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101 Abstract:

102 Chicken is a valuable model for understanding fundamental biology, vertebrate evolution and
103 diseases, as well as a major source of nutrient-dense and lean-protein-enriched food globally.
104 Although it is the first non-mammalian amniote genome to be sequenced, the chicken genome
105 still lacks a systematic characterization of functional impacts of genetic variants. Here, through
106 integrating 7,015 RNA-Seq and 2,869 whole-genome sequence data, the Chicken Genotype-
107 Tissue Expression (ChickenGTEX) project presents the pilot reference of regulatory variants in
108 28 chicken tissue transcriptomes, including millions of regulatory effects on primary expression
109 (including protein-coding genes, INcCRNA and exon) and post-transcriptional modifications

110 (alternative splicing and 3’ untranslated region alternative polyadenylation). We explored the
111 tissue-sharing and context-specificity of these regulatory variants, their underlying molecular
112 mechanisms of action, and their utility in interpreting adaptation and genome-wide associations
113 of 108 chicken complex traits. Finally, we illustrated shared and lineage-specific features of gene
114 regulation between chickens and mammals, and demonstrated how the ChickenGTEX resource
115 can further assist with translating genetic findings across species.

116 One-Sentence Summary:

117 The ChickenGTEX provides a multi-tissue reference of regulatory variants for chicken genetics
118 and genomics, functional genomics, precision breeding, veterinary medicine, vertebrate

119 evolution and even human biomedicine.

120
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122 Main Text:

123 Introduction

124 The chicken (Gallus gallus domesticus) is not only a globally significant source of protein-rich
125 food through both meat and egg production, but also a fundamental model species. In 2021, the
126 farming industry achieved a staggering production of 111 million tons of eggs and 137 million
127 tons of poultry meat worldwide (https://www.fao.org). Due to its distinct phylogenetic placement
128 as well as its genetic and physiological characteristics, the chicken is also served as a well-

129 recognized model organism in both fundamental and applied research (1, 2), studies of

130 domestication, genome editing, system biology, virology, immunology, oncology, and evolution
131 (3-7). The chicken retains a remarkable range of phenotypic variation in terms of morphology,
132 physiology, and behavior, primarily driven by artificial selection and breed specialization. Such
133 extensive variation for a wide range of features is ideal for investigating the genetic architecture
134 underlying complex traits. One example of such traits is dwarfism, which is characterized by a
135 short stature and is observed in various forms in chickens, including sex-linked dwarfism,

136 autosomal dwarfism, and the bantam phenotype, according to their physiological and genetic
137 properties (8, 9). In addition, long-term bidirectional selection lines have been established in
138 chickens to study how polygenetic selection influences complex traits such as body weight (10)
139 and feather pecking (11).

140 The Red Jungle Fowl (G. gallus), the ancestor of domestic chicken, was one of the first food-
141 producing animals that had its genome assembled (1). Recently, a near complete version of the
142 chicken reference genome assembly was reported, revealling distinct sequence and epigenetic
143 features of microchromosomes (12). Several population-scale studies of chicken genome

144 variation have focused on various aspects of its evolution, including speciation and

145 domestication (13-15), signatures of selection(14, 16, 17), admixture and introgression(14, 18,
146 19), feralization(20, 21), and phenotypic adaptation(22—24). Meanwhile, linkage mapping and
147 genome-wide association studies (GWAS) have identified tens of thousands of genomic loci
148 associated with numerous complex traits in chickens (5, 25-27). As most genetic variants behind
149 such adaptive evolutionary and complex traits are non-coding, a systematic annotation of

150 regulatory variants in the chicken genome becomes indispensable for understanding their

151 underlying genetic regulatory circuitry (28-30). The expression quantitative trait locus (eQTL)
152 analysis is presently the most powerful approach to measure regulatory effects of sequence

153 variants on individual gene expression in their native genomic and cellular contexts (31), as

154 documented in the human Genotype-Tissue Expression (GTEX) project series of studies (32-34)
155 and eQTL Catalogue in humans (35). In contrast, previous eQTL studies in chickens have been
156 limited in sample size, the number of studied genomic features, and tissue/cell types (36—40). For
157 instance, in an intercross population of 125 chickens, Johnsson et al. (2015) identified 6,318 cis-
158 ¢QTL that influence female femoral gene expression, as measured by microarrays (36).

159 To fully unlock the genetic code of the chicken genome, the Chicken Genotype-Tissue

160 Expression (ChickenGTEX) project, as part of the international Farm animal GTEX (FarmGTEX)
161 initiative (41), has been lunched to build a comprehensive reference panel of regulatory variants
162 based on the chicken transcriptome in various biological contexts (e.g., development, sex and
163 environmental exposure). In this pilot study, through analyzing 7,015 bulk RNA-Seq datasets
164 from 52 tissues/cell types (hereafter referred to as “tissues”) and 2,869 whole genome sequences
165 (WGS) from over 100 breeds/lines (hereafter referred to as “breeds’) worldwide, we
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166 systematically associated approximately1.5 million genomic variants with five transcriptomic
167 phenotypes in 28 chicken tissues with sufficient sample size (ranging from 44 to 741). We then
168 explored tissue-sharing and context-dependent patterns of these regulatory variants, their

169 underlying molecular mechanisms of action, and their utility in deciphering GWAS loci of 108
170 complex traits via multiple complementary integrative methods such as transcriptome-wide

171 association studies (TWAS), colocalization, and Mendelian Randomization (MR). Additionally,
172 we compared gene regulation and the phenotypic implications between chicken and three

173 mammalian species (i.e. human, cattle and pig). Altogether, our study provides novel and

174 profound insights into the regulatory hierarchy of genetic variation in chicken transcriptomes and
175 complex phenotypes, providing the first large-scale mapping of regulatory variants in the

176 chicken genome and their links to complex phenotypes. Meanwhile, the atlas of regulatory

177 variants identified in this study will facilitate the genetic improvement of chicken populations
178 worldwide in health, production, and resilience and inform a wide range of genetic and genomic
179 research in animal and plant species. Furthermore, we have also well-developed a ChickenGTEXx
180 online resource that is freely accessible at http://chicken.farmgtex.org.

181

182 Results

183 Harmonizing large transcriptome and genome datasets in chickens

184 We analyzed 8,668 bulk RNA-Seq samples using a uniform pipeline, yielding 304.4 billion clean
185 reads. After filtering out low-quality data, 7,015 samples remained for subsequent analyses,

186 representing 28 tissues (fig. S1, Tables S1 and 2). Based on gene expressions, samples were

187 clustered well regarding their tissue types (fig. 1a, fig. S2). Across all the tissues, an average of
188 23,056 (94.7% of all annotated genes) genes were expressed (Transcripts per Million, TPM >
189 0.1) (Table S3), showing patterns of ubiquitous or tissue-specific expression (fig. S3). An

190 average of 1,938 tissue-specific genes were then detected across tissues (fig. S3d), and their

191 functions recapitulated the known tissue biology (fig. 1b, fig. S3e, Table S4, URL). For

192 instance, a total of 1,425 genes were specifically and highly expressed in the bursa of Fabricius,
193 a bird-specific primary lymphoid organ, which were significantly enriched in the immune

194 response to bacteria (Table S4). An average of 54.7% of tissue-specific genes could be linked to
195 at least one tissue-specific promoter/enhancer (fig. S4a-d). For instance, MSLNL with bursa-
196 specific promoters and enhancers showed a specific expression in the bursa (fig. S4d). An

197 average of 114 genes exhibited sex-biased expression across 18 tissues (FDR < 0.01), among
198 which 17 genes were shared in all these tissues and located in sex chromosomes (figs. S4e-f,

199 Table S5). This was in agreement with the notion of incomplete sex-chromosome dosage

200 compensation in chickens(42). In addition, out of 45 genes associated with Mendelian traits in
201 chickens(43), 41 showed tissue-specific expression (fig. S5a). For instance, SLCO1B3 is the

202 causal gene of blue eggshell in chickens(44), which was specifically and highly expressed in the
203 liver and had liver-specific promoters and enhancers (fig. S5b).

204 To further annotate the function of chicken genes with this extensive transcriptome data, we

205 conducted gene co-expression network and transcript assembly analyses. Based on co-expression
206 analysis, we identified 3,583 co-expression modules containing 25,023 genes, 41.3% (10,332) of
207 which were not functionally annotated in the current Gene Ontology (GO) database (figs. S6). In
208 the set of 2,940 unannotated protein-coding genes, 56.3% (1,654) were able to be assigned to co-
209 expression modules. Compared to annotated genes, these unannotated genes exhibited more

210 tissue-specificity, lower gene expression level, and small proportion of chicken-human
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211 orthologous genes (fig. S6d). For instance, 8 unannotated genes were co-expressed with 12

212 annotated genes in the muscle, which were significantly enriched in myeloid cell development
213 and erythrocyte differentiation networks (fig. S6f). Through the transcript assembly analysis, we
214 predicted 247,383 transcripts at 48,800 loci, including 184,374 protein-coding transcripts derived
215 from 17,215 loci, 13,140 IncRNA transcripts from 3,436 loci, and 49,869 other noncoding RNA
216 transcripts from 34,350 loci (fig. S7, URL). Of all these predicted transcripts, 90% were not

217 annotated in the previous reference and 4-10% were even transcribed from novel genomic loci
218 (fig. S7d and g). For instance, we observed a new transcript on chromosome 2 was highly and
219 specifically expressed in the testis (fig. S7h).

220 To obtain genotypes of these RNA-Seq samples, we called ~9 million single nucleotide

221 polymorphisms (SNPs) from bulk RNA-Seq data using the GATK best practice pipeline(45) (fig.
222 S8). To impute missing genotypes, we built a chicken multi-breed genotype imputation reference
223 panel consisting of 2,869 global WGS data sets, which had a similar population composition as
224 the RNA-Seq data (fig. 1c, Table S6). Adopting a missing rate of 0.6, the imputation accuracy of
225 1.5 million SNPs reached 97% (figs. S8b-h). The independent datasets from three different

226 chicken breeds confirmed a high concordance rate (> 90%) between imputed genotypes and

227 those directly called from WGS data of the same individuals (fig. S8g). After removing

228 duplicated samples based on their genetic relatedness, 28 tissues (each consisting of over 40

229 individuals) were retained for subsequent molecular quantitative trait loci (molQTL) mapping
230 (fig. 1d).

231

232 Discovery of molQTL

233 To comprehensively explore the genetic regulation of the chicken transcriptome, we conducted
234 cis-molQTL mapping for five molecular phenotypes, including protein-coding gene expression
235 (eQTL), IncRNA expression (IncQTL), exon expression (exQTL), splicing variation (sQTL), and
236 3’UTR alternative polyadenylation (3a’QTL), across 28 chicken tissues (fig. 2a, fig. S2, figs. S9-
237 10). In total, 13,983 (92.9%) of 15,046 tested protein-coding genes, 11,685 (74.3%) of 15,720
238 INcRNAs, 124,423 (76.0%) of 163,812 exons, 9,669 (61.5%) of 15,405 loci with alternative

239 splicing events, and 8,798 (74.1%) of 11,880 loci with 3’UTR alternative polyadenylation

240 (3’UTR APA) were significantly (FDR < 0.05) regulated by at least one genetic variant in at

241 least one tissue, and are thus referred to as eGenes, IncGenes, exGenes, sGenes and 3a’Genes,
242 respectively. All the molQTL tended to be enriched around transcription start sites (TSS) and
243 transcription end sites (TES), while 3a’QTL and sQTL showed a higher enrichment in TES and
244 gene body, respectively, compared to other molQTL (fig. 2b, figs. S11a-e). Furthermore, an

245 average of 73.6% (10,288) of eGenes, 40.5% (3,914) of sGenes, 60.7% (75,527) of exGenes,

246 58.9% (6,886) of IncGenes, and 7.3% (640) of 3a’Genes were regulated by more than one

247 independent variant (eVariants) across tissues (fig. 2c, fig. S12). The further fine-mapping

248 analysis for molQTL with SuSiE (46) revealed 2,887, 2,366, 2,053, 12,409 and 1,572 potential
249 causal variants for eGenes, sGenes, IncGenes, exGenes and 3a’Genes, respectively (URL).

