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Abstract

Designing binders to target undruggable proteins presents a formidable challenge in drug discovery, requiring
innovative approaches to overcome the lack of putative binding sites. Recently, generative models have been
trained to design binding proteins via three-dimensional structures of target proteins, but as a result, struggle to
design binders to disordered or conformationally unstable targets. In this work, we provide a generalizable
algorithmic framework to design short, target-binding linear peptides, requiring only the amino acid sequence
of the target protein. To do this, we propose a process to generate naturalistic peptide candidates through
Gaussian perturbation of the peptidic latent space of the ESM-2 protein language model, and subsequently
screen these novel linear sequences for target-selective interaction activity via a CLIP-based contrastive
learning architecture. By integrating these generative and discriminative steps, we create a Peptide
Prioritization via CLIP (PepPrCLIP) pipeline and validate highly-ranked, target-specific peptides
experimentally, both as inhibitory peptides and as fusions to E3 ubiquitin ligase domains, demonstrating
functionally potent binding and degradation of conformationally diverse protein targets in vitro. Overall, our
design strategy provides a modular toolkit for designing short binding linear peptides to any target protein
without the reliance on stable and ordered tertiary structure, enabling generation of programmable modulators
to undruggable and disordered proteins such as transcription factors and fusion oncoproteins.
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Introduction

Over 80% of pathogenic proteins are considered “undruggable” by standard small molecule inhibitors, as they
often lack putative stable binding pockets."? Targeted protein degradation (TPD) has emerged as a promising
alternative to treat disease, but largely relies on small molecule warheads to bind and recruit endogenous E3
ubiquitin ligases to targets, thus still requiring the presence of accessible surface binding sites.® Protein-based
modalities, either as standalone binders or recruiters of effector domains, thus represent attractive platforms to
target these proteins, as they do not require surface pockets for binding. As a result, numerous approaches
have been developed to leverage protein-based binding domains for the design of intracellular protein
degraders. These approaches, such as bioPROTACs, AdPROMs, and ubiquibodies, have relied on the
existence of “off-the-shelf’ binders, thus precluding degrader design to novel target substrates.*'° Still, the
design of new protein binders is challenging: one would either need to conduct laborious experimental
screening via strategies such as yeast or phage display, or deploy structure-based computational design
methods.""* Though progress is being made,' these methods, such as the state-of-the-art RFDiffusion
generative model, rely on three-dimensional structural information of target proteins for binder design, making
design challenging to unstructured and intrinsically-disordered proteins, which make up a large fraction of the
undruggable proteome.'1416.17

Recently, protein language models (pLMs) have been pre-trained on millions of natural protein sequences to
generate latent embeddings that grasp relevant physicochemical, functional, and most notably, tertiary
structural information.’®2' Even more interestingly, early results suggest that sequence-based protein
transformers can produce novel protein sequences with functional capability.??2* Motivated by these findings,
here, we develop a pipeline to design de novo target-binding peptide motifs, only requiring the amino acid
sequence of the target protein. Inspired by the groundbreaking work of OpenAl to generate photorealistic
images from natural language descriptions via contrastive language-image pretraining (CLIP),%* we first
leverage the ESM-2 pLM to generate distinct, but naturalistic peptide candidates by applying Gaussian noise to
the embeddings of bona-fide peptide binder sequences.” We then screen these candidates for target-selective
interaction activity through a CLIP-based contrastive latent space, trained to jointly encode cognate
peptide-protein pairs. Our resulting Peptide Prioritization via CLIP (PepPrCLIP) pipeline integrates our
generative-discriminative framework to prioritize fully novel peptide candidates with binding capacity to an input
target sequence. After demonstrating competitive performance to RFDiffusion on structured targets in silico, we
extensively validate that PepPrCLIP-prioritized “guide” peptides, when experimentally used as inhibitory
peptides or fused to E3 ubiquitin ligase domains, exhibit robust, superior target engagement and modulation of
diverse targets, including an enzyme, transcription factor, and undruggable fusion oncoprotein in vitro. Our
integrative methodology thus provides a modular, CRISPR-like system for programmable TPD applications.

Results
A CLIP discriminator accurately captures peptide-protein binding

Recently, OpenAl released CLIP, a model that is trained to associate images and their textual descriptions by
learning to rank the correct matching pairs higher than incorrect ones via contrastive learning.?*?* DALL-E 2, a
denoising diffusion model, was then trained using the CLIP latent space to generate photorealistic images
conditioned on an associated text prompt.?® We thus hypothesized that just as CLIP connects images to their
corresponding captions using jointly-trained image and caption encoders, we can leverage a CLIP-based
architecture to map target proteins to their corresponding binding peptides using jointly-trained peptide and
target protein encoders. Specifically, we task our model to predict the cosine similarity between all n? target and
peptide pairs in a matrix, and subsequently calculate the average of the cross-entropy losses on the rows and
columns of this matrix during training. We further employ Meta Al’s state-of-the-art ESM-2 model weights to
generate feature-rich embeddings for cognate targets and peptides as inputs to the model (Figure 1A)."®

In order to construct the dataset for training this model, we first considered every interaction structure in the
RCSB PDB, and specifically filtered to create appropriate training and testing datasets. To train on a wide
distribution of peptide-protein pairs, we generate a "noisy" dataset, in which we consider both strong and
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weaker interactions (co-crystal buried surface area >= 50 A?), and consider interactions between all short
proteins (< 50 AA) and another larger protein. For stringent evaluation of our model, we create a "strict"
peptide-protein test dataset, in which we only include strong interactions (co-crystals with a buried surface area
>= 400 A?), with peptides of length <= 25 AA, and target proteins of length >= 30 AA. These parameters are
equivalent to the datasets for the recent PepNN model, a deep attention model which accurately predicts
peptide binding sites on target proteins.?® Overall, the datasets are clustered at 30% sequence identity, using
MMSeqgs2, ensuring significant sequence diversity between the train and test sets.?” After filtration and
clustering, the noisy training set consists of 11,597 peptide-protein pairs, with a validation set and test set of
1241 and 1376 pairs respectively. The strict training set consists of 7388 peptide-protein pairs, with a validation
set and test set of 737 and 1002 pairs respectively.

