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Abstract

Intratumoral cellular heterogeneity necessitates multi-targeting therapies for improved
clinical benefits in patients with advanced malignancies. However, systematic identification
of patient-specific treatments that selectively co-inhibit cancerous cell populations poses a
combinatorial challenge, since the number of possible drug-dose combinations vastly
exceeds what could be tested in scarce patient cells. Here, we developed scTherapy, a
machine learning model that leverages single-cell transcriptomic profiles to prioritize multi-
targeting treatment options for individual patients with hematological cancers or solid tumors.

Introduction

High intratumoral heterogeneity and evolution of cancer cell populations are major drivers of
therapy resistance both in hematological malignancies and solid tumors™®. In acute myeloid
leukemia (AML), a number of single-cell genomic analyses have mapped the clonal
evolutionary processes of disease progression and therapy resistance at cell subpopulation
level, as well as deciphered cellular hierarchy and reprogramming among leukemic cell
subpopulations involved in the chemoresistance, relapse and clinical outcomes®°. Similarly
in solid tumors, clonal analysis and longitudinal sampling of patients with high-grade serous
ovarian carcinoma (HGSC) have revealed evolutionary trajectories, with distinct genomic
and morphological features that associate with treatment responses’®. Despite this wealth of
information, we lack approaches to target chemoresistant subpopulations to enhance
second-line treatment efficacy in relapsed patients, or to avoid resistance to first-line
therapies by co-inhibiting multiple leukemic cell subpopulations with sufficiently high potency
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and precision. There is a medical need for systematic approaches to identify more effective
combinatorial therapies, using either multi-targeting inhibitors or their combinations, which
selectively co-inhibit multiple signaling pathways that drive the disease- or resistance in
heterogeneous patient and cell populations. Several computational approaches for in silico
prediction of drug combination effects have been developed, yet we lack approaches that
consider both the patient and disease heterogeneity when predicting drug sensitivity
differences among cell populations, toward designing cancer-selective and patient-specific
therapeutic options using feasible measurements in scarce patient cells.

To address these limitations, we implemented a machine learning model, scTherapy, which
identifies cancer-selective and low-toxic multi-targeting options for each individual cancer
patient based on scRNA-seq data alone. The selective predictions come from transcriptomic
differences between genetically distinct cancer cell populations (or clones) in individual
patient samples, when compared to non-cancerous cells from the same patient sample (Fig.
1, Online Methods). To enable fast translational applications, we pre-trained a gradient
boosting model (LightGBM) that predicts drug response differences across cell populations
by leveraging a massive reference database of large-scale phenotypic profiles (both
transcriptomics and viability readouts) measured in cancer cell lines in response to single-
drug perturbations. When applied to patient samples, the model generates a ranked list of
most effective multi-targeting options (either targeted-agents, chemotherapies, or their
combinations) that selectively co-inhibit key cancer clones in a given patient sample. To
guide translational applications, we further remove low-confidence predictions and likely
non-tolerated doses among the dose-specific drug response predictions, hence ensuring
that only the most relevant predictions will be suggested for treatment optimization. The
ScTherapy predictions makes functional ex vivo drug testing in patient-derived cells more
feasible in a translational setting by prioritizing most potent multi-targeting options for further
experimental validation in scarce patient cells. In doing so, we also extend the combinatorial
space of single-cell drug response assays, which is currently constrained both by the patient
cell availability and excessive time and cost of the assays for translational use.

Results

We developed the scTherapy model and tested its translational potential first by analyzing
single-cell transcriptomic profiles of 12 bone marrow samples from diagnostic and refractory
or relapsed AML patients (Suppl. Table 1), followed by careful experimental validation of the
model predictions in the primary cells of the same patient samples.

To design multi-clone targeting and cancer-selective therapeutic options for each patient, we
leveraged 394,303 genome-wide transcriptomic profiles post-treatment with 19,646 single-
agent responses, measured in multiple doses in 167 cell lines, available from the LINCS
2020 project!’. We next matched these transcriptomic response profiles with drug-induced
cell viability responses available from PharmacoDB'2, measured in multiple doses in the
same 167 cell lines to pre-train a LightGBM that predicts drug response differences across
cell populations (Fig. 1). The model predicts drug response using fold changes of
differentially expressed genes (DEGs) after drug treatment at a particular dose, hence
leading to concentration-specific cell inhibition predictions. In the patient applications, we
used the pre-trained model to predict multi-targeting options that can selectively co-inhibit
multiple cancer subclones, identified from patient-specific scRNA data, and using fold
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changes of DEGs between normal cells and cancer cell populations as input. In the final
step, we combined the top-predicted effective and selective drugs for each clone as a
targeted combinatorial therapy for the patient sample. This is the first translational approach
for systematic tailoring of personalized multi-targeting options that takes into account both
the intratumoral cellular heterogeneity and dose-specific therapeutic and toxic effects of
anticancer compounds.
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Fig. 1 | Schematic illustration of the experimental-computational prediction approach.
Identification of clone-specific and cancer-selective compounds is performed in two steps: (a) Raw
sequencing data from selected tissue are processed and aligned to generate a scRNA-seq
expression count matrix. Unsupervised clustering separates malignant and normal cell clusters using
an ensemble prediction approach with three analytical tools: ScType, CopyKAT and SCEVAN (Suppl.
Fig. 1). InferCNV infers large-scale copy number variations and identifies genetically distinct
subclones among the malignant cells. (b) Subsequently, subclone-specific differentially-expressed
genes are identified through differential expression analysis. The identified genes, along with drug
information such as molecular fingerprints and drug doses, serve as inputs for the pre-trained
LightGBM model. Based on the patient-specific inputs, the pre-trained model predicts the most potent
compounds and their effective doses for each subclone. (¢) To train the LightGBM model, a
comprehensive dataset was compiled that integrates transcriptional changes from small-molecule
perturbation experiments (LINCS 2020 dataset), with chemical structures represented as ECFP
fingerprints and drug-dose response data collected from various studies (PharmacoDB resource).
Concentrations of the LINCS 2020 dataset were matched with dose-response curves from the
PharmacoDB, and interpolated cell viability was used as the outcome variable for LightGBM model.
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Experimental validation of the model predictions in AML patient samples ex vivo