250 The statistical power of molQTL mapping depends on the sample size of the tissue, similar to
251 findings in other species(32, 47, 48) (fig. 2d-g, figs. S13 and 14). The down-sampling analysis in
252 the liver and muscle further confirmed the relationship between sample size and eQTL discovery
253 power (fig. 2g). Most eQTL with large effect (i.e., fold change of expression, aFC > 2) were

254 detectable when sample size reached around 200 (fig. 2f and g), and eQTL with larger effect

255 were more enriched around TSS (fig. S14l) and had lower minor allele frequency (MAF) (fig.
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256 S14). In general, the estimated effect size of eQTL was not correlated with their gene expression
257 levels across tissues (figs. S15 a and b). Of note, chromosome size was significantly and

258 positively correlated with eGene heritability (fig. 2e), eGene discovery (fig. S15c¢), and MAF of
259 lead eVariants (fig. S15d). This was only observed in chickens and not in mammals (i.e., pig,
260 cattle and human) (figs. S15e-g). Such influences of chromosome size on eQTL effects might be
261 due to differences in evolutionary constraints between microchromosomes and

262 macrochromosomes in chickens(49), which was further supported by the observation that

263 phastCons scores of lead eVariants were also negatively correlated with chromosome size (fig.
264 2e).

265 To validate molQTL identified above, we first applied linear mixed model (LMM), by which we
266 observed that the effect size and significance level of genetic variants estimated by the LMM
267 were highly correlated with those estimated by the linear regression, implemented in tensorQTL
268 (50) (fig. S16). We then randomly and evenly divided samples from 15 tissues with a sample size
269 of over 100 into two subgroups, and then carried out eQTL mapping separately. A high

270 replication rate, measured by m1(51), was observed between subgroups across tissues, ranging
271 from 0.61 in the hypothalamus to 0.92 in the embryo (fig. 2h, fig. S17). The effect size of eQTL
272 also exhibited a high Spearman’s correlation (an average of 0.77 across tissues) between

273 subgroups (fig. 2h). Moreover, we observed that effect sizes derived from the eQTL mapping
274 were positively and significantly correlated (an average of 0.52 across tissues) with those from
275 the allele-specific analysis at the same loci (fig. 2i, Table S8). Finally, we trained a deep learning
276 model of regulatory effects based on 310 functional epigenomic profiles in chicken via

277 DeepSEA (50) (fig. S15h, Table S7), and observed that regulatory variants predicted by

278 DeepSEA were more significantly enriched in eVariants than the expected (fig. 2j). Altogether,
279 these results demonstrated the reliability of molQTL identified in this study.

280

281 Limited sharing of regulatory mechanisms underlying five molQTL types

282 Out of all 27,203 tested genes, 16,097 (59.2%) had significant QTL for at least two molecular
283 phenotypes (fig. S18a). The LD of lead variants of any two molQTL types from the same genes
284 was low, ranging from 0.04 (exQTL vs. 3a’QTL) to 0.29 (exQTL vs. IncQTL) (fig. 3a). The

285 colocalization analysis further confirmed the limited sharing of regulatory control among these
286 molecular phenotypes (fig. 3a), indicative of their distinct genetic regulatory mechanisms. Fig.
287 3b takes NLRC5 as an example, four molecular phenotypes of which were controlled by distinct
288 genomic loci, and LD between the respective lead variants was lower than 0.07 (fig. S18b).

289 Among these molQTL, eQTL and exQTL exhibited a relatively high colocalization probability
290 (average H4 = 0.72) (fig. 3a).

291 To elucidate molecular mechanisms of action behind these molQTL, we examined sequence
292 ontology and multi-omics data in chickens, including 15 chromatin states predicted from 377
293 epigenetic data sets in 23 tissues(30), and 9,898 topologically associating domains (TADS)

294 detected from high-throughput chromosome conformation capture (Hi-C) in three tissues (i.e.,
295 muscle, liver and testis)(52). As expected, conditionally independent molQTL were significantly
296 enriched with various regulatory DNA sequences, including synonymous variants (1.67-fold in
297 IncQTL to 3.03-fold in exQTL), 5’UTR variants (1.82-fold in eQTL to 3.64-fold in sQTL),

298 3’UTR variants (2.29-fold in sSQTL to 3.77-fold in 3a’QTL), and non-coding (NC) transcripts
299 (1.48-fold in 3a’QTL to 2.36-fold in exQTL). Of note, all five types of molQTL also exhibited a
300 significant enrichment in missense variants (fig. 3c), indicating that a fraction of transcriptional
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301 regulatory variants may also alter protein amino acid residues(53). Compared to other molQTL,
302 SQTL exhibited a higher enrichment with splicing variants (63.97-fold in splice acceptor, 3.97-
303 fold in splice donor, and 3.89-fold in splice region), while 3a’QTL were more enriched with stop
304 retained (5.06-fold) and 3’UTR variants (3.77-fold) (fig. 3c).

305 All five types of molQTL showed the highest enrichment in promoter-like states (E1-E5, an

306 average of 3.64-fold), followed by enhancer-like states (E6-E10, an average of 1.98-fold) and
307 ATAC islands (E11, an average of 1.87-fold). In contrast, they were significantly depleted from
308 repressed regions (E12-E14) (fig. 3d). Compared to active enhancer (E6), super-enhancer (i.e. a
309 cluster of enhancers in close genomic proximity, exhibiting exceptionally high levels of H3K4ac
310 signals(30)), had a lower enrichment for all five molQTL, suggesting that they may be under a
311 stronger purifying selection due to their essential roles in gene regulation and cell identity (fig.
312 S19a). Among the five types of molQTL, 3a’QTL had the highest enrichment in enhancer-like
313 states and ATAC islands (fig. 3d), supporting their high tissue-specificity. A total of 20% of
314 eQTL, 26% of sQTL, 3.4% of IncQTL, 17.9% of exQTL, and 14.5% of 3a’QTL were supported
315 by regulator-gene pairs that were predicted based on the correlation of signal density of

316 regulators and gene expression (fig. S19b, Table S9). By examining 3D looping of

317 chromatin(52), we found 20-60% of molQTL-gene pairs located with the same TAD across

318 tissues (figs. S19 ¢ and d), with the highest enrichment observed at ~400-600kp away from TSS
319 of target genes after accounting for their distance (fig. S19e). As expected, 3a’QTL showed the
320 highest enrichment at ~600-1000kb downstream of their target genes (fig. S19e). Likewise, 41-
321 73% of eQTL-eGene pairs located in the same CTCF-loops that were identified from 22 chicken
322 tissues (30) (figs. S19f-h). These results indicate that the long-distance eQTL exert effects

323 possibly through disrupting TFBS in long-distance enhancers that interact with promoters via 3D
324 looping of chromatin (figs. S19c-h). As shown in fig. S19i, eVariant rs317368746 regulates

325 expression of TIMM17B in the brain only, and it resides in a brain-specific enhancer and is

326 located within the same TAD (346kb upstream) as the TSS of TIMM17B. Altogether, these

327 results indicate that regulatory variants exert widespread effects on the transcriptome via

328 multiple mechanisms such as changing transcript structure, function, stability,

329 transcription/translation rate and chromatin conformation.

330

331 Tissue- and breed-sharing of molQTL

332 All five types of molQTL were either tissue-specific or ubiquitous, among which 3a’QTL and
333 eQTL exhibited the highest and lowest tissue-specificity, respectively (fig. 4a and b, fig. S20a,
334 fig. 21). This was also supported by the meta-tissue analysis (fig. S22). In total, 10.6% of eQTL,
335 32.1% of sQTL, 27.4% of IncQTL, 25.8% of exQTL, and 29.6% of 3a’QTL were active in one
336 tissue only. Of note, eQTL that were active in more tissues showed a higher enrichment around
337 TSS (fig. 4c, fig. S20b), a smaller effect size (fig. 4d) and a higher MAF (fig. S20c). Tissue-
338 shared eQTL (i.e., active in at least two tissues, LFSR < 0.05) also tended to be more enriched
339 for promoter-like states, whereas tissue-specific eQTL were more enriched for enhancer-like
340 states (fig. S20d). In general, tissues with similar biological functions (e.g., immune tissues)
341 tended to be clustered together based on eQTL effect correlation (fig. 4a, fig. S21), which was
342 similar for the remaining four types of molQTL (fig. 4b, fig. S21). Unlike GTEx in mammals(32,
343 47, 48), blood formed the primary outgroup in chickens regarding eQTL and IncQTL, while, for
344 the remaining three types of molQTL, brain and testis were first separated from the rest of the
345 tissues. Fig. S20e demonstrates an eQTL (9_16035177_G_A) that significantly regulated the
346 expression of ALG3 only in the blood. The ALG3 gene encodes alpha-1,3-mannosyltransferase
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347 with the function of inducing glycosylation of TGF- receptor 11(54), which might modulate

348 blood pressure homeostasis(55) and affect hematopoiesis(56). In contrast to eQTL shared in

349 other tissues, blood-specific eQTL had a lower MAF (fig. S20f) and a larger effect (fig. S20g).
350 Moreover, genetic regulation of all five molecular phenotypes in the embryo was distinct from
351 those in the primary tissues (fig. 4a, fig. S21), similar to that in pigs(47), indicating a distinct
352 regulation of early development. In addition, we detected 59 eQTL with opposite directional

353 effects on the same genes (n = 51) between tissues (Table S10). For instance, the T-allele of

354 rs315639985 increased the expression of FBXO5 in the spleen but decreased its expression in the
355 whole blood. The FBXO5 gene encodes F-box protein 5, which is associated with systolic blood
356 pressure in human(57) (fig. S20h). Another example was rs313608694, whose G-allele

357 significantly upregulated the expression of ELAC2 in the embryo but downregulated it in the
358 spleen (fig. S20h). This gene encodes elaC ribonuclease Z 2, and the reduction of its expression
359 could induce growth arrest by suppressing transforming growth factor-beta(58).

360 We examined breed-sharing of eQTL in the brain, liver, muscle and spleen, as all of them had
361 more than two breeds and each with a sample size > 40. As a result, the majority of eQTL (an
362 average of 81%) could be replicated between breeds and the replication rate was associated with
363 tissue sample size (fig. S23a, Table S11). Furthermore, the eQTL effect was substantially shared
364 between breeds (fig. 4e). For instance, the T-allele of rs314795649 significantly upregulated

365 expression of PRKCDBP in the liver across all four breeds being tested, including Cobb (p =
366 0.57, P = 2.67 x 10°®), Leghorn (B = 0.33, P = 3.10 x 10°°), Rhode Island Red (B = 0.39, P = 3.06
367 x 10%) and Ross (B = 0.37, P = 5.02 x 109) (fig. S23b). In addition, we detected 376 (Red

368 Jungle Fowl vs. Ross) and 185 (Red Jungle Fowl vs. Leghorn) breed-interaction eQTL (bi-

369 eQTL) in the brain, and with genes regulated by them were enriched in functionals related to
370 brain development (Table S12).