For evaluation, we use three key metrics: binary accuracy, Top-1 accuracy, and Top 10% accuracy. Binary
accuracy is the accuracy of the model in predicting the correct binding pairs when given 2 protein-peptide
pairs. Top-1 accuracy is the likelihood that for a given protein, the model has chosen the correct binding
peptide from a batch of 64 randomly sampled peptides from the dataset, and Top 10% accuracy is the
likelihood that this peptide is in the top 10% of peptides when ranked by CLIP score to this protein. Thus, Top
10% accuracy allows us to measure the model’s ability to sort a set of peptide candidates accurately. If limited
resources are available for screening, a high Top 10% accuracy provides confidence that the model will have
prioritized high-quality peptide candidates.

Our results demonstrate that training the CLIP model on the noisy dataset — a more difficult binding prediction
task — allows for robust performance on the stricter held-out test set, exhibiting a 95.4% binary accuracy, as
well as a Top 10% accuracy of 0.82 and Top-1 accuracy of 0.53. In contrast, training and testing on the strict
dataset alone yields a lower 92.7% binary accuracy and poorer Top 10% and Top-1 accuracies of 0.74 and
0.42, respectively, justifying our transfer learning approach (Figure 1B). We further conducted an ablation study
on the input embeddings to the CLIP model, and demonstrate that when following the two training paradigms,
deployment of ESM-2 embeddings for both the peptide and target encoders is critical for high performance, as
compared to a simple learned embedding or BLOSUM62 embeddings (Supplementary Figure 1),2%2°
highlighting the importance of leveraging expressive, pre-trained pLM embeddings.

Finally, as an additional method to validate the optimized model’s ability to discriminate between
peptide-protein pairs that bind and do not bind, we compare predicted CLIP scores on the ~1000 held-out true
interacting pairs from our test dataset and the ~500,000 mismatched pairs which are assumed not to interact.
As a visualization, the distribution of CLIP scores for interacting peptide-protein pairs is heavily skewed
towards +1 (mean = 0.902, variance = 0.056), while mismatched non-interacting pairs have CLIP scores
distributed around 0 (mean = 0.025, variance = 0.136) (Figure 1C). As a note, we observe a set of false
positives in the distribution of the mismatched pairs, an expected phenomenon as natural peptides are rarely
highly-specific to their target alone. Nonetheless, our results demonstrate that the CLIP model robustly selects
and highly ranks target-binding peptides for a provided target sequence, thus motivating its utilization for de
novo peptide prioritization.

Gaussian perturbation generates naturalistic peptides for CLIP prioritization

There exist approximately 10%° possible 20-mer peptides — far too large of a space to exhaustively screen
either in silico or in vitro for a given target. Furthermore, a small fraction of these possible peptides are likely to
be biologically viable. Here, we propose a method to generate biologically naturalistic peptides. We begin with
an ensemble of bona-fide, interacting peptides, which appear in co-crystals in the RCSB PDB (these peptides
are taken from our training set). Next, we embed the sequences of these peptides using ESM-2. ESM-2’s
latent space contains an understanding of naturalistic protein sequences — similar position in latent space
corresponds to biological similarity. Thus, we expect that if we sample from the latent space in the region
surrounding naturally occurring peptides, we will recover peptide sequences that are similar to those found in
nature. To do this, we add noise to the embeddings of each residue of a source peptide. Noise is sampled from
a standard Gaussian distribution and multiplied by a scaling factor k to create a perturbation, which we then
add to the embedding for its respective residue. By analyzing the dependence of Hamming distance between
generated peptides and their source peptides, we select values of k in the range 5 to 22 to maintain naturalistic
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peptide sequences (Figure 2A). By varying the amount of noise and the number of real peptides sampled, we
generate an arbitrarily large set of biologically viable de novo peptides. Finally, we convert the perturbed
embeddings to protein sequences using the final layer of ESM-2, acquiring new peptide sequences for CLIP
screening, thus completing the end-to-end PepPrCLIP pipeline (Figure 1A). The PepPrCLIP algorithm is
formally defined via pseudocode in Supplementary Figure 2.

PepPrCLIP performs comparably to RFDiffusion on structured targets in silico

Prior to experimental testing, we computationally benchmarked the full PepPrCLIP pipeline via
AlphaFold-Multimer, a massively improved method for peptide-protein docking as compared to previous
docking strategies.®*3' Specifically, the ipTM score is a verified metric within AlphaFold2-Multimer that proxies
as a potential interface binding affinity of peptide-protein complex, thus serving as a quantitative assessment of
generation quality.***' To define a rigorous “hit-rate” for PepPrCLIP, we first co-folded 209 PDB-validated
peptides in PepPrCLIP’s unseen, non-homologous, held-out “strict” test set and retrieved their ipTM values.
We then co-folded the top PepPrCLIP-generated peptide and the top RFDiffusion-generated peptide of
equivalent length with the corresponding target protein sequence (Supplementary Data).

To establish a very strict but normalized threshold on binding capacity, we calculated the hit-rate as the
percentage of generated peptides that possess an ipTM score 2 that of the corresponding test set peptide over
all tested target proteins. To note, this is a very high standard, as this indicates the rate at which peptides
outperform experimentally validated, high-affinity, crystallizable peptide binders. As all target proteins are
PDB-validated structures likely in its training set, RFDiffusion performs strongly as expected, with an in silico
hit-rate of 30.1% (Figure 2B). Without explicitly leveraging any structural information nor seeing these target
proteins in its training set, PepPrCLIP achieves an in silico hit-rate of 17.7% (Figure 2B). We further
calculated the percentage of peptides from each model that achieves an ipTM = 0.7, demonstrating that
22% PepPrCLIP-generated peptides form stable interactions, compared to 40% of RFDiffusion-generated
peptides, which has a comparative advantage on these targets.®'*?> We also compare the ipTMs of
PepPrCLIP-generated peptides and RFDiffusion-generated peptides, and find that PepPrCLIP outperforms
RFDiffusion on 33% of this set of targets (Figure 2C). Overall, these results motivated us to experimentally
explore PepPrCLIP’s generation quality in application-relevant settings on difficult, more conformationally
diverse target proteins.

