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Abstract

Polygenic risk scores (PRS) trained from genome-wide association study (GWAS) results are set
to play a pivotal role in biomedical research addressing multifactorial human diseases. The
prospect of using these risk scores in clinical care and public health is generating both
enthusiasm and controversy, with varying opinions about strengths and limitations across
experts’. The performances of existing polygenic scores are still limited, and although it is
expected to improve with increasing sample size of GWAS and the development of new
powerful methods, it remains unclear how much prediction can be ultimately achieved. Here,
we conducted a retrospective analysis to assess the progress in PRS prediction accuracy since
the publication of the first large-scale GWASs using six common human diseases with sufficient
GWAS data. We show that while PRS accuracy has grown rapidly for years, the improvement
pace from recent GWAS has decreased substantially, suggesting that further increasing GWAS
sample size may translate into very modest risk discrimination improvement. We next
investigated the factors influencing the maximum achievable prediction using recently released
whole genome-sequencing data from 125K UK Biobank participants, and state-of-the-art
modeling of polygenic outcomes. Our analyses point toward increasing the variant coverage of
PRS, using either more imputed variants or sequencing data, as a key component for future
improvement in prediction accuracy.
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Main

Most common human diseases harbor a strong polygenic inheritance, characterized by a
very large number of genetic variants of small effects. This scattered distribution of risk has
severely hampered the initial goal of using genetic association studies for personalized
medicine through individualized disease risk predictions, prevention strategies and treatments?
*. This issue has been recognized early on in the GWAS era, and the community has developed a
strong case for genetic risk profiling on the basis of polygenic risk scores (PRSs), derived from
genome-wide association studies (GWAS) results’. In its simplest form, a PRS for an individual is
a summation of multiple single nucleotide polymorphisms (SNPs) weighted by their effect sizes
estimated from independent GWAS data. Initially PRSs were constructed from a small number
of independent genome-wide significant variants, but they have evolved to include thousands
to millions of variants selected from the complete GWAS results, using optimized selection
criteria and weighting schemes®’. As for predicting any highly multifactorial outcome, the
accuracy of PRS predictions mostly depends on the sample size of the dataset used to estimate
individual variant effects. However, despite a substantial increase in GWAS sample size over
time, the predictive performance of existing PRSs remains low, raising concerns about their
value for clinical purposes®*.

Several studies have estimated the potential for genetic risk prediction in polygenic
diseases describing links between prediction accuracy, typically defined by the area under the
receiver operating characteristic curve (AUC), disease prevalence and heritability™**. More
recent studies also proposed theoretical frameworks to estimate future improvement in PRS-
based prediction based on the distribution of effects at causal variants'**>. However, none of
those examined performances retrospectively. This is partly explained by a lack of standard in
the implementation of PRS, and the impact of various factors inducing heterogeneity in the PRS
performances’®?. Here we examine how PRS prediction accuracy of six diseases evolved during
the past 15 years and how existing models, state-of-the-art sequencing data, and functional
annotation data can inform potential future improvements. We use only PRS derived from
population of European ancestry. Using PRS derived in non-European population would be
challenging because of the current lack of large-scale GWAS data. However, the linear
relationship observed in cross-ancestry PRS transferability’®*® suggests the trends should
remain consistent across populations.

PRS prediction accuracy and sample size

We first pulled from the literature and curated previous reports of genetic risk score
prediction accuracy, expressed as the AUC, for coronary artery disease, breast cancer, type 2
diabetes, Alzheimer disease, asthma, and obesity (Supplementary Note and Table S1). The
studies spanned from 2006 to 2020 and the effective sample size N,; ranged from 981 to
339,224. The reported predictive power showed a very modest association trend with sample
size and was instead characterized by substantial heterogeneity (Figure 1a). AUC increase was
nominally significant for breast cancer (8 = 3.3 x10™ per 1K increase in sample size, P=0.018)
and almost nominally significance for type 2 diabetes (B = 3.9x10™, P=0.091) and obesity (S =
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2.2x10*, P=0.078), but not significant for the other outcomes, with for example, a negative
trend for coronary artery disease (8 = -6.8x107, P=0.73) despite an effective sample size varying
from N 4=4,522 to N,+=184,305. This is likely due to the limited number of studies available,
but also to a number of factors already discussed in the literature and complex to decipher,
including heterogeneity in the characteristics of the population (age, sex, fine-scale genetic
ancestry within European population), disease definition, and the method used to derive the
PRS weights*%,

To quantify more precisely changes in the predictive accuracy as a function of sample size,
we implemented a harmonized pipeline to derive PRS and applied it to a set of highly curated
GWAS data. We derived PRS weights for the six outcomes using 29 GWAS summary statistics
(with different sample sizes) published since 2007 and including mostly participants of
European ancestry. To expend the sample size coverage, we also added five GWAS with modest
sample size that we conducted using unrelated participants of European ancestry from the UK
Biobank cohorts** (Supplementary Note and Table S2). Those 34 PRS were used to derive AUC
in two independent cohorts. Because almost all existing genetic cohorts of European ancestry
have been used to produce these GWAS, we focused our application on relative power and
investigated the trend in AUC in 16,000 participants from six different non-European ancestries
from the UK Biobank cohort, and up to 392,423 participants of Finnish ancestry from the
FinnGen cohort? (Table S3). Difference in genetic ancestry induces lower absolute predictive
performance, however, because the PRS portability across population is expected to be
linear®, the trend remains highly informative, and for example, top GWAS hits between
FinnGen and European ancestry samples were highly concordant (average squared-correlation
between effect estimates equals 0.56, Fig. S1).

