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Abstract
Polygenic risk scores (PRS) trained from genome-wide association study (GWAS) results are set
to play a pivotal  role in biomedical  research addressing multifactorial  human diseases.  The
prospect  of  using  these  risk  scores  in  clinical  care  and  public  health  is  generating  both
enthusiasm  and  controversy,  with  varying  opinions  about  strengths  and  limitations  across
experts1.  The  performances  of  existing polygenic  scores  are  still  limited,  and although  it  is
expected  to  improve  with  increasing  sample  size  of  GWAS  and  the  development  of  new
powerful methods, it remains unclear how much prediction can be ultimately achieved. Here,
we conducted a retrospective analysis to assess the progress in PRS prediction accuracy since
the publication of the first large-scale GWASs using six common human diseases with sufficient
GWAS data. We show that while PRS accuracy has grown rapidly for years, the improvement
pace from recent GWAS has decreased substantially, suggesting that further increasing GWAS
sample  size  may  translate  into  very  modest  risk  discrimination  improvement.  We  next
investigated the factors influencing the maximum achievable prediction using recently released
whole  genome-sequencing  data  from  125K  UK  Biobank  participants,  and  state-of-the-art
modeling of polygenic outcomes. Our analyses point toward increasing the variant coverage of
PRS, using either more imputed variants or sequencing data, as a key component for future
improvement in prediction accuracy.
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Main
Most common human diseases harbor a strong polygenic inheritance, characterized by a

very large number of genetic variants of small effects. This scattered distribution of risk has
severely  hampered  the  initial  goal  of  using  genetic  association  studies  for  personalized
medicine through individualized disease risk predictions, prevention strategies and treatments 2-

4. This issue has been recognized early on in the GWAS era, and the community has developed a
strong case for genetic risk profiling on the basis of polygenic risk scores (PRSs), derived from
genome-wide association studies (GWAS) results5. In its simplest form, a PRS for an individual is
a summation of multiple single nucleotide polymorphisms (SNPs) weighted by their effect sizes
estimated from independent GWAS data. Initially PRSs were constructed from a small number
of independent genome-wide significant variants, but they have evolved to include thousands
to millions of  variants  selected from the complete GWAS results,  using optimized selection
criteria  and  weighting  schemes6,7.  As  for  predicting  any  highly  multifactorial  outcome,  the
accuracy of PRS predictions mostly depends on the sample size of the dataset used to estimate
individual variant effects. However, despite a substantial increase in GWAS sample size over
time,  the predictive performance of existing PRSs remains low, raising concerns about their
value for clinical purposes8-10.

Several  studies  have  estimated  the  potential  for  genetic  risk  prediction  in  polygenic
diseases describing links between prediction accuracy, typically defined by the area under the
receiver  operating  characteristic  curve  (AUC),  disease  prevalence  and  heritability11-13.  More
recent studies also proposed theoretical frameworks to estimate future improvement in PRS-
based prediction based on the distribution of effects at causal variants14,15. However, none of
those examined performances retrospectively. This is partly explained by a lack of standard in
the implementation of PRS, and the impact of various factors inducing heterogeneity in the PRS
performances16,17. Here we examine how PRS prediction accuracy of six diseases evolved during
the past 15 years and how existing models, state-of-the-art sequencing data, and functional
annotation data can inform potential  future improvements.  We use only  PRS derived from
population of  European ancestry.  Using  PRS  derived in  non-European population would be
challenging  because  of  the  current  lack  of  large-scale  GWAS  data.  However,  the  linear
relationship  observed  in  cross-ancestry  PRS  transferability18,19 suggests  the  trends  should
remain consistent across populations.

PRS prediction accuracy and sample size
We  first  pulled  from  the  literature  and  curated  previous  reports  of  genetic  risk  score

prediction accuracy, expressed as the AUC, for  coronary artery disease, breast cancer, type 2
diabetes,  Alzheimer  disease,  asthma,  and obesity (Supplementary  Note and  Table  S1).  The
studies spanned from 2006 to 2020 and the effective sample size  N eff  ranged from 981 to
339,224. The reported predictive power showed a very modest association trend with sample
size and was instead characterized by substantial heterogeneity (Figure 1a). AUC increase was
nominally significant for breast cancer (β = 3.3 x10-4 per 1K increase in sample size,  P=0.018)
and almost nominally significance for type 2 diabetes (β = 3.9x10-4,  P=0.091) and obesity (β  =
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2.2x10-4,  P=0.078),  but not significant for the other outcomes, with for example, a negative
trend for coronary artery disease (β  = -6.8x10-5, P=0.73) despite an effective sample size varying
from N eff=4,522 to N eff=184,305. This is likely due to the limited number of studies available,
but also to a number of factors already discussed in the literature and complex to decipher,
including heterogeneity in the characteristics of  the population (age,  sex,  fine-scale genetic
ancestry within European population), disease definition, and the method used to derive the
PRS weights16,20.

