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Abstract: 101 

Chicken is a valuable model for understanding fundamental biology, vertebrate evolution and 102 

diseases, as well as a major source of nutrient-dense and lean-protein-enriched food globally. 103 

Although it is the first non-mammalian amniote genome to be sequenced, the chicken genome 104 

still lacks a systematic characterization of functional impacts of genetic variants. Here, through 105 

integrating 7,015 RNA-Seq and 2,869 whole-genome sequence data, the Chicken Genotype-106 

Tissue Expression (ChickenGTEx) project presents the pilot reference of regulatory variants in 107 

28 chicken tissue transcriptomes, including millions of regulatory effects on primary expression 108 

(including protein-coding genes, lncRNA and exon) and post-transcriptional modifications 109 

(alternative splicing and 3’ untranslated region alternative polyadenylation). We explored the 110 

tissue-sharing and context-specificity of these regulatory variants, their underlying molecular 111 

mechanisms of action, and their utility in interpreting adaptation and genome-wide associations 112 

of 108 chicken complex traits. Finally, we illustrated shared and lineage-specific features of gene 113 

regulation between chickens and mammals, and demonstrated how the ChickenGTEx resource 114 

can further assist with translating genetic findings across species. 115 

One-Sentence Summary:  116 

The ChickenGTEx provides a multi-tissue reference of regulatory variants for chicken genetics 117 

and genomics, functional genomics, precision breeding, veterinary medicine, vertebrate 118 

evolution and even human biomedicine.  119 

 120 

  121 
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Main Text:  122 

Introduction 123 

The chicken (Gallus gallus domesticus) is not only a globally significant source of protein-rich 124 

food through both meat and egg production, but also a fundamental model species. In 2021, the 125 

farming industry achieved a staggering production of 111 million tons of eggs and 137 million 126 

tons of poultry meat worldwide (https://www.fao.org). Due to its distinct phylogenetic placement 127 

as well as its genetic and physiological characteristics, the chicken is also served as a well-128 

recognized model organism in both fundamental and applied research (1, 2), studies of 129 

domestication, genome editing, system biology, virology, immunology, oncology, and evolution 130 

(3–7). The chicken retains a remarkable range of phenotypic variation in terms of morphology, 131 

physiology, and behavior, primarily driven by artificial selection and breed specialization. Such 132 

extensive variation for a wide range of features is ideal for investigating the genetic architecture 133 

underlying complex traits. One example of such traits is dwarfism, which is characterized by a 134 

short stature and is observed in various forms in chickens, including sex-linked dwarfism, 135 

autosomal dwarfism, and the bantam phenotype, according to their physiological and genetic 136 

properties (8, 9). In addition, long-term bidirectional selection lines have been established in 137 

chickens to study how polygenetic selection influences complex traits such as body weight (10) 138 

and feather pecking (11).  139 

The Red Jungle Fowl (G. gallus), the ancestor of domestic chicken, was one of the first food-140 

producing animals that had its genome assembled (1). Recently, a near complete version of the 141 

chicken reference genome assembly was reported, revealling distinct sequence and epigenetic 142 

features of microchromosomes (12). Several population-scale studies of chicken genome 143 

variation have focused on various aspects of its evolution, including speciation and 144 

domestication (13–15), signatures of selection(14, 16, 17), admixture and introgression(14, 18, 145 

19), feralization(20, 21), and phenotypic adaptation(22–24). Meanwhile, linkage mapping and 146 

genome-wide association studies (GWAS) have identified tens of thousands of genomic loci 147 

associated with numerous complex traits in chickens (5, 25–27).  As most genetic variants behind 148 

such adaptive evolutionary and complex traits are non-coding, a systematic annotation of 149 

regulatory variants in the chicken genome becomes indispensable for understanding their 150 

underlying genetic regulatory circuitry (28–30). The expression quantitative trait locus (eQTL) 151 

analysis is presently the most powerful approach to measure regulatory effects of sequence 152 

variants on individual gene expression in their native genomic and cellular contexts (31), as 153 

documented in the human Genotype-Tissue Expression (GTEx) project series of studies (32–34) 154 

and eQTL Catalogue in humans (35). In contrast, previous eQTL studies in chickens have been 155 

limited in sample size, the number of studied genomic features, and tissue/cell types (36–40). For 156 

instance, in an intercross population of 125 chickens, Johnsson et al. (2015) identified 6,318 cis-157 

eQTL that influence female femoral gene expression, as measured by microarrays (36). 158 

To fully unlock the genetic code of the chicken genome, the Chicken Genotype-Tissue 159 

Expression (ChickenGTEx) project, as part of the international Farm animal GTEx (FarmGTEx) 160 

initiative (41), has been lunched to build a comprehensive reference panel of regulatory variants 161 

based on the chicken transcriptome in various biological contexts (e.g., development, sex and 162 

environmental exposure). In this pilot study, through analyzing 7,015 bulk RNA-Seq datasets 163 

from 52 tissues/cell types (hereafter referred to as “tissues”) and 2,869 whole genome sequences 164 

(WGS) from over 100 breeds/lines (hereafter referred to as “breeds”) worldwide, we 165 
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systematically associated approximately1.5 million genomic variants with five transcriptomic 166 

phenotypes in 28 chicken tissues with sufficient sample size (ranging from 44 to 741). We then 167 

explored tissue-sharing and context-dependent patterns of these regulatory variants, their 168 

underlying molecular mechanisms of action, and their utility in deciphering GWAS loci of 108 169 

complex traits via multiple complementary integrative methods such as transcriptome-wide 170 

association studies (TWAS), colocalization, and Mendelian Randomization (MR). Additionally, 171 

we compared gene regulation and the phenotypic implications between chicken and three 172 

mammalian species (i.e. human, cattle and pig). Altogether, our study provides novel and 173 

profound insights into the regulatory hierarchy of genetic variation in chicken transcriptomes and 174 

complex phenotypes, providing the first large-scale mapping of regulatory variants in the 175 

chicken genome and their links to complex phenotypes. Meanwhile, the atlas of regulatory 176 

variants identified in this study will facilitate the genetic improvement of chicken populations 177 

worldwide in health, production, and resilience and inform a wide range of genetic and genomic 178 

research in animal and plant species. Furthermore, we have also well-developed a ChickenGTEx 179 

online resource that is freely accessible at http://chicken.farmgtex.org. 180 

 181 

Results 182 

Harmonizing large transcriptome and genome datasets in chickens  183 

We analyzed 8,668 bulk RNA-Seq samples using a uniform pipeline, yielding 304.4 billion clean 184 

reads. After filtering out low-quality data, 7,015 samples remained for subsequent analyses, 185 

representing 28 tissues (fig. S1, Tables S1 and 2). Based on gene expressions, samples were 186 

clustered well regarding their tissue types (fig. 1a, fig. S2). Across all the tissues, an average of 187 

23,056 (94.7% of all annotated genes) genes were expressed (Transcripts per Million, TPM > 188 

0.1) (Table S3), showing patterns of ubiquitous or tissue-specific expression (fig. S3). An 189 

average of 1,938 tissue-specific genes were then detected across tissues (fig. S3d), and their 190 

functions recapitulated the known tissue biology (fig. 1b, fig. S3e, Table S4, URL). For 191 

instance, a total of 1,425 genes were specifically and highly expressed in the bursa of Fabricius, 192 

a bird-specific primary lymphoid organ, which were significantly enriched in the immune 193 

response to bacteria (Table S4). An average of 54.7% of tissue-specific genes could be linked to 194 

at least one tissue-specific promoter/enhancer (fig. S4a-d). For instance, MSLNL with bursa-195 

specific promoters and enhancers showed a specific expression in the bursa (fig. S4d). An 196 

average of 114 genes exhibited sex-biased expression across 18 tissues (FDR < 0.01), among 197 

which 17 genes were shared in all these tissues and located in sex chromosomes (figs. S4e-f, 198 

Table S5). This was in agreement with the notion of incomplete sex-chromosome dosage 199 

compensation in chickens(42). In addition, out of 45 genes associated with Mendelian traits in 200 

chickens(43), 41 showed tissue-specific expression (fig. S5a). For instance, SLCO1B3 is the 201 

causal gene of blue eggshell in chickens(44), which was specifically and highly expressed in the 202 

liver and had liver-specific promoters and enhancers (fig. S5b).  203 

To further annotate the function of chicken genes with this extensive transcriptome data, we 204 

conducted gene co-expression network and transcript assembly analyses. Based on co-expression 205 

analysis, we identified 3,583 co-expression modules containing 25,023 genes, 41.3% (10,332) of 206 

which were not functionally annotated in the current Gene Ontology (GO) database (figs. S6). In 207 

the set of 2,940 unannotated protein-coding genes, 56.3% (1,654) were able to be assigned to co-208 

expression modules. Compared to annotated genes, these unannotated genes exhibited more 209 

tissue-specificity, lower gene expression level, and small proportion of chicken-human 210 
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orthologous genes (fig. S6d). For instance, 8 unannotated genes were co-expressed with 12 211 

annotated genes in the muscle, which were significantly enriched in myeloid cell development 212 

and erythrocyte differentiation networks (fig. S6f). Through the transcript assembly analysis, we 213 

predicted 247,383 transcripts at 48,800 loci, including 184,374 protein-coding transcripts derived 214 

from 17,215 loci, 13,140 lncRNA transcripts from 3,436 loci, and 49,869 other noncoding RNA 215 

transcripts from 34,350 loci (fig. S7, URL). Of all these predicted transcripts, 90% were not 216 

annotated in the previous reference and 4-10% were even transcribed from novel genomic loci 217 

(fig. S7d and g). For instance, we observed a new transcript on chromosome 2 was highly and 218 

specifically expressed in the testis (fig. S7h).  219 

To obtain genotypes of these RNA-Seq samples, we called ~9 million single nucleotide 220 

polymorphisms (SNPs) from bulk RNA-Seq data using the GATK best practice pipeline(45) (fig. 221 

S8). To impute missing genotypes, we built a chicken multi-breed genotype imputation reference 222 

panel consisting of 2,869 global WGS data sets, which had a similar population composition as 223 

the RNA-Seq data (fig. 1c, Table S6). Adopting a missing rate of 0.6, the imputation accuracy of 224 

1.5 million SNPs reached 97% (figs. S8b-h). The independent datasets from three different 225 

chicken breeds confirmed a high concordance rate (> 90%) between imputed genotypes and 226 

those directly called from WGS data of the same individuals (fig. S8g). After removing 227 

duplicated samples based on their genetic relatedness, 28 tissues (each consisting of over 40 228 

individuals) were retained for subsequent molecular quantitative trait loci (molQTL) mapping 229 

(fig. 1d).  230 

 231 

Discovery of molQTL  232 

To comprehensively explore the genetic regulation of the chicken transcriptome, we conducted 233 

cis-molQTL mapping for five molecular phenotypes, including protein-coding gene expression 234 

(eQTL), lncRNA expression (lncQTL), exon expression (exQTL), splicing variation (sQTL), and 235 

3’UTR alternative polyadenylation (3a’QTL), across 28 chicken tissues (fig. 2a, fig. S2, figs. S9-236 

10). In total, 13,983 (92.9%) of 15,046 tested protein-coding genes, 11,685 (74.3%) of 15,720 237 

lncRNAs, 124,423 (76.0%) of 163,812 exons, 9,669 (61.5%) of 15,405 loci with alternative 238 

splicing events, and 8,798 (74.1%) of 11,880 loci with 3’UTR alternative polyadenylation 239 

(3’UTR APA) were significantly (FDR < 0.05) regulated by at least one genetic variant in at 240 

least one tissue, and are thus referred to as eGenes, lncGenes, exGenes, sGenes and 3a’Genes, 241 

respectively. All the molQTL tended to be enriched around transcription start sites (TSS) and 242 

transcription end sites (TES), while 3a’QTL and sQTL showed a higher enrichment in TES and 243 

gene body, respectively, compared to other molQTL (fig. 2b, figs. S11a-e). Furthermore, an 244 

average of 73.6% (10,288) of eGenes, 40.5% (3,914) of sGenes, 60.7% (75,527) of exGenes, 245 