PepPrCLIP-generated peptides inhibit the catalytic activity of UltralD

Proximity-dependent biotinylation identification (BiolD) proteomics is a powerful and popular approach to study
protein-protein interactions and intracellular organization. It relies on the enzymatic activity of biotin protein
ligase to biotinylate proteins in proximity to a bait of interest. UltralD, a conformationally-stable enzyme (pLDDT
= 96.2) evolved from the original E. coli BirA biotin protein ligase (Figure 3A), stands out as the smallest
efficient enzyme currently available for BiolD.* Its high enzymatic kinetics and low background activity make it
highly promising for diverse proteome discovery applications. However, employing UltralD to explore specific
protein-protein interactions, either within or between cells, encounters a significant limitation: the pressing need
to precisely regulate its enzymatic activity in both spatial and temporal dimensions. To overcome this obstacle,
one strategy is the development of a “caged” version of UltralD, wherein it is held in an inactive state that can
be released. We reasoned it may be feasible to cage UltralD by linking it with an inhibitory peptide (IP) capable
of binding to the catalytic core and inhibiting its activity, until release (Figure 3B). It is noteworthy that UltralD
utilizes both ATP and biotin as substrates for its biotinylating function.*® Therefore, the success of inhibition by
the IP likely hinges on its competitive binding between IP and ATP/biotin at the active site, or by rendering the
binding pocket inaccessible due to induced conformational changes.

Here we evaluated the ability PepPrCLIP and RFDiffusion to generate |IPs targeting sequences of the UltralD
catalytic pocket, which was predicted based on AlphaFold2 structural models and the known structure of BirA
(Figure 3A). This was followed by experimental validation of their inhibition efficiency in cells. Providing only the
target sequence of UltralD, which is not in the PDB and thus not in either PepPrCLIP’s or RFDiffusion’s training
set, and confirming their catalytic pocket-targeting via AlphaFold-Multimer, we generated 20 candidate IPs
(IP1-20) with PepPrCLIP (Supplementary Table 1 and Supplementary Data). Providing the
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AlphaFold2-predicted structure of UltralD as input and specifying the catalytic pocket as a binding hotspot, we
generated 19 IPs (IP21-39) from RFDiffusion for comparison (Supplementary Table 1 and Supplementary
Data). We generated plasmids expressing each of these IPs, fused to the UltralD DNA coding sequence via
several flexible linkers and a hemagglutinin antibody (HA) epitope. These plasmids were then transfected into
HEK293T cells, which were treated with 50 uM biotin for 30 mins before fixation and immunostaining. To
assess inhibition efficiency, we evaluated the ratio between biotinylation level (streptavidin fluorescence level)
and transfection efficiency (HA fluorescence level). Our results reveal that among the 19
RFDiffusion-generated IPs, 17 of them led to UltralD inhibition, and 3 (IP22, IP24, & IP37) inhibited the
enzymatic activity of UltralD by more than 75 percent, highlighting its strong binder generation capability on
structured targets (Figure 3B). Of the 20 PepPrCLIP-generated IPs, 19 showed successful UltralD inhibition,
with 4 (IP2, IP8, IP18, & IP19) exhibiting over 75 percent inhibition efficiency (Figure 3B). Notably, the top 3
effective IPs (IP8, IP18, & IP19) were all generated by PepPrCLIP, underscoring its strong potential in
designing peptides that not only bind to but also inhibit the activity of the target protein (Figure 3C). These
results underlie the potential utility of PepPrCLIP in generating peptides capable of modulating the function of
enzymes through predicted binding to catalytic sites.

PepPrCLIP-generated ubiquibodies robustly bind and functionally degrade f3-catenin

Based on the seminal work of Portnoff et al.,®2 we recently reprogrammed the specificity of a modular human E3
ubiquitin ligase called CHIP (carboxyl-terminus of Hsc70-interacting protein) by replacing its natural
substrate-binding domain, TPR, with designer “guide” peptide motifs to generate minimal,
genetically-encodable ubiquibody (uAb) architectures for target protein degradation.® In multiple studies, we
have demonstrated the suitability of the uAb architecture to incorporate linear guide peptides designed via both
structure- and sequence-based algorithms.3>-%"

To demonstrate the capacity of PepPrCLIP to design binders to targets beyond conformationally-stable,
structured target proteins, we evaluated the interaction and degradation capacities of PepPrCLIP-derived
peptides in the context of uAbs. For the first target, we chose B-catenin (Figure 4A), a bifunctional protein with
critical roles in both cell adhesion and transcriptional regulation of the Wnt pathway whose stabilization leads to
aberrant Wnt/B-catenin signaling and promotes a transcriptional program composed of many oncogenes such
as c-Myc and cyclin D-1. After cloning six high-scoring PepPrCLIP-generated peptides (Supplementary Table
2) into plasmids upstream of the CHIPATPR catalytic domain, we transfected these plasmids into DLD1 colon
cancer cells, which express wild-type B-catenin at abnormally high levels.?® Utilizing TOPFlash, a luciferase
reporter for reliable readout of Wnt/B-catenin signaling,* as an initial screening tool, we observed a statistically
significant reduction in B-catenin transcriptional activity in cells transfected with B-cat_ PpC_1, B-cat PpC_2,
B-cat_PpC_3, and B-cat_PpC_4 constructs compared to cells transfected with an empty vector control (Figure
4B).