The prediction accuracy shows a univocal non-linear increasing trend as a function of sample
size that starts with a sharp increase for the few first studies followed by a gradual decline in
improvement. The convergence patterns are highly concordant between FinnGen and non-
European UK Biobank participants, only displaying the expected offset due to genetic ancestry
difference (Fig 1b, Fig S2-S3, and Table S4). It suggests that PRSs based on future GWASs of the
target outcome with larger sample size are unlikely to dramatically improve prediction accuracy
(as measured by the AUC) by themselves. The AUC convergence is especially striking for type 2
diabetes, obesity, breast cancer and coronary artery disease. Asthma displays a noisier trend,
potentially reflecting the challenges in the disease definition and diagnosis. Alzheimer disease
(AD) shows a continuous increase in AUC for the non-European UKB samples, but no increase
for the last and largest GWAS in FinnGEN despite a five-fold increase in the effective sample
size. This might be explained by the use of a proxy for disease status (a score determined by the
Alzheimer status of the parents’ participants) for the derivation of the PRS weights in the
largest GWAS study. AD-by-proxy was also used in the non-European UKB participants because
of a limited number of cases, while the true AD status was used in FinnGEN (Supplementary
Note). As recently discussed, cohorts with heterogeneous disease definition and study design
can induce variability in heritability estimates of AD%. This likely induces reduced prediction in
FinnGEN in our analysis.
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Modelling AUC convergence

The convergence of the AUC toward its maximum can be investigated using simulation, and
one can easily demonstrate the validity of simple theoretical models™ (Fig. S4). Predicting the
convergence rate in real data is much more challenging and requires the estimation of multiple
parameters of the disease genetic model. It includes the heritability, the polygenicity, the
distribution (or mixture of distributions) of causal genetic effects, and the dependence of those
effects on the linkage disequilibrium, functional annotations, and the minor allele frequency
(MAF). We first examined to what extent existing tools are able to fit the AUC derived in real
data using the GENESIS approach™. Briefly, GENESIS infers some, but not all, of the
aforementioned parameters and uses them to predict the expected AUCs as a function of
future increases in sample size. As recommended by the authors, we focused on a three-
component mixture of effects, where variants are classified as either non-causal, causal with
low effect, or causal with large effect. The shape of the predicted AUC as a function of sample
size obtained from GENESIS is reasonably close to the ones observed in FinnGen and the UK
Biobank (Fig S5a), confirming the observation of a sharp decline in PRS predictive power
improvement. However, the increase rate and expected maximum AUC varied substantially
conditional on the input GWAS used, being especially variable for Alzheimer disease, asthma,
and obesity, and highlighting the importance of conducting real data retrospective analysis.

We next investigated to what extent the observed convergence in AUC might be explained
by heterogeneity arising when meta-analyzing an increasing number of studies. Heterogeneity
in genetic ancestry, disease definition, and environment across the cohorts meta-analyzed,
might reduce heritability and increase polygenicity, and ultimately lessen the benefits of larger
sample size GWAS for predictive purposes. To assess these hypotheses, we examined the
variability in AUC derived using the same procedure as in Figure 1b, and disease parameters
estimated using SBayesS*, while increasing GWAS sample size, but using the same population
for the GWAS and parameter estimation -thus providing a benchmark of the behavior when
potential heterogeneity is minimized. We used participants of European ancestry from the UK
Biobank (referred further as the EUR-UKB experiment), focusing on obesity and using GWAS of
body mass index, one of the sole scenarios allowing to achieve reasonably large sample size
within a single homogeneous cohort. While the role of genetic heterogeneity cannot be ruled
out, we did not find any strong evidence in favor of an effect of heterogeneity. The polygenicity
estimate tends to decrease first (potentially due to limited sample size) until it reaches a
minimum and then starts to increase for both the EUR-UKB (Fig. S6a) and most of the six
outcomes GWASs (Fig. S7a). Except for the few estimates derived using a limited sample size,
heritability tends to be fairly consistent, although much less variable in EUR-UKB (Fig. S6b) than
across the GWASs (Fig. S7b). Estimates of alpha, the minor allele frequency (MAF)-effect size
parameter, also display a similar pattern across analyses (Fig. S6c, Fig. S7c). Overall, the AUC
from the EUR-UKB analysis appears to follow the same trend as the ones derived in FinnGen
and non-European UKB participants (Fig. Séd).

