were
592 applied to elucidate potential inhibition of hSIRP α binding to hCD47.

593 **C** Schematic illustration of macrophage-mediated phagocytosis of tumor cells by hSIRP α D1
594 Nbs and tumor-opsonizing antibodies (e.g., the anti-EGFR antibody cetuximab).

595 **D** Phagocytosis of carboxyfluorescein diacetate succinimidyl ester (CFSE) labeled DLD-1 cells
596 by human monocyte-derived macrophages. A representative flow cytometry plot of the
597 phagocytosis assay of untreated and combinatorial treatment of cetuximab and hSIRPa Nb
598 S45 with donor K1 derived macrophages is shown.
599 **E** Quantitative analysis of the phagocytosis assay. Percent of phagocytosis of CFSE-labeled
600 DLD-1 cells analyzed for macrophages derived from three different donors (K1 - left, K2 -
601 center, K3 - right) in different conditions is shown. Data are shown as individual and mean
602 value of three technical replicates.
603

604

605 **Figure 5. PET imaging with ^{64}Cu -hSIRPa-S36 $_{\text{K}}>\text{R}$ Nb.**

606 **A** Radiochemical purity of ^{64}Cu -hSIRPa-S36 $_{\text{K}}>\text{R}$ Nb was assessed using high performance
607 liquid chromatography (HPLC).

608 **B** Antigen excess binding assay to determine the maximum binding (Bmax) of ^{64}Cu -hSIRPa-
609 S36 $_{\text{K}}>\text{R}$ Nb, referred to as immunoreactive fraction. ^{64}Cu -hSIRPa-S36 $_{\text{K}}>\text{R}$ Nb (1 ng) was applied
610 to an increasing number of HT1080-hSIRPa cells of three technical replicates and binding
611 curves were analyzed using the one-site nonlinear regression model.

612 **C** Quantification of ^{64}Cu -hSIRPa-S36 $_{\text{K}}>\text{R}$ Nb tumor and blood uptake of s.c. MC38-hCD47 colon
613 carcinoma-bearing hSIRPa/hCD47 mice over 6 h post injection. ^{64}Cu -hSIRPa-S36 $_{\text{K}}>\text{R}$ Nb
614 accumulation is compared to the control groups injected with control Nb or in MC38 wt mice
615 injected with ^{64}Cu -hSIRPa-S36 $_{\text{K}}>\text{R}$ Nb. The resulting values were decay-corrected and

616 presented as percentage of injected dose per cubic centimeter (%ID/cc). Representative data
617 of one animal per group is shown.

618 **D** Representative fused MIP (maximum intensity projection) PET/MR images mice 3 h post
619 ^{64}Cu -hSIRPa-S36_{K>R} (n=4) or control Nb injection (each n=4). PET signal in hSIRPa
620 expressing myeloid cell-rich organs is compared to both control groups. Sites with increased
621 ^{64}Cu -hSIRPa-S36_{K>R} Nb uptake are marked by colored arrows indicating the tumor (white),
622 spleen (orange), bone (blue), salivary glands (purple), kidneys (green), and liver (red)

623 **E** Quantification of ^{64}Cu -hSIRPa-S36_{K>R} Nb in hSIRPa expressing myeloid cell-rich organs.
624 High accumulation was also detected in sites of excretion, namely kidney and liver. The
625 resulting values were decay-corrected and presented as percentage of injected dose per cubic
626 centimeter (%ID/cc). Data are shown as individual plots and mean value (n=4). p < 0.05 was
627 considered statistically significant (*) and marked as ** for p < 0.01, *** for p < 0.001, **** for p
628 < 0.0001.

629

630 **References**

- 631 1. M. Binnewies *et al.*, Understanding the tumor immune microenvironment (TIME) for
632 effective therapy. *Nat Med* **24**, 541-550 (2018).
- 633 2. D. G. DeNardo, B. Ruffell, Macrophages as regulators of tumour immunity and
634 immunotherapy. *Nature Reviews Immunology* **19**, 369-382 (2019).
- 635 3. M.-Z. Jin, W.-L. Jin, The updated landscape of tumor microenvironment and drug
636 repurposing. *Signal transduction and targeted therapy* **5**, 1-16 (2020).
- 637 4. A. Labani-Motlagh, M. Ashja-Mahdavi, A. Loskog, The tumor microenvironment: a
638 milieu hindering and obstructing antitumor immune responses. *Frontiers in immunology*
639 **11**, 940 (2020).
- 640 5. A. Mantovani, P. Allavena, A. Sica, F. Balkwill, Cancer-related inflammation. *Nature*
641 **454**, 436-444 (2008).
- 642 6. S. Vinogradov, G. Warren, X. Wei, Macrophages associated with tumors as potential
643 targets and therapeutic intermediates. *Nanomedicine* **9**, 695-707 (2014).
- 644 7. A. Mantovani, F. Marchesi, A. Malesci, L. Laghi, P. Allavena, Tumour-associated
645 macrophages as treatment targets in oncology. *Nat Rev Clin Oncol* **14**, 399-416 (2017).
- 646 8. Y. Lin, J. Xu, H. Lan, Tumor-associated macrophages in tumor metastasis: biological
647 roles and clinical therapeutic applications. *J Hematol Oncol* **12**, 76 (2019).
- 648 9. X. Tang, Tumor-associated macrophages as potential diagnostic and prognostic
649 biomarkers in breast cancer. *Cancer Lett* **332**, 3-10 (2013).
- 650 10. M. R. Räihä, P. A. Puolakkainen, Tumor-associated macrophages (TAMs) as
651 biomarkers for gastric cancer: A review. *Chronic Dis Transl Med* **4**, 156-163 (2018).
- 652 11. S. Mukherjee, D. Sonanini, A. Maurer, H. E. Daldrup-Link, The yin and yang of imaging
653 tumor associated macrophages with PET and MRI. *Theranostics* **9**, 7730-7748 (2019).
- 654 12. A. Mantovani, P. Allavena, F. Marchesi, C. Garlanda, Macrophages as tools and targets
655 in cancer therapy. *Nature Reviews Drug Discovery*, 1-22 (2022).
- 656 13. S. Adams *et al.*, Signal-regulatory protein is selectively expressed by myeloid and
657 neuronal cells. *The Journal of Immunology* **161**, 1853-1859 (1998).