58.9% (6,886) of lncGenes, and 7.3% (640) of 3a’Genes were regulated by more than one 246 

independent variant (eVariants) across tissues (fig. 2c, fig. S12). The further fine-mapping 247 

analysis for molQTL with SuSiE (46) revealed 2,887, 2,366, 2,053, 12,409 and 1,572 potential 248 

causal variants for eGenes, sGenes, lncGenes, exGenes and 3a’Genes, respectively (URL).  249 

The statistical power of molQTL mapping depends on the sample size of the tissue, similar to 250 

findings in other species(32, 47, 48) (fig. 2d-g, figs. S13 and 14). The down-sampling analysis in 251 

the liver and muscle further confirmed the relationship between sample size and eQTL discovery 252 

power (fig. 2g). Most eQTL with large effect (i.e., fold change of expression, aFC > 2) were 253 

detectable when sample size reached around 200 (fig. 2f and g), and eQTL with larger effect 254 

were more enriched around TSS (fig. S14l) and had lower minor allele frequency (MAF) (fig. 255 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.27.546670doi: bioRxiv preprint 

http://chicken.farmgtex.org/
http://chicken.farmgtex.org/
https://doi.org/10.1101/2023.06.27.546670
http://creativecommons.org/licenses/by-nd/4.0/


 

8 

 

S14). In general, the estimated effect size of eQTL was not correlated with their gene expression 256 

levels across tissues (figs. S15 a and b). Of note, chromosome size was significantly and 257 

positively correlated with eGene heritability (fig. 2e), eGene discovery (fig. S15c), and MAF of 258 

lead eVariants (fig. S15d). This was only observed in chickens and not in mammals (i.e., pig, 259 

cattle and human) (figs. S15e-g). Such influences of chromosome size on eQTL effects might be 260 

due to differences in evolutionary constraints between microchromosomes and 261 

macrochromosomes in chickens(49), which was further supported by the observation that 262 

phastCons scores of lead eVariants were also negatively correlated with chromosome size (fig. 263 

2e).  264 

To validate molQTL identified above, we first applied linear mixed model (LMM), by which we 265 

observed that the effect size and significance level of genetic variants estimated by the LMM 266 

were highly correlated with those estimated by the linear regression, implemented in tensorQTL 267 

(50) (fig. S16). We then randomly and evenly divided samples from 15 tissues with a sample size 268 

of over 100 into two subgroups, and then carried out eQTL mapping separately. A high 269 

replication rate, measured by π1(51), was observed between subgroups across tissues, ranging 270 

from 0.61 in the hypothalamus to 0.92 in the embryo (fig. 2h, fig. S17). The effect size of eQTL 271 

also exhibited a high Spearman’s correlation (an average of 0.77 across tissues) between 272 

subgroups (fig. 2h). Moreover, we observed that effect sizes derived from the eQTL mapping 273 

were positively and significantly correlated (an average of 0.52 across tissues) with those from 274 

the allele-specific analysis at the same loci (fig. 2i, Table S8). Finally, we trained a deep learning 275 

model of regulatory effects based on 310 functional epigenomic profiles in chicken via 276 

DeepSEA (50) (fig. S15h, Table S7), and observed that regulatory variants predicted by 277 

DeepSEA were more significantly enriched in eVariants than the expected (fig. 2j). Altogether, 278 

these results demonstrated the reliability of molQTL identified in this study.    279 

 280 

Limited sharing of regulatory mechanisms underlying five molQTL types 281 

Out of all 27,203 tested genes, 16,097 (59.2%) had significant QTL for at least two molecular 282 

phenotypes (fig. S18a). The LD of lead variants of any two molQTL types from the same genes 283 

was low, ranging from 0.04 (exQTL vs. 3a’QTL) to 0.29 (exQTL vs. lncQTL) (fig. 3a). The 284 

colocalization analysis further confirmed the limited sharing of regulatory control among these 285 

molecular phenotypes (fig. 3a), indicative of their distinct genetic regulatory mechanisms. Fig. 286 

3b takes NLRC5 as an example, four molecular phenotypes of which were controlled by distinct 287 

genomic loci, and LD between the respective lead variants was lower than 0.07 (fig. S18b). 288 

Among these molQTL, eQTL and exQTL exhibited a relatively high colocalization probability 289 

(average H4 = 0.72) (fig. 3a).  290 

To elucidate molecular mechanisms of action behind these molQTL, we examined sequence 291 

ontology and multi-omics data in chickens, including 15 chromatin states predicted from 377 292 

epigenetic data sets in 23 tissues(30), and 9,898 topologically associating domains (TADs) 293 

detected from high-throughput chromosome conformation capture (Hi-C) in three tissues (i.e., 294 

muscle, liver and testis)(52). As expected, conditionally independent molQTL were significantly 295 

enriched with various regulatory DNA sequences, including synonymous variants (1.67-fold in 296 

lncQTL to 3.03-fold in exQTL), 5’UTR variants (1.82-fold in eQTL to 3.64-fold in sQTL), 297 

3’UTR variants (2.29-fold in sQTL to 3.77-fold in 3a’QTL), and non-coding (NC) transcripts 298 

(1.48-fold in 3a’QTL to 2.36-fold in exQTL). Of note, all five types of molQTL also exhibited a 299 

significant enrichment in missense variants (fig. 3c), indicating that a fraction of transcriptional 300 
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regulatory variants may also alter protein amino acid residues(53). Compared to other molQTL, 301 

sQTL exhibited a higher enrichment with splicing variants (63.97-fold in splice acceptor, 3.97-302 

fold in splice donor, and 3.89-fold in splice region), while 3a’QTL were more enriched with stop 303 

retained (5.06-fold) and 3’UTR variants (3.77-fold) (fig. 3c).  304 

All five types of molQTL showed the highest enrichment in promoter-like states (E1-E5, an 305 

average of 3.64-fold), followed by enhancer-like states (E6-E10, an average of 1.98-fold) and 306 

ATAC islands (E11, an average of 1.87-fold). In contrast, they were significantly depleted from 307 

repressed regions (E12-E14) (fig. 3d). Compared to active enhancer (E6), super-enhancer (i.e. a 308 

cluster of enhancers in close genomic proximity, exhibiting exceptionally high levels of H3K4ac 309 

signals(30)), had a lower enrichment for all five molQTL, suggesting that they may be under a 310 

stronger purifying selection due to their essential roles in gene regulation and cell identity (fig. 311 

S19a). Among the five types of molQTL, 3a’QTL had the highest enrichment in enhancer-like 312 

states and ATAC islands (fig. 3d), supporting their high tissue-specificity. A total of 20% of 313 

eQTL, 26% of sQTL, 3.4% of lncQTL, 17.9% of exQTL, and 14.5% of 3a’QTL were supported 314 

by regulator-gene pairs that were predicted based on the correlation of signal density of 315 

regulators and gene expression (fig. S19b, Table S9). By examining 3D looping of 316 

chromatin(52), we found 20-60% of molQTL-gene pairs located with the same TAD across 317 

tissues (figs. S19 c and d), with the highest enrichment observed at ~400-600kp away from TSS 318 

of target genes after accounting for their distance (fig. S19e). As expected, 3a’QTL showed the 319 

highest enrichment at ~600-1000kb downstream of their target genes (fig. S19e). Likewise, 41-320 

73% of eQTL-eGene pairs located in the same CTCF-loops that were identified from 22 chicken 321 

tissues (30) (figs. S19f-h). These results indicate that the long-distance eQTL exert effects 322 

possibly through disrupting TFBS in long-distance enhancers that interact with promoters via 3D 323 

looping of chromatin (figs. S19c-h). As shown in fig. S19i, eVariant rs317368746 regulates 324 

expression of TIMM17B in the brain only, and it resides in a brain-specific enhancer and is 325 

located within the same TAD (346kb upstream) as the TSS of TIMM17B. Altogether, these 326 

results indicate that regulatory variants exert widespread effects on the transcriptome via 327 

multiple mechanisms such as changing transcript structure, function, stability, 328 

transcription/translation rate and chromatin conformation. 329 

 330 

Tissue- and breed-sharing of molQTL 331 

All five types of molQTL were either tissue-specific or ubiquitous, among which 3a’QTL and 332 

eQTL exhibited the highest and lowest tissue-specificity, respectively (fig. 4a and b, fig. S20a, 333 

fig. 21). This was also supported by the meta-tissue analysis (fig. S22). In total, 10.6% of eQTL, 334 

32.1% of sQTL, 27.4% of lncQTL, 25.8% of exQTL, and 29.6% of 3a’QTL were active in one 335 

tissue only. Of note, eQTL that were active in more tissues showed a higher enrichment around 336 

TSS (fig. 4c, fig. S20b), a smaller effect size (fig. 4d) and a higher MAF (fig. S20c). Tissue-337 

shared eQTL (i.e., active in at least two tissues, LFSR < 0.05) also tended to be more enriched 338 

for promoter-like states, whereas tissue-specific eQTL were more enriched for enhancer-like 339 

states (fig. S20d). In general, tissues with similar biological functions (e.g., immune tissues) 340 

tended to be clustered together based on eQTL effect correlation (fig. 4a, fig. S21), which was 341 

similar for the remaining four types of molQTL (fig. 4b, fig. S21). Unlike GTEx in mammals(32, 342 

47, 48), blood formed the primary outgroup in chickens regarding eQTL and lncQTL, while, for 343 

the remaining three types of molQTL, brain and testis were first separated from the rest of the 344 

tissues. Fig. S20e demonstrates an eQTL (9_16035177_G_A) that significantly regulated the 345 

expression of ALG3 only in the blood. The ALG3 gene encodes alpha-1,3-mannosyltransferase 346 
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with the function of inducing glycosylation of TGF-β receptor II(54), which might modulate 347 

blood pressure homeostasis(55) and affect hematopoiesis(56). In contrast to eQTL shared in 348 

other tissues, blood-specific eQTL had a lower MAF (fig. S20f) and a larger effect (fig. S20g). 349 

Moreover, genetic regulation of all five molecular phenotypes in the embryo was distinct from 350 

those in the primary tissues (fig. 4a, fig. S21), similar to that in pigs(47), indicating a distinct 351 

regulation of early development. In addition, we detected 59 eQTL with opposite directional 352 

effects on the same genes (n = 51) between tissues (Table S10). For instance, the T-allele of 353 

rs315639985 increased the expression of FBXO5 in the spleen but decreased its expression in the 354 

whole blood. The FBXO5 gene encodes F-box protein 5, which is associated with systolic blood 355 

pressure in human(57) (fig. S20h). Another example was rs313608694, whose G-allele 356 

significantly upregulated the expression of ELAC2 in the embryo but downregulated it in the 357 

spleen (fig. S20h). This gene encodes elaC ribonuclease Z 2, and the reduction of its expression 358 

could induce growth arrest by suppressing transforming growth factor-beta(58).  359 

We examined breed-sharing of eQTL in the brain, liver, muscle and spleen, as all of them had 360 

more than two breeds and each with a sample size > 40. As a result, the majority of eQTL (an 361 

average of 81%) could be replicated between breeds and the replication rate was associated with 362 

tissue sample size (fig. S23a, Table S11). Furthermore, the eQTL effect was substantially shared 363 

between breeds (fig. 4e). For instance, the T-allele of rs314795649 significantly upregulated 364 

expression of PRKCDBP in the liver across all four breeds being tested, including Cobb (β = 365 

0.57, P = 2.67 × 10-6), Leghorn (β = 0.33, P = 3.10 × 10-6), Rhode Island Red (β = 0.39, P = 3.06 366 

× 10-6) and Ross (β = 0.37, P = 5.02 × 10-10) (fig. S23b). In addition, we detected 376 (Red 367 

Jungle Fowl vs. Ross) and 185 (Red Jungle Fowl vs. Leghorn) breed-interaction eQTL (bi-368 

eQTL) in the brain, and with genes regulated by them were enriched in functionals related to 369 

brain development (Table S12). 370 

 371 

Context-dependence of molQTL 372 

To explore the context-dependent nature of gene regulation, we systematically detected eQTL 373 

interacting with sex (sb-eQTL), transcription factor (TF-eQTL) and cell type (ci-eQTL). For sb-374 

eQTL mapping, we only considered eight tissues, where each sex had data from over 30 375 

individuals available. In total, 1,138 SNPs displayed sex-biased regulation of 962 eGenes (sb-376 

eGene, FDR < 0.01), ranging from 3 in the small intestine to 954 in the liver (URL). Taking the 377 

liver as an example, we further performed the sb-eQTL mapping in a single breed, Rhode Island 378 

