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Abstract   

Intratumoral cellular heterogeneity necessitates multi-targeting therapies for improved 
clinical benefits in patients with advanced malignancies. However, systematic identification 
of patient-specific treatments that selectively co-inhibit cancerous cell populations poses a 
combinatorial challenge, since the number of possible drug-dose combinations vastly 
exceeds what could be tested in scarce patient cells. Here, we developed scTherapy, a 
machine learning model that leverages single-cell transcriptomic profiles to prioritize multi-
targeting treatment options for individual patients with hematological cancers or solid tumors. 
 
 

Introduction 

High intratumoral heterogeneity and evolution of cancer cell populations are major drivers of 
therapy resistance both in hematological malignancies and solid tumors1–5. In acute myeloid 
leukemia (AML), a number of single-cell genomic analyses have mapped the clonal 
evolutionary processes of disease progression and therapy resistance at cell subpopulation 
level, as well as deciphered cellular hierarchy and reprogramming among leukemic cell 
subpopulations involved in the chemoresistance, relapse and clinical outcomes6–9. Similarly 
in solid tumors, clonal analysis and longitudinal sampling of patients with high-grade serous 
ovarian carcinoma (HGSC) have revealed evolutionary trajectories, with distinct genomic 
and morphological features that associate with treatment responses10. Despite this wealth of 
information, we lack approaches to target chemoresistant subpopulations to enhance 
second-line treatment efficacy in relapsed patients, or to avoid resistance to first-line 
therapies by co-inhibiting multiple leukemic cell subpopulations with sufficiently high potency 
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and precision. There is a medical need for systematic approaches to identify more effective 
combinatorial therapies, using either multi-targeting inhibitors or their combinations, which 
selectively co-inhibit multiple signaling pathways that drive the disease- or resistance in 
heterogeneous patient and cell populations. Several computational approaches for in silico 
prediction of drug combination effects have been developed, yet we lack approaches that 
consider both the patient and disease heterogeneity when predicting drug sensitivity 
differences among cell populations, toward designing cancer-selective and patient-specific 
therapeutic options using feasible measurements in scarce patient cells. 
 
To address these limitations, we implemented a machine learning model, scTherapy, which 
identifies cancer-selective and low-toxic multi-targeting options for each individual cancer 
patient based on scRNA-seq data alone. The selective predictions come from transcriptomic 
differences between genetically distinct cancer cell populations (or clones) in individual 
patient samples, when compared to non-cancerous cells from the same patient sample (Fig. 
1, Online Methods). To enable fast translational applications, we pre-trained a gradient 
boosting model (LightGBM) that predicts drug response differences across cell populations 
by leveraging a massive reference database of large-scale phenotypic profiles (both 
transcriptomics and viability readouts) measured in cancer cell lines in response to single-
drug perturbations. When applied to patient samples, the model generates a ranked list of 
most effective multi-targeting options (either targeted-agents, chemotherapies, or their 
combinations) that selectively co-inhibit key cancer clones in a given patient sample. To 
guide translational applications, we further remove low-confidence predictions and likely 
non-tolerated doses among the dose-specific drug response predictions, hence ensuring 
that only the most relevant predictions will be suggested for treatment optimization. The 
ScTherapy predictions makes functional ex vivo drug testing in patient-derived cells more 
feasible in a translational setting by prioritizing most potent multi-targeting options for further 
experimental validation in scarce patient cells. In doing so, we also extend the combinatorial 
space of single-cell drug response assays, which is currently constrained both by the patient 
cell availability and excessive time and cost of the assays for translational use. 
 
Results 

We developed the scTherapy model and tested its translational potential first by analyzing 
single-cell transcriptomic profiles of 12 bone marrow samples from diagnostic and refractory 
or relapsed AML patients (Suppl. Table 1), followed by careful experimental validation of the 
model predictions in the primary cells of the same patient samples. 
 