As a general observation, the disease parameters estimated from both GENESIS™ and
SBayesS* vary substantially conditional on the input GWAS used (Figs. S5b-c, $6), with
confidence interval often not overlapping across GWASs from the same outcome. For
comparison purposes, we applied three additional methods, sumHer?, LDSC*, and MiXeR?¥, to
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all available GWAS with an effective sample size larger than 5,000 (Table S5). With a few
exceptions, cross-method heritability estimates from the same GWAS tend to be less variable
than within-method estimates from GWASs of the same outcome. Polygenicity varies
extensively across methods, each of them displaying a different trend as a function of sample
size. The reasons for this variability are unclear, and until progresses are made in estimating
those and other parameters underlying the distribution of genetic effect, our ability to develop
an accurate modelling of the convergence rate of PRS predictive power will likely remain
limited, again, highlighting the importance of conducting real data retrospective analyses.

Maximal achievable prediction

The maximum achievable AUC relies on less parameters than the convergence rate. A central
feature to derive this maximum is the variant coverage, which itself determines the proportion
of heritability captured by the genetic variants used in the PRS. Existing polygenic risk
prediction models rely heavily on genome-wide genotyping studies, thanks to a high cost-
genomic coverage ratio® allowing to generate genotype data for very large cohorts, as
compared to sequencing studies. This implies that even reaching an infinite sample size, the
total genetic variance captured by GWAS, and therefore the maximum prediction accuracy, is
bounded by the sub-sampling of all existing variants. How much of the narrow-sense heritability
(i.e. the linear additive genetic variance®) can be captured by GWAS and how much more will
be captured using sequencing data has been previously explored using both theoretical model
and whole-exome sequencing data of modest size as compared to GWAS studies®*>*. Although
the size of existing genome sequencing data remains limited and does not allow to fully address
this question, some recent sequencing efforts provide opportunities to revisit this question.
Here, we used individual-level whole-genome sequencing data from 503,195 variants on
chromosome 22 measured in 125,152 participants of European ancestry from the UK Biobank
study, to quantify the proportion of heritability captured by genotyped variants under various
alternative genetic models.

We assumed the relationship between effect size and variants characteristics follow the so-
called alpha model -where the expected effect of a variant is proportional to its variance power
a 3% (see Methods)- and derived two metrics: i) h?, the additive genetic variance captured by
both genotyped variants and variants imputed using advanced methods based on haplotype
inference®, and ii) hZG, the additive genetic variance captured by genotyped variants and the
additional variance captured through linkage disequilibrium between genotyped and untyped
variants. In theory, the later parameter should be approximately similar to the GWAS-based
heritability (hZGWAS) estimated by existing software®. Both metrics were derived using sequence
data, after considering various alternative approaches (Fig. $8-59). As shown in Figure 2a,
assuming a random distribution of genetic effect in the genome, h? varies from 29% for
a=—1.5 to 96% for a=0. The heritability captured by genotyped variants only is substantially
smaller, with h., varying from 5% for a=—1.5 to 90% for a=0. This suggests that imputed
variants with modest and poor imputation quality, often filtered out in GWAS studies, might
capture a substantial share of the total narrow-sense heritability missed by genotyped variants.
Of note, previous studies argued that the alpha model might overestimate the effect of rare
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variants®. To address this possible limitation, we also devised an attenuated alpha model
implying a reduced contribution of rare variants (Supplementary Note, Fig. $10). However,
when comparing those attenuated models against the standard in real data, we did not find any
evidence for an increased fit (Fig. S11-12).

Estimates of heritability captured can be translated into maximum achievable AUC given the
prevalence and heritability of the target outcome (see Methods). As expected, this maximum
increases with the disease heritability captured, and decreases with lower value of alpha (Fig.
2b). We compared maximum AUC for each of the six diseases using three heritability estimates:
twin studies heritability (AUCwin), GWAS-based heritability derived using five approaches
(AUCgwas, Table S5-S6), and heritability captured by all imputed variants (AUCjmputed). Note that
the latter AUC requires an alpha value. We attempted to use estimates of alpha obtained from
various approaches (Table $6), but none of them match the expected based on GWAS-based
AUC, and we ultimately set alpha for each disease so that the AUC from the genotype-based
alpha model equals the median of AUCewas across the five approaches (see Methods). The
comparison of AUC is summarized in Figure 2d. First, the AUCswas are relatively close to the
AUCs reported in recent studies (AUC.., Table S6) for coronary artery disease, breast cancer,
Alzheimer disease and obesity, confirming that increasing sample size of GWAS for those
outcomes is unlikely to dramatically impact prediction performances. Conversely AUC,... for T2D
and asthma display sizeable gaps with AUCewas, SO that, despite the convergence observed in
Figure 1b, future GWAS with larger sample size might provide a slow but continuous
improvement in prediction. Second, the gap between AUC:., and AUCgwas is large for all
outcomes, except for breast cancer, suggesting that increasing the variant coverage in future
studies can dramatically improve the predictive power of polygenic risk scores. Third, AUCmputed
is substantially higher than AUCqwas for all outcomes except breast cancer. Hence, future PRSs
using an increasing number of imputed variants, even those with poor imputation quality, have
the potential to boost prediction power without requiring the generation of costly sequencing
data.