To quantify more precisely changes in the predictive accuracy as a function of sample size,
we implemented a harmonized pipeline to derive PRS and applied it to a set of highly curated
GWAS data. We derived PRS weights for the six outcomes using 29 GWAS summary statistics
(with  different  sample  sizes)  published  since  2007  and  including  mostly  participants  of
European ancestry. To expend the sample size coverage, we also added five GWAS with modest
sample size that we conducted using unrelated participants of European ancestry from the UK
Biobank cohorts21 (Supplementary Note and Table S2). Those 34 PRS were used to derive AUC
in two independent cohorts. Because almost all existing genetic cohorts of European ancestry
have been used to produce these GWAS, we focused our application on relative power and
investigated the trend in AUC in 16,000 participants from six different non-European ancestries
from the  UK Biobank cohort,  and  up  to  392,423  participants  of  Finnish  ancestry  from the
FinnGen cohort22 (Table S3). Difference in genetic ancestry induces lower absolute predictive
performance,  however,  because  the  PRS  portability  across  population  is  expected  to  be
linear18,19,  the  trend remains  highly  informative,  and  for  example,  top  GWAS  hits  between
FinnGen and European ancestry samples were highly concordant (average squared-correlation
between effect estimates equals 0.56, Fig. S1). 

The prediction accuracy shows a univocal non-linear increasing trend as a function of sample
size that starts with a sharp increase for the few first studies followed by a gradual decline in
improvement.  The convergence patterns  are  highly  concordant  between FinnGen and non-
European UK Biobank participants, only displaying the expected offset due to genetic ancestry
difference (Fig 1b, Fig S2-S3, and Table S4). It suggests that PRSs based on future GWASs of the
target outcome with larger sample size are unlikely to dramatically improve prediction accuracy
(as measured by the AUC) by themselves. The AUC convergence is especially striking for type 2
diabetes, obesity, breast cancer and coronary artery disease. Asthma displays a noisier trend,
potentially reflecting the challenges in the disease definition and diagnosis. Alzheimer disease
(AD) shows a continuous increase in AUC for the non-European UKB samples, but no increase
for the last and largest GWAS in FinnGEN despite a five-fold increase in the effective sample
size. This might be explained by the use of a proxy for disease status (a score determined by the
Alzheimer  status  of  the parents’  participants)  for  the derivation of  the PRS  weights  in  the
largest GWAS study. AD-by-proxy was also used in the non-European UKB participants because
of a limited number of cases, while the true AD status was used in FinnGEN (Supplementary
Note). As recently discussed, cohorts with heterogeneous disease definition and study design
can induce variability in heritability estimates of AD23. This likely induces reduced prediction in
FinnGEN in our analysis.
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Modelling AUC convergence
The convergence of the AUC toward its maximum can be investigated using simulation, and

one can easily demonstrate the validity of simple theoretical  models13 (Fig. S4). Predicting the
convergence rate in real data is much more challenging and requires the estimation of multiple
parameters  of  the  disease  genetic  model.  It  includes  the  heritability,  the  polygenicity,  the
distribution (or mixture of distributions) of causal genetic effects, and the dependence of those
effects on the linkage disequilibrium, functional annotations, and the minor allele frequency
(MAF). We first examined to what extent existing tools are able to fit the AUC derived in real
data  using  the  GENESIS  approach14.  Briefly,  GENESIS  infers  some,  but  not  all,  of  the
aforementioned parameters  and uses  them to  predict  the expected AUCs as  a  function of
future  increases  in  sample  size.  As  recommended by  the authors,  we  focused on  a  three-
component mixture of effects, where variants are classified as either non-causal, causal with
low effect, or causal with large effect. The shape of the predicted AUC as a function of sample
size obtained from GENESIS is reasonably close to the ones observed in FinnGen and the UK
Biobank (Fig  S5a),  confirming  the  observation  of  a  sharp  decline  in  PRS  predictive  power
improvement.  However,  the increase rate and expected maximum AUC varied substantially
conditional on the input GWAS used, being especially variable for Alzheimer disease, asthma,
and obesity, and highlighting the importance of conducting real data retrospective analysis.

We next investigated to what extent the observed convergence in AUC might be explained
by heterogeneity arising when meta-analyzing an increasing number of studies. Heterogeneity
in  genetic  ancestry,  disease definition,  and environment  across  the cohorts  meta-analyzed,
might reduce heritability and increase polygenicity, and ultimately lessen the benefits of larger
sample  size  GWAS  for  predictive  purposes.  To  assess  these  hypotheses,  we  examined  the
variability in AUC derived using the same procedure as in  Figure 1b, and disease parameters
estimated using SBayesS24, while increasing GWAS sample size, but using the same population
for the GWAS and parameter estimation –thus providing a benchmark of the behavior when
potential heterogeneity is minimized. We used participants of European ancestry from the UK
Biobank (referred further as the EUR-UKB experiment), focusing on obesity and using GWAS of
body mass index, one of the sole scenarios allowing to achieve reasonably large sample size
within a single homogeneous cohort. While the role of genetic heterogeneity cannot be ruled
out, we did not find any strong evidence in favor of an effect of heterogeneity. The polygenicity
estimate  tends  to  decrease  first  (potentially  due  to  limited  sample  size)  until  it  reaches  a
minimum and then starts  to increase for  both the EUR-UKB (Fig.  S6a)  and most of  the six
outcomes GWASs (Fig. S7a). Except for the few estimates derived using a limited sample size,
heritability tends to be fairly consistent, although much less variable in EUR-UKB (Fig. S6b) than
across the GWASs (Fig. S7b). Estimates of alpha, the minor allele frequency (MAF)-effect size
parameter, also display a similar pattern across analyses (Fig. S6c,  Fig. S7c). Overall, the AUC
from the EUR-UKB analysis appears to follow the same trend as the ones derived in FinnGen
and non-European UKB participants (Fig. S6d).