We carried out patient-specific treatment predictions using scRNA-seq profiles from bone
marrow aspirates of 12 AML patients (Suppl. Table 1). The single-cell transcriptomes
revealed highly heterogeneous cell type compositions across the patients, both for leukemic
and normal cell types (Fig. 2a), necessitating personalized treatment predictions. Through
processing the scRNA-seq data from each patient separately, and then feeding it into the
ScTherapy model, we generated personalized predictions of drug treatments that are likely
to be the most or least effective for each patient case (see Online Methods for more
details).

To validate the model predictions, we first used data from single-agent cell viability assays,
which confirmed that the model-predicted effective treatments led to significantly better cell
inhibition efficacy ex vivo, when compared with the predicted ineffective treatments
(P<0.0001, Wilcoxon test; Fig. 2b). Importantly, this improvement was not due to the model
selecting higher drug concentrations for the effective-predicted treatments (Suppl. Fig. 2a).
Most of the treatment predictions were uniquely identified for a single patient (Suppl. File 1),
and the few shared treatments between patients, such as navitoclax and AT-7519, showed
highly variable responses across the patient samples (Fig. 2b, the colored points).

Next, we predicted the most promising two-drug combinations for four AML patient samples
with enough cells for further experimental testing. The patient-specific combinations were
designed so that they would maximally co-inhibit two major leukemic subclones in each
patient sample, while minimally co-inhibiting the patient-specific normal cells (Fig. 2¢). Using
a bulk combinatorial cell viability assay, we tested the predicted combinations in 4x4 dose-
response matrices (https://ianevskialeksandr.github.io/scTherapyCombinations.html). Based
on the zero interaction potency (ZIP) score, we confirmed that all the predicted combinations
act either synergistically (ZIP>10), i.e., they jointly inhibit patient cells more than expected
based on their individual effects (p<0.001, Wilcoxon test), or showed at least additive
combination effects (ZIP>0; Fig. 2d). It has been argued that a combination efficacy is more
important for clinically-effective combinations, while pharmacological synergy is not
necessary for achieving improved clinical responses’.
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Fig. 2 | Experimental validation using bulk and cell population drug assays. (a) Identification of
cell types using scRNA-seq profiles of complex bone marrow samples from 12 AML patients. (b) Ex
vivo drug sensitivity differences between single-agent treatments predicted by ScTherapy to be either
effective or ineffective in whole-well cell viability assays (p<0.001, Wilcoxon test). The colored points
show two example drugs with highly variable responses across the patients. (c¢) Identification of
genetically-distinct subclones from the 4 AML patient samples with enough cells for further
experimental testing (Suppl. Fig. 3 shows a detailed overview of genomic variation in these 4
samples). (d) All the model-predicted drug combinations exhibited either synergistic (ZIP>10) or
additive effects (0<ZIP<10) in the whole-well combinatorial viability assay (p<0.001, Wilcoxon test;
upper panel). Two examples of combinations with ZIP=13.6 and ZIP=13.5 as tested in multi-dose
drug combination assays (lower panel). Interactive plots of the dose-response matrices for all the
predicted combinations are provided at https://ianevskialeksandr.qgithub.io/waterfall plot.html. (e)
Further validation of the top-combinations for the 4 patient samples using population-level flow
cytometry assays in the same patient-derived cells. Toxic effects (left-hand bars) scored based on co-
inhibition of normal cell populations, and therapeutic effects (right-hand bars) based on co-inhibition of
malignant cells. The predicted effective doses are indicated in parentheses (M), and the dotted
vertical lines indicate 50% inhibition level. n, the number of replicate screens. Patient 12 has only two
replicates due to limited cell availability and poor cell viability (35% live cells in DMSO wells after 72h).

After confirming the higher than expected combination effects in the bulk viability assays, we
further tested a subset of top-6 patient-specific combinations for the four patient cases using
high-throughput flow cytometry assays to quantify the differential inhibition between leukemic
and normal cells in each patient sample ex vivo. Out of the 24 predicted drug combinations,
21 (88%) led to increased co-inhibition of the leukemic cells (Fig. 2e), when compared with
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the single-agent responses. For each patient case, we identified multiple combinations that
led to higher than 50% co-inhibition of the blasts and other leukemic cells, suggested as
potential treatment options. Importantly, only 3 of the 24 combinations (13%) showed >50%
inhibition of T cells and other non-cancerous lymphoid cells, which should be discarded as
potentially toxic combinations (i.e., trametinib-dinaciclib combination in Patient 11, and two
carfilzomib combinations in Patient 12). Not only the effective treatments, but also the
predicted doses of drugs in the combinations varied across the patients, indicating that an
optimal balance between treatment efficacy and toxicity can be tailored for each patient.

