

1 Title page

2 The ChickenGTEx pilot analysis: a reference of regulatory variants across 28 3 chicken tissues

4 Dailu Guan^{1†}, Zhonghao Bai^{2†}, Xiaoning Zhu^{3†}, Conghao Zhong^{4†}, Yali Hou^{5,6†}, The
5 ChickenGTEx Consortium, Fangren Lan⁴, Shuqi Diao⁷, Yuelin Yao^{8,9}, Bingru Zhao¹⁰, Di Zhu^{2,3},
6 Xiaochang Li⁴, Zhangyuan Pan¹¹, Yahui Gao^{7,12,13}, Yuzhe Wang³, Dong Zou⁵, Ruizhen Wang^{5,6},
7 Tianyi Xu⁵, Congjiao Sun⁴, Hongwei Yin¹⁴, Jinyan Teng⁷, Zhiting Xu⁷, Qing Lin⁷, Shourong
8 Shi¹⁵, Dan Shao¹⁵, Fabien Degalez¹⁶, Sandrine Lagarrigue¹⁶, Ying Wang¹, Mingshan Wang¹⁷,
9 Minsheng Peng¹⁷, Dominique Rocha¹⁸, Mathieu Charles¹⁸, Jacqueline Smith¹⁹, Kellie Watson¹⁹,
10 Albert Johannes Buitenhuis², Goutam Sahana², Mogens Sandø Lund², Wesley Warren²⁰, Laurent
11 Frantz^{21,22}, Greger Larson²³, Susan J. Lamont²⁴, Wei Si^{11,25}, Xin Zhao²⁵, Bingjie Li²⁶, Haihan
12 Zhang²⁷, Chenglong Luo²⁸, Dingming Shu²⁸, Hao Qu²⁸, Wei Luo²⁸, Zhenhui Li^{7,29}, Qinghua
13 Nie^{7,29}, Xiquan Zhang^{7,29}, Zhe Zhang⁷, Zhang Zhang^{5,6}, George E. Liu¹², Hans Cheng³⁰, Ning
14 Yang^{4*}, Xiaoxiang Hu^{3*}, Huaijun Zhou^{1*}, Lingzhao Fang^{2*}

15
16 ¹Department of Animal Science, University of California, Davis, CA, 95616, USA

17 ²Center for Quantitative Genetics and Genomics (QGG), Aarhus University, Aarhus, 8000, Denmark

18 ³State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University,
19 Beijing, 100193, China

20 ⁴College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China

21 ⁵Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation,
22 Beijing 100101, China

23 ⁶University of Chinese Academy of Sciences, Beijing 100049, China

24 ⁷ State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Lab of Agro-Animal
25 Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou
26 510642, China

27 ⁸MRC Human Genetics Unit at the Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4
28 2XU, UK

29 ⁹School of Informatics, The University of Edinburgh, Edinburgh EH8 9AB, UK

30 ¹⁰Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing
31 Agricultural University, Nanjing, Jiangsu 210095, China

32 ¹¹Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China

33 ¹²Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center,
34 Agricultural Research Service, USDA, Beltsville, Maryland 20705, USA

35 ¹³Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA

36 ¹⁴Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and
37 Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural
38 Sciences, Shenzhen, 518124, China

39 ¹⁵Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China

40 ¹⁶PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France.

41 ¹⁷State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of
42 Sciences, Kunming, Yunnan 650223, China

43 ¹⁸Paris-Saclay University, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France

44 ¹⁹The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian EH25
45 9RG, UK

46 ²⁰Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, MO
47 65201

48 ²¹Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich 80539,
49 Germany

50 ²²School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4DQ, United
51 Kingdom

52 ²³The Palaeogenomics & Bio-Archaeology Research Network, School of Archaeology, University of Oxford,
53 Oxford, UK

54 ²⁴Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA

55 ²⁵Department of Animal Science, McGill University, Quebec, H9X 3V9, Canada

56 ²⁶Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian EH25 9RG, UK

57 ²⁷College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China

58 ²⁸State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding
59 and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640,
60 Guangdong China

61 ²⁹Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of
62 Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China
63 Agricultural University, Guangzhou, Guangdong, China

64 ³⁰Avian Disease and Oncology Laboratory, USDA, ARS, USNPRC, East Lansing, MI, USA

65

66 **Corresponding authors*:**

67 **Dr. Lingzhao Fang:** Center for Quantitative Genetics and Genomics (QGG), Aarhus University,
68 Aarhus, Denmark

69 E-mail: lingzhao.fang@qgg.au.dk;

70 **Prof. Huaijun Zhou:** Department of Animal Science, University of California, Davis, CA,
71 95616, USA

72 E-mail: hzhou@ucdavis.edu;

73 **Prof. Xiaoxiang Hu:** State Key Laboratory of Animal Biotech Breeding, College of Biological
74 Sciences, China Agricultural University, Beijing, 100193, China

75 E-mail: huxx@cau.edu.cn;

76 **Prof. Ning Yang:** College of Animal Science and Technology, China Agricultural University,
77 Beijing, 100193, China

78 E-mail: nyang@cau.edu.cn;

79

80 **Emails for all authors:**

81 dguan@ucdavis.edu; zhonghao.bai@qgg.au.dk; zhu0506@cau.edu.cn; chzhong@cau.edu.cn;
82 houyl@big.ac.cn; fangrlan@163.com; saradio@126.com; zoud@big.ac.cn;
83 s1914230@ed.ac.uk; zhaobru@163.com; zhudi@qgg.au.dk; lixc1219@126.com;
84 zhypan01@163.com; gyhalvin@gmail.com; yuzhe891@cau.edu.cn; zoud@big.ac.cn;

85 wangrz@big.ac.cn; xuty@big.ac.cn; cjsun@cau.edu.cn; yinhongwei@caas.cn;
86 kingyan312@live.cn; zhitingxu@126.com; qing_lin1996@126.com; ssr236@163.com;
87 yzshaodan@163.com; fabien.degalez@inrae.fr; sandrine.lagarrigue@agrocampus-ouest.fr;
88 ucywang@ucdavis.edu; wangmingshan@mail.kiz.ac.cn; pengminsheng@mail.kiz.ac.cn;
89 dominique.rocha@inrae.fr; mathieu.charles@inrae.fr; jacqueline.smith@roslin.ed.ac.uk;
90 kellie.watson@ed.ac.uk; bart.buitenhuis@qgg.au.dk; mogens.lund@qgg.au.dk;
91 goutam.sahana@qgg.au.dk; warrenwc@missouri.edu; laurent.frantz@lmu.de;
92 laurent.frantz@palaeo.vetmed.uni-muenchen.de; greger.larson@arch.ox.ac.uk;
93 silamont@iastate.edu; siwei01@caas.cn; xin.zhao@mcgill.ca; bingjie.li@sruc.ac.uk;
94 zhhous@163.com; chenglongluo1981@163.com; shudm@263.net; qhw03@163.com;
95 luowei198891@163.com; lizhenhui@scau.edu.cn; nqinghua@scau.edu.cn;
96 xqzhang@scau.edu.cn; zhezhang@scau.edu.cn; zhangzhang@big.ac.cn; george.liu@usda.gov;
97 hcheng@msu.edu; hans.cheng@usda.gov; nyang@cau.edu.cn; huxx@cau.edu.cn;
98 hzhou@ucdavis.edu; lingzhao.fang@qgg.au.dk

99
100

101

Abstract:

102

Chicken is a valuable model for understanding fundamental biology, vertebrate evolution and diseases, as well as a major source of nutrient-dense and lean-protein-enriched food globally. Although it is the first non-mammalian amniote genome to be sequenced, the chicken genome still lacks a systematic characterization of functional impacts of genetic variants. Here, through integrating 7,015 RNA-Seq and 2,869 whole-genome sequence data, the Chicken Genotype-Tissue Expression (ChickenGTEx) project presents the pilot reference of regulatory variants in 28 chicken tissue transcriptomes, including millions of regulatory effects on primary expression (including protein-coding genes, lncRNA and exon) and post-transcriptional modifications (alternative splicing and 3' untranslated region alternative polyadenylation). We explored the tissue-sharing and context-specificity of these regulatory variants, their underlying molecular mechanisms of action, and their utility in interpreting adaptation and genome-wide associations of 108 chicken complex traits. Finally, we illustrated shared and lineage-specific features of gene regulation between chickens and mammals, and demonstrated how the ChickenGTEx resource can further assist with translating genetic findings across species.

116

One-Sentence Summary:

117

The ChickenGTEx provides a multi-tissue reference of regulatory variants for chicken genetics and genomics, functional genomics, precision breeding, veterinary medicine, vertebrate evolution and even human biomedicine.

120

121

122

Main Text:

123

Introduction

124

The chicken (*Gallus gallus domesticus*) is not only a globally significant source of protein-rich food through both meat and egg production, but also a fundamental model species. In 2021, the farming industry achieved a staggering production of 111 million tons of eggs and 137 million tons of poultry meat worldwide (<https://www.fao.org>). Due to its distinct phylogenetic placement as well as its genetic and physiological characteristics, the chicken is also served as a well-recognized model organism in both fundamental and applied research (1, 2), studies of domestication, genome editing, system biology, virology, immunology, oncology, and evolution (3–7). The chicken retains a remarkable range of phenotypic variation in terms of morphology, physiology, and behavior, primarily driven by artificial selection and breed specialization. Such extensive variation for a wide range of features is ideal for investigating the genetic architecture underlying complex traits. One example of such traits is dwarfism, which is characterized by a short stature and is observed in various forms in chickens, including sex-linked dwarfism, autosomal dwarfism, and the bantam phenotype, according to their physiological and genetic properties (8, 9). In addition, long-term bidirectional selection lines have been established in chickens to study how polygenic selection influences complex traits such as body weight (10) and feather pecking (11).

140

The Red Jungle Fowl (*G. gallus*), the ancestor of domestic chicken, was one of the first food-producing animals that had its genome assembled (1). Recently, a near complete version of the chicken reference genome assembly was reported, revealing distinct sequence and epigenetic features of microchromosomes (12). Several population-scale studies of chicken genome variation have focused on various aspects of its evolution, including speciation and domestication (13–15), signatures of selection (14, 16, 17), admixture and introgression (14, 18, 19), feralization (20, 21), and phenotypic adaptation (22–24). Meanwhile, linkage mapping and genome-wide association studies (GWAS) have identified tens of thousands of genomic loci associated with numerous complex traits in chickens (5, 25–27). As most genetic variants behind such adaptive evolutionary and complex traits are non-coding, a systematic annotation of regulatory variants in the chicken genome becomes indispensable for understanding their underlying genetic regulatory circuitry (28–30). The expression quantitative trait locus (eQTL) analysis is presently the most powerful approach to measure regulatory effects of sequence variants on individual gene expression in their native genomic and cellular contexts (31), as documented in the human Genotype-Tissue Expression (GTEx) project series of studies (32–34) and eQTL Catalogue in humans (35). In contrast, previous eQTL studies in chickens have been limited in sample size, the number of studied genomic features, and tissue/cell types (36–40). For instance, in an intercross population of 125 chickens, Johnsson et al. (2015) identified 6,318 *cis*-eQTL that influence female femoral gene expression, as measured by microarrays (36).

159

To fully unlock the genetic code of the chicken genome, the Chicken Genotype-Tissue Expression (ChickenGTEx) project, as part of the international Farm animal GTEx (FarmGTEx) initiative (41), has been launched to build a comprehensive reference panel of regulatory variants based on the chicken transcriptome in various biological contexts (e.g., development, sex and environmental exposure). In this pilot study, through analyzing 7,015 bulk RNA-Seq datasets from 52 tissues/cell types (hereafter referred to as “tissues”) and 2,869 whole genome sequences (WGS) from over 100 breeds/lines (hereafter referred to as “breeds”) worldwide, we

166 systematically associated approximately 1.5 million genomic variants with five transcriptomic
167 phenotypes in 28 chicken tissues with sufficient sample size (ranging from 44 to 741). We then
168 explored tissue-sharing and context-dependent patterns of these regulatory variants, their
169 underlying molecular mechanisms of action, and their utility in deciphering GWAS loci of 108
170 complex traits *via* multiple complementary integrative methods such as transcriptome-wide
171 association studies (TWAS), colocalization, and Mendelian Randomization (MR). Additionally,
172 we compared gene regulation and the phenotypic implications between chicken and three
173 mammalian species (*i.e.* human, cattle and pig). Altogether, our study provides novel and
174 profound insights into the regulatory hierarchy of genetic variation in chicken transcriptomes and
175 complex phenotypes, providing the first large-scale mapping of regulatory variants in the
176 chicken genome and their links to complex phenotypes. Meanwhile, the atlas of regulatory
177 variants identified in this study will facilitate the genetic improvement of chicken populations
178 worldwide in health, production, and resilience and inform a wide range of genetic and genomic
179 research in animal and plant species. Furthermore, we have also well-developed a ChickenGTEX
180 online resource that is freely accessible at <http://chicken.farmgtx.org>.

181 Results

182 Harmonizing large transcriptome and genome datasets in chickens

183 We analyzed 8,668 bulk RNA-Seq samples using a uniform pipeline, yielding 304.4 billion clean
184 reads. After filtering out low-quality data, 7,015 samples remained for subsequent analyses,
185 representing 28 tissues (**fig. S1**, **Tables S1** and **2**). Based on gene expressions, samples were
186 clustered well regarding their tissue types (**fig. 1a**, **fig. S2**). Across all the tissues, an average of
187 23,056 (94.7% of all annotated genes) genes were expressed (Transcripts per Million, TPM >
188 0.1) (**Table S3**), showing patterns of ubiquitous or tissue-specific expression (**fig. S3**). An
189 average of 1,938 tissue-specific genes were then detected across tissues (**fig. S3d**), and their
190 functions recapitulated the known tissue biology (**fig. 1b**, **fig. S3e**, **Table S4**, [URL](#)). For
191 instance, a total of 1,425 genes were specifically and highly expressed in the bursa of Fabricius,
192 a bird-specific primary lymphoid organ, which were significantly enriched in the immune
193 response to bacteria (**Table S4**). An average of 54.7% of tissue-specific genes could be linked to
194 at least one tissue-specific promoter/enhancer (**fig. S4a-d**). For instance, *MSLNL* with bursa-
195 specific promoters and enhancers showed a specific expression in the bursa (**fig. S4d**). An
196 average of 114 genes exhibited sex-biased expression across 18 tissues (FDR < 0.01), among
197 which 17 genes were shared in all these tissues and located in sex chromosomes (**figs. S4e-f**,
198 **Table S5**). This was in agreement with the notion of incomplete sex-chromosome dosage
199 compensation in chickens(42). In addition, out of 45 genes associated with Mendelian traits in
200 chickens(43), 41 showed tissue-specific expression (**fig. S5a**). For instance, *SLCO1B3* is the
201 causal gene of blue eggshell in chickens(44), which was specifically and highly expressed in the
202 liver and had liver-specific promoters and enhancers (**fig. S5b**).

203 To further annotate the function of chicken genes with this extensive transcriptome data, we
204 conducted gene co-expression network and transcript assembly analyses. Based on co-expression
205 analysis, we identified 3,583 co-expression modules containing 25,023 genes, 41.3% (10,332) of
206 which were not functionally annotated in the current Gene Ontology (GO) database (**figs. S6**). In
207 the set of 2,940 unannotated protein-coding genes, 56.3% (1,654) were able to be assigned to co-
208 expression modules. Compared to annotated genes, these unannotated genes exhibited more
209 tissue-specificity, lower gene expression level, and small proportion of chicken-human
210

211 orthologous genes (**fig. S6d**). For instance, 8 unannotated genes were co-expressed with 12
212 annotated genes in the muscle, which were significantly enriched in myeloid cell development
213 and erythrocyte differentiation networks (**fig. S6f**). Through the transcript assembly analysis, we
214 predicted 247,383 transcripts at 48,800 loci, including 184,374 protein-coding transcripts derived
215 from 17,215 loci, 13,140 lncRNA transcripts from 3,436 loci, and 49,869 other noncoding RNA
216 transcripts from 34,350 loci (**fig. S7, URL**). Of all these predicted transcripts, 90% were not
217 annotated in the previous reference and 4-10% were even transcribed from novel genomic loci
218 (**fig. S7d and g**). For instance, we observed a new transcript on chromosome 2 was highly and
219 specifically expressed in the testis (**fig. S7h**).

220 To obtain genotypes of these RNA-Seq samples, we called ~9 million single nucleotide
221 polymorphisms (SNPs) from bulk RNA-Seq data using the GATK best practice pipeline(45) (**fig.**
222 **S8**). To impute missing genotypes, we built a chicken multi-breed genotype imputation reference
223 panel consisting of 2,869 global WGS data sets, which had a similar population composition as
224 the RNA-Seq data (**fig. 1c, Table S6**). Adopting a missing rate of 0.6, the imputation accuracy of
225 1.5 million SNPs reached 97% (**figs. S8b-h**). The independent datasets from three different
226 chicken breeds confirmed a high concordance rate (> 90%) between imputed genotypes and
227 those directly called from WGS data of the same individuals (**fig. S8g**). After removing
228 duplicated samples based on their genetic relatedness, 28 tissues (each consisting of over 40
229 individuals) were retained for subsequent molecular quantitative trait loci (molQTL) mapping
230 (**fig. 1d**).

231

232 **Discovery of molQTL**

233 To comprehensively explore the genetic regulation of the chicken transcriptome, we conducted
234 *cis*-molQTL mapping for five molecular phenotypes, including protein-coding gene expression
235 (eQTL), lncRNA expression (lncQTL), exon expression (exQTL), splicing variation (sQTL), and
236 3'UTR alternative polyadenylation (3a'QTL), across 28 chicken tissues (**fig. 2a, fig. S2, figs. S9-**
237 **10**). In total, 13,983 (92.9%) of 15,046 tested protein-coding genes, 11,685 (74.3%) of 15,720
238 lncRNAs, 124,423 (76.0%) of 163,812 exons, 9,669 (61.5%) of 15,405 loci with alternative
239 splicing events, and 8,798 (74.1%) of 11,880 loci with 3'UTR alternative polyadenylation
240 (3'UTR APA) were significantly (FDR < 0.05) regulated by at least one genetic variant in at
241 least one tissue, and are thus referred to as eGenes, lncGenes, exGenes, sGenes and 3a'Genes,
242 respectively. All the molQTL tended to be enriched around transcription start sites (TSS) and
243 transcription end sites (TES), while 3a'QTL and sQTL showed a higher enrichment in TES and
244 gene body, respectively, compared to other molQTL (**fig. 2b, figs. S11a-e**). Furthermore, an
245 average of 73.6% (10,288) of eGenes, 40.5% (3,914) of sGenes, 60.7% (75,527) of exGenes,
246 58.9% (6,886) of lncGenes, and 7.3% (640) of 3a'Genes were regulated by more than one
247 independent variant (eVariants) across tissues (**fig. 2c, fig. S12**). The further fine-mapping
248 analysis for molQTL with SuSiE (46) revealed 2,887, 2,366, 2,053, 12,409 and 1,572 potential
249 causal variants for eGenes, sGenes, lncGenes, exGenes and 3a'Genes, respectively (**URL**).

250 The statistical power of molQTL mapping depends on the sample size of the tissue, similar to
251 findings in other species(32, 47, 48) (**fig. 2d-g, figs. S13 and 14**). The down-sampling analysis in
252 the liver and muscle further confirmed the relationship between sample size and eQTL discovery
253 power (**fig. 2g**). Most eQTL with large effect (i.e., fold change of expression, aFC > 2) were
254 detectable when sample size reached around 200 (**fig. 2f and g**), and eQTL with larger effect
255 were more enriched around TSS (**fig. S14l**) and had lower minor allele frequency (MAF) (**fig.**

256 **S14**). In general, the estimated effect size of eQTL was not correlated with their gene expression
257 levels across tissues (**figs. S15 a and b**). Of note, chromosome size was significantly and
258 positively correlated with eGene heritability (**fig. 2e**), eGene discovery (**fig. S15c**), and MAF of
259 lead eVariants (**fig. S15d**). This was only observed in chickens and not in mammals (i.e., pig,
260 cattle and human) (**figs. S15e-g**). Such influences of chromosome size on eQTL effects might be
261 due to differences in evolutionary constraints between microchromosomes and
262 macrochromosomes in chickens(49), which was further supported by the observation that
263 phastCons scores of lead eVariants were also negatively correlated with chromosome size (**fig.**
264 **2e**).

265 To validate molQTL identified above, we first applied linear mixed model (LMM), by which we
266 observed that the effect size and significance level of genetic variants estimated by the LMM
267 were highly correlated with those estimated by the linear regression, implemented in tensorQTL
268 (**50**) (**fig. S16**). We then randomly and evenly divided samples from 15 tissues with a sample size
269 of over 100 into two subgroups, and then carried out eQTL mapping separately. A high
270 replication rate, measured by π_1 (**51**), was observed between subgroups across tissues, ranging
271 from 0.61 in the hypothalamus to 0.92 in the embryo (**fig. 2h, fig. S17**). The effect size of eQTL
272 also exhibited a high Spearman's correlation (an average of 0.77 across tissues) between
273 subgroups (**fig. 2h**). Moreover, we observed that effect sizes derived from the eQTL mapping
274 were positively and significantly correlated (an average of 0.52 across tissues) with those from
275 the allele-specific analysis at the same loci (**fig. 2i, Table S8**). Finally, we trained a deep learning
276 model of regulatory effects based on 310 functional epigenomic profiles in chicken *via*
277 DeepSEA (**50**) (**fig. S15h, Table S7**), and observed that regulatory variants predicted by
278 DeepSEA were more significantly enriched in eVariants than the expected (**fig. 2j**). Altogether,
279 these results demonstrated the reliability of molQTL identified in this study.

280

281 Limited sharing of regulatory mechanisms underlying five molQTL types

282 Out of all 27,203 tested genes, 16,097 (59.2%) had significant QTL for at least two molecular
283 phenotypes (**fig. S18a**). The LD of lead variants of any two molQTL types from the same genes
284 was low, ranging from 0.04 (exQTL vs. 3a'QTL) to 0.29 (exQTL vs. IncQTL) (**fig. 3a**). The
285 colocalization analysis further confirmed the limited sharing of regulatory control among these
286 molecular phenotypes (**fig. 3a**), indicative of their distinct genetic regulatory mechanisms. **Fig.**
287 **3b** takes *NLRC5* as an example, four molecular phenotypes of which were controlled by distinct
288 genomic loci, and LD between the respective lead variants was lower than 0.07 (**fig. S18b**).
289 Among these molQTL, eQTL and exQTL exhibited a relatively high colocalization probability
290 (average $H_4 = 0.72$) (**fig. 3a**).

291 To elucidate molecular mechanisms of action behind these molQTL, we examined sequence
292 ontology and multi-omics data in chickens, including 15 chromatin states predicted from 377
293 epigenetic data sets in 23 tissues(**30**), and 9,898 topologically associating domains (TADs)
294 detected from high-throughput chromosome conformation capture (Hi-C) in three tissues (i.e.,
295 muscle, liver and testis)(**52**). As expected, conditionally independent molQTL were significantly
296 enriched with various regulatory DNA sequences, including synonymous variants (1.67-fold in
297 IncQTL to 3.03-fold in exQTL), 5'UTR variants (1.82-fold in eQTL to 3.64-fold in sQTL),
298 3'UTR variants (2.29-fold in sQTL to 3.77-fold in 3a'QTL), and non-coding (NC) transcripts
299 (1.48-fold in 3a'QTL to 2.36-fold in exQTL). Of note, all five types of molQTL also exhibited a
300 significant enrichment in missense variants (**fig. 3c**), indicating that a fraction of transcriptional

301 regulatory variants may also alter protein amino acid residues(53). Compared to other molQTL,
302 sQTL exhibited a higher enrichment with splicing variants (63.97-fold in splice acceptor, 3.97-
303 fold in splice donor, and 3.89-fold in splice region), while 3a'QTL were more enriched with stop
304 retained (5.06-fold) and 3'UTR variants (3.77-fold) (**fig. 3c**).