As  a  general  observation,  the  disease  parameters  estimated  from  both  GENESIS14 and
SBayesS24 vary  substantially  conditional  on  the  input  GWAS  used  (Figs.  S5b-c, S6),  with
confidence  interval  often  not  overlapping  across  GWASs  from  the  same  outcome.  For
comparison purposes, we applied three additional methods, sumHer25, LDSC26, and MiXeR27, to
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all  available  GWAS with  an  effective sample  size  larger  than  5,000 (Table  S5).  With  a  few
exceptions, cross-method heritability estimates from the same GWAS tend to be less variable
than  within-method  estimates  from  GWASs  of  the  same  outcome.  Polygenicity  varies
extensively across methods, each of them displaying a different trend as a function of sample
size. The reasons for this variability are unclear, and until progresses are made in estimating
those and other parameters underlying the distribution of genetic effect, our ability to develop
an  accurate  modelling  of  the  convergence  rate  of  PRS  predictive  power  will  likely  remain
limited, again, highlighting the importance of conducting real data retrospective analyses.

Maximal achievable prediction 
The maximum achievable AUC relies on less parameters than the convergence rate. A central

feature to derive this maximum is the variant coverage, which itself determines the proportion
of  heritability  captured  by  the  genetic  variants  used  in  the  PRS.  Existing  polygenic  risk
prediction models  rely  heavily  on  genome-wide  genotyping  studies,  thanks  to  a  high  cost-
genomic  coverage  ratio28 allowing  to  generate  genotype  data  for  very  large  cohorts,  as
compared to sequencing studies. This implies that even reaching an infinite sample size, the
total genetic variance captured by GWAS, and therefore the maximum prediction accuracy, is
bounded by the sub-sampling of all existing variants. How much of the narrow-sense heritability
(i.e. the linear additive genetic variance29) can be captured by GWAS and how much more will
be captured using sequencing data has been previously explored using both theoretical model
and whole-exome sequencing data of modest size as compared to GWAS studies30-35. Although
the size of existing genome sequencing data remains limited and does not allow to fully address
this question, some recent sequencing efforts provide opportunities to revisit  this question.
Here,  we  used  individual-level  whole-genome  sequencing  data  from  503,195  variants  on
chromosome 22 measured in 125,152 participants of European ancestry from the UK Biobank
study, to quantify the proportion of heritability captured by genotyped variants under various
alternative genetic models.

We assumed the relationship between effect size and variants characteristics follow the so-
called alpha model –where the expected effect of a variant is proportional to its variance power
α  33,36 (see Methods)– and derived two metrics: i) h I

2, the additive genetic variance captured by
both genotyped variants and variants imputed using advanced methods based on haplotype
inference37, and ii)  hG

2 , the additive genetic variance captured by genotyped variants and the
additional variance captured through linkage disequilibrium between genotyped and untyped
variants. In theory, the later parameter should be approximately similar to the GWAS-based
heritability (hGWAS

2 ) estimated by existing software38. Both metrics were derived using sequence
data,  after  considering  various  alternative  approaches  (Fig.  S8-S9).  As  shown  in  Figure  2a,
assuming  a  random  distribution  of  genetic  effect  in  the  genome,  h I

2 varies  from  29%  for
α=−1.5 to 96% for α=0. The heritability captured by genotyped variants only is substantially
smaller,  with  hG

2  varying from 5% for  α=−1.5 to 90% for  α=0.  This suggests that imputed
variants with modest and poor imputation quality, often filtered out in GWAS studies, might
capture a substantial share of the total narrow-sense heritability missed by genotyped variants.
Of note, previous studies argued that the alpha model might overestimate the effect of rare
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variants36.  To  address  this  possible  limitation,  we  also  devised  an  attenuated  alpha  model
implying a reduced contribution of  rare variants  (Supplementary Note, Fig.  S10).  However,
when comparing those attenuated models against the standard in real data, we did not find any
evidence for an increased fit (Fig. S11-12).

Estimates of heritability captured can be translated into maximum achievable AUC given the
prevalence and heritability of the target outcome (see Methods). As expected, this maximum
increases with the disease heritability captured, and decreases with lower value of alpha (Fig.
2b). We compared maximum AUC for each of the six diseases using three heritability estimates:
twin  studies  heritability  (AUCtwin),  GWAS-based  heritability  derived  using  five  approaches
(AUCGWAS, Table S5-S6), and heritability captured by all imputed variants (AUCImputed). Note that
the latter AUC requires an alpha value. We attempted to use estimates of alpha obtained from
various approaches (Table S6), but none of them match the expected based on GWAS-based
AUC, and we ultimately set alpha for each disease so that the AUC from the  genotype-based
alpha model equals  the median of  AUCGWAS across  the five approaches (see  Methods).  The
comparison of AUC is summarized in  Figure 2d. First, the AUCGWAS are relatively close to the
AUCs reported in recent studies (AUCcurr, Table S6) for coronary artery disease, breast cancer,
Alzheimer  disease  and  obesity,  confirming  that  increasing  sample  size  of  GWAS  for  those
outcomes is unlikely to dramatically impact prediction performances. Conversely AUCcurr for T2D
and asthma display sizeable gaps with AUCGWAS, so that, despite the convergence observed in
Figure  1b,  future  GWAS  with  larger  sample  size  might  provide  a  slow  but  continuous
improvement  in  prediction.  Second,  the  gap  between  AUCTwin and  AUCGWAS is  large  for  all
outcomes, except for breast cancer, suggesting that increasing the variant coverage in future
studies can dramatically improve the predictive power of polygenic risk scores. Third, AUC Imputed

is substantially higher than AUCGWAS for all outcomes except breast cancer. Hence, future PRSs
using an increasing number of imputed variants, even those with poor imputation quality, have
the potential to boost prediction power without requiring the generation of costly sequencing
data.