To design multi-clone targeting and cancer-selective therapeutic options for each patient, we 
leveraged 394,303 genome-wide transcriptomic profiles post-treatment with 19,646 single-
agent responses, measured in multiple doses in 167 cell lines, available from the LINCS 
2020 project11. We next matched these transcriptomic response profiles with drug-induced 
cell viability responses available from PharmacoDB12, measured in multiple doses in the 
same 167 cell lines to pre-train a LightGBM that predicts drug response differences across 
cell populations (Fig. 1). The model predicts drug response using fold changes of 
differentially expressed genes (DEGs) after drug treatment at a particular dose, hence 
leading to concentration-specific cell inhibition predictions. In the patient applications, we 
used the pre-trained model to predict multi-targeting options that can selectively co-inhibit 
multiple cancer subclones, identified from patient-specific scRNA data, and using fold 
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changes of DEGs between normal cells and cancer cell populations as input. In the final 
step, we combined the top-predicted effective and selective drugs for each clone as a 
targeted combinatorial therapy for the patient sample. This is the first translational approach 
for systematic tailoring of personalized multi-targeting options that takes into account both 
the intratumoral cellular heterogeneity and dose-specific therapeutic and toxic effects of 
anticancer compounds. 
 

 
 

Fig. 1 | Schematic illustration of the experimental-computational prediction approach. 
Identification of clone-specific and cancer-selective compounds is performed in two steps: (a) Raw 
sequencing data from selected tissue are processed and aligned to generate a scRNA-seq 
expression count matrix. Unsupervised clustering separates malignant and normal cell clusters using 
an ensemble prediction approach with three analytical tools: ScType, CopyKAT and SCEVAN (Suppl. 
Fig. 1). InferCNV infers large-scale copy number variations and identifies genetically distinct 
subclones among the malignant cells. (b) Subsequently, subclone-specific differentially-expressed 
genes are identified through differential expression analysis. The identified genes, along with drug 
information such as molecular fingerprints and drug doses, serve as inputs for the pre-trained 
LightGBM model. Based on the patient-specific inputs, the pre-trained model predicts the most potent 
compounds and their effective doses for each subclone. (c) To train the LightGBM model, a 
comprehensive dataset was compiled that integrates transcriptional changes from small-molecule 
perturbation experiments (LINCS 2020 dataset), with chemical structures represented as ECFP 
fingerprints and drug-dose response data collected from various studies (PharmacoDB resource). 
Concentrations of the LINCS 2020 dataset were matched with dose-response curves from the 
PharmacoDB, and interpolated cell viability was used as the outcome variable for LightGBM model. 
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Experimental validation of the model predictions in AML patient samples ex vivo 

We carried out patient-specific treatment predictions using scRNA-seq profiles from bone 
marrow aspirates of 12 AML patients (Suppl. Table 1). The single-cell transcriptomes 
revealed highly heterogeneous cell type compositions across the patients, both for leukemic 
and normal cell types (Fig. 2a), necessitating personalized treatment predictions. Through 
processing the scRNA-seq data from each patient separately, and then feeding it into the 
ScTherapy model, we generated personalized predictions of drug treatments that are likely 
to be the most or least effective for each patient case (see Online Methods for more 
details).  
 
To validate the model predictions, we first used data from single-agent cell viability assays, 
which confirmed that the model-predicted effective treatments led to significantly better cell 
inhibition efficacy ex vivo, when compared with the predicted ineffective treatments 
(P<0.0001, Wilcoxon test; Fig. 2b). Importantly, this improvement was not due to the model 
selecting higher drug concentrations for the effective-predicted treatments (Suppl. Fig. 2a). 
Most of the treatment predictions were uniquely identified for a single patient (Suppl. File 1), 
and the few shared treatments between patients, such as navitoclax and AT-7519, showed 
highly variable responses across the patient samples (Fig. 2b, the colored points).  
 