Effect distributions and predicted performances

In the previous analyses, we assumed that causal variants are randomly distributed across
the genome and only modelled the relationship between the effect size and the minor allele
frequency. There is strong evidence that causal variants are highly enriched in some
functionally annotated regions®*“2. However, the exact link between those functional
annotations and causal variants is not fully understood and likely depends on the outcome
study. Rather than assuming a specific relationship, which will be subjective given the current
knowledge, we assessed the impact of unequal distribution of causal variants in the genome by
estimating the association between a range of functional annotations and the quality of
imputation (r2, the squared-correlation between sequenced and imputed variants used in the
derivation of h?). Here we used a total of 1,099 annotations from nine sources (Table $7-8, Fig.
$13), including gene elements (coding DNA sequence, exon, intron, transcription start and
termination sites), DNase | hypersensitive sites (DHS), enhancers and promoters. Those
annotations cover 0.001% to 64.7% of the whole genome (Table S8).
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The largest associations between annotation and r?2 were observed for gene elements (Fig.
S14a). Coding DNA sequence (CDS), that cover 1.9% of chromosome 22, show a highly
significant decrease in r2 (P = 1.8 x 10°”), with an average r2 of 0.27 and 0.40 for CDS and non-
CDS variants, respectively. Exons, that cover 9.8% of the chromosome 22, are also strongly
negatively associated (P = 2.0 x 10™") with an average r?2 of 0.37 and 0.40 for exonic and non-
exonic variants (Fig. 3a). Variants from other annotation categories show significant negative
and positive associations, but to a lower extent. Enhancers, super enhancers, DHS, and
transcription factor binding sites tend to display lower r2 than the average of the genome (Fig.
3b). Conversely, genetic variants within promoters appear to be slightly better captured.
Excluding gene elements, the strongest association was observed for transcription start site
with an average r2 of 0.36 and 0.40 for annotated and non-annotated variants (P = 2.1 x 10™).
We did not observe any enrichment for specific cell types or tissues among other top significant
annotations (Fig. S15).

Part of the decrease in variant coverage (Fig. 3a-b) is likely explained by an enrichment for
rare variants with, for example, coding regions displaying a significantly higher proportion of
rare variants (P = 2.5 x 10?”°, Fig. 3c and Table $9). However, other annotations positively
associated with r? also display a significant enrichment for rare variants (e.g. intron, P = 1.0 x
10®), so that minor allele frequency alone is unlikely to fully explain the observed lower variant
coverage. As discussed in previous works, causal variants might display decreased linkage
disequilibrium with other variants because of selective pressure®**!, an assumption that is now
commonly incorporated in disease parameter estimation tools®. Lower linkage disequilibrium
implies lower r2, and the observed lower variant coverage for CDS, enhancers, DHS and
transcription factor binding sites might embody an enrichment for rare causal variants for those
annotations. Under such scenario, the estimated maximum achievable AUCs from imputed
variants presented in Figure 2 could be slightly overestimated, which suggest again that future
improvement in PRS prediction accuracy is likely going to rely on improving the variant
coverage of future genetic association study (Fig. S14b).

Discussion

Polygenic risk prediction has the potential to transform the diagnosis, treatment, and
prevention of many common human diseases. However, the timescale and extent of this
transformation is partly unknown, and some in the community continue to express concerns
about the relevance of PRS. These concerns are partly due to inconsistencies in the reported
performances of polygenic risk models. Previous reports of PRS prediction accuracy are not
always properly documented, and while guidelines have been proposed®, adherence to
reporting statements remains limited. Heterogeneity in the methods used, the populations
studied, and the covariates accounted for, can prevent the replication of results and a formal
assessment of PRS performances. As illustrated in this study for six outcomes, even a careful
curation of publication results based on the above criteria might not be sufficient, and the
potential relationship between performances and study parameters can remain blurry.