305 All five types of molQTL showed the highest enrichment in promoter-like states (E1-E5, an
306 average of 3.64-fold), followed by enhancer-like states (E6-E10, an average of 1.98-fold) and
307 ATAC islands (E11, an average of 1.87-fold). In contrast, they were significantly depleted from
308 repressed regions (E12-E14) (**fig. 3d**). Compared to active enhancer (E6), super-enhancer (i.e. a
309 cluster of enhancers in close genomic proximity, exhibiting exceptionally high levels of H3K4ac
310 signals(30)), had a lower enrichment for all five molQTL, suggesting that they may be under a
311 stronger purifying selection due to their essential roles in gene regulation and cell identity (**fig.**
312 **S19a**). Among the five types of molQTL, 3a'QTL had the highest enrichment in enhancer-like
313 states and ATAC islands (**fig. 3d**), supporting their high tissue-specificity. A total of 20% of
314 eQTL, 26% of sQTL, 3.4% of lncQTL, 17.9% of exQTL, and 14.5% of 3a'QTL were supported
315 by regulator-gene pairs that were predicted based on the correlation of signal density of
316 regulators and gene expression (**fig. S19b, Table S9**). By examining 3D looping of
317 chromatin(52), we found 20-60% of molQTL-gene pairs located with the same TAD across
318 tissues (**figs. S19 c and d**), with the highest enrichment observed at ~400-600kp away from TSS
319 of target genes after accounting for their distance (**fig. S19e**). As expected, 3a'QTL showed the
320 highest enrichment at ~600-1000kb downstream of their target genes (**fig. S19e**). Likewise, 41-
321 73% of eQTL-eGene pairs located in the same CTCF-loops that were identified from 22 chicken
322 tissues (30) (**figs. S19f-h**). These results indicate that the long-distance eQTL exert effects
323 possibly through disrupting TFBS in long-distance enhancers that interact with promoters *via* 3D
324 looping of chromatin (**figs. S19c-h**). As shown in **fig. S19i**, eVariant *rs317368746* regulates
325 expression of *TIMM17B* in the brain only, and it resides in a brain-specific enhancer and is
326 located within the same TAD (346kb upstream) as the TSS of *TIMM17B*. Altogether, these
327 results indicate that regulatory variants exert widespread effects on the transcriptome *via*
328 multiple mechanisms such as changing transcript structure, function, stability,
329 transcription/translation rate and chromatin conformation.

330

331 **Tissue- and breed-sharing of molQTL**

332 All five types of molQTL were either tissue-specific or ubiquitous, among which 3a'QTL and
333 eQTL exhibited the highest and lowest tissue-specificity, respectively (**fig. 4a and b, fig. S20a,**
334 **fig. 21**). This was also supported by the meta-tissue analysis (**fig. S22**). In total, 10.6% of eQTL,
335 32.1% of sQTL, 27.4% of lncQTL, 25.8% of exQTL, and 29.6% of 3a'QTL were active in one
336 tissue only. Of note, eQTL that were active in more tissues showed a higher enrichment around
337 TSS (**fig. 4c, fig. S20b**), a smaller effect size (**fig. 4d**) and a higher MAF (**fig. S20c**). Tissue-
338 shared eQTL (i.e., active in at least two tissues, LFSR < 0.05) also tended to be more enriched
339 for promoter-like states, whereas tissue-specific eQTL were more enriched for enhancer-like
340 states (**fig. S20d**). In general, tissues with similar biological functions (e.g., immune tissues)
341 tended to be clustered together based on eQTL effect correlation (**fig. 4a, fig. S21**), which was
342 similar for the remaining four types of molQTL (**fig. 4b, fig. S21**). Unlike GTEx in mammals(32,
343 47, 48), blood formed the primary outgroup in chickens regarding eQTL and lncQTL, while, for
344 the remaining three types of molQTL, brain and testis were first separated from the rest of the
345 tissues. **Fig. S20e** demonstrates an eQTL (9_16035177_G_A) that significantly regulated the
346 expression of *ALG3* only in the blood. The *ALG3* gene encodes alpha-1,3-mannosyltransferase

347 with the function of inducing glycosylation of TGF- β receptor II(54), which might modulate
348 blood pressure homeostasis(55) and affect hematopoiesis(56). In contrast to eQTL shared in
349 other tissues, blood-specific eQTL had a lower MAF (**fig. S20f**) and a larger effect (**fig. S20g**).
350 Moreover, genetic regulation of all five molecular phenotypes in the embryo was distinct from
351 those in the primary tissues (**fig. 4a**, **fig. S21**), similar to that in pigs(47), indicating a distinct
352 regulation of early development. In addition, we detected 59 eQTL with opposite directional
353 effects on the same genes ($n = 51$) between tissues (**Table S10**). For instance, the T-allele of
354 rs315639985 increased the expression of *FBXO5* in the spleen but decreased its expression in the
355 whole blood. The *FBXO5* gene encodes F-box protein 5, which is associated with systolic blood
356 pressure in human(57) (**fig. S20h**). Another example was rs313608694, whose G-allele
357 significantly upregulated the expression of *ELAC2* in the embryo but downregulated it in the
358 spleen (**fig. S20h**). This gene encodes elac ribonuclease Z 2, and the reduction of its expression
359 could induce growth arrest by suppressing transforming growth factor-beta(58).

360 We examined breed-sharing of eQTL in the brain, liver, muscle and spleen, as all of them had
361 more than two breeds and each with a sample size > 40 . As a result, the majority of eQTL (an
362 average of 81%) could be replicated between breeds and the replication rate was associated with
363 tissue sample size (**fig. S23a**, **Table S11**). Furthermore, the eQTL effect was substantially shared
364 between breeds (**fig. 4e**). For instance, the T-allele of rs314795649 significantly upregulated
365 expression of *PRKCDBP* in the liver across all four breeds being tested, including Cobb ($\beta =$
366 $0.57, P = 2.67 \times 10^{-6}$), Leghorn ($\beta = 0.33, P = 3.10 \times 10^{-6}$), Rhode Island Red ($\beta = 0.39, P = 3.06$
367 $\times 10^{-6}$) and Ross ($\beta = 0.37, P = 5.02 \times 10^{-10}$) (**fig. S23b**). In addition, we detected 376 (Red
368 Jungle Fowl vs. Ross) and 185 (Red Jungle Fowl vs. Leghorn) breed-interaction eQTL (bi-
369 eQTL) in the brain, and with genes regulated by them were enriched in functionals related to
370 brain development (**Table S12**).

371

372 Context-dependence of molQTL

373 To explore the context-dependent nature of gene regulation, we systematically detected eQTL
374 interacting with sex (sb-eQTL), transcription factor (TF-eQTL) and cell type (ci-eQTL). For sb-
375 eQTL mapping, we only considered eight tissues, where each sex had data from over 30
376 individuals available. In total, 1,138 SNPs displayed sex-biased regulation of 962 eGenes (sb-
377 eGene, FDR < 0.01), ranging from 3 in the small intestine to 954 in the liver ([URL](#)). Taking the
378 liver as an example, we further performed the sb-eQTL mapping in a single breed, Rhode Island
379 Red ($n_{male} = 32$; $n_{female} = 46$), resulting in 48 sb-eQTL regulating 30 eGenes (**fig. 4f**, **figs. S23c-d**,
380 **Table S13**). For instance, the significant association of rs317663121 with *TCFL5* expression was
381 only observed in male liver (**fig. 4f**). Moreover, 14% (164) of sb-eGenes overlapped with sex-
382 biased expressed genes in all eight studied tissues. These sb-eGenes detected in the blood,
383 hypothalamus, and liver were significantly enriched in biological processes related to amino acid
384 metabolism, signaling transduction pathway, and fatty acid metabolism (**Table S14**). Through
385 the examination of 956 chicken transcription factors retrieved from the AnimalTFDB 3.0(59), we
386 detected an average of 1,941 TF-eQTL in 17 tissues, representing 503 TFs (**fig. S23f**, [URL](#)). **Fig.**
387 **S23e** illustrates that effect of rs313600592 on *ATP6VIA* expression was significantly associated
388 with the expression of transcription factor *TCF25* in the muscle. For ci-eQTL mapping, we first
389 annotated 13 cell types from single-cell RNA-Seq data in chicken heart and muscle (**Table S15**).
390 Based on the cellular composition of bulk RNA-Seq samples of muscle and heart estimated by
391 the *in silico* cell-type deconvolution (**fig. S24**), we identified an average of 105 ci-eGenes in the
392 muscle, ranging from 11 with interactions in adipocytes to 214 with Schwann cells, and an

393 average of 19 ci-eGenes in the heart, ranging from 6 interacting with fibroblasts to 36 with
394 cardiomyocytes (**fig. S23g, Table S16**). For instance, *rs733070738* regulated expression of
395 *PLVAP* by interacting with myocyte enrichment in the muscle (**fig. 4g**). These results highlight
396 the dynamics of genetic regulatory effects across distinct biological contexts.

397

398 **Interpreting genetic regulation behind complex traits and adaptive evolution**

399 To show the potential of molQTL in understanding complex traits in chickens, we systematically
400 integrated molQTL with GWAS results of 108 complex traits, including
401 growth and development (n = 43), carcass (n = 41), egg production (n = 20), feed efficiency (n =
402 3), and blood biochemical index (n = 1) (**Table S17**). Enrichment analysis revealed that GWAS
403 loci of all the traits were significantly enriched in all five types of molQTL (**fig. S25a**). Among
404 them, the highest enrichment was observed for 3a'QTL (1.87±0.33), followed by sQTL
405 (1.83±0.28), eQTL (1.81±0.30), lncQTL (1.59±0.27) and finally exQTL (1.56±0.32) (**fig. S25a**).
406 Furthermore, we applied four complementary methods to prioritize causal variants and genes
407 underlying each GWAS loci, including fastENLOC-based colocalization, summary-data-based
408 MR (SMR), single-tissue transcriptome-wide association study (sTWAS), and multi-tissue
409 TWAS (mTWAS). Out of all 1,176 significant GWAS loci, 1,059 (90%) could be explained by
410 at least one molQTL across 28 tissues (**fig. 5a, figs. S26 and S27**). Of 896 colocalized GWAS
411 loci, 59.9% were not colocalized with the nearest genes of lead GWAS variants, indicative of the
412 regulatory complexity of complex traits (**fig. 5b, fig. S28a**). The number of colocalization events
413 of a trait was determined by the statistical power of both GWAS and molQTL mapping (**fig.**
414 **S26b-c**). Of all 1,176 GWAS loci, 0.8%, 0.9%, 5.2% and 1.4% were explained uniquely by
415 eQTL, sQTL, exQTL and lncQTL, respectively. This result indicates that each type of molecular
416 phenotype only had a limited contribution to complex traits at distinct levels of gene regulation
417 (**fig 5a, fig. S29**). Taking the body weight gain from week 6 to 8 (WG6.8) as an example,
418 sTWAS linked GWAS loci to 43 unique genes (34 protein-coding and 9 lncRNA genes) across
419 21 tissues (**fig. 5c, fig. S28c, Table S18**). Of them, the expression of the *KPNA3* (karyopherin
420 subunit alpha 3) exhibited the strongest association with WG6.8 in the retina, followed by
421 pituitary and heart (**fig. 5c**). Consistently, it has been documented that the knockdown of the
422 *KPNA3* would restore photoreceptor formation in *Drosophila*(60). The highest colocalization
423 between WG6.8 GWAS loci and molQTL of *KPNA3* was observed for a retina eQTL
424 (*rs314814283*, GRCP=0.78) and a pituitary sQTL (*rs13552958*, GRCP=0.54) (**Table S19**). The
425 further SMR analysis pinpointed 10 potential causal mutations across tissues (**Table S20**),
426 among which *rs739579746* was the most significant one (**fig. 5c, Table S20**). The SNPs
427 *rs314814283* and *rs739579746* detected by eQTL mapping were in high LD ($r^2 = 0.88$), while
428 both showed low LD with *rs13552958* ($r^2 < 0.02$) detected by sQTL mapping. These findings
429 likely reflect the importance of photoreception for chicken growth and production performance
430 (61, 62), and the promising candidate gene in this region is the *KPNA3*. In addition, we detected
431 149 significant lncRNA-protein-coding-trait regulation events with SMR-multi analysis (**Table**
432 **S21**). For instance, an eQTL of a lncRNA (*ENSGALG00000053557*), located on the opposite
433 strand of the *IL20RA*, exhibited significant colocalizations with an eQTL of *IL20RA* in the
434 muscle and GWAS loci of the total stomach weight on chromosome 3 (**fig. 5d**).

435 To further explore context-specific genetic regulation of complex traits, we conducted
436 colocalization analysis between GWAS loci and three types of context-interaction eQTL
437 detected above (**fig. S25b**). Out of 1,155 GWAS loci, 22.9% (264), 48.7% (562) and 12.3%
438 (142) were explained by sb-eQTL, TF-eQTL and ci-eQTL, respectively (**fig. S25b**). For

439 instance, GWAS loci of total stomach weight and body weight at 8 weeks of age were
440 significantly colocalized with sb-eQTL of *MFSD4A* and *TOX3* in the brain and spleen,
441 respectively (**figs. S28d-e**). The *TOX3* gene encodes TOX high mobility group box family
442 member 3, playing roles in sex determination and differentiation (63, 64). Despite the limited
443 discovery power of the context-interaction eQTL due to the small sample size, our analysis
444 demonstrated that context-specific regulatory effects were nonnegligible in dissecting the
445 regulatory mechanism of complex traits. Furthermore, we conducted an exploratory analysis to
446 investigate whether domestication and breeding also tend to target on regulatory variants, though
447 examining selection sweeps previously detected between broilers and layers previously (**fig.**
448 **S25d, fig. S30**) (14, 65). Within the brain, we separately detected eQTL in three chicken
449 lines/breeds separately, including Red Jungle Fowl (n = 46), Ross (n=157) and Leghorn (n = 78).
450 Genomic windows containing at least one eQTL (i.e., eQTL windows) in Ross and Leghorn
451 were under stronger selection (i.e., larger selection values, LSBL) in broilers than expected,
452 whereas those detected in Red Jungle Fowl were not (**fig. S25d, fig. S30**). Likewise, for selection
453 sweeps in layers, eQTL windows in Leghorn were under stronger selection in layers than
454 expected, but not for eQTL windows in Ross and Red Jungle Fowl (**fig. S25d, fig. S30**).
455 Altogether, the current ChickenGTEx can serve as a valuable resource for exploiting regulatory
456 mechanisms underlying complex traits and adaptation in chickens.

457

458 Comparing gene regulation and complex trait genetics between chickens and mammals

459 Based on gene orthology between chickens and three mammals (i.e., cattle, pigs and humans),
460 we found the expression levels of the 1-1-1-1 orthologous genes were significantly higher than
461 those of non-orthologous genes across tissues (**fig. S31**). The proportion of orthologous genes
462 expressed in chicken tissues was positively (Pearson's $r > 0.8$, $P < 0.004$) correlated with that in
463 mammalian tissues (**fig. S31c**). Based on gene expression profiles, 14,278 samples in the four
464 species were clustered first according to their tissue types, indicating the global conservation of
465 gene expression between chickens and mammals (**fig. 6a**). This was also supported by a high
466 correlation of TAU values of genes, a measure of tissue-specificity of gene expression, between
467 chickens and mammals (**fig. S31d**). The phylogenetic analysis of gene expression revealed
468 different evolutionary rates of tissues across species, where testis and pituitary evolved fastest,
469 while adipose and liver evolved slowest (**figs. S31e**). The effect sizes of lead eQTL of
470 orthologous genes were significantly but weakly correlated between chickens and mammals,
471 which were lower than those within mammals (**fig. 6b**). This was consistent for *cis-h²* of
472 orthologous genes (**fig. S32a**). As in pigs and cattle, the distance of lead eQTL to TSS was larger
473 in chickens than that in humans (**fig. S32b** and **c**), which might be partially due to the larger LD
474 of SNPs in farm animals' genomes and lower SNP density in the pilot phase of FarmGTEx
475 compared to human GTEx(32). We further divided chicken eGenes of each tissue into two
476 groups: 1) chicken-specific eGenes, and 2) those shared with at least one mammalian species
477 (conserved eGenes) (**see Methods**). In general, compared to chicken-specific eGenes, conserved
478 eGenes showed a higher gene expression level, lower tissue-specificity, were more likely to be
479 differentially expressed between species, have more promoters, and stronger tolerance to loss-of-
480 function mutations (less evolutionarily constrained) (**fig 6c**).

481 The FarmGTEx-based TWAS results provide new opportunities to systematically explore
482 between-species similarity of complex trait genetics at the functional level of orthologous genes.
483 We thus compared all the 3,024 sTWAS of 108 traits in chickens with 9,112, 1,032 and 6,480
484 sTWAS in three mammalian species, representing 268, 43 and 135 complex traits, respectively.

485 Within the matching tissues, we identified a total of 8,312 trait-pairs with significant correlations
486 between chickens and three mammalian species ($P < 9.11 \times 10^{-3}$, permutation-based) (**fig. 6d**,
487 **fig. S32d-f, Table S22**), despite the big differences in the TWAS power between species. Most
488 of the significantly correlated traits between species recapitulated known biological and
489 physiological knowledge. For instance, chicken body weight (BW) showed a high correlation
490 with pig average daily gain (ADG) in the ileum (Pearson's $r = 0.69$, $P = 3.42 \times 10^{-5}$, **fig. 32g**),
491 cattle somatic cell scores (SCS) in the adipose (Pearson's $r = 0.38$, $P = 5.46 \times 10^{-5}$, **fig. 32h**), and
492 human type 2 diabetes (T2D) in the kidney (Pearson's $r = 0.57$, $P = 2.3 \times 10^{-5}$, **fig. 32i**). This was
493 in line with previous findings that larger BW fluctuation was related to an increased T2D risk in
494 human(66), and also was positively associated with SCS in cattle (67). The expression of
495 *ABCC13* (encoding ATP binding cassette subfamily C member 13) in the ileum was
496 significantly associated with both chicken BW ($P = 0.03$) and pig ADG ($P = 0.04$), which
497 encodes ATP binding cassette subfamily C member 13, which had potential associations with
498 body weight/body mass index in humans (68). The expression of three genes, *PIGX*, *MRPL51*
499 and *ABHD14B*, in the adipose were significantly associated with both chicken BW and cattle
500 SCS. Of these, the ABHD14B protein is a lysine deacetylase with the capacity of catalyzing the
501 deacetylation of lysine residues to yield acetyl-CoA, which could significantly alter glucose
502 metabolism and could thus cause significant BW loss(69, 70). The expression of *GABRB2* and
503 *SOX4* in the kidney was significantly associated with both chicken BW and human T2D. The
504 *SOX4* is involved in pancreas development with roles in inhibiting insulin secretion and
505 increasing diabetes risk(71, 72). Moreover, taking chicken BW as an example, we carried out
506 cross-species meta-TWAS analysis in the muscle, and found that homologous traits (e.g., ADG
507 and back fat thickness) rather than non-homologous traits (e.g., number of stillborn and weaned
508 pigs) in pigs could help detect more genes associated with BW in chickens (**fig. 6e**). Similarly,
509 human height and BMI increased the detection power of BW-associated genes in chickens *via*
510 cross-species meta-TWAS analysis in the muscle (**fig. S32k**). These results highlighted that the
511 FarmGTE resource could facilitate the translation of genetic findings between species at the
512 functional level of orthologous genes rather than the DNA sequence level.

513
514 **Discussions**

515 *Summary and general impacts:* Through the comprehensive analyses of the so-far largest
516 collection of chicken RNA-Seq and WGS data, we have developed a catalogue of genetic
517 variants with regulatory effects on five transcriptional phenotypes, representing both primary
518 expression (including protein-coding, lncRNA and exon) and post-transcriptional modifications
519 (alternative splicing and 3'UTR APA), across 28 chicken tissues, referred as the ChickenGTE. We
520 made the findings and resources of ChickenGTE freely accessible to the entire community
521 through <http://chicken.farmgtx.org>. This web portal provides an open-access chicken genotype
522 imputation reference panel, which was built-up and maintained as part of this project. The
523 current reference panel consists of approximately 3,000 WGS samples from around the globe,
524 enabling researchers to impute genotypes derived from RNA-Seq, SNP array or low-coverage
525 sequences to the whole-genome sequence level, which can be utilized further to prioritize
526 potential causal variants underlying complex traits of interest through integrating with multi-layer
527 ChickenGTE resources. Besides, we offer highly-useful visualization tool, Integrative
528 Genomics Viewer (IGV) (73) for exploring molecular phenotypes, enhancer-gene interactions,
529 chromatin states, epigenetic modifications, and publicly available GWAS results. The web portal
530 also includes single-cell RNA-Seq data that were collected and analyzed from six chicken

531 tissues, enabling users to query the expression of their desired genes at both the cellular and bulk
532 tissue level. Additionally, we provide batch data download and advanced search options for data
533 resource generated in this study, and will continue updating the database to ensure its future
534 accuracy and relevance. Overall, this first GTEx resource in avian species serves as a valuable
535 resource for a global atlas of regulatory variants in chickens and informs vertebrate genome
536 evolution at the functional level, benefiting future research in animal, plant, and human genetic
537 and biomedicine research.

538 *MolQTL mapping and the underlying molecular mechanism:* We have demonstrated that
539 different molecular phenotypes of the same genes were likely to be controlled by distinct
540 genomic loci through distinct regulatory mechanisms, indicating the importance of integrating
541 omics data corresponding to multi-layer biologically-important molecular phenotypes (e.g.,
542 epigenetic mark activity and microRNA expression(74)) in future studies. This is consistent with
543 findings in humans that most of the sQTL and 3a'QTL were distinct from eQTL (75, 76). The
544 comparative analysis of regulatory variants reveals several specificities of gene regulation in
545 chickens compared to mammals. For instance, the chicken genome exhibits a chromosome-size
546 dependence in genetic control of gene expression, in contrast to mammals. Avian genomes often
547 have chromosomes of highly variable sizes, with chicken chromosomes ranging from a
548 minimum of 3.4 Mb to a maximum of 200 Mb (12). Chicken microchromosomes exhibit a
549 higher gene density, higher GC content and DNA methylation levels(12, 77), and are under
550 stronger evolutionary constraints (49), that easily distinguish them from the mammal 'like'
551 macrochromosomes. These distinct genetic and epigenetic features might lead to differences in
552 the genetic regulation of gene expressions across chromosomes in chickens. In addition, we
553 observed a high sharing of eQTL effect across tissues in chickens, while interestingly the blood
554 showed the highest dissimilarity against other tissue types. This observation is in contrast to that
555 of mammals, where the testis showed the highest dissimilarity (32, 47, 48) that is perhaps a result
556 of nucleated red blood cells in avian blood (78, 79). Moreover, we uncovered a set of genetic
557 variants with regulatory effects interacting with biological contexts, e.g., sex, transcription factor
558 expression, genetic background, and cell type compositions. This context-dependent molQTL
559 explained 10-50% of GWAS loci, revealing the need to consider cell types/states under different
560 developmental stages, nutrition, and physiology status in the future molQTL mapping
561 experiments. By taking account of a wide range of environmental/biological contexts, we can
562 effectively tackle the challenge of "missing regulation" (80, 81). As demonstrated in human
563 studies(82, 83), harmonizing data from diverse chicken breeds/lines increased the detection
564 power of molQTL *via* increasing sample size, facilitating the fine-mapping of causal variants *via*
565 reducing LD of SNPs, as well as allowing breed-specific molQTL mapping (84). At the current
566 pilot phase, eQTL with *trans*-regulatory effect (> 1Mb to the TSS of genes) is not considered due
567 to the limited sample size. Discovering *trans*-eQTL, which often has a small effect size, requires
568 hundreds of thousands of samples (82, 85), and will be considered in the future when the sample
569 size of transcriptome data is sufficient.

570 *Potential applications of ChickenGTEx:* This multi-tissue gene regulation resource opens the
571 door to decipher the biological mechanism of complex traits, domestication and polygenic
572 adaptation in chickens in-depth. It enables nearly 90% of GWAS loci being tested in this study to
573 be explained by at least of one type of molQTL, a higher proportion than that in humans (78%)
574 (32) or in pigs (80%) (47). This finding demonstrates the importance of molQTL mapping in
575 functionally dissecting agriculturally important traits in farm animals, with a high potential for
576 accelerating and improving the current animal breeding program and enabling the future
577 precision selection and breeding (26, 86). The focus of cross-species comparison studies in the

578 past decades was mainly on the DNA sequence level due to the lack of relevant functional data,
579 and the recent Zoonomia project investigated the DNA sequence evolution of regulatory
580 elements while based on *in silico* prediction across species (87–89). The ChickenGTEx offers
581 new means to explore the evolutionary impacts of gene regulation on complex traits across
582 species and translate genetic findings between species at the functional level of orthologous
583 genes rather than the DNA sequence level. Our exploratory comparative analysis of large-scale
584 TWAS between chickens and mammals illustrates how to “borrow” information between species
585 for gene mapping (90, 91). We found that cross-species meta-TWAS aided in the identification
586 of more functional genes for homologous traits. We believe that the ChickenGTEx resource will
587 not only contribute significantly to elucidating the molecular architecture underlying phenotypic
588 variation in chickens, but also to developing chicken models for studying human complex traits
589 (e.g., disease and behavior (3–7)).