Application to ovarian cancer and validation in patient-derived tumor organoids

To investigate whether the prediction approach is applicable also to solid tumors, where
large-scale ex vivo drug testing in primary patient cells is more challenging, we employed
published scRNA-seq data''® from a cohort of HGSC patients (Suppl. Table 2)'°. This
patient cohort of metastatic tumors with poor responsiveness to standard chemotherapy
represents a highly challenging case for personalized treatment identification. To distinguish
cancer cells from non-cancerous cells, we used established tumor marker genes, including
PAX8, MUC16 (encoding CA-125) and EPCAM, collectively referred to as PAX8+ cells
(Online Methods). To secure enough fibroblasts and other genetically normal cells for the
treatment-selectivity assays, we integrated scRNA-seq data from three HGSC patients (Fig.
3a), based on the availability of cells from each patient for further experimental validation:
PAX8+ tumor cells were available from Patient 1, whereas PAX8- normal cells were
available from Patients 2 and 3. The expression of PAX8 tumor marker showed a clear
separation between tumor cells and other cell populations in this “integrated patient” case
(Fig. 3b).

Due to a small proportion of patient-derived cancer cells, we predicted only multi-targeting
monotherapies for this patient case, since combination treatments would require more cells
for the organoid cultures. We tested the efficacy and selectivity of the predicted treatments
on HGSC patient-derived tumor organoids'®. The treatment-naive tumor organoids were
developed exclusively from the cancer cells of a treatment-naive Patient 1 with omental
metastasis (Online Methods), which displayed an elevated expression of PAX8 (Fig. 3c).
Comparison of the treatment-induced viability changes in the organoid cells and fibroblasts
showed that 8 of the 18 predicted treatments (44%) led to >50% inhibition of the PAX8+
tumor cells, and only 2 of the treatments (11%) showed >50% inhibition of the PAX8- cells
(Fig. 3d; proteasome inhibitors bortezomib and ixazomib). In general, the predicted multi-
targeting treatments led to significantly higher inhibition of the tumor cells than normal cells
(p=0.01, Wilcoxon test; Fig. 3e). Interestingly, there was no correlation between the
predicted treatment doses and PAX8+ or PAX8- cell inhibition effects (Suppl. Fig. 2b).
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Fig. 3 | Experimental validation in ovarian cancer patient-derived tumor organoids. (a) UMAP
projection of the combined scRNA-seq transcriptomic profiles from three HGSC patient samples,
using standard Seurat integration workflow, where cell types were identified with ScType. UMAP plots
for the individual patient samples are provided online https://ianevskialeksandr.github.io/figovfig.png.
(b) Expression of the PAX8 marker, effectively separating tumor cells from the other cell populations.
The expression of other PAX8+ markers is shown in Suppl. Fig. 4. (¢) Representative
immunofluorescent image of treatment-naive tumor organoids from Patient 1. (d) Cell inhibition
differences between the patient-derived organoid cells and non-cancerous normal cells for the 18
predicted multi-targeting drugs. The predicted effective doses are indicated in parentheses (uM), and
the dotted vertical lines indicate 50% inhibition level. The error bars represent SEM, based on three
replicates of organoid treatments and curve-fitting approximation in PAX8- cells, respectively. (e)
Statistical comparison of the treatment responses between PAX8+ and PAX8- cells (Wilcoxon test).

Discussion

Advanced cancers are heterogeneous diseases, typically comprising at diagnosis more than
10" cells, which very likely harbor therapy-resistant subpopulations’®'. This translates into
a need for multi-targeting therapies for effective cancer cures that selectively co-inhibit the
disease-driving cell populations. Our experimental-computational approach for personalized
identification of multi-targeting treatments makes use of two recent advances: (i) the
feasibility of scRNA-seq profiling in patient samples that does not only allow for the
identification of malignant and non-cancerous cell populations, but can also elucidate the
transcriptomic differences and hierarchies between these subpopulations; and (ii) the
availability of large-scale transcriptomic and viability response profiles of cancer cell lines
treated with thousands of single-agent perturbations. Taken together, this approach provides
a clinically actionable and relatively fast means for predicting drug-dose combinations for
individual patients, and compared to our earlier work'’, it can be applied also for patients
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whose tumors are not easily amenable to drug testing (e.g. HGSC). The only input for the
model is a count scRNA-seq data matrix of a given patient sample; the rest of the
computational steps are either fully-automated or semi-automated (e.g., selection of the
broad-level subclones based on visual analysis of the clonal evolutionary tree; see Step 4 in
Suppl. Fig. 1). Nearly all of the predicted combinations exhibited positive synergy scores
(96.3%), highlighting their potential for improved therapeutic efficacy and reduced toxicity by
lowering the doses of single agents. Importantly, 85.7% of the predictions demonstrated low-
toxicity to normal cells (<50% inhibition of non-cancerous cells); however, the flow cytometry
and organoid drug response assays indicated that certain multi-target therapies (14.3%)
excessively inhibited non-cancerous cells (e.g. proteasome and topoisomerase inhibitors),
emphasizing the importance of experimental validation prior to clinical translation.