To determine if this functional data was the result of endogenous B-catenin depletion, we conducted
immunoblot analysis on the cytosolic fractions obtained from DLD1 cells transfected with the strong-performing
B-cat PpC_3 and p-cat PpC_4 constructs (Figure 4C). The immunoblots revealed that these two
peptide-guided uAbs promoted robust (B-catenin degradation (>50%) relative to non-transfected DLD1 control
cells. Importantly, degradation was proteasome-dependent, as treatment with the potent proteasome inhibitor,
MG-132, blocked B-catenin degradation. We also confirmed that B-cat PpC_3 and B-cat PpC 4 facilitated
target degradation through specific, peptide-mediated binding to B-catenin, as evidenced by ELISA (Figure
4D). Specifically, B-cat_PpC_3 and B-cat_PpC_4 exhibited strong binding activity to immobilized B-catenin with
virtually no binding to the immobilized bovine serum albumin (BSA) control. Finally, to quantify binding affinity
of the two peptide-guided uAbs, we performed biolayer interferometry (BLI) and determined that B-cat_ PpC_3
and B-cat_PpC_4 both exhibited sub-uyM binding affinity to B-catenin (Kp; = 200 and 150 nM, respectively;
Figure 4E), thus demonstrating the potent binding capability of PepPrCLIP-designed peptides.

PepPrCLIP-generated uAbs robustly degrade the highly-disordered fusion oncoprotein SS18-SSX1

Synovial sarcoma belongs to a subcategory of sarcomas called soft-tissue sarcomas which accounts for 5% to
10% of all soft-tissue tumors* and is more prevalent in adolescents and young adults.*’ This disease is
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characterized by a singular, highly disordered oncogenic fusion protein SS18-SSX1 (Figure 5A) formed by the
translocation of (X;18)(p11.2;q11.2), which leads to the fusion of the SS18 gene to one of three SSX genes
(SSX1, SSX2 and rarely SSX4). In two thirds of cases SS18 is fused to the SSX1 gene.*? The SS18-SSX1
fusion protein is believed to function as an aberrant transcriptional regulator hijacking the activity of the normal
BAF complex and driving oncogenesis.*® As the complete role of the fusion is not yet fully understood, targeted
protein degradation of SS18-SSX1 is not only an attractive therapeutic opportunity but also a vital reagent to
understand its role in the oncogenesis of synovial sarcoma.

To assess whether PepPrCLIP-designed peptides can induce target degradation SS18-SSX1 protein within the
uAb architecture, we first cloned the fusion in-frame with the mCherry fluorescent protein and ectopically
expressed the construct in HEK293T cells. We also simultaneously co-transfected 10 individual peptides
designed with PepPrCLIP (Supplementary Table 3), which were fused to CHIPATPR-IRES-TagBFP, and
monitored the expression of the SS18-SSX1 fusion via the linked mCherry reporter (see Schematic in Figure
5B). Of the peptides predicted by PepPrCLIP to bind to SS18-SSX1, 10 were tested and of those, SS_PpC_4
significantly (p value <0.0001, Wilcoxon Rank Sum Test) reduced SS18-SSX1-mCherry fluorescence as
monitored via flow cytometry (Figure 5B). Next, we tested the effect of SS_PpC_4 overexpression on
endogenous SYT-SSX1 fusion protein levels. For this, we transfected the synovial sarcoma cell line HS-SY-II
with the SS_PpC_4 peptide or the polyalanine peptide control. Strikingly, SS_PpC_4 peptide overexpression
led to a strong reduction in SS18-SSX1 protein levels as assessed by immunoblotting with a fusion-specific
antibody (Figure 5C). These findings corroborate the results obtained from flow cytometry and provide
additional evidence of the efficacy of SS_PpC_4 in inducing targeted degradation of the fusion protein,
showing that the algorithm is effective for previously intractable, disordered targets such as large fusion
oncoproteins.

Overall, these results emphasize the simple, CRISPR-like programmability of PepPrCLIP-designed uAbs,
which may prove to be most useful for research applications, replacing more labor intensive systems such as
dTAG* for studying phenotypic effects of target protein degradation.

Discussion

Here, we describe a purely sequence-based approach for the design of de novo binding peptides, which we
use to programmably bind, inhibit, and degrade conformationally-diverse substrate proteins in vitro in a
CRISPR-like manner. While previous works have utilized structure-based models for binding disordered
motifs,** contrastive learning for predicting protein function,*® and language models for isolating peptidic
fragments from interacting protein sequences,®* PepPrCLIP represents a novel example of leveraging
sequence-based language models for fully de novo binder generation. Overall, the promising results from our
approach motivate future development of methods utilizing a candidate generator and contrastive discriminator
screening models for molecular design. We are also exploring alternative generative processes, such as
techniques leveraging databases of antibody CDRs or human protein motifs and autoregressive models, such
as GPT, Llama2, and Mamba,*~*° and even extending to post-translationally modified (PTM) target sequences
using PTM-aware pLM embeddings.® For future work, we plan to expand our in silico screening strategies to
optimize other key properties, including selectivity and binding affinity to undruggable proteins via fine-tuning
on specific target classes, such as fusion oncoproteins.® In total, our two-step method represents a first protein
binder design module from target sequence alone, without the requirement of 3D structural information. Our
easy-to-use model, coupled with our unique experimental modalities, thus establish a more modular,
CRISPR-like alternative to protein targeting, and open the door for programmable proteome editing and
screening applications.

Methods
Dataset Generation
The datasets for this paper were generated by mining the RCSB PDB (https://www.rcsb.org/) for verified

protein-protein and peptide-protein interaction structures. Two datasets were curated: 1) A "strict"
peptide-protein dataset, which filters for strong interactions (co-crystals with a buried surface area >= 400 A?),
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with peptides of length <= 25 AA, and target proteins of length >= 30 AA. 2) A “noisy” dataset which contains
both strong interactions and filters the PDB-derived data for weaker interactions (co-crystal buried surface area
>= 50 A?) as well as interactions between all proteins (<50 AA) paired with a larger protein (>50 AA). Protein
sequences were then clustered using MMseqs2 connected component clustering at 0.3 minimum sequence
identity to group homologous proteins.?” Additional parameters used for data filtration can be found in Abdin, et
al.?® After filtration and clustering, the noisy training set consists of 11,597 peptide-protein pairs, with a
validation set and test set of 1241 and 1376 pairs respectively. The strict training set consists of 7388
peptide-protein pairs, with a validation set and test set of 737 and 1002 pairs respectively.