Next, we predicted the most promising two-drug combinations for four AML patient samples 
with enough cells for further experimental testing. The patient-specific combinations were 
designed so that they would maximally co-inhibit two major leukemic subclones in each 
patient sample, while minimally co-inhibiting the patient-specific normal cells (Fig. 2c). Using 
a bulk combinatorial cell viability assay, we tested the predicted combinations in 4×4 dose-
response matrices (https://ianevskialeksandr.github.io/scTherapyCombinations.html). Based 
on the zero interaction potency (ZIP) score, we confirmed that all the predicted combinations 
act either synergistically (ZIP>10), i.e., they jointly inhibit patient cells more than expected 
based on their individual effects (p<0.001, Wilcoxon test), or showed at least additive 
combination effects (ZIP>0; Fig. 2d). It has been argued that a combination efficacy is more 
important for clinically-effective combinations, while pharmacological synergy is not 
necessary for achieving improved clinical responses13. 
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Fig. 2 | Experimental validation using bulk and cell population drug assays. (a) Identification of 
cell types using scRNA-seq profiles of complex bone marrow samples from 12 AML patients. (b) Ex 
vivo drug sensitivity differences between single-agent treatments predicted by ScTherapy to be either 
effective or ineffective in whole-well cell viability assays (p<0.001, Wilcoxon test). The colored points 
show two example drugs with highly variable responses across the patients. (c) Identification of 
genetically-distinct subclones from the 4 AML patient samples with enough cells for further 
experimental testing (Suppl. Fig. 3 shows a detailed overview of genomic variation in these 4 
samples). (d) All the model-predicted drug combinations exhibited either synergistic (ZIP>10) or 
additive effects (0<ZIP<10) in the whole-well combinatorial viability assay (p<0.001, Wilcoxon test; 
upper panel). Two examples of combinations with ZIP=13.6 and ZIP=13.5 as tested in multi-dose 
drug combination assays (lower panel). Interactive plots of the dose-response matrices for all the 
predicted combinations are provided at https://ianevskialeksandr.github.io/waterfall_plot.html. (e) 
Further validation of the top-combinations for the 4 patient samples using population-level flow 
cytometry assays in the same patient-derived cells. Toxic effects (left-hand bars) scored based on co-
inhibition of normal cell populations, and therapeutic effects (right-hand bars) based on co-inhibition of 
malignant cells. The predicted effective doses are indicated in parentheses (μM), and the dotted 
vertical lines indicate 50% inhibition level. n, the number of replicate screens. Patient 12 has only two 
replicates due to limited cell availability and poor cell viability (35% live cells in DMSO wells after 72h). 
 
 

 
After confirming the higher than expected combination effects in the bulk viability assays, we 
further tested a subset of top-6 patient-specific combinations for the four patient cases using 
high-throughput flow cytometry assays to quantify the differential inhibition between leukemic 
and normal cells in each patient sample ex vivo. Out of the 24 predicted drug combinations, 
21 (88%) led to increased co-inhibition of the leukemic cells (Fig. 2e), when compared with 
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the single-agent responses. For each patient case, we identified multiple combinations that 
led to higher than 50% co-inhibition of the blasts and other leukemic cells, suggested as 
potential treatment options. Importantly, only 3 of the 24 combinations (13%) showed >50% 
inhibition of T cells and other non-cancerous lymphoid cells, which should be discarded as 
potentially toxic combinations (i.e., trametinib-dinaciclib combination in Patient 11, and two 
carfilzomib combinations in Patient 12). Not only the effective treatments, but also the 
predicted doses of drugs in the combinations varied across the patients, indicating that an 
optimal balance between treatment efficacy and toxicity can be tailored for each patient. 
 