Red (nmale= 32; nfemale= 46), resulting in 48 sb-eQTL regulating 30 eGenes (fig. 4f, figs. S23c-d, 379 

Table S13). For instance, the significant association of rs317663121 with TCFL5 expression was 380 

only observed in male liver (fig. 4f). Moreover, 14% (164) of sb-eGenes overlapped with sex-381 

biased expressed genes in all eight studied tissues. These sb-eGenes detected in the blood, 382 

hypothalamus, and liver were significantly enriched in biological processes related to amino acid 383 

metabolism, signaling transduction pathway, and fatty acid metabolism (Table S14). Through 384 

the examination of 956 chicken transcription factors retrieved from the AnimalTFDB 3.0(59), we 385 

detected an average of 1,941 TF-eQTL in 17 tissues, representing 503 TFs (fig. S23f, URL). Fig. 386 

S23e illustrates that effect of rs313600592 on ATP6V1A expression was significantly associated 387 

with the expression of transcription factor TCF25 in the muscle. For ci-eQTL mapping, we first 388 

annotated 13 cell types from single-cell RNA-Seq data in chicken heart and muscle (Table S15). 389 

Based on the cellular composition of bulk RNA-Seq samples of muscle and heart estimated by 390 

the in silico cell-type deconvolution (fig. S24), we identified an average of 105 ci-eGenes in the 391 

muscle, ranging from 11 with interactions in adipocytes to 214 with Schwann cells, and an 392 
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average of 19 ci-eGenes in the heart, ranging from 6 interacting with fibroblasts to 36 with 393 

cardiomyocytes (fig. S23g, Table S16). For instance, rs733070738 regulated expression of 394 

PLVAP by interacting with myocyte enrichment in the muscle (fig. 4g). These results highlight 395 

the dynamics of genetic regulatory effects across distinct biological contexts.     396 

 397 

Interpreting genetic regulation behind complex traits and adaptive evolution  398 

To show the potential of molQTL in understanding complex traits in chickens, we systematically 399 

integrated molQTL with GWAS results of 108 complex traits, including 400 

growth and development (n = 43), carcass (n = 41), egg production (n = 20), feed efficiency (n = 401 

3), and blood biochemical index (n = 1) (Table S17). Enrichment analysis revealed that GWAS 402 

loci of all the traits were significantly enriched in all five types of molQTL (fig. S25a). Among 403 

them, the highest enrichment was observed for 3a’QTL (1.87±0.33), followed by sQTL 404 

(1.83±0.28), eQTL (1.81±0.30), lncQTL (1.59±0.27) and finally exQTL (1.56±0.32) (fig. S25a). 405 

Furthermore, we applied four complementary methods to prioritize causal variants and genes 406 

underlying each GWAS loci, including fastENLOC-based colocalization, summary-data-based 407 

MR (SMR), single-tissue transcriptome-wide association study (sTWAS), and multi-tissue 408 

TWAS (mTWAS). Out of all 1,176 significant GWAS loci, 1,059 (90%) could be explained by 409 

at least one molQTL across 28 tissues (fig. 5a, figs. S26 and S27). Of 896 colocalized GWAS 410 

loci, 59.9% were not colocalized with the nearest genes of lead GWAS variants, indicative of the 411 

regulatory complexity of complex traits (fig. 5b, fig. S28a). The number of colocalization events 412 

of a trait was determined by the statistical power of both GWAS and molQTL mapping (fig. 413 

S26b-c). Of all 1,176 GWAS loci, 0.8%, 0.9%, 5.2% and 1.4% were explained uniquely by 414 

eQTL, sQTL, exQTL and lncQTL, respectively. This result indicates that each type of molecular 415 

phenotype only had a limited contribution to complex traits at distinct levels of gene regulation 416 

(fig 5a, fig. S29). Taking the body weight gain from week 6 to 8 (WG6.8) as an example, 417 

sTWAS linked GWAS loci to 43 unique genes (34 protein-coding and 9 lncRNA genes) across 418 

21 tissues (fig. 5c, fig. S28c, Table S18). Of them, the expression of the KPNA3 (karyopherin 419 

subunit alpha 3) exhibited the strongest association with WG6.8 in the retina, followed by 420 

pituitary and heart (fig. 5c). Consistently, it has been documented that the knockdown of the 421 

KPNA3 would restore photoreceptor formation in Drosophila(60). The highest colocalization 422 

between WG6.8 GWAS loci and molQTL of KPNA3 was observed for a retina eQTL 423 

(rs314814283, GRCP=0.78) and a pituitary sQTL (rs13552958, GRCP=0.54) (Table S19). The 424 

further SMR analysis pinpointed 10 potential causal mutations across tissues (Table S20), 425 

among which rs739579746 was the most significant one (fig. 5c, Table S20). The SNPs 426 

rs314814283 and rs739579746 detected by eQTL mapping were in high LD (r2 = 0.88), while 427 

both showed low LD with rs13552958 (r2 < 0.02) detected by sQTL mapping. These findings 428 

likely reflect the importance of photoreception for chicken growth and production performance 429 

(61, 62), and the promising candidate gene in this region is the KPNA3. In addition, we detected 430 

149 significant lncRNA-protein-coding-trait regulation events with SMR-multi analysis (Table 431 

S21). For instance, an eQTL of a lncRNA (ENSGALG00000053557), located on the opposite 432 

strand of the IL20RA, exhibited significant colocalizations with an eQTL of IL20RA in the 433 

muscle and GWAS loci of the total stomach weight on chromosome 3 (fig. 5d).  434 

To further explore context-specific genetic regulation of complex traits, we conducted 435 

colocalization analysis between GWAS loci and three types of context-interaction eQTL 436 

detected above (fig. S25b). Out of 1,155 GWAS loci, 22.9% (264), 48.7% (562) and 12.3% 437 

(142) were explained by sb-eQTL, TF-eQTL and ci-eQTL, respectively (fig. S25b). For 438 
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instance, GWAS loci of total stomach weight and body weight at 8 weeks of age were 439 

significantly colocalized with sb-eQTL of MFSD4A and TOX3 in the brain and spleen, 440 

respectively (figs. S28d-e). The TOX3 gene encodes TOX high mobility group box family 441 

member 3, playing roles in sex determination and differentiation (63, 64). Despite the limited 442 

discovery power of the context-interaction eQTL due to the small sample size, our analysis 443 

demonstrated that context-specific regulatory effects were nonnegligible in dissecting the 444 

regulatory mechanism of complex traits. Furthermore, we conducted an exploratory analysis to 445 

investigate whether domestication and breeding also tend to target on regulatory variants, though 446 

examining selection sweeps previously detected between broilers and layers previously (fig. 447 

S25d, fig. S30) (14, 65). Within the brain, we separately detected eQTL in three chicken 448 

lines/breeds separately, including Red Jungle Fowl (n = 46), Ross (n=157) and Leghorn (n = 78). 449 

Genomic windows containing at least one eQTL (i.e., eQTL windows) in Ross and Leghorn 450 

were under stronger selection (i.e., larger selection values, LSBL) in broilers than expected, 451 

whereas those detected in Red Jungle Fowl were not (fig. S25d, fig. S30). Likewise, for selection 452 

sweeps in layers, eQTL windows in Leghorn were under stronger selection in layers than 453 

expected, but not for eQTL windows in Ross and Red Jungle Fowl (fig. S25d, fig. S30). 454 

Altogether, the current ChickenGTEx can serve as a valuable resource for exploiting regulatory 455 

mechanisms underlying complex traits and adaptation in chickens.  456 

 457 

Comparing gene regulation and complex trait genetics between chickens and mammals   458 

Based on gene orthology between chickens and three mammals (i.e., cattle, pigs and humans), 459 

we found the expression levels of the 1-1-1-1 orthologous genes were significantly higher than 460 

those of non-orthologous genes across tissues (fig. S31). The proportion of orthologous genes 461 

expressed in chicken tissues was positively (Pearson’s r > 0.8, P < 0.004) correlated with that in 462 

mammalian tissues (fig. S31c). Based on gene expression profiles, 14,278 samples in the four 463 

species were clustered first according to their tissue types, indicating the global conservation of 464 

gene expression between chickens and mammals (fig. 6a). This was also supported by a high 465 

correlation of TAU values of genes, a measure of tissue-specificity of gene expression, between 466 

chickens and mammals (fig. S31d). The phylogenetic analysis of gene expression revealed 467 

different evolutionary rates of tissues across species, where testis and pituitary evolved fastest, 468 

while adipose and liver evolved slowest (figs. S31e). The effect sizes of lead eQTL of 469 

orthologous genes were significantly but weakly correlated between chickens and mammals, 470 

which were lower than those within mammals (fig. 6b). This was consistent for cis-h2 of 471 

orthologous genes (fig. S32a). As in pigs and cattle, the distance of lead eQTL to TSS was larger 472 

in chickens than that in humans (fig. S32b and c), which might be partially due to the larger LD 473 

of SNPs in farm animals’ genomes and lower SNP density in the pilot phase of FarmGTEx 474 

compared to human GTEx(32). We further divided chicken eGenes of each tissue into two 475 

groups: 1) chicken-specific eGenes, and 2) those shared with at least one mammalian species 476 

(conserved eGenes) (see Methods). In general, compared to chicken-specific eGenes, conserved 477 

eGenes showed a higher gene expression level, lower tissue-specificity, were more likely to be 478 

differentially expressed between species, have more promoters, and stronger tolerance to loss-of-479 

function mutations (less evolutionarily constrained) (fig 6c).  480 

The FarmGTEx-based TWAS results provide new opportunities to systematically explore 481 

between-species similarity of complex trait genetics at the functional level of orthologous genes. 482 

We thus compared all the 3,024 sTWAS of 108 traits in chickens with 9,112, 1,032 and 6,480 483 

sTWAS in three mammalian species, representing 268, 43 and 135 complex traits, respectively. 484 
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Within the matching tissues, we identified a total of 8,312 trait-pairs with significant correlations 485 

between chickens and three mammalian species (P < 9.11 × 10-3, permutation-based) (fig. 6d, 486 

fig. S32d-f, Table S22), despite the big differences in the TWAS power between species. Most 487 

of the significantly correlated traits between species recapitulated known biological and 488 

physiological knowledge. For instance, chicken body weight (BW) showed a high correlation 489 

with pig average daily gain (ADG) in the ileum (Pearson’s r = 0.69, P = 3.42 ×10-5, fig. 32g), 490 

cattle somatic cell scores (SCS) in the adipose (Pearson’s r = 0.38, P = 5.46 ×10-5, fig. 32h), and 491 

human type 2 diabetes (T2D) in the kidney (Pearson’s r = 0.57, P = 2.3 ×10-5, fig. 32i). This was 492 

in line with previous findings that larger BW fluctuation was related to an increased T2D risk in 493 

human(66), and also was positively associated with SCS in cattle (67). The expression of 494 

ABCC13 (encoding ATP binding cassette subfamily C member 13)  in the ileum was 495 

significantly associated with both chicken BW (P = 0.03) and pig ADG (P = 0.04), which 496 

encodes ATP binding cassette subfamily C member 13, which had potential associations with 497 

body weight/body mass index in humans (68). The expression of three genes, PIGX, MRPL51 498 

and ABHD14B, in the adipose were significantly associated with both chicken BW and cattle 499 

SCS. Of these, the ABHD14B protein is a lysine deacetylase with the capacity of catalyzing the 500 

deacetylation of lysine residues to yield acetyl-CoA, which could significantly alter glucose 501 

metabolism and could thus cause significant BW loss(69, 70). The expression of GABRB2 and 502 

SOX4 in the kidney was significantly associated with both chicken BW and human T2D. The 503 

SOX4 is involved in pancreas development with roles in inhibiting insulin secretion and 504 

increasing diabetes risk(71, 72). Moreover, taking chicken BW as an example, we carried out 505 

cross-species meta-TWAS analysis in the muscle, and found that homologous traits (e.g., ADG 506 

and back fat thickness) rather than non-homologous traits (e.g., number of stillborn and weaned 507 

pigs) in pigs could help detect more genes associated with BW in chickens (fig. 6e). Similarly, 508 

human height and BMI increased the detection power of BW-associated genes in chickens via 509 

cross-species meta-TWAS analysis in the muscle (fig. S32k). These results highlighted that the 510 