590 *Limitations and outlooks:* The current ChickenGTEx provides the most expansive source of
591 regulatory variants in the chicken genome. Some limitations and challenges remain in the
592 genotype and molecular phenotype assessments. New chicken assemblies with more complete
593 representation are becoming available with fewer computational limitations that we experienced
594 using the GRCg6a reference genome (Ensembl version 102) (12, 92–94). Future studies will
595 consider long-read sequences to better resolve splice-variants (95–97), and pangenome
596 references to annotate complex structural variants (98), mobile element variation (99), and short
597 tandem repeats (92, 100). In addition, it would be of great interest to investigate the functional
598 impacts of rare and somatic variants on molecular phenotypes, where multi-tissue samples are
599 collected from the same individuals with deep WGS data available. Beyond the bulk
600 transcriptome, other molecular features could be included, e.g., DNA methylation variation,
601 protein abundance, metabolite profiles, and the composition of the microbiome. For future
602 single-cell genetics in chickens, a comprehensive chicken single-cell atlas will be the first step
603 and is urgently required to explore the cell-type/state-specific gene regulation *via in silico* cell
604 type deconvolution of large bulk tissue samples(101). In addition, conducting experimental
605 follow-ups *via* methods, e.g., massively parallel CRISPR-based screens (102), is crucial to
606 functionally validate and characterize regulatory effects of genetic variants and to identify
607 functional genes of complex traits on a large-scale. In summary, the current and future versions
608 of the ChickenGTEx project promises to establish a reference panel for studying the functional
609 impacts of genetic variants in their native genomic and cellular contexts in distinct biological
610 contexts, including molQTL mapping, molecular phenotype prediction for individuals with
611 genotypes (including extinct species with ancient DNA available) and the evolution of regulatory
612 variants. The fully developed ChickenGTEx will contribute substantially to research in complex-
613 trait genetics, animal breeding, functional biology, and vertebrate genome evolution at the
614 functional level.

615

616 **Acknowledgments:**

617 We thank all the researchers who have contributed to the publicly available data used in this
618 research.

619 **Funding:**

620 D. Guan was supported from Agriculture and Food Research Initiative Competitive grants nos.
621 2020-67015-31175, and 2022-67015-36215 (H.Z.) from the USDA National Institute of Food
622 and Agriculture. H.Z. acknowledges fundings from Agriculture and Food Research Initiative

623 Competitive grants nos. 2020-67015-31175, 2015-67015-22940, and 2022-67015-36215 (H.Z.)
624 from the USDA National Institute of Food and Agriculture, Multistate Research Project NRSP8
625 and NC1170 (H.Z.), and the California Agricultural Experimental Station (H.Z.). N.Y.
626 acknowledges fundings from the National Key Research and Development Program of China
627 (2021YFD1300600 and 2022YFF1000204). X. H. was supported by the National Natural
628 Science Foundation of China, “Genetic architecture, gene interaction and genomic prediction for
629 chicken growth evaluated using large advanced intercross populations” (31961133003). Y.W.
630 was supported by the National Natural Science Foundation of China, “Deciphering the genetic
631 architecture of polygenic clustered QTL for chicken body weight by integrative omics”,
632 (32272862). S Rong acknowledges funding from Jiangsu Agricultural Industry Technology
633 System (JATS[2022]406). Zhe Zhang acknowledges fundings from the National Natural Science
634 Foundation of China (32022078 to Z.Z.), the Local Innovative and Research Teams Project of
635 Guangdong Province (2019BT02N630 to Q.N. and Z.Z.). Zhang Zhang acknowledges fundings
636 from National Natural Science Foundation of China (32030021), National Key Research &
637 Development Program of China (2021YFF0703702) and Technical Support Talent Program of
638 Chinese Academy of Sciences (awarded to DZ). Y.H. acknowledges funding from the Science
639 and Technology Innovation 2030 - Major Project (2022ZD04017). L.W. H.Q. and C.L., were
640 supported by Science and Technology Planning Project of Guangzhou City (201504010017) and
641 Natural Scientific Foundation of China (31402067). G.E.L. was supported in part by USDA
642 NIFA AFRI grant numbers 2019-67015-29321 and 2021-67015-33409 and the appropriated
643 project 8042-31000-112-00-D, “Accelerating Genetic Improvement of Ruminants Through
644 Enhanced Genome Assembly, Annotation, and Selection” of the USDA Agricultural Research
645 Service (ARS).

646

647 **Author contribution statement:**

648 L.Fang, H. Zhou, D.G., X.H., and N.Y. conceived and designed the project. D.G., Y.Y., B.Z. and
649 Z.P. performed bioinformatic analyses of RNA-Seq data analysis. D.G., F.L., S.D., Y.G. and
650 H.Y. conducted whole-genome sequence data analysis. D.Z., performed the deep learning
651 analysis. D.G. performed multi-omics and single-cell RNA-Seq data analysis. D.G. conducted
652 molQTL mapping. X.Z., C.Z. D.G. performed GWAS integrative analysis. Z.B. and D.G. led the
653 comparison of GTEx between chickens and mammals. L.F., H.Zhou, D.G., X.Z., Q.L., C.Z.,
654 Y.H., Y.W., C.S., J.T., F.D., S.L., Y.W., M.W., M.P., D.R., M.C., J.S., K.W., A.J.B., W.W.,
655 L.Frantz, G.L., M.S.L., G.S., S.S., D.S., S.J.L., X.Z., B.L., H.Zhang, and H.C. contributed to the
656 critical interpretation of analytical results before and during manuscript preparation. Y.H., D.Z.,
657 R.W., T.X., and Zhang Zhang built the ChickenGTEx web portal. H. Zhou, L.Fang, N.Y., X.H.,
658 G.E.L., Zhe Zhang, S.S., D.S., X.Z., Q.N., Z.L., W.L., H.Q., W. S. and C.L. contributed to the
659 data and computational resources. D.G., Z.B., X.Z., C.Z., Y.W., Y.H. and L.Fang drafted the
660 manuscript. All authors read, edited, and approved the final manuscript.

661 **Competing interests:**

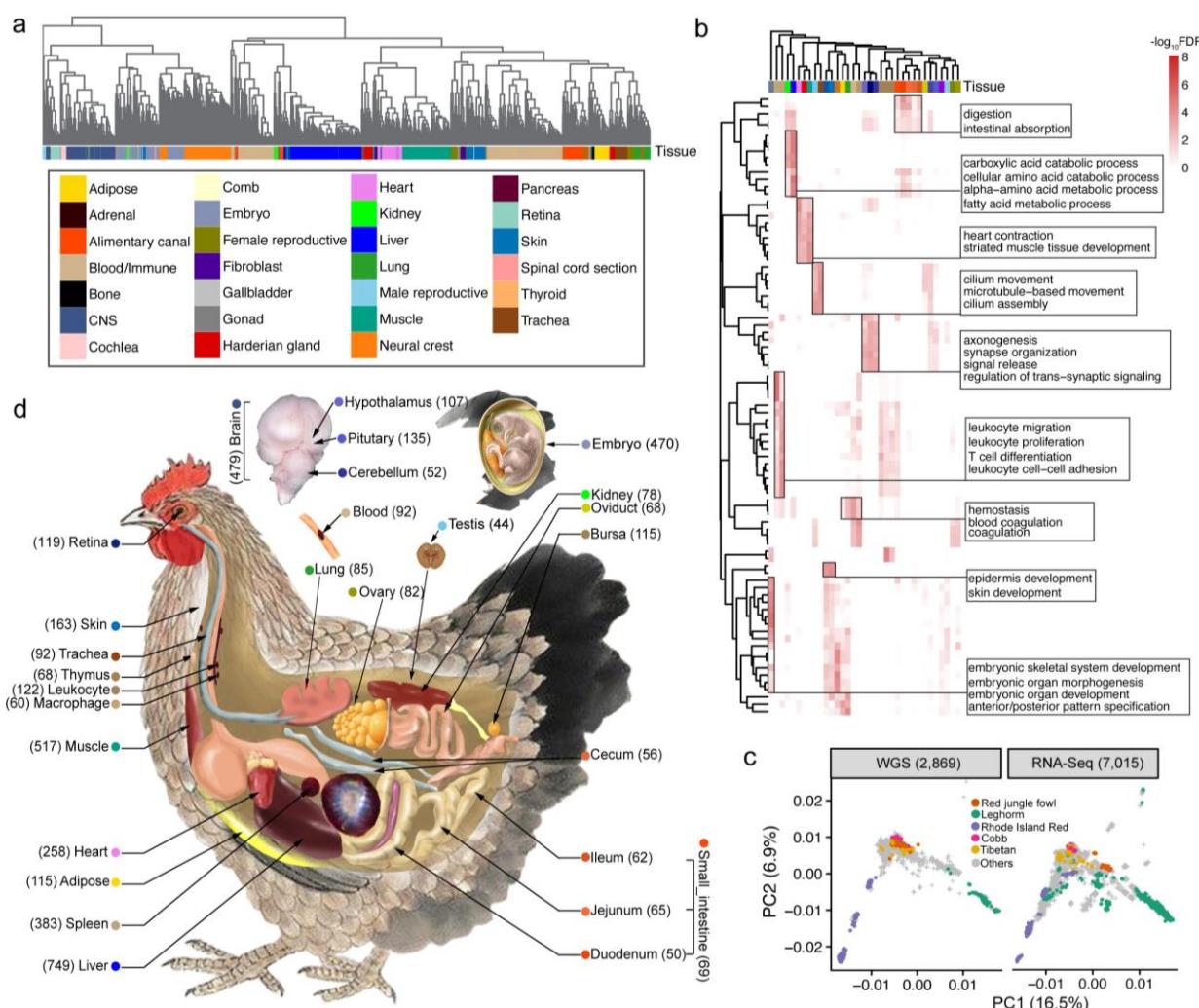
662 The authors declare no competing interests.

663 **Data and materials availability:**

664 All raw data analyzed in this study are publicly available for download without restrictions from
665 SRA (<https://www.ncbi.nlm.nih.gov/sra/>) and NGDC BioProject
666 (<https://bigd.big.ac.cn/bioproject/>) databases. Details of RNA-Seq, WGS, ChIP-Seq peaks and
667 single-cell RNA-Seq can be found in Table S1, S6, S7 and S15, respectively. All processed data
668 and the full summary statistics of molQTL mapping and genotype imputation reference panel are
669 available at <http://chicken.farmgtex.org>. All the computational scripts and codes for RNA-Seq,
670 WGS, single-cell RNA-Seq and Hi-C datasets analyses, as well as the respective quality control,
671 molecular phenotype normalization, genotype imputation, molQTL mapping, functional
672 enrichment, colocalization, SMR and TWAS are available at the FarmGTEEx GitHub website
673 (https://github.com/FarmOmics/ChickenGTEx_pilot_phase).

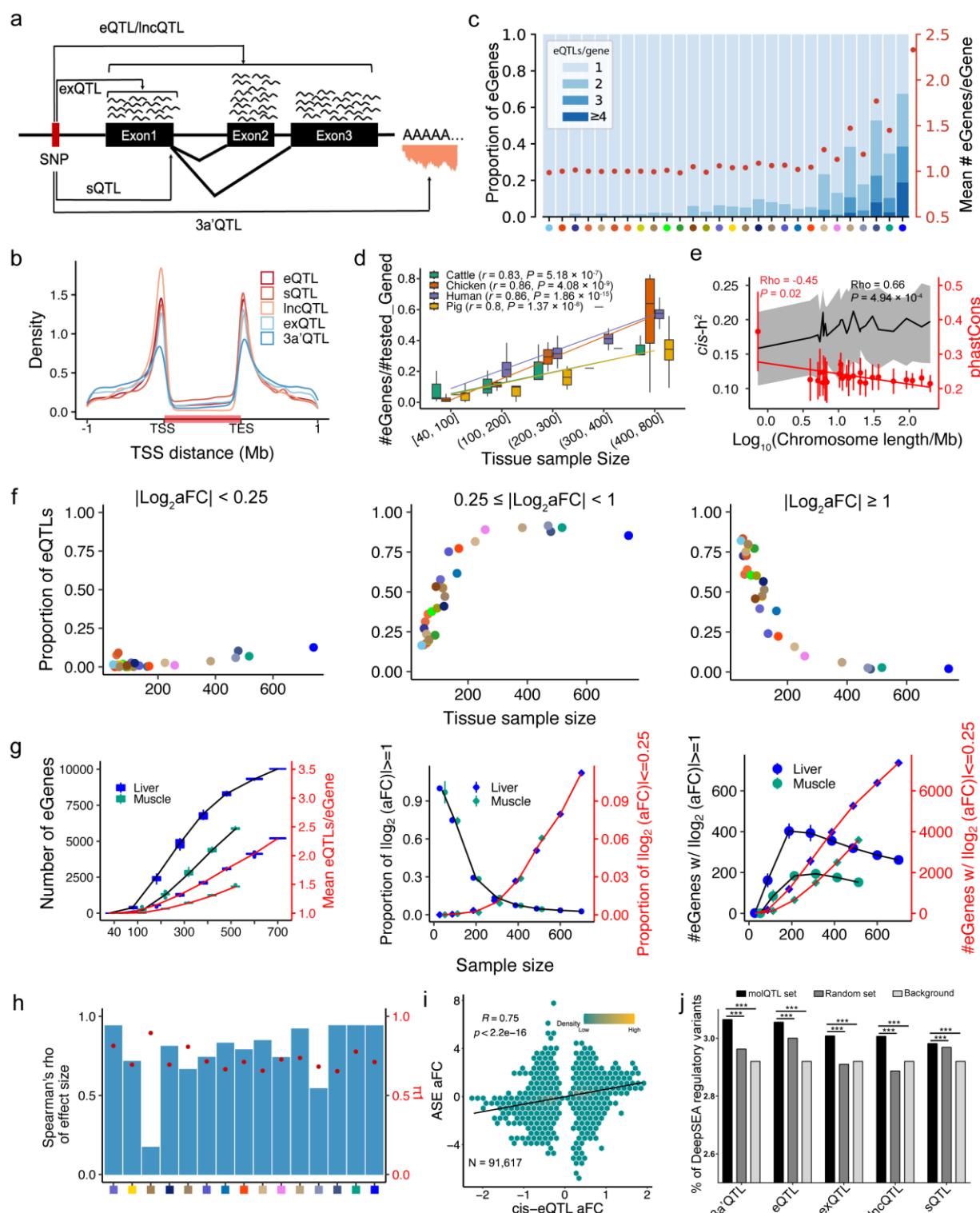
674

Figures and legends



675

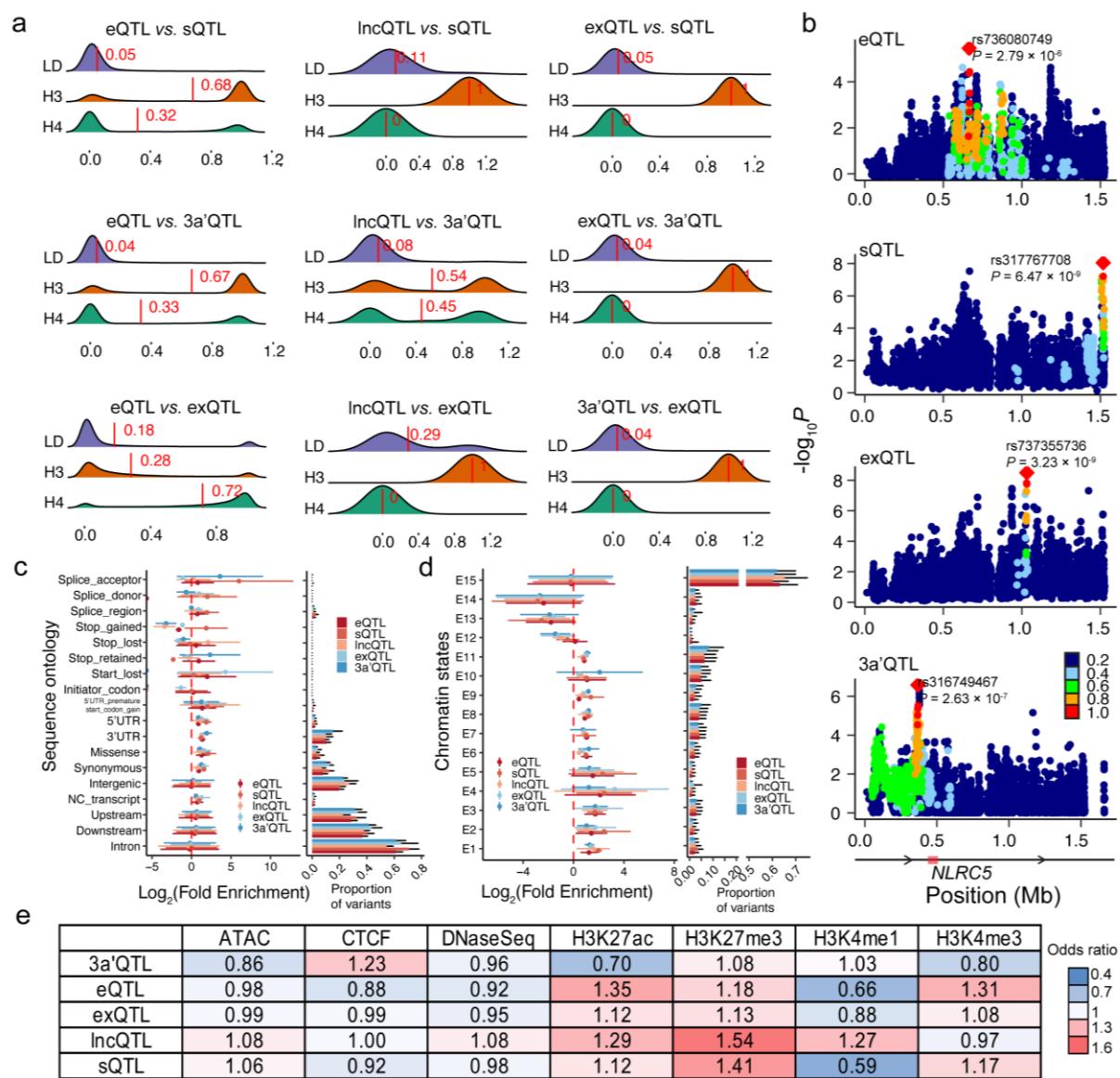
Fig. 1. Data summary in the pilot phase of ChickenGTeX. (a) Hierarchical clustering of 7,015 RNA-Seq samples. Distance between samples was calculated using $1-r$, where r is the Pearson correlation coefficient calculated from gene expression values (quantified as Transcripts per Million, TPM) of 5,000 genes with the highest expression variance (measured by standard deviation) across samples. (b) Functional enrichment of tissue-specific genes based on the Gene Ontology (GO) database. The color scale from light to deep means a negative logarithm of false discovery rate (FDR) at the base of 10, obtained by the clusterProfiler 4.0 package with default settings(103). (c) Scatterplots depicting principal component analysis (PCA) of 2,869 whole-genome sequence (WGS, left) and 7,015 RNA-Seq samples (right). PCA was carried out using 1.52 million SNP genotypes shared by both WGS and RNA-Seq datasets. (d) Illustration of tissue types used in molecular quantitative trait loci (molQTL) mapping. Sample sizes (in the bracket) and colors of all the 28 tissues with sample sizes over 40 are depicted.



689

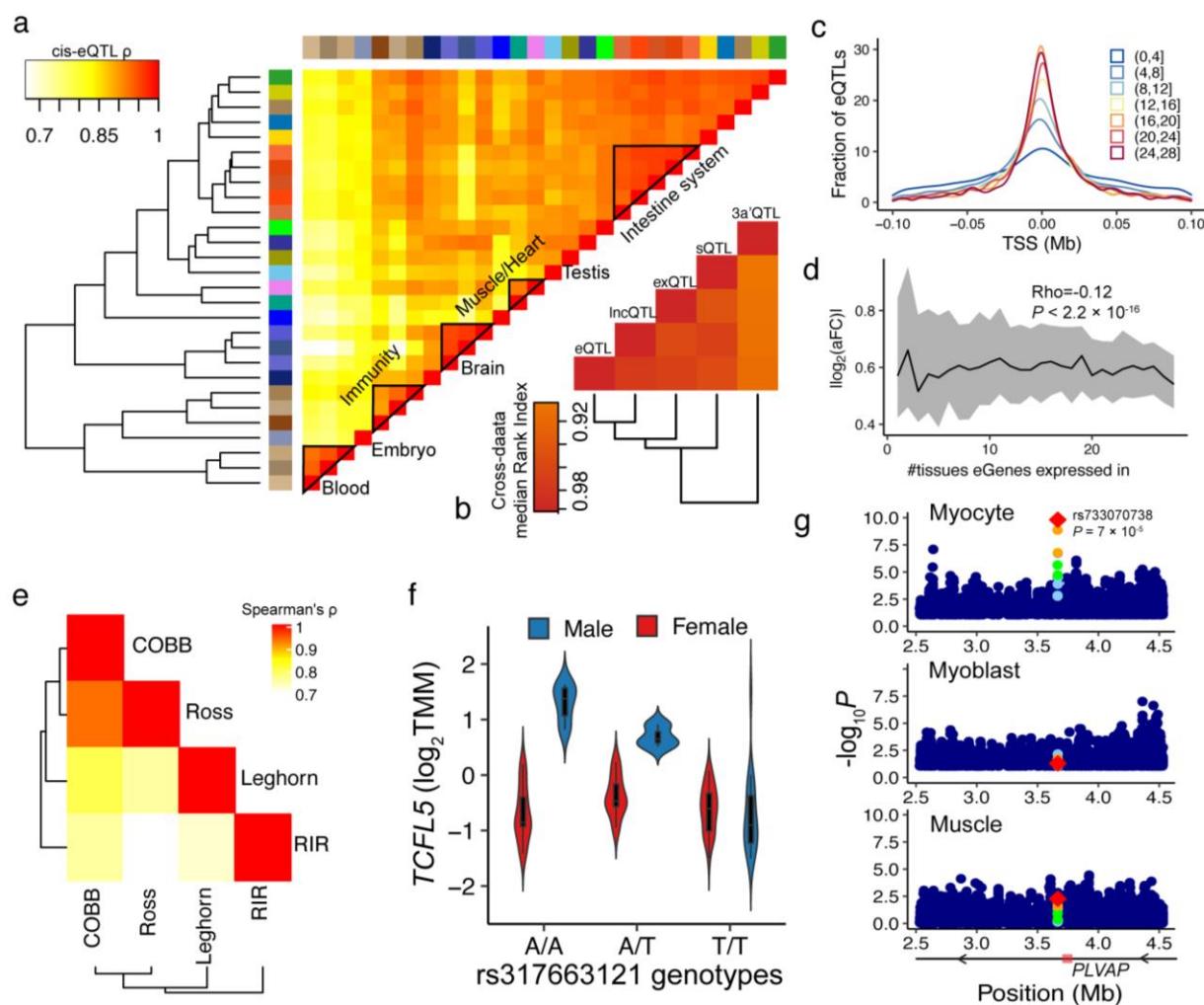
Fig. 2. Molecular QTL (molQTL) mapping in 28 chicken tissues. (a) Illustration of the definition of five molecular phenotypes and the respective molQTL, including protein-coding gene expression (eQTL), lncRNA expression (IncQTL), exon expression (exQTL), splicing variation (sQTL), and 3' untranslated region alternative polyadenylation (3'UTR APA, 3a'QTL). (b) Distribution of molQTL around gene body of eGenes, denoted by the horizontal red bar. TSS: Transcription Start Site, and TES: Transcription End Site. (c) Conditionally independent

696 eQTL across all 28 tissues. Proportion of eGenes with different numbers of independent eQTL
697 being detected (blue stacked bars; left y-axis), and mean number of independent eQTL per eGene
698 (red dots; right y-axis). Tissues are sorted from smallest to largest regarding sample size. Tissue
699 color legend can be found in Fig. 1c and Table S2. **(d)** Proportion of eGenes detected as a
700 function of tissue sample size across species, including 28, 34, 24 and 49 tissues in chickens,
701 pigs, cattle and human, respectively. The lines are fitted with a linear model implemented in the
702 geom_smooth function of the ggplot2 package(104). Correlations and *P* values were computed
703 with the Spearman method using the cor.test function in R v3.6.5(105). **(e)** *cis-h*² (*cis*-
704 heritability, left y-axis) and phastCons scores (right y-axis) of lead eQTL as a function of
705 chromosome size (log₁₀scaled). The top and bottom boundaries of the grey shade indicate the
706 25% and 75% of *cis-h*² range, respectively, and the black line is the median of *cis-h*² values. Red
707 dots are average phastCons of lead eQTL, and red bars are their standard deviations. The
708 correlations were computed with the Spearman method, and *P* values were computed *via* the
709 asymptotic *t* approximation. **(f)** The proportion of eQTL detected (y-axis) with different effect
710 sizes (from left to right panels) as a function of tissue sample size (x-axis). **(g)** Down-sampling
711 analyses of eGene and eQTL. We carried out down-sampling analyses (10 replications at each
712 sample size) in the liver and muscle, which have the largest sample size among all the 28 tissues.
713 The left panel depicts the number of eGenes (left y-axis) and mean eQTL per eGene (right y-
714 axis) detected at different sample size. The middle panel shows the proportion of detected eQTL
715 of large (absolute log₂aFC ≥ 1 , left y-axis) and small effect size (absolute log₂aFC ≤ 0.25 , right y-
716 axis). The right panel presents the number eGenes detected when the regulatory effect size of
717 lead eQTL is large (absolute log₂aFC ≥ 1 , left y-axis) and small (absolute log₂aFC ≤ 0.25 , right
718 y-axis). **(h)** Internal validation of eQTL. Bars in light blue indicate the Spearman correlation
719 coefficient of eQTL effect size between validation and discovery groups (left y-axis), and red
720 dots represent π_1 statistic estimating the replication rate of eQTL between groups (right y-axis).
721 The samples in each of the 15 tissues with over 100 individuals are evenly and randomly divided
722 into two groups, i.e., discovery and validation groups. The tissue color legend (x-axis) can be
723 found in **Fig. 1c** and **Table S2**. **(i)** Correlation between effect size of eQTL (x-axis, n=91,617)
724 and those of same loci derived from allele-specific expression (ASE, y-axis) analysis in liver. **(j)**
725 The proportion of regulatory variants predicted by DeepSEA (prediction score > 0.7) based on
726 310 functional profiles in chickens. molQTL_set: conditionally independent molQTL across
727 tissues; Random_set: randomly selected variants with the same MAF as molQTL; Background:
728 all tested 1.5 million variants.
729