CLIP Architecture and Training

The CLIP architecture was adapted from Radford, et al.>* Encoders were trained such that the cosine similarity
between target protein embeddings and peptide embeddings, defined as

_ Xy
k(X Y) = TRy

is near 1 for target-peptide pairs which do bind to each other, and is near -1 for target-peptide pairs which do
not bind to each other.

Next, the target and peptide encoders were trained on batches of n pairs of targets and peptides which are
known to interact from the datasets described above. Target and peptide sequences were encoded by their

respective encoders, producing target embeddings r,,..., r,, and peptide embeddings p,, ..., p,. The cosine
similarity between all n* target and peptide pairs is computed in a matrix K, defined such that:
K = k(r

Cosine similarities are interpreted as softmax logits. We define two cross-entropy losses, one on the matrix
rows and one the matrix columns:

n exp Kn’
Lr =—% Y log| — ( )
i=1 Elexp(KU)
n K,_
PRSI
J=1 Zexp(Kij)

i=1

¥, represents the loss on the model’s ability to predict the correct target given a single peptide, while £,
represents the loss on the model’s ability to predict the correct peptide given a single target. By using these
cross-entropy losses, we implicitly assumed that the n? — n target-peptide pairs in the batch which are not
known interactions do not bind at all. While this may not be a completely accurate assumption, it is
approximately true.
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The target encoder and peptide encoder have identical architectures. First, the input sequence is embedded
through a frozen ESM-2 model, producing a / x e; input embedding (where [ is the input sequence length and g,
is the dimension of the ESM-2 embedding). Next, input embedding is averaged over the sequence length /,
yielding an embedding vector of length e;for both peptides and proteins. h MLP layers were applied with ReLU
activation on the embedding vector to obtain the output embedding, which is a vector of length e,. For the final
model: e; = 1280, e, = 320, and h = 2. Combining the vector embeddings of peptide and protein via dot product
yields a CLIP score, valued between -1 and 1. The model is trained such that binding pairs of peptides and
proteins have high CLIP scores. Thus, the model constructs a latent space of dimension e, in which vector
similarity corresponds to predicted binding. It can be noted that this latent space further provides a notion of
protein-protein similarity, and peptide-peptide similarity, as proteins with similar binding behavior will be
mapped in proximity to one another within the phase space (and the same is true for peptides). Notably, since
the hidden MLP layers operate on the embedding averaged over the length dimension, the encoder has
minimal dependence on the sequence length. This is particularly important for allowing the peptide encoder to
generalize to a broad range of peptide lengths.

Model hyperparameters were tuned manually with the goal of optimizing validation loss. Models were trained
on a single Nvidia A100 80 GB GPU via Google ColLab using an Adam optimizer for 56 epochs across the
training set using early stopping (monitoring the validation loss on the “strict” dataset) with a patience of 6. All
presented in silico metrics were done with train/validation/test splits indicated in the Results and Dataset
Generation section. For experimental peptide derivation, a model trained on the entire dataset was employed
to ensure maximum performance.

Generation of peptide candidate sequences

Candidate peptides are generated using all of the peptides in the training set. Each peptide is embedded
within ESM-2 pLM (hitps://huggingface.co/docs/transformers/model_doc/esm) in PyTorch. For a given
peptide embedding, the variance (02) is computed over all dimensions of the embedding. For each

residue in the source peptide, noise is sampled from the standard Normal distribution N(O, K ) and

multiplied by the variance " to create a perturbation p, . This perturbation is added to the embedding for
its respective residue. The noise scaling factor k can be varied to produce peptides that are closer or
farther from the source peptides in the ESM phase space. At inference time, source peptides are
randomly sampled from the training set (usually on the order of 100 to 1000). For each source peptide,
1000 peptides are generated through the noising method described above, varying the value of k in order
to sample at various distances from the source peptide. Finally, these peptides (on the order of 100,000)
are fed into the CLIP model, and ranked based on predicted binding to a user-provided target sequence.

For generation of peptides for this study, k values in the range 5 to 22 were selected. We computed the
mean Hamming distance between generated peptides and their source peptides as we varied the value of
k. We did this for an ensemble of 100 source 18-mer peptides, creating 500 generated peptides for each.
The plot of Hamming distance as we varied k is depicted in Figure 2A. We observed that at k = 5, we see
mutations on the order of 1 amino acid, and mean Hamming distance increases until k = 22, at which
point almost the entire sequence is mutated. Thus, we chose that k would range between 5 and 22,
sampling the full range of sequence transformations. All peptide sequences evaluated in this study can be
found in Supplementary Tables 1 and 2.

AlphaFold-Multimer benchmarking

AlphaFold-Multimer_v3 was used in ColabFold:
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb.>> The predicted
interface TM-score (ipTM) was extracted from the post-run output files and plotted via Matplotlib. 3D images
shaded with pLDDT scores were extracted from the ColabFold interface.® An ipTM score above 0.7 indicates
effective binding from previous studies.®'
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RFDiffusion Generation

In parallel to the PepPrCLIP approach, RFDiffusion was employed to design peptide binders for both cases.
For the given test set, RFDiffusion was tasked with generating one peptide binder per target protein, matching
the length specified by the ground truth binders. The predicted structures were then converted into sequences
using ProteinMPNN. For the selected critical proteins, RFDiffusion and ProteinMPNN generated candidate
binders of equivalent length to test set peptides for a given target. RFDiffusion inference code on ColabFold
can be found here:
https://colab.research.google.com/github/sokrypton/ColabDesign/blob/v1.1.1/rf/examples/diffusion.ipynb

Generation of plasmids

All uAb plasmids were generated from the standard pcDNA3 vector, harboring a cytomegalovirus (CMV)
promoter and a C-terminal P2A-eGFP cassette. An Esp3l restriction site was introduced immediately upstream
of the CHIPATPR CDS and flexible GSGSG linker via the KLD Enzyme Mix (NEB) following PCR amplification
with mutagenic primers (Genewiz). For uAb assembly, oligos for candidate peptides were annealed and ligated
via T4 DNA Ligase into the Esp3l-digested uAb backbone. Assembled constructs were transformed into 50 uL
NEB Turbo Competent Escherichia coli cells, and plated onto LB agar supplemented with the appropriate
antibiotic for subsequent sequence verification of colonies and plasmid purification (Genewiz). The SS18-SSX1
fusion gene fused directly upstream and in frame with the mCherry fluorescent protein and separated by a
flexible glycine-serine linker (pLV-Puro-EF1a-SS18-SSX1-3XGGGGS-mCherry) was constructed using
Vectorbuilder. In addition, 10 top-scoring peptides predicted to bind to the SS18-SSX1 protein using the
PepPrCLIP were cloned in frame with the CHIPATPR in an altered pcDNA3.1 expression vector that
co-expresses IRES-TagBFP.