FarmGTEx resource could facilitate the translation of genetic findings between species at the 511 

functional level of orthologous genes rather than the DNA sequence level.   512 

 513 

Discussions 514 

Summary and general impacts: Through the comprehensive analyses of the so-far largest 515 

collection of chicken RNA-Seq and WGS data, we have developed a catalogue of genetic 516 

variants with regulatory effects on five transcriptional phenotypes, representing both primary 517 

expression (including protein-coding, lncRNA and exon) and post-transcriptional modifications 518 

(alternative splicing and 3’UTR APA), across 28 chicken tissues, referred as the ChickenGTEx. 519 

We made the findings and resources of ChickenGTEx freely accessible to the entire community 520 

through http://chicken.farmgtex.org. This web portal provides an open-access chicken genotype 521 

imputation reference panel, which was built-up and maintained as part of this project. The 522 

current reference panel consists of approximately 3,000 WGS samples from around the globe, 523 

enabling researchers to impute genotypes derived from RNA-Seq, SNP array or low-coverage 524 

sequences to the whole-genome sequence level, which can be utilized further to prioritize 525 

potential causal variants underlying complex traits of interest through integrating with muti-layer 526 

ChickenGTEx resources. Besides, we offer highly-useful visualization tool, Integrative 527 

Genomics Viewer (IGV) (73) for exploring molecular phenotypes, enhancer-gene interactions, 528 

chromatin states, epigenetic modifications, and publicly available GWAS results. The web portal 529 

also includes single-cell RNA-Seq data that were collected and analyzed from six chicken 530 
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tissues, enabling users to query the expression of their desired genes at both the cellular and bulk 531 

tissue level. Additionally, we provide batch data download and advanced search options for data 532 

resource generated in this study, and will continue updating the database to ensure its future 533 

accuracy and relevance. Overall, this first GTEx resource in avian species serves as a valuable 534 

resource for a global atlas of regulatory variants in chickens and informs vertebrate genome 535 

evolution at the functional level, benefiting future research in animal, plant, and human genetic 536 

and biomedicine research.   537 

MolQTL mapping and the underlying molecular mechanism: We have demonstrated that 538 

different molecular phenotypes of the same genes were likely to be controlled by distinct 539 

genomic loci through distinct regulatory mechanisms, indicating the importance of integrating 540 

omics data corresponding to multi-layer biologically-important molecular phenotypes (e.g., 541 

epigenetic mark activity and microRNA expression(74)) in future studies. This is consistent with 542 

findings in humans that most of the sQTL and 3a’QTL were distinct from eQTL (75, 76). The 543 

comparative analysis of regulatory variants reveals several specificities of gene regulation in 544 

chickens compared to mammals. For instance, the chicken genome exhibits a chromosome-size 545 

dependence in genetic control of gene expression, in contrast to mammals. Avian genomes often 546 

have chromosomes of highly variable sizes, with chicken chromosomes ranging from a 547 

minimum of 3.4 Mb to a maximum of 200 Mb (12). Chicken microchromosomes exhibit a 548 

higher gene density, higher GC content and DNA methylation levels(12, 77), and are under 549 

stronger evolutionary constraints (49), that easily distinguish them from the mammal ‘like’ 550 

macrochromosomes. These distinct genetic and epigenetic features might lead to differences in 551 

the genetic regulation of gene expressions across chromosomes in chickens. In addition, we 552 

observed a high sharing of eQTL effect across tissues in chickens, while interestingly the blood 553 

showed the highest dissimilarity against other tissue types. This observation is in contrast to that 554 

of mammals, where the testis showed the highest dissimilarity (32, 47, 48) that is perhaps a result 555 

of nucleated red blood cells in avian blood (78, 79). Moreover, we uncovered a set of genetic 556 

variants with regulatory effects interacting with biological contexts, e.g., sex, transcription factor 557 

expression, genetic background, and cell type compositions. This context-dependent molQTL 558 

explained 10-50% of GWAS loci, revealing the need to consider cell types/states under different 559 

developmental stages, nutrition, and physiology status in the future molQTL mapping 560 

experiments. By taking account of a wide range of environmental/biological contexts, we can 561 

effectively tackle the challenge of "missing regulation" (80, 81). As demonstrated in human 562 

studies(82, 83), harmonizing data from diverse chicken breeds/lines increased the detection 563 

power of molQTL via increasing sample size, facilitating the fine-mapping of causal variants via 564 

reducing LD of SNPs, as well as allowing breed-specific molQTL mapping (84). At the current 565 

pilot phase, eQTL with trans-regulatory effect (> 1Mb to the TSS of genes) is not considered due 566 

to the limited sample size. Discovering trans-eQTL, which often has a small effect size, requires 567 

hundreds of thousands of samples (82, 85), and will be considered in the future when the sample 568 

size of transcriptome data is sufficient. 569 

Potential applications of ChickenGTEx: This multi-tissue gene regulation resource opens the 570 

door to decipher the biological mechanism of complex traits, domestication and polygenic 571 

adaptation in chickens in-depth. It enables nearly 90% of GWAS loci being tested in this study to 572 

be explained by at least of one type of molQTL, a higher proportion than that in humans (78%) 573 

(32) or in pigs (80%) (47). This finding demonstrates the importance of molQTL mapping in 574 

functionally dissecting agriculturally important traits in farm animals, with a high potential for 575 

accelerating and improving the current animal breeding program and enabling the future 576 

precision selection and breeding (26, 86). The focus of cross-species comparison studies in the 577 
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past decades was mainly on the DNA sequence level due to the lack of relevant functional data, 578 

and the recent Zoonomia project investigated the DNA sequence evolution of regulatory 579 

elements while based on in silico prediction across species (87–89). The ChickenGTEx offers 580 

new means to explore the evolutionary impacts of gene regulation on complex traits across 581 

species and translate genetic findings between species at the functional level of orthologous 582 

genes rather than the DNA sequence level. Our exploratory comparative analysis of large-scale 583 

TWAS between chickens and mammals illustrates how to “borrow” information between species 584 

for gene mapping (90, 91). We found that cross-species meta-TWAS aided in the identification 585 

of more functional genes for homologous traits. We believe that the ChickenGTEx resource will 586 

not only contribute significantly to elucidating the molecular architecture underlying phenotypic 587 

variation in chickens, but also to developing chicken models for studying human complex traits 588 

(e.g., disease and behavior  (3–7)). 589 

Limitations and outlooks: The current ChickenGTEx provides the most expansive source of 590 

regulatory variants in the chicken genome. Some limitations and challenges remain in the 591 

genotype and molecular phenotype assessments. New chicken assemblies with more complete 592 

representation are becoming available with fewer computational limitations that we experienced 593 

using the GRCg6a reference genome (Ensembl version 102) (12, 92–94). Future studies will 594 

consider long-read sequences to better resolve splice-variants (95–97), and pangenome 595 

references to annotate complex structural variants (98), mobile element variation (99), and short 596 

tandem repeats (92, 100). In addition, it would be of great interest to investigate the functional 597 

impacts of rare and somatic variants on molecular phenotypes, where multi-tissue samples are 598 

collected from the same individuals with deep WGS data available. Beyond the bulk 599 

transcriptome, other molecular features could be included, e.g., DNA methylation variation, 600 

protein abundance, metabolite profiles, and the composition of the microbiome. For future 601 

single-cell genetics in chickens, a comprehensive chicken single-cell atlas will be the first step 602 

and is urgently required to explore the cell-type/state-specific gene regulation via in silico cell 603 

type deconvolution of large bulk tissue samples(101). In addition, conducting experimental 604 

follow-ups via methods, e.g., massively parallel CRISPR-based screens (102), is crucial to 605 

functionally validate and characterize regulatory effects of genetic variants and to identify 606 

functional genes of complex traits on a large-scale. In summary, the current and future versions 607 

of the ChickenGTEx project promises to establish a reference panel for studying the functional 608 

impacts of genetic variants in their native genomic and cellular contexts in distinct biological 609 

contexts, including molQTL mapping, molecular phenotype prediction for individuals with 610 

genotypes (including extinct species with ancient DNA available) and the evolution of regulatory 611 

variants. The fully developed ChickenGTEx will contribute substantially to research in complex-612 

trait genetics, animal breeding, functional biology, and vertebrate genome evolution at the 613 

functional level.  614 
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Figures and legends 674 

 675 

Fig. 1. Data summary in the pilot phase of ChickenGTEx. (a) Hierarchical clustering of 7,015 676 

RNA-Seq samples. Distance between samples was calculated using 1-r, where r is the Pearson 677 

correlation coefficient calculated from gene expression values (quantified as Transcripts per 678 

Million, TPM) of 5,000 genes with the highest expression variance (measured by standard 679 

deviation) across samples. (b) Functional enrichment of tissue-specific genes based on the Gene 680 

Ontology (GO) database. The color scale from light to deep means a negative logarithm of false 681 

discovery rate (FDR) at the base of 10, obtained by the clusterProfiler 4.0 package with default 682 

settings(103). (c) Scatterplots depicting principal component analysis (PCA) of 2,869 whole-683 

genome sequence (WGS, left) and 7,015 RNA-Seq samples (right). PCA was carried out using 684 

1.52 million SNP genotypes shared by both WGS and RNA-Seq datasets. (d) Illustration of 685 

tissue types used in molecular quantitative trait loci (molQTL) mapping. Sample sizes (in the 686 

bracket) and colors of all the 28 tissues with sample sizes over 40 are depicted.  687 

  688 
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 689 

Fig. 2. Molecular QTL (molQTL) mapping in 28 chicken tissues. (a) Illustration of the 690 

definition of five molecular phenotypes and the respective molQTL, including protein-coding 691 

gene expression (eQTL), lncRNA expression (lncQTL), exon expression (exQTL), splicing 692 

variation (sQTL), and 3’ untranslated region alternative polyadenylation (3’UTR APA, 3a’QTL). 693 

(b) Distribution of molQTL around gene body of eGenes, denoted by the horizontal red bar. 694 

TSS: Transcription Start Site, and TES: Transcription End Site. (c) Conditionally independent 695 
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eQTL across all 28 tissues. Proportion of eGenes with different numbers of independent eQTL 696 

being detected (blue stacked bars; left y-axis), and mean number of independent eQTL per eGene 697 

(red dots; right y-axis). Tissues are sorted from smallest to largest regarding sample size. Tissue 698 

color legend can be found in Fig. 1c and Table S2. (d) Proportion of eGenes detected as a 699 

function of tissue sample size across species, including 28, 34, 24 and 49 tissues in chickens, 700 

pigs, cattle and human, respectively. The lines are fitted with a linear model implemented in the 701 

geom_smooth function of the ggplot2 package(104). Correlations and P values were computed 702 

with the Spearman method using the cor.test function in R v3.6.5(105). (e) cis-h2 (cis-703 

heritability, left y-axis) and phastCons scores (right y-axis) of lead eQTL as a function of 704 

chromosome size (log10scaled). The top and bottom boundaries of the grey shade indicate the 705 

25% and 75% of cis-h2 range, respectively, and the black line is the median of cis-h2 values. Red 706 

dots are average phastCons of lead eQTL, and red bars are their standard deviations. The 707 

correlations were computed with the Spearman method, and P values were computed via the 708 

asymptotic t approximation. (f) The proportion of eQTL detected (y-axis) with different effect 709 

sizes (from left to right panels) as a function of tissue sample size (x-axis). (g) Down-sampling 710 

analyses of eGene and eQTL. We carried out down-sampling analyses (10 replications at each 711 

sample size) in the liver and muscle, which have the largest sample size among all the 28 tissues. 712 

The left panel depicts the number of eGenes (left y-axis) and mean eQTL per eGene (right y-713 

axis) detected at different sample size. The middle panel shows the proportion of detected eQTL 714 

of large (absolute log2aFC ≥ 1, left y-axis) and small effect size (absolute log2aFC ≤ 0.25, right y-715 

axis). The right panel presents the number eGenes detected when the regulatory effect size of 716 

lead eQTL is large (absolute log2aFC ≥ 1, left y-axis) and small (absolute log2aFC ≤ 0.25, right 717 

y-axis). (h) Internal validation of eQTL. Bars in light blue indicate the Spearman correlation 718 

coefficient of eQTL effect size between validation and discovery groups (left y-axis), and red 719 

dots represent π1 statistic estimating the replication rate of eQTL between groups (right y-axis). 720 