730

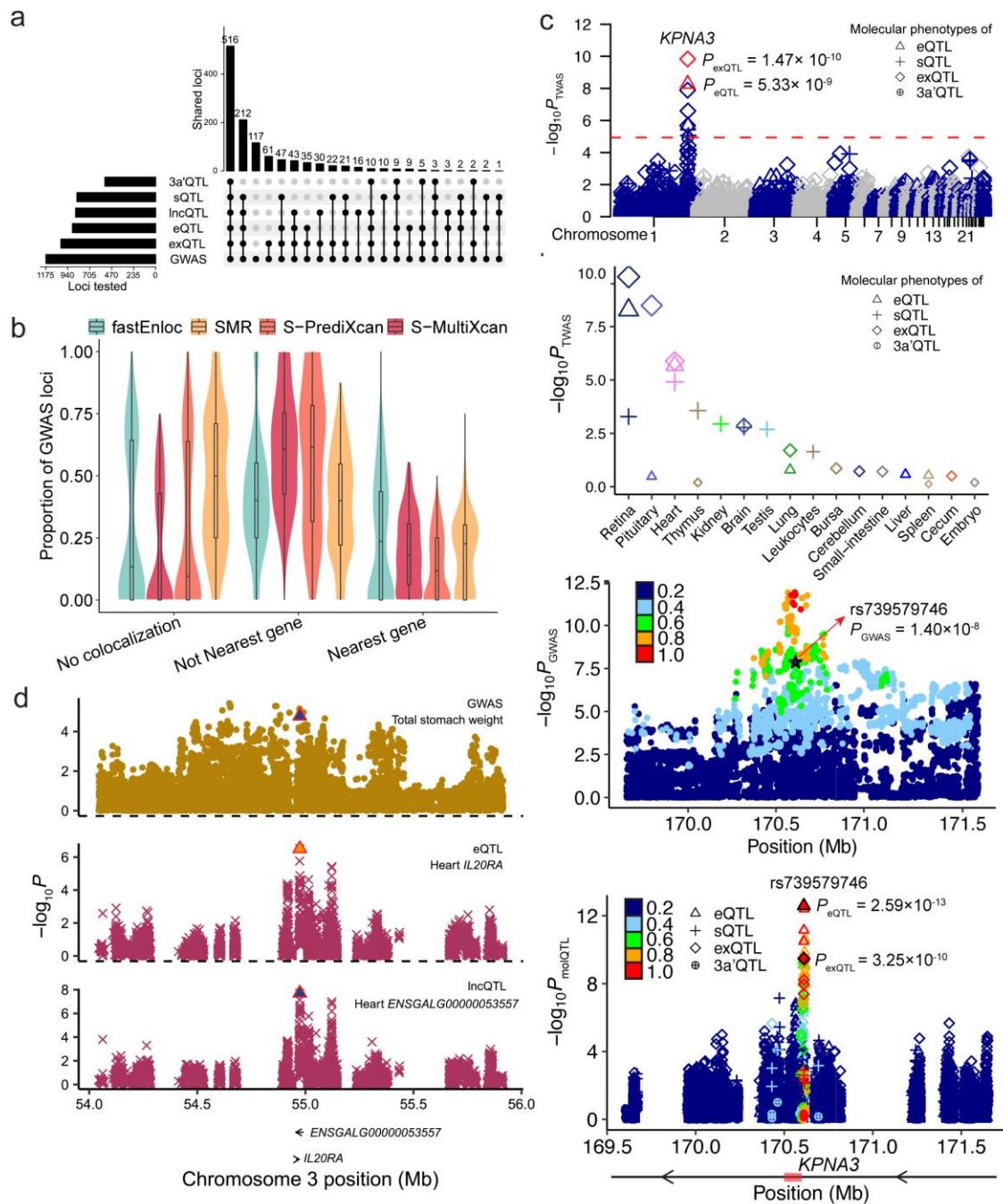
731 **Fig. 3. Colocalization and functional enrichment of molQTL.** (a) Colocalization analyses of
732 different types of molQTL of the same genes. The “LD” is the linkage disequilibrium (LD) of
733 lead SNPs of two molecular phenotypes. “H3” and “H4” represent the probability of whether the
734 association of two molecular phenotypes is due to two independent SNPs or one shared SNP,
735 respectively. The vertical red lines indicate corresponding mean values. (b) Associations (i.e., -
736 log₁₀ transformed *P*) of genetic variants with four molecular phenotypes of *NLRC5*. The panels
737 from top to bottom represent gene expression, alternative splicing, exon expression and 3'UTR
738 APA, respectively. Color legend represents the degree of LD between the lead SNP and the
739 others. The proportion and enrichment of five types of molQTL across sequence ontology (i.e.,
740 variant types annotated by SnpEff software(106)) (c) and 15 chromatin states (d). Fold
741 enrichment is shown as mean (dot) \pm standard deviation (log₂ scaled, error bar) across 28 chicken
742 tissues. The chromatin states were retrieved from Pan et al. (2023) (30). (e) The enrichment fold
743 (odds ratio, OR) of molQTL in regulatory variants of seven epigenomic marks predicted by
744 DeepSEA(107) (prediction score > 0.7). OR = (A/B)/(C/D), where C is the length of molQTL
745 overlapped with annotated features (A), and B is the length of molQTL overlapped with the total
746 genome length (D).



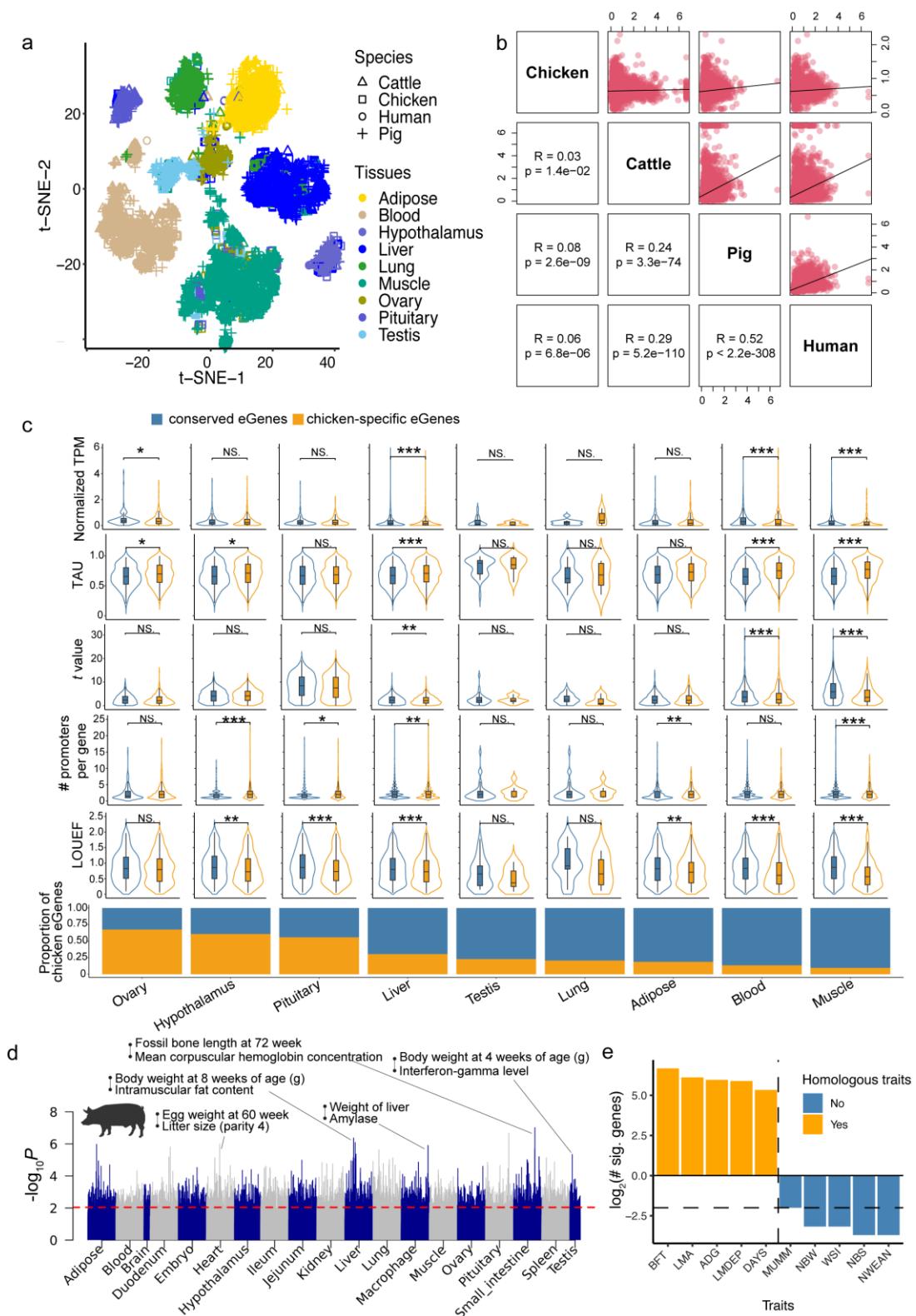
747

748 **Fig. 4. Tissue-sharing and context-dependent patterns of molQTL.** (a) The heatmap of
 749 Spearman's correlation of eQTL effect size between tissues. Tissues are clustered on the basis of
 750 dissimilarities (i.e. 1-d), where d is Euclidean distance calculated from the eQTL effect, with a
 751 complete linkage method(108). The color legend of tissues is the same as in **Fig. 1c** and **Table**
 752 **S2**. (b) Similarity of molQTL effect-based tissue clustering patterns. The pairwise Rand Index
 753 across five types of molQTL is used for measuring the similarity, ranging from 0 to 1, where 0
 754 means that two tissue clustering patterns do not match at all, while 1 means that two clustering
 755 patterns match exactly. (c) Fraction of eQTL around transcription start site (TSS) according to
 756 number of tissues they are active in. (d) Absolute effect size (allelic fold change, aFC) of eQTL
 757 as a function of number of tissues where the eGene is expressed in. The black line is
 758 corresponding median estimates, and the grey shades indicate corresponding interquartile ranges.
 759 Correlation tests were carried out using *cor.test* function in R v3.6.3. (e) Heatmap depicting of
 760 eQTL effect sharing between breeds. This analysis was done by using Multivariate Adaptive
 761 Shrinkage (109), same as in panel a. (f) The expression of the *TCFL5* gene across three
 762 genotypes of *rs317663121* in males (AA, n=107; AT, n=106; TT, n=92) and female (AA, n=66;
 763 AT, n=56; TT, n=73). TMM is the Trimmed Means of M values, representing the normalized
 764 gene expression level. (g) The significance (-log₁₀P) of interaction between *rs733070738*
 765 genotypes and myocyte enrichment (top panel) and myoblast enrichment (middle panel) on

766 *PLVAP* expression in muscle. The bottom panel is the Manhattan plot for eQTL mapping of
 767 *PLVAP* in bulk muscle samples. Dot color means linkage disequilibrium (LD) between
 768 rs733070738 and the rest.



770 **Fig. 5. Interpretation of GWAS loci with molQTL.** (a) UpsetR plot depicting the number of
771 GWAS loci explained by five types of molQTL, which were detected by at least one of four
772 complementary integrative methods, including fastENLOC-based colocalization, Summary-
773 based Mendelian randomization (SMR), single tissue-based transcriptome-wide association
774 study (sTWAS), and multi-tissue TWAS (mTWAS). (b) The proportion of three types of GWAS
775 loci ($n = 1,155$) colocalizing with eQTL regarding the integration results using 4 methods,
776 including fastENLOC-based colocalization, Summary-based Mendelian randomization (SMR),
777 single tissue-based transcriptome-wide association study (sTWAS), and multi-tissue TWAS
778 (mTWAS). No colocalization: GWAS loci that are not interpreted by any eGenes in 28 tissues.
779 Not nearest gene: GWAS loci are interpreted by eGenes that are not nearest genes to GWAS lead
780 SNPs. Nearest gene: GWAS loci are interpreted by eGenes that are the nearest ones to GWAS
781 lead SNPs. Each dot represents one of 108 complex traits. (c) Interpretation of GWAS loci of
782 weight gain from week 6 to 8 (WG6.8) with molQTL. The top panel depicts associations of
783 genes with WG6.8 via sTWAS in retina. The second lower panel displays associations ($-\log_{10}P$)
784 of different molecular phenotypes (gene expression, exon expression, alternative splicing and
785 3'UTR APA) of *KPNA3* with WG6.8 obtained by sTWAS across tissues. The following
786 Manhattan plot exhibits GWAS associations of SNPs with WG6.8 on chromosome 1. The color
787 indicated linkage disequilibrium (LD) of SNPs with the lead one (*rs15497848*, $P = 1.22 \times 10^{-12}$).
788 The colocalized SNP (*rs739579746*, $P = 1.4 \times 10^{-8}$) is denoted as a black star. The bottom plot
789 represents molQTL mapping results of *KPNA3* in retina. The color represents LD values of the
790 colocalized SNP (*rs739579746*, black color) with the rest. (d) SMR-multi results of GWAS loci
791 of total stomach weight and eQTL and lncQTL. The top panel depicts GWAS associations of
792 SNPs (represented by dots) with total stomach weight. The middle panel exhibits SMR
793 associations of GWAS loci with eQTL of *IL20RA* in heart, while the bottom panel exhibits SMR
794 associations of GWAS loci with lncQTL of *ENSGALG00000053557*. The triangle shape shows
795 the potential causal SNP (*rs314997637*) across the three biological layers, i.e., expression of
796 *ENSGALG00000053557*, expression of *IL20RA* and total stomach weight.
797



798

799

800

801

802

Fig. 6. Comparative analyses of gene regulation and transcriptome-wide associations (TWAS) between chickens and mammals. (a) Visualization of variance in gene expression of 14,278 RNA-Seq samples across four species (i.e., Chicken, pig, cattle and human) via a *t*-distributed stochastic neighbor embedding (*t*-SNE). Gene expression (Transcripts per Million,

803 TPM) of 10600 1-1-1-1 orthologous protein-coding genes are normalized between samples using
804 Seurat software (v4.3.0) (110). **(b)** Pearson's correlation of averaged effect size of lead eVariants
805 of 5,513 orthologous eGenes between species. **(c)** Comparison of chicken-specific eGenes and
806 conserved eGenes (i.e., eGenes that are shared with at least one mammalian species) across nine
807 tissues. The bottom barplot depicts the proportion of chicken-specific eGenes and conserved
808 eGenes in each tissue. The violin plots from top to bottom depict expression level, TAU (tissue-
809 specificity of expression), *t*-value (measuring the degree of gene differential expression between
810 species), number of promoters per gene, and loss-of-function intolerance (quantified by
811 LOEUF), respectively. Statistical tests were done by employing two-sided Wilcox-test. *** $P \leq$
812 0.001; ** $0.001 < P \leq 0.01$; * $0.01 < P \leq 0.05$; NS: not significant ($P > 0.05$). **(d)** Significance (at
813 \log_{10} transformed, y-axis) for TWAS-based correlations calculated using one-to-one orthologous
814 gene effect between chicken and pig. The red dashed line depicts the threshold of significance
815 (Permutation-based P value < 0.01 , corresponding to nominal P value $< 9.11 \times 10^{-3}$). **(e)** The
816 number of genes newly detected (FDR < 0.05) for body weight in chickens by using cross-
817 species meta-TWAS analysis in muscle. The dashed horizontal line indicates 0 before the log
818 transformation. Orange and blue bars represent homologous and nonhomologous traits in pigs
819 for chicken body weight, respectively. BFT: backfat thickness, LMA: loin muscle area, ADG:
820 average daily gain, LMDEP: loin muscle depth, DAYS: days, MUMM: number of mummified
821 pigs, NBW: number of weak pigs, WSI: weaning to estrus interval, NBS: number of stillborn
822 pigs, NWEAN: number of weaned piglets.

823 Methods and Materials

824 RNA-Seq data analyses and molecular phenotype definition

825 We downloaded 8,338 RNA-Seq data sets from the Sequence Read Archive (SRA,
826 <https://www.ncbi.nlm.nih.gov/sra>) and 140 public data sets from the Genome Sequence Archive
827 (GSA, <https://ngdc.cncb.ac.cn/gsa/>). We also included 155 newly-generated RNA-Seq data sets.
828 The metadata relating to all the RNA-Seq samples is summarized in **Table S1**. For quality
829 control, we removed adaptors and trimmed low-quality reads using Trim Galore (v0.6.6,
830 <https://github.com/FelixKrueger/TrimGalore>) with options of “--gzip --trim-n --length 30 --
831 clip_R1 3 --clip_R2 3 --three_prime_clip_R1 3 --three_prime_clip_R2 3”. We aligned the clean
832 reads to the GRCg6a reference genome (Ensembl version 102) using STAR (v2.7.7a)(111) with
833 parameters of “--quantMode GeneCounts --chimSegmentMin 10 --chimOutType Junctions --
834 chimOutJunctionFormat 1 --outFilterMismatchNmax 3”. For downstream analyses, only 7,015
835 samples with uniquely mapping rates $\geq 60\%$ and a number of clean reads $> 500,000$ after
836 removing potentially mislabeled samples were kept. For each of these samples, we then obtained
837 raw read counts and normalized expression (i.e., Transcripts Per Million, TPM) of 16,779 PCGs
838 annotated in the Ensembl v102 and 22,792 lncRNA genes annotated by FR-AgENCODE
839 (<http://www.fragencode.org/>)(112), using featureCounts (v2.0.1)(113) and StringTie
840 (v2.1.5)(114), respectively. Using the same software(113), we counted the total number of reads
841 as a function of annotated exons, which were further transformed into TPM using TBtools(115).
842 We performed the tree clustering of all the RNA-Seq samples using the GGTREE package(116).
843 The distance between samples was measured by $1-r$, where r was Pearson's correlation
844 coefficient based on the $\log_2(\text{TPM}+0.25)$ of 5,000 genes with the highest variability. We also
845 visualized these samples using the *t*-distributed stochastic neighbor embedding (*t*-SNE) approach
846 implemented in the Rtsne package(117).

848 We quantified alternative splicing variation from RNA-Seq data using the LeafCutter
849 package(118), which took into account spliced reads so that both novel and known alternative
850 splicing events could be identified and quantified(118). Briefly, based on the STAR alignments
851 mentioned above, we extracted junctions and defined intron clusters across samples using the
852 script “bam2junc.sh” and leafcutter_cluster.py”, respectively, as provided by the LeafCutter
853 package(118). For intron clustering, we required at least 30 split reads supporting each cluster
854 and at least 0.1% of reads supporting a junction in a cluster, as well as allowing intron length of
855 up to 500kb. The generated matrix of per individual counts was normalized and used for
856 clustering samples based on $1-r$, where r is the Pearson’s correlation coefficient between
857 samples. To link intron clusters to genes, we mapped their coordinates to the gene model
858 provided by the FR-AgENCODE database (112) using the script “map_clusters_to_genes.R”
859 (<https://github.com/broadinstitute/gtex-pipeline>). Afterward, we filtered out introns if no reads
860 were detected in >50% of samples or the number of counts was less than $\max(10, 0.1n)$ where n
861 is the sample size. In addition, we discarded introns with low variability across samples: $\sum_i(|z_i| <$
862 $0.25) \geq n-3$ and $\sum_i(|z_i| > 6) \leq 3$, where z_i is the z-score of the i th cluster read fraction across
863 individuals. The filtered counts were further normalized between samples using the script
864 “prepare_phenotype_table.py” in the LeafCutter package(118). The generated normalized
865 splicing counts were stored in BED formatted file for subsequent sQTL mapping.

866 For the quantification of 3’UTR APA, we utilized the DaPars (v2)(119). We first extracted distal
867 polyadenylation sites based on the Ensembl annotation (v102) using the script
868 “DaPars_Extract_Anno.py”. Then, we computed the genome coverage of STAR alignments
869 mentioned above using the *genomcov* function in the BEDTools (v2.30.0)(120). The generated
870 wiggle alignment files were then used for quantifying APA usage, resulting in the percentage of
871 distal poly(A) site usage index (PDUI) value for each gene in each sample. We rescaled the
872 PDUI values across samples to the mean of zero and variance of one in each tissue for 3a’QTL
873 mapping.

874

875 Single-cell RNA-Seq data analyses

876 We retrieved single-cell RNA-Seq data from the chicken heart ($n = 7$) (121) and muscle ($n = 2$)
877 (122) from the public database. Raw sequencing data was processed by using the “count”
878 function after preparing the genome annotation .gtf file (Ensembl v102) with the *mkgtf* tool of
879 the Cell Ranger pipeline(123). The Seurat R package (v4.0.5)(124) was used for subsequent cell-
880 type identification. We first created the Seurat object based on the raw read count of each sample
881 in a tissue using the *CreateSeuratObject* function. In this step, we filtered out cells with unique
882 gene counts < 200 and with mitochondrial counts $> 20\%$ of the total counts. We then normalized
883 raw counts of gene expression using the *LogNormalize* algorithm and further identified highly
884 variable genes (HVG) using the *FindVariableFeatures* algorithm with default parameters. The
885 HVG count matrices of all samples for a given tissue were integrated and combined to form a
886 single *Seurat* object using the *FindIntegrationAnchors* and *IntegrateData* functions. We scaled
887 the integrated dataset using the *ScaleData* function, which was further used to run principal
888 components analysis (PCA) with the *RunPCA* function. The top 15 PCs, where the percentage of
889 variance explained tended to be constant based on the elbow plot by the *JackStraw* function,
890 were selected for running Uniform Manifold Approximation and Projection (UMAP) analysis for
891 cell clustering using the *RunUMAP* function. The nearest neighbors between cells were
892 constructed using the *FindNeighbors* function and cell clusters were thus determined using the
893 *FindClusters* function at a resolution of 0.05. We manually assigned cell names based on original

894 publications (121, 122) and the PanglaoDB database(125). Finally, cell clusters were visualized
895 using the UMAP algorithm with the *DimPlot* function. To further deconvolute bulk RNA-Seq
896 data using single-cell RNA-Seq data, we first created a signature matrix using the CIBERSORTx
897 tool (126) with default parameters. Using the “Impute Cell Fractions” from the same tool, we
898 imputed cell fractions with the custom mode and 1000 permutations after uploading the gene
899 expression matrix for the bulk RNA-Seq data.

900

901 **Tissue-specificity of gene expression**

902 We employed *tspex*(127), a tissue-specificity calculator, to compute 12 tissue-specificity metrics,
903 including 8 general scoring metrics (i.e. Couts, Tau, Gini coefficient, Simpson index, Shannon
904 entropy specificity, ROKU specificity, Specificity measure dispersion, and Jensen-Shannon
905 specificity dispersion) and 4 individualized scoring metrics (i.e. Tissue-specificity index, Z-
906 score, Specificity measure, and Jensen-Shannon specificity). To identify tissue-specifically
907 expressed genes in a tissue, we applied another *t*-statistic approach as described previously(128).
908 Briefly, for a given tissue, we carried out differential gene expression analysis between the target
909 tissue and the rest but excluded those from the same biological system using the *limma*
910 package(129). Subsequently, tissue-specific genes were identified when FDR corrected *P*-
911 value(130) > 0.05 and fold change > 2. Functional enrichment analysis of tissue-specific genes
912 with Biological Process (BP) terms in the Gene Ontology (GO) database was performed using
913 the *clusterProfiler* package(103).

914

915 **Sex-biased gene expression**

916 To identify genes with sex-biased expression, we employed *DESeq2* software(131) to carry out
917 differential expression analysis between male and female samples in 18 tissues, where sample
918 size of each sex was > 10. We fitted a generalized linear model for the differential expression
919 analysis while correcting for factors, including BioProject, year when RNA-Seq data was
920 generated, age, breed, sequencing platform, library layout and selection method. After multiple
921 testing correction by the FDR approach(130), the set of differentially expressed genes was
922 identified when FDR corrected *P*-value < 0.01.