ScTherapy identifies individual drugs or their combinations that (i) induce normalizing
transcriptomic changes in cell type-specific gene signatures of patient-specific DEGs (i.e.,
reverse clone-specific transcriptomic responses closer to the normal expression state), and
(if) exhibit selective cancer cell inhibition at the predicted effective dose (i.e., ensure
differential inhibition between malignant and normal cells). The model outcome is a list of
suggested treatments and concentrations for each patient sample, complemented with a
confidence score that indicates the confidence of the LightGBM about the accuracy and
reliability of each specific prediction. The quantitative performance evaluation (repeated
cross-validation and experimental validations), together with the confidence scoring
(conformal prediction), enables medical professionals to decide when and how to use the
model to guide clinical decision making. By mapping the gene signatures to drug-target
interactions networks, one can also explore potential biomarkers (e.g. patient-specific DEGs)
that drive the selection of the best treatment regimens for individual patients (Suppl. Fig. 5).
This provides additional insights into the rationale of the treatment recommendations for a
given patient. ScTherapy model can also predict responses to custom compounds, hence
facilitating the assessment of novel or less-studied compounds for their patient-specific
efficacy. Furthermore, the model incorporates a user-defined drug-dose information,
especially useful in cases where certain drugs or doses are clinically more relevant for a
given cancer type. By dose restriction, one can further reduce the risk of toxic effects that
often occur at higher doses, hence making the predictions clinically more relevant. Overall,
our approach offers a systematic and flexible framework for predicting personalized drug-
dose combinations that can be tailored to individual patient and tumor characteristics.

Traditionally, effective drug combinations have been identified either by empirical clinical
testing'®, or using high-throughput screening (HTS) in cell line panels in vitro, followed by
target deconvolution and in vivo validation of the most relevant combinations and target
mechanisms in animal models'-?'. However, drug combination synergy is a rare and highly
context-dependent event, affected by the inherent genetic and molecular variability between
patients and within tumors, hence requiring combinations to be tested in large-scale screens
and in various cellular contexts and genomic backgrounds??. This is beyond the scalability of
in vivo models, and in vitro screening alone cannot identify combinations targeting specific
cancer subclones, even if large enough cell line panels can to certain extent model the
cellular heterogeneity and drug responses variability of tumors. This is important since a
multi-targeting therapy that effectively inhibits cancer cells may also co-inhibit normal cells,
rendering the treatment non-selective against malignant cells. In patient applications, it is
therefore critical to identify cancer-selective combinations, rather than broadly active
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therapies that may lead to severe toxic effects. Ex vivo drug testing in primary patient cells,
using either patient-derived 2D cell cultures or 3D organoids, strikes a balance between the
in vitro and in vivo approaches®*?*. However, even though flow cytometry and imaging-
based ex vivo assays offer possibilities for drug response testing at a single-cell resolution,
HTS of a larger number of drug combinations in multiple doses remains infeasible in scarce
patient cells using these advanced assays?*~?’. Therefore, systematic methods to prioritize
the most potential combinations to be tested in primary patient cells are needed.

Various machine learning (ML) methods have been developed to predict effective anticancer
drug combinations, using multi-omics training data from large-scale screens in cancer cell
lines and patient-derived samples. By surveying the existing ML methods?®, we identified
three critical areas of improvement for translational applications, where the aim is to prioritize
among the massive number of potential drug-dose combinations those that show maximal
therapeutic potential and minimal toxic effects for next phases of preclinical development.
First, none of the existing methods were designed to predict selective drug combinations that
target multiple cancer subclones in primary patient cells using merely single-cell
transcriptomic data as input. This is important since multi-omics profiling and ex vivo drug
testing in scarce primary patient cells is not yet practically feasible for many tumor types?*.
Second, most of the current methods either do not use any normal reference, and hence
lack preclinical toxicity predictions, or use molecular or functional profiles from healthy
individuals to de-prioritize toxic combinations, which may lead to non-selective combination
predictions, due to high inter-individual molecular and phenotypic heterogeneity. Third, drug
combination effects are not only patient-specific, but also highly dose-dependent, meaning
that the same combination may show both synergistic and antagonistic effects at different
dose windows?2. To guide the eventual translation of the combination predictions, where
lower dose combinations are often better tolerated by the patients, we argue that
computational prediction methods need to provide dose-specific prediction of the responses.
In this way, computational tools, such as ScTherapy, enable systematic in-silico screening of
combination effects for translational applications to prioritize most potent combinations for
further testing, among the massive number of potential drug-dose combinations?®.