658 14. H. L. Matlung, K. Szilagyi, N. A. Barclay, T. K. van den Berg, The CD47-SIRPa
659 signaling axis as an innate immune checkpoint in cancer. *Immunological reviews* **276**,
660 145-164 (2017).

661 15. E. J. Brown, W. A. Frazier, Integrin-associated protein (CD47) and its ligands. *Trends*
662 *in cell biology* **11**, 130-135 (2001).

663 16. S. Jaiswal *et al.*, CD47 is upregulated on circulating hematopoietic stem cells and
664 leukemia cells to avoid phagocytosis. *Cell* **138**, 271-285 (2009).

665 17. Y.-P. Chen *et al.*, SIRPa expression delineates subsets of intratumoral
666 monocyte/macrophages with different functional and prognostic impact in follicular
667 lymphoma. *Blood cancer journal* **9**, 1-14 (2019).

668 18. A. Sugimura-Nagata *et al.*, Expression and Prognostic Significance of CD47–SIRPA
669 Macrophage Checkpoint Molecules in Colorectal Cancer. *International journal of*
670 *molecular sciences* **22**, 2690 (2021).

671 19. H. Yang, M. Yan, W. Li, L. Xu, SIRPa and PD1 expression on tumor-associated
672 macrophage predict prognosis of intrahepatic cholangiocarcinoma. *Journal of*
673 *Translational Medicine* **20**, 1-16 (2022).

674 20. K. Tao, Z. Wei, Y. Xia, R. Zhao, H. Xu, High SIRPA Expression Predicts Poor Prognosis
675 and Correlates with Immune Infiltrates in Patients with Esophageal Carcinoma. *Journal*
676 *of Healthcare Engineering* **2022**, 3565676 (2022).

677 21. S. Muyldermans, Nanobodies: natural single-domain antibodies. *Annu Rev Biochem*
678 **82**, 775-797 (2013).

679 22. C. Hamers-Casterman *et al.*, Naturally occurring antibodies devoid of light chains.
680 *Nature* **363**, 446-448 (1993).

681 23. T. R. Wagner *et al.*, NeutrobodyPlex—monitoring SARS-CoV-2 neutralizing immune
682 responses using nanobodies. *EMBO reports* **22**, e52325 (2021).

683 24. T. R. Wagner, U. Rothbauer, Nanobodies—Little helpers unravelling intracellular
684 signaling. *Free Radical Biology and Medicine* (2021).

685 25. T. R. Wagner *et al.*, Biparatopic nanobodies protect mice from lethal challenge with
686 SARS-CoV-2 variants of concern. *EMBO reports* **23**, e53865 (2022).

687 26. J. Sim *et al.* (2019) Discovery of high affinity, pan-allelic, and pan-mammalian reactive
688 antibodies against the myeloid checkpoint receptor SIRP α . in *MAbs* (Taylor & Francis),
689 pp 1036-1052.

690 27. N. G. Ring *et al.*, Anti-SIRP α antibody immunotherapy enhances neutrophil and
691 macrophage antitumor activity. *Proceedings of the National Academy of Sciences* **114**,
692 E10578-E10585 (2017).

693 28. Y. Zhang, Z. Zhang, The history and advances in cancer immunotherapy:
694 understanding the characteristics of tumor-infiltrating immune cells and their
695 therapeutic implications. *Cellular & Molecular Immunology* **17**, 807-821 (2020).

696 29. C. Robert, A decade of immune-checkpoint inhibitors in cancer therapy. *Nature
697 Communications* **11**, 1-3 (2020).

698 30. L. Galluzzi, T. A. Chan, G. Kroemer, J. D. Wolchok, A. López-Soto, The hallmarks of
699 successful anticancer immunotherapy. *Science translational medicine* **10**, eaat7807
700 (2018).

701 31. P. S. Hegde, D. S. Chen, Top 10 challenges in cancer immunotherapy. *Immunity* **52**,
702 17-35 (2020).

703 32. A. Haslam, J. Gill, V. Prasad, Estimation of the percentage of US patients with cancer
704 who are eligible for immune checkpoint inhibitor drugs. *JAMA Network Open* **3**,
705 e200423-e200423 (2020).

706 33. S. Ugel, F. De Sanctis, S. Mandruzzato, V. Bronte, Tumor-induced myeloid deviation:
707 when myeloid-derived suppressor cells meet tumor-associated macrophages. *J Clin
708 Invest* **125**, 3365-3376 (2015).

709 34. T. Condamine, I. Ramachandran, J. I. Youn, D. I. Gabrilovich, Regulation of tumor
710 metastasis by myeloid-derived suppressor cells. *Annu Rev Med* **66**, 97-110 (2015).

711 35. E. Voets *et al.*, Functional characterization of the selective pan-allele anti-SIRP α
712 antibody ADU-1805 that blocks the SIRP α –CD47 innate immune checkpoint. *Journal*
713 *for immunotherapy of cancer* **7**, 1-15 (2019).

714 36. C. C. Ho *et al.*, "Velcro" engineering of high affinity CD47 ectodomain as signal
715 regulatory protein α (SIRP α) antagonists that enhance antibody-dependent cellular
716 phagocytosis. *J Biol Chem* **290**, 12650-12663 (2015).

717 37. N. Dizman, E. I. Buchbinder, Cancer Therapy Targeting CD47/SIRP α . *Cancers (Basel)*
718 **13** (2021).

719 38. K. De Vlaminck *et al.*, Imaging of Glioblastoma Tumor-Associated Myeloid Cells Using
720 Nanobodies Targeting Signal Regulatory Protein Alpha. *Frontiers in immunology*, 5090
721 (2021).

722 39. V. Gauttier *et al.*, Selective SIRP α blockade reverses tumor T cell exclusion and
723 overcomes cancer immunotherapy resistance. *The Journal of clinical investigation* **130**,
724 6109-6123 (2020).

725 40. D. Virant *et al.*, A peptide tag-specific nanobody enables high-quality labeling for
726 dSTORM imaging. *Nature Communications* **9**, 930 (2018).

727 41. L. Ma *et al.*, Preclinical development of a novel CD47 nanobody with less toxicity and
728 enhanced anti-cancer therapeutic potential. *J Nanobiotechnology* **18**, 12 (2020).

729 42. E. Hatterer *et al.*, Co-engaging CD47 and CD19 with a bispecific antibody abrogates
730 B-cell receptor/CD19 association leading to impaired B-cell proliferation. *MAbs* **11**, 322-
731 334 (2019).