The samples in each of the 15 tissues with over 100 individuals are evenly and randomly divided 721 

into two groups, i.e., discovery and validation groups. The tissue color legend (x-axis) can be 722 

found in Fig. 1c and Table S2. (i) Correlation between effect size of eQTL (x-axis, n=91,617) 723 

and those of same loci derived from allele-specific expression (ASE, y-axis) analysis in liver. (j) 724 

The proportion of regulatory variants predicted by DeepSEA (prediction score > 0.7) based on 725 

310 functional profiles in chickens. molQTL_set: conditionally independent molQTL across 726 

tissues; Random_set: randomly selected variants with the same MAF as molQTL; Background: 727 

all tested 1.5 million variants.  728 

  729 
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 730 

Fig. 3. Colocalization and functional enrichment of molQTL. (a) Colocalization analyses of 731 

different types of molQTL of the same genes. The “LD” is the linkage disequilibrium (LD) of 732 

lead SNPs of two molecular phenotypes. “H3” and “H4” represent the probability of whether the 733 

association of two molecular phenotypes is due to two independent SNPs or one shared SNP, 734 

respectively. The vertical red lines indicate corresponding mean values. (b) Associations (i.e., -735 

log10 transformed P) of genetic variants with four molecular phenotypes of NLRC5. The panels 736 

from top to bottom represent gene expression, alternative splicing, exon expression and 3’UTR 737 

APA, respectively. Color legend represents the degree of LD between the lead SNP and the 738 

others. The proportion and enrichment of five types of molQTL across sequence ontology (i.e., 739 

variant types annotated by SnpEff software(106)) (c) and 15 chromatin states (d). Fold 740 

enrichment is shown as mean (dot) ± standard deviation (log2 scaled, error bar) across 28 chicken 741 

tissues. The chromatin states were retrieved from Pan et al. (2023) (30). (e) The enrichment fold 742 

(odds ratio, OR) of molQTL in regulatory variants of seven epigenomic marks predicted by 743 

DeepSEA(107) (prediction score > 0.7). OR = (A/B)/(C/D), where C is the length of molQTL 744 

overlapped with annotated features (A), and B is the length of molQTL overlapped with the total 745 

genome length (D).    746 
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 747 

Fig. 4. Tissue-sharing and context-dependent patterns of molQTL. (a) The heatmap of 748 

Spearman’s correlation of eQTL effect size between tissues. Tissues are clustered on the basis of 749 

dissimilarities (i.e. 1-d), where d is Euclidean distance calculated from the eQTL effect, with a 750 

complete linkage method(108). The color legend of tissues is the same as in Fig. 1c and Table 751 

S2. (b) Similarity of molQTL effect-based tissue clustering patterns. The pairwise Rand Index 752 

across five types of molQTL is used for measuring the similarity, ranging from 0 to 1, where 0 753 

means that two tissue clustering patterns do not match at all, while 1 means that two clustering 754 

patterns match exactly. (c) Fraction of eQTL around transcription start site (TSS) according to 755 

number of tissues they are active in. (d) Absolute effect size (allelic fold change, aFC) of eQTL 756 

as a function of number of tissues where the eGene is expressed in. The black line is 757 

corresponding median estimates, and the grey shades indicate corresponding interquartile ranges. 758 

Correlation tests were carried out using cor.test function in R v3.6.3. (e) Heatmap depicting of 759 

eQTL effect sharing between breeds. This analysis was done by using Multivariate Adaptive 760 

Shrinkage (109), same as in panel a. (f) The expression of the TCFL5 gene across three 761 

genotypes of rs317663121 in males (AA, n=107; AT, n=106; TT, n=92) and female (AA, n=66; 762 

AT, n=56; TT, n=73). TMM is the Trimmed Means of M values, representing the normalized 763 

gene expression level. (g) The significance (-log10P) of interaction between rs733070738 764 

genotypes and myocyte enrichment (top panel) and myoblast enrichment (middle panel) on 765 
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PLVAP expression in muscle. The bottom panel is the Manhattan plot for eQTL mapping of 766 

PLVAP in bulk muscle samples. Dot color means linkage disequilibrium (LD) between 767 

rs733070738 and the rest. 768 

 769 
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Fig. 5. Interpretation of GWAS loci with molQTL. (a) UpsetR plot depicting the number of 770 

GWAS loci explained by five types of molQTL, which were detected by at least one of four 771 

complementary integrative methods, including fastENLOC-based colocalization, Summary-772 

based Mendelian randomization (SMR), single tissue-based transcriptome-wide association 773 

study (sTWAS), and multi-tissue TWAS (mTWAS). (b) The proportion of three types of GWAS 774 

loci (n = 1,155) colocalizing with eQTL regarding the integration results using 4 methods, 775 

including fastENLOC-based colocalization, Summary-based Mendelian randomization (SMR), 776 

single tissue-based transcriptome-wide association study (sTWAS), and multi-tissue TWAS 777 

(mTWAS). No colocalization: GWAS loci that are not interpreted by any eGenes in 28 tissues. 778 

Not nearest gene: GWAS loci are interpreted by eGenes that are not nearest genes to GWAS lead 779 

SNPs. Nearest gene: GWAS loci are interpreted by eGenes that are the nearest ones to GWAS 780 

lead SNPs. Each dot represents one of 108 complex traits. (c) Interpretation of GWAS loci of 781 

weight gain from week 6 to 8 (WG6.8) with molQTL. The top panel depicts associations of 782 

genes with WG6.8 via sTWAS in retina. The second lower panel displays associations (-log10P) 783 

of different molecular phenotypes (gene expression, exon expression, alternative splicing and 784 

3’UTR APA) of KPNA3 with WG6.8 obtained by sTWAS across tissues. The following 785 

Manhattan plot exhibits GWAS associations of SNPs with WG6.8 on chromosome 1. The color 786 

indicated linkage disequilibrium (LD) of SNPs with the lead one (rs15497848, P = 1.22 ×10-12). 787 

The colocalized SNP (rs739579746, P = 1.4 ×10-8) is denoted as a black star. The bottom plot 788 

represents molQTL mapping results of KPNA3 in retina. The color represents LD values of the 789 

colocalized SNP (rs739579746, black color) with the rest. (d) SMR-multi results of GWAS loci 790 

of total stomach weight and eQTL and lncQTL. The top panel depicts GWAS associations of 791 

SNPs (represented by dots) with total stomach weight. The middle panel exhibits SMR 792 

associations of GWAS loci with eQTL of IL20RA in heart, while the bottom panel exhibits SMR 793 

associations of GWAS loci with lncQTL of ENSGALG00000053557. The triangle shape shows 794 

the potential causal SNP (rs314997637) across the three biological layers, i.e., expression of 795 

ENSGALG00000053557, expression of IL20RA and total stomach weight.    796 

  797 
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 798 

Fig. 6. Comparative analyses of gene regulation and transcriptome-wide associations 799 

(TWAS) between chickens and mammals. (a) Visualization of variance in gene expression of 800 

14,278 RNA-Seq samples across four species (i.e., Chicken, pig, cattle and human) via a t-801 

distributed stochastic neighbor embedding (t-SNE). Gene expression (Transcripts per Million, 802 
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TPM) of 10600 1-1-1-1 orthologous protein-coding genes are normalized between samples using 803 

Seurat software (v4.3.0) (110). (b) Pearson’s correlation of averaged effect size of lead eVariants 804 

of 5,513 orthologous eGenes between species. (c) Comparison of chicken-specific eGenes and 805 

conserved eGenes (i.e., eGenes that are shared with at least one mammalian species) across nine 806 

tissues. The bottom barplot depicts the proportion of chicken-specific eGenes and conserved 807 

eGenes in each tissue. The violin plots from top to bottom depict expression level, TAU (tissue-808 

specificity of expression), t-value (measuring the degree of gene differential expression between 809 

species), number of promoters per gene, and loss-of-function intolerance (quantified by 810 

LOEUF), respectively. Statistical tests were done by employing two-sided Wilcox-test. ***P ≤ 811 

0.001; **0.001 < P ≤ 0.01; *0.01 < P ≤ 0.05; NS: not significant (P > 0.05). (d) Significance (at 812 

log10 transformed, y-axis) for TWAS-based correlations calculated using one-to-one orthologous 813 

gene effect between chicken and pig. The red dashed line depicts the threshold of significance 814 

(Permutation-based P value < 0.01, corresponding to nominal P value < 9.11 × 10-3). (e) The 815 

number of genes newly detected (FDR < 0.05) for body weight in chickens by using cross-816 

species meta-TWAS analysis in muscle. The dashed horizontal line indicates 0 before the log 817 

transformation. Orange and blue bars represent homologous and nonhomologous traits in pigs 818 

for chicken body weight, respectively. BFT: backfat thickness, LMA: loin muscle area, ADG: 819 

average daily gain, LMDEP: loin muscle depth, DAYS: days, MUMM: number of mummified 820 

pigs, NBW: number of weak pigs, WSI: weaning to estrus interval, NBS: number of stillborn 821 

pigs, NWEAN: number of weaned piglets. 822 

 823 

Methods and Materials  824 

RNA-Seq data analyses and molecular phenotype definition 825 

We downloaded 8,338 RNA-Seq data sets from the Sequence Read Archive (SRA, 826 

https://www.ncbi.nlm.nih.gov/sra)and 140 public data sets from the Genome Sequence Archive 827 

(GSA, https://ngdc.cncb.ac.cn/gsa/). We also included 155 newly-generated RNA-Seq data sets. 828 

The metadata relating to all the RNA-Seq samples is summarized in Table S1. For quality 829 

control, we removed adaptors and trimmed low-quality reads using Trim Galore (v0.6.6,  830 

https://github.com/FelixKrueger/TrimGalore) with options of “--gzip --trim-n --length 30 --831 

clip_R1 3 --clip_R2 3 --three_prime_clip_R1 3 --three_prime_clip_R2 3”. We aligned the clean 832 

reads to the GRCg6a reference genome (Ensembl version 102) using STAR (v2.7.7a)(111) with 833 

parameters of “--quantMode GeneCounts --chimSegmentMin 10 --chimOutType Junctions --834 

chimOutJunctionFormat 1 --outFilterMismatchNmax 3”. For downstream analyses, only 7,015 835 

samples with uniquely mapping rates ≥ 60 % and a number of clean reads > 500,000 after 836 

removing potentially mislabeled samples were kept. For each of these samples, we then obtained 837 

raw read counts and normalized expression (i.e., Transcripts Per Million, TPM) of 16,779 PCGs 838 

annotated in the Ensembl v102 and 22,792 lncRNA genes annotated by FR-AgENCODE 839 

(http://www.fragencode.org/)(112), using featureCounts (v2.0.1)(113) and StringTie 840 

(v2.1.5)(114), respectively. Using the same software(113), we counted the total number of reads 841 

as a function of annotated exons, which were further transformed into TPM using TBtools(115). 842 

We performed the tree clustering of all the RNA-Seq samples using the GGTREE package(116). 843 

The distance between samples was measured by 1-r, where r was Pearson’s correlation 844 

coefficient based on the log2(TPM+0.25) of 5,000 genes with the highest variability. We also 845 

visualized these samples using the t-distributed stochastic neighbor embedding (t-SNE) approach 846 

implemented in the Rtsne package(117).   847 
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We quantified alternative splicing variation from RNA-Seq data using the LeafCutter 848 

package(118), which took into account spliced reads so that both novel and known alternative 849 

splicing events could be identified and quantified(118). Briefly, based on the STAR alignments 850 

mentioned above, we extracted junctions and defined intron clusters across samples using the 851 

script “bam2junc.sh” and leafcutter_cluster.py”, respectively, as provided by the LeafCutter 852 

package(118). For intron clustering, we required at least 30 split reads supporting each cluster 853 

and at least 0.1% of reads supporting a junction in a cluster, as well as allowing intron length of 854 

up to 500kb. The generated matrix of per individual counts was normalized and used for 855 

clustering samples based on 1-r, where r is the Pearson’s correlation coefficient between 856 

samples. To link intron clusters to genes, we mapped their coordinates to the gene model 857 

provided by the FR-AgENCODE database (112) using the script “map_clusters_to_genes.R” 858 

(https://github.com/broadinstitute/gtex-pipeline). Afterward, we filtered out introns if no reads 859 

were detected in >50% of samples or the number of counts was less than max(10, 0.1n) where n 860 

is the sample size. In addition, we discarded introns with low variability across samples: ∑i(|zi| < 861 