We predicted a higher number of targeted signal transduction inhibitors for the AML patients,
compared to HGSC, which reflects underlying differences in the disease biology. AML cells
often carry oncogenic mutations in signaling proteins, making the cells addicted to MAPK
signaling®®, which explains why MEK inhibitor combinations were identified for many of the
AML patients. Similarly, PLK inhibition has been extensively studied in AML, and while PLK
inhibitor combinations have shown promise in clinical development, they are also associated
with complicated toxicities®'. Therefore, even though the ScTherapy model identifies novel
personalized multi-targeting treatments, the drug and target classes of the predicted
combinations are well-studied in AML and HGSC. The novel concept is that the predictions
are tailored to the molecular context of a given patient (or sample), which is expected to lead
to better efficacy-safety balance at the level of an individual patient, rather than identifying
broadly chemotoxic combinations that may lead to severe side effects in the non-matching
subset of patients. Our functional precision medicine approach provides a streamlined, yet
relatively precise approach to finding the right combinations of drugs and enhancing
therapeutic potential through using both molecular and functional information.
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Limitations and future aims

Compounds from different drug and target classes can elicit varied phenotypic responses in
the viability and transcriptional profiles. For instance, in contrast to other molecularly-
targeted compounds, HDAC inhibitors often induce significant changes in the expression of
multiple genes beyond their target proteins. Comparison of the expression and viability
changes between cancerous and non-cancerous cells is expected to normalize out a part of
such variability between drug classes. However, future studies are warranted to tailor input
data not only to be patient-specific, but also drug class-specific by considering differences in
binding affinities, phenotypic profiles and in treatment time points. Different disease models
may also have differing growth dynamics. For instance, as opposed to the most conventional
cell lines, organoid cells undergo less cell divisions during 7-day incubation. Therefore, some
of the discrepancies seen between the model predictions (made using in vitro cell line data)
and the experimental validations (made in ex vivo experiments) may stem from such
variations between the 2D and 3D disease models and time points. Future studies are
needed to identify the most predictive sources of in vitro and ex vivo data for patient-specific
predictions in various cancer types. Additionally, with the emerging availability of large-scale
morphological and proteomic response profiles in cancer cell lines and samples®-3°, the
ScTherapy approach could be extended to incorporate these and other phenotypic response
measurements in the future. The approach is applicable also to selective targeting of other
cell types or states, beyond the differential co-inhibition of cancer and non-cancerous cells.

Materials and Methods

Compiling a large-scale phenotypic response data for pre-training a LightGBM model

A comprehensive training dataset of large-scale phenotypic response profiles was created by merging
data from three databases: Connectivity Map LINCS 2020"!, PharmacoDB'2, and PubChem?3® (Suppl.
Fig. 1, bottom part). These continuously expanding, publicly available databases allowed us to
establish an extensive dataset that provides functional information on both viability and transcriptomic
responses to increasing numbers of compounds. Details on the dataset used in the present study are
outlined below. The Connectivity Map (CMap) LINCS 2020 is a reference database that houses gene
expression response profiles of 12,328 genes measured in 240 cell lines across multiple doses and
time points for 39,321 small-molecule compounds. Additionally, LINCS 2020 data includes paired
control states for each perturbagen-cell line combination, enabling a comparison of the transcriptional
changes before and after each treatment. To supplement our dataset, we leveraged information from
PharmacoDB, a database that contains dose-response viability data for 56,149 drugs across 1758
cancer cell lines at multiple doses. For further analysis, we employed 10,303 overlapping compound-
cell line pairs, which were common between 24 h transcriptional responses from CMap LINCS 2020
(passing quality control, i.e., qc_pass = 1) and PharmacoDB. For matching compounds between
PharmacoDB and CMap LINCS 2020, we used compound identifiers, and for the cell line matching,
we used cellosaurus IDs®. To extract structural information of the compounds, we used PubChem
and RDKit (rcdk v3.6 and rcdklibs v2.3) to generate molecular fingerprints (ECFP4) from the SMILES
representation of each common drug®.

The light gradient boosting machine (LightGBM) model was trained on a comprehensive dataset of
3,695 compounds tested at 1-35 doses in 167 cell lines. Drug-dose-cell line profiles (including
transcriptomic response profiles, ECFP4 molecular fingerprints, and drug doses) were used as the
model predictors, while the outcome variable is the inhibition percentage, derived from PharmacoDB
dose-response viability data (Suppl. Fig. 1). The LightGBM model was trained using Bayesian
Optimization, with a repeated cross-validation (three repetitions), and ten-fold inner cross-validation
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(CV). This ensures a robust and generalizable model for the patient applications. More specifically,
the LightGBM model matches gene expression signatures (differentially expressed genes between
the cancer and non-cancer cells) to the transcriptional responses to small molecules tested at
different doses from LINCS 2020 to find the compounds that induce opposite transcriptomic changes.
In the next step, the model identifies which compounds and doses most effectively inhibit cell growth,
by extracting %inhibition responses for corresponding cell line-drug-dose triads from PharmacoDB.
After examining tens of thousands of possible matches, the model provides a prediction of the most
promising compounds and the effective dose. We also recommend including at least one dose-fold
above and below the predicted dose in the experimental evaluation to delineate the most effective and
least toxic drug dosage.

Prediction of multi-targeting therapies using scRNA-seq data in AML patient samples

The experimental-computational prediction approach consists of the following five subsequent steps
(Suppl. Fig. 1). These steps are described here for the AML case, and modifications to this pipeline in
the HGSC case are described under section Tailoring the experimental-computational approach
to ovarian tumor patient samples.