923

924 **Reference-guided transcript assembly**

925 Based on STAR alignment files, we assembled transcripts with the guidance of the Ensembl
926 annotation (GRCg6a v102) using the StringTie2 software tool(114). To increase the
927 computational efficiency, transcript assembly was run by tissue. Then, the generated assembly
928 files from all tissues were merged by using the “merge” function of the StringTie2
929 software(114). After quantifying the expression of assembled transcripts, we only retained
930 single-exon transcripts with TPM >1 in at least half of samples in a tissue, and multi-exon
931 transcripts with TPM >0.1 in at least half of samples in a tissue. Moreover, we compared our
932 prediction to Ensembl and NCBI annotations using GffCompare (version 0.11), and classified
933 them into 14 classes as described previously(95, 132). The coding potential of predicted
934 transcripts was predicted by using CPP2 software(133), with lncRNA loci predicted using
935 FEElnc(134).

937

Construction of gene co-expression networks

938

To build gene co-expression networks in each tissue, we employed five complementary methods with default parameters, including WGCNA (v1.69)(135), ICA (v1.0.2)(136), PEER (v1.3)(137), MEGENA (v1.3.7)(138), and CEMiTool (v1.8.3)(139). The input gene expression values were adjusted for hidden confounding factors by regressing out 10 PEER factors and 5 genotypic PCs (see “**Preparation for molQTL mapping**” section). Functional enrichment analysis of gene co-expression modules was conducted by using clusterProfiler (v4.0)(103), and the following visualization was done using Gephi (v0.9.2)(140).

945

946

SNP calling from RNA-Seq samples

947

To call SNPs from RNA-Seq samples, we marked PCR duplicates in STAR alignment files and split reads that contained Ns in their cigar string using *MarkDuplicates* and *SplitNCigarReads* modules of the Genome Analysis Toolkit (GATK, v 4.1.9.0)(45), respectively. Using the Ensembl dbSNP database (v102), we recalibrated base quality scores using GATK *BaseRecalibrator* and *ApplyBQSR* modules. By following the best practice of germline variant calling from RNA-Seq data, we detected small variants from the recalibrated alignments files, which generated individual Genomic Variant Call Format (GVCF) files using the *HaplotypeCaller* function of the GATK tool(45). Then, we carried out joint-calling of all GVCF samples using the *GenotypeGVCFs* module from the GATK tool(45). For selecting high-quality SNPs, we carried out a hard-filtering with criteria of “FS > 30.0 & QD < 2.0”, resulting in a total set of 12,191,306 SNPs.

958

959

Construction of the multi-breed genotype imputation panel and genotype imputation

960

We retrieved 1,693 public WGS data sets from SRA (n=1,213) and GSA (n = 480) databases along with 1,176 additional newly generated WGS samples, resulting in a total set of 2,869 WGS samples (**Table S6**). All raw sequence reads passed a uniform computational pipeline, including adaptor removal, read alignment, and SNP calling. Briefly, we trimmed read adaptors and low-quality reads using the Trimmomatic v0.39 software(141). The obtained clean reads were further aligned against the Ensembl GRCg6a chicken reference genome (v102) using the MEM algorithm of the Burrows-Wheeler Aligner (BWA, v0.7.17)(142). The alignment files in Binary Alignment Map (BAM) format were sorted using SAMtools (v1.9)(143), and were further passed for the removal of PCR duplicates using GATK (v4.1.9.0)(45). The obtained BAM files were then used for variant discovery to generate individual GVCF files using the *HaplotypeCaller* function of the GATK tool(45). The joint-calling of all 2,869 GVCF samples was further done using the *GenotypeGVCFs* module from the GATK tool(45). For selecting high-quality SNPs, we carried out a hard-filtering with criteria of “QD < 2.0, MQ < 40.0, FS > 60.0, SOR > 3.0, MQRankSum < -12.5, and ReadPosRankSum < -8.0”, resulting in a total set of 117,900,812 clean SNPs. To create the genotype imputation reference panel, we first filtered out multi-allelic and sex chromosomal SNPs, as well as those with MAF < 0.01 and missing rate > 0.9 using BCFtools v1.10.2(144), and then imputed missing genotypes using the Beagle 5.1 program(145). This yielded the final reference panel consisting of 2,869 samples and 10,520,420 SNP genotypes. To better impute SNPs called from RNA-Seq samples, we discarded SNPs called from RNA-Seq samples with MAF < 0.05 using BCFtools v1.10.2(144) and further evaluated the effect of missing rates decreasing from 0.9 gradually to 0.6 on imputation accuracy. This

981 evaluation revealed that the missing rate of 0.6 could reach >95% of imputation accuracy,
982 yielding a set of 1.5 million SNPs for subsequent analysis. The genotype imputation was
983 performed using the Beagle 5.1 program(145).

985 Preparation for molQTL mapping

986 *Sample deduplication.* After assigning RNA-Seq samples into 28 tissue types, we calculated the
987 identity-by-state (IBS) distance between samples within each tissue based on the imputed SNP
988 genotypes using PLINK v1.9(146). The formula of IBS calculation is as follows:

$$989 IBS = \frac{(IBS2 + 0.5 \times IBS1)}{(IBS0 + IBS1 + IBS2)}$$

990 where IBS0, IBS1 and IBS2 are the number of non-missing variants when IBS = 0, IBS = 1, and
991 IBS = 2, respectively. If the IBS distance of a pair of samples is higher than 0.9, they were
992 deemed as duplicated so that the samples with the higher sequencing depth were kept. The
993 deduplication process was run until all IBS values per pair of samples were less than 0.9. Finally,
994 a total of 28 tissues with sample sizes ranging from 44 (testis) to 741 (liver) were kept for
995 subsequent molQTL mapping.

996 *Principal component analysis.* Within each of those 28 tissues, we first LD-pruned imputed
997 genotypes with the option of “--indep-pairwise 200 100 0.1” using PLINK v1.9(146). Principal
998 component analysis (PCA) of samples was then carried out, based on the LD-pruned genotypes
999 using the smartpca tool of the EIGENSOFT v8.0.0 package(147). The top 5 principal
1000 components (PCs) were selected as covariates for heritability estimation and molQTL mapping.

1001 *Estimating PEER confounder factors.* To correct for confounders and other unwanted technical
1002 or biological variations in RNA-Seq samples, we estimated the Probabilistic Estimation of
1003 Expression Residuals (PEER) in each of the tissues using the PEER software package(137). The
1004 top 10 PEER factors showing highly relative contributions (i.e., factor weight variance) to gene
1005 expression variation were selected for subsequent heritability estimation and molQTL mapping.

1006 *Phenotype preparation.* For protein-coding genes, lncRNAs and exons, we filtered out features
1007 with TPM < 0.1 and raw read counts < 6 in > 20% of samples within a tissue. Raw read counts
1008 were normalized using the Trimmed Mean of M-value (TMM) algorithm of the edgeR
1009 package(148). The generated TMM matrix was then further normalized with an inverse normal
1010 transformation for subsequent molQTL mapping. For splicing and APA, the preparation of
1011 molecular phenotypes was described in the “**RNA-Seq data analysis and molecular phenotype**
1012 **definition**” section.

1014 Estimating *cis*-heritability of gene expression

1015 We leveraged the GCTA program v1.93.2(149) to estimate *cis*-heritability (*cis*-h²) of molecular
1016 phenotypes by fitting a mixed linear model:

$$1017 y = X\beta + g + \varepsilon$$

1018 where y is a vector of phenotypic values (i.e., gene expressions) of all samples, β is a vector of
1019 corresponding coefficients of quantitative covariates X of all samples, which included 5
1020 genotypic PCs and 10 PEER factors, g is a vector of the genetic values of SNPs around ± 1 Mb of
1021 the transcription start sites (TSS) of a gene, and ε is a vector of residuals. The genetic value g

1022 followed a normal distribution with mean of 0 and variance of $A\sigma_g^2$, where A was the genetic
1023 relationship matrix (GRM) between individuals(150). Thus, we can estimate σ_g^2 , i.e., the
1024 variance explained by SNP genotypes (i.e., *cis*-h²), using the restricted maximum likelihood
1025 (REML) approach(150, 151) implemented in GCTA software(149). The *cis*-h² was finally
1026 defined when the significance level was lower than 5% based on the likelihood ratio test(149,
1027 150).

1028

1029 Molecular QTL mapping

1030 In this study, we only intended to map *cis*-molQTL of each feature, i.e., SNPs distributed around
1031 1 Mb upstream and downstream of the TSS of the gene, using tensorQTL v1.0.4(152). This
1032 utilized graphics processing units (GPUs) with the scalability to increase runtime and reduce the
1033 time cost. Initializing with the option of “--mode *cis_nominal*” of the tensorQTL v1.0.4(152), we
1034 calculated all nominal associations of all variant-molecular phenotype pairs. The permutation
1035 mode was further used for computing empirical *P*-values for a molecular phenotype using the
1036 option of “--mode *cis*” of the tensorQTL v1.0.4. After carrying out a multiple testing correction
1037 based on empirical beta-approximated *P*-values(153) using the false discovery rate (FDR)
1038 approach(130), we defined eGenes , i.e., genes that were significantly regulated by at least one
1039 variant (FDR < 0.05). For an eGene, the empirical *P*-value that was closest to an FDR of 0.05
1040 was defined as the genome-wide empirical *P*-value threshold (pt), which was used for defining
1041 the gene-level significance threshold using *qbeta(pt, beta_shape1, beta_shape2)* in R
1042 (v3.6.3)(105), where *beta_shape1* and *beta_shape2* were computed by tensorQTL v1.0.4(152).
1043 The significant molQTL were tested SNPs whose nominal *P*-values were lower than the gene-
1044 level significance threshold.

1045

1046 Fine-mapping analysis of molQTL

1047 We employed four strategies for fine-mapping independent variants underlying each molQTL.
1048 Firstly, we utilized the stepwise regression procedure for mapping conditionally independent
1049 molQTL, as used in other GTEx studies (32, 47, 48). This analysis was done by using the
1050 tensorQTL v1.0.4 with “--mode *cis_independent*” option(152). The conditionally independent
1051 molQTL mapping was based on the nominal associations mentioned above and ranked variants.
1052 Secondly, we fine-mapped putative causal variants for each molecular phenotype by using the
1053 “Sum of Single Effects” (SuSiE) model (v 1.0) (46). We calculated LD correlations between all
1054 tested SNPs of a molecular phenotype from the genotype reference panel and then fine-mapped
1055 variants using the SuSiE infinitesimal effect model. The posterior probability of 0.1 was used for
1056 identifying putative causal variants and credible sets.

1057

1058 Colocalization analysis between molecular phenotypes

1059 To demonstrate whether two types of molecular phenotypes shared genetic regulatory
1060 mechanisms, we determined a set of paired molecular phenotypes that were transcribed from the
1061 same gene. We then ran the *coloc.abf* function in the *coloc* package(154), which is an
1062 Approximate Bayes Factor colocalization analysis for detecting significant genetic variants
1063 shared by two molecular phenotypes. The package computed posterior probabilities for: 1) no
1064 association with either molecular phenotype (H0); 2) association only with the first molecular

1065 phenotype (H1); 3) association only with the second molecular phenotype (H2); 3) association
1066 with both molecular phenotype but two independent signals (H3); 4) association with both
1067 molecular phenotype and shared signals (H4). Moreover, we calculated the linkage
1068 disequilibrium (LD) of two lead SNPs for a pair of shared molecular phenotypes using PLINK
1069 v1.9(146).

1070

1071 **Tissue- and breed-sharing of molQTL**

1072 *Tissue-sharing of molQTL.* To assess the cross-tissue sharing pattern of molQTL, we used
1073 Multivariate Adaptive Shrinkage in R (MashR, v0.2.57)(109) and METASOFT v2.0.0(155). For
1074 MashR, we used the z-score (slope/slope_se) of top molQTL for a gene as input. To run the
1075 *mash* model, we randomly selected 1 million molQTL-gene pairs from nominal associations
1076 being tested across all tissues by tensorQTL and obtained their z-score values. If there were
1077 missing z-score values, zero was filled and the corresponding standard error was set to 1e⁶. Local
1078 false sign rate (LFSR) was then computed by MashR and an LFSR of 0.05 was considered as the
1079 significance threshold to define whether a molQTL was active in a tissue. Pairwise Spearman's
1080 correlation of effect size of active molQTL was calculated to evaluate tissue similarity. For
1081 METASOFT, we combined all significant molQTL across tissues and computed the z-score as
1082 described above. We estimated the m-value, which represented the posterior probability
1083 indicating whether a molQTL effect exists in a tissue, using the Markov Chain Monte Carlo
1084 (MCMC) method(156). The m-value threshold was set as 0.7.

1085 *Breed-sharing eQTL analysis.* We considered the brain (Leghorn, n = 78; Red Jungle Fowl, n =
1086 46; Ross, n = 157), spleen (Leghorn, n = 74; Cobb, n = 43) and liver (Leghorn, n = 60; Cobb, n =
1087 47; Ross, n = 101; Rhode Island Red, n = 78), tissues as they had more than two breeds with
1088 sample size > 40. For each breed, we ran eQTL mapping independently using tensorQTL
1089 software (v1.0.4). The eQTL sharing was assessed using METASOFT v2.0.0(155), and MashR
1090 (v0.2.57)(109), as well as π_1 statistic in the qvalue package(51, 157). The METASOFT and
1091 MashR were run as described above, and the π_1 statistic (i.e. replication rate)(157) was used to
1092 assess if an eQTL detected in one breed can be replicated in another breed.

1093

1094 **Detection of context-dependent QTL**

1095 *Sex-biased eQTL.* To identify eQTL that is significantly associated with gender, we focused on
1096 eight tissues that had at least 30 samples for each sex. In this study, we only considered
1097 conditionally independent eQTL identified above to reduce the computational burden. We fitted
1098 a linear model $y = g + s + s \times g + c + e$, where y is phenotypic values of gene expression; g is
1099 genotype (0 for homozygous ref, 1 for heterozygous, and 2 for homozygous alt); s is sex
1100 information (0 for female and 1 for male); c is quantitative covariates including 5 genotypic PCs
1101 and 10 PEER factors as we used in eQTL mapping, while e is for the residuals. The same
1102 parameters were also used for computing the null model but excluding the $s \times g$ term. We then
1103 calculated P values by comparing the linear interaction model to the null model using analysis of
1104 variance. The *lm()* function in R v3.6.3 (105) was used for model fitting.

1105 *Transcription factor (TF) interacting eQTL.* To detect eQTL that may interact with the
1106 expression of transcription factors, we retrieved 956 putative transcription factors from the
1107 AnimalTFDB (v3.0). As was done for sex-biased QTL detection, we only considered
1108 conditionally independent eQTL but excluded eGenes that were TF. Likewise, we fitted the same

1109 interaction model, but the interaction term was TF expression. A total of 15 quantitative
1110 covariates including 5 genotypic PCs and 10 PEER factors were also fitted in the model to
1111 control confounding factors. The significance threshold was set as FDR(130) corrected *P*-value <
1112 0.01.

1113 *Cell-type interacting eQTL*. We mapped cell-type interaction QTLs by fitting a linear model but
1114 included an interaction term implemented in the tensorQTL v1.0.4 (152): $y = g + i + g \times i + e$,
1115 where y is gene expression, i is the estimated abundance of cell types, and g is genetic effects
1116 estimated from SNPs within ± 1 Mb of the TSS of a gene, while e is for the residuals. To control
1117 confounding factors, we also included a total of 15 quantitative covariates including 5 genotypic
1118 PCs and 10 PEER factors as described above. We defined genes that had at least one significant
1119 SNP after carrying out a multiple testing correction on eigenMT-based *P*-values(158) using the
1120 FDR approach(130). We defined the threshold of significance as FDR < 0.01.

1121 *Breed interacting eQTL*. To demonstrate breed effects on gene regulation, we ran breed
1122 interaction eQTL mapping using the tensorQTL (v1.0.4) tool (152) in brain, where the sample
1123 size of each breed was > 40, including Leghorn (n=78), Red Jungle Fowl (n = 46) and Ross (n =
1124 157). This interaction eQTL mapping fitted the same model as described for “*Cell-type*
1125 *interaction eQTL*” while the interaction term was breed information. The breed origins were
1126 coded as 0 for Red Jungle Fowl and 1 for Leghorn/Ross. After a multiple testing correction using
1127 the FDR approach(130), gene-variant pairs with FDR < 0.01 were deemed as significant.

1129 **Estimating effect sizes of molQTL**

1130 We estimated the allelic fold change (aFC) of molQTL by employing the aFC (v0.3) Python
1131 script(159). The estimation was based on genotypes and molecular phenotypes (the same as
1132 molQTL mapping), as well as covariates including 5 genotypic PCs and 10 PEER factors. The
1133 95% confidence interval of aFC was estimated by using the bootstrap method (--boot 100).

1135 **Allele specific expression (ASE)**

1136 We conducted a haplotype-based ASE analysis through the phASER (v1.1.1) software(160). To
1137 exclude genomic regions with high mapping error rates, we first computed the genome
1138 mappability using GenMap (v1.3.0)(161) with parameters: -K 75 -E 2. The generated blacklist
1139 was fitted to the phASER (v1.1.1) tool(160) to phase variants from the STAR alignment BAM
1140 and VCF files with options of “--paired_end 1 --mapq 255 --baseq 10”. Using the script
1141 “phaser_expr_matrix.py”, we measured gene-level haplotypic expression for all samples with
1142 default parameters. The generated haplotypic counts files for individual samples were further
1143 aggregated by tissue by using “phaser_expr_matrix.py”. Finally, we used the
1144 “phaser_cis_var.py” script to estimate the effect size of eQTLs based on aggregated haplotypic
1145 counts. The correlation of ASE-level effect size (ASE aFC) and eQTL effect size (aFC estimated
1146 above) was computed using the Spearman’s correlation approach in R v3.6.3 (105).

1148 **Replication of molQTL discovery**

1149 To assess the replication rate of molQTL discovery, we employed the π_1 statistic embedded in
1150 the qvalue package(51, 157). Briefly, we randomly split RNA-Seq samples into two groups -
1151 QTL discovery and validation population, when the tissue sample size was greater than 100. We

1152 ran QTL mapping in each group separately using tensorQTL (v1.0.4) (152) as described above.
1153 Based on replicated eQTL *P*-values, we calculated π_0 value that measured the overall proportion
1154 of true null hypotheses using the *pi0est* function within the *qvalue* package(157). The π_1 was thus
1155 obtained by $1 - \pi_0$.

1156
1157 **DeepSEA model training and variant effect prediction**

1158 DeepSEA is a deep learning model initially trained for predicting variant effects in human(50),
1159 while in this study, it was retrained by utilizing 310 epigenomic peaks generated by the chicken
1160 FAANG consortium (30) and by Zhu et al. (162) (**Table S7**). According to sequencing type and
1161 histone marks, we categorized all 310 epigenomic peaks into groups, including ATAC, CTCF,
1162 DNaseSeq, H3K27ac, H3K23me3, H3K4me1 and H3K4me3, which were used as input for the
1163 model training using the Selene, a PyTorch-based package (163). Briefly, we grouped the
1164 genome into 200-bp bins and then labeled the bins according to input features. A genomic bin
1165 will be labeled 1 if half of the bin overlaps with an epigenomic peak, otherwise labeled as 0. The
1166 model was then trained based on a sequence region of 1,000 bp (i.e., input feature), where the
1167 200-bp bin was placed at the center. We created validation and testing datasets by grouping
1168 chromosomes, specifically grouping chromosomes 8 and 9 to the training set and chromosomes 6
1169 and 7 to the validation set. We computed the area under the receiver operating characteristic
1170 (AUROC) to evaluate the performance of the DeepSEA model. After that, we computed variant
1171 effect/score of two alleles for a given molQTL, i.e. 2×310 predicted chromatin variant scores,
1172 by inputting a 1000-bp sequence with the center being the Ref or Alt allele. The score is defined
1173 as the relative log fold changes of odds between predicted scores of the Ref and Alt. For each
1174 feature, SNPs with a score greater than 0.7 were identified as variants affecting the feature.

1175
$$\text{variant score} = \left| \log \frac{p(\text{reference})}{1 - p(\text{reference})} - \log \frac{p(\text{alternative})}{1 - p(\text{alternative})} \right|$$

1176
1177 **Functional enrichment of molQTL**

1178 To understand the enrichment of molQTL in sequence ontology (i.e., SNP functional types
1179 annotated by SnpEff v5.0e) and regulatory elements (i.e., 15 chromatin states annotated in(30)),
1180 we employed the formula:

1181
$$E = \frac{(C / A)}{(B / D)}$$

1182 where A and D are the length of feature annotations and the total genome length, respectively. C
1183 is the length of molQTL overlapped with feature annotations, and B is the length of molQTL
1184 overlapped with the total genome length. To further uncover the regulatory mechanism of
1185 molQTL, we retrieved predicted pairs of regulatory elements-target genes from(30). We then
1186 overlapped them with our molQTL-regulated genes but at the same time required the molQTL to
1187 be located within regulatory elements. Moreover, we also performed the enrichment analysis of
1188 molQTL-regulated genes and HiC TAD with data retrieved from a previous study (52) using the
1189 SnakeHiC pipeline (<https://github.com/FarmOmics/SnakeHiC>).

1190
1191 **Integrating molQTL with GWAS results**

1192 *GWAS summary statistics.* To investigate the regulatory mechanisms underpinning complex traits
1193 in pigs, we systematically integrated the identified molQTL with GWAS from 108 complex traits
1194 of economic importance, representing five trait domains (i.e., growth and development, carcass,
1195 egg production, feed efficiency and blood biochemical index). Detailed information for each
1196 GWAS is shown in **Table S17**. To perform the integrative analysis of GWAS and molQTL, we
1197 overlapped significant GWAS loci with the 1,522,091 SNPs were tested in the molQTL mapping
1198 analysis, resulting in 1,176 GWAS loci.

1199 *Enrichment of molQTL and trait-associated variants.* To examine whether molQTL were
1200 significantly enriched among the significant GWAS loci, we applied QTLEnrich (v2) (32) to
1201 quantify the enrichment degree between significant molQTL and GWAS loci.

1202 *Transcriptome-wide association study (TWAS).* We conducted single- and multi-tissue TWAS
1203 with S-PrediXcan(164) and S-MultiXcan(165) included in the MetaXcan (v0.6.11) family,
1204 respectively. Briefly, we trained the Nested Cross validated Elastic Net models with molecular
1205 phenotypes (i.e., PCG, lncRNA, splicing, exon, and 3a'Genes) and corresponding SNPs within
1206 the 1Mb *cis*-window of molecular phenotypes in all 28 tissues. The predictive models with cross-
1207 validated correlation $p > 0.1$ and prediction performance $P < 0.05$ were selected for subsequent
1208 analyses. Using the S-PrediXcan tool and trained models, we predicted gene-trait associations at
1209 the single-tissue level, i.e., single-tissue TWAS results. Further, using the S-MultiXcan tool, we
1210 integrated single-tissue predictions, generating the multiple-tissue TWAS results. After carrying
1211 out a multiple testing correction with the FDR approach(130), gene-trait associations with
1212 corrected- $P < 0.05$ were considered as significant.

1213 *Summary-based Mendelian Randomization (SMR).* To explore the pleiotropic association
1214 between molecular phenotypes and a complex trait, we conducted a Mendelian Randomization
1215 analysis. This was done by using the SMR software (v1.3.1) (166), which can utilize summary-
1216 level data from GWAS and molQTL. To correctly fit the SMR software, the molQTL data
1217 generated by tensorQTL in this study was initially converted into BESD format with options of
1218 “`--fastqtl-nominal-format --make-besd`”. We then ran the SMR test and carried out a multiple
1219 testing correction with the FDR approach(130). The gene-trait pairs with corrected P -value $<$
1220 0.05 were selected and deemed as significant.

1221 *Colocalization analysis.* To identify shared genetic variants between GWAS and molQTL, we
1222 conducted a colocalization analysis with fastENLOC (v2.0) (167). We first fine-mapped putative
1223 causal variants for each eGene by using a Bayesian multi-SNP genetic association analysis
1224 algorithm, deterministic approximation of posteriors (DAP, the current version is DAP-G,
1225 v1.0.0)(168, 169). Leveraging the DAP-G (v1.0.0) (168, 169) outcome, we generated a
1226 probabilistic annotation of molQTL using the “`summarize_dap2enloc.pl`” script. We then
1227 calculated approximate LD blocks using PLINK v1.9 (146) with options: `--blocks no-pheno-req`
1228 `--blocks-max-kb 1000 --make-founders`. The posterior inclusion probability (PIP) of GWAS loci
1229 was calculated for each LD block using TORUS (170) with the options: `--load_zval -dump_pip`.
1230 By integrating GWAS PIP values, we ran the final colocalization analysis with the fastENLOC
1231 (v2.0) tool (171) and obtained the regional colocalization probability (GRCP). The GRCP > 0.1
1232 was defined as the threshold of significance.