 
Application to ovarian cancer and validation in patient-derived tumor organoids 

To investigate whether the prediction approach is applicable also to solid tumors, where 
large-scale ex vivo drug testing in primary patient cells is more challenging, we employed 
published scRNA-seq data14,15 from a cohort of HGSC patients (Suppl. Table 2)10. This 
patient cohort of metastatic tumors with poor responsiveness to standard chemotherapy 
represents a highly challenging case for personalized treatment identification. To distinguish 
cancer cells from non-cancerous cells, we used established tumor marker genes, including 
PAX8, MUC16 (encoding CA-125) and EPCAM, collectively referred to as PAX8+ cells 
(Online Methods). To secure enough fibroblasts and other genetically normal cells for the 
treatment-selectivity assays, we integrated scRNA-seq data from three HGSC patients (Fig. 
3a), based on the availability of cells from each patient for further experimental validation: 
PAX8+ tumor cells were available from Patient 1, whereas PAX8- normal cells were 
available from Patients 2 and 3. The expression of PAX8 tumor marker showed a clear 
separation between tumor cells and other cell populations in this “integrated patient” case 
(Fig. 3b).  
 
Due to a small proportion of patient-derived cancer cells, we predicted only multi-targeting 
monotherapies for this patient case, since combination treatments would require more cells 
for the organoid cultures. We tested the efficacy and selectivity of the predicted treatments 
on HGSC patient-derived tumor organoids16. The treatment-naive tumor organoids were 
developed exclusively from the cancer cells of a treatment-naive Patient 1 with omental 
metastasis (Online Methods), which displayed an elevated expression of PAX8 (Fig. 3c). 
Comparison of the treatment-induced viability changes in the organoid cells and fibroblasts 
showed that 8 of the 18 predicted treatments (44%) led to >50% inhibition of the PAX8+ 
tumor cells, and only 2 of the treatments (11%) showed >50% inhibition of the PAX8- cells 
(Fig. 3d; proteasome inhibitors bortezomib and ixazomib). In general, the predicted multi-
targeting treatments led to significantly higher inhibition of the tumor cells than normal cells 
(p=0.01, Wilcoxon test; Fig. 3e). Interestingly, there was no correlation between the 
predicted treatment doses and PAX8+ or PAX8- cell inhibition effects (Suppl. Fig. 2b). 
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Fig. 3 | Experimental validation in ovarian cancer patient-derived tumor organoids.  (a) UMAP 

projection of the combined scRNA-seq transcriptomic profiles from three HGSC patient samples, 
using standard Seurat integration workflow, where cell types were identified with ScType. UMAP plots 
for the individual patient samples are provided online https://ianevskialeksandr.github.io/figovfig.png. 
(b) Expression of the PAX8 marker, effectively separating tumor cells from the other cell populations. 
The expression of other PAX8+ markers is shown in Suppl. Fig. 4. (c) Representative 
immunofluorescent image of treatment-naive tumor organoids from Patient 1. (d) Cell inhibition 
differences between the patient-derived organoid cells and non-cancerous normal cells for the 18 
predicted multi-targeting drugs. The predicted effective doses are indicated in parentheses (μM), and 
the dotted vertical lines indicate 50% inhibition level. The error bars represent SEM, based on three 
replicates of organoid treatments and curve-fitting approximation in PAX8- cells, respectively. (e) 
Statistical comparison of the treatment responses between PAX8+ and PAX8- cells (Wilcoxon test).   

 
 
Discussion  
Advanced cancers are heterogeneous diseases, typically comprising at diagnosis more than 
1010 cells, which very likely harbor therapy-resistant subpopulations10,13. This translates into 
a need for multi-targeting therapies for effective cancer cures that selectively co-inhibit the 
disease-driving cell populations. Our experimental-computational approach for personalized 
identification of multi-targeting treatments makes use of two recent advances: (i) the 
feasibility of scRNA-seq profiling in patient samples that does not only allow for the 
identification of malignant and non-cancerous cell populations, but can also elucidate the 
transcriptomic differences and hierarchies between these subpopulations; and (ii) the 
availability of large-scale transcriptomic and viability response profiles of cancer cell lines 
treated with thousands of single-agent perturbations. Taken together, this approach provides 
a clinically actionable and relatively fast means for predicting drug-dose combinations for 
individual patients, and compared to our earlier work17, it can be applied also for patients 
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whose tumors are not easily amenable to drug testing (e.g. HGSC). The only input for the 
model is a count scRNA-seq data matrix of a given patient sample; the rest of the 
computational steps are either fully-automated or semi-automated (e.g., selection of the 
broad-level subclones based on visual analysis of the clonal evolutionary tree; see Step 4 in 
Suppl. Fig. 1). Nearly all of the predicted combinations exhibited positive synergy scores 
(96.3%), highlighting their potential for improved therapeutic efficacy and reduced toxicity by 
lowering the doses of single agents. Importantly, 85.7% of the predictions demonstrated low-
toxicity to normal cells (<50% inhibition of non-cancerous cells); however, the flow cytometry 
and organoid drug response assays indicated that certain multi-target therapies (14.3%) 
excessively inhibited non-cancerous cells (e.g. proteasome and topoisomerase inhibitors), 
emphasizing the importance of experimental validation prior to clinical translation.  
 