732 43. N. Lakhani *et al.*, 429 Phase 1 dose escalation study of the agonist redirected
733 checkpoint, SL-172154 (SIRP α -Fc-CD40L) in subjects with platinum-resistant ovarian
734 cancer. *Journal for ImmunoTherapy of Cancer* **9**, A459-A459 (2021).

735 44. K. Griffiths *et al.* (2019) Half-life extension and non-human primate pharmacokinetic
736 safety studies of i-body AD-114 targeting human CXCR4. in *MAbs* (Taylor & Francis),
737 pp 1331-1340.

738 45. L. Hanke *et al.*, A bispecific monomeric nanobody induces spike trimer dimers and
739 neutralizes SARS-CoV-2 in vivo. *Nature communications* **13**, 1-11 (2022).

740 46. M. D. Farwell *et al.*, CD8-Targeted PET Imaging of Tumor-Infiltrating T Cells in Patients
741 with Cancer: A Phase I First-in-Humans Study of 89Zr-Df-IAB22M2C, a Radiolabeled
742 Anti-CD8 Minibody. *Journal of Nuclear Medicine* **63**, 720-726 (2022).

743 47. K. J. Edwards *et al.*, Using CD69 PET Imaging to Monitor Immunotherapy-Induced
744 Immune Activation. *Cancer Immunology Research* **10**, 1084-1094 (2022).

745 48. J. Schwenck *et al.*, Advances in PET imaging of cancer. *Nature Reviews Cancer*
746 10.1038/s41568-023-00576-4 (2023).

747 49. M. Keyaerts *et al.*, Phase I Study of 68Ga-HER2-Nanobody for PET/CT Assessment
748 of HER2 Expression in Breast Carcinoma. *J Nucl Med* **57**, 27-33 (2016).

749 50. C. Xavier *et al.*, Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-
750 anti-HER2 Nanobodies for iPET imaging of HER2 receptor expression in cancer.
751 *Journal of Nuclear Medicine* **54**, 776-784 (2013).

752 51. T. J. Harmand, A. Islam, N. Pishesha, H. L. Ploegh, Nanobodies as in vivo, non-
753 invasive, imaging agents. *RSC Chem Biol* **2**, 685-701 (2021).

754 52. B. Traenkle *et al.*, Monitoring Interactions and Dynamics of Endogenous Beta-catenin
755 With Intracellular Nanobodies in Living Cells*[S]. *Molecular & Cellular Proteomics* **14**,
756 707-723 (2015).

757 53. S. Massa *et al.*, Sortase A-mediated site-specific labeling of camelid single-domain
758 antibody-fragments: a versatile strategy for multiple molecular imaging modalities.
759 *Contrast Media Mol Imaging* **11**, 328-339 (2016).

760 54. M. Rashidian *et al.*, Predicting the response to CTLA-4 blockade by longitudinal
761 noninvasive monitoring of CD8 T cells. *Journal of Experimental Medicine* **214**, 2243-
762 2255 (2017).

763 55. E. Sefik *et al.*, Inflammasome activation in infected macrophages drives COVID-19
764 pathology. *Nature* **606**, 585-593 (2022).

765 56. W. T. Ma, F. Gao, K. Gu, D. K. Chen, The Role of Monocytes and Macrophages in
766 Autoimmune Diseases: A Comprehensive Review. *Front Immunol* **10**, 1140 (2019).

767 57. K. Nakamura, M. J. Smyth, Myeloid immunosuppression and immune checkpoints in
768 the tumor microenvironment. *Cell Mol Immunol* **17**, 1-12 (2020).

769 58. K. Movahedi *et al.*, Nanobody-Based Targeting of the Macrophage Mannose Receptor
770 for Effective In Vivo Imaging of Tumor-Associated Macrophages. *Cancer Research* **72**,
771 4165-4177 (2012).

772 59. N. Narayan *et al.*, The macrophage marker translocator protein (TSPO) is down-
773 regulated on pro-inflammatory 'M1' human macrophages. *PLoS One* **12**, e0185767
774 (2017).

775 60. C. Anfray, A. Ummarino, F. T. Andón, P. Allavena, Current Strategies to Target Tumor-
776 Associated-Macrophages to Improve Anti-Tumor Immune Responses. *Cells* **9** (2019).

777 61. M. Rashidian *et al.*, Noninvasive imaging of immune responses. *Proc Natl Acad Sci U
778 S A* **112**, 6146-6151 (2015).

779 62. M. Arbabi Ghahroudi, A. Desmyter, L. Wyns, R. Hamers, S. Muyldermans, Selection
780 and identification of single domain antibody fragments from camel heavy-chain
781 antibodies. *FEBS letters* **414**, 521-526 (1997).

782 63. J. Maier, B. Traenkle, U. Rothbauer, Real-time analysis of epithelial-mesenchymal
783 transition using fluorescent single-domain antibodies. *Scientific reports* **5**, 1-13 (2015).

784 64. I. Chen, B. M. Dorr, D. R. Liu, A general strategy for the evolution of bond-forming
785 enzymes using yeast display. *Proceedings of the National Academy of Sciences* **108**,
786 11399-11404 (2011).

787 65. B. Traenkle *et al.*, Single-Domain Antibodies for Targeting, Detection, and In Vivo
788 Imaging of Human CD4+ Cells. *Frontiers in Immunology* **12** (2021).

789

790

791 **Supplementary Information**

792

793 **Supplementary Materials & Methods**

794 *Expression constructs*

795 DNA coding for hSIRPaV1 (GenBank accession: NM_001040022.1) and hSIRPaV2 (GenBank

796 accession: D86043.1) were synthesized and cloned into NheI and EcoRI site of pcDNA3.1(+)

797 (GenScript Biotech). The vector backbone was adapted by cutting with EcoRI and BstBI and

798 insertion of DNA comprising an internal ribosomal entry site (IRES) and genes for GFP and

799 Blasticidin S deaminase from the expression construct described in (1). For the generation of

800 hSIRPa expression constructs comprising Ig-like V-type domain (D1, aa 31-146), Ig-like C1-

801 type 1 (D2, aa147-252) and Ig-like C1-type 2 (D3, aa253-348), of UniProtKB P13987 were

802 genetically fused N-terminally to aa1-26 of huCD59 (UniProtKB P13987) and SPOT-Tag (2)

803 and C-terminally to aa91-128 of huCD59 and cloned into BgIII and NotI sites of pEGFPN2

804 expression vector. huCD59 sequences of the expressed fusion protein causes both

805 translocation to the endoplasmatic reticulum and GPI anchoring of the protein at the plasma

806 membrane. DNA encoding for hSIRP β and hSIRPy were purchased from addgene (Plasmid

807 #116790) (3) and Sino Biological (Catalog Number HG16111-NH) and subcloned into NheI

808 and EcoRI sites of expression vector used for hSIRPa variants. Expression vector for murine

809 SIRPa was generated based on reference sequence NM_007547.4 and includes SPOT-Tag

810 subsequent to signal peptide (aa 1-31) (2). To generate the respective expression construct,

811 cDNA was cloned into KpnI and XbaI restriction sites of pCMV3-C-FLAG vector.