Step 1: Longitudinal sampling

After obtaining informed consent, bone marrow aspirates were collected from patients diagnosed with
acute myeloid leukemia (AML) at the Helsinki University Hospital (HUS). For this study, a total of 12
longitudinal samples (7 at diagnosis, 2 at relapse stage and 3 at refractory stage) were obtained and
stored at the Finnish Hematology Registry and Clinical Biobank (FHRB). The protocols used for this
study were reviewed and approved by the institutional review board in compliance with the
Declaration of Helsinki®®. The below steps 2-5 were repeated for each sample individually to provide a
customized set of effective and low-toxic multi-targeting options for each patient individually by
considering the intratumoral heterogeneity of cancer cells that is present not only at later stages of the
disease or resistance development, but already at the diagnostic stage.

Step 2: Single-cell data analysis

For the single-cell transcriptomic analysis, we processed the filtered gene-barcode matrix derived
from 10X Genomics data using the ScType platform?#, with Louvain clustering, as implemented in the
Seurat version 4.3.04'. To filter out low-quality cells, we removed cells that had either a low or high
number of detected genes and also cells that had more than 10% of mitochondrial UMI counts in the
AML scRNA-seq data. The quality control (QC) criteria depend on the sample types; for instance, in
HGSC organoids, 20% of mitochondrial UMI count cut-off was used'®. Such QC cell filtering step is
critical to exclude technical noise and thus to avoid biases in the downstream analysis. To normalize
the gene expression levels, we utilized the LogNormalize method implemented in Seurat.

Step 3: Identification of malignant and normal cells

Single-cell RNA sequencing profiles were used to identify malignant and normal cell clusters in each
sample using three analytical tools, ScType*’, CopyKAT#2, and SCEVAN%. These tools were
specifically selected for their ability to accurately classify and differentiate between malignant and
normal cells in the given complex sample, eliminating the requirement for larger cohort samples.

Step 3a: Cell type annotation

We utilized the ScType web-tool*® that enables fast, precise and fully-automated cell cluster
annotation. ScType integrates cell type markers from the two most comprehensive resources for
human cell populations, and classifies cells based on gene expression changes across clusters. We
used ScType to assign a confidence score to each cell type annotation and each cluster, with high
scores indicating a high level of confidence in the cell type annotation. Clusters with low scores were
labeled as "Unknown" cell types based on the default ScType cutoff (score < number of cells in the
cluster divided by 4). In addition, we visually analyzed previously established marker genes for blasts,
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including CD33, CD34, CD38, PROM1, ENG, CD99 and KIT (17)'7, on the UMAP space and
calculated the proportion of the blast cells in each patient sample to gain a better understanding of the
distribution of leukemic cells. This resulted in a Seurat object that includes cell clusters and their
corresponding annotations.

Step 3b: Detection of aneuploid cells

To further classify cell populations as normal or malignant, we developed an ensemble approach that
utilizes multiple methods to generate a confident classification. The first method is a marker-based
approach, which involves carefully filtered cell markers from CellMarker2.0 database*4, and then using
these as a custom marker dataset for ScType to identify normal and malignant cells. The second
approach uses CopyKAT#, a Bayesian segmentation-based method, with default parameters and
known normal cells (T cells in the AML case*®) as a baseline to estimate copy number alterations
(CNA). The third method is SCEVAN, with the non-cancerous control cells used as input, which
employs a Mumford and Shah energy model to distinguish normal and malignant cell states*3. The
use of CNA estimation based approaches allows us to classify malignant cells while taking into
account overall variability within normal cells. We then constructed a majority vote based on the
combined results of these tools to confidently identify both normal and malignant cell clusters. To
further validate our approach, we superimposed the ensemble predictions onto the UMAP space and
compared them with the cell-type information obtained from ScType. By integrating cell type and
normal/malignant annotations from ScType, with ploidy information from CopyKAT and SCEVAN, we
identified clusters of cells as either normal or malignant. Our ensemble approach accounts for
variability within normal cells and therefore minimizes the risk of misclassification.

Step 4: Identification of genetically distinct subclones and visualizing clonal lineages

After successfully identifying normal and malignant cell clusters, we used inferCNV“® to infer large-
scale copy number variations, such as gains or deletions of whole chromosomes or segments from
the scRNA-seq data. The input for the inferCNV analysis included the known non-cancerous cells
identified in Step 3, genomic locations, cell type annotations, and the scRNA-seq count matrix data.
CNVs were inferred using the Hidden Markov Model (HMM) approach implemented in the 6-state i6
HMM model (https://github.com/broadinstitute/infercnvApp/blob/master/inst/shiny/www/Infercnv-i6-
HMM-type.md). In accordance with the inferCVN guidelines in the document "Using 10X data" section
(https://github.com/broadinstitute/infercnv/wiki/infercnv-10x), we adjusted the "cutoff" parameter from
1 to 0.1, and subsequently computed the CNV profiles from the scRNA-seq expression counts. To
explore the subclonal structures, we used the "subcluster" method on the HMM predicted CNVs.

After identifying the genetically distinct subclones, we used Uphyloplot24” to visualize intra-tumoral
heterogeneity and clonal evolution using the CNV calls from the inferCNV 6-state HMM "subcluster"
method and its “.cellgroupings” file. We note that the resultant evolutionary tree does not follow a
molecular clock; rather, the branch length is proportional to the percentage of cells in the subclone,
hence providing information about which subclone dominates the tumor mass. Next, two broad-level
subclones detected from the evolutionary tree were identified and, along with normal cells, overlaid on
a UMAP projection for further analysis. To quantify gene expression differences between the normal
cells (identified in Step 3) and the broad-level subclones (identified in Step 4), log-fold change values
and determined significance levels via the nonparametric Wilcoxon rank-sum test, applied in Seurat
4.3.0 using the FindMarkers command.