Effect distributions and predicted performances 
In the previous analyses, we assumed that causal variants are randomly distributed across

the genome and only modelled the relationship between the effect size and the minor allele
frequency.  There  is  strong  evidence  that  causal  variants  are  highly  enriched  in  some
functionally  annotated  regions39-42.  However,  the  exact  link  between  those  functional
annotations and causal  variants is not fully understood and likely depends on the outcome
study. Rather than assuming a specific relationship, which will be subjective given the current
knowledge, we assessed the impact of unequal distribution of causal variants in the genome by
estimating  the  association  between  a  range  of  functional  annotations  and  the  quality  of
imputation (r ², the squared-correlation between sequenced and imputed variants used in the
derivation of h I

2). Here we used a total of 1,099 annotations from nine sources (Table S7-8, Fig.
S13),  including  gene  elements  (coding  DNA sequence,  exon,  intron,  transcription start  and
termination  sites),  DNase  I  hypersensitive  sites  (DHS),  enhancers  and  promoters.  Those
annotations cover 0.001% to 64.7% of the whole genome (Table S8). 
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The largest associations between annotation and r ² were observed for gene elements (Fig.
S14a).  Coding  DNA  sequence  (CDS),  that  cover  1.9%  of  chromosome  22,  show  a  highly
significant decrease in r ² (P = 1.8 x 10-307), with an average r ² of 0.27 and 0.40 for CDS and non-
CDS variants,  respectively.  Exons,  that cover 9.8% of  the chromosome 22, are also strongly
negatively associated (P = 2.0 x 10-131) with an average r ² of 0.37 and 0.40 for exonic and non-
exonic variants (Fig. 3a). Variants from other annotation categories show significant negative
and  positive  associations,  but  to  a  lower  extent.  Enhancers,  super  enhancers,  DHS,  and
transcription factor binding sites tend to display lower r ² than the average of the genome (Fig.
3b).  Conversely,  genetic  variants  within  promoters  appear  to  be  slightly  better  captured.
Excluding gene elements,  the strongest association was observed for transcription start  site
with an average r ² of 0.36 and 0.40 for annotated and non-annotated variants (P = 2.1 x 10-14).
We did not observe any enrichment for specific cell types or tissues among other top significant
annotations (Fig. S15). 

Part of the decrease in variant coverage (Fig. 3a-b) is likely explained by an enrichment for
rare variants with, for example, coding regions displaying a significantly higher proportion of
rare variants (P =  2.5 x  10-270,  Fig.  3c and  Table  S9).  However,  other annotations  positively
associated with r ² also display a significant enrichment for rare variants (e.g. intron, P = 1.0 x
10-8), so that minor allele frequency alone is unlikely to fully explain the observed lower variant
coverage.  As  discussed  in  previous  works,  causal  variants  might  display  decreased  linkage
disequilibrium with other variants because of selective pressure34,41, an assumption that is now
commonly incorporated in disease parameter estimation tools43. Lower linkage disequilibrium
implies  lower  r ²,  and  the  observed  lower  variant  coverage  for  CDS,  enhancers,  DHS  and
transcription factor binding sites might embody an enrichment for rare causal variants for those
annotations.  Under  such scenario,  the  estimated maximum achievable  AUCs from imputed
variants presented in Figure 2 could be slightly overestimated, which suggest again that future
improvement  in  PRS  prediction  accuracy  is  likely  going  to  rely  on  improving  the  variant
coverage of future genetic association study (Fig. S14b).

Discussion
Polygenic  risk  prediction  has  the  potential  to  transform  the  diagnosis,  treatment,  and

prevention  of  many  common  human  diseases.  However,  the  timescale  and  extent  of  this
transformation is partly unknown, and some in the community continue to express concerns
about the relevance of PRS. These concerns are partly due to inconsistencies in the reported
performances of polygenic risk models. Previous reports of PRS prediction accuracy are not
always  properly  documented,  and  while  guidelines  have  been  proposed16,  adherence  to
reporting statements  remains  limited.  Heterogeneity  in  the methods  used,  the populations
studied, and the covariates accounted for, can prevent the replication of results and a formal
assessment of PRS performances. As illustrated in this study for six outcomes, even a careful
curation of publication results based on the above criteria might not be sufficient, and the
potential relationship between performances and study parameters can remain blurry.