812

813 *Cell culture, transfection, stable cell line generation*

814 U2OS, DLD-1, and HT-1080 cells (ATCC) were cultivated according to standard protocols in

815 media containing DMEM (Thermo Fisher Scientific) or RPMI (Thermo Fisher Scientific),

816 respectively supplemented with 10% (v/v) FBS (Thermo Fisher Scientific) and

817 penicillin/streptomycin (Thermo Fisher Scientific) at 37°C and 5% CO₂ atmosphere in a

818 humidified chamber and passaged using 0.05% trypsin-EDTA (Thermo Fisher Scientific). For

819 transfection, Lipofectamine 2000 (Thermo Fisher Scientific) was used according to the
820 manufacturer's protocol. To generate cells stably expressing hSIRP α , selection pressure was
821 applied 24 h after transfection with 5 μ g/ml Blasticidin S (Sigma Aldrich) for a period of two
822 weeks, followed by single cell separation. Finally, individual clones were analyzed for hSIRP α
823 expression.

824

825 *Cell Isolation*

826 PBMCs were isolated as described previously (1). In brief, fresh blood was obtained from
827 healthy volunteers and PBMCs were isolated by density gradient centrifugation with Biocoll
828 separation solution (Biochrom) and frozen in heat-inactivated FBS (Capricorn Scientific,
829 Germany) containing 10% dimethyl sulfoxide (DMSO; Merck).

830

831 *Nanobody library generation*

832 For alpaca immunization and Nb library generation, a similar protocol as previously described
833 was performed (4, 5). Briefly, two alpacas (*Vicugna pacos*) were immunized with the
834 extracellular portion of hSIRP α (aa31-370) produced in HEK293 cells (Acrobiosystems) with
835 the approval of the Government of Upper Bavaria (approval number: 55.2-1-54-2532.0-80-14).
836 After an initial vaccination with 560 μ g, animals received five boost injections of 280 μ g hSIRP α
837 every two weeks. Finally, 91 days after initial immunization, ~100 ml of blood was collected,
838 and lymphocytes were isolated by Ficoll gradient centrifugation with lymphocyte separation
839 medium (PAA Laboratories GmbH). To obtain cDNA, total RNA was extracted using TRIzol
840 (Life Technologies), followed by mRNA transcription using the First-Strand cDNA Synthesis
841 Kit (GE Healthcare). The Nb repertoire was isolated and amplified in three subsequent PCR
842 reactions using the following primer combinations: (1) CALL001 and CALL002, (2) forward
843 primers FR1-1, FR1-2, FR1-3, FR1-4, and reverse primer CALL002, and (3) forward primers
844 FR1-ext1 and FR1-ext2 and reverse primers FR4-1, FR4-2, FR4-3, FR4-4, FR4-5, and FR4-6
845 introducing Sfil and NotI restriction sites (1). Finally, the amplified Nb library was cloned into
846 the pHEN4 phagemid vector (6) using the Sfil/NotI sites.

847

848 *Hydrogen-deuterium exchange*

849 HDX-MS epitope mapping was performed as recently described (7). In brief, 5 μ L hSIRP α (42

850 μ M) was incubated with either 2.5 μ L PBS or a specific hSIRP α Nb S8 (103 μ M), S33 (145 μ M)

851 or S36 (78 μ M). After a 10 min pre-incubation at 25 °C, HDX was initiated by a 1:10 dilution in

852 PBS (pH 7.4) prepared with D₂O (final labeling D₂O concentration = 90%). Aliquots of 15 μ L

853 were quenched after deuteration for 5 and 30 min by adding 15 μ L ice-cold quenching solution

854 (200 mM TCEP, 1.5% formic acid and 4 M guanidine HCl in 100 mM ammonium formate

855 solution, pH 2.2), resulting in a final pH of 2.5. Samples were immediately snap frozen and

856 stored at -80 °C until analysis. Non-deuterated control samples were processed using PBS

857 prepared with H₂O. Each sample was prepared in independent technical replicates (n=3).

858 Settled gel of immobilized pepsin (Thermo Fisher Scientific) was prepared by centrifugation of

859 60 μ L 50% slurry (in ammonium formate solution pH 2.5) at 1,000 x g and 0 °C for 3 min. The

860 supernatant was discarded, sample aliquots were thawed and added to the settled pepsin gel.

861 The proteolysis was performed for 2 min in an ice-water bath. To improve sequence coverage

862 near the N-glycosylation sites of hSIRP α , a post-proteolysis deglycosylation was performed

863 using PNGase Rc (7). 5 μ L PNGase Rc (4 μ M) was added under a filter inlet (0.65 μ m, Merck

864 Millipore) and the proteolyzed sample was placed on the filter. Centrifugation at 1000 x g for

865 30 s at 0 °C removed the beads and initiated the deglycosylation of the peptides in the flow-

866 through. Deglycosylation was carried out in an ice-water bath for an additional 2 min, and

867 samples were analyzed by LC-MS as described in (8).

868 Data analysis was performed as previously described in (8). HDX data were obtained for ≥83%

869 of the hSIRP α sequence. The deuterium uptake of each peptide was normalized to the

870 maximal exchangeable protons of the backbone. The deuteration was compared between

871 hSIRP α alone and in complex. A peptide was considered protected from HDX if the summed

872 difference was ≥5%. A peptide was considered not protected if the summed HDX difference

873 was ≤3%.