UltralD inhibition assay

HEK293T cells were seeded in 24-well plates (3x10*well) with coverslips at the bottom and transfected at
~50% confluency. 0.25 pg UltralD-IP plasmids were transfected into cells with Polyethylenimine Max (PEI Max,
Polysciences 24765) in Opti-MEM (Gibco 11058021). At 3 days post transfection, the cells were treated with 50
MM biotin (Sigma-Aldrich B4501) in Dulbecco's phosphate-buffered saline (PBS, ThermoFisher 14190144) for
30 min. Prior to immunocytochemistry, the cells were first fixed with fixation buffer (4% (v/v) paraformaldehyde
(PFA, Sigma-Aldrich 158127), 4% (w/v) sucrose in 1x PBS) at 4°C for 10 min. Then the cells were gently
shaken in 1x PBS twice at RT for 5 min, and then permeabilized with 0.25% (v/v) Triton X-100 (Sigma-Aldrich
T9284) in 1x PBS at room temperature (RT) for 7 min. For immunocytochemistry, the cells were gently shaken
in blocking buffer (5% (v/v) normal goat serum (Jackson ImmunoResearch), 0.2% (v/v) Triton X-100 in 1x PBS)
at RT for 1 h, followed by overnight incubation in the blocking buffer with primary antibodies at 4°C. On the
following day, the cells were gently shaken in washing buffer (0.1% (v/v) Triton X-100 in 1x PBS) thrice at RT
for 5 min, and in the blocking buffer with secondary antibodies at RT for 1 h, and in the washing buffer thrice at
RT for 5 min. The coverslips were transferred onto glass slides with FluroSave Reagent (Millipore). Fluorescent
images were captured using an upright microscope (Zeiss Axio Imager 2) with a 20x objective lens. Image
analysis was performed with ImagedJ. Antibodies used and the corresponding dilutions are as follows:
rat-anti-HA (1:500, Millipore 11867423001), goat-anti-rat 488 (1:500, Invitrogen A11006), and streptavidin 568
conjugate (1:500, Invitrogen S11226).

TOPFlash assay

DLD1 cells per well were seeded on a white-bottom 96-well plate (1x10%*well; ThermoFisher 136101) 24 h
before transfection. On the day of transfection, each well was transfected with Lipofectamine 3000
(ThermoFisher L3000001) and 100 ng of plasmid DNA in a ratio of TOPFlash (Addgene 12456)/FOPFlash
(Addgene 12457): Renilla (Addgene, #87121): uAbs = 1:0.1:3. After 48 h of incubation, cells were lysed and the
firefly and Renilla luminescence signals were measured sequentially by the dual-luciferase reporter kit
(Promega E1910). Plates were read on a microplate reader (Tecan). The luciferase activities were measured
and normalized against the control Renilla activities.


https://colab.research.google.com/github/sokrypton/ColabDesign/blob/v1.1.1/rf/examples/diffusion.ipynb
https://doi.org/10.1101/2023.06.26.546591
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.26.546591; this version posted July 22, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Flow cytometry analysis

25,000 HEK293T fibroblasts per well were seeded in a 48 well plate and cultured in DMEM supplemented with
10% FBS, 2 mM L-glutamine as well as 50 u/ml penicillin/streptomycin and incubated in 5% CO, at 37°C. After
24 h, cells were co-transfected with 0.2 mg of the SS18-SSX1-mCherry plasmid and 0.2 mg of each uAb
encoding construct plasmid DNA in ftriplicates using Lipofectamine 2000 (ThermoFisher 11668019) as per
manufacturer’s directions. Media was changed 24 h post-transfection and cells were analyzed on day 3 for
presence of mCherry in the BFP+ gate via a flow cytometer (LSR Fortessa, BD Biosciences). The gating
strategy is described in Supplementary Figure 3.