371

372 Context-dependence of molQTL

373 To explore the context-dependent nature of gene regulation, we systematically detected eQTL
374 interacting with sex (sb-eQTL), transcription factor (TF-eQTL) and cell type (ci-eQTL). For sb-
375 eQTL mapping, we only considered eight tissues, where each sex had data from over 30

376 individuals available. In total, 1,138 SNPs displayed sex-biased regulation of 962 eGenes (sb-
377 eGene, FDR < 0.01), ranging from 3 in the small intestine to 954 in the liver (URL). Taking the
378 liver as an example, we further performed the sb-eQTL mapping in a single breed, Rhode Island
379 Red (Nmale= 32; Nfemale= 46), resulting in 48 sb-eQTL regulating 30 eGenes (fig. 4f, figs. S23c-d,
380 Table S13). For instance, the significant association of rs317663121 with TCFL5 expression was
381 only observed in male liver (fig. 4f). Moreover, 14% (164) of sb-eGenes overlapped with sex-
382 biased expressed genes in all eight studied tissues. These sh-eGenes detected in the blood,

383 hypothalamus, and liver were significantly enriched in biological processes related to amino acid
384 metabolism, signaling transduction pathway, and fatty acid metabolism (Table S14). Through
385 the examination of 956 chicken transcription factors retrieved from the AnimalTFDB 3.0(59), we
386 detected an average of 1,941 TF-eQTL in 17 tissues, representing 503 TFs (fig. S23f, URL). Fig.
387 S23e illustrates that effect of rs313600592 on ATP6V1A expression was significantly associated
388 with the expression of transcription factor TCF25 in the muscle. For ci-eQTL mapping, we first
389 annotated 13 cell types from single-cell RNA-Seq data in chicken heart and muscle (Table S15).
390 Based on the cellular composition of bulk RNA-Seq samples of muscle and heart estimated by
391 the in silico cell-type deconvolution (fig. S24), we identified an average of 105 ci-eGenes in the
392 muscle, ranging from 11 with interactions in adipocytes to 214 with Schwann cells, and an
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393 average of 19 ci-eGenes in the heart, ranging from 6 interacting with fibroblasts to 36 with

394 cardiomyocytes (fig. S23g, Table S16). For instance, rs733070738 regulated expression of

395 PLVAP by interacting with myocyte enrichment in the muscle (fig. 4g). These results highlight
396 the dynamics of genetic regulatory effects across distinct biological contexts.

397

398 Interpreting genetic regulation behind complex traits and adaptive evolution

399 To show the potential of molQTL in understanding complex traits in chickens, we systematically
400 integrated molQTL with GWAS results of 108 complex traits, including

401 growth and development (n = 43), carcass (n = 41), egg production (n = 20), feed efficiency (n =
402 3), and blood biochemical index (n = 1) (Table S17). Enrichment analysis revealed that GWAS
403 loci of all the traits were significantly enriched in all five types of molQTL (fig. S25a). Among
404 them, the highest enrichment was observed for 3a’QTL (1.87+0.33), followed by sQTL

405 (1.83£0.28), eQTL (1.81+0.30), IncQTL (1.59+0.27) and finally exQTL (1.56+0.32) (fig. S25a).
406 Furthermore, we applied four complementary methods to prioritize causal variants and genes
407 underlying each GWAS loci, including fastENLOC-based colocalization, summary-data-based
408 MR (SMR), single-tissue transcriptome-wide association study (STWAS), and multi-tissue

409 TWAS (mTWAS). Out of all 1,176 significant GWAS loci, 1,059 (90%) could be explained by
410 at least one molQTL across 28 tissues (fig. 5a, figs. S26 and S27). Of 896 colocalized GWAS
411 loci, 59.9% were not colocalized with the nearest genes of lead GWAS variants, indicative of the
412 regulatory complexity of complex traits (fig. 5b, fig. S28a). The number of colocalization events
413 of a trait was determined by the statistical power of both GWAS and molQTL mapping (fig.

414 S26b-c). Of all 1,176 GWAS loci, 0.8%, 0.9%, 5.2% and 1.4% were explained uniquely by

415 eQTL, sQTL, exQTL and IncQTL, respectively. This result indicates that each type of molecular
416 phenotype only had a limited contribution to complex traits at distinct levels of gene regulation
417 (fig 5a, fig. S29). Taking the body weight gain from week 6 to 8 (WG6.8) as an example,

418 STWAS linked GWAS loci to 43 unique genes (34 protein-coding and 9 IncRNA genes) across
419 21 tissues (fig. 5c, fig. S28c, Table S18). Of them, the expression of the KPNA3 (karyopherin
420 subunit alpha 3) exhibited the strongest association with WG6.8 in the retina, followed by

421 pituitary and heart (fig. 5¢). Consistently, it has been documented that the knockdown of the
422 KPNA3 would restore photoreceptor formation in Drosophila(60). The highest colocalization
423 between WG6.8 GWAS loci and molQTL of KPNA3 was observed for a retina eQTL

424 (rs314814283, GRCP=0.78) and a pituitary sQTL (rs13552958, GRCP=0.54) (Table S19). The
425 further SMR analysis pinpointed 10 potential causal mutations across tissues (Table S20),

426 among which rs739579746 was the most significant one (fig. 5¢, Table S20). The SNPs

427 rs314814283 and rs739579746 detected by eQTL mapping were in high LD (r? = 0.88), while
428 both showed low LD with rs13552958 (r? < 0.02) detected by sSQTL mapping. These findings
429 likely reflect the importance of photoreception for chicken growth and production performance
430 (61, 62), and the promising candidate gene in this region is the KPNA3. In addition, we detected
431 149 significant InNcRNA-protein-coding-trait regulation events with SMR-multi analysis (Table
432 S21). For instance, an eQTL of a IncRNA (ENSGALG00000053557), located on the opposite
433 strand of the IL20RA, exhibited significant colocalizations with an eQTL of IL20RA in the

434 muscle and GWAS loci of the total stomach weight on chromosome 3 (fig. 5d).

435 To further explore context-specific genetic regulation of complex traits, we conducted

436 colocalization analysis between GWAS loci and three types of context-interaction eQTL

437 detected above (fig. S25b). Out of 1,155 GWAS loci, 22.9% (264), 48.7% (562) and 12.3%

438 (142) were explained by sb-eQTL, TF-eQTL and ci-eQTL, respectively (fig. S25b). For
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439 instance, GWAS loci of total stomach weight and body weight at 8 weeks of age were

440 significantly colocalized with sb-eQTL of MFSD4A and TOXS3 in the brain and spleen,

441 respectively (figs. S28d-e). The TOX3 gene encodes TOX high mobility group box family

442 member 3, playing roles in sex determination and differentiation (63, 64). Despite the limited
443 discovery power of the context-interaction eQTL due to the small sample size, our analysis

444 demonstrated that context-specific regulatory effects were nonnegligible in dissecting the

445 regulatory mechanism of complex traits. Furthermore, we conducted an exploratory analysis to
446 investigate whether domestication and breeding also tend to target on regulatory variants, though
447 examining selection sweeps previously detected between broilers and layers previously (fig.

448 S25d, fig. S30) (14, 65). Within the brain, we separately detected eQTL in three chicken

449 lines/breeds separately, including Red Jungle Fowl (n = 46), Ross (n=157) and Leghorn (n = 78).
450 Genomic windows containing at least one eQTL (i.e., eQTL windows) in Ross and Leghorn

451 were under stronger selection (i.e., larger selection values, LSBL) in broilers than expected,

452 whereas those detected in Red Jungle Fowl were not (fig. S25d, fig. S30). Likewise, for selection
453 sweeps in layers, eQTL windows in Leghorn were under stronger selection in layers than

454 expected, but not for eQTL windows in Ross and Red Jungle Fowl (fig. S25d, fig. S30).

455 Altogether, the current ChickenGTEX can serve as a valuable resource for exploiting regulatory
456 mechanisms underlying complex traits and adaptation in chickens.

457

458 Comparing gene regulation and complex trait genetics between chickens and mammals
459 Based on gene orthology between chickens and three mammals (i.e., cattle, pigs and humans),
460 we found the expression levels of the 1-1-1-1 orthologous genes were significantly higher than
461 those of non-orthologous genes across tissues (fig. S31). The proportion of orthologous genes
462 expressed in chicken tissues was positively (Pearson’s r > 0.8, P < 0.004) correlated with that in
463 mammalian tissues (fig. S31c). Based on gene expression profiles, 14,278 samples in the four
464 species were clustered first according to their tissue types, indicating the global conservation of
465 gene expression between chickens and mammals (fig. 6a). This was also supported by a high
466 correlation of TAU values of genes, a measure of tissue-specificity of gene expression, between
467 chickens and mammals (fig. S31d). The phylogenetic analysis of gene expression revealed

468 different evolutionary rates of tissues across species, where testis and pituitary evolved fastest,
469 while adipose and liver evolved slowest (figs. S31e). The effect sizes of lead eQTL of

470 orthologous genes were significantly but weakly correlated between chickens and mammals,
471 which were lower than those within mammals (fig. 6b). This was consistent for cis-h? of

472 orthologous genes (fig. S32a). As in pigs and cattle, the distance of lead eQTL to TSS was larger
473 in chickens than that in humans (fig. S32b and c¢), which might be partially due to the larger LD
474 of SNPs in farm animals’ genomes and lower SNP density in the pilot phase of FarmGTEx

475 compared to human GTEX(32). We further divided chicken eGenes of each tissue into two

476 groups: 1) chicken-specific eGenes, and 2) those shared with at least one mammalian species
477 (conserved eGenes) (see Methods). In general, compared to chicken-specific eGenes, conserved
478 eGenes showed a higher gene expression level, lower tissue-specificity, were more likely to be
479 differentially expressed between species, have more promoters, and stronger tolerance to loss-of-
480 function mutations (less evolutionarily constrained) (fig 6c).

481 The FarmGTEx-based TWAS results provide new opportunities to systematically explore

482 between-species similarity of complex trait genetics at the functional level of orthologous genes.
483 We thus compared all the 3,024 sTWAS of 108 traits in chickens with 9,112, 1,032 and 6,480
484 STWAS in three mammalian species, representing 268, 43 and 135 complex traits, respectively.
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485 Within the matching tissues, we identified a total of 8,312 trait-pairs with significant correlations
486 between chickens and three mammalian species (P < 9.11 x 1073, permutation-based) (fig. 6d,
487 fig. S32d-f, Table S22), despite the big differences in the TWAS power between species. Most
488 of the significantly correlated traits between species recapitulated known biological and

489 physiological knowledge. For instance, chicken body weight (BW) showed a high correlation
490 with pig average daily gain (ADG) in the ileum (Pearson’s r = 0.69, P = 3.42 x107, fig. 329),
491 cattle somatic cell scores (SCS) in the adipose (Pearson’s r = 0.38, P = 5.46 x10°, fig. 32h), and
492 human type 2 diabetes (T2D) in the kidney (Pearson’s r = 0.57, P = 2.3 x10°, fig. 32i). This was
493 in line with previous findings that larger BW fluctuation was related to an increased T2D risk in
494 human(66), and also was positively associated with SCS in cattle (67). The expression of

495 ABCC13 (encoding ATP binding cassette subfamily C member 13) in the ileum was

496 significantly associated with both chicken BW (P = 0.03) and pig ADG (P =0.04), which

497 encodes ATP binding cassette subfamily C member 13, which had potential associations with
498 body weight/body mass index in humans (68). The expression of three genes, PIGX, MRPL51
499 and ABHD14B, in the adipose were significantly associated with both chicken BW and cattle
500 SCS. Of these, the ABHD14B protein is a lysine deacetylase with the capacity of catalyzing the
501 deacetylation of lysine residues to yield acetyl-CoA, which could significantly alter glucose

502 metabolism and could thus cause significant BW loss(69, 70). The expression of GABRB2 and
503 SOX4 in the kidney was significantly associated with both chicken BW and human T2D. The
504 SOX4 is involved in pancreas development with roles in inhibiting insulin secretion and

505 increasing diabetes risk(71, 72). Moreover, taking chicken BW as an example, we carried out
506 cross-species meta-TWAS analysis in the muscle, and found that homologous traits (e.g., ADG
507 and back fat thickness) rather than non-homologous traits (e.g., number of stillborn and weaned
508 pigs) in pigs could help detect more genes associated with BW in chickens (fig. 6e). Similarly,
509 human height and BMI increased the detection power of BW-associated genes in chickens via
510 cross-species meta-TWAS analysis in the muscle (fig. S32k). These results highlighted that the
511 FarmGTEX resource could facilitate the translation of genetic findings between species at the
512 functional level of orthologous genes rather than the DNA sequence level.