874

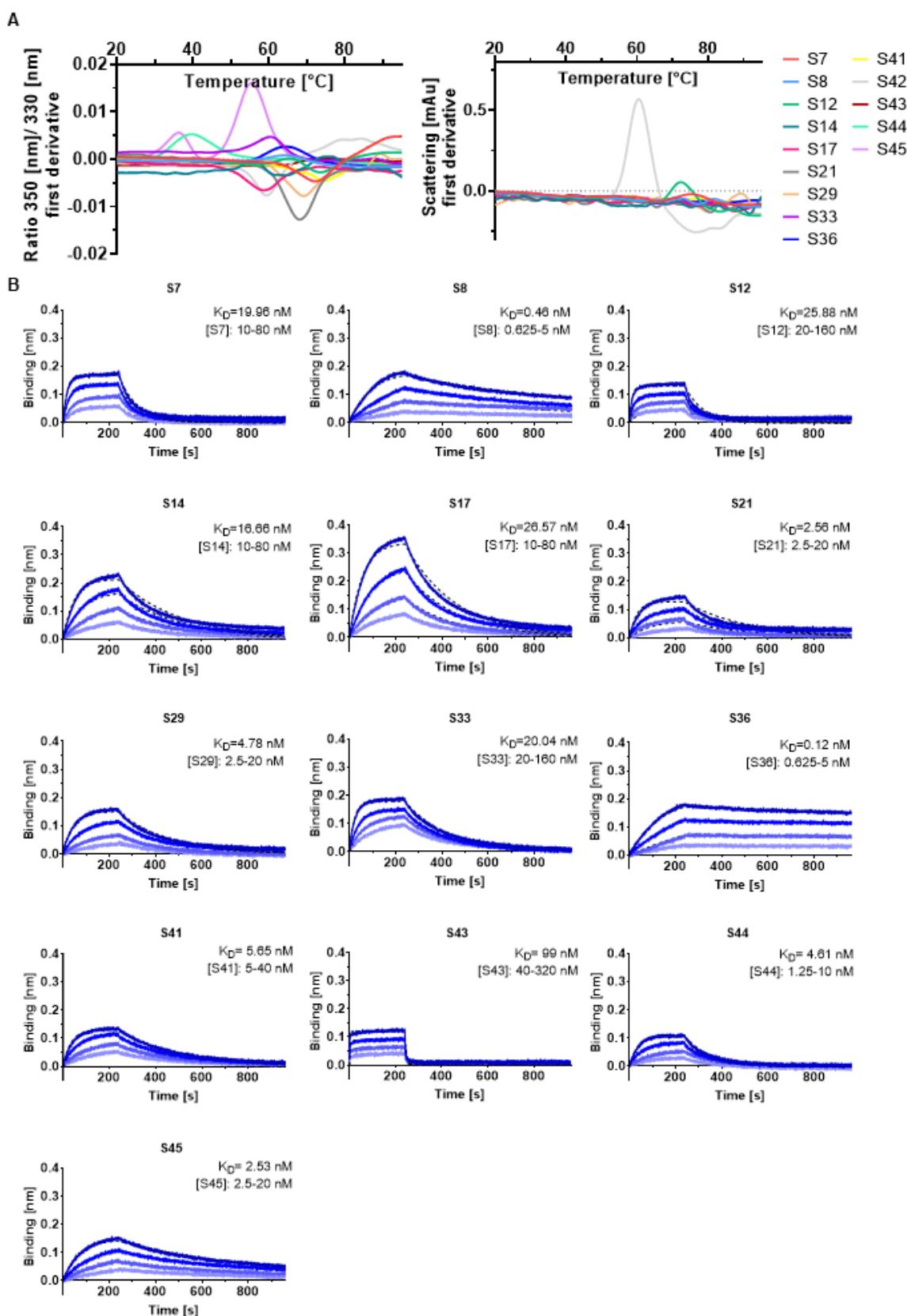
875 *Mass spectrometry*

876 To confirm correct expression, integrity, and purity, chelator conjugated hSIRPa-S36_{K>R} was
877 analyzed by mass spectrometry. Protein sample (5 µg) was diluted 1:3 with HisNaCl buffer
878 (20 mM His, 140 mM NaCl, pH 6.0) and analyzed by liquid chromatography (HPLC) coupled
879 to electrospray ionization (ESI) quadrupole time-of-flight (QTOF) MS. Sample (0.4 µg per
880 injection) was desalted using reversed phase chromatography on a Dionex U3000 RSLC
881 system (Thermo Scientific, Dreieich, Germany) using a Acquity BEH300 C4 column (1mm x
882 50mm, Waters, Eschborn, Germany) at 75°C and 150 µl/min flow rate applying a 11-min linear
883 gradient with varying slopes. In detail, the gradient steps were applied as follows (min/% Eluent
884 B): 0/5, 0.4/5, 2.55/30, 7/50, 7.5/99, 8/5, 8.75/99, 9.5/5, 10/99, 10.25/5 and 11/5. Eluent B was
885 acetonitrile with 0.1% formic acid, and solvent A was water with 0.1% formic acid. To avoid
886 contamination of the mass spectrometer with buffer salts, the HPLC eluate was directed into
887 waste for the first 2 min. Continuous MS analysis was performed using a QTOF mass
888 spectrometer (Maxis UHR-TOF; Bruker, Bremen, Germany) with an ESI source operating in
889 positive ion mode. Spectra were taken in the mass range of 600–2000 m/z. External calibration
890 was applied by infusion of tune mix via a syringe pump during a short time segment at the
891 beginning of the run. Raw MS data were lock-mass corrected (at m/z 1221.9906) and further
892 processed using Data Analysis 5.3 and MaxEnt Deconvolution software tools (Bruker).

893

894 **Supplementary Table**

895 **Supplementary Table 1. Summary of HDX-MS parameters of epitope mapping of anti-**