ScTherapy identifies individual drugs or their combinations that (i) induce normalizing 
transcriptomic changes in cell type-specific gene signatures of patient-specific DEGs (i.e., 
reverse clone-specific transcriptomic responses closer to the normal expression state), and 
(ii) exhibit selective cancer cell inhibition at the predicted effective dose (i.e., ensure 
differential inhibition between malignant and normal cells). The model outcome is a list of 
suggested treatments and concentrations for each patient sample, complemented with a 
confidence score that indicates the confidence of the LightGBM about the accuracy and 
reliability of each specific prediction. The quantitative performance evaluation (repeated 
cross-validation and experimental validations), together with the confidence scoring 
(conformal prediction), enables medical professionals to decide when and how to use the 
model to guide clinical decision making. By mapping the gene signatures to drug-target 
interactions networks, one can also explore potential biomarkers (e.g. patient-specific DEGs) 
that drive the selection of the best treatment regimens for individual patients (Suppl. Fig. 5). 
This provides additional insights into the rationale of the treatment recommendations for a 
given patient. ScTherapy model can also predict responses to custom compounds, hence 
facilitating the assessment of novel or less-studied compounds for their patient-specific 
efficacy. Furthermore, the model incorporates a user-defined drug-dose information, 
especially useful in cases where certain drugs or doses are clinically more relevant for a 
given cancer type. By dose restriction, one can further reduce the risk of toxic effects that 
often occur at higher doses, hence making the predictions clinically more relevant. Overall, 
our approach offers a systematic and flexible framework for predicting personalized drug-
dose combinations that can be tailored to individual patient and tumor characteristics. 
     
Traditionally, effective drug combinations have been identified either by empirical clinical 
testing18, or using high-throughput screening (HTS) in cell line panels in vitro, followed by 
target deconvolution and in vivo validation of the most relevant combinations and target 
mechanisms in animal models19–21. However, drug combination synergy is a rare and highly 
context-dependent event, affected by the inherent genetic and molecular variability between 
patients and within tumors, hence requiring combinations to be tested in large-scale screens 
and in various cellular contexts and genomic backgrounds22. This is beyond the scalability of 
in vivo models, and in vitro screening alone cannot identify combinations targeting specific 
cancer subclones, even if large enough cell line panels can to certain extent model the 
cellular heterogeneity and drug responses variability of tumors. This is important since a 
multi-targeting therapy that effectively inhibits cancer cells may also co-inhibit normal cells, 
rendering the treatment non-selective against malignant cells. In patient applications, it is 
therefore critical to identify cancer-selective combinations, rather than broadly active 
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therapies that may lead to severe toxic effects. Ex vivo drug testing in primary patient cells, 
using either patient-derived 2D cell cultures or 3D organoids, strikes a balance between the 
in vitro and in vivo approaches23,24. However, even though flow cytometry and imaging-
based ex vivo assays offer possibilities for drug response testing at a single-cell resolution, 
HTS of a larger number of drug combinations in multiple doses remains infeasible in scarce 
patient cells using these advanced assays25–27. Therefore, systematic methods to prioritize 
the most potential combinations to be tested in primary patient cells are needed. 
 