0.25) ≥ n-3 and ∑i(|zi| > 6) ≤ 3, where zi is the z-score of the ith cluster read fraction across 862 

individuals. The filtered counts were further normalized between samples using the script 863 

“prepare_phenotype_table.py” in the LeafCutter package(118). The generated normalized 864 

splicing counts were stored in BED formatted file for subsequent sQTL mapping.  865 

For the quantification of 3’UTR APA, we utilized the DaPars (v2)(119). We first extracted distal 866 

polyadenylation sites based on the Ensembl annotation (v102) using the script 867 

“DaPars_Extract_Anno.py”. Then, we computed the genome coverage of STAR alignments 868 

mentioned above using the genomecov function in the BEDTools (v2.30.0)(120). The generated 869 

wiggle alignment files were then used for quantifying APA usage, resulting in the percentage of 870 

distal poly(A) site usage index (PDUI) value for each gene in each sample. We rescaled the 871 

PDUI values across samples to the mean of zero and variance of one in each tissue for 3a’QTL 872 

mapping.  873 

 874 

Single-cell RNA-Seq data analyses 875 

We retrieved single-cell RNA-Seq data from the chicken heart (n = 7) (121) and muscle (n = 2) 876 

(122) from the public database. Raw sequencing data was processed by using the “count” 877 

function after preparing the genome annotation .gtf file (Ensembl v102) with the mkgtf tool of 878 

the Cell Ranger pipeline(123). The Seurat R package (v4.0.5)(124) was used for subsequent cell-879 

type identification. We first created the Seurat object based on the raw read count of each sample 880 

in a tissue using the CreateSeuratObject function. In this step, we filtered out cells with unique 881 

gene counts < 200 and with mitochondrial counts > 20% of the total counts. We then normalized 882 

raw counts of gene expression using the LogNormalize algorithm and further identified highly 883 

variable genes (HVG) using the FindVariableFeatures algorithm with default parameters. The 884 

HVG count matrices of all samples for a given tissue were integrated and combined to form a 885 

single Seurat object using the FindIntegrationAnchors and IntegrateData functions. We scaled 886 

the integrated dataset using the ScaleData function, which was further used to run principal 887 

components analysis (PCA) with the RunPCA function. The top 15 PCs, where the percentage of 888 

variance explained tended to be constant based on the elbow plot by the JackStraw function, 889 

were selected for running Uniform Manifold Approximation and Projection (UMAP) analysis for 890 

cell clustering using the RunUMAP function. The nearest neighbors between cells were 891 

constructed using the FindNeighbors function and cell clusters were thus determined using the 892 

FindClusters function at a resolution of 0.05. We manually assigned cell names based on original 893 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.27.546670doi: bioRxiv preprint 

https://github.com/broadinstitute/gtex-pipeline
https://doi.org/10.1101/2023.06.27.546670
http://creativecommons.org/licenses/by-nd/4.0/


 

28 

 

publications (121, 122) and the PanglaoDB database(125). Finally, cell clusters were visualized 894 

using the UMAP algorithm with the DimPlot function. To further deconvolute bulk RNA-Seq 895 

data using single-cell RNA-Seq data, we first created a signature matrix using the CIBERSORTx 896 

tool (126) with default parameters. Using the “Impute Cell Fractions” from the same tool, we 897 

imputed cell fractions with the custom mode and 1000 permutations after uploading the gene 898 

expression matrix for the bulk RNA-Seq data.  899 

 900 

Tissue-specificity of gene expression 901 

We employed tspex(127), a tissue-specificity calculator, to compute 12 tissue-specificity metrics, 902 

including 8 general scoring metrics (i.e. Couts, Tau, Gini coefficient, Simpson index, Shannon 903 

entropy specificity, ROKU specificity, Specificity measure dispersion, and Jensen-Shannon 904 

specificity dispersion) and 4 individualized scoring metrics (i.e. Tissue-specificity index, Z-905 

score, Specificity measure, and Jensen-Shannon specificity). To identify tissue-specifically 906 

expressed genes in a tissue, we applied another t-statistic approach as described previously(128). 907 

Briefly, for a given tissue, we carried out differential gene expression analysis between the target 908 

tissue and the rest but excluded those from the same biological system using the limma 909 

package(129). Subsequently, tissue-specific genes were identified when FDR corrected P-910 

value(130) > 0.05 and fold change > 2. Functional enrichment analysis of tissue-specific genes 911 

with Biological Process (BP) terms in the Gene Ontology (GO) database was performed using 912 

the clusterProfiler package(103).  913 

 914 

Sex-biased gene expression 915 

To identify genes with sex-biased expression, we employed DESeq2 software(131) to carry out 916 

differential expression analysis between male and female samples in 18 tissues, where sample 917 

size of each sex was > 10. We fitted a generalized linear model for the differential expression 918 

analysis while correcting for factors, including BioProject, year when RNA-Seq data was 919 

generated, age, breed, sequencing platform, library layout and selection method. After multiple 920 

testing correction by the FDR approach(130), the set of differentially expressed genes was 921 

identified when FDR corrected P-value < 0.01.  922 

 923 

Reference-guided transcript assembly 924 

Based on STAR alignment files, we assembled transcripts with the guidance of the Ensembl 925 

annotation (GRCg6a v102) using the StringTie2 software tool(114). To increase the 926 

computational efficiency, transcript assembly was run by tissue. Then, the generated assembly 927 

files from all tissues were merged by using the “merge” function of the StringTie2 928 

software(114). After quantifying the expression of assembled transcripts, we only retained 929 

single-exon transcripts with TPM >1 in at least half of samples in a tissue, and multi-exon 930 

transcripts with TPM >0.1 in at least half of samples in a tissue. Moreover, we compared our 931 

prediction to Ensembl and NCBI annotations using GffCompare (version 0.11), and classified  932 

them into 14 classes as described previously(95, 132). The coding potential of predicted 933 

transcripts was predicted by using CPP2 software(133), with lncRNA loci predicted using 934 

FEElnc(134).  935 

 936 
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Construction of gene co-expression networks 937 

To build gene co-expression networks in each tissue, we employed five complementary methods 938 

with default parameters, including WGCNA (v1.69)(135), ICA (v1.0.2)(136), PEER (v1.3)(137), 939 

MEGENA (v1.3.7)(138), and CEMiTool (v1.8.3)(139). The input gene expression values were 940 

adjusted for hidden confounding factors by regressing out 10 PEER factors and 5 genotypic PCs 941 

(see “Preparation for molQTL mapping” section). Functional enrichment analysis of gene co-942 

expression modules was conducted by using clusterProfiler (v4.0)(103), and the following 943 

visualization was done using Gephi (v0.9.2)(140). 944 

 945 

SNP calling from RNA-Seq samples 946 

To call SNPs from RNA-Seq samples, we marked PCR duplicates in STAR alignment files and 947 

split reads that contained Ns in their cigar string using MarkDuplicates and SplitNCigarReads 948 

modules of the Genome Analysis Toolkit (GATK, v 4.1.9.0)(45), respectively. Using the 949 

Ensembl dbSNP database (v102), we recalibrated base quality scores using GATK 950 

BaseRecalibrator and ApplyBQSR modules. By following the best practice of germline variant 951 

calling from RNA-Seq data, we detected small variants from the recalibrated alignments files, 952 

which generated individual Genomic Variant Call Format (GVCF) files using the 953 

HaplotypeCaller function of the GATK tool(45). Then, we carried out joint-calling of all GVCF 954 

samples using the GenotypeGVCFs module from the GATK tool(45). For selecting high-quality 955 

SNPs, we carried out a hard-filtering with criteria of “FS > 30.0 & QD < 2.0”, resulting in a total 956 

set of 12,191,306 SNPs.  957 

 958 

Construction of the multi-breed genotype imputation panel and genotype imputation 959 

We retrieved 1,693 public WGS data sets from SRA (n=1,213) and GSA (n = 480) databases 960 

along with 1,176 additional newly generated WGS samples, resulting in a total set of 2,869 WGS 961 

samples (Table S6). All raw sequence reads passed a uniform computational pipeline, including 962 

adaptor removal, read alignment, and SNP calling. Briefly, we trimmed read adaptors and low-963 

quality reads using the Trimmomatic v0.39 software(141). The obtained clean reads were further 964 

aligned against the Ensembl GRCg6a chicken reference genome (v102) using the MEM 965 

algorithm of the Burrows-Wheeler Aligner (BWA, v0.7.17)(142). The alignment files in Binary 966 

Alignment Map (BAM) format were sorted using SAMtools (v1.9)(143), and were further passed 967 

for the removal of PCR duplicates using GATK (v4.1.9.0)(45). The obtained BAM files were 968 

then used for variant discovery to generate individual GVCF files using the HaplotypeCaller 969 

function of the GATK tool(45). The joint-calling of all 2,869 GVCF samples was further done 970 

using the GenotypeGVCFs module from the GATK tool(45). For selecting high-quality SNPs, 971 

we carried out a hard-filtering with criteria of “QD < 2.0, MQ < 40.0, FS > 60.0, SOR > 3.0, 972 

MQRankSum < -12.5, and ReadPosRankSum < -8.0”, resulting in a total set of 117,900,812 973 

clean SNPs. To create the genotype imputation reference panel, we first filtered out multi-allelic 974 

and sex chromosomal SNPs, as well as those with MAF < 0.01 and missing rate > 0.9 using 975 

BCFtools v1.10.2(144), and then imputed missing genotypes using the Beagle 5.1 program(145). 976 

This yielded the final reference panel consisting of 2,869 samples and 10,520,420 SNP 977 

genotypes. To better impute SNPs called from RNA-Seq samples, we discarded SNPs called 978 

from RNA-Seq samples with MAF < 0.05 using BCFtools v1.10.2(144) and further evaluated 979 

the effect of missing rates decreasing from 0.9 gradually to 0.6 on imputation accuracy. This 980 
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evaluation revealed that the missing rate of 0.6 could reach >95% of imputation accuracy, 981 

yielding a set of 1.5 million SNPs for subsequent analysis. The genotype imputation was 982 

performed using the Beagle 5.1 program(145). 983 

 984 

Preparation for molQTL mapping  985 

Sample deduplication. After assigning RNA-Seq samples into 28 tissue types, we calculated the 986 

identity-by-state (IBS) distance between samples within each tissue based on the imputed SNP 987 

genotypes using PLINK v1.9(146). The formula of IBS calculation is as follows: 988 

𝐼𝐵𝑆 =  
(𝐼𝐵𝑆2 + 0.5 × 𝐼𝐵𝑆1)

(𝐼𝐵𝑆0 + 𝐼𝐵𝑆1 + 𝐼𝐵𝑆2)
 989 

where IBS0, IBS1 and IBS2 are the number of non-missing variants when IBS = 0, IBS = 1, and 990 

IBS = 2, respectively. If the IBS distance of a pair of samples is higher than 0.9, they were 991 

deemed as duplicated so that the samples with the higher sequencing depth were kept. The 992 

deduplication process was run until all IBS values per pair of samples were less than 0.9. Finally, 993 

a total of 28 tissues with sample sizes ranging from 44 (testis) to 741 (liver) were kept for 994 

subsequent molQTL mapping.  995 

Principal component analysis. Within each of those 28 tissues, we first LD-pruned imputed 996 

genotypes with the option of “--indep-pairwise 200 100 0.1” using PLINK v1.9(146). Principal 997 

component analysis (PCA) of samples was then carried out, based on the LD-pruned genotypes 998 

using the smartpca tool of the EIGENSOFT v8.0.0 package(147). The top 5 principal 999 

components (PCs) were selected as covariates for heritability estimation and molQTL mapping. 1000 

Estimating PEER confounder factors. To correct for confounders and other unwanted technical 1001 

or biological variations in RNA-Seq samples, we estimated the Probabilistic Estimation of 1002 

Expression Residuals (PEER) in each of the tissues using the PEER software package(137). The 1003 

top 10 PEER factors showing highly relative contributions (i.e., factor weight variance) to gene 1004 

expression variation were selected for subsequent heritability estimation and molQTL mapping.  1005 