513

514 Discussions

515 Summary and general impacts: Through the comprehensive analyses of the so-far largest

516 collection of chicken RNA-Seq and WGS data, we have developed a catalogue of genetic

517 variants with regulatory effects on five transcriptional phenotypes, representing both primary
518 expression (including protein-coding, InNcRNA and exon) and post-transcriptional modifications
519 (alternative splicing and 3’UTR APA), across 28 chicken tissues, referred as the ChickenGTEX.
520 We made the findings and resources of ChickenGTEX freely accessible to the entire community
521 through http://chicken.farmgtex.org. This web portal provides an open-access chicken genotype
522 imputation reference panel, which was built-up and maintained as part of this project. The

523 current reference panel consists of approximately 3,000 WGS samples from around the globe,
524 enabling researchers to impute genotypes derived from RNA-Seq, SNP array or low-coverage
525 sequences to the whole-genome sequence level, which can be utilized further to prioritize

526 potential causal variants underlying complex traits of interest through integrating with muti-layer
527 ChickenGTEXx resources. Besides, we offer highly-useful visualization tool, Integrative

528 Genomics Viewer (IGV) (73) for exploring molecular phenotypes, enhancer-gene interactions,
529 chromatin states, epigenetic modifications, and publicly available GWAS results. The web portal
530 also includes single-cell RNA-Seq data that were collected and analyzed from six chicken
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531 tissues, enabling users to query the expression of their desired genes at both the cellular and bulk
532 tissue level. Additionally, we provide batch data download and advanced search options for data
533 resource generated in this study, and will continue updating the database to ensure its future

534 accuracy and relevance. Overall, this first GTEX resource in avian species serves as a valuable
535 resource for a global atlas of regulatory variants in chickens and informs vertebrate genome

536 evolution at the functional level, benefiting future research in animal, plant, and human genetic
537 and biomedicine research.

538 MolQTL mapping and the underlying molecular mechanism: We have demonstrated that

539 different molecular phenotypes of the same genes were likely to be controlled by distinct

540 genomic loci through distinct regulatory mechanisms, indicating the importance of integrating
541 omics data corresponding to multi-layer biologically-important molecular phenotypes (e.g.,

542 epigenetic mark activity and microRNA expression(74)) in future studies. This is consistent with
543 findings in humans that most of the sQTL and 3a’QTL were distinct from eQTL (75, 76). The
544 comparative analysis of regulatory variants reveals several specificities of gene regulation in
545 chickens compared to mammals. For instance, the chicken genome exhibits a chromosome-size
546 dependence in genetic control of gene expression, in contrast to mammals. Avian genomes often
547 have chromosomes of highly variable sizes, with chicken chromosomes ranging from a

548 minimum of 3.4 Mb to a maximum of 200 Mb (12). Chicken microchromosomes exhibit a

549 higher gene density, higher GC content and DNA methylation levels(12, 77), and are under

550 stronger evolutionary constraints (49), that easily distinguish them from the mammal ‘like’

551 macrochromosomes. These distinct genetic and epigenetic features might lead to differences in
552 the genetic regulation of gene expressions across chromosomes in chickens. In addition, we

553 observed a high sharing of eQTL effect across tissues in chickens, while interestingly the blood
554 showed the highest dissimilarity against other tissue types. This observation is in contrast to that
555 of mammals, where the testis showed the highest dissimilarity (32, 47, 48) that is perhaps a result
556 of nucleated red blood cells in avian blood (78, 79). Moreover, we uncovered a set of genetic
557 variants with regulatory effects interacting with biological contexts, e.g., sex, transcription factor
558 expression, genetic background, and cell type compositions. This context-dependent molQTL
559 explained 10-50% of GWAS loci, revealing the need to consider cell types/states under different
560 developmental stages, nutrition, and physiology status in the future molQTL mapping

561 experiments. By taking account of a wide range of environmental/biological contexts, we can
562 effectively tackle the challenge of "missing regulation” (80, 81). As demonstrated in human

563 studies(82, 83), harmonizing data from diverse chicken breeds/lines increased the detection

564 power of molQTL via increasing sample size, facilitating the fine-mapping of causal variants via
565 reducing LD of SNPs, as well as allowing breed-specific molQTL mapping (84). At the current
566 pilot phase, eQTL with trans-regulatory effect (> 1Mb to the TSS of genes) is not considered due
567 to the limited sample size. Discovering trans-eQTL, which often has a small effect size, requires
568 hundreds of thousands of samples (82, 85), and will be considered in the future when the sample
569 size of transcriptome data is sufficient.

570 Potential applications of ChickenGTEXx: This multi-tissue gene regulation resource opens the
571 door to decipher the biological mechanism of complex traits, domestication and polygenic

572 adaptation in chickens in-depth. It enables nearly 90% of GWAS loci being tested in this study to
573 be explained by at least of one type of molQTL, a higher proportion than that in humans (78%)
574 (32) or in pigs (80%) (47). This finding demonstrates the importance of molQTL mapping in
575 functionally dissecting agriculturally important traits in farm animals, with a high potential for
576 accelerating and improving the current animal breeding program and enabling the future

577 precision selection and breeding (26, 86). The focus of cross-species comparison studies in the
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578 past decades was mainly on the DNA sequence level due to the lack of relevant functional data,
579 and the recent Zoonomia project investigated the DNA sequence evolution of regulatory

580 elements while based on in silico prediction across species (87-89). The ChickenGTEX offers
581 new means to explore the evolutionary impacts of gene regulation on complex traits across

582 species and translate genetic findings between species at the functional level of orthologous

583 genes rather than the DNA sequence level. Our exploratory comparative analysis of large-scale
584 TWAS between chickens and mammals illustrates how to “borrow” information between species
585 for gene mapping (90, 91). We found that cross-species meta-TWAS aided in the identification
586 of more functional genes for homologous traits. We believe that the ChickenGTEX resource will
587 not only contribute significantly to elucidating the molecular architecture underlying phenotypic
588 variation in chickens, but also to developing chicken models for studying human complex traits
589 (e.g., disease and behavior (3-7)).

590 Limitations and outlooks: The current ChickenGTEXx provides the most expansive source of
591 regulatory variants in the chicken genome. Some limitations and challenges remain in the

592 genotype and molecular phenotype assessments. New chicken assemblies with more complete
593 representation are becoming available with fewer computational limitations that we experienced
594 using the GRCg6a reference genome (Ensembl version 102) (12, 92-94). Future studies will
595 consider long-read sequences to better resolve splice-variants (95-97), and pangenome

596 references to annotate complex structural variants (98), mobile element variation (99), and short
597 tandem repeats (92, 100). In addition, it would be of great interest to investigate the functional
598 impacts of rare and somatic variants on molecular phenotypes, where multi-tissue samples are
599 collected from the same individuals with deep WGS data available. Beyond the bulk

600 transcriptome, other molecular features could be included, e.g., DNA methylation variation,

601 protein abundance, metabolite profiles, and the composition of the microbiome. For future

602 single-cell genetics in chickens, a comprehensive chicken single-cell atlas will be the first step
603 and is urgently required to explore the cell-type/state-specific gene regulation via in silico cell
604 type deconvolution of large bulk tissue samples(101). In addition, conducting experimental

605 follow-ups via methods, e.g., massively parallel CRISPR-based screens (102), is crucial to

606 functionally validate and characterize regulatory effects of genetic variants and to identify

607 functional genes of complex traits on a large-scale. In summary, the current and future versions
608 of the ChickenGTEX project promises to establish a reference panel for studying the functional
609 impacts of genetic variants in their native genomic and cellular contexts in distinct biological
610 contexts, including molQTL mapping, molecular phenotype prediction for individuals with

611 genotypes (including extinct species with ancient DNA available) and the evolution of regulatory
612 variants. The fully developed ChickenGTEXx will contribute substantially to research in complex-
613 trait genetics, animal breeding, functional biology, and vertebrate genome evolution at the

614 functional level.
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676 Fig. 1. Data summary in the pilot phase of ChickenGTEX. (a) Hierarchical clustering of 7,015
677 RNA-Seq samples. Distance between samples was calculated using 1-r, where r is the Pearson
678 correlation coefficient calculated from gene expression values (quantified as Transcripts per
679 Million, TPM) of 5,000 genes with the highest expression variance (measured by standard
680 deviation) across samples. (b) Functional enrichment of tissue-specific genes based on the Gene
681 Ontology (GO) database. The color scale from light to deep means a negative logarithm of false
682 discovery rate (FDR) at the base of 10, obtained by the clusterProfiler 4.0 package with default
683 settings(103). (c) Scatterplots depicting principal component analysis (PCA) of 2,869 whole-
684 genome sequence (WGS, left) and 7,015 RNA-Seq samples (right). PCA was carried out using
685 1.52 million SNP genotypes shared by both WGS and RNA-Seq datasets. (d) Illustration of
686 tissue types used in molecular quantitative trait loci (molQTL) mapping. Sample sizes (in the
687 bracket) and colors of all the 28 tissues with sample sizes over 40 are depicted.
688
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690 Fig. 2. Molecular QTL (molQTL) mapping in 28 chicken tissues. (a) Illustration of the
691 definition of five molecular phenotypes and the respective molQTL, including protein-coding
692 gene expression (eQTL), IncRNA expression (IncQTL), exon expression (exQTL), splicing
693 variation (sQTL), and 3’ untranslated region alternative polyadenylation (3’UTR APA, 3a’QTL).
694 (b) Distribution of molQTL around gene body of eGenes, denoted by the horizontal red bar.
695 TSS: Transcription Start Site, and TES: Transcription End Site. (c) Conditionally independent
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696 eQTL across all 28 tissues. Proportion of eGenes with different numbers of independent eQTL
697 being detected (blue stacked bars; left y-axis), and mean number of independent eQTL per eGene
698 (red dots; right y-axis). Tissues are sorted from smallest to largest regarding sample size. Tissue
699 color legend can be found in Fig. 1c and Table S2. (d) Proportion of eGenes detected as a

700 function of tissue sample size across species, including 28, 34, 24 and 49 tissues in chickens,
701 pigs, cattle and human, respectively. The lines are fitted with a linear model implemented in the
702 geom_smooth function of the ggplot2 package(104). Correlations and P values were computed
703 with the Spearman method using the cor.test function in R v3.6.5(105). (e) cis-h? (cis-

704 heritability, left y-axis) and phastCons scores (right y-axis) of lead eQTL as a function of

705 chromosome size (logioscaled). The top and bottom boundaries of the grey shade indicate the
706 25% and 75% of cis-h? range, respectively, and the black line is the median of cis-h? values. Red
707 dots are average phastCons of lead eQTL, and red bars are their standard deviations. The

708 correlations were computed with the Spearman method, and P values were computed via the
709 asymptotic t approximation. (f) The proportion of eQTL detected (y-axis) with different effect
710 sizes (from left to right panels) as a function of tissue sample size (x-axis). (g) Down-sampling
711 analyses of eGene and eQTL. We carried out down-sampling analyses (10 replications at each
712 sample size) in the liver and muscle, which have the largest sample size among all the 28 tissues.
713 The left panel depicts the number of eGenes (left y-axis) and mean eQTL per eGene (right y-
714 axis) detected at different sample size. The middle panel shows the proportion of detected eQTL
715 of large (absolute log.aFC > 1, left y-axis) and small effect size (absolute log.aFC < 0.25, right y-
716 axis). The right panel presents the number eGenes detected when the regulatory effect size of
717 lead eQTL is large (absolute log.aFC > 1, left y-axis) and small (absolute log.aFC < 0.25, right
718 y-axis). (h) Internal validation of eQTL. Bars in light blue indicate the Spearman correlation

719 coefficient of eQTL effect size between validation and discovery groups (left y-axis), and red
720 dots represent 7. statistic estimating the replication rate of eQTL between groups (right y-axis).
721 The samples in each of the 15 tissues with over 100 individuals are evenly and randomly divided
722 into two groups, i.e., discovery and validation groups. The tissue color legend (x-axis) can be
723 found in Fig. 1c and Table S2. (i) Correlation between effect size of eQTL (x-axis, n=91,617)
724 and those of same loci derived from allele-specific expression (ASE, y-axis) analysis in liver. ()
725 The proportion of regulatory variants predicted by DeepSEA (prediction score > 0.7) based on
726 310 functional profiles in chickens. molQTL_set: conditionally independent molQTL across

727 tissues; Random_set: randomly selected variants with the same MAF as molQTL; Background:
728 all tested 1.5 million variants.