Cell fractionation and immunoblotting

Detection of B-catenin in DLD1 cells was performed as follows. Harvested cells treated with uAbs or empty
control plasmid were detached via 0.05% (w/v) trypsin-EDTA and washed twice with ice-cold 1x PBS. The
cytosolic fractions were isolated from lysates using a Subcellular Protein Fractionation Kit (ThermoFisher,
78840) per the manufacturer’s instructions. Specifically, ice-cold cytosolic extraction buffer was added to the
cell pellet, the mixture was placed at 4 °C for 10 min with gentle shaking followed by centrifugation at 500 x g
for 10 min at 4 °C. The supernatant was collected immediately to a pre-chilled PCR tube and placed on ice
followed by immunoblotting or stored at —20 °C for future use. Protein concentration was quantified using the
Pierce BCA Protein Assay Kit (ThermoFisher 23225). An equivalent amount of total protein was loaded into
4-20% Mini-PROTEAN Protein Gels (BioRad 4561094) and separated by electrophoresis. Immunoblotting was
performed according to standard protocols. Briefly, proteins were transferred to poly(vinylidene fluoride)
(PVDF) membranes (Millipore IPVH00010), blocked with 5% (w/v) nonfat dry milk (Carnation) in 1x
tris-buffered saline (TBS) with 0.05% (v/v) Tween 20 (TBST) at room temperature for 1 hour, washed three
times with TBST for 5min, and probed with rabbit anti-B-catenin antibody (Cell Signaling 8480S; diluted
1:1,000) or rabbit anti-GAPDH (Abcam ab8245; diluted 1:5,000). The blots were washed again three times with
TBST for 5min each and then probed with a secondary antibody, donkey anti-rabbit-horseradish peroxidase
(HRP) (Abcam 7083; diluted 1:2,500), for 1 h at room temperature. Blots were detected by chemiluminescence
using a ChemiDoc MP imager (Bio-Rad). Densitometry analysis of protein bands in immunoblots was
performed using ImageJ. Intensity data for the uAb bands was normalized to band intensity for empty plasmid
control. For the SYT-SSX1 experiments, HS-SYIl synovial sarcoma cells were plated in a 6-well plate
(250,000/well). The SS_PpC_4 uAb construct was transfected with Lipofectamine 3000 as per manufacturer's
directions. On day 3 post transfection, cells were washed with 1x PBS twice and lysed with ice-cold RIPA Lysis
and Extraction Buffer (Thermo Scientific 89900) along with protease inhibitor cocktail (Thermo Scientific, Halt
Protease Inhibitor Cocktail (100X) 78429). Whole cell protein was quantitated using Pierce BCA Protein Assay
Kit (Thermo 23225). Protein lysates were subjected to gel electrophoresis using pre-cast Bolt 4-12% Bis-Tris
Plus Gels (Invitrogen NW04127BOX) followed by nitrocellulose membrane transfer. Membranes were probed
using anti-Rabbit SS18-SSX1 antibody (Cell Signaling 72364, diluted 1:1000) followed by incubation with
anti-rabbit secondary conjugated with horseradish peroxidase. Protein bands were detected with the Super
Signal Femto reagent (Thermo Scientific, 34095) with an anti-B-actin antibody (Cell Signaling 3700, diluted
1:1000) serving as loading control. Unprocessed, uncropped blots are shown in Supplementary Figure 4.

Protein expression and purification

All purified uAb constructs were obtained from cultures of E. coli BL21(DE3) cells carrying pET28a-based
plasmids. Cells were grown in Luria-Bertani (LB) medium until optical density at 600 nm reached 0.3-0.5, after
which 0.1 mM isopropyl B-D-1-thiogalactopyranoside (IPTG) was added to induce protein expression. The
culture was further incubated in the shaker at 16 °C for 48 h. Cells were harvested by centrifugation at 8000
rem for 30 min at 4 °C and lysed using an EmulsiFlex-C5 high-pressure homogenizer (Avestin). Lysates were
centrifuged at 15,000 rpm for 25 min at 4 °C to separate the soluble and insoluble fractions. Clarified lysates
containing 6xHis-tagged proteins were subjected to gravity-flow nickel-affinity purification using HisPur Ni-NTA
resin (ThermoFisher 88223) following the manufacturer’s protocols. The final purity of all proteins was
confirmed by Coomassie-blue staining of SDS-PAGE gels.

ELISA
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The enzyme-linked immunosorbent assay (ELISA) was conducted as follows: 96-well plates (Corning, 9018)
were coated with 2 yg/mL of B-catenin (Biomatik RPU40704) diluted in 1x PBS (pH 7.4) at a volume of 50 pL
per well at 4 °C overnight. Next, the plates were washed with 1x PBST (PBS, 0.1% (v/v) Tween 20) three times
and then blocked with 200 yL of blocking buffer (3% bovine serum albumin (BSA) in 1xTBST) per well
overnight at 4 °C. Purified uAb constructs were biotinylated using EZ-Link Biotin (ThermoFisher 21335)
following the manufacturer’s protocol. The biotinylated uAb constructs were then serially diluted in 1x PBS and
added to the ELISA plates for 1 h at room temperature with gentle shaking. The plates were then washed three
times with 1x PBST and incubated for 1h at room temperature with HRP-conjugated streptavidin
(ThermoFisher, Cat # N100; diluted 1:20,000), with shaking at 450 rpm. Following an additional three washes
with 1x PBST, 100 uL of 3,3’-5,5-tetramethylbenzidine substrate (1-Step Ultra TMB-ELISA; ThermoFisher,
34029) was added to each well, and the plates were incubated at room temperature in darkness. The reaction
was quenched by adding 100 yL of 2M H,S04, and absorbance was quantified at a wavelength of 450 nm
utilizing a FilterMax F5 microplate spectrophotometer (Agilent).

Biolayer interferometry analysis

The dissociation constant (Kp) for the purified uAbs to B-catenin was measured by biolayer interferometry (BLI)
assays using an Octet RH16 instrument (Sartorius) at 30°C. Kinetic analysis was performed using streptavidin
(SA) biosensor tips (Sartorius 18-5020) as follows: (1) sensor check: 30 s immersion in Octet buffer (1x PBS
containing 0.2 um filtered 0.1% BSA and 0.05% (v/v) Tween 20); (2) loading: 60 s immersion in Octet buffer
supplemented with 1 pug/ml biotinylated-uAbs; (3) baseline: 60 s immersion in Octet buffer; (4) association: 300
s immersion in solution with B-catenin at concentration: 1480 nM, 740 nM, 370 nM, 185 nM, 92.5 nM, and 46.3
nM; (5) dissociation: 300 s immersion in Octet buffer. The kinetic data was analyzed using Octet Analysis
Studio software v12.2.2.26 (Sartorius).