Phenotype preparation. For protein-coding genes, lncRNAs and exons, we filtered out features 1006 

with TPM < 0.1 and raw read counts < 6 in > 20% of samples within a tissue. Raw read counts 1007 

were normalized using the Trimmed Mean of M-value (TMM) algorithm of the edgeR 1008 

package(148). The generated TMM matrix was then further normalized with an inverse normal 1009 

transformation for subsequent molQTL mapping. For splicing and APA, the preparation of 1010 

molecular phenotypes was described in the “RNA-Seq data analysis and molecular phenotype 1011 

definition” section.  1012 

 1013 

Estimating cis-heritability of gene expression 1014 

We leveraged the GCTA program v1.93.2(149) to estimate cis-heritability (cis-h2) of molecular 1015 

phenotypes by fitting a mixed linear model:   1016 

𝑦 = 𝑋𝛽 + 𝑔 +  𝜀 1017 

where y is a vector of phenotypic values (i.e., gene expressions) of all samples, β is a vector of 1018 

corresponding coefficients of quantitative covariates X of all samples, which included 5 1019 

genotypic PCs and 10 PEER factors, g is a vector of the genetic values of SNPs around ±1Mb of 1020 

the transcription start sites (TSS) of a gene, and ɛ is a vector of residuals. The genetic value g 1021 
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followed a normal distribution with mean of 0 and variance of 𝑨𝜎𝑔
2, where A was the genetic 1022 

relationship matrix (GRM) between individuals(150). Thus, we can estimate 𝜎𝑔
2, i.e., the 1023 

variance explained by SNP genotypes (i.e., cis-h2), using the restricted maximum likelihood 1024 

(REML) approach(150, 151) implemented in GCTA software(149). The cis-h2 was finally 1025 

defined when the significance level was lower than 5% based on the likelihood ratio test(149, 1026 

150).  1027 

 1028 

Molecular QTL mapping 1029 

In this study, we only intended to map cis-molQTL of each feature, i.e., SNPs distributed around 1030 

1 Mb upstream and downstream of the TSS of the gene, using tensorQTL v1.0.4(152). This 1031 

utilized graphics processing units (GPUs) with the scalability to increase runtime and reduce the 1032 

time cost. Initializing with the option of “--mode cis_nominal” of the tensorQTL v1.0.4(152), we 1033 

calculated all nominal associations of all variant-molecular phenotype pairs. The permutation 1034 

mode was further used for computing empirical P-values for a molecular phenotype using the 1035 

option of “--mode cis” of the tensorQTL v1.0.4. After carrying out a multiple testing correction 1036 

based on empirical beta-approximated P-values(153) using the false discovery rate (FDR) 1037 

approach(130), we defined eGenes , i.e., genes that were significantly regulated by at least one 1038 

variant (FDR < 0.05). For an eGene, the empirical P-value that was closest to an FDR of 0.05 1039 

was defined as the genome-wide empirical P-value threshold (pt), which was used for defining 1040 

the gene-level significance threshold using qbeta(pt, beta_shape1, beta_shape2) in R 1041 

(v3.6.3)(105), where beta_shape1 and beta_shape2 were computed by tensorQTL v1.0.4(152). 1042 

The significant molQTL were tested SNPs whose nominal P-values were lower than the gene-1043 

level significance threshold.  1044 

 1045 

Fine-mapping analysis of molQTL  1046 

We employed four strategies for fine-mapping independent variants underlying each molQTL. 1047 

Firstly, we utilized the stepwise regression procedure for mapping conditionally independent 1048 

molQTL, as used in other GTEx studies (32, 47, 48). This analysis was done by using the 1049 

tensorQTL v1.0.4 with “--mode cis_independent” option(152). The conditionally independent 1050 

molQTL mapping was based on the nominal associations mentioned above and ranked variants. 1051 

Secondly, we fine-mapped putative causal variants for each molecular phenotype by using the 1052 

“Sum of Single Effects” (SuSiE) model (v 1.0) (46). We calculated LD correlations between all 1053 

tested SNPs of a molecular phenotype from the genotype reference panel and then fine-mapped 1054 

variants using the SuSiE infinitesimal effect model. The posterior probability of 0.1 was used for 1055 

identifying putative causal variants and credible sets. 1056 

 1057 

Colocalization analysis between molecular phenotypes 1058 

To demonstrate whether two types of molecular phenotypes shared genetic regulatory 1059 

mechanisms, we determined a set of paired molecular phenotypes that were transcribed from the 1060 

same gene. We then ran the coloc.abf function in the coloc package(154), which is an 1061 

Approximate Bayes Factor colocalization analysis for detecting significant genetic variants 1062 

shared by two molecular phenotypes. The package computed posterior probabilities for: 1) no 1063 

association with either molecular phenotype (H0); 2) association only with the first molecular 1064 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.27.546670doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.27.546670
http://creativecommons.org/licenses/by-nd/4.0/


 

32 

 

phenotype (H1); 3) association only with the second molecular phenotype (H2); 3) association 1065 

with both molecular phenotype but two independent signals (H3); 4) association with both 1066 

molecular phenotype and shared signals (H4).  Moreover, we calculated the linkage 1067 

disequilibrium (LD) of two lead SNPs for a pair of shared molecular phenotypes using PLINK 1068 

v1.9(146). 1069 

 1070 

Tissue- and breed-sharing of molQTL 1071 

Tissue-sharing of molQTL. To assess the cross-tissue sharing pattern of molQTL, we used 1072 

Multivariate Adaptive Shrinkage in R (MashR, v0.2.57)(109) and METASOFT v2.0.0(155).  For 1073 

MashR, we used the z-score (slope/slope_se) of top molQTL for a gene as input. To run the 1074 

mash model, we randomly selected 1 million molQTL-gene pairs from nominal associations 1075 

being tested across all tissues by tensorQTL and obtained their z-score values. If there were 1076 

missing z-score values, zero was filled and the corresponding standard error was set to 1e6. Local 1077 

false sign rate (LFSR) was then computed by MashR and an LFSR of 0.05 was considered as the 1078 

significance threshold to define whether a molQTL was active in a tissue. Pairwise Spearman’s 1079 

correlation of effect size of active molQTL was calculated to evaluate tissue similarity. For 1080 

METASOFT, we combined all significant molQTL across tissues and computed the z-score as 1081 

described above. We estimated the m-value, which represented the posterior probability 1082 

indicating whether a molQTL effect exists in a tissue, using the Markov Chain Monte Carlo 1083 

(MCMC) method(156). The m-value threshold was set as 0.7. 1084 

Breed-sharing eQTL analysis. We considered the brain (Leghorn, n = 78; Red Jungle Fowl, n = 1085 

46; Ross, n = 157), spleen (Leghorn, n = 74; Cobb, n = 43) and liver (Leghorn, n = 60; Cobb, n = 1086 

47; Ross, n = 101; Rhode Island Red, n = 78), tissues as they had more than two breeds with 1087 

sample size > 40. For each breed, we ran eQTL mapping independently using tensorQTL 1088 

software (v1.0.4). The eQTL sharing was assessed using METASOFT v2.0.0(155),  and MashR 1089 

(v0.2.57)(109), as well as π1 statistic in the qvalue package(51, 157). The METASOFT and 1090 

MashR were run as described above, and the π1 statistic (i.e. replication rate)(157) was used to 1091 

assess if an eQTL detected in one breed can be replicated in another breed.  1092 

 1093 

Detection of context-dependent QTL 1094 

Sex-biased eQTL. To identify eQTL that is significantly associated with gender, we focused on 1095 

eight tissues that had at least 30 samples for each sex. In this study, we only considered 1096 

conditionally independent eQTL identified above to reduce the computational burden. We fitted 1097 

a linear model y = g + s + s × g + c + e, where y is phenotypic values of gene expression; g is 1098 

genotype (0 for homozygous ref, 1 for heterozygous, and 2 for homozygous alt); s is sex 1099 

information (0 for female and 1 for male); c is quantitative covariates including 5 genotypic PCs 1100 

and 10 PEER factors as we used in eQTL mapping, while e is for the residuals. The same 1101 

parameters were also used for computing the null model but excluding the s × g term. We then 1102 

calculated P values by comparing the linear interaction model to the null model using analysis of 1103 

variance. The lm() function in R v3.6.3 (105) was used for model fitting. 1104 

Transcription factor (TF) interacting eQTL. To detect eQTL that may interact with the 1105 

expression of transcription factors, we retrieved 956 putative transcription factors from the 1106 

AnimalTFDB (v3.0). As was done for sex-biased QTL detection, we only considered 1107 

conditionally independent eQTL but excluded eGenes that were TF. Likewise, we fitted the same 1108 
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interaction model, but the interaction term was TF expression. A total of 15 quantitative 1109 

covariates including 5 genotypic PCs and 10 PEER factors were also fitted in the model to 1110 

control confounding factors. The significance threshold was set as FDR(130) corrected P-value < 1111 

0.01.  1112 

Cell-type interacting eQTL. We mapped cell-type interaction QTLs by fitting a linear model but 1113 

included an interaction term implemented in the tensorQTL v1.0.4 (152): y = g + i + g × i + e, 1114 

where y is gene expression, i is the estimated abundance of cell types, and g is genetic effects 1115 

estimated from SNPs within ±1Mb of the TSS of a gene, while e is for the residuals. To control 1116 

confounding factors, we also included a total of 15 quantitative covariates including 5 genotypic 1117 

PCs and 10 PEER factors as described above. We defined genes that had at least one significant 1118 

SNP after carrying out a multiple testing correction on eigenMT-based P-values(158) using the 1119 

FDR approach(130). We defined the threshold of significance as FDR < 0.01.   1120 

Breed interacting eQTL. To demonstrate breed effects on gene regulation, we ran breed 1121 

interaction eQTL mapping using the tensorQTL (v1.0.4) tool (152) in brain, where the sample 1122 

size of each breed was > 40, including Leghorn (n=78), Red Jungle Fowl (n = 46) and Ross (n = 1123 

157). This interaction eQTL mapping fitted the same model as described for “Cell-type 1124 

interaction eQTL” while the interaction term was breed information. The breed origins were 1125 

coded as 0 for Red Jungle Fowl and 1 for Leghorn/Ross. After a multiple testing correction using 1126 

the FDR approach(130), gene-variant pairs with FDR < 0.01 were deemed as significant.  1127 

 1128 

Estimating effect sizes of molQTL 1129 

We estimated the allelic fold change (aFC) of molQTL by employing the aFC (v0.3) Python 1130 

script(159). The estimation was based on genotypes and molecular phenotypes (the same as 1131 

molQTL mapping), as well as covariates including 5 genotypic PCs and 10 PEER factors. The 1132 

95% confidence interval of aFC was estimated by using the bootstrap method (--boot 100).  1133 

 1134 

Allele specific expression (ASE) 1135 

We conducted a haplotype-based ASE analysis through the phASER (v1.1.1) software(160). To 1136 

exclude genomic regions with high mapping error rates, we first computed the genome 1137 

mappability using GenMap (v1.3.0)(161) with parameters: -K 75 -E 2. The generated blacklist 1138 

was fitted to the phASER (v1.1.1) tool(160) to phase variants from the STAR alignment BAM 1139 

and VCF files with options of “--paired_end 1 --mapq 255 --baseq 10”. Using the script 1140 

“phaser_expr_matrix.py”, we measured gene-level haplotypic expression for all samples with 1141 

default parameters. The generated haplotypic counts files for individual samples were further 1142 

aggregated by tissue by using “phaser_expr_matrix.py”. Finally, we used the 1143 

“phaser_cis_var.py” script to estimate the effect size of eQTLs based on aggregated haplotypic 1144 

counts. The correlation of ASE-level effect size (ASE aFC) and eQTL effect size (aFC estimated 1145 

above) was computed using the Spearman’s correlation approach in R v3.6.3 (105).  1146 

 1147 

Replication of molQTL discovery 1148 

To assess the replication rate of molQTL discovery, we employed the π1 statistic embedded in 1149 

the qvalue package(51, 157). Briefly, we randomly split RNA-Seq samples into two groups - 1150 

QTL discovery and validation population, when the tissue sample size was greater than 100. We 1151 
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ran QTL mapping in each group separately using tensorQTL (v1.0.4) (152) as described above. 1152 