Here,  we  demonstrate  that  the  relationship  between  prediction  accuracy  of  polygenic
models and sample size is unequivocal and highly replicable when using harmonized data pre-
processing and analysis pipelines. These analyses also show that the prediction accuracy of PRS
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derived from existing GWAS have started to converge  for most diseases studied. As a result,
expanding the current state-of-the-art –i.e. fully relying on an increase in GWAS sample size–
might only lead to a modest increase in predictive power. For some outcomes, such as coronary
artery disease, breast cancer, and obesity, our analyses suggest that the predictive power of
GWAS-based PRS is nearing the expected maximum derived based on the GWAS heritability. If
confirmed,  this  implies  that  improvements  in  methods  used  to  derive  PRS  will  not  either
dramatically  impact  prediction accuracy.  For type 2 diabetes and asthma,  the gap with the
expected maximum remains fairly large, and AUC from future larger GWAS might continue to
increase, although any gain will  likely require extremely large sample size. Importantly,  the
observed convergence might be partly explained by increasing heterogeneity arising from large
meta-analysis, with for example, very large meta-analysis using a loosen disease definition or
increasingly  genetically  diverse  populations,  in  order  to  allow  for  a  broader  inclusion  of
participants. Although we did not find any strong evidence for such effect across outcomes we
studied, the potential impact of genetic ancestry18,19 and phenotype definition23,44 heterogeneity
is  well  established.  Note  that  there  are  other  sources  of  heterogeneity  that  we  did  not
investigate  including  in  particular  sample  ascertainment,  which might  influence the disease
prevalence and heritability, and therefore the prediction accuracy. 

Estimating the trend in prediction accuracy as a function of sample size depends on our
ability to estimate for each disease, the distribution of causal variants in the genome and its
dependence on other factors. However, as illustrated in this study, estimates of the genetic
disease  parameters  using  existing  methods  vary  substantially  conditional  on,  not  only  the
approach and model used, but also the GWAS used as input. Developing a reliable predictor of
the AUC trend will  remain challenging until more robust estimators  are developed. Despite
these limitations, some of the current estimators can still be used to investigate the maximum
achievable AUC. Altogether our analyses suggest that, assuming rare variants do carry a fair
share of heritability, the genetic variance carried by these variants might be poorly captured by
genotyped variants, so that until more large-scale whole-genome sequencing become available,
the  maximum  AUC  will  remain  bounded  by  the  variant  coverage  of  existing  GWASs.  In
agreement  with previous  works32,  the  present  study  also  support  the  use  of  imputed rare
variants, even those with poor imputation quality, as an effective intermediate step to improve
PRS predictive power.

For  most  analyses  we  assumed  for  simplicity  that  the  causal  variants  are  randomly
distributed and we only modelled the relationship between minor allele frequency and effect
size. This is clearly an over-simplification of the true underlying model, and as stated above,
there is now strong evidence that causal  variants distribution also varies across the linkage
disequilibrium pattern and functional annotations14,15,27,33,45,46.  The relationship between those
factors  and  the  causal  effect  has  not  been  fully  specified,  and  is  expected  to  vary  across
outcomes. Instead of investigating specific models, we derived the relationship between the
variant coverage and a vast set of functional annotations. We observed significant variability
across annotations, with both positive and negative enrichments in variant coverage. However,
except for CDS that show substantially poorer coverage, those differences did not have any
qualitative impact on our results. 

Our study has multiple limitations. First, our study only includes six diseases. We initially
intended to include more outcomes,  but  for  all  other  diseases we considered (e.g.  chronic
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obstructive  pulmonary  function,  Crohn’s  disease,  hypertension,  etc)  there  was  not  enough
available data to ensure a fair and objective analysis. Second, for real data heritability, we used
twins study heritability as a proxy for the total additive genetic variance. We appreciate that
these  estimates  might  be  overestimated  because  of  shared  environment  and  non-additive
effects (e.g. gene-gene and gene-environment effects)47. Third, we assumed the genetic effects
are homogeneous in the populations studied. Future improvement in predictive performances
might depend on our ability to integrate potential heterogeneity in genetic effects conditional
on demographic characteristics, basic health parameters, and lifestyle4,48,49. For example, there
are  increasing  evidence  that  heritability  might  vary  with  age  and  sex50,51.  Fourth,  in  our
derivation of the maximum achievable AUC, we assumed a relatively simple model, focusing on
the  minor  allele  frequency-effect  size  relationship.  Future  works  might  incorporate  more
complex modelling including, in particular linkage disequilibrium (LD) dependencies. Note that
assuming enrichment for causal variants in low LD regions will only worsen the gap between
genotype-based AUC and imputed-based AUC. Fifth, heritability and AUC were derived using
disease prevalence reported by the CDC. Prevalence clearly varies across population and using
other  estimates  will  impact  the absolute  values  of  both  parameters,  but  not  their  relative
values though. Sixth, we focus all our analyses based on the gold standard approach for PRS,
that is, using univariate GWAS with the largest possible sample size. There is now increasing
literature on multitrait approaches52-54, where the predictive power can be boosted by partly
circumventing the challenge of assembling very large sample size. 
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Figures
Figure 1. Polygenic risk scores predictive accuracy as a function of sample size
Panel  a)  presents  the area under  the receiver  operating characteristic  curve (AUC)  reported in  the
literature for polygenic risk score as a function of the effective sample size for coronary artery disease,
type 2 diabetes, breast cancer, Alzheimer disease, asthma and obesity. The color gradient corresponds
to the number of variants used, from a few top associated variants (light green) to millions (dark blue),
and the size is proportional to the log of the effective sample size. Panel b) shows AUCs for the six
outcomes derived using a harmonized pipeline. Polygenic risk scores were trained from 34 genome-wide
association study (GWAS) using the LDpred2 approach, and tested in individual-level  data from the
FinnGEN cohort (black) and in six non-European ancestry  UK Biobank populations (red, meta-analysis
over  six  populations).  The  AUCs  are  plotted  as  a  function  of  the  effective  sample  size  of  the
corresponding GWAS. Missing values correspond to cases where there was a sample overlap between
the test and train sets.
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Figure 2. Heritability captured and maximum achievable AUC 
Panel a)  shows the expected proportion of  heritability  captured by genotyped (dashed line) and all
imputed variants  (plain  line).  Individual-level  data  from the  UK Biobank were  use to  estimates  the
squared-correlation between sequenced variants and either genotyped (ρ2) or imputed variants (r ²),
and  genetic effects were assumed to be distributed following an alpha model.  Panels b) shows the
corresponding maximum achievable AUC for heritability of 0.1 and 0.5, and disease prevalence equals to
0.01 and 0.2. Panel c) shows estimates of the maximum achievable AUC for six outcomes: coronary
artery disease, type 2 diabetes, breast cancer, Alzheimer disease, asthma, and obesity (using body mass
index GWAS). Those AUCs were derived based on US disease prevalence pooled, and various estimates
of  heritability:  twin  studies  (AUCTwin),  estimates  of  GWAS heritability  derived using  five competitive
approaches:  LDSC  regression,  sumHer,  SBayesS,  Genesis,  and  MiXer  (AUCGWAS),  and  twin  study
heritability captured by imputed variants (AUC Imputed). The black dashed lines correspond to the most
recent estimates of AUC in real data from the literature, derived based on approximately 1M hapmap3
variants. For Alzheimer disease, heritability estimates and current AUC estimates correspond to a model
excluding the APOE region.
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Figure 3. Variability in imputation quality across functional annotations
Relationship between functional annotations and the quality of imputation measured as the squared-
correlation (r ²) between true and imputed genotypes. Panel a) displays the change in the average r ² of
chromosome  22  for  GENCODE  annotations:  intron,  gene,  exon,  CDS  (coding  DNA  sequence),  tss
(transcription start site), tts (transcription termination site), and UTR (untranslated regions). Red bars
indicate ±2 standard deviation from the mean and include 95% of  the annotated regions.  Panel  b)
displays standardized regression coefficients from univariate association between the measured r ² and
each of the 1,092 functional annotations from eight categories: TFBS (transcription factor binding site),
FANTOM5 (functional annotation of the mammalian genome version 5) regulatory regions, promoters,
enhancers, and dyadic from Roadmap, DHS (DNase I hypersensitive sites) derived from two studies, and
super enhancers.  Horizontal  black lines indicate the average per category, and the red dashed lines
indicate the significance threshold after correction for multiple testing. Panel c) shows the cumulative
distribution of variants for each GENCODE category as a function of the minor allele frequency. Panel d)
shows the distribution of frequencies of each annotation, grouped by category.
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Methods
GWAS data assembling