Here, we demonstrate that the relationship between prediction accuracy of polygenic
models and sample size is unequivocal and highly replicable when using harmonized data pre-
processing and analysis pipelines. These analyses also show that the prediction accuracy of PRS
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derived from existing GWAS have started to converge for most diseases studied. As a result,
expanding the current state-of-the-art -i.e. fully relying on an increase in GWAS sample size-
might only lead to a modest increase in predictive power. For some outcomes, such as coronary
artery disease, breast cancer, and obesity, our analyses suggest that the predictive power of
GWAS-based PRS is nearing the expected maximum derived based on the GWAS heritability. If
confirmed, this implies that improvements in methods used to derive PRS will not either
dramatically impact prediction accuracy. For type 2 diabetes and asthma, the gap with the
expected maximum remains fairly large, and AUC from future larger GWAS might continue to
increase, although any gain will likely require extremely large sample size. Importantly, the
observed convergence might be partly explained by increasing heterogeneity arising from large
meta-analysis, with for example, very large meta-analysis using a loosen disease definition or
increasingly genetically diverse populations, in order to allow for a broader inclusion of
participants. Although we did not find any strong evidence for such effect across outcomes we
studied, the potential impact of genetic ancestry*®*” and phenotype definition®* heterogeneity
is well established. Note that there are other sources of heterogeneity that we did not
investigate including in particular sample ascertainment, which might influence the disease
prevalence and heritability, and therefore the prediction accuracy.

Estimating the trend in prediction accuracy as a function of sample size depends on our
ability to estimate for each disease, the distribution of causal variants in the genome and its
dependence on other factors. However, as illustrated in this study, estimates of the genetic
disease parameters using existing methods vary substantially conditional on, not only the
approach and model used, but also the GWAS used as input. Developing a reliable predictor of
the AUC trend will remain challenging until more robust estimators are developed. Despite
these limitations, some of the current estimators can still be used to investigate the maximum
achievable AUC. Altogether our analyses suggest that, assuming rare variants do carry a fair
share of heritability, the genetic variance carried by these variants might be poorly captured by
genotyped variants, so that until more large-scale whole-genome sequencing become available,
the maximum AUC will remain bounded by the variant coverage of existing GWASs. In
agreement with previous works®, the present study also support the use of imputed rare
variants, even those with poor imputation quality, as an effective intermediate step to improve
PRS predictive power.

For most analyses we assumed for simplicity that the causal variants are randomly
distributed and we only modelled the relationship between minor allele frequency and effect
size. This is clearly an over-simplification of the true underlying model, and as stated above,
there is now strong evidence that causal variants distribution also varies across the linkage
disequilibrium pattern and functional annotations**!*?3345%_ The relationship between those
factors and the causal effect has not been fully specified, and is expected to vary across
outcomes. Instead of investigating specific models, we derived the relationship between the
variant coverage and a vast set of functional annotations. We observed significant variability
across annotations, with both positive and negative enrichments in variant coverage. However,
except for CDS that show substantially poorer coverage, those differences did not have any
qualitative impact on our results.

Our study has multiple limitations. First, our study only includes six diseases. We initially
intended to include more outcomes, but for all other diseases we considered (e.g. chronic

8


https://doi.org/10.1101/2023.06.27.546518
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.27.546518; this version posted June 29, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

obstructive pulmonary function, Crohn’s disease, hypertension, etc) there was not enough
available data to ensure a fair and objective analysis. Second, for real data heritability, we used
twins study heritability as a proxy for the total additive genetic variance. We appreciate that
these estimates might be overestimated because of shared environment and non-additive
effects (e.g. gene-gene and gene-environment effects)”’. Third, we assumed the genetic effects
are homogeneous in the populations studied. Future improvement in predictive performances
might depend on our ability to integrate potential heterogeneity in genetic effects conditional
on demographic characteristics, basic health parameters, and lifestyle****’. For example, there
are increasing evidence that heritability might vary with age and sex*°°'. Fourth, in our
derivation of the maximum achievable AUC, we assumed a relatively simple model, focusing on
the minor allele frequency-effect size relationship. Future works might incorporate more
complex modelling including, in particular linkage disequilibrium (LD) dependencies. Note that
assuming enrichment for causal variants in low LD regions will only worsen the gap between
genotype-based AUC and imputed-based AUC. Fifth, heritability and AUC were derived using
disease prevalence reported by the CDC. Prevalence clearly varies across population and using
other estimates will impact the absolute values of both parameters, but not their relative
values though. Sixth, we focus all our analyses based on the gold standard approach for PRS,
that is, using univariate GWAS with the largest possible sample size. There is now increasing
literature on multitrait approaches®*>*, where the predictive power can be boosted by partly
circumventing the challenge of assembling very large sample size.
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Figures

Figure 1. Polygenic risk scores predictive accuracy as a function of sample size

Panel a) presents the area under the receiver operating characteristic curve (AUC) reported in the
literature for polygenic risk score as a function of the effective sample size for coronary artery disease,
type 2 diabetes, breast cancer, Alzheimer disease, asthma and obesity. The color gradient corresponds
to the number of variants used, from a few top associated variants (light green) to millions (dark blue),
and the size is proportional to the log of the effective sample size. Panel b) shows AUCs for the six
outcomes derived using a harmonized pipeline. Polygenic risk scores were trained from 34 genome-wide
association study (GWAS) using the LDpred2 approach, and tested in individual-level data from the
FinnGEN cohort (black) and in six non-European ancestry UK Biobank populations (red, meta-analysis
over six populations). The AUCs are plotted as a function of the effective sample size of the
corresponding GWAS. Missing values correspond to cases where there was a sample overlap between
the test and train sets.
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Figure 2. Heritability captured and maximum achievable AUC