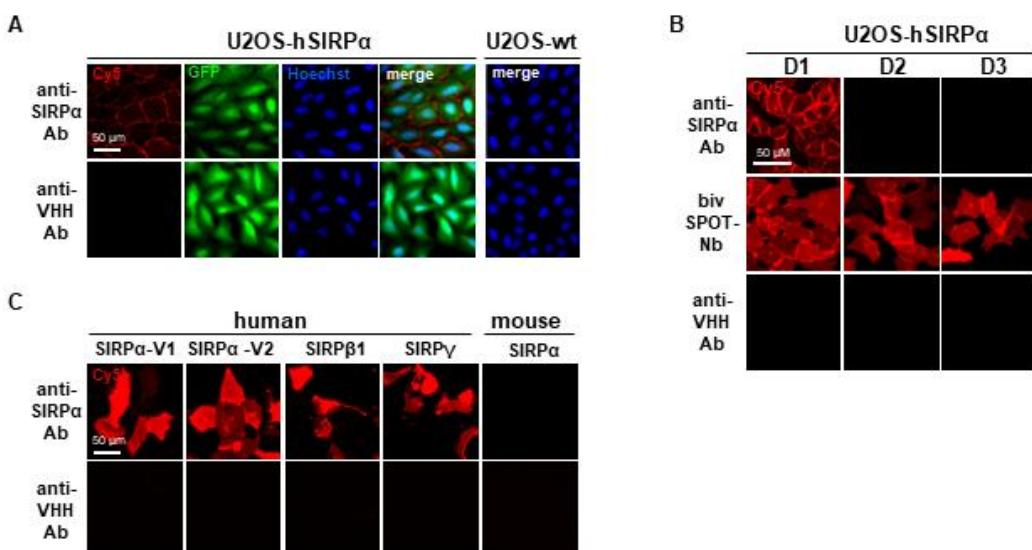

896 **SIRP α -Nbs as per consensus guidelines (9).**

HDX parameters			
States	SIRP α & SIRP α bound by Nb S8	SIRP α & SIRP α bound by Nb S33	SIRP α & SIRP α bound by Nb S36
HDX reaction detail	1x PBS pH 7.4, 25 °C, 90% D ₂ O	1x PBS pH 7.4, 25 °C, 90% D ₂ O	1x PBS pH 7.4, 25 °C, 90% D ₂ O
Deuteration time points	5 & 30 min	5 & 30 min	5 & 30 min
Average peptide length (AA)	14.2 (s _d = 6.6)	14.5 (s _d = 7.1)	14.3 (s _d = 6.7)
Average redundancy (AA)	4.4	4.4	4.3
Number of used peptides	108	106	105
Sequence coverage	86%	86%	86%
Δ $\overline{H}X$ threshold for each time point (p≤0.05)	0.27 Da	0.21 Da	0.23 Da
Δ $\overline{H}X$ threshold for each time point (p≤0.01)	0.44 Da	0.34 Da	0.38 Da
Complexed SIRP α during labelling	99.9%	99.0%	97.1%

897

898

899 **Supplementary Figures**


900

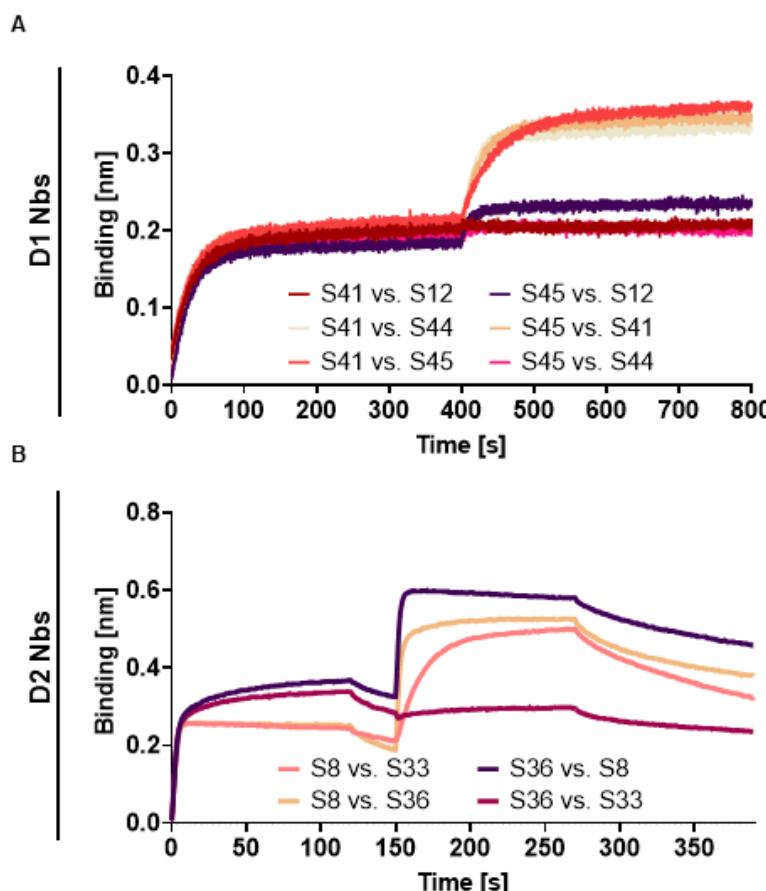
901 **Supplementary Figure 1. Detailed stability analysis and kinetic measurements of**
902 **hSIRP α Nbs.**

903 **A** Stability of hSIRP α Nbs was analyzed by nano-differential scanning fluorimetry (nanoDSF).
904 Fluorescence ratios (350 nm/330 nm) and light intensity loss due to scattering illustrated as
905 first derivative are shown. Data are shown as mean value of three technical replicates.

906 **B** Sensograms of biolayer interferometry- (BLI-) based affinity measurements of 13 identified
907 hSIRP α Nbs. Biotinylated hSIRP α was immobilized on streptavidin biosensors and kinetic
908 measurements were performed by using four concentrations of purified Nbs ranging from
909 0.625 to 320 nM (displayed with gradually lighter shades of color). Binding affinity (K_D) was
910 calculated from global 1:1 fits illustrated as dashed lines.

911

912


913 **Supplementary Figure 2. Immunofluorescence staining controls.**

914 **A** Immunofluorescence staining controls of U2OS cells displaying hSIRP α on their surface.
915 Representative images of three technical replicates show hSIRP α Ab (SE5A5) and secondary
916 only Ab control (anti-VHH-Cy5) (red), intracellular IRES derived GFP signal (green), nuclei
917 staining (Hoechst, blue) and merged signals; scale bar: 50 μ m.