1233
1234 **Enrichment analysis of eQTL in selective sweeps**

1235 To determine whether domestication could be acting on regulatory variants, we retrieved
1236 selective sweeps measured by locus-specific branch length (LSBL) statistics (14, 65). Briefly, we

1237 first calculated FST for genomic windows with 20 consecutive SNPs between broilers (n=40) and
1238 Red Jungle Fowls (RJF, n=35) using VCFtools and also between layers (n=50) and Red Jungle
1239 Fowls (n=35). The LSBL values were further computed with the formula: LSBL = $(F_{ST(AB)} +$
1240 $F_{ST(AC)} - F_{ST(BC)}) / 2$. We deemed the top 0.1% of genomic windows ranked by LSBL values as
1241 significant. We examined whether eQTL were overrepresented in genomic windows under
1242 position selection, *i.e.*, whether genomic windows with at least one eQTL had higher LSBL
1243 values than the background, which has an equivalent number of windows as those of eQTL.
1244

1245 Comparative analysis of gene expression

1246 To comparatively analyze gene expression across species, we collected gene expression and
1247 regulation data from multiple sources. Specifically, we obtained data for 15,044 samples from
1248 the Human GTEx web portal (v8) available at <https://gtexportal.org>. Additionally, we gathered
1249 gene expression data for 7,095 pig samples and 8,742 cattle samples from the FarmGTEx
1250 resource accessible at <https://www.farmgtex.org/>. Furthermore, as part of this study, we included
1251 gene expression and regulation data for 7,015 chicken samples. In this study, we focused on
1252 protein-coding genes based on the annotation of the Ensembl (v102), and we considered the
1253 genes with $TPM > 0.1$ as expressed. Specifically, we grouped chicken genes into “1-1-1-1
1254 orthologous gene” (1-1 orthologous across species, n = 10600), “complex orthologous genes” (“1
1255 to many”, “many to 1” and “many to many”, n=3644), “no homology” (without any homologous
1256 counterpart in mammals, n=2535). In total, 9 tissues in common across species (*i.e.*, adipose,
1257 blood, hypothalamus, liver, lung, muscle, ovary, pituitary, and testis) were included to conduct a
1258 comparative analysis of gene expression.

1259 Gene expression (TPM matrix) retrieved for each was normalized using Seurat (v4.3.0) (110) to
1260 decrease the bias introduced by dynamic data across species. We evaluated transcriptome
1261 outcomes by counting the number of reads (reads = $TPM \times$ the length of genes (bp)) in each
1262 tissue. Samples were by performing dimensionality reduction on the normalized expression data
1263 (including 10,600 1-1-1-1 orthologous genes) with the *t*-SNE approach (117). Moreover, we
1264 explored the conservation of cis-heritability (h^2) and effect size (aFC) of lead eVariants across
1265 species. To do so, we selected 1-1-1-1 orthologous genes (n=5,384 for h^2) and eGenes related
1266 eVariants (n=5,513 for aFC) that are in common across species, and grouped genes into
1267 conserved eGenes (that have at least 1 homology with mammals) and chicken-specific eGenes
1268 (that didn't have homology with any mammal species).

1269 1270 Cross-species TWAS comparison

1271 We performed comparative analyses of single-tissue TWAS results of 108 traits in chickens with
1272 9,112, 1,032 and 6,480 single-tissue TWAS results in three mammalian species (*i.e.*, pigs(47),
1273 cattle(48) and humans(32)), representing 268, 43 and 135 complex traits, respectively. Within a
1274 shared tissue between two species, we computed Pearson's correlations between any pair of traits
1275 on the basis of z score (beta / standard error) estimated from one-to-one orthologous genes
1276 between two corresponding species. To define the threshold of significance, we carried out
1277 permutation analysis by randomly calculating Pearson's correlations between any two of all
1278 single-tissue TWAS 1000,000 times. The within-species correlations were then excluded,
1279 resulting in 609,861 Pearson's correlations and corresponding *P* values. We set the cutoff of
1280 significance as top 0.1% of permuted $-\log_{10}P$, corresponding to the *P* value of 9.11×10^{-3} . We
1281 thus conducted cross-species meta-TWAS analysis by combining TWAS results from different

1282 species based on orthologous genes. For meta-TWAS analysis, we applied a sample-size
1283 weighting (SSW) strategy (172) by calculating Z_{TWAS} as follows:

$$1284 Z_{TWAS} = \frac{\sum_{i=1}^B N_i Z_{TWASj}}{(\sum_{i=1}^B N_i^2)^{1/2}}$$

1285 where Z_{TWASj} is the z-score for j th gene in TWAS analysis, i is the species, *i.e.*, chicken, humans,
1286 pigs, and cattle, N_i is the number of individuals for i th species in TWAS, B is the number of
1287 species in metaTWAS. The effective sample size is $N_i = 4/(\frac{1}{N_{cases}} + \frac{1}{N_{controls}})$. To obtain the
1288 significance level, we calculated P values for each gene based on a Chi-squared distribution of z-
1289 scores (df=1) calculated before. After a multiple testing correction with the FDR method (130)
1290 by replacing original P value (TWAS) with P value (meta-TWAS) of orthologous genes, the
1291 threshold of significance was defined as FDR < 0.05.

1292 1293 References and Notes

- 1294 1. L. W. Hillier, W. Miller, Sequence and comparative analysis of the chicken genome provide
1295 unique perspectives on vertebrate evolution. *Nature*. 432, 695–716 (2004).
- 1296 2. D. W. Burt, Emergence of the chicken as a model organism: implications for agriculture and
1297 biology. *Poultry Science*. 86, 1460–1471 (2007).
- 1298 3. T. H. Beacon, J. R. Davie, The chicken model organism for epigenomic research. *Genome*.
1299 64, 476–489 (2021).
- 1300 4. P. Garcia, Y. Wang, J. Viallet, Z. Macek Jilkova, The chicken embryo model: a novel and
1301 relevant model for immune-based studies. *Frontiers in Immunology*. 12, 791081 (2021).
- 1302 5. D. Wright, C.-J. Rubin, A. Martinez Barrio, K. Schütz, S. Kerje, H. Brändström, A.
1303 Kindmark, P. Jensen, L. Andersson, The genetic architecture of domestication in the
1304 chicken: effects of pleiotropy and linkage. *Molecular Ecology*. 19, 5140–5156 (2010).
- 1305 6. J. Flores-Santin, W. W. Burggren, Beyond the chicken: alternative avian models for
1306 developmental physiological research. *Front Physiol*. 12, 712633 (2021).
- 1307 7. W. R. A. Brown, S. J. Hubbard, C. Tickle, S. A. Wilson, The chicken as a model for large-
1308 scale analysis of vertebrate gene function. *Nat Rev Genet*. 4, 87–98 (2003).
- 1309 8. Z. Wu, C. Bortoluzzi, M. F. L. Derkx, L. Liu, M. Bosse, S. J. Hiemstra, M. A. M. Groenen,
1310 R. P. M. A. Crooijmans, Heterogeneity of a dwarf phenotype in Dutch traditional chicken
1311 breeds revealed by genomic analyses. *Evolutionary Applications*. 14, 1095–1108 (2021).
- 1312 9. M.-S. Wang, N. O. Otecko, S. Wang, D.-D. Wu, M.-M. Yang, Y.-L. Xu, R. W. Murphy, M.-
1313 S. Peng, Y.-P. Zhang, An evolutionary genomic perspective on the breeding of dwarf
1314 chickens. *Molecular Biology and Evolution*. 34, 3081–3088 (2017).
- 1315 10. M. Lillie, Z. Y. Sheng, C. F. Honaker, L. Andersson, P. B. Siegel, Ö. Carlborg, Genomic
1316 signatures of 60 years of bidirectional selection for 8-week body weight in chickens. *Poultry
1317 Science*. 97, 781–790 (2018).
- 1318 11. J. A. J. van der Eijk, M. B. Verwoolde, G. de Vries Reilingh, C. A. Jansen, T. B. Rodenburg,
1319 A. Lammers, Chicken lines divergently selected on feather pecking differ in immune
1320 characteristics. *Physiology & Behavior*. 212, 112680 (2019).
- 1321 12. Z. Huang, Z. Xu, H. Bai, Y. Huang, N. Kang, X. Ding, J. Liu, H. Luo, C. Yang, W. Chen, Q.
1322 Guo, L. Xue, X. Zhang, L. Xu, M. Chen, H. Fu, Y. Chen, Z. Yue, T. Fukagawa, S. Liu, G.
1323 Chang, L. Xu, Evolutionary analysis of a complete chicken genome. *Proceedings of the
1324 National Academy of Sciences*. 120, e2216641120 (2023).

1325 13. R. A. Lawal, S. H. Martin, K. Vanmechelen, A. Vereijken, P. Silva, R. M. Al-Atiyat, R. S.
1326 Aljumaah, J. M. Mwacharo, D.-D. Wu, Y.-P. Zhang, P. M. Hocking, J. Smith, D. Wragg, O.
1327 Hanotte, The wild species genome ancestry of domestic chickens. *BMC Biology*. 18, 13
(2020).

1329 14. M.-S. Wang, M. Thakur, M.-S. Peng, Y. Jiang, L. A. F. Frantz, M. Li, J.-J. Zhang, S. Wang,
1330 J. Peters, N. O. Otecko, C. Suwannapoom, X. Guo, Z.-Q. Zheng, A. Esmailizadeh, N. Y.
1331 Hirimuthugoda, H. Ashari, S. Suladari, M. S. A. Zein, S. Kusza, S. Sohrabi, H. Kharrati-
1332 Koopae, Q.-K. Shen, L. Zeng, M.-M. Yang, Y.-J. Wu, X.-Y. Yang, X.-M. Lu, X.-Z. Jia,
1333 Q.-H. Nie, S. J. Lamont, E. Lasagna, S. Ceccobelli, H. G. T. N. Gunwardana, T. M.
1334 Senasige, S.-H. Feng, J.-F. Si, H. Zhang, J.-Q. Jin, M.-L. Li, Y.-H. Liu, H.-M. Chen, C. Ma,
1335 S.-S. Dai, A. K. F. H. Bhuiyan, M. S. Khan, G. L. L. P. Silva, T.-T. Le, O. A. Mwai, M. N.
1336 M. Ibrahim, M. Supple, B. Shapiro, O. Hanotte, G. Zhang, G. Larson, J.-L. Han, D.-D. Wu,
1337 Y.-P. Zhang, 863 genomes reveal the origin and domestication of chicken. *Cell Res.* 30,
1338 693–701 (2020).

1339 15. M.-S. Wang, J.-J. Zhang, X. Guo, M. Li, R. Meyer, H. Ashari, Z.-Q. Zheng, S. Wang, M.-S.
1340 Peng, Y. Jiang, M. Thakur, C. Suwannapoom, A. Esmailizadeh, N. Y. Hirimuthugoda, M. S.
1341 A. Zein, S. Kusza, H. Kharrati-Koopae, L. Zeng, Y.-M. Wang, T.-T. Yin, M.-M. Yang, M.-
1342 L. Li, X.-M. Lu, E. Lasagna, S. Ceccobelli, H. G. T. N. Gunwardana, T. M. Senasig, S.-H.
1343 Feng, H. Zhang, A. K. F. H. Bhuiyan, M. S. Khan, G. L. L. P. Silva, L. T. Thuy, O. A.
1344 Mwai, M. N. M. Ibrahim, G. Zhang, K.-X. Qu, O. Hanotte, B. Shapiro, M. Bosse, D.-D. Wu,
1345 J.-L. Han, Y.-P. Zhang, Large-scale genomic analysis reveals the genetic cost of chicken
1346 domestication. *BMC Biology*. 19, 118 (2021).

1347 16. C.-J. Rubin, M. C. Zody, J. Eriksson, J. R. S. Meadows, E. Sherwood, M. T. Webster, L.
1348 Jiang, M. Ingman, T. Sharpe, S. Ka, F. Hallböök, F. Besnier, Ö. Carlborg, B. Bed'hom, M.
1349 Tixier-Boichard, P. Jensen, P. Siegel, K. Lindblad-Toh, L. Andersson, Whole-genome
1350 resequencing reveals loci under selection during chicken domestication. *Nature*. 464, 587–
1351 591 (2010).

1352 17. S. Qanbari, C.-J. Rubin, K. Maqbool, S. Weigend, A. Weigend, J. Geibel, S. Kerje, C.
1353 Wurmser, A. T. Peterson, I. L. B. Jr, R. Preisinger, R. Fries, H. Simianer, L. Andersson,
1354 Genetics of adaptation in modern chicken. *PLOS Genetics*. 15, e1007989 (2019).

1355 18. C. Zhang, D. Lin, Y. Wang, D. Peng, H. Li, J. Fei, K. Chen, N. Yang, X. Hu, Y. Zhao, N.
1356 Li, Widespread introgression in Chinese indigenous chicken breeds from commercial
1357 broiler. *Evolutionary Applications*. 12, 610–621 (2019).

1358 19. M. Y. Wu, G. W. Low, G. Forcina, H. van Grouw, B. P. Y.-H. Lee, R. R. Y. Oh, F. E.
1359 Rheindt, Historic and modern genomes unveil a domestic introgression gradient in a wild
1360 red junglefowl population. *Evolutionary Applications*. 13, 2300–2315 (2020).

1361 20. M. Johnsson, E. Gering, P. Willis, S. Lopez, L. Van Dorp, G. Hellenthal, R. Henriksen, U.
1362 Friberg, D. Wright, Feralisation targets different genomic loci to domestication in the
1363 chicken. *Nat Commun*. 7, 12950 (2016).

1364 21. E. Gering, M. Johnsson, P. Willis, T. Getty, D. Wright, Mixed ancestry and admixture in
1365 Kauai's feral chickens: invasion of domestic genes into ancient Red Junglefowl reservoirs.
1366 *Molecular Ecology*. 24, 2112–2124 (2015).

1367 22. A. A. Gheyas, A. Vallejo-Trujillo, A. Kebede, M. Lozano-Jaramillo, T. Dessie, J. Smith, O.
1368 Hanotte, Integrated environmental and genomic analysis reveals the drivers of local
1369 adaptation in african indigenous chickens. *Molecular Biology and Evolution*. 38, 4268–4285
1370 (2021).

1371 23. Y. Zan, Z. Sheng, M. Lillie, L. Rönnegård, C. F. Honaker, P. B. Siegel, Ö. Carlborg,
1372 Artificial selection response due to polygenic adaptation from a multilocus, multiallelic
1373 genetic architecture. *Molecular Biology and Evolution*. 34, 2678–2689 (2017).

1374 24. S. Shi, D. Shao, L. Yang, Q. Liang, W. Han, Q. Xue, L. Qu, L. Leng, Y. Li, X. Zhao, P.
1375 Dong, M. Walugembe, B. B. Kayang, A. P. Muhairwa, H. Zhou, H. Tong, Whole genome
1376 analyses reveal novel genes associated with chicken adaptation to tropical and frigid
1377 environments. *Journal of Advanced Research*. 47, 13-25 (2022).

1378 25. Z.-L. Hu, C. A. Park, J. M. Reecy, Bringing the Animal QTLdb and CorrDB into the future:
1379 meeting new challenges and providing updated services. *Nucleic Acids Research*. 50, D956–
1380 D961 (2022).

1381 26. M. E. Goddard, B. J. Hayes, Mapping genes for complex traits in domestic animals and their
1382 use in breeding programmes. *Nat Rev Genet*. 10, 381–391 (2009).

1383 27. L. Andersson, M. Georges, Domestic-animal genomics: deciphering the genetics of complex
1384 traits. *Nat Rev Genet*. 5, 202–212 (2004).

1385 28. J. Smith, J. M. Alfieri, N. Anthony, P. Arensburger, G. N. Athrey, J. Balacco, A. Balic, P.
1386 Bardou, P. Barela, Y. Bigot, H. Blackmon, P. M. Borodin, R. Carroll, M. C. Casono, M.
1387 Charles, H. Cheng, M. Chiodi, L. Cigan, L. M. Coghill, R. Crooijmans, N. Das, S. Davey,
1388 A. Davidian, F. Degalez, J. M. Dekkers, M. Derkks, A. B. Diack, A. Djikeng, Y. Drechsler,
1389 A. Dyomin, O. Fedrigo, S. R. Fiddaman, G. Formenti, L. A. F. Frantz, J. E. Fulton, E.
1390 Gaginskaya, S. Galkina, R. A. Gallardo, J. Geibel, A. Gheyas, C. J. P. Godinez, A. Goodell,
1391 J. A. M. Graves, D. K. Griffin, B. Haase, J.-L. Han, O. Hanotte, L. J. Henderson, Z.-C. Hou,
1392 K. Howe, L. Huynh, E. Ilatsia, E. Jarvis, S. M. Johnson, J. Kaufman, T. Kelly, S. Kemp, C.
1393 Kern, J. H. Keroack, C. Klopp, S. Lagarrigue, S. J. Lamont, M. Lange, A. Lanke, D. M.
1394 Larkin, G. Larson, J. K. N. Layos, O. Lebrasseur, L. P. Malinovskaya, R. J. Martin, M. L.
1395 M. Cerezo, A. S. Mason, F. M. McCarthy, M. J. McGrew, J. Mountcastle, C. K. Muhonja,
1396 W. Muir, K. Muret, T. Murphy, I. Ng'ang'a, M. Nishibori, R. E. O'Connor, M. Ogugo, R.
1397 Okimoto, O. Ouko, H. R. Patel, F. Perini, M. I. Pigozzi, K. C. Potter, P. D. Price, C. Reimer,
1398 E. S. Rice, N. Rocos, T. F. Rogers, P. Saelao, J. Schauer, R. Schnabel, V. Schneider, H.
1399 Simianer, A. Smith, M. P. Stevens, K. Stiers, C. K. Tiambo, M. Tixier-Boichard, A. A.
1400 Torgasheva, A. Tracey, C. A. Tregaskes, L. Vervelde, Y. Wang, W. C. Warren, P. D.
1401 Waters, D. Webb, S. Weigend, A. Wolc, A. E. Wright, D. Wright, Z. Wu, M. Yamagata, C.
1402 Yang, Z.-T. Yin, M. C. Young, G. Zhang, B. Zhao, H. Zhou, Fourth Report on Chicken
1403 Genes and Chromosomes 2022. CGR (2023), doi:10.1159/000529376.

1404 29. C. Kern, Y. Wang, X. Xu, Z. Pan, M. Halstead, G. Chanthavixay, P. Saelao, S. Waters, R.
1405 Xiang, A. Chamberlain, I. Korf, M. E. Delany, H. H. Cheng, J. F. Medrano, A. L. Van
1406 Eenennaam, C. K. Tuggle, C. Ernst, P. Flicek, G. Quon, P. Ross, H. Zhou, Functional
1407 annotations of three domestic animal genomes provide vital resources for comparative and
1408 agricultural research. *Nat Commun*. 12, 1821 (2021).

1409 30. Z. Pan, An atlas of regulatory elements in chicken: a resource for chicken genetics and
1410 genomics. *Science Advances*. 9, eade120 (2023).

1411 31. F. W. Albert, L. Kruglyak, The role of regulatory variation in complex traits and disease.
1412 *Nat Rev Genet*. 16, 197–212 (2015).

1413 32. The GTEx Consortium, The GTEx Consortium atlas of genetic regulatory effects across
1414 human tissues. *Science*. 369, 1318–1330 (2020).

1415 33. The GTEx Consortium, Genetic effects on gene expression across human tissues. *Nature*.
1416 550, 204–213 (2017).

1417 34. The GTEx Consortium, The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue
1418 gene regulation in humans. *Science*. 348, 648–660 (2015).

1419 35. N. Kerimov, J. D. Hayhurst, K. Peikova, J. R. Manning, P. Walter, L. Kolberg, M.
1420 Samoviča, M. P. Sakthivel, I. Kuzmin, S. J. Trevanion, T. Burdett, S. Jupp, H. Parkinson, I.
1421 Papatheodorou, A. D. Yates, D. R. Zerbino, K. Alasoo, A compendium of uniformly
1422 processed human gene expression and splicing quantitative trait loci. *Nat Genet.* 53, 1–10
1423 (2021).

1424 36. M. Johnsson, K. B. Jonsson, L. Andersson, P. Jensen, D. Wright, Genetic regulation of bone
1425 metabolism in the chicken: similarities and differences to mammalian systems. *PLOS*
1426 *Genetics.* 11, e1005250 (2015).

1427 37. A. Höglund, K. Stempfli, J. Fogelholm, D. Wright, R. Henriksen, The genetic regulation of
1428 size variation in the transcriptome of the cerebrum in the chicken and its role in
1429 domestication and brain size evolution. *BMC Genomics.* 21, 518 (2020).

1430 38. C. Falker-Gieske, J. Bennewitz, J. Tetens, Structural variation and eQTL analysis in two
1431 experimental populations of chickens divergently selected for feather-pecking behavior.
1432 *Neurogenetics.* 24, 29–41 (2023).

1433 39. A. C. Mott, A. Mott, S. Preuß, J. Bennewitz, J. Tetens, C. Falker-Gieske, eQTL analysis of
1434 laying hens divergently selected for feather pecking identifies KLF14 as a potential key
1435 regulator for this behavioral disorder. *Frontiers in Genetics.* 13, 969752 (2022).

1436 40. A. Höglund, R. Henriksen, J. Fogelholm, A. M. Churcher, C. M. Guerrero-Bosagna, A.
1437 Martinez-Barrio, M. Johnsson, P. Jensen, D. Wright, The methylation landscape and its role
1438 in domestication and gene regulation in the chicken. *Nat Ecol Evol.* 4, 1713–1724 (2020).

1439 41. S. Liu, L. Fang, The CattleGTEx atlas reveals regulatory mechanisms underlying complex
1440 traits. *Nat Genet.* 54, 1273–1274 (2022).

1441 42. H. Ellegren, L. Hultin-Rosenberg, B. Brunström, L. Dencker, K. Kultima, B. Scholz, Faced
1442 with inequality: chicken do not have a general dosage compensation of sex-linked genes.
1443 *BMC Biology.* 5, 40 (2007).

1444 43. F. W. Nicholas, Online Mendelian Inheritance in Animals (OMIA): a comparative
1445 knowledgebase of genetic disorders and other familial traits in non-laboratory animals.
1446 *Nucleic Acids Research.* 31, 275–277 (2003).

1447 44. Z. Wang, L. Qu, J. Yao, X. Yang, G. Li, Y. Zhang, J. Li, X. Wang, J. Bai, G. Xu, X. Deng,
1448 N. Yang, C. Wu, An EAV-HP insertion in 5' flanking region of SLCO1B3 causes blue
1449 eggshell in the chicken. *PLOS Genetics.* 9, e1003183 (2013).

1450 45. A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K.
1451 Garimella, D. Altshuler, S. Gabriel, M. Daly, M. A. DePristo, The Genome Analysis
1452 Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data.
1453 *Genome Res.* 20, 1297–1303 (2010).

1454 46. Y. Zou, P. Carbonetto, G. Wang, M. Stephens, Fine-mapping from summary data with the
1455 “Sum of Single Effects” model. *PLOS Genetics.* 18, e1010299 (2022).

1456 47. The FarmGTEx-PigGTEx Consortium, J. Teng, Y. Gao, H. Yin, Z. Bai, S. Liu, H. Zeng, L.
1457 Bai, Z. Cai, B. Zhao, X. Li, Z. Xu, Q. Lin, Z. Pan, W. Yang, X. Yu, D. Guan, Y. Hou, B. N.
1458 Keel, G. A. Rohrer, A. K. Lindholm-Perry, W. T. Oliver, M. Ballester, D. Crespo-Piazuelo,
1459 R. Quintanilla, O. Canela-Xandri, K. Rawlik, C. Xia, Y. Yao, Q. Zhao, W. Yao, L. Yang, H.
1460 Li, H. Zhang, W. Liao, T. Chen, P. Karlskov-Mortensen, M. Fredholm, M. Amills, A. Clop,
1461 E. Giuffra, J. Wu, X. Cai, S. Diao, X. Pan, C. Wei, J. Li, H. Cheng, S. Wang, G. Su, G.
1462 Sahana, M. S. Lund, J. C. M. Dekkers, L. Kramer, C. K. Tuggle, R. Corbett, M. A. M.
1463 Groenen, O. Madsen, M. Gòdia, D. Rocha, M. Charles, C. Li, H. Pausch, X. Hu, L. Frantz,
1464 Y. Luo, L. Lin, Z. Zhou, Z. Zhang, Z. Chen, L. Cui, R. Xiang, X. Shen, P. Li, R. Huang, G.
1465 Tang, M. Li, Y. Zhao, G. Yi, Z. Tang, J. Jiang, F. Zhao, X. Yuan, X. Liu, Y. Chen, X. Xu, S.
1466 Zhao, P. Zhao, C. Haley, H. Zhou, Q. Wang, Y. Pan, X. Ding, L. Ma, J. Li, P. Navarro, Q.

1467 Zhang, B. Li, A. Tenesa, K. Li, G. E. Liu, Z. Zhang, L. Fang, A compendium of genetic
1468 regulatory effects across pig tissues (2022), doi:10.1101/2022.11.11.516073.