Statistical analysis and reproducibility

All data were reported as average values with error bars representing standard deviation (SD). For individual
samples performed in independent biological triplicates (n=3) or above, statistical significance was determined
by unpaired ftest (*p < 0.05, **p < 0.01; ***p < 0.001; ****p < 0.0001). All graphs were generated using Prism 9
for MacOS version 9.2.0. No data were excluded from the analyses. The experiments were not randomized.
The investigators were not blinded to allocation during experiments and outcome assessment.
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Figure 1. PepPrCLIP model training and evaluation. (A) Gaussian distributions centered around the ESM-2
embeddings of naturally-occurring peptides are sampled and then decoded back to amino acid sequences. A
trained CLIP module, jointly encoding cognate peptide-protein embeddings, screens thousands of these
peptides for specific binding activity to the target. (B) Evaluation metrics for final CLIP module. Binary accuracy
is the accuracy of the model in predicting the correct binding pairs when given 2 protein-peptide pairs. Top-1
accuracy is the likelihood that for a given protein, the model has chosen the correct binding peptide, and Top
10% accuracy is the likelihood that this peptide is in the top 10% of peptides when ranked for CLIP score to
this protein. Metric values are presented for the “strict” held-out test set described in the Results and Methods
sections. (C) Known peptide-target sequence pairs, from the PDB-validated dataset, were scored via the
trained CLIP module. Mismatched pairs, each containing a peptide and a non-matching protein, both from the
validation dataset, were also scored via the CLIP module. +1 indicates a definitive binding pair while -1
indicates that the peptide and target sequences do not bind (see Methods). Scores are represented as a
histogram. The mean (u) and variance (o?) are provided for each distribution.
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A

Figure 2. PepPrCLIP generation and in silico benchmarking. (A) Analysis of Hamming distance of
generated peptides to source peptides vs. variance scaling factor (k) of embedding perturbation. We computed
the mean Hamming distance between generated peptides and their source peptides as we varied the value of
k. We did this for an ensemble of 100 source 18-mer peptides, creating 500 generated peptides for each. The
plot of Hamming distance as we varied k is depicted in Figure 2A. We observed that at k = 5, we see
mutations on the order of 1 amino acid, and mean Hamming distance increases until k = 22, at which point
almost the entire sequence is mutated. Thus, we chose that k would range between 5 and 22, sampling the full
range of sequence transformations. (B) In silico hit-rate assessment of PepPrCLIP vs. RFDiffusion. Utilizing
AlphaFold-Multimer, ipTM scores were computed for both the generated and test peptides in conjunction with
the target protein sequence. The entries are organized in accordance with the ipTM scores attributed to the
test set peptides. The hit-rate is characterized by the generated peptides exhibiting ipTM scores = those of the
ground truth test peptides. (C) Post co-folding with input structured target, comparison of ipTM scores of
PepPrCLIP-generated peptides to RFDiffusion-generated peptides. All ipTM scores, targets, and peptide
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Figure 3. Characterization of PepPrCLIP/RFDiffusion-generated peptides for UltralD inhibition. (A)
AlphaFold2-predicted structure of UltralD. The magenta region refers to hotspot amino acids 35-51 and the
yellow region refers to hotspot amino acids 102-124. (B) Schematic of IP-induced inhibition of UltralD catalytic
activity. Briefly, each of the PepPrCLIP/RFDiffusion-generated peptides was fused to the C-terminus of UltralD
via flexible linkers and the HA epitope in a pCAG vector. The resulting plasmids were separately_transfected
into HEK293T cells. At 48 hours post-transfection, the cells were treated with 50 uM biotin for 30 mins before
fixation and immunostaining. The control plasmid is the vector expressing UltralD but not any IP. (C) Initial
screening and quantification of UltralD inhibition efficiency of PepPrCLIP (blue) and RFDiffusion
(orange)-generated IPs. The inhibition efficiency was evaluated by the ratio between biotinylation level
(streptavidin fluorescence level) and transfection efficiency (HA fluorescence level), which was further
normalized to the control samples. Each plasmid was transfected into two wells of HEK293T cells in 24-well
plates, and two fluorescence images were captured for each well. Statistical significance was determined by an
unpaired two-tailed Student’s t test. Calculated p values are represented as follows: *, p <0.05; **, p <0.01; ***,
p<0.001; ****, p<0.0001; ns, not significant. (D) Quantification of UltralD inhibition efficiency of 7 top
candidate IPs in the independent biological replicates (n = 3). The experiment and statistical analysis were
performed similarly as described in 3B.
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Figure 4. Characterization of PepPrCLIP-generated peptide-guided uAbs for f-catenin. (A)
AlphaFold2-predicted structure of B-catenin. (B) TOPFlash luciferase reporter assay of Wnt/B-catenin
transcriptional activity. FOPFlash reporter served as a negative control. (C) Left: Degradation of endogenous
B-catenin in cytosolic fractions of DLD1 cells analyzed via immunoblotting with anti-B-catenin and anti-GAPDH
antibodies. Right: Densitometry analysis of immunoblots (n = 3) using ImageJ software was performed to
quantify B-catenin levels. Statistical significance was determined by an unpaired two-tailed Student’s ¢ test.
Calculated p values are represented as follows: **, p<0.01; ***, p<0.001; ns, not significant. Raw, uncropped
blots are shown in Supplementary Figure 4. (D) B-catenin binding activity determined by ELISA with
immobilized B-catenin. Binding to bovine serum albumin (BSA) served as a negative control. (E) Biolayer
interferometry (BLI) analysis of p-cat-PpC3-CHIPATPR and B-cat-PpC4-CHIPATPR. Details on methodologies
can be found in the Methods section.
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Figure 5. Characterization of PepPrCLIP-generated peptide-guided uAbs for $SS18-SSX1 fusion. (A)
AlphaFold2-predicted structure of SS18-SSX1. (B) Left: Schematic representation of the STY-SSX1 fusion
protein fused to mCherry is shown. Middle: Fluorescence scale values of mCherry for SS18-SSX1
mCherry-fusion expressing cells within the peptide-expressing BFP positive fraction are plotted as a violin plot.
The polyalanine (PolyA) control (gray) or each of the 10 SYT-SSX1 peptides (red) are shown (middle graph).
Statistical significance was determined by an unpaired two-tailed Student’s t test. Calculated p values are
represented as follows: **, p<0.01; ***, p<0.001; ***, p<0.0001; ns, not significant. Right: Bar graph of
median fluorescence intensity (MFI) for the PolyA control (gray) or the 10 peptides are shown. Samples were
treated in independent biological replicates (n = 2). Gating strategy is described in Supplementary Figure 3. (C)
Immunoblot to probe endogenous SS18-SSX1 fusion in HS-SYII synovial sarcoma cells treated with
SS-PpC_4 3 days post transient transfection. ($-actin was used as loading control. Experiments represent
independent biological replicates (n = 2). Raw, uncropped blots are shown in Supplementary Figure 4.
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