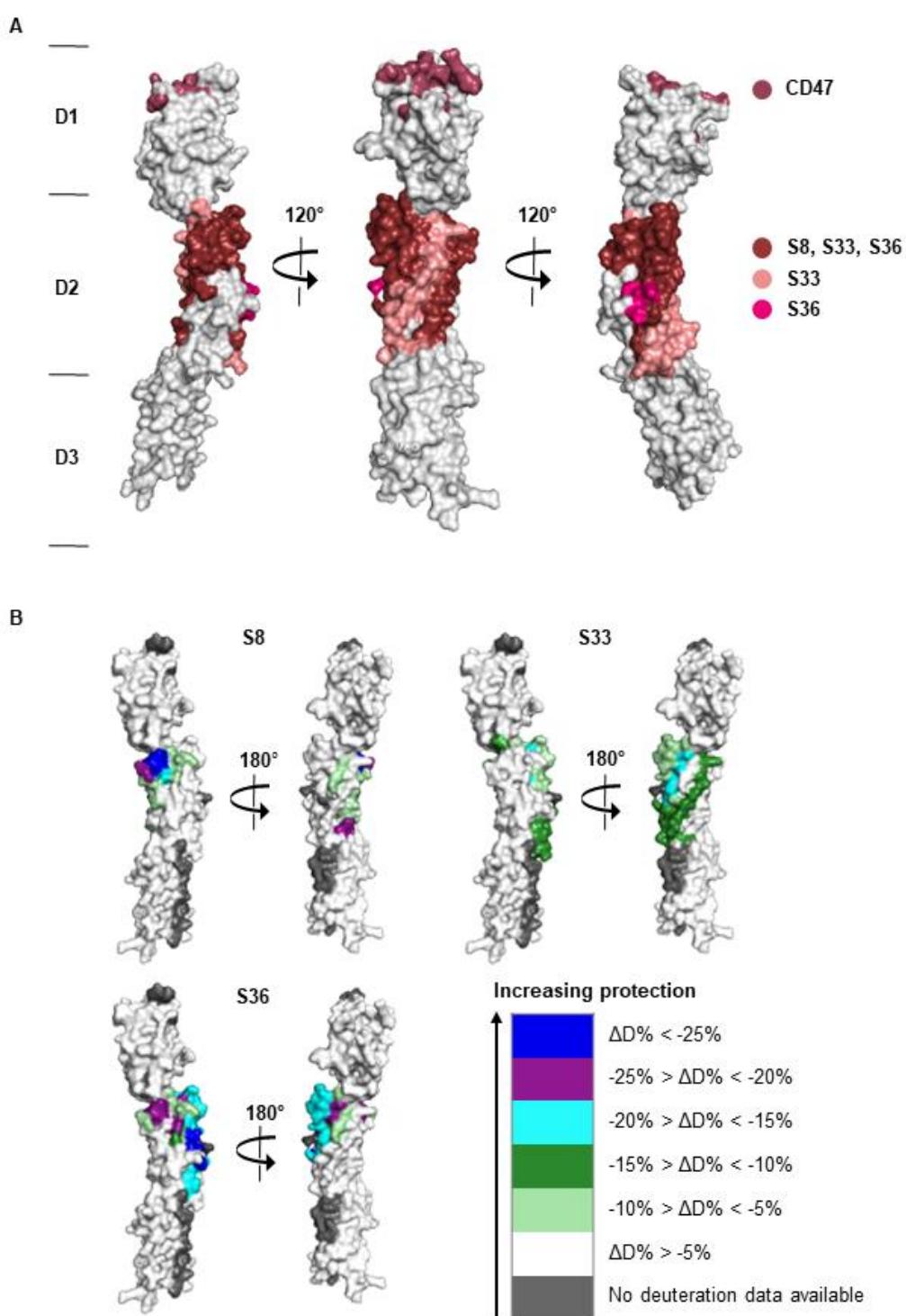
918 **B** Immunofluorescence staining controls of U2OS cells displaying SPOT-tagged hSIRP α
919 domain 1 (D1), domain 2 (D2) or domain 3 (D3) on their surface. Representative images of
920 three technical replicates of live cells stained with hSIRP α Ab (SE5A5), bivSPOT-Nb (2) and
921 secondary only Ab control (anti-VHH-Cy5) are shown; scale bar: 50 μ m.

922 **C** Immunofluorescence control staining of U2OS cells expressing human hSIRP α -V1, -V2,
923 hSIRP β 1, hSIRPy or mouse hSIRP α on their surface. Representative images of three technical
924 replicates of live cells stained with hSIRP α Ab (SE5A5) and secondary only Ab control (anti-
925 VHH) are shown; scale bar: 50 μ m.

926

927

928 **Supplementary Figure 3. Epitope binning analysis of hSIRP α Nbs by BLI.**


929 **A** Sensograms of BLI-based epitope binning analysis of hSIRP α D1 Nbs are shown (n=1).

930 Biotinylated hSIRP α was immobilized on streptavidin biosensors followed by two consecutive
931 association steps of hSIRP α D1 Nbs S12, S41, S44, S45 (100 nM).

932 **B** Sensograms of BLI-based epitope binning analysis of hSIRP α D2 Nbs are shown (n=1).

933 Biotinylated hSIRP α was immobilized on streptavidin biosensors followed by two consecutive
934 association steps of hSIRP α D2 Nbs S8, S33, S36 (100 nM).