729

20


https://doi.org/10.1101/2023.06.27.546670
http://creativecommons.org/licenses/by-nd/4.0/

730

731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.27.546670; this version posted June 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

a eQTL vs. sQTL IncQTL vs. sQTL exQTL vs. sQTL b eQTL 736080749
0.05 1 =279 10°
LD;_ LD A_ LD ;05
0.68
H3 H3 A . —A )
0.32
H4 Ha A_ H4 A_ -
oo 04 08 12 00 04 08 12 00 04 08 12
eQTL vs. 32'QTL IncQTL vs. 32’QTL exQTL vs. 3a'QTL
0.04 08 ‘04
Lng‘ LD# LD S_SQTL o (317767708 @
Ha 0.67 H3 - 0.54 —~ Ha . .- P=647x10° @
H4 033 e |0 s # 4l
00 04 08 12 00 04 08 12 00 04 08 1.2 o
eQTL vs. exQTL IncQTL QTL 3a'QTL vs. exQTL 0 j |
PO nciL vs. ex : Q_ oo 0.5 1.0 1.5
LD AJ—* LD _AL LD L (=) 15737355736
0.28 . . ko] exQTL P=323x10°
H3 H3 H3 '
Summ——" N WY U
H4 H4 H4
0.0 0.4 0.8 00 04 08 12 00 04 08 12
c Splice_acceptor- e———a— {i d Ei5 _: —
Splice_donor- = — i E14] =i =
Splice_region fo— i [ — E- T
Z, Stop_gained +’J_'_ = ‘28.}"[ @ Sz _—:‘:_ ‘ 0.0 0.5 1.0 1.5
K=} Stop_lost —_— H mCoQTTLL (0] i1 e T = 0.2
© Stop_retained- g H ex T ] =3 ) .
E Start_lost I— £ | 3a0m % E10 S 12 kel 316749467 0.4
g 'nitiator_codon b i S g | - E ~ N 0.6
8 o e e P = e = 6 =263 x 10° 0.8
£ HimR L B S es 3 = 1.0
[ - i £ Ll —= .
> FUTR & | 3 S - = 4
g Missense 1 %= ;-'_._ £ EB p— T 3 - i
o) Synonymous & - O i ! B actpe & i 2
Intergenic === ¢+ eQTL | Ea [ 1) EE—— = IncQTL
NC_transcript L% H ISn%LTL 3 H gg%[h_ ‘4:':: = exQTL
Upstream - ex(gL o= E3 : == f B 3aQTL 0
S —=g== ¢ 33QTL |00 == E
] e e o > E 00 05 10 15
- - T I e —
-5 0 5 00 3 ® ? -4 0 4 8 @“.&ar_,%"’ o° ot NLRC5
Log,(Fold Enrichment) Proportion Log,(Fold Enrichment) Proportion Position (Mb)
e of variants of variants
ATAC CTCF DNaseSeq | H3K27ac | H3K27me3 | H3K4mel | H3K4me3 | .. .
3a'QTL 0.86 1.23 0.96 0.70 1.08 1.03 0.80 0.4
eQTL 0.98 0.88 0.92 1135 1.18 0.66 1.31 07
exQTL 0.99 0.99 0.95 1.12 1.13 0.88 1.08 13
IncQTL 1.08 1.00 1.08 1.29 1.54 1.27 0.97 18
sQTL 1.06 0.92 0.98 1.12 1.41 0.59 1.17

Fig. 3. Colocalization and functional enrichment of molQTL. (a) Colocalization analyses of
different types of molQTL of the same genes. The “LD” is the linkage disequilibrium (LD) of
lead SNPs of two molecular phenotypes. “H3” and “H4” represent the probability of whether the
association of two molecular phenotypes is due to two independent SNPs or one shared SNP,
respectively. The vertical red lines indicate corresponding mean values. (b) Associations (i.e., -
logio transformed P) of genetic variants with four molecular phenotypes of NLRC5. The panels
from top to bottom represent gene expression, alternative splicing, exon expression and 3’UTR
APA, respectively. Color legend represents the degree of LD between the lead SNP and the
others. The proportion and enrichment of five types of molQTL across sequence ontology (i.e.,
variant types annotated by SnpEff software(106)) (c) and 15 chromatin states (d). Fold
enrichment is shown as mean (dot) + standard deviation (log> scaled, error bar) across 28 chicken
tissues. The chromatin states were retrieved from Pan et al. (2023) (30). (e) The enrichment fold
(odds ratio, OR) of molQTL in regulatory variants of seven epigenomic marks predicted by
DeepSEA(107) (prediction score > 0.7). OR = (A/B)/(C/D), where C is the length of molQTL
overlapped with annotated features (A), and B is the length of molQTL overlapped with the total
genome length (D).
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Fig. 4. Tissue-sharing and context-dependent patterns of molQTL. (a) The heatmap of
Spearman’s correlation of eQTL effect size between tissues. Tissues are clustered on the basis of
dissimilarities (i.e. 1-d), where d is Euclidean distance calculated from the eQTL effect, with a
complete linkage method(108). The color legend of tissues is the same as in Fig. 1c and Table
S2. (b) Similarity of molQTL effect-based tissue clustering patterns. The pairwise Rand Index
across five types of molQTL is used for measuring the similarity, ranging from 0 to 1, where 0
means that two tissue clustering patterns do not match at all, while 1 means that two clustering
patterns match exactly. (c) Fraction of eQTL around transcription start site (TSS) according to
number of tissues they are active in. (d) Absolute effect size (allelic fold change, aFC) of eQTL
as a function of number of tissues where the eGene is expressed in. The black line is
corresponding median estimates, and the grey shades indicate corresponding interquartile ranges.
Correlation tests were carried out using cor.test function in R v3.6.3. (e) Heatmap depicting of
eQTL effect sharing between breeds. This analysis was done by using Multivariate Adaptive
Shrinkage (109), same as in panel a. (f) The expression of the TCFL5 gene across three
genotypes of rs317663121 in males (AA, n=107; AT, n=106; TT, n=92) and female (AA, n=66;
AT, n=56; TT, n=73). TMM is the Trimmed Means of M values, representing the normalized
gene expression level. (g) The significance (-log:oP) of interaction between rs733070738
genotypes and myocyte enrichment (top panel) and myoblast enrichment (middle panel) on
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766 PLVAP expression in muscle. The bottom panel is the Manhattan plot for eQTL mapping of
767 PLVAP in bulk muscle samples. Dot color means linkage disequilibrium (LD) between
768 rs733070738 and the rest.
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770 Fig. 5. Interpretation of GWAS loci with molQTL. (a) UpsetR plot depicting the number of
771 GWAS loci explained by five types of molQTL, which were detected by at least one of four

772 complementary integrative methods, including fastENLOC-based colocalization, Summary-

773 based Mendelian randomization (SMR), single tissue-based transcriptome-wide association

774 study (STWAS), and multi-tissue TWAS (mTWAS). (b) The proportion of three types of GWAS
775 loci (n = 1,155) colocalizing with eQTL regarding the integration results using 4 methods,

776 including fastENLOC-based colocalization, Summary-based Mendelian randomization (SMR),
777 single tissue-based transcriptome-wide association study (STWAS), and multi-tissue TWAS

778 (mTWAS). No colocalization: GWAS loci that are not interpreted by any eGenes in 28 tissues.
779 Not nearest gene: GWAS loci are interpreted by eGenes that are not nearest genes to GWAS lead
780 SNPs. Nearest gene: GWAS loci are interpreted by eGenes that are the nearest ones to GWAS
781 lead SNPs. Each dot represents one of 108 complex traits. (c) Interpretation of GWAS loci of
782 weight gain from week 6 to 8 (WG6.8) with molQTL. The top panel depicts associations of

783 genes with WG6.8 via STWAS in retina. The second lower panel displays associations (-log1oP)
784 of different molecular phenotypes (gene expression, exon expression, alternative splicing and
785 3’UTR APA) of KPNA3 with WG6.8 obtained by STWAS across tissues. The following

786 Manhattan plot exhibits GWAS associations of SNPs with WG6.8 on chromosome 1. The color
787 indicated linkage disequilibrium (LD) of SNPs with the lead one (rs15497848, P = 1.22 x1012),
788 The colocalized SNP (rs739579746, P = 1.4 x1078) is denoted as a black star. The bottom plot
789 represents molQTL mapping results of KPNA3 in retina. The color represents LD values of the
790 colocalized SNP (rs739579746, black color) with the rest. (d) SMR-multi results of GWAS loci
791 of total stomach weight and eQTL and IncQTL. The top panel depicts GWAS associations of
792 SNPs (represented by dots) with total stomach weight. The middle panel exhibits SMR

793 associations of GWAS loci with eQTL of IL20RA in heart, while the bottom panel exhibits SMR
794 associations of GWAS loci with IncQTL of ENSGALG00000053557. The triangle shape shows
795 the potential causal SNP (rs314997637) across the three biological layers, i.e., expression of
796 ENSGALG00000053557, expression of IL20RA and total stomach weight.
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799 Fig. 6. Comparative analyses of gene regulation and transcriptome-wide associations
800 (TWAS) between chickens and mammals. () Visualization of variance in gene expression of
801 14,278 RNA-Seq samples across four species (i.e., Chicken, pig, cattle and human) via a t-
802 distributed stochastic neighbor embedding (t-SNE). Gene expression (Transcripts per Million,
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803 TPM) of 10600 1-1-1-1 orthologous protein-coding genes are normalized between samples using
804 Seurat software (v4.3.0) (110). (b) Pearson’s correlation of averaged effect size of lead eVariants
805 of 5,513 orthologous eGenes between species. (¢) Comparison of chicken-specific eGenes and
806 conserved eGenes (i.e., eGenes that are shared with at least one mammalian species) across nine
807 tissues. The bottom barplot depicts the proportion of chicken-specific eGenes and conserved
808 eGenes in each tissue. The violin plots from top to bottom depict expression level, TAU (tissue-
809 specificity of expression), t-value (measuring the degree of gene differential expression between
810 species), number of promoters per gene, and loss-of-function intolerance (quantified by

811 LOEUF), respectively. Statistical tests were done by employing two-sided Wilcox-test. ™"P <
812 0.001; 0.001 < P <0.01; “0.01 < P < 0.05; NS: not significant (P > 0.05). (d) Significance (at
813 logio transformed, y-axis) for TWAS-based correlations calculated using one-to-one orthologous
814 gene effect between chicken and pig. The red dashed line depicts the threshold of significance
815 (Permutation-based P value < 0.01, corresponding to nominal P value < 9.11 x 10®). (e) The
816 number of genes newly detected (FDR < 0.05) for body weight in chickens by using cross-

817 species meta-TWAS analysis in muscle. The dashed horizontal line indicates 0 before the log
818 transformation. Orange and blue bars represent homologous and nonhomologous traits in pigs
819 for chicken body weight, respectively. BFT: backfat thickness, LMA: loin muscle area, ADG:
820 average daily gain, LMDEP: loin muscle depth, DAYS: days, MUMM: number of mummified
821 pigs, NBW: number of weak pigs, WSI: weaning to estrus interval, NBS: number of stillborn
822 pigs, NWEAN: number of weaned piglets.