Various machine learning (ML) methods have been developed to predict effective anticancer 
drug combinations, using multi-omics training data from large-scale screens in cancer cell 
lines and patient-derived samples. By surveying the existing ML methods28, we identified 
three critical areas of improvement for translational applications, where the aim is to prioritize 
among the massive number of potential drug-dose combinations those that show maximal 
therapeutic potential and minimal toxic effects for next phases of preclinical development. 
First, none of the existing methods were designed to predict selective drug combinations that 
target multiple cancer subclones in primary patient cells using merely single-cell 
transcriptomic data as input. This is important since multi-omics profiling and ex vivo drug 
testing in scarce primary patient cells is not yet practically feasible for many tumor types24. 
Second, most of the current methods either do not use any normal reference, and hence 
lack preclinical toxicity predictions, or use molecular or functional profiles from healthy 
individuals to de-prioritize toxic combinations, which may lead to non-selective combination 
predictions, due to high inter-individual molecular and phenotypic heterogeneity. Third, drug 
combination effects are not only patient-specific, but also highly dose-dependent, meaning 
that the same combination may show both synergistic and antagonistic effects at different 
dose windows22. To guide the eventual translation of the combination predictions, where 
lower dose combinations are often better tolerated by the patients, we argue that 
computational prediction methods need to provide dose-specific prediction of the responses. 
In this way, computational tools, such as ScTherapy, enable systematic in-silico screening of 
combination effects for translational applications to prioritize most potent combinations for 
further testing, among the massive number of potential drug-dose combinations29. 
 
We predicted a higher number of targeted signal transduction inhibitors for the AML patients, 
compared to HGSC, which reflects underlying differences in the disease biology. AML cells 
often carry oncogenic mutations in signaling proteins, making the cells addicted to MAPK 
signaling30, which explains why MEK inhibitor combinations were identified for many of the 
AML patients. Similarly, PLK inhibition has been extensively studied in AML, and while PLK 
inhibitor combinations have shown promise in clinical development, they are also associated 
with complicated toxicities31. Therefore, even though the ScTherapy model identifies novel 
personalized multi-targeting treatments, the drug and target classes of the predicted 
combinations are well-studied in AML and HGSC. The novel concept is that the predictions 
are tailored to the molecular context of a given patient (or sample), which is expected to lead 
to better efficacy-safety balance at the level of an individual patient, rather than identifying 
broadly chemotoxic combinations that may lead to severe side effects in the non-matching 
subset of patients. Our functional precision medicine approach provides a streamlined, yet 
relatively precise approach to finding the right combinations of drugs and enhancing 
therapeutic potential through using both molecular and functional information. 
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Limitations and future aims 
Compounds from different drug and target classes can elicit varied phenotypic responses in 
the viability and transcriptional profiles. For instance, in contrast to other molecularly-
targeted compounds, HDAC inhibitors often induce significant changes in the expression of 
multiple genes beyond their target proteins. Comparison of the expression and viability 
changes between cancerous and non-cancerous cells is expected to normalize out a part of 
such variability between drug classes. However, future studies are warranted to tailor input 
data not only to be patient-specific, but also drug class-specific by considering differences in 
binding affinities, phenotypic profiles and in treatment time points. Different disease models 
may also have differing growth dynamics. For instance, as opposed to the most conventional 
cell lines, organoid cells undergo less cell divisions during 7-day incubation. Therefore, some 
of the discrepancies seen between the model predictions (made using in vitro cell line data) 
and the experimental validations (made in ex vivo experiments) may stem from such 
variations between the 2D and 3D disease models and time points. Future studies are 
needed to identify the most predictive sources of in vitro and ex vivo data for patient-specific 
predictions in various cancer types. Additionally, with the emerging availability of large-scale 
morphological and proteomic response profiles in cancer cell lines and samples32–35, the 
ScTherapy approach could be extended to incorporate these and other phenotypic response 
measurements in the future. The approach is applicable also to selective targeting of other 
cell types or states, beyond the differential co-inhibition of cancer and non-cancerous cells. 
 