Step 5: Predictive modeling of multi-targeting therapies

When applied to patient samples, the subclone-specific differentially expressed genes (DEGs) were
used as input for the pre-trained LightGBM model to predict single-agent cell inhibition percentages
for each compound-dose pair in the particular patient cells. This allows us to take into account both
the intratumoral and intertumoral heterogeneity, as captured by the scRNA-seq profiles of the patient
samples. Our prediction approach is highly flexible and can be used in two ways: first, by utilizing a
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predefined set of drug-dose pairs for predictions, or second, by customizing the analysis with
additional input of new drug structures (ECFP4 fingerprints) and/or specific doses of interest.

As any ML model predictions inherently come with some degree of uncertainty, we used conformal
prediction (CP) to eliminate low-confidence predictions and improve the prediction accuracy*. CP
generates confidence intervals for each prediction by measuring uncertainty based on repeated CV
residuals. Predictions with a nonconformity score <0.8 were excluded, thereby ensuring inclusion of
only confident and accurate predictions. In addition, to ensure that our model returns clinically more
relevant predictions, we imposed a 1 yM dose maximum when utilizing the pre-defined set of drug-
dose pairs. High drug doses, even though potentially increasing cancer cell inhibition, may also inhibit
normal cells, hence compromising the selectivity of targeted agents*®. By using such a dose
restriction, we ensured the selectivity of targeted agents returned by the model and minimized the risk
of toxic effects, making our predictions more clinically actionable. We applied this approach to each
subclone, hence generating a set of drug-dose-response tuples for the experimental validation.

Retrospective testing of the model predictions in single-agent data from AML patients

To validate the performance of our model, we first used existing data from bulk drug response assays,
available for the 12 patient samples from previous studies®. For the single-agent response testing, 20
I of fresh AML cell (approximately 10,000) suspension in mononuclear cell medium was added per
well to pre-drugged plates with 10-fold dilution series of five concentrations, and the whole-well cell
viability was measured with CellTiter-Glo (CTG; Promega) in duplicate, as previously described30-3°,
After 72 h of incubation at 37°C and 5% CO2, cell viability of each well was measured using the CTG
luminescent assay and a PHERAstar FS (BMG Labtech) plate reader. The percentage inhibition was
calculated by normalizing the cell viability to negative control wells containing 0.1% dimethyl sulfoxide
(DMSO), and positive control wells containing 100 uM cell killing benzethonium chloride (BzCl).
Notably, these existing single-agent response data were not used in the model training, and were only
employed retrospectively to test the accuracy of the model to predict effective monotherapies. Since
the whole-well assay is not a cell population-specific assay, we performed this validation using the
differentially expressed genes (DEGs) between the malignant cell types and normal cells to generate
single-agent predictions for each patient sample. Subsequently, we matched the drugs and doses
predicted by the model to the available patient-specific cell viability dose-response data (Fig. 2b).

Prospective testing using whole-well and flow cytometry assays in the AML patient cells

The patient-specific predicted combinations were first tested on the bone marrow mononuclear cells
of each patient in a 4 x 4 dose-response matrix using the bulk CTG viability assay, similarly as
before'”. The combination synergy in the experimental validations was quantified using ZIP model?°,
calculated based on the dose region around the predicted effective dose of each compound in the
combination.

Cell population-specific drug combination effects in primary AML patient samples were assessed by
high-throughput flow cytometry assay, as described previously'”5!. Briefly, the compounds were
dissolved in 100% dimethyl sulfoxide and dispensed on conical bottom 384-well plates (Greiner)
either as single agents or combinations using an Echo 650 liquid handler (Beckman Coulter).
Cryopreserved bone marrow mononuclear cells were thawed and suspended in 12.5% HS-5 derived
conditioned medium, and 2-3x10* live cells were seeded with a MultiFlo FX.RAD (BioTek) to 384 well-
plates, followed by incubation for 72 h at 37°C and 5% CO.. To profile the cell subpopulation
responses, the cells were stained with BV785 Mouse Anti-Human CD14 (Biolegend), VB515
Recombinant Anti-Human CD56 (Miltenyi), and following antibodies from BD Biosciences; V500
Mouse Anti-Human CD45, BV650 Mouse Anti-Human CD19, PE-Cy7 Mouse Anti-Human CD3, PE
Mouse Anti-Human CD34, BV421 Mouse Anti-Human CD38 and APC Mouse Anti-Human CD117,
together with APC-Fire 750 Annexin V (Biolegend) and DRAQ7 (BD Biosciences). The cells were
analyzed with an iQue3 flow cytometer (Sartorius). Remaining live cells after drug treatments were
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gated using Forecyt (Sartorius). Briefly, cell singlets were identified on the basis of FSC-A (forward-
scattered area) versus FSC-H ratio, and live cells were identified by excluding annexin V- and
DRAQ7-positive cells, followed by identification of leukocytes (CD45+). Further characterization was
done for NK cells (CD56+CD3-), leukemic blasts (CD34+ and/or CD117+) leukemic stem cells
(CD34+CD38-), monocytes (CD14) and T/B- cells (SSC-A and CD3/19) from the leukocytes.