Panel a) shows the expected proportion of heritability captured by genotyped (dashed line) and all
imputed variants (plain line). Individual-level data from the UK Biobank were use to estimates the
squared-correlation between sequenced variants and either genotyped (pZ) or imputed variants (r2),
and genetic effects were assumed to be distributed following an alpha model. Panels b) shows the
corresponding maximum achievable AUC for heritability of 0.1 and 0.5, and disease prevalence equals to
0.01 and 0.2. Panel c) shows estimates of the maximum achievable AUC for six outcomes: coronary
artery disease, type 2 diabetes, breast cancer, Alzheimer disease, asthma, and obesity (using body mass
index GWAS). Those AUCs were derived based on US disease prevalence pooled, and various estimates
of heritability: twin studies (AUCq), estimates of GWAS heritability derived using five competitive
approaches: LDSC regression, sumHer, SBayesS, Genesis, and MiXer (AUCgqwas), and twin study
heritability captured by imputed variants (AUCmpued). The black dashed lines correspond to the most
recent estimates of AUC in real data from the literature, derived based on approximately 1M hapmap3
variants. For Alzheimer disease, heritability estimates and current AUC estimates correspond to a model
excluding the APOE region.
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Figure 3. Variability in imputation quality across functional annotations

Relationship between functional annotations and the quality of imputation measured as the squared-
correlation (r2) between true and imputed genotypes. Panel a) displays the change in the average r? of
chromosome 22 for GENCODE annotations: intron, gene, exon, CDS (coding DNA sequence), tss
(transcription start site), tts (transcription termination site), and UTR (untranslated regions). Red bars
indicate +2 standard deviation from the mean and include 95% of the annotated regions. Panel b)
displays standardized regression coefficients from univariate association between the measured r? and
each of the 1,092 functional annotations from eight categories: TFBS (transcription factor binding site),
FANTOMS5 (functional annotation of the mammalian genome version 5) regulatory regions, promoters,
enhancers, and dyadic from Roadmap, DHS (DNase | hypersensitive sites) derived from two studies, and
super enhancers. Horizontal black lines indicate the average per category, and the red dashed lines
indicate the significance threshold after correction for multiple testing. Panel c) shows the cumulative
distribution of variants for each GENCODE category as a function of the minor allele frequency. Panel d)
shows the distribution of frequencies of each annotation, grouped by category.
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Methods
GWAS data assembling

We collected publicly available genome-wide association study (GWAS) summary statistics
from six outcomes: type 2 diabetes, coronary heart disease, breast cancer, Alzheimer disease,
asthma, and body mass index (BMI) which was used to study obesity. The design of each study
was assessed carefully to ensure it matches stringent criteria for inclusion in our analysis: i) all
studies had to include a majority of individual of European ancestry; ii) studies with limited
genetic coverage, such as exome-wide screening and ad hoc genotyping chips (e.g. Metabochip
or Immunochip) without imputation were excluded; iii) phenotype definition had to be
relatively homogeneous, although we kept some study with heterogeneity for comparison
purposes (early onset for asthma, and Alzheimer disease proxy derived from parent status).
Note that for some meta-analysis, we also had access to GWAS results of individual cohorts,
which were used as additional data points. After this quality control filtering, a total of 29
GWAS summary statistics with the baseline required data (coded allele, sign statistics and P
value) remained for analysis (Table S$2). To complete our panel of GWAS we conducted five
additional GWAS in the UK Biobank using unrelated participants of European ancestry, and
cases sampled from the entire cohort: breast cancer (Ncses=5,000; Neontros=50,000); coronary
artery disease (Ncses=5,000; Neontros=50,000); asthma (Neases=1,000; Neontrois=10,000); and BMI
(N=20,000 and N=80,000). All 34 GWAS were harmonized and converted to hg38 using the
liftover package®. As one of the ultimate goals of these data is to compare the predictive
accuracy of PRS scores in the FinnGen cohort, we only kept variants available in that dataset.

Estimation of prediction performances of polygenic risk score in real data

For each GWAS, we derived a vector of individual variants PRS weights Y=(Y1,Y2.-.YM),
where Y; is the weight of variant i and M is the number of variants available in the GWAS, using
the LDpred2 approach’, a popular Bayesian method. We used the ‘auto’ option that
automatically tune hyper-parameters including the PRS sparsity and the SNP heritability, and
the recommended number (30) of Gibbs sampling chains. European descent participants from
the UKB biobank were used as a reference panel for LD derivation, and we restricted the
analysis to the GWAS variants overlapping with a set of 1,054,330 HapMap3 variants*%. For each
GWAS, variants with an estimated effective sample size smaller than 50% or larger than 110%
of the expected maximum were further filtered out to avoid a miscalibration of the estimated
regression coefficients®.