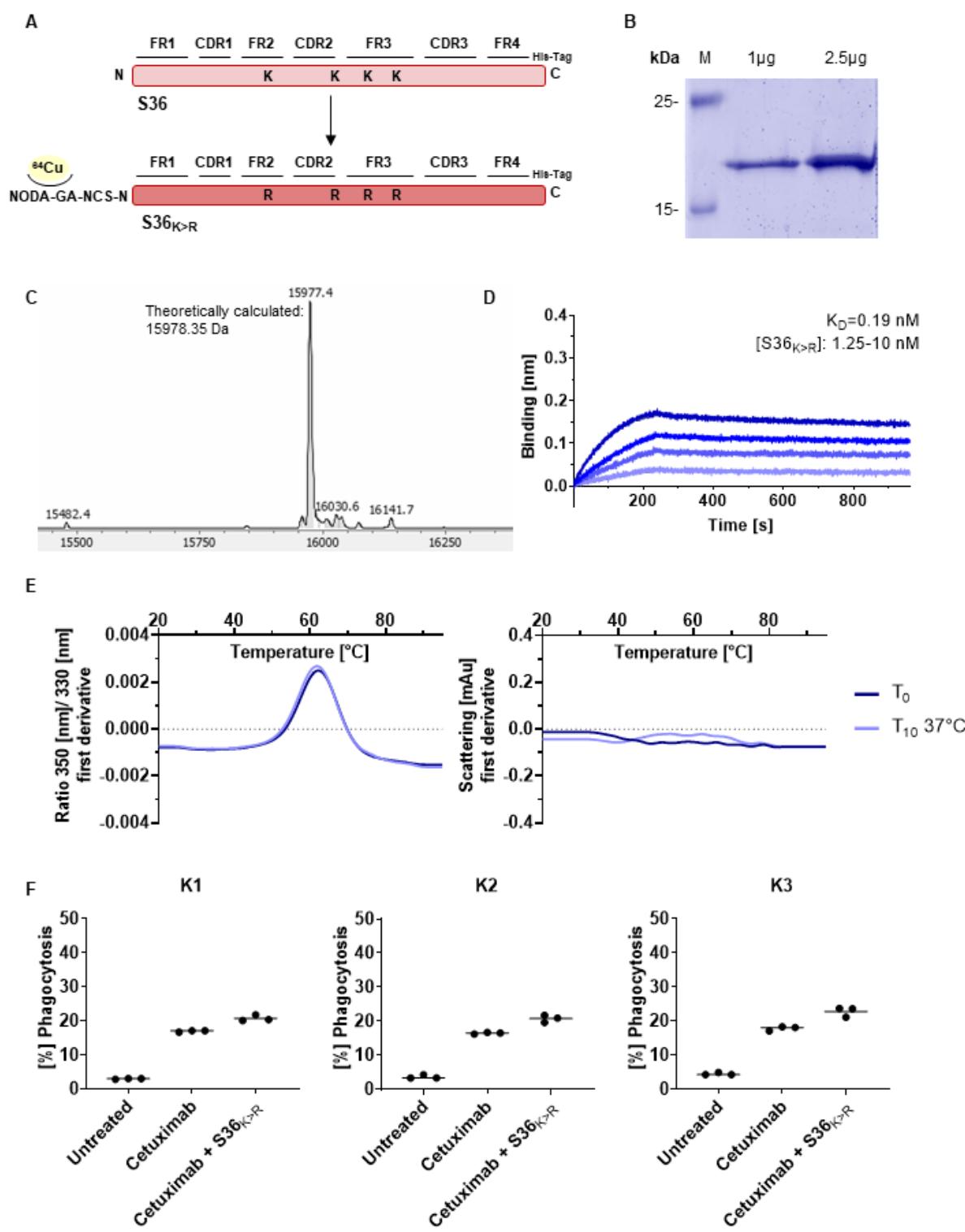
935

936

937

938 **Supplementary Figure 4. Detailed epitope mapping analysis of hSIRPαD2 Nbs by HDX-**

939 **MS.**


940 Localization of hSIRPαD2 Nbs binding epitopes by hydrogen-deuterium exchange mass

941 spectrometry (HDX-MS).

942 **A** Surface structure model of hSIRPa (PDB 2wng) showing overlayed epitope mapping results
943 of Nbs S8, S33 and S36.

944 **B** Surface structure model of hSIRPa (PDB 2wng) showing individual results of epitopes
945 protected upon binding of hSIRPaD2 Nbs S8, S33 and S36 and different colors indicate the
946 strength of protection (%ΔD).

947

954 **B** Expression and purification of hSIRP α -S36_{K>R} Nb using immobilized metal affinity
955 chromatography (IMAC) and size exclusion chromatography (SEC). Coomassie staining of 1
956 μ g and 2.5 μ g of purified and chelator-conjugated hSIRP α -S36_{K>R} Nb is shown.

957 **C** Confirmation of identity and integrity by mass spectrometric (MS) analysis of chelator
958 conjugated hSIRP α -S36_{K>R} Nb (theoretically calculated molecular weight of 15978.35 Da).

959 **D** BLI-based affinity measurements of chelator conjugated hSIRP α -S36_{K>R} Nb. Biotinylated
960 hSIRP α was immobilized on streptavidin biosensors. Kinetic measurements were performed
961 by using four concentrations of purified Nbs ranging from 1.25 nM to 10 nM.

962 **E** Stability analysis of chelator conjugated hSIRP α -S36_{K>R} Nb by nanoDSF as fluorescence
963 ratios (350 nm/330 nm) and light intensity loss due to scattering illustrated as first derivative
964 before (T_0) and after 10 days of accelerated aging at 37°C (T_{10}). Data are shown as mean
965 value of three technical replicates.

966 **F** Phagocytosis of DLD-1 cells by human monocyte-derived macrophages treated with anti-
967 EGFR cetuximab and chelator conjugated hSIRP α -S36_{K>R} Nb. Analysis of phagocytosis of
968 hSIRP α -S36_{K>R} Nb in combination with cetuximab of three different donors (K1, K2, K3). Data
969 are shown as individual and mean value of three technical replicates.

970

971 **References**

972 1. B. Traenkle *et al.*, Single-Domain Antibodies for Targeting, Detection, and In Vivo
973 Imaging of Human CD4+ Cells. *Frontiers in Immunology* **12** (2021).

974 2. D. Virant *et al.*, A peptide tag-specific nanobody enables high-quality labeling for
975 dSTORM imaging. *Nature Communications* **9**, 930 (2018).

976 3. P. K. Ng *et al.*, Systematic Functional Annotation of Somatic Mutations in Cancer.
977 *Cancer Cell* **33**, 450-462.e410 (2018).

978 4. J. Maier, B. Traenkle, U. Rothbauer, Real-time analysis of epithelial-mesenchymal
979 transition using fluorescent single-domain antibodies. *Scientific reports* **5**, 1-13 (2015).

980 5. B. Traenkle *et al.*, Monitoring Interactions and Dynamics of Endogenous Beta-catenin
981 With Intracellular Nanobodies in Living Cells*[S]. *Molecular & Cellular Proteomics* **14**,
982 707-723 (2015).

983 6. M. Arbabi Ghahroudi, A. Desmyter, L. Wyns, R. Hamers, S. Muyldermans, Selection
984 and identification of single domain antibody fragments from camel heavy-chain
985 antibodies. *FEBS letters* **414**, 521-526 (1997).

986 7. M. Gramlich *et al.*, A Novel PNGase Rc for Improved Protein N-Deglycosylation in
987 Bioanalytics and Hydrogen–Deuterium Exchange Coupled With Mass Spectrometry
988 Epitope Mapping under Challenging Conditions. *Analytical Chemistry* **94**, 9863-9871
989 (2022).

990 8. T. R. Wagner *et al.*, NeutrobodyPlex—monitoring SARS-CoV-2 neutralizing immune
991 responses using nanobodies. *EMBO reports* **22**, e52325 (2021).

992 9. G. R. Masson *et al.*, Recommendations for performing, interpreting and reporting
993 hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. *Nature
994 Methods* **16**, 595-602 (2019).

995

996