823

824 Methods and Materials

825 RNA-Seq data analyses and molecular phenotype definition

826 We downloaded 8,338 RNA-Seq data sets from the Sequence Read Archive (SRA,

827 https://www.ncbi.nlm.nih.gov/sra)and 140 public data sets from the Genome Sequence Archive
828 (GSA, https://ngdc.cncb.ac.cn/gsal). We also included 155 newly-generated RNA-Seq data sets.
829 The metadata relating to all the RNA-Seq samples is summarized in Table S1. For quality

830 control, we removed adaptors and trimmed low-quality reads using Trim Galore (v0.6.6,

831 https://github.com/FelixKrueger/TrimGalore) with options of “--gzip --trim-n --length 30 --

832 clip_R1 3 --clip_R2 3 --three_prime_clip_R1 3 --three_prime_clip_R2 3”. We aligned the clean
833 reads to the GRCg6a reference genome (Ensembl version 102) using STAR (v2.7.7a)(111) with
834 parameters of “--quantMode GeneCounts --chimSegmentMin 10 --chimOutType Junctions --
835 chimOutJunctionFormat 1 --outFilterMismatchNmax 3”. For downstream analyses, only 7,015
836 samples with uniquely mapping rates > 60 % and a number of clean reads > 500,000 after

837 removing potentially mislabeled samples were kept. For each of these samples, we then obtained
838 raw read counts and normalized expression (i.e., Transcripts Per Million, TPM) of 16,779 PCGs
839 annotated in the Ensembl v102 and 22,792 IncRNA genes annotated by FR-AgENCODE

840 (http://www.fragencode.org/)(112), using featureCounts (v2.0.1)(113) and StringTie

841 (v2.1.5)(114), respectively. Using the same software(113), we counted the total number of reads
842 as a function of annotated exons, which were further transformed into TPM using TBtools(115).
843 We performed the tree clustering of all the RNA-Seq samples using the GGTREE package(116).
844 The distance between samples was measured by 1-r, where r was Pearson’s correlation

845 coefficient based on the log2(TPM+0.25) of 5,000 genes with the highest variability. We also
846 visualized these samples using the t-distributed stochastic neighbor embedding (t-SNE) approach
847 implemented in the Rtsne package(117).
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848 We quantified alternative splicing variation from RNA-Seq data using the LeafCutter

849 package(118), which took into account spliced reads so that both novel and known alternative
850 splicing events could be identified and quantified(118). Briefly, based on the STAR alignments
851 mentioned above, we extracted junctions and defined intron clusters across samples using the
852 script “bam2junc.sh” and leafcutter cluster.py”, respectively, as provided by the LeafCutter

853 package(118). For intron clustering, we required at least 30 split reads supporting each cluster
854 and at least 0.1% of reads supporting a junction in a cluster, as well as allowing intron length of
855 up to 500kb. The generated matrix of per individual counts was normalized and used for

856 clustering samples based on 1-r, where r is the Pearson’s correlation coefficient between

857 samples. To link intron clusters to genes, we mapped their coordinates to the gene model

858 provided by the FR-AgENCODE database (112) using the script “map_clusters to genes.R”
859 (https://qgithub.com/broadinstitute/gtex-pipeline). Afterward, we filtered out introns if no reads
860 were detected in >50% of samples or the number of counts was less than max(10, 0.1n) where n
861 is the sample size. In addition, we discarded introns with low variability across samples: Y i(|zi| <
862 0.25) > n-3 and Yi(|zi| > 6) < 3, where zi is the z-score of the 'th cluster read fraction across

863 individuals. The filtered counts were further normalized between samples using the script

864 “prepare_phenotype_table.py” in the LeafCutter package(118). The generated normalized

865 splicing counts were stored in BED formatted file for subsequent sSQTL mapping.

866 For the quantification of 3’UTR APA, we utilized the DaPars (v2)(119). We first extracted distal
867 polyadenylation sites based on the Ensembl annotation (v102) using the script

868 “DaPars_Extract Anno.py”. Then, we computed the genome coverage of STAR alignments

869 mentioned above using the genomecov function in the BEDTools (v2.30.0)(120). The generated
870 wiggle alignment files were then used for quantifying APA usage, resulting in the percentage of
871 distal poly(A) site usage index (PDUI) value for each gene in each sample. We rescaled the

872 PDUI values across samples to the mean of zero and variance of one in each tissue for 3a’QTL
873 mapping.

874

875 Single-cell RNA-Seq data analyses

876 We retrieved single-cell RNA-Seq data from the chicken heart (n = 7) (121) and muscle (n = 2)
877 (122) from the public database. Raw sequencing data was processed by using the “count”

878 function after preparing the genome annotation .gtf file (Ensembl v102) with the mkgtf tool of
879 the Cell Ranger pipeline(123). The Seurat R package (v4.0.5)(124) was used for subsequent cell-
880 type identification. We first created the Seurat object based on the raw read count of each sample
881 in a tissue using the CreateSeuratObject function. In this step, we filtered out cells with unique
882 gene counts < 200 and with mitochondrial counts > 20% of the total counts. We then normalized
883 raw counts of gene expression using the LogNormalize algorithm and further identified highly
884 variable genes (HVG) using the FindVariableFeatures algorithm with default parameters. The
885 HVG count matrices of all samples for a given tissue were integrated and combined to form a
886 single Seurat object using the FindIntegrationAnchors and IntegrateData functions. We scaled
887 the integrated dataset using the ScaleData function, which was further used to run principal

888 components analysis (PCA) with the RunPCA function. The top 15 PCs, where the percentage of
889 variance explained tended to be constant based on the elbow plot by the JackStraw function,

890 were selected for running Uniform Manifold Approximation and Projection (UMAP) analysis for
891 cell clustering using the RunUMAP function. The nearest neighbors between cells were

892 constructed using the FindNeighbors function and cell clusters were thus determined using the
893 FindClusters function at a resolution of 0.05. We manually assigned cell names based on original
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894 publications (121, 122) and the PanglaoDB database(125). Finally, cell clusters were visualized
895 using the UMAP algorithm with the DimPlot function. To further deconvolute bulk RNA-Seq
896 data using single-cell RNA-Seq data, we first created a signature matrix using the CIBERSORTX
897 tool (126) with default parameters. Using the “Impute Cell Fractions” from the same tool, we
898 imputed cell fractions with the custom mode and 1000 permutations after uploading the gene
899 expression matrix for the bulk RNA-Seq data.

900

901 Tissue-specificity of gene expression

902 We employed tspex(127), a tissue-specificity calculator, to compute 12 tissue-specificity metrics,
903 including 8 general scoring metrics (i.e. Couts, Tau, Gini coefficient, Simpson index, Shannon
904 entropy specificity, ROKU specificity, Specificity measure dispersion, and Jensen-Shannon
905 specificity dispersion) and 4 individualized scoring metrics (i.e. Tissue-specificity index, Z-
906 score, Specificity measure, and Jensen-Shannon specificity). To identify tissue-specifically

907 expressed genes in a tissue, we applied another t-statistic approach as described previously(128).
908 Briefly, for a given tissue, we carried out differential gene expression analysis between the target
909 tissue and the rest but excluded those from the same biological system using the limma

910 package(129). Subsequently, tissue-specific genes were identified when FDR corrected P-

911 value(130) > 0.05 and fold change > 2. Functional enrichment analysis of tissue-specific genes
912 with Biological Process (BP) terms in the Gene Ontology (GO) database was performed using
913 the clusterProfiler package(103).

914

915 Sex-biased gene expression

916 To identify genes with sex-biased expression, we employed DESeq?2 software(131) to carry out
917 differential expression analysis between male and female samples in 18 tissues, where sample
918 size of each sex was > 10. We fitted a generalized linear model for the differential expression
919 analysis while correcting for factors, including BioProject, year when RNA-Seq data was

920 generated, age, breed, sequencing platform, library layout and selection method. After multiple
921 testing correction by the FDR approach(130), the set of differentially expressed genes was

922 identified when FDR corrected P-value < 0.01.

923

924 Reference-guided transcript assembly

925 Based on STAR alignment files, we assembled transcripts with the guidance of the Ensembl
926 annotation (GRCg6a v102) using the StringTie2 software tool(114). To increase the

927 computational efficiency, transcript assembly was run by tissue. Then, the generated assembly
928 files from all tissues were merged by using the “merge” function of the StringTie2

929 software(114). After quantifying the expression of assembled transcripts, we only retained

930 single-exon transcripts with TPM >1 in at least half of samples in a tissue, and multi-exon

931 transcripts with TPM >0.1 in at least half of samples in a tissue. Moreover, we compared our
932 prediction to Ensembl and NCBI annotations using GffCompare (version 0.11), and classified
933 them into 14 classes as described previously(95, 132). The coding potential of predicted

934 transcripts was predicted by using CPP2 software(133), with IncCRNA loci predicted using

935 FEEInc(134).

936
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937 Construction of gene co-expression networks

938 To build gene co-expression networks in each tissue, we employed five complementary methods
939 with default parameters, including WGCNA (v1.69)(135), ICA (v1.0.2)(136), PEER (v1.3)(137),
940 MEGENA (v1.3.7)(138), and CEMiTool (v1.8.3)(139). The input gene expression values were
941 adjusted for hidden confounding factors by regressing out 10 PEER factors and 5 genotypic PCs
942 (see “Preparation for molQTL mapping” section). Functional enrichment analysis of gene co-
943 expression modules was conducted by using clusterProfiler (v4.0)(103), and the following

944 visualization was done using Gephi (v0.9.2)(140).

945

946 SNP calling from RNA-Seq samples

947 To call SNPs from RNA-Seq samples, we marked PCR duplicates in STAR alignment files and
948 split reads that contained Ns in their cigar string using MarkDuplicates and SplitNCigarReads
949 modules of the Genome Analysis Toolkit (GATK, v 4.1.9.0)(45), respectively. Using the

950 Ensembl dbSNP database (v102), we recalibrated base quality scores using GATK

951 BaseRecalibrator and ApplyBQSR modules. By following the best practice of germline variant
952 calling from RNA-Seq data, we detected small variants from the recalibrated alignments files,
953 which generated individual Genomic Variant Call Format (GVCF) files using the

954 HaplotypeCaller function of the GATK tool(45). Then, we carried out joint-calling of all GVCF
955 samples using the GenotypeGVCFs module from the GATK tool(45). For selecting high-quality
956 SNPs, we carried out a hard-filtering with criteria of “FS > 30.0 & QD < 2.0”, resulting in a total
957 set of 12,191,306 SNPs.

958

959 Construction of the multi-breed genotype imputation panel and genotype imputation

960 We retrieved 1,693 public WGS data sets from SRA (n=1,213) and GSA (n = 480) databases
961 along with 1,176 additional newly generated WGS samples, resulting in a total set of 2,869 WGS
962 samples (Table S6). All raw sequence reads passed a uniform computational pipeline, including
963 adaptor removal, read alignment, and SNP calling. Briefly, we trimmed read adaptors and low-
964 quality reads using the Trimmomatic v0.39 software(141). The obtained clean reads were further
965 aligned against the Ensembl GRCg6a chicken reference genome (v102) using the MEM

966 algorithm of the Burrows-Wheeler Aligner (BWA, v0.7.17)(142). The alignment files in Binary
967 Alignment Map (BAM) format were sorted using SAMtools (v1.9)(143), and were further passed
968 for the removal of PCR duplicates using GATK (v4.1.9.0)(45). The obtained BAM files were
969 then used for variant discovery to generate individual GVCF files using the HaplotypeCaller
970 function of the GATK tool(45). The joint-calling of all 2,869 GVCF samples was further done
971 using the GenotypeGVCFs module from the GATK tool(45). For selecting high-quality SNPs,
972 we carried out a hard-filtering with criteria of “QD < 2.0, MQ < 40.0, FS > 60.0, SOR > 3.0,

973 MQRankSum < -12.5, and ReadPosRankSum < -8.0”, resulting in a total set of 117,900,812

974 clean SNPs. To create the genotype imputation reference panel, we first filtered out multi-allelic
975 and sex chromosomal SNPs, as well as those with MAF < 0.01 and missing rate > 0.9 using

976 BCFtools v1.10.2(144), and then imputed missing genotypes using the Beagle 5.1 program(145).
977 This yielded the final reference panel consisting of 2,869 samples and 10,520,420 SNP

978 genotypes. To better impute SNPs called from RNA-Seq samples, we discarded SNPs called
979 from RNA-Seq samples with MAF < 0.05 using BCFtools v1.10.2(144) and further evaluated
980 the effect of missing rates decreasing from 0.9 gradually to 0.6 on imputation accuracy. This
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981 evaluation revealed that the missing rate of 0.6 could reach >95% of imputation accuracy,

982 yielding a set of 1.5 million SNPs for subsequent analysis. The genotype imputation was

983 performed using the Beagle 5.1 program(145).

984

985 Preparation for molQTL mapping

986 Sample deduplication. After assigning RNA-Seq samples into 28 tissue types, we calculated the

987 identity-by-state (IBS) distance between samples within each tissue based on the imputed SNP

088 genotypes using PLINK v1.9(146). The formula of IBS calculation is as follows:

989 IBS = (IBS2 + 0.5 x IBS1)

~ (IBSO + IBS1 + IBS2)

990 where IBSO, IBS1 and IBS2 are the number of non-missing variants when IBS = 0, IBS = 1, and

991 IBS = 2, respectively. If the IBS distance of a pair of samples is higher than 0.9, they were

992 deemed as duplicated so that the samples with the higher sequencing depth were kept. The

993 deduplication process was run until all IBS values per pair of samples were less than 0.9. Finally,

994 a total of 28 tissues with sample sizes ranging from 44 (testis) to 741 (liver) were kept for

995 subsequent molQTL mapping.