We use those weights to construct genetic risk scores in two test datasets (Table $3). The
scores were derived as PRS=y' X, where X is a matrix of genotypes from the test dataset with
coded alleles matching the coded alleles of the original GWAS. The first dataset included 16,000
unrelated participants of non-European ancestry from the UK Biobank, where ancestry
(Ashkenazi, Iranian, Indian, Chinese, Caribbean, and Nigerian) was derived following Privé et
al®. This analysis was also used for the fine tuning of the PRS and to derive the average weights
over the 30 Gibbs sampling. The second dataset included 392,423 participants of Finns ancestry
from the FinnGen cohort (see Supplementary Notes). Except if specified otherwise, we defined
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the effective sample size of a binary outcome GWAS as Neff=4/{1/Nmse+1/Ncomm,S , Which re-
scales cohorts sample size with unequal numbers of cases and controls to the same unit*. We
estimated the predictive performance of the PRSs using the Area Under the Roc Curve (AUC).
The AUC is a commonly used classifier in genetics, which value equals to the probability of a
randomly chosen case to be ranked higher than a randomly chosen control. For the non-
European UK Biobank samples, we first derived the AUC per ancestry (Table S3, Fig. S2), and

combined results using a standard inverse-variance meta-analysis:
AUC sypynea= 2, |AUCIIG})1 Y. 1167, and SE|AUC smpines) =11 2. [116}| where AUC, and
i=1...5 i=1...5 i=1...5

o are the AUC and variance derived for population i=1...5.

Variance captured by genotyped and imputed variants

Consider a standardized phenotype Y drawn from a polygenic model and defined as the
linear additive effect of M standardized causal variants. Its variance equals Vy=h2+ V., where
h’ is the genetic variance, or heritability and V., is the residual environmental variance.
Assuming the genetic effects at the causal variants are independent of variants’ correlation, the

2_ 2
heritability can be approximated as h —%: ﬁi, where B; is the effect of a standardized variant i.

We derived the proportion of K? that can be recovered given an infinite GWAS sample size,
when only a subset S of variants have been genotyped, while the remaining M & S are either
imputed or missing. We considered two metrics, hf the genetic variance captured when using
all M variants whatever their imputation quality, and h2G the genetic variance captured when
using only the subset S of genotyped variants, but accounting for the effect of the M & S

2 2.2
variants captured through linkage disequilibrium. The first metric h? is defined as hf—%: B ri,
where rf is the squared correlation between the sequence variant i and its imputed value. The

. 2 . . hZ:ZB.2+Zﬁ2.2. 2 . .
second metric hg is defined as 'lc = P17 & iPi, where p; is the squared correlation

between the untyped variants j and the genotyped ones, obtained from a multiple regression
(see below for the derivation).

Both features were derived using a subset of 125,152 participants of European ancestry from
the UK Biobank with genome-wide genotyping and whole genome sequencing data available.
Note that for h?, we first considered using the imputation quality score, commonly referred as
the info_score, as defined by Marchini & Howie®®, which is expected to be an unbiased
estimator of r,z. However, this metric appears to be inflated in both simulated and real data,
especially for variants with low minor frequencies (Fig. S8). We therefore derived r’ using the
aforementioned individual-level sequencing data. We used the imputed SNP-array data
provided by the UK Biobank. We lifted-over the imputed variants for the 125,152 samples,
retaining 99.5% of the original imputed sites in GRCh38. We then derived an r2 between the
imputed dosages and the whole-genome sequencing data for each of the overlapping sites.

The r’* was estimated from a standard univariate linear model using each sequenced variants
as the outcome and the imputed ones as predictors. For h.., we used genotyped variants

available on the UK Biobank Axiom array?! as our baseline. The p? were derived as the adjusted
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squared-correlation obtained from a standard multiple linear regression with the Im() function
from the R software. Each non-genotyped variant j was predicted from a set Q of neighboring
variants in a window of +1.5Mb (Fig. S9a). For simplicity we derived r? and p_2 using only
variants from chromosome 22, under the assumption that estimates from this chromosome are
representative of the entire genome. There are 12,968 variants genotyped on this
chromosome. Out of 659,092 variants available from the sequencing data, a total of 503,195
remained for analysis after removing those with a minor allele frequency (MAF)< 0.001%. As
expected, the two metrics are highly correlated (cor(pz,r2)20.71) but, the average r* was
substantially larger than p° (r*=0.50, ?:0.25, Fig. S9b).

In our simulations, the proportion of heritability captured was derived using both
parameters (r* and pz), and B:(Bl...BM) coefficients drawn from a normal distribution using
the alpha model®. The alpha model assumes an inverse relationship between the variant
frequency and the per-allele effect, with rare causal variants harboring larger per-allele effect
than common variants. This model has been empirically confirmed in many studies (e.g. *). In
practice, the genetic effect of variant i is drawn from the following:

.Bi|pi N(O,af,,,,- zpi(l_PiHH)’ where P, is the minor allele frequency, and o2 is a constant

g,a
constraining the outcome heritability (Fig. $10a). In our analysis we considered a values in the
range [-1.5 ; 0.0], and draw random GZ,a in [0,1]. We also investigated an attenuated alpha

model where the contribution of the rarest variants was decreased using an ad hoc iterative
weight function (Supplementary Notes).