We collected publicly available genome-wide association study (GWAS) summary statistics
from six outcomes: type 2 diabetes, coronary heart disease, breast cancer, Alzheimer disease,
asthma, and body mass index (BMI) which was used to study obesity. The design of each study
was assessed carefully to ensure it matches stringent criteria for inclusion in our analysis: i) all
studies had to include a majority of individual  of European ancestry; ii) studies with limited
genetic coverage, such as exome-wide screening and ad hoc genotyping chips (e.g. Metabochip
or  Immunochip)  without  imputation  were  excluded;  iii)  phenotype  definition  had  to  be
relatively  homogeneous,  although  we  kept  some  study  with  heterogeneity  for  comparison
purposes (early onset for asthma, and Alzheimer disease proxy derived from parent status).
Note that for some meta-analysis, we also had access to GWAS results of individual cohorts,
which were used as  additional  data points.  After this  quality control  filtering,  a  total  of  29
GWAS summary statistics with the baseline required data (coded allele, sign statistics and  P
value) remained for analysis (Table S2). To complete our panel of GWAS we conducted five
additional  GWAS in the UK Biobank using unrelated participants of European ancestry,  and
cases sampled from the entire cohort:  breast cancer (Ncases=5,000; Ncontrols=50,000);  coronary
artery  disease  (Ncases=5,000;  Ncontrols=50,000);  asthma  (Ncases=1,000;  Ncontrols=10,000);  and  BMI
(N=20,000 and N=80,000).  All  34 GWAS were harmonized and converted to hg38 using the
liftover package55.  As  one of  the ultimate goals  of  these data  is  to  compare the predictive
accuracy of PRS scores in the FinnGen cohort, we only kept variants available in that dataset.

Estimation of prediction performances of polygenic risk score in real data

For  each  GWAS,  we  derived  a  vector  of  individual  variants  PRS  weights  γ=( γ 1 , γ 2…γM ),
where γi is the weight of variant i and M  is the number of variants available in the GWAS, using
the  LDpred2  approach7,  a  popular  Bayesian  method.  We  used  the  ‘auto’  option  that
automatically tune hyper-parameters including the PRS sparsity and the SNP heritability, and
the recommended number (30) of Gibbs sampling chains. European descent participants from
the UKB biobank  were used as  a  reference panel  for  LD derivation,  and we restricted the
analysis to the GWAS variants overlapping with a set of 1,054,330 HapMap3 variants42. For each
GWAS, variants with an estimated effective sample size smaller than 50% or larger than 110%
of the expected maximum were further filtered out to avoid a miscalibration of the estimated
regression coefficients56. 