 
Materials and Methods 
 
Compiling a large-scale phenotypic response data for pre-training a LightGBM model  

A comprehensive training dataset of large-scale phenotypic response profiles was created by merging 
data from three databases: Connectivity Map LINCS 202011, PharmacoDB12, and PubChem36 (Suppl. 
Fig. 1, bottom part). These continuously expanding, publicly available databases allowed us to 
establish an extensive dataset that provides functional information on both viability and transcriptomic 
responses to increasing numbers of compounds. Details on the dataset used in the present study are 
outlined below. The Connectivity Map (CMap) LINCS 2020 is a reference database that houses gene 
expression response profiles of 12,328 genes measured in 240 cell lines across multiple doses and 
time points for 39,321 small-molecule compounds. Additionally, LINCS 2020 data includes paired 
control states for each perturbagen-cell line combination, enabling a comparison of the transcriptional 
changes before and after each treatment. To supplement our dataset, we leveraged information from 
PharmacoDB, a database that contains dose-response viability data for 56,149 drugs across 1758 
cancer cell lines at multiple doses. For further analysis, we employed 10,303 overlapping compound-
cell line pairs, which were common between 24 h transcriptional responses from CMap LINCS 2020 
(passing quality control, i.e., qc_pass = 1) and PharmacoDB. For matching compounds between 
PharmacoDB and CMap LINCS 2020, we used compound identifiers, and for the cell line matching, 
we used cellosaurus IDs37. To extract structural information of the compounds, we used PubChem 
and RDKit (rcdk v3.6 and rcdklibs v2.3) to generate molecular fingerprints (ECFP4) from the SMILES 
representation of each common drug38. 
 
The light gradient boosting machine (LightGBM) model was trained on a comprehensive dataset of 
3,695 compounds tested at 1-35 doses in 167 cell lines. Drug-dose-cell line profiles (including 
transcriptomic response profiles, ECFP4 molecular fingerprints, and drug doses) were used as the 
model predictors, while the outcome variable is the inhibition percentage, derived from PharmacoDB 
dose-response viability data (Suppl. Fig. 1). The LightGBM model was trained using Bayesian 
Optimization, with a repeated cross-validation (three repetitions), and ten-fold inner cross-validation 
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(CV). This ensures a robust and generalizable model for the patient applications.  More specifically, 
the LightGBM model matches gene expression signatures (differentially expressed genes between 
the cancer and non-cancer cells) to the transcriptional responses to small molecules tested at 
different doses from LINCS 2020 to find the compounds that induce opposite transcriptomic changes. 
In the next step, the model identifies which compounds and doses most effectively inhibit cell growth, 
by extracting %inhibition responses for corresponding cell line-drug-dose triads from PharmacoDB. 
After examining tens of thousands of possible matches, the model provides a prediction of the most 
promising compounds and the effective dose. We also recommend including at least one dose-fold 
above and below the predicted dose in the experimental evaluation to delineate the most effective and 
least toxic drug dosage. 
 
Prediction of multi-targeting therapies using scRNA-seq data in AML patient samples 

The experimental-computational prediction approach consists of the following five subsequent steps 
(Suppl. Fig. 1). These steps are described here for the AML case, and modifications to this pipeline in 
the HGSC case are described under section Tailoring the experimental-computational approach 
to ovarian tumor patient samples. 
 
Step 1: Longitudinal sampling 
After obtaining informed consent, bone marrow aspirates were collected from patients diagnosed with 
acute myeloid leukemia (AML) at the Helsinki University Hospital (HUS). For this study, a total of 12 
longitudinal samples (7 at diagnosis, 2 at relapse stage and 3 at refractory stage) were obtained and 
stored at the Finnish Hematology Registry and Clinical Biobank (FHRB). The protocols used for this 
study were reviewed and approved by the institutional review board in compliance with the 
Declaration of Helsinki39. The below steps 2-5 were repeated for each sample individually to provide a 
customized set of effective and low-toxic multi-targeting options for each patient individually by 
considering the intratumoral heterogeneity of cancer cells that is present not only at later stages of the 
disease or resistance development, but already at the diagnostic stage.   
 