996 Principal component analysis. Within each of those 28 tissues, we first LD-pruned imputed

997 genotypes with the option of “--indep-pairwise 200 100 0.1” using PLINK v1.9(146). Principal

998 component analysis (PCA) of samples was then carried out, based on the LD-pruned genotypes

999 using the smartpca tool of the EIGENSOFT v8.0.0 package(147). The top 5 principal
1000 components (PCs) were selected as covariates for heritability estimation and molQTL mapping.
1001 Estimating PEER confounder factors. To correct for confounders and other unwanted technical
1002 or biological variations in RNA-Seq samples, we estimated the Probabilistic Estimation of
1003 Expression Residuals (PEER) in each of the tissues using the PEER software package(137). The
1004 top 10 PEER factors showing highly relative contributions (i.e., factor weight variance) to gene
1005 expression variation were selected for subsequent heritability estimation and molQTL mapping.
1006 Phenotype preparation. For protein-coding genes, INcRNAs and exons, we filtered out features
1007 with TPM < 0.1 and raw read counts < 6 in > 20% of samples within a tissue. Raw read counts
1008 were normalized using the Trimmed Mean of M-value (TMM) algorithm of the edgeR
1009 package(148). The generated TMM matrix was then further normalized with an inverse normal
1010 transformation for subsequent molQTL mapping. For splicing and APA, the preparation of
1011 molecular phenotypes was described in the “RNA-Seq data analysis and molecular phenotype
1012 definition” section.
1013
1014 Estimating cis-heritability of gene expression
1015 We leveraged the GCTA program v1.93.2(149) to estimate cis-heritability (cis-h?) of molecular
1016 phenotypes by fitting a mixed linear model:
1017 y=XB+g+ ¢
1018 where y is a vector of phenotypic values (i.e., gene expressions) of all samples, g is a vector of
1019 corresponding coefficients of quantitative covariates X of all samples, which included 5
1020 genotypic PCs and 10 PEER factors, g is a vector of the genetic values of SNPs around £1Mb of
1021 the transcription start sites (TSS) of a gene, and ¢ is a vector of residuals. The genetic value g
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1022 followed a normal distribution with mean of 0 and variance of Aogz, where A was the genetic
1023 relationship matrix (GRM) between individuals(150). Thus, we can estimate o7, i.e., the

1024 variance explained by SNP genotypes (i.e., cis-h?), using the restricted maximum likelihood
1025 (REML) approach(150, 151) implemented in GCTA software(149). The cis-h? was finally

1026 defined when the significance level was lower than 5% based on the likelihood ratio test(149,
1027 150).

1028

1029 Molecular QTL mapping

1030 In this study, we only intended to map cis-molQTL of each feature, i.e., SNPs distributed around
1031 1 Mb upstream and downstream of the TSS of the gene, using tensorQTL v1.0.4(152). This
1032 utilized graphics processing units (GPUSs) with the scalability to increase runtime and reduce the
1033 time cost. Initializing with the option of “--mode cis_nominal” of the tensorQTL v1.0.4(152), we
1034 calculated all nominal associations of all variant-molecular phenotype pairs. The permutation
1035 mode was further used for computing empirical P-values for a molecular phenotype using the
1036 option of “--mode cis” of the tensorQTL v1.0.4. After carrying out a multiple testing correction
1037 based on empirical beta-approximated P-values(153) using the false discovery rate (FDR)

1038 approach(130), we defined eGenes , i.e., genes that were significantly regulated by at least one
1039 variant (FDR < 0.05). For an eGene, the empirical P-value that was closest to an FDR of 0.05
1040 was defined as the genome-wide empirical P-value threshold (pt), which was used for defining
1041 the gene-level significance threshold using gbeta(pt, beta_shapel, beta_shape2) in R

1042 (v3.6.3)(105), where beta_shapel and beta_shape2 were computed by tensorQTL v1.0.4(152).
1043 The significant molQTL were tested SNPs whose nominal P-values were lower than the gene-
1044 level significance threshold.

1045

1046 Fine-mapping analysis of molQTL

1047 We employed four strategies for fine-mapping independent variants underlying each molQTL.
1048 Firstly, we utilized the stepwise regression procedure for mapping conditionally independent
1049 molQTL, as used in other GTEX studies (32, 47, 48). This analysis was done by using the

1050 tensorQTL v1.0.4 with “--mode cis_independent” option(152). The conditionally independent
1051 molQTL mapping was based on the nominal associations mentioned above and ranked variants.
1052 Secondly, we fine-mapped putative causal variants for each molecular phenotype by using the
1053 “Sum of Single Effects” (SUSIE) model (v 1.0) (46). We calculated LD correlations between all
1054 tested SNPs of a molecular phenotype from the genotype reference panel and then fine-mapped
1055 variants using the SuSiE infinitesimal effect model. The posterior probability of 0.1 was used for
1056 identifying putative causal variants and credible sets.

1057

1058 Colocalization analysis between molecular phenotypes

1059 To demonstrate whether two types of molecular phenotypes shared genetic regulatory

1060 mechanisms, we determined a set of paired molecular phenotypes that were transcribed from the
1061 same gene. We then ran the coloc.abf function in the coloc package(154), which is an

1062 Approximate Bayes Factor colocalization analysis for detecting significant genetic variants
1063 shared by two molecular phenotypes. The package computed posterior probabilities for: 1) no
1064 association with either molecular phenotype (HO); 2) association only with the first molecular
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1065 phenotype (H1); 3) association only with the second molecular phenotype (H2); 3) association
1066 with both molecular phenotype but two independent signals (H3); 4) association with both

1067 molecular phenotype and shared signals (H4). Moreover, we calculated the linkage

1068 disequilibrium (LD) of two lead SNPs for a pair of shared molecular phenotypes using PLINK
1069 v1.9(146).

1070

1071 Tissue- and breed-sharing of molQTL

1072 Tissue-sharing of molQTL. To assess the cross-tissue sharing pattern of molQTL, we used

1073 Multivariate Adaptive Shrinkage in R (MashR, v0.2.57)(109) and METASOFT v2.0.0(155). For
1074 MashR, we used the z-score (slope/slope_se) of top molQTL for a gene as input. To run the
1075 mash model, we randomly selected 1 million molQTL-gene pairs from nominal associations
1076 being tested across all tissues by tensorQTL and obtained their z-score values. If there were
1077 missing z-score values, zero was filled and the corresponding standard error was set to 1e°. Local
1078 false sign rate (LFSR) was then computed by MashR and an LFSR of 0.05 was considered as the
1079 significance threshold to define whether a molQTL was active in a tissue. Pairwise Spearman’s
1080 correlation of effect size of active molQTL was calculated to evaluate tissue similarity. For

1081 METASOFT, we combined all significant molQTL across tissues and computed the z-score as
1082 described above. We estimated the m-value, which represented the posterior probability

1083 indicating whether a molQTL effect exists in a tissue, using the Markov Chain Monte Carlo
1084 (MCMC) method(156). The m-value threshold was set as 0.7.

1085 Breed-sharing eQTL analysis. We considered the brain (Leghorn, n = 78; Red Jungle Fowl, n =
1086 46; Ross, n = 157), spleen (Leghorn, n = 74; Cobb, n = 43) and liver (Leghorn, n = 60; Cobb, n =
1087 47; Ross, n = 101; Rhode Island Red, n = 78), tissues as they had more than two breeds with
1088 sample size > 40. For each breed, we ran eQTL mapping independently using tensorQTL

1089 software (v1.0.4). The eQTL sharing was assessed using METASOFT v2.0.0(155), and MashR
1090 (v0.2.57)(109), as well as 71 statistic in the qvalue package(51, 157). The METASOFT and
1091 MashR were run as described above, and the w1 statistic (i.e. replication rate)(157) was used to
1092 assess if an eQTL detected in one breed can be replicated in another breed.

1093

1094 Detection of context-dependent QTL

1095 Sex-biased eQTL. To identify eQTL that is significantly associated with gender, we focused on
1096 eight tissues that had at least 30 samples for each sex. In this study, we only considered

1097 conditionally independent eQTL identified above to reduce the computational burden. We fitted
1098 a linear model y =g +s+sx g+ c + e, where y is phenotypic values of gene expression; g is
1099 genotype (0 for homozygous ref, 1 for heterozygous, and 2 for homozygous alt); s is sex

1100 information (O for female and 1 for male); c is quantitative covariates including 5 genotypic PCs
1101 and 10 PEER factors as we used in eQTL mapping, while e is for the residuals. The same

1102 parameters were also used for computing the null model but excluding the s x g term. We then
1103 calculated P values by comparing the linear interaction model to the null model using analysis of
1104 variance. The Im() function in R v3.6.3 (105) was used for model fitting.

1105 Transcription factor (TF) interacting eQTL. To detect eQTL that may interact with the

1106 expression of transcription factors, we retrieved 956 putative transcription factors from the

1107 AnimalTFDB (v3.0). As was done for sex-biased QTL detection, we only considered

1108 conditionally independent eQTL but excluded eGenes that were TF. Likewise, we fitted the same
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1109 interaction model, but the interaction term was TF expression. A total of 15 quantitative

1110 covariates including 5 genotypic PCs and 10 PEER factors were also fitted in the model to

1111 control confounding factors. The significance threshold was set as FDR(130) corrected P-value <
1112 0.01.

1113 Cell-type interacting eQTL. We mapped cell-type interaction QTLs by fitting a linear model but
1114 included an interaction term implemented in the tensorQTL v1.0.4 (152):y=g+i+gxi +e,
1115 where y is gene expression, i is the estimated abundance of cell types, and g is genetic effects
1116 estimated from SNPs within £1Mb of the TSS of a gene, while e is for the residuals. To control
1117 confounding factors, we also included a total of 15 quantitative covariates including 5 genotypic
1118 PCs and 10 PEER factors as described above. We defined genes that had at least one significant
1119 SNP after carrying out a multiple testing correction on eigenMT-based P-values(158) using the
1120 FDR approach(130). We defined the threshold of significance as FDR < 0.01.

1121 Breed interacting eQTL. To demonstrate breed effects on gene regulation, we ran breed

1122 interaction eQTL mapping using the tensorQTL (v1.0.4) tool (152) in brain, where the sample
1123 size of each breed was > 40, including Leghorn (n=78), Red Jungle Fowl (n = 46) and Ross (h =
1124 157). This interaction eQTL mapping fitted the same model as described for “Cell-type

1125 interaction eQTL ” while the interaction term was breed information. The breed origins were
1126 coded as 0 for Red Jungle Fowl and 1 for Leghorn/Ross. After a multiple testing correction using
1127 the FDR approach(130), gene-variant pairs with FDR < 0.01 were deemed as significant.

1128

1129 Estimating effect sizes of molQTL

1130 We estimated the allelic fold change (aFC) of molQTL by employing the aFC (v0.3) Python
1131 script(159). The estimation was based on genotypes and molecular phenotypes (the same as
1132 molQTL mapping), as well as covariates including 5 genotypic PCs and 10 PEER factors. The
1133 95% confidence interval of aFC was estimated by using the bootstrap method (--boot 100).
1134

1135 Allele specific expression (ASE)

1136 We conducted a haplotype-based ASE analysis through the phASER (v1.1.1) software(160). To
1137 exclude genomic regions with high mapping error rates, we first computed the genome

1138 mappability using GenMap (v1.3.0)(161) with parameters: -K 75 -E 2. The generated blacklist
1139 was fitted to the phASER (v1.1.1) tool(160) to phase variants from the STAR alignment BAM
1140 and VCF files with options of “--paired_end 1 --mapq 255 --baseq 10”. Using the script

1141 “phaser_expr matrix.py”, we measured gene-level haplotypic expression for all samples with
1142 default parameters. The generated haplotypic counts files for individual samples were further
1143 aggregated by tissue by using “phaser _expr matrix.py”. Finally, we used the

1144 “phaser cis_var.py” script to estimate the effect size of eQTLs based on aggregated haplotypic
1145 counts. The correlation of ASE-level effect size (ASE aFC) and eQTL effect size (aFC estimated
1146 above) was computed using the Spearman’s correlation approach in R v3.6.3 (105).