We use those weights to construct genetic risk scores in two test datasets (Table S3). The
scores were derived as PRS=γt X, where X  is a matrix of genotypes from the test dataset with
coded alleles matching the coded alleles of the original GWAS. The first dataset included 16,000
unrelated  participants  of  non-European  ancestry  from  the  UK  Biobank,  where  ancestry
(Ashkenazi, Iranian, Indian, Chinese, Caribbean, and Nigerian) was derived following Privé et
al18. This analysis was also used for the fine tuning of the PRS and to derive the average weights
over the 30 Gibbs sampling. The second dataset included 392,423 participants of Finns ancestry
from the FinnGen cohort (see Supplementary Notes). Except if specified otherwise, we defined
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the effective sample size of a binary outcome GWAS as  N eff=4 / [1/Ncase+1/N controls ], which re-
scales cohorts sample size with unequal numbers of cases and controls to the same unit57. We
estimated the predictive performance of the PRSs using the Area Under the Roc Curve (AUC).
The AUC is a commonly used classifier in genetics, which value equals to the probability of a
randomly  chosen case  to  be  ranked  higher  than a  randomly  chosen  control.  For  the  non-
European UK Biobank samples, we first derived the AUC per ancestry (Table S3,  Fig. S2), and
combined  results  using  a  standard  inverse-variance  meta-analysis:
AUCcombined= ∑

i=1…5
[ AUC i/σ i

2 ]/ ∑
i=1…5

[1 /σ i
2 ], and SE (AUCcombined )=1/ ∑

i=1… 5
[1/σ i

2 ], where AUC i and

σ i
2 are the AUC and variance derived for population i=1…5. 

Variance captured by genotyped and imputed variants

Consider a standardized phenotype  Y  drawn from a polygenic model and defined as the
linear additive effect of M  standardized causal variants. Its variance equals V y=h2+V e, where
h2 is  the  genetic  variance,  or  heritability  and  V e is  the  residual  environmental  variance.
Assuming the genetic effects at the causal variants are independent of variants’ correlation, the

heritability can be approximated as h
2=∑

M
β i
2
, where β i is the effect of a standardized variant i.

We derived the proportion of  h2 that can be recovered given an infinite GWAS sample size,
when only a subset S of variants have been genotyped, while the remaining M∉ S are either
imputed or missing. We considered two metrics, h I

2 the genetic variance captured when using
all  M  variants whatever their imputation quality, and hG

2  the genetic variance captured when
using only the subset  S of  genotyped variants,  but accounting for  the effect of  the  M∉ S

variants captured through linkage disequilibrium. The first metric h I
2 is defined as h I

2=∑
M

β i
2r i
2
,

where ri
2 is the squared correlation between the sequence variant i and its imputed value. The

second  metric  hG
2  is  defined  as  hG

2=∑
S
β i
2+ ∑

M ∉S
β j
2 ρ j

2
,  where  ρ j

2 is  the  squared  correlation

between the untyped variants j and the genotyped ones, obtained from a multiple regression
(see below for the derivation). 

Both features were derived using a subset of 125,152 participants of European ancestry from
the UK Biobank with genome-wide genotyping and whole genome sequencing data available.
Note that for h I

2, we first considered using the imputation quality score, commonly referred as
the  info_score, as  defined  by  Marchini  &  Howie58,  which  is  expected  to  be  an  unbiased
estimator of  r .

2. However, this metric appears to be inflated in both simulated and real data,
especially for variants with low minor frequencies (Fig. S8). We therefore derived r .

2 using the
aforementioned  individual-level  sequencing  data.  We  used  the  imputed  SNP-array  data
provided by the UK Biobank.  We lifted-over the imputed variants for the 125,152 samples,
retaining 99.5% of the original imputed sites in GRCh38. We then derived an r2 between the
imputed dosages and the whole-genome sequencing data for each of the overlapping sites.

The r .
2 was estimated from a standard univariate linear model using each sequenced variants

as  the  outcome and  the  imputed ones  as  predictors.  For  hG
2 ,  we  used genotyped  variants

available on the UK Biobank Axiom array21 as our baseline. The ρ.
2 were derived as the adjusted
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squared-correlation obtained from a standard multiple linear regression with the lm() function
from the R software. Each non-genotyped variant j was predicted from a set Ω of neighboring
variants  in  a  window of  ±1.5Mb (Fig.  S9a).  For  simplicity  we  derived  r .

2 and  ρ.
2 using  only

variants from chromosome 22, under the assumption that estimates from this chromosome are
representative  of  the  entire  genome.  There  are  12,968  variants  genotyped  on  this
chromosome. Out of 659,092 variants available from the sequencing data, a total of 503,195
remained for analysis after removing those with a minor allele frequency (MAF)< 0.001%. As
expected,  the two metrics  are  highly  correlated (cor (ρ2 ,r2)=0.71)  but,  the average  r2 was
substantially larger than ρ2 (r2=0.50, ρ2=0.25, Fig. S9b). 

In  our  simulations,  the  proportion  of  heritability  captured  was  derived  using  both
parameters (r2 and  ρ2), and β=(β1…βM ) coefficients drawn from a normal distribution using
the  alpha  model36.  The  alpha  model  assumes  an  inverse  relationship  between  the  variant
frequency and the per-allele effect, with rare causal variants harboring larger per-allele effect
than common variants. This model has been empirically confirmed in many studies (e.g. 59). In
practice,  the  genetic  effect  of  variant  i is  drawn  from  the  following:   

β i|pi N (0 , σ g , α
2 ∙ [2 pi (1−pi ) ]α),  where  pi

 is the minor allele frequency, and  σ g , α
2  is a constant

constraining the outcome heritability (Fig. S10a). In our analysis we considered α  values in the
range [-1.5 ; 0.0], and draw random  σ g , α

2  in [0,1]. We also investigated an attenuated alpha
model where the contribution of the rarest variants was decreased using an  ad hoc iterative
weight function (Supplementary Notes).