Step 2: Single-cell data analysis 
For the single-cell transcriptomic analysis, we processed the filtered gene-barcode matrix derived 
from 10X Genomics data using the ScType platform40, with Louvain clustering, as implemented in the 
Seurat version 4.3.041. To filter out low-quality cells, we removed cells that had either a low or high 
number of detected genes and also cells that had more than 10% of mitochondrial UMI counts in the 
AML scRNA-seq data. The quality control (QC) criteria depend on the sample types; for instance, in 
HGSC organoids, 20% of mitochondrial UMI count cut-off was used16. Such QC cell filtering step is 
critical to exclude technical noise and thus to avoid biases in the downstream analysis. To normalize 
the gene expression levels, we utilized the LogNormalize method implemented in Seurat. 
 
Step 3: Identification of malignant and normal cells 
Single-cell RNA sequencing profiles were used to identify malignant and normal cell clusters in each 
sample using three analytical tools, ScType40, CopyKAT42, and SCEVAN43. These tools were 
specifically selected for their ability to accurately classify and differentiate between malignant and 
normal cells in the given complex sample, eliminating the requirement for larger cohort samples.  
 
Step 3a: Cell type annotation 
We utilized the ScType web-tool40 that enables fast, precise and fully-automated cell cluster 
annotation. ScType integrates cell type markers from the two most comprehensive resources for 
human cell populations, and classifies cells based on gene expression changes across clusters. We 
used ScType to assign a confidence score to each cell type annotation and each cluster, with high 
scores indicating a high level of confidence in the cell type annotation. Clusters with low scores were 
labeled as "Unknown" cell types based on the default ScType cutoff (score < number of cells in the 
cluster divided by 4). In addition, we visually analyzed previously established marker genes for blasts, 
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including CD33, CD34, CD38, PROM1, ENG, CD99 and KIT (17)17, on the UMAP space and 
calculated the proportion of the blast cells in each patient sample to gain a better understanding of the 
distribution of leukemic cells. This resulted in a Seurat object that includes cell clusters and their 
corresponding annotations. 
 
Step 3b: Detection of aneuploid cells 
To further classify cell populations as normal or malignant, we developed an ensemble approach that 
utilizes multiple methods to generate a confident classification. The first method is a marker-based 
approach, which involves carefully filtered cell markers from CellMarker2.0 database44, and then using 
these as a custom marker dataset for ScType to identify normal and malignant cells. The second 
approach uses CopyKAT42, a Bayesian segmentation-based method, with default parameters and 
known normal cells (T cells in the AML case45) as a baseline to estimate copy number alterations 
(CNA). The third method is SCEVAN, with the non-cancerous control cells used as input, which 
employs a Mumford and Shah energy model to distinguish normal and malignant cell states43. The 
use of CNA estimation based approaches allows us to classify malignant cells while taking into 
account overall variability within normal cells. We then constructed a majority vote based on the 
combined results of these tools to confidently identify both normal and malignant cell clusters. To 
further validate our approach, we superimposed the ensemble predictions onto the UMAP space and 
compared them with the cell-type information obtained from ScType. By integrating cell type and 
normal/malignant annotations from ScType, with ploidy information from CopyKAT and SCEVAN, we 
identified clusters of cells as either normal or malignant. Our ensemble approach accounts for 
variability within normal cells and therefore minimizes the risk of misclassification. 
 
Step 4: Identification of genetically distinct subclones and visualizing clonal lineages 
After successfully identifying normal and malignant cell clusters, we used inferCNV46 to infer large-
scale copy number variations, such as gains or deletions of whole chromosomes or segments from 
the scRNA-seq data. The input for the inferCNV analysis included the known non-cancerous cells 
identified in Step 3, genomic locations, cell type