1469 48. S. Liu, Y. Gao, O. Canela-Xandri, S. Wang, Y. Yu, W. Cai, B. Li, R. Xiang, A. J.
1470 Chamberlain, E. Pairo-Castineira, K. D'Mellow, K. Rawlik, C. Xia, Y. Yao, P. Navarro, D.
1471 Rocha, X. Li, Z. Yan, C. Li, B. D. Rosen, C. P. Van Tassell, P. M. Vanraden, S. Zhang, L.
1472 Ma, J. B. Cole, G. E. Liu, A. Tenesa, L. Fang, A multi-tissue atlas of regulatory variants in
1473 cattle. *Nat Genet*, 1–10 (2022).

1474 49. E. Axelsson, M. T. Webster, N. G. C. Smith, D. W. Burt, H. Ellegren, Comparison of the
1475 chicken and turkey genomes reveals a higher rate of nucleotide divergence on
1476 microchromosomes than macrochromosomes. *Genome Res.* 15, 120–125 (2005).

1477 50. J. Zhou, O. G. Troyanskaya, Predicting effects of noncoding variants with deep learning–
1478 based sequence model. *Nat Methods*. 12, 931–934 (2015).

1479 51. J. D. Storey, R. Tibshirani, Statistical significance for genomewide studies. *Proceedings of
1480 the National Academy of Sciences*. 100, 9440–9445 (2003).

1481 52. D. Guan, Ying Wang, S. E. Aggrey, R. Okimoto, R. Hawken, H. Zhou, Profiling chromatin
1482 contacts at micro-scale in the chicken genome. *International Plant and Animal Genome
1483 Conference* 30. San Diego, USA (2022).

1484 53. C. Robins, Y. Liu, W. Fan, D. M. Duong, J. Meigs, N. V. Harerimana, E. S. Gerasimov, E.
1485 B. Dammer, D. J. Cutler, T. G. Beach, E. M. Reiman, P. L. D. Jager, D. A. Bennett, J. J.
1486 Lah, A. P. Wingo, A. I. Levey, N. T. Seyfried, T. S. Wingo, Genetic control of the human
1487 brain proteome. *The American Journal of Human Genetics*. 108, 400–410 (2021).

1488 54. X. Sun, Z. He, L. Guo, C. Wang, C. Lin, L. Ye, X. Wang, Y. Li, M. Yang, S. Liu, X. Hua,
1489 W. Wen, C. Lin, Z. Long, W. Zhang, H. Li, Y. Jian, Z. Zhu, X. Wu, H. Lin, ALG3
1490 contributes to stemness and radioresistance through regulating glycosylation of TGF- β
1491 receptor II in breast cancer. *Journal of Experimental & Clinical Cancer Research*. 40, 149
1492 (2021).

1493 55. J. Chen, X. Zhao, H. Wang, Y. Chen, W. Wang, W. Zhou, X. Wang, J. Tang, Y. Zhao, X.
1494 Lu, S. Chen, L. Wang, C. Shen, S. Yang, Common variants in TGFBR2 and miR-518 genes
1495 are associated with hypertension in the Chinese population. *American Journal of
1496 Hypertension*. 27, 1268–1276 (2014).

1497 56. G. Abou-Ezzi, T. Supakorndej, J. Zhang, B. Anthony, J. Krambs, H. Celik, D. Karpova, C.
1498 S. Craft, D. C. Link, TGF- β signaling plays an essential role in the lineage specification of
1499 mesenchymal stem/progenitor cells in fetal bone marrow. *Stem Cell Reports*. 13, 48–60
1500 (2019).

1501 57. M. H. Gouveia, A. R. Bentley, H. Leonard, K. A. C. Meeks, K. Ekoru, G. Chen, M. A.
1502 Nalls, E. M. Simonsick, E. Tarazona-Santos, M. F. Lima-Costa, A. Adeyemo, D. Shriner, C.
1503 N. Rotimi, Trans-ethnic meta-analysis identifies new loci associated with longitudinal blood
1504 pressure traits. *Sci Rep*. 11, 4075 (2021).

1505 58. D. Noda, S. Itoh, Y. Watanabe, M. Inamitsu, S. Dennler, F. Itoh, S. Koike, D. Danielpour, P.
1506 ten Dijke, M. Kato, ELAC2, a putative prostate cancer susceptibility gene product,
1507 potentiates TGF- β /Smad-induced growth arrest of prostate cells. *Oncogene*. 25, 5591–5600
1508 (2006).

1509 59. H. Hu, Y.-R. Miao, L.-H. Jia, Q.-Y. Yu, Q. Zhang, A.-Y. Guo, AnimalTFDB 3.0: a
1510 comprehensive resource for annotation and prediction of animal transcription factors.
1511 *Nucleic Acids Research*. 47, D33–D38 (2019).

1512 60. A. S. Sowa, E. Martin, I. M. Martins, J. Schmidt, R. Depping, J. J. Weber, F. Rother, E.
1513 Hartmann, M. Bader, O. Riess, H. Tricoire, T. Schmidt, Karyopherin α -3 is a key protein in

1514 the pathogenesis of spinocerebellar ataxia type 3 controlling the nuclear localization of
1515 ataxin-3. *Proceedings of the National Academy of Sciences.* 115, E2624–E2633 (2018).

1516 61. J. Pan, Y. Yang, B. Yang, Y. Yu, Artificial Polychromatic Light Affects Growth and
1517 Physiology in Chicks. *PLOS ONE.* 9, e113595 (2014).

1518 62. J. Cao, Z. Wang, Y. Dong, Z. Zhang, J. Li, F. Li, Y. Chen, Effect of combinations of
1519 monochromatic lights on growth and productive performance of broilers. *Poultry Science.*
1520 91, 3013–3018 (2012).

1521 63. M. A. Estermann, A. T. Major, C. A. Smith, DMRT1 regulation of TOX3 modulates
1522 expansion of the gonadal steroidogenic cell lineage (2022), p. 2022.07.29.502037,
1523 doi:10.1101/2022.07.29.502037.

1524 64. X. Zhang, J. Li, X. Wang, Y. Jie, C. Sun, J. Zheng, J. Li, N. Yang, S. Chen, ATAC-seq and
1525 RNA-seq analysis unravel the mechanism of sex differentiation and infertility in sex reversal
1526 chicken. *Epigenetics & Chromatin.* 16, 2 (2023).

1527 65. M.-S. Wang, Y.-X. Huo, Y. Li, N. O. Otecko, L.-Y. Su, H.-B. Xu, S.-F. Wu, M.-S. Peng,
1528 H.-Q. Liu, L. Zeng, D. M. Irwin, Y.-G. Yao, D.-D. Wu, Y.-P. Zhang, Comparative
1529 population genomics reveals genetic basis underlying body size of domestic chickens.
1530 *Journal of Molecular Cell Biology.* 8, 542–552 (2016).

1531 66. K.-Y. Park, H.-S. Hwang, K.-H. Cho, K. Han, G. E. Nam, Y. H. Kim, Y. Kwon, Y.-G. Park,
1532 Body weight fluctuation as a risk factor for type 2 diabetes: results from a nationwide cohort
1533 study. *J Clin Med.* 8, 950 (2019).

1534 67. D. P. Berry, J. M. Lee, K. A. Macdonald, K. Stafford, L. Matthews, J. R. Roche,
1535 Associations among body condition score, body weight, somatic cell count, and clinical
1536 mastitis in seasonally calving dairy cattle. *Journal of Dairy Science.* 90, 637–648 (2007).

1537 68. C. S. Fox, N. Heard-Costa, L. A. Cupples, J. Dupuis, R. S. Vasan, L. D. Atwood, Genome-
1538 wide association to body mass index and waist circumference: the Framingham Heart Study
1539 100K project. *BMC Medical Genetics.* 8, S18 (2007).

1540 69. A. Rajendran, K. Vaidya, J. Mendoza, J. Bridwell-Rabb, S. S. Kamat, Functional annotation
1541 of ABHD14B, an orphan serine hydrolase enzyme. *Biochemistry.* 59, 183–196 (2020).

1542 70. A. Rajendran, A. Soory, N. Khandelwal, G. Ratnaparkhi, S. S. Kamat, A multi-omics
1543 analysis reveals that the lysine deacetylase ABHD14B influences glucose metabolism in
1544 mammals. *J Biol Chem.* 298, 102128 (2022).

1545 71. A. Ragvin, E. Moro, D. Fredman, P. Navratilova, Ø. Drivenes, P. G. Engström, M. E.
1546 Alonso, E. de la C. Mustienes, J. L. G. Skarmeta, M. J. Tavares, F. Casares, M. Manzanares,
1547 V. van Heyningen, A. Molven, P. R. Njølstad, F. Argenton, B. Lenhard, T. S. Becker, Long-
1548 range gene regulation links genomic type 2 diabetes and obesity risk regions to HHEX,
1549 SOX4, and IRX3. *Proceedings of the National Academy of Sciences.* 107, 775–780 (2010).

1550 72. S. C. Collins, H. W. Do, B. Hastoy, A. Hugill, J. Adam, M. V. Chibalina, J. Galvanovskis,
1551 M. Godazgar, S. Lee, M. Goldsworthy, A. Salehi, A. I. Tarasov, A. H. Rosengren, R. Cox,
1552 P. Rorsman, Increased expression of the diabetes gene SOX4 reduces insulin secretion by
1553 impaired fusion pore expansion. *Diabetes.* 65, 1952–1961 (2016).

1554 73. J. T. Robinson, H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. S. Lander, G. Getz, J. P.
1555 Mesirov, Integrative genomics viewer. *Nat Biotechnol.* 29, 24–26 (2011).

1556 74. H. J. Taylor, Y.-H. Hung, N. Narisu, M. R. Erdos, M. Kanke, T. Yan, C. M. Grenko, A. J.
1557 Swift, L. L. Bonnycastle, P. Sethupathy, F. S. Collins, D. L. Taylor, Human pancreatic islet
1558 microRNAs implicated in diabetes and related traits by large-scale genetic analysis (2022),
1559 doi:10.1101/2022.04.21.489048.

1560 75. T. Qi, Y. Wu, H. Fang, F. Zhang, S. Liu, J. Zeng, J. Yang, Genetic control of RNA splicing
1561 and its distinct role in complex trait variation. *Nat Genet.* 1–9 (2022).

1562 76. L. Li, K.-L. Huang, Y. Gao, Y. Cui, G. Wang, N. D. Elrod, Y. Li, Y. E. Chen, P. Ji, F. Peng,
1563 W. K. Russell, E. J. Wagner, W. Li, An atlas of alternative polyadenylation quantitative trait
1564 loci contributing to complex trait and disease heritability. *Nat Genet.* 53, 994–1005 (2021).

1565 77. D. W. Burt, Chicken genome: Current status and future opportunities. *Genome Res.* 15,
1566 1692–1698 (2005).

1567 78. M. Bergman, N. Ringertz, Gene expression pattern of chicken erythrocyte nuclei in
1568 heterokaryons. *Journal of Cell Science.* 97, 167–175 (1990).

1569 79. C. Désert, E. Merlot, T. Zerjal, B. Bed'hom, S. Härtle, A. Le Cam, P.-F. Roux, E. Baeza, F.
1570 Gondret, M. J. Duclos, S. Lagarrigue, Transcriptomes of whole blood and PBMC in
1571 chickens. *Comparative Biochemistry and Physiology Part D: Genomics and Proteomics.* 20,
1572 1–9 (2016).

1573 80. N. J. Connally, S. Nazeen, D. Lee, H. Shi, J. Stamatoyannopoulos, S. Chun, C. Cotsapas, C.
1574 A. Cassa, S. R. Sunyaev, The missing link between genetic association and regulatory
1575 function. *eLife.* 11, e74970 (2022).

1576 81. Y. Hasin, M. Seldin, A. Lusis, Multi-omics approaches to disease. *Genome Biology.* 18, 83
1577 (2017).

1578 82. U. Võsa, A. Claringbould, H.-J. Westra, M. J. Bonder, P. Deelen, B. Zeng, H. Kirsten, A.
1579 Saha, R. Kreuzhuber, S. Yazar, H. Brugge, R. Oelen, D. H. de Vries, M. G. P. van der Wijst,
1580 S. Kasela, N. Pervjakova, I. Alves, M.-J. Favé, M. Agbessi, M. W. Christiansen, R. Jansen,
1581 I. Seppälä, L. Tong, A. Teumer, K. Schramm, G. Hemani, J. Verlouw, H. Yaghootkar, R.
1582 Sönmez Flitman, A. Brown, V. Kukushkina, A. Kalnapanakis, S. Rüeger, E. Porcu, J.
1583 Kronberg, J. Kettunen, B. Lee, F. Zhang, T. Qi, J. A. Hernandez, W. Arindrarto, F. Beutner,
1584 J. Dmitrieva, M. Elansary, B. P. Fairfax, M. Georges, B. T. Heijmans, A. W. Hewitt, M.
1585 Kähönen, Y. Kim, J. C. Knight, P. Kovacs, K. Krohn, S. Li, M. Loeffler, U. M. Marigorta,
1586 H. Mei, Y. Momozawa, M. Müller-Nurasyid, M. Nauck, M. G. Nivard, B. W. J. H. Penninx,
1587 J. K. Pritchard, O. T. Raitakari, O. Rotzschke, E. P. Slagboom, C. D. A. Stehouwer, M.
1588 Stumvoll, P. Sullivan, P. A. C. 't Hoen, J. Thiery, A. Tönjes, J. van Dongen, M. van Iterson,
1589 J. H. Veldink, U. Völker, R. Warmerdam, C. Wijmenga, M. Swertz, A. Andiappan, G. W.
1590 Montgomery, S. Ripatti, M. Perola, Z. Kutalik, E. Dermitzakis, S. Bergmann, T. Frayling, J.
1591 van Meurs, H. Prokisch, H. Ahsan, B. L. Pierce, T. Lehtimäki, D. I. Boomsma, B. M. Psaty,
1592 S. A. Gharib, P. Awadalla, L. Milani, W. H. Ouwehand, K. Downes, O. Stegle, A. Battle, P.
1593 M. Visscher, J. Yang, M. Scholz, J. Powell, G. Gibson, T. Esko, L. Franke, Large-scale cis-
1594 and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that
1595 regulate blood gene expression. *Nat Genet.* 53, 1300–1310 (2021).

1596 83. N. de Klein, E. A. Tsai, M. Vochteloo, D. Baird, Y. Huang, C.-Y. Chen, S. van Dam, R.
1597 Oelen, P. Deelen, O. B. Bakker, O. El Garwany, Z. Ouyang, E. E. Marshall, M. I.
1598 Zavodszky, W. van Rheenen, M. K. Bakker, J. Veldink, T. R. Gaunt, H. Runz, L. Franke,
1599 H.-J. Westra, Brain expression quantitative trait locus and network analyses reveal
1600 downstream effects and putative drivers for brain-related diseases. *Nat Genet.* 1–12 (2023).

1601 84. B. Zeng, J. Bendl, R. Kosoy, J. F. Fullard, G. E. Hoffman, P. Roussos, Multi-ancestry eQTL
1602 meta-analysis of human brain identifies candidate causal variants for brain-related traits. *Nat
1603 Genet.* 1–9 (2022).

1604 85. J. Lonsdale, J. Thomas, M. Salvatore, R. Phillips, E. Lo, S. Shad, R. Hasz, G. Walters, F.
1605 Garcia, N. Young, B. Foster, M. Moser, E. Karasik, B. Gillard, K. Ramsey, S. Sullivan, J.
1606 Bridge, H. Magazine, J. Syron, J. Fleming, L. Siminoff, H. Traino, M. Mosavel, L. Barker,
1607 S. Jewell, D. Rohrer, D. Maxim, D. Filkins, P. Harbach, E. Cortadillo, B. Berghuis, L.
1608 Turner, E. Hudson, K. Feenstra, L. Sabin, J. Robb, P. Branton, G. Korzeniewski, C. Shive,
1609 D. Tabor, L. Qi, K. Groch, S. Nampally, S. Buia, A. Zimmerman, A. Smith, R. Burges, K.

1610 Robinson, K. Valentino, D. Bradbury, M. Cosentino, N. Diaz-Mayoral, M. Kennedy, T.
1611 Engel, P. Williams, K. Erickson, K. Ardlie, W. Winckler, G. Getz, D. DeLuca, D.
1612 MacArthur, M. Kellis, A. Thomson, T. Young, E. Gelfand, M. Donovan, Y. Meng, G.
1613 Grant, D. Mash, Y. Marcus, M. Basile, J. Liu, J. Zhu, Z. Tu, N. J. Cox, D. L. Nicolae, E. R.
1614 Gamazon, H. K. Im, A. Konkashbaev, J. Pritchard, M. Stevens, T. Flutre, X. Wen, E. T.
1615 Dermitzakis, T. Lappalainen, R. Guigo, J. Monlong, M. Sammeth, D. Koller, A. Battle, S.
1616 Mostafavi, M. McCarthy, M. Rivas, J. Maller, I. Rusyn, A. Nobel, F. Wright, A. Shabalina,
1617 M. Feolo, N. Sharopova, A. Sturcke, J. Paschal, J. M. Anderson, E. L. Wilder, L. K. Derr, E.
1618 D. Green, J. P. Struewing, G. Temple, S. Volpi, J. T. Boyer, E. J. Thomson, M. S. Guyer, C.
1619 Ng, A. Abdallah, D. Colantuoni, T. R. Insel, S. E. Koester, A. R. Little, P. K. Bender, T.
1620 Lehner, Y. Yao, C. C. Compton, J. B. Vaught, S. Sawyer, N. C. Lockhart, J. Demchok, H. F.
1621 Moore, The Genotype-Tissue Expression (GTEx) project. *Nat Genet.* 45, 580–585 (2013).
1622 86. M. Georges, C. Charlier, B. Hayes, Harnessing genomic information for livestock
1623 improvement. *Nat Rev Genet.* 20, 135–156 (2019).
1624 87. J. R. Xue, A. Mackay-Smith, K. Mouri, M. F. Garcia, M. X. Dong, J. F. Akers, M. Noble, X.
1625 Li, ZOONOMIA CONSORTIUM, K. Lindblad-Toh, E. K. Karlsson, J. P. Noonan, T. D.
1626 Capellini, K. J. Brennand, R. Tewhey, P. C. Sabeti, S. K. Reilly, The functional and
1627 evolutionary impacts of human-specific deletions in conserved elements. *Science.* 380,
1628 eabn2253 (2023).
1629 88. I. M. Kaplow, A. J. Lawler, D. E. Schäffer, C. Srinivasan, M. E. Wirthlin, B. N. Phan, X.
1630 Zhang, K. Foley, K. Prasad, A. R. Brown, Z. Consortium, W. K. Meyer, A. R. Pfenning,
1631 Relating enhancer genetic variation across mammals to complex phenotypes using machine
1632 learning (2022), doi:10.1101/2022.08.26.505436.
1633 89. G. Andrews, K. Fan, H. E. Pratt, N. Phalke, ZOONOMIA CONSORTIUM, E. K. Karlsson,
1634 K. Lindblad-Toh, S. Gazal, J. E. Moore, Z. Weng, Mammalian evolution of human cis-
1635 regulatory elements and transcription factor binding sites. *Science.* 380, eabn7930 (2023).
1636 90. F. W. Albert, L. Kruglyak, The role of regulatory variation in complex traits and disease.
1637 *Nat Rev Genet.* 16, 197–212 (2015).
1638 91. G. Sella, N. H. Barton, Thinking about the evolution of complex traits in the era of genome-
1639 wide association studies. *Annual Review of Genomics and Human Genetics.* 20, 461–493
1640 (2019).
1641 92. M. Li, C. Sun, N. Xu, P. Bian, X. Tian, X. Wang, Y. Wang, X. Jia, R. Heller, M. Wang, F.
1642 Wang, X. Dai, R. Luo, Y. Guo, X. Wang, P. Yang, D. Hu, Z. Liu, W. Fu, S. Zhang, X. Li, C.
1643 Wen, F. Lan, A. Z. Siddiki, C. Suwannapoom, X. Zhao, Q. Nie, X. Hu, Y. Jiang, N. Yang,
1644 De novo assembly of 20 chicken genomes reveals the undetectable phenomenon for
1645 thousands of core genes on micro-chromosomes and sub-telomeric regions. *Molecular
1646 Biology and Evolution,* msac066 (2022).
1647 93. K. Wang, H. Hu, Y. Tian, J. Li, A. Scheben, C. Zhang, Y. Li, J. Wu, L. Yang, X. Fan, G.
1648 Sun, D. Li, Y. Zhang, R. Han, R. Jiang, H. Huang, F. Yan, Y. Wang, Z. Li, G. Li, X. Liu, W.
1649 Li, D. Edwards, X. Kang, The chicken pan-genome reveals gene content variation and a
1650 promoter region deletion in IGF2BP1 affecting body size. *Molecular Biology and Evolution*
1651 (2021), doi:10.1093/molbev/msab231.
1652 94. A. Rhie, S. A. McCarthy, O. Fedrigo, J. Damas, G. Formenti, S. Koren, M. Uliano-Silva, W.
1653 Chow, A. Fungtammasan, J. Kim, C. Lee, B. J. Ko, M. Chaisson, G. L. Gedman, L. J.
1654 Cantin, F. Thibaud-Nissen, L. Haggerty, I. Bista, M. Smith, B. Haase, J. Mountcastle, S.
1655 Winkler, S. Paez, J. Howard, S. C. Vernes, T. M. Lama, F. Grutzner, W. C. Warren, C. N.
1656 Balakrishnan, D. Burt, J. M. George, M. T. Biegler, D. Iorns, A. Digby, D. Eason, B.
1657 Robertson, T. Edwards, M. Wilkinson, G. Turner, A. Meyer, A. F. Kautt, P. Franchini, H.

1658 W. Detrich, H. Svardal, M. Wagner, G. J. P. Naylor, M. Pippel, M. Malinsky, M. Mooney,
1659 M. Simbirsky, B. T. Hannigan, T. Pesout, M. Houck, A. Misuraca, S. B. Kingan, R. Hall, Z.
1660 Kronenberg, I. Sović, C. Dunn, Z. Ning, A. Hastie, J. Lee, S. Selvaraj, R. E. Green, N. H.
1661 Putnam, I. Gut, J. Ghurye, E. Garrison, Y. Sims, J. Collins, S. Pelan, J. Torrance, A. Tracey,
1662 J. Wood, R. E. Dagnew, D. Guan, S. E. London, D. F. Clayton, C. V. Mello, S. R. Friedrich,
1663 P. V. Lovell, E. Osipova, F. O. Al-Ajli, S. Secomandi, H. Kim, C. Theofanopoulou, M.
1664 Hiller, Y. Zhou, R. S. Harris, K. D. Makova, P. Medvedev, J. Hoffman, P. Masterson, K.
1665 Clark, F. Martin, K. Howe, P. Flicek, B. P. Walenz, W. Kwak, H. Clawson, M. Diekhans, L.
1666 Nassar, B. Paten, R. H. S. Kraus, A. J. Crawford, M. T. P. Gilbert, G. Zhang, B. Venkatesh,
1667 R. W. Murphy, K.-P. Koepfli, B. Shapiro, W. E. Johnson, F. Di Palma, T. Marques-Bonet,
1668 E. C. Teeling, T. Warnow, J. M. Graves, O. A. Ryder, D. Haussler, S. J. O'Brien, J. Korlach,
1669 H. A. Lewin, K. Howe, E. W. Myers, R. Durbin, A. M. Phillippe, E. D. Jarvis, Towards
1670 complete and error-free genome assemblies of all vertebrate species. *Nature*. 592, 737–746
1671 (2021).

1672 95. D. Guan, M. M. Halstead, A. D. Islas-Trejo, D. E. Gosczynski, H. H. Cheng, P. J. Ross, H.
1673 Zhou, Prediction of transcript isoforms in 19 chicken tissues by Oxford Nanopore long-read
1674 sequencing. *Frontiers in Genetics*. 13, 997460 (2022).

1675 96. R. I. Kuo, E. Tseng, L. Eory, I. R. Paton, A. L. Archibald, D. W. Burt, Normalized long read
1676 RNA sequencing in chicken reveals transcriptome complexity similar to human. *BMC
1677 Genomics*. 18, 323 (2017).

1678 97. S. Thomas, J. G. Underwood, E. Tseng, A. K. Holloway, on behalf of the Bench To Basinet
1679 CvDC Informatics Subcommittee, Long-read sequencing of chicken transcripts and
1680 identification of new transcript isoforms. *PLOS ONE*. 9, e94650 (2014).

1681 98. J. Zhang, C. Nie, X. Li, X. Zhao, Y. Jia, J. Han, Y. Chen, L. Wang, X. Lv, W. Yang, K. Li,
1682 J. Zhang, Z. Ning, H. Bao, C. Zhao, J. Li, L. Qu, Comprehensive analysis of structural
1683 variants in chickens using PacBio sequencing. *Frontiers in Genetics*. 13, 971588 (2022).