Based on replicated eQTL P-values, we calculated π0 value that measured the overall proportion 1153 

of true null hypotheses using the pi0est function within the qvalue package(157). The π1 was thus 1154 

obtained by 1- π0.   1155 

 1156 

DeepSEA model training and variant effect prediction 1157 

DeepSEA is a deep learning model initially trained for predicting variant effects in human(50), 1158 

while in this study, it was retrained by utilizing 310 epigenomic peaks generated by the chicken 1159 

FAANG consortium (30) and by Zhu et al. (162) (Table S7).  According to sequencing type and 1160 

histone marks, we categorized all 310 epigenomic peaks into groups, including ATAC, CTCF, 1161 

DNaseSeq, H3K27ac, H3K23me3, H3K4me1 and H3K4me3, which were used as input for the 1162 

model training using the Selene, a PyTorch-based package (163). Briefly, we grouped the 1163 

genome into 200-bp bins and then labeled the bins according to input features. A genomic bin 1164 

will be labeled 1 if half of the bin overlaps with an epigenomic peak, otherwise labeled as 0. The 1165 

model was then trained based on a sequence region of 1,000 bp (i.e., input feature), where the 1166 

200-bp bin was placed at the center. We created validation and testing datasets by grouping 1167 

chromosomes, specifically grouping chromosomes 8 and 9 to the training set and chromosomes 6 1168 

and 7 to the validation set. We computed the area under the receiver operating characteristic 1169 

(AUROC) to evaluate the performance of the DeepSEA model. After that, we computed variant 1170 

effect/score of two alleles for a given molQTL, i.e.  2 × 310 predicted chromatin variant scores, 1171 

by inputting a 1000-bp sequence with the center being the Ref or Alt allele. The score is defined 1172 

as the relative log fold changes of odds between predicted scores of the Ref and Alt. For each 1173 

feature, SNPs with a score greater than 0.7 were identified as variants affecting the feature. 1174 

𝑣𝑎𝑟𝑎𝑖𝑛𝑡 𝑠𝑐𝑜𝑟𝑒 =  | log
𝑝(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)

1 − 𝑝(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)
− log

𝑝(𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒)

1 − 𝑝(𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒)
| 1175 

 1176 

Functional enrichment of molQTL 1177 

To understand the enrichment of molQTL in sequence ontology (i.e., SNP functional types 1178 

annotated by SnpEff v5.0e) and regulatory elements (i.e., 15 chromatin states annotated in(30)), 1179 

we employed the formula: 1180 

𝐸 =  
(𝐶 / 𝐴)

(𝐵 / 𝐷)
 1181 

where A and D are the length of feature annotations and the total genome length, respectively. C 1182 

is the length of molQTL overlapped with feature annotations, and B is the length of molQTL 1183 

overlapped with the total genome length. To further uncover the regulatory mechanism of 1184 

molQTL, we retrieved predicted pairs of regulatory elements-target genes from(30). We then 1185 

overlapped them with our molQTL-regulated genes but at the same time required the molQTL to 1186 

be located within regulatory elements. Moreover, we also performed the enrichment analysis of 1187 

molQTL-regulated genes and HiC TAD with data retrieved from a previous study (52) using the 1188 

SnakeHiC pipeline (https://github.com/FarmOmics/SnakeHiC). 1189 

 1190 

Integrating molQTL with GWAS results 1191 
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GWAS summary statistics. To investigate the regulatory mechanisms underpinning complex traits 1192 

in pigs, we systematically integrated the identified molQTL with GWAS from 108 complex traits 1193 

of economic importance, representing five trait domains (i.e., growth and development, carcass, 1194 

egg production, feed efficiency and blood biochemical index). Detailed information for each 1195 

GWAS is shown in Table S17. To perform the integrative analysis of GWAS and molQTL, we 1196 

overlapped significant GWAS loci with the 1,522,091 SNPs were tested in the molQTL mapping 1197 

analysis, resulting in 1,176 GWAS loci. 1198 

Enrichment of molQTL and trait-associated variants. To examine whether molQTL were 1199 

significantly enriched among the significant GWAS loci, we applied QTLEnrich (v2) (32) to 1200 

quantify the enrichment degree between significant molQTL and GWAS loci.  1201 

Transcriptome-wide association study (TWAS). We conducted single- and multi-tissue TWAS 1202 

with S-PrediXcan(164) and S-MultiXcan(165) included in the MetaXcan (v0.6.11) family, 1203 

respectively. Briefly, we trained the Nested Cross validated Elastic Net models with molecular 1204 

phenotypes (i.e., PCG, lncRNA, splicing, exon, and 3a’Genes) and corresponding SNPs within 1205 

the 1Mb cis-window of molecular phenotypes in all 28 tissues. The predictive models with cross-1206 

validated correlation ρ > 0.1 and prediction performance P < 0.05 were selected for subsequent 1207 

analyses. Using the S-PrediXcan tool and trained models, we predicted gene-trait associations at 1208 

the single-tissue level, i.e., single-tissue TWAS results. Further, using the S-MultiXcan tool, we 1209 

integrated single-tissue predictions, generating the multiple-tissue TWAS results. After carrying 1210 

out a multiple testing correction with the FDR approach(130), gene-trait associations with 1211 

corrected-P < 0.05 were considered as significant.  1212 

Summary-based Mendelian Randomization (SMR). To explore the pleiotropic association 1213 

between molecular phenotypes and a complex trait, we conducted a Mendelian Randomization 1214 

analysis. This was done by using the SMR software (v1.3.1) (166), which can utilize summary-1215 

level data from GWAS and molQTL. To correctly fit the SMR software, the molQTL data 1216 

generated by tensorQTL in this study was initially converted into BESD format with options of 1217 

“--fastqtl-nominal-format --make-besd”. We then ran the SMR test and carried out a multiple 1218 

testing correction with the FDR approach(130). The gene-trait pairs with corrected P-value < 1219 

0.05 were selected and deemed as significant.  1220 

Colocalization analysis. To identify shared genetic variants between GWAS and molQTL, we 1221 

conducted a colocalization analysis with fastENLOC (v2.0) (167). We first fine-mapped putative 1222 

causal variants for each eGene by using a Bayesian multi-SNP genetic association analysis 1223 

algorithm, deterministic approximation of posteriors (DAP, the current version is DAP-G, 1224 

v1.0.0)(168, 169). Leveraging the DAP-G (v1.0.0) (168, 169) outcome, we generated a 1225 

probabilistic annotation of molQTL using the “summarize_dap2enloc.pl” script. We then 1226 

calculated approximate LD blocks using PLINK v1.9 (146) with options: --blocks no-pheno-req 1227 

--blocks-max-kb 1000 --make-founders. The posterior inclusion probability (PIP) of GWAS loci 1228 

was calculated for each LD block using TORUS (170) with the options: --load_zval -dump_pip. 1229 

By integrating GWAS PIP values, we ran the final colocalization analysis with the fastENLOC 1230 

(v2.0) tool (171) and obtained the regional colocalization probability (GRCP). The GRCP > 0.1 1231 

was defined as the threshold of significance.  1232 

 1233 

Enrichment analysis of eQTL in selective sweeps 1234 

To determine whether domestication could be acting on regulatory variants, we retrieved 1235 

selective sweeps measured by locus-specific branch length (LSBL) statistics (14, 65). Briefly, we 1236 
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first calculated FST for genomic windows with 20 consecutive SNPs between broilers (n=40) and 1237 

Red Jungle Fowls (RJF, n=35) using VCFtools and also between layers (n=50) and Red Jungle 1238 

Fowls (n=35). The LSBL values were further computed with the formula: LSBL = (FST(AB) + 1239 

FST(AC) - FST(BC)) / 2. We deemed the top 0.1% of genomic windows ranked by LSBL values as 1240 

significant. We examined whether eQTL were overrepresented in genomic windows under 1241 

position selection, i.e., whether genomic windows with at least one eQTL had higher LSBL 1242 

values than the background, which has an equivalent number of windows as those of eQTL.  1243 

 1244 

Comparative analysis of gene expression 1245 

To comparatively analyze gene expression across species, we collected gene expression and 1246 

regulation data from multiple sources. Specifically, we obtained data for 15,044 samples from 1247 

the Human GTEx web portal (v8) available at https://gtexportal.org. Additionally, we gathered 1248 

gene expression data for 7,095 pig samples and 8,742 cattle samples from the FarmGTEx 1249 

resource accessible at https://www.farmgtex.org/. Furthermore, as part of this study, we included 1250 

gene expression and regulation data for 7,015 chicken samples. In this study, we focused on 1251 

protein-coding genes based on the annotation of the Ensembl (v102), and we considered the 1252 

genes with TPM > 0.1 as expressed. Specifically, we grouped chicken genes into “1-1-1-1 1253 

orthologous gene” (1-1 orthologous across species, n = 10600), “complex orthologous genes” (“1 1254 

to many”, “many to 1” and “many to many”, n=3644), “no homology” (without any homologous 1255 

counterpart in mammals, n=2535). In total, 9 tissues in common across species (i.e., adipose, 1256 

blood, hypothalamus, liver, lung, muscle, ovary, pituitary, and testis) were included to conduct a 1257 

comparative analysis of gene expression.  1258 

Gene expression (TPM matrix) retrieved for each was normalized using Seurat (v4.3.0) (110) to 1259 

decrease the bias introduced by dynamic data across species. We evaluated transcriptome 1260 

outcomes by counting the number of reads (reads = TPM × the length of genes (bp)) in each 1261 

tissue. Samples were by performing dimensionality reduction on the normalized expression data 1262 

(including 10,600 1-1-1-1 orthologous genes) with the t-SNE approach (117). Moreover, we 1263 

explored the conservation of cis-heritability (h2) and effect size (aFC) of lead eVariants across 1264 

species. To do so, we selected 1-1-1-1 orthologous genes (n=5,384 for h2) and eGenes related 1265 

eVariants (n=5,513 for aFC) that are in common across species, and grouped genes into 1266 

conserved eGenes (that have at least 1 homology with mammals) and chicken-specific eGenes 1267 

(that didn’t have homology with any mammal species).  1268 

 1269 

Cross-species TWAS comparison 1270 

We performed comparative analyses of single-tissue TWAS results of 108 traits in chickens with 1271 

9,112, 1,032 and 6,480 single-tissue TWAS results in three mammalian species (i.e., pigs(47), 1272 

cattle(48) and humans(32)), representing 268, 43 and 135 complex traits, respectively. Within a 1273 

shared tissue between two species, we computed Pearson’s correlations between any pair of traits 1274 

on the basis of z score (beta / standard error) estimated from one-to-one orthologous genes 1275 

between two corresponding species. To define the threshold of significance, we carried out 1276 

permutation analysis by randomly calculating Pearson’s correlations between any two of all 1277 

single-tissue TWAS 1000,000 times. The within-species correlations were then excluded, 1278 

resulting in 609,861 Pearson’s correlations and corresponding P values. We set the cutoff of 1279 

significance as top 0.1% of permuted -log10P, corresponding to the P value of 9.11 × 10-3. We 1280 

thus conducted cross-species meta-TWAS analysis by combining TWAS results from different 1281 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.27.546670doi: bioRxiv preprint 

https://gtexportal.org/
https://www.farmgtex.org/
https://doi.org/10.1101/2023.06.27.546670
http://creativecommons.org/licenses/by-nd/4.0/


 

37 

 

species based on orthologous genes. For meta-TWAS analysis, we applied a sample-size 1282 

weighting (SSW) strategy (172) by calculating ZTWAS as follows: 1283 

𝑍𝑇𝑊𝐴𝑆 =  
∑ 𝑁𝑖𝑍𝑇𝑊𝐴𝑆𝑗

𝐵
𝑖=1

(∑ 𝑁𝑖
2𝐵

𝑖=1 )1/2
 1284 

where ZTWASj is the z-score for jth gene in TWAS analysis, i is the species, i.e.,chicken, humans, 1285 

pigs, and cattle, Ni is the number of individuals for ith species in TWAS, B is the number of 1286 

species in metaTWAS. The effective sample size is 𝑁𝑖  =  4 (
1

𝑁𝑐𝑎𝑠𝑒𝑠
+  

1

𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠
)⁄ . To obtain the 1287 

significance level, we calculated P values for each gene based on a Chi-squared distribution of z-1288 

scores (df=1) calculated before. After a multiple testing correction with the FDR method (130) 1289 

by replacing original P value (TWAS) with P value (meta-TWAS) of orthologous genes, the 1290 

threshold of significance was defined as FDR < 0.05.  1291 
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