Maximum achievable AUC

The expected maximum achievable AUC is derived using the approximation proposed by
Wray et al AUCmaxm@(([i—v)hz)/\/hz{(l—h2i[i—T\))+(1—h2v(v—T)”), where RB? is the
heritability on the liability scale, @ is the cumulative density function of the normal distribution,
z is the height of the standard normal density at the threshold T=®"'(1—K|, and with
i=z/K and v=—2z/|1—K]|, where K is the disease prevalence. We confirmed the validity of the
approximation using a simple simulation model involving independent causal variants with a
linear additive effect on the outcome and using h? in [0.2 ; 0.7] and the prevalence K in [0.01 ;
0.25] (Fig. S4 and Supplementary Notes). Estimation of the AUC conditional on alpha (Fig. 2b)
were derived by replacing h? by either h2G or hi, themselves derived based on alpha drawn in [-
1.5, 0] and B:(Bl---BM) coefficients generated from a normal distribution.

For real data analysis, disease prevalence from the six outcomes were pulled from the CDC
website (https://www.cdc.gov/, Table S$6). For the heritability, we considered various
estimates : i) the total heritability derived from twins studies for coronary artery disease
(0.55)%°, type 2 diabetes (0.72)!, breast cancer (0.27)%?, Alzheimer disease after excluding the
effect of APOE (0.49)¢*%*, asthma (0.70)%, and body mass index (0.75) : ii) hzyus, the heritability
captured by GWAS variants derived using five alternative approaches: SBayesS*, sumHer?®,
LDSC regression®, GENESIS, and MiXeR? (Supplementary Notes), and iii) h;, the heritability
captured by all imputed variants. The later estimate requires three parameters: the total
heritability, the proportion of heritability captured given alpha, and a value of alpha. For the
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total heritability, we used the twin study estimate. For the proportion of heritability captured,
we used the estimate derived using the UK Biobank sequencing data. The choice of alpha was
more challenging and is described below.

Most real data estimates of the GWAS variants heritability (hi,,s) are derived based on
genotyped variants along a modest subset of imputed variants with very high quality (typically
an info_score = 0.8). As a results, assuming our estimation of the heritability captured by
genotyped variants based on the UK Biobank sequencing data (Fig. 2a) is valid, the previously
described hé is expected to approximate héWAs providing a relevant value of alpha. We assessed
the equality between the two metrics using alpha derived from various approaches (SBayesS,
sumHer, and individual-level data from the UK Biobank, Table S6), but none of them match the
expected based on hZ,,s. Therefore, for each disease, we selected a “Best fit” alpha so that h,
is equals the median of hZ,,,s derived over the five aforementioned approaches (Table S6). This
“Best fit” alpha was used to derived h’ for the six outcomes.

Genetic coverage and functional annotations

We investigated the association between r?, the squared-correlation between the true and
the imputed genotypes and a total of 1,099 functional annotation pulled from nine sources:
baseline GENCODE annotations: intron, gene, exon, CDS (coding DNA sequence), tss
(transcription start site), tts (transcription termination site), and UTR (untranslated regions) ;
and epigenetic annotations across a vast range of tissues and cell types: TFBS (transcription
factor binding site) ; FANTOMS5 (functional annotation of the mammalian genome version 5) ;
promoters ; enhancers, and dyadic from Roadmap, DHS (DNase | hypersensitive sites) derived
from two studies, and super enhancer. The analysis was conducted using the same data used to
derive h and k., (503,195 variants from chromosome 22 from 125K UK Biobank participants of
European ancestry).

Data availability

All GWAS summary statistics have been downloaded from publicly available websites including
dedicated page from consortia, the NHGRI-EBI Catalog of human genome-wide association
studies, and the FinnGEN GWAS repository. Individual-level data from the UK Biobank were
accessed from the UK Biobank Resource under Application Number 42260 and 66995.
Individual-level data from FinnGEN were conducted by co-authors from the University of
Helsinki with privileged access.

URL resources

GWAS catalog: https://www.ebi.ac.uk/gwas/

GCTA: https://yanglab.westlake.edu.cn/software/gcta/
SBayesS: https://cnsgenomics.com/software/gctb/
MiXeR: https://github.com/precimed/mixer

GENESIS: https://github.com/yandorazhang/GENESIS
LDSC regression: https://github.com/bulik/Idsc
sumHer: https://dougspeed.com/sumher/
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FinnGen results: https://risteys.finngen.fi/

HapMap3: https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html

CDC disease prevalence: https://www.cdc.gov/datastatistics/index.html

Functional annotations: https://github.com/gkichaev/PAINTOR V3.0/wiki/2b.-Overlapping-
annotations
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