1684 99. S. Kojima, S. Koyama, M. Ka, Y. Saito, E. H. Parrish, M. Endo, S. Takata, M. Mizukoshi,
1685 K. Hikino, A. Takeda, A. F. Gelinas, S. M. Heaton, R. Koide, A. J. Kamada, M. Noguchi,
1686 M. Hamada, Y. Kamatani, Y. Murakawa, K. Ishigaki, Y. Nakamura, K. Ito, C. Terao, Y.
1687 Momozawa, N. F. Parrish, Mobile element variation contributes to population-specific
1688 genome diversification, gene regulation and disease risk. *Nat Genet*, 1–13 (2023).

1689 100. T. Wicker, J. S. Robertson, S. R. Schulze, F. A. Feltus, V. Magrini, J. A. Morrison, E. R.
1690 Mardis, R. K. Wilson, D. G. Peterson, A. H. Paterson, R. Ivarie, The repetitive landscape of
1691 the chicken genome. *Genome Res.* 15, 126–136 (2005).

1692 101. S. Kim-Hellmuth, F. Aguet, M. Oliva, M. Muñoz-Aguirre, S. Kasela, V. Wucher, S. E.
1693 Castel, A. R. Hamel, A. Viñuela, A. L. Roberts, S. Mangul, X. Wen, G. Wang, A. N.
1694 Barbeira, D. Garrido-Martín, B. B. Nadel, Y. Zou, R. Bonazzola, J. Quan, A. Brown, A.
1695 Martinez-Perez, J. M. Soria, Gte. Consortium§, G. Getz, E. T. Dermitzakis, K. S. Small, M.
1696 Stephens, H. S. Xi, H. K. Im, R. Guigó, A. V. Segrè, B. E. Stranger, K. G. Ardlie, T.
1697 Lappalainen, Cell type–specific genetic regulation of gene expression across human tissues.
1698 *Science*. 369, 1332 (2020).

1699 102. J. A. Morris, C. Caragine, Z. Daniloski, J. Domingo, T. Barry, L. Lu, K. Davis, M. Ziosi, D.
1700 A. Glinos, S. Hao, E. P. Mimitou, P. Smibert, K. Roeder, E. Katsevich, T. Lappalainen, N.
1701 E. Sanjana, Discovery of target genes and pathways at GWAS loci by pooled single-cell
1702 CRISPR screens. *Science*. 380, eadh7699 (2023).

1703 103. T. Wu, E. Hu, S. Xu, M. Chen, P. Guo, Z. Dai, T. Feng, L. Zhou, W. Tang, L. Zhan, X. Fu,
1704 S. Liu, X. Bo, G. Yu, clusterProfiler 4.0: A universal enrichment tool for interpreting omics
1705 data. *Innovation*. 0 (2021), doi:10.1016/j.xinn.2021.100141.

1706 104. H. Wickham, *ggplot2: Elegant Graphics for Data Analysis* (Springer-Verlag New York, 2016).

1707 105. R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2022). Available at <https://www.R-project.org/>.

1709 106. P. Cingolani, A. Platts, L. L. Wang, M. Coon, T. Nguyen, L. Wang, S. J. Land, X. Lu, D. M. Ruden, A program for annotating and predicting the effects of single nucleotide polymorphisms, *SnpEff*. *Fly*. 6, 80–92 (2012).

1710 107. J. Zhou, O. G. Troyanskaya, Predicting effects of noncoding variants with deep learning-based sequence model. *Nat Methods*. 12, 931–934 (2015).

1711 108. "Complete Linkage Method" in *The Concise Encyclopedia of Statistics* (Springer, New York, NY, 2008; https://doi.org/10.1007/978-0-387-32833-1_71), pp. 102–102.

1712 109. S. M. Urbut, G. Wang, P. Carbonetto, M. Stephens, Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions. *Nat Genet*. 51, 187–195 (2019).

1713 110. R. Satija, J. A. Farrell, D. Gennert, A. F. Schier, A. Regev, Spatial reconstruction of single-cell gene expression data. *Nat Biotechnol*. 33, 495–502 (2015).

1714 111. A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, T. R. Gingeras, STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*. 29, 15–21 (2013).

1715 112. F. Jehl, K. Muret, M. Bernard, M. Boutin, L. Lagoutte, C. Désert, P. Dehais, D. Esquerre, H. Acloque, E. Giuffra, S. Djebali, S. Foissac, T. Derrien, F. Pitel, T. Zerjal, C. Klopp, S. Lagarrigue, An integrative atlas of chicken long non-coding genes and their annotations across 25 tissues. *Sci Rep*. 10, 20457 (2020).

1716 113. Y. Liao, G. K. Smyth, W. Shi, featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics*. 30, 923–930 (2014).

1717 114. S. Kovaka, A. V. Zimin, G. M. Pertea, R. Razaghi, S. L. Salzberg, M. Pertea, Transcriptome assembly from long-read RNA-seq alignments with StringTie2. *Genome Biology*. 20, 278 (2019).

1718 115. C. Chen, H. Chen, Y. Zhang, H. R. Thomas, M. H. Frank, Y. He, R. Xia, TBtools: An integrative toolkit developed for interactive analyses of big biological data. *Molecular Plant*. 13, 1194–1202 (2020).

1719 116. G. Yu, D. K. Smith, H. Zhu, Y. Guan, T. T.-Y. Lam, ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. *Methods in Ecology and Evolution*. 8, 28–36 (2017).

1720 117. L. van der Maaten, G. Hinton, Visualizing Data using t-SNE. *Journal of Machine Learning Research*. 9, 2579–2605 (2008).

1721 118. Y. I. Li, D. A. Knowles, J. Humphrey, A. N. Barbeira, S. P. Dickinson, H. K. Im, J. K. Pritchard, Annotation-free quantification of RNA splicing using LeafCutter. *Nat Genet*. 50, 151–158 (2018).

1722 119. Z. Xia, L. A. Donehower, T. A. Cooper, J. R. Neilson, D. A. Wheeler, E. J. Wagner, W. Li, Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3'-UTR landscape across seven tumour types. *Nat Commun*. 5, 5274 (2014).

1723 120. A. R. Quinlan, I. M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics*. 26, 841–842 (2010).

1724 121. J. Li, S. Xing, G. Zhao, M. Zheng, X. Yang, J. Sun, J. Wen, R. Liu, Identification of diverse cell populations in skeletal muscles and biomarkers for intramuscular fat of chicken by single-cell RNA sequencing. *BMC Genomics*. 21, 752 (2020).

1753 122. M. Mantri, G. J. Scuderi, R. Abedini-Nassab, M. F. Z. Wang, D. McKellar, H. Shi, B.
1754 Grodner, J. T. Butcher, I. De Vlaminck, Spatiotemporal single-cell RNA sequencing of
1755 developing chicken hearts identifies interplay between cellular differentiation and
1756 morphogenesis. *Nat Commun.* 12, 1771 (2021).

1757 123. G. X. Y. Zheng, J. M. Terry, P. Belgrader, P. Ryvkin, Z. W. Bent, R. Wilson, S. B. Ziraldo,
1758 T. D. Wheeler, G. P. McDermott, J. Zhu, M. T. Gregory, J. Shuga, L. Montesclaros, J. G.
1759 Underwood, D. A. Masquelier, S. Y. Nishimura, M. Schnall-Levin, P. W. Wyatt, C. M.
1760 Hindson, R. Bharadwaj, A. Wong, K. D. Ness, L. W. Beppu, H. J. Deeg, C. McFarland, K.
1761 R. Loeb, W. J. Valente, N. G. Ericson, E. A. Stevens, J. P. Radich, T. S. Mikkelsen, B. J.
1762 Hindson, J. H. Bielas, Massively parallel digital transcriptional profiling of single cells. *Nat
1763 Commun.* 8, 14049 (2017).

1764 124. Y. Hao, S. Hao, E. Andersen-Nissen, W. M. Mauck, S. Zheng, A. Butler, M. J. Lee, A. J.
1765 Wilk, C. Darby, M. Zager, P. Hoffman, M. Stoeckius, E. Papalexi, E. P. Mimitou, J. Jain, A.
1766 Srivastava, T. Stuart, L. M. Fleming, B. Yeung, A. J. Rogers, J. M. McElrath, C. A. Blish,
1767 R. Gottardo, P. Smibert, R. Satija, Integrated analysis of multimodal single-cell data. *Cell.*
1768 184, 3573-3587.e29 (2021).

1769 125. O. Franzén, L.-M. Gan, J. L. M. Björkegren, PanglaoDB: a web server for exploration of
1770 mouse and human single-cell RNA sequencing data. *Database.* 2019, baz046 (2019).

1771 126. A. M. Newman, C. B. Steen, C. L. Liu, A. J. Gentles, A. A. Chaudhuri, F. Scherer, M. S.
1772 Khodadoust, M. S. Esfahani, B. A. Luca, D. Steiner, M. Diehn, A. A. Alizadeh, Determining
1773 cell type abundance and expression from bulk tissues with digital cytometry. *Nat
1774 Biotechnol.* 37, 773–782 (2019).

1775 127. A. P. Camargo, A. A. Vasconcelos, M. B. Fiamenghi, G. A. G. Pereira, M. F. Carazzolle,
1776 tspex: a tissue-specificity calculator for gene expression data. *Research Square* (2020),
1777 doi:10.21203/rs.3.rs-51998/v1.

1778 128. L. Fang, W. Cai, S. Liu, O. Canela-Xandri, Y. Gao, J. Jiang, K. Rawlik, B. Li, S. G.
1779 Schroeder, B. D. Rosen, C. Li, T. S. Sonstegard, L. J. Alexander, C. P. V. Tassell, P. M.
1780 VanRaden, J. B. Cole, Y. Yu, S. Zhang, A. Tenesa, L. Ma, G. E. Liu, Comprehensive
1781 analyses of 723 transcriptomes enhance genetic and biological interpretations for complex
1782 traits in cattle. *Genome Res.* 30, 790-801 (2020).

1783 129. M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, G. K. Smyth, limma powers
1784 differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids
1785 Research.* 43, e47 (2015).

1786 130. Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: A practical and powerful
1787 approach to multiple testing. *Journal of the Royal Statistical Society: Series B
1788 (Methodological).* 57, 289–300 (1995).

1789 131. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for
1790 RNA-seq data with DESeq2. *Genome Biology.* 15, 550 (2014).

1791 132. G. Pertea, M. Pertea, GFF Utilities: GffRead and GffCompare. *F1000Research* (2020), ,
1792 doi:10.12688/f1000research.23297.2.

1793 133. X. Tong, S. Liu, CPPred: coding potential prediction based on the global description of
1794 RNA sequence. *Nucleic Acids Research.* 47, e43 (2019).

1795 134. V. Wucher, F. Legeai, B. Hédan, G. Rizk, L. Lagoutte, T. Leeb, V. Jagannathan, E. Cadieu,
1796 A. David, H. Lohi, S. Cirera, M. Fredholm, N. Botherel, P. A. J. Leegwater, C. Le Bégué,
1797 H. Fieten, J. Johnson, J. Alföldi, C. André, K. Lindblad-Toh, C. Hitte, T. Derrien, FEELnc:
1798 a tool for long non-coding RNA annotation and its application to the dog transcriptome.
1799 *Nucleic Acids Research.* 45, e57 (2017).

1800 135. P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network
1801 analysis. *BMC Bioinformatics*. 9, 559 (2008).

1802 136. A. Hyvärinen, E. Oja, Independent component analysis: algorithms and applications. *Neural*
1803 *Networks*. 13, 411–430 (2000).

1804 137. O. Stegle, L. Parts, M. Piipari, J. Winn, R. Durbin, Using probabilistic estimation of
1805 expression residuals (PEER) to obtain increased power and interpretability of gene
1806 expression analyses. *Nat Protoc.* 7, 500–507 (2012).

1807 138. W.-M. Song, B. Zhang, Multiscale embedded gene co-expression network analysis. *PLOS*
1808 *Computational Biology*. 11, e1004574 (2015).

1809 139. P. S. T. Russo, G. R. Ferreira, L. E. Cardozo, M. C. Bürger, R. Arias-Carrasco, S. R.
1810 Maruyama, T. D. C. Hirata, D. S. Lima, F. M. Passos, K. F. Fukutani, M. Lever, J. S. Silva,
1811 V. Maracaja-Coutinho, H. I. Nakaya, CEMiTool: a Bioconductor package for performing
1812 comprehensive modular co-expression analyses. *BMC Bioinformatics*. 19, 56 (2018).

1813 140. M. Leonard, S. Graham, D. Bonacum, The human factor: the critical importance of effective
1814 teamwork and communication in providing safe care. *BMJ Quality & Safety*. 13, i85–i90
1815 (2004).

1816 141. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence
1817 data. *Bioinformatics*. 30, 2114–2120 (2014).

1818 142. H. Li, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM
1819 (2013), doi:10.48550/arXiv.1303.3997.

1820 143. H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R.
1821 Durbin, 1000 Genome Project Data Processing Subgroup, The Sequence Alignment/Map
1822 format and SAMtools. *Bioinformatics*. 25, 2078–2079 (2009).

1823 144. P. Danecek, J. K. Bonfield, J. Liddle, J. Marshall, V. Ohan, M. O. Pollard, A. Whitwham, T.
1824 Keane, S. A. McCarthy, R. M. Davies, H. Li, Twelve years of SAMtools and BCFtools.
1825 *GigaScience*. 10, giab008 (2021).

1826 145. B. L. Browning, Y. Zhou, S. R. Browning, A one-penny imputed genome from next-
1827 generation reference panels. *The American Journal of Human Genetics*. 103, 338–348
1828 (2018).

1829 146. S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira, D. Bender, J. Maller, P.
1830 Sklar, P. I. W. de Bakker, M. J. Daly, P. C. Sham, PLINK: a tool set for whole-genome
1831 association and population-based linkage analyses. *The American Journal of Human Genetics*. 81, 559–575 (2007).

1832 147. A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick, D. Reich,
1833 Principal components analysis corrects for stratification in genome-wide association studies.
1834 *Nat Genet*. 38, 904–909 (2006).

1835 148. M. D. Robinson, D. J. McCarthy, G. K. Smyth, edgeR: a Bioconductor package for
1836 differential expression analysis of digital gene expression data. *Bioinformatics*. 26, 139–140
1837 (2010).

1838 149. J. Yang, S. H. Lee, M. E. Goddard, P. M. Visscher, GCTA: A Tool for Genome-wide
1839 Complex Trait Analysis. *The American Journal of Human Genetics*. 88, 76–82 (2011).

1840 150. J. Yang, B. Benyamin, B. P. McEvoy, S. Gordon, A. K. Henders, D. R. Nyholt, P. A.
1841 Madden, A. C. Heath, N. G. Martin, G. W. Montgomery, M. E. Goddard, P. M. Visscher,
1842 Common SNPs explain a large proportion of the heritability for human height. *Nat Genet*.
1843 42, 565–569 (2010).

1844 151. H. D. PATTERSON, R. THOMPSON, Recovery of inter-block information when block
1845 sizes are unequal. *Biometrika*. 58, 545–554 (1971).

1847 152. A. Taylor-Weiner, F. Aguet, N. J. Haradhvala, S. Gosai, S. Anand, J. Kim, K. Ardlie, E. M.
1848 Van Allen, G. Getz, Scaling computational genomics to millions of individuals with GPUs.
1849 *Genome Biology.* 20, 228 (2019).

1850 153. H. Ongen, A. Buil, A. A. Brown, E. T. Dermitzakis, O. Delaneau, Fast and efficient QTL
1851 mapper for thousands of molecular phenotypes. *Bioinformatics.* 32, 1479–1485 (2016).

1852 154. C. Giambartolomei, D. Vukcevic, E. E. Schadt, L. Franke, A. D. Hingorani, C. Wallace, V.
1853 Plagnol, Bayesian Test for Colocalisation between Pairs of Genetic Association Studies
1854 Using Summary Statistics. *PLOS Genetics.* 10, e1004383 (2014).

1855 155. D. Duong, L. Gai, S. Snir, E. Y. Kang, B. Han, J. H. Sul, E. Eskin, Applying meta-analysis
1856 to genotype-tissue expression data from multiple tissues to identify eQTLs and increase the
1857 number of eGenes. *Bioinformatics.* 33, i67–i74 (2017).

1858 156. J. S. Speagle, A conceptual introduction to Markov Chain Monte Carlo methods (2020),
1859 doi:10.48550/arXiv.1909.12313.

1860 157. Storey JD, Bass AJ, Dabney A, Robinson D, qvalue: Q-value estimation for false discovery
1861 rate control (2022), (available at <https://github.com/StoreyLab/qvalue>).

1862 158. J. R. Davis, L. Fresard, D. A. Knowles, M. Pala, C. D. Bustamante, A. Battle, S. B.
1863 Montgomery, An efficient multiple-testing adjustment for eqtl studies that accounts for
1864 linkage disequilibrium between variants. *The American Journal of Human Genetics.* 98,
1865 216–224 (2016).

1866 159. P. Mohammadi, S. E. Castel, A. A. Brown, T. Lappalainen, Quantifying the regulatory
1867 effect size of cis-acting genetic variation using allelic fold change. *Genome Res.* (2017),
1868 doi:10.1101/gr.216747.116.

1869 160. S. E. Castel, F. Aguet, P. Mohammadi, F. Aguet, S. Anand, K. G. Ardlie, S. Gabriel, G. A.
1870 Getz, A. Graubert, K. Hadley, R. E. Handsaker, K. H. Huang, S. Kashin, X. Li, D. G.
1871 MacArthur, S. R. Meier, J. L. Nedzel, D. T. Nguyen, A. V. Segrè, E. Todres, F. Aguet, S.
1872 Anand, K. G. Ardlie, B. Balliu, A. N. Barbeira, A. Battle, R. Bonazzola, A. Brown, C. D.
1873 Brown, S. E. Castel, D. F. Conrad, D. J. Cotter, N. Cox, S. Das, O. M. de Goede, E. T.
1874 Dermitzakis, J. Einson, B. E. Engelhardt, E. Eskin, T. Y. Eulalio, N. M. Ferraro, E. D.
1875 Flynn, L. Fresard, E. R. Gamazon, D. Garrido-Martín, N. R. Gay, G. A. Getz, M. J.
1876 Gloudemans, A. Graubert, R. Guigó, K. Hadley, A. R. Hame, R. E. Handsaker, Y. He, P. J.
1877 Hoffman, F. Hormozdiari, L. Hou, K. H. Huang, H. K. Im, B. Jo, S. Kasela, S. Kashin, M.
1878 Kellis, S. Kim-Hellmuth, A. Kwong, T. Lappalainen, X. Li, X. Li, Y. Liang, D. G.
1879 MacArthur, S. Mangul, S. R. Meier, P. Mohammadi, S. B. Montgomery, M. Muñoz-
1880 Aguirre, D. C. Nachun, J. L. Nedzel, D. T. Nguyen, A. B. Nobel, M. Oliva, Y. S. Park, Y.
1881 Park, P. Parsana, A. S. Rao, F. Reverter, J. M. Rouhana, C. Sabatti, A. Saha, A. V. Segrè, A.
1882 D. Skol, M. Stephens, B. E. Stranger, B. J. Strober, N. A. Teran, E. Todres, A. Viñuela, G.
1883 Wang, X. Wen, F. Wright, V. Wucher, Y. Zou, P. G. Ferreira, G. Li, M. Melé, E. Yeger-
1884 Lotem, M. E. Barcus, D. Bradbury, T. Krubit, J. A. McLean, L. Qi, K. Robinson, N. V.
1885 Roche, A. M. Smith, L. Sabin, D. E. Tabor, A. Undale, J. Bridge, L. E. Brigham, B. A.
1886 Foster, B. M. Gillard, R. Hasz, M. Hunter, C. Johns, M. Johnson, E. Karasik, G. Kopen, W.
1887 F. Leinweber, A. McDonald, M. T. Moser, K. Myer, K. D. Ramsey, B. Roe, S. Shad, J. A.
1888 Thomas, G. Walters, M. Washington, J. Wheeler, S. D. Jewell, D. C. Rohrer, D. R. Valley,
1889 D. A. Davis, D. C. Mash, M. E. Barcus, P. A. Branton, L. Sabin, L. K. Barker, H. M.
1890 Gardiner, M. Mosavel, L. A. Siminoff, P. Flück, M. Haeussler, T. Juettemann, W. J. Kent,
1891 C. M. Lee, C. C. Powell, K. R. Rosenbloom, M. Ruffier, D. Sheppard, K. Taylor, S. J.
1892 Trevanion, D. R. Zerbino, N. S. Abell, J. Akey, L. Chen, K. Demanelis, J. A. Doherty, A. P.
1893 Feinberg, K. D. Hansen, P. F. Hickey, L. Hou, F. Jasmine, L. Jiang, R. Kaul, M. Kellis, M.
1894 G. Kibriya, J. B. Li, Q. Li, S. Lin, S. E. Linder, S. B. Montgomery, M. Oliva, Y. Park, B. L.

1895 Pierce, L. F. Rizzardi, A. D. Skol, K. S. Smith, M. Snyder, J. Stamatoyannopoulos, B. E.
1896 Stranger, H. Tang, M. Wang, P. A. Branton, L. J. Carithers, P. Guan, S. E. Koester, A. R.
1897 Little, H. M. Moore, C. R. Nierras, A. K. Rao, J. B. Vaught, S. Volpi, K. G. Ardlie, T.
1898 Lappalainen, GTEx Consortium, A vast resource of allelic expression data spanning human
1899 tissues. *Genome Biology.* 21, 234 (2020).

1900 161. C. Pockrandt, M. Alzamel, C. S. Iliopoulos, K. Reinert, GenMap: ultra-fast computation of
1901 genome mappability. *Bioinformatics.* 36, 3687–3692 (2020).

1902 162. X.-N. Zhu, Y.-Z. Wang, C. Li, H.-Y. Wu, R. Zhang, X.-X. Hu, Chicken chromatin
1903 accessibility atlas accelerates epigenetic annotation of birds and gene fine-mapping
1904 associated with growth traits. *Zool Res.* 44, 53–62 (2023).

1905 163. K. M. Chen, E. M. Cofer, J. Zhou, O. G. Troyanskaya, Selene: a PyTorch-based deep
1906 learning library for sequence data. *Nat Methods.* 16, 315–318 (2019).

1907 164. A. N. Barbeira, S. P. Dickinson, R. Bonazzola, J. Zheng, H. E. Wheeler, J. M. Torres, E. S.
1908 Torstenson, K. P. Shah, T. Garcia, T. L. Edwards, E. A. Stahl, L. M. Huckins, D. L. Nicolae,
1909 N. J. Cox, H. K. Im, Exploring the phenotypic consequences of tissue specific gene
1910 expression variation inferred from GWAS summary statistics. *Nat Commun.* 9, 1825 (2018).

1911 165. A. N. Barbeira, M. Pividori, J. Zheng, H. E. Wheeler, D. L. Nicolae, H. K. Im, Integrating
1912 predicted transcriptome from multiple tissues improves association detection. *PLOS
1913 Genetics.* 15, e1007889 (2019).

1914 166. Z. Zhu, F. Zhang, H. Hu, A. Bakshi, M. R. Robinson, J. E. Powell, G. W. Montgomery, M.
1915 E. Goddard, N. R. Wray, P. M. Visscher, J. Yang, Integration of summary data from GWAS
1916 and eQTL studies predicts complex trait gene targets. *Nat Genet.* 48, 481–487 (2016).

1917 167. X. Wen, R. Pique-Regi, F. Luca, Integrating molecular QTL data into genome-wide genetic
1918 association analysis: Probabilistic assessment of enrichment and colocalization. *PLOS
1919 Genetics.* 13, e1006646 (2017).

1920 168. Y. Lee, F. Luca, R. Pique-Regi, X. Wen, Bayesian Multi-SNP genetic association analysis:
1921 Control of FDR and use of summary statistics. *BioRxiv.* 316471 (2018).

1922 169. X. Wen, Y. Lee, F. Luca, R. Pique-Regi, Efficient integrative Multi-SNP association
1923 analysis using deterministic approximation of posteriors. *Am J Hum Genet.* 98, 1114-1129
1924 (2016).

1925 170. X. Wen, Molecular QTL discovery incorporating genomic annotations using Bayesian false
1926 discovery rate control. *The Annals of Applied Statistics.* 10, 1619–1638 (2016).

1927 171. A. Hukku, M. G. Sampson, F. Luca, R. Pique-Regi, X. Wen, Analyzing and reconciling
1928 colocalization and transcriptome-wide association studies from the perspective of inferential
1929 reproducibility. *The American Journal of Human Genetics.* 109, 825–837 (2022).

1930 172. A. Bhattacharya, J. B. Hirbo, D. Zhou, W. Zhou, J. Zheng, M. Kanai, B. Pasaniuc, E. R.
1931 Gamazon, N. J. Cox, Best practices for multi-ancestry, meta-analytic transcriptome-wide
1932 association studies: Lessons from the Global Biobank Meta-analysis Initiative. *Cell
1933 Genomics.* 2 (2022), doi:10.1016/j.xgen.2022.100180.

1934

1935 **Supplementary Materials**

1936 Materials and Methods

1937 Figs. S1 to S32

1938 Tables S1 to S22

1939