1147

1148 Replication of molQTL discovery

1149 To assess the replication rate of molQTL discovery, we employed the =; statistic embedded in
1150 the gvalue package(51, 157). Briefly, we randomly split RNA-Seq samples into two groups -
1151 QTL discovery and validation population, when the tissue sample size was greater than 100. We
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1152 ran QTL mapping in each group separately using tensorQTL (v1.0.4) (152) as described above.
1153 Based on replicated eQTL P-values, we calculated 7o value that measured the overall proportion
1154 of true null hypotheses using the piOest function within the gvalue package(157). The m1 was thus
1155 obtained by 1- mo.
1156
1157 DeepSEA model training and variant effect prediction
1158 DeepSEA is a deep learning model initially trained for predicting variant effects in human(50),
1159 while in this study, it was retrained by utilizing 310 epigenomic peaks generated by the chicken
1160 FAANG consortium (30) and by Zhu et al. (162) (Table S7). According to sequencing type and
1161 histone marks, we categorized all 310 epigenomic peaks into groups, including ATAC, CTCF,
1162 DNaseSeq, H3K27ac, H3K23me3, H3K4mel and H3K4me3, which were used as input for the
1163 model training using the Selene, a PyTorch-based package (163). Briefly, we grouped the
1164 genome into 200-bp bins and then labeled the bins according to input features. A genomic bin
1165 will be labeled 1 if half of the bin overlaps with an epigenomic peak, otherwise labeled as 0. The
1166 model was then trained based on a sequence region of 1,000 bp (i.e., input feature), where the
1167 200-bp bin was placed at the center. We created validation and testing datasets by grouping
1168 chromosomes, specifically grouping chromosomes 8 and 9 to the training set and chromosomes 6
1169 and 7 to the validation set. We computed the area under the receiver operating characteristic
1170 (AUROOC) to evaluate the performance of the DeepSEA model. After that, we computed variant
1171 effect/score of two alleles for a given molQTL, i.e. 2 x 310 predicted chromatin variant scores,
1172 by inputting a 1000-bp sequence with the center being the Ref or Alt allele. The score is defined
1173 as the relative log fold changes of odds between predicted scores of the Ref and Alt. For each
1174 feature, SNPs with a score greater than 0.7 were identified as variants affecting the feature.
o ] | p(reference) p(alternative)

varaint score = |log 1 —p(reference) © 1 — p(alternative)
1176
1177 Functional enrichment of molQTL
1178 To understand the enrichment of molQTL in sequence ontology (i.e., SNP functional types
1179 annotated by SnpEff v5.0e) and regulatory elements (i.e., 15 chromatin states annotated in(30)),
1180 we employed the formula:

(€/4)

1181 E (/D)
1182 where A and D are the length of feature annotations and the total genome length, respectively. C
1183 is the length of molQTL overlapped with feature annotations, and B is the length of molQTL
1184 overlapped with the total genome length. To further uncover the regulatory mechanism of
1185 molQTL, we retrieved predicted pairs of regulatory elements-target genes from(30). We then
1186 overlapped them with our molQTL-regulated genes but at the same time required the molQTL to
1187 be located within regulatory elements. Moreover, we also performed the enrichment analysis of
1188 molQTL-regulated genes and HiC TAD with data retrieved from a previous study (52) using the
1189 SnakeHiC pipeline (https://github.com/FarmOmics/SnakeHiC).
1190
1191 Integrating molQTL with GWAS results

34


https://doi.org/10.1101/2023.06.27.546670
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.27.546670; this version posted June 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

1192 GWAS summary statistics. To investigate the regulatory mechanisms underpinning complex traits
1193 in pigs, we systematically integrated the identified molQTL with GWAS from 108 complex traits
1194 of economic importance, representing five trait domains (i.e., growth and development, carcass,
1195 egg production, feed efficiency and blood biochemical index). Detailed information for each
1196 GWAS is shown in Table S17. To perform the integrative analysis of GWAS and molQTL, we
1197 overlapped significant GWAS loci with the 1,522,091 SNPs were tested in the molQTL mapping
1198 analysis, resulting in 1,176 GWAS loci.

1199 Enrichment of molQTL and trait-associated variants. To examine whether molQTL were
1200 significantly enriched among the significant GWAS loci, we applied QTLEnrich (v2) (32) to
1201 quantify the enrichment degree between significant molQTL and GWAS loci.

1202 Transcriptome-wide association study (TWAS). We conducted single- and multi-tissue TWAS
1203 with S-PrediXcan(164) and S-MultiXcan(165) included in the MetaXcan (v0.6.11) family,

1204 respectively. Briefly, we trained the Nested Cross validated Elastic Net models with molecular
1205 phenotypes (i.e., PCG, IncRNA, splicing, exon, and 3a’Genes) and corresponding SNPs within
1206 the 1Mb cis-window of molecular phenotypes in all 28 tissues. The predictive models with cross-
1207 validated correlation p > 0.1 and prediction performance P < 0.05 were selected for subsequent
1208 analyses. Using the S-PrediXcan tool and trained models, we predicted gene-trait associations at
1209 the single-tissue level, i.e., single-tissue TWAS results. Further, using the S-MultiXcan tool, we
1210 integrated single-tissue predictions, generating the multiple-tissue TWAS results. After carrying
1211 out a multiple testing correction with the FDR approach(130), gene-trait associations with

1212 corrected-P < 0.05 were considered as significant.

1213 Summary-based Mendelian Randomization (SMR). To explore the pleiotropic association

1214 between molecular phenotypes and a complex trait, we conducted a Mendelian Randomization
1215 analysis. This was done by using the SMR software (v1.3.1) (166), which can utilize summary-
1216 level data from GWAS and molQTL. To correctly fit the SMR software, the molQTL data

1217 generated by tensorQTL in this study was initially converted into BESD format with options of
1218 “--fastgtl-nominal-format --make-besd”. We then ran the SMR test and carried out a multiple
1219 testing correction with the FDR approach(130). The gene-trait pairs with corrected P-value <
1220 0.05 were selected and deemed as significant.

1221 Colocalization analysis. To identify shared genetic variants between GWAS and molQTL, we
1222 conducted a colocalization analysis with fastENLOC (v2.0) (167). We first fine-mapped putative
1223 causal variants for each eGene by using a Bayesian multi-SNP genetic association analysis

1224 algorithm, deterministic approximation of posteriors (DAP, the current version is DAP-G,

1225 v1.0.0)(168, 169). Leveraging the DAP-G (v1.0.0) (168, 169) outcome, we generated a

1226 probabilistic annotation of molQTL using the “summarize_dap2enloc.pl” script. We then

1227 calculated approximate LD blocks using PLINK v1.9 (146) with options: --blocks no-pheno-req
1228 --blocks-max-kb 1000 --make-founders. The posterior inclusion probability (PIP) of GWAS loci
1229 was calculated for each LD block using TORUS (170) with the options: --load_zval -dump_pip.
1230 By integrating GWAS PIP values, we ran the final colocalization analysis with the fastENLOC
1231 (v2.0) tool (171) and obtained the regional colocalization probability (GRCP). The GRCP > 0.1
1232 was defined as the threshold of significance.

1233

1234 Enrichment analysis of eQTL in selective sweeps

1235 To determine whether domestication could be acting on regulatory variants, we retrieved

1236 selective sweeps measured by locus-specific branch length (LSBL) statistics (14, 65). Briefly, we
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1237 first calculated Fst for genomic windows with 20 consecutive SNPs between broilers (n=40) and
1238 Red Jungle Fowls (RJF, n=35) using VCFtools and also between layers (n=50) and Red Jungle
1239 Fowls (n=35). The LSBL values were further computed with the formula: LSBL = (Fst(ag) +
1240 Fstac) - Fstac)) / 2. We deemed the top 0.1% of genomic windows ranked by LSBL values as
1241 significant. We examined whether eQTL were overrepresented in genomic windows under

1242 position selection, i.e., whether genomic windows with at least one eQTL had higher LSBL
1243 values than the background, which has an equivalent number of windows as those of eQTL.
1244

1245 Comparative analysis of gene expression

1246 To comparatively analyze gene expression across species, we collected gene expression and
1247 regulation data from multiple sources. Specifically, we obtained data for 15,044 samples from
1248 the Human GTEx web portal (v8) available at https://gtexportal.org. Additionally, we gathered
1249 gene expression data for 7,095 pig samples and 8,742 cattle samples from the FarmGTEX

1250 resource accessible at https://www.farmgtex.org/. Furthermore, as part of this study, we included
1251 gene expression and regulation data for 7,015 chicken samples. In this study, we focused on
1252 protein-coding genes based on the annotation of the Ensembl (v102), and we considered the
1253 genes with TPM > 0.1 as expressed. Specifically, we grouped chicken genes into “1-1-1-1

1254 orthologous gene” (1-1 orthologous across species, n = 10600), “complex orthologous genes” (“1
1255 to many”, “many to 1” and “many to many”, n=3644), “no homology” (without any homologous
1256 counterpart in mammals, n=2535). In total, 9 tissues in common across species (i.e., adipose,
1257 blood, hypothalamus, liver, lung, muscle, ovary, pituitary, and testis) were included to conduct a
1258 comparative analysis of gene expression.

1259 Gene expression (TPM matrix) retrieved for each was normalized using Seurat (v4.3.0) (110) to
1260 decrease the bias introduced by dynamic data across species. We evaluated transcriptome

1261 outcomes by counting the number of reads (reads = TPM x the length of genes (bp)) in each
1262 tissue. Samples were by performing dimensionality reduction on the normalized expression data
1263 (including 10,600 1-1-1-1 orthologous genes) with the t-SNE approach (117). Moreover, we
1264 explored the conservation of cis-heritability (h?) and effect size (aFC) of lead eVariants across
1265 species. To do so, we selected 1-1-1-1 orthologous genes (n=5,384 for h?) and eGenes related
1266 eVariants (n=5,513 for aFC) that are in common across species, and grouped genes into

1267 conserved eGenes (that have at least 1 homology with mammals) and chicken-specific eGenes
1268 (that didn’t have homology with any mammal species).

1269

1270 Cross-species TWAS comparison

1271 We performed comparative analyses of single-tissue TWAS results of 108 traits in chickens with
1272 9,112, 1,032 and 6,480 single-tissue TWAS results in three mammalian species (i.e., pigs(47),
1273 cattle(48) and humans(32)), representing 268, 43 and 135 complex traits, respectively. Within a
1274 shared tissue between two species, we computed Pearson’s correlations between any pair of traits
1275 on the basis of z score (beta / standard error) estimated from one-to-one orthologous genes

1276 between two corresponding species. To define the threshold of significance, we carried out

1277 permutation analysis by randomly calculating Pearson’s correlations between any two of all
1278 single-tissue TWAS 1000,000 times. The within-species correlations were then excluded,

1279 resulting in 609,861 Pearson’s correlations and corresponding P values. We set the cutoff of
1280 significance as top 0.1% of permuted -logioP, corresponding to the P value of 9.11 x 1073, We
1281 thus conducted cross-species meta-TWAS analysis by combining TWAS results from different
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1282 species based on orthologous genes. For meta-TWAS analysis, we applied a sample-size
1283 weighting (SSW) strategy (172) by calculating Ztwas as follows:

B
Yi=1NiZrwasj

1284 ZTWAS — (Z}igzl Nl-z)l/z

1285 where Ztwasj IS the z-score for jth gene in TWAS analysis, i is the species, i.e., chicken, humans,
1286 pigs, and cattle, Nj is the number of individuals for ith species in TWAS, B is the number of
1287 species in metaTWAS. The effective sample size is N; = 4/(1V L - l). To obtain the
1288 significance level, we calculated P values for each gene based on a Chi-squared distribution of z-
1289 scores (df=1) calculated before. After a multiple testing correction with the FDR method (130)
1290 by replacing original P value (TWAS) with P value (meta-TWAS) of orthologous genes, the
1291 threshold of significance was defined as FDR < 0.05.

1292
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