Maximum achievable AUC

The expected maximum achievable AUC is derived using the approximation proposed by
Wray  et  al3:  AUCmax≈Φ( ( ( i−v )h2 ) /√h2 [ (1−h2 i (i−T ) )+(1−h2 v (v−T ) )]),  where  h2 is  the
heritability on the liability scale, Φ is the cumulative density function of the normal distribution,
z is  the height  of  the standard  normal  density  at  the threshold  T=Φ−1 (1−K ), and with
i=z /K  and v=−z / (1−K ), where K  is the disease prevalence. We confirmed the validity of the
approximation using a simple simulation model involving independent causal variants with a
linear additive effect on the outcome and using h2 in [0.2 ; 0.7] and the prevalence K  in [0.01 ;
0.25] (Fig. S4 and Supplementary Notes). Estimation of the AUC conditional on alpha (Fig. 2b)
were derived by replacing h2 by either hG

2  or h I
2, themselves derived based on alpha drawn in [-

1.5, 0] and β=(β1…βM ) coefficients generated from a normal distribution.
For real data analysis, disease prevalence from the six outcomes were pulled from the CDC

website  (https://www.cdc.gov/,  Table  S6).  For  the  heritability,  we  considered  various
estimates  :  i)  the  total  heritability  derived  from  twins  studies  for  coronary  artery  disease
(0.55)60, type 2 diabetes (0.72)61, breast cancer (0.27)62,  Alzheimer disease after excluding the
effect of APOE (0.49)63,64, asthma (0.70)65, and body mass index (0.75)66 ; ii) hGWAS

2 , the heritability
captured by GWAS variants  derived using five alternative approaches:  SBayesS 24,  sumHer25,
LDSC regression26, GENESIS14, and MiXeR27 (Supplementary Notes), and iii)  h I

2, the heritability
captured  by  all  imputed  variants.  The  later  estimate  requires  three  parameters:  the  total
heritability, the proportion of heritability captured given alpha, and a value of alpha. For the
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total heritability, we used the twin study estimate. For the proportion of heritability captured,
we used the estimate derived using the UK Biobank sequencing data. The choice of alpha was
more challenging and is described below.

Most real  data estimates of  the GWAS variants  heritability  (hGWAS
2 )  are derived based on

genotyped variants along a modest subset of imputed variants with very high quality (typically
an  info_score ≥  0.8).  As  a  results,  assuming our  estimation  of  the  heritability  captured by
genotyped variants based on the UK Biobank sequencing data (Fig. 2a) is valid, the previously
described hG

2  is expected to approximate hGWAS
2  providing a relevant value of alpha. We assessed

the equality between the two metrics using alpha derived from various approaches (SBayesS,
sumHer, and individual-level data from the UK Biobank, Table S6), but none of them match the
expected based on hGWAS

2 . Therefore, for each disease, we selected a “Best fit” alpha so that hG
2

is equals the median of hGWAS
2  derived over the five aforementioned approaches (Table S6). This

“Best fit” alpha was used to derived hI
2 for the six outcomes.

Genetic coverage and functional annotations

We investigated the association between r ², the squared-correlation between the true and
the imputed genotypes and a total of 1,099 functional annotation pulled from nine sources:
baseline  GENCODE  annotations:  intron,  gene,  exon,  CDS  (coding  DNA  sequence),  tss
(transcription start site), tts (transcription termination site), and UTR (untranslated regions) ;
and epigenetic annotations across a vast range of tissues and cell  types: TFBS (transcription
factor binding site) ; FANTOM5 (functional annotation of the mammalian genome version 5) ;
promoters ; enhancers, and dyadic from Roadmap, DHS (DNase I hypersensitive sites) derived
from two studies, and super enhancer. The analysis was conducted using the same data used to
derive hI

2 and hG
2  (503,195 variants from chromosome 22 from 125K UK Biobank participants of

European ancestry).

Data availability
All GWAS summary statistics have been downloaded from publicly available websites including
dedicated  page  from consortia,  the  NHGRI-EBI  Catalog  of  human genome-wide  association
studies, and the FinnGEN GWAS repository.  Individual-level  data from the UK Biobank were
accessed  from  the  UK  Biobank  Resource  under  Application  Number  42260  and  66995.
Individual-level  data  from  FinnGEN  were  conducted  by  co-authors  from  the  University  of
Helsinki with privileged access.

URL resources
GWAS catalog: https://www.ebi.ac.uk/gwas/ 
GCTA: https://yanglab.westlake.edu.cn/software/gcta/ 
SBayesS: https://cnsgenomics.com/software/gctb/ 
MiXeR: https://github.com/precimed/mixer
GENESIS: https://github.com/yandorazhang/GENESIS 
LDSC regression: https://github.com/bulik/ldsc
sumHer: https://dougspeed.com/sumher/
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FinnGen results: https://risteys.finngen.fi/
HapMap3: https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html
CDC disease prevalence: https://www.cdc.gov/datastatistics/index.html
Functional  annotations:  https://github.com/gkichaev/PAINTOR_V3.0/wiki/2b.-Overlapping-
annotations 
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