Tailoring the experimental-computational approach to ovarian tumor patient samples

To differentiate between cancer and non-cancerous cells in ovarian cancer patient scRNA-seq data,
we utilized a panel of established marker genes, including PAX8, CA125, MUC16, WFDC2, and
EPCAM, collectively referred to as PAX8+ cells; PAXS8 is expressed in 80-96% of high-grade serous
ovarian cancer (HGSC) tumors (Suppl. Fig. 4)52%3. Our initial analysis focused on the HGSC Patient 1
sample, selected due to the availability of both scRNAseq data and viable cells for experimental
validation. Due to the small proportion of PAX8+ malignant cells detected in the scRNAseq data, we
opted to predict only single-agent therapies as opposed to combination therapies. However, during
the validation phase, the PAX8- fibroblasts of Patient 1, serving as normal controls, died. This led us
to integrate this sample with two other HGSC Patient 2 and 3 samples, which had readily available
PAX8- cells. The integration was achieved using the standard Seurat workflow, and the cell types
were assigned using ScType. Both combined PAX8+ and PAX8- cell populations were visualized
using Seurat “FeaturePlots”. We used an average of previously-measured responses of PAX8- cells
from patient 2 and 3 samples (serving as combined ovarian-sample normal controls) to 372
compounds overlapping with the LINCS 2020 compounds.

Prospective testing in ovarian tumor organoids and drug response assays

To predict the compounds that specifically target and eliminate cancer PAX8+ cells, while sparing
PAX8- cells, we utilized the differentially expressed genes (DEGs) from the comparison between
PAX8+ and PAX8- cells in the scRNA-seq data. These DEGs were used as input for the pre-trained
LightGBM model. Among the predicted 372 compound responses (that overlapped with drugs tested
on PAX8- cells), we selected the top-20 most effective compounds, and removed two with low
confidence, hence resulting in 18 predicted agents. Subsequently, we validated the efficacy of these
compounds in PAX8+ tumor organoids and compared the results, as shown in Fig. 3b (3 replicates).

Ovarian cancer organoids were established and characterized as previously'®, and propagated in
BME-2 matrix droplets in the sample-specific growth medium. The organoid cultures consisted only of
cancer cells as judged by whole-genome sequencing and copy number variation analysis. For the
organoid drug sensitivity testing, the organoid cultures were trypsinized to obtain the single-cell
suspension. The cells were resuspended in the fresh gel, dispensed to 384-well Ultra-Low Attachment
microplates (#4588, Corning) at 103 cells per well in 10 pl of the matrix, and covered with 60 ul of
growth medium containing 5 yM ROCK inhibitor to facilitate the organoids formation. After 6 days, the
medium was exchanged to 30 pl/well of the ROCK inhibitor-free growth medium. Drug testing was
performed as described above for single-agent AML sample testing, with the following modifications.
The tested compounds (10-fold dilution series of five concentrations), vehicle (DMSO), or positive
control compounds (100 yM benzethonium chloride or 10 uM staurosporine) were transferred to the
wells using Echo 550 acoustic dispenser (Labcyte). The organoids were incubated with drugs for 7
days in the humidified incubator at 37°C and the viability was assessed using CellTiter-Glo 3D Cell
Viability Assay (#G9683, Promega) using a SpectraMax Paradigm microplate reader (Molecular
Devices) after 5 min of agitation and 25 min of incubation at room temperature, as indicated by the
manufacturer. The PAX8-negative cells from the ovarian tumor samples were expanded in RPMI-
1640 medium, supplemented with 2 mM glutamine, 1% Pen/Strep and 10% fetal bovine serum
(Gibco). Drug testing was performed as above. The culture was trypsinized, resuspended in fresh
medium and seeded at 1000 cells in 25 pl of medium per well in pre-drugged 384-well microplates
(#3864, Corning). After 7 days of the drug treatment, the viability was measured using the CellTiter-
Glo 2.0 (Promega).
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Ethical approvals

AML patient samples and data were collected with signed informed consent in accordance with the
Declaration of Helsinki (Ethical Committee Statement 303/13/03/01/201, latest amendment 7 dated
June 15, 2016. Latest HUS study permit HUS/395/2018 dated February 13, 2018). HGSC patients
participating in the study gave their informed consent, and the study was approved by the Ethics
Committee of the Hospital District of Southwest Finland (ETMK 145/1801/2015).

Data and code availability

e The raw single-cell RNA sequencing data for the AML Patients 5, 6 and 12 have been made
available at the European Genome-phenome Archive (EGA) under the code (pending).

e The previously published single-cell RNA-seq data of the remaining 9 AML patient samples are
available at EGA. The raw single-cell RNA sequencing data for the AML Patients 2, 3, 8 and 10
are available under the code EGAS00001004614'7, and for the AML Patients 1, 4, 7, 9 and 11
under the code EGAS0000100444454,

e The previously published single-cell RNA-seq data of the 3 HGSC patient samples are available
at EGA. The raw single-cell RNA sequencing data for the HGSC Patient 1 and Patient 2 are
available under the code EGAS00001005010'4, and raw data for the HGSC Patient 3 under the
code EGAS00001005066'5.

e The R codes for reproducing and making new patient-specific predictions are available at GitHub:
https://github.com/kris-nader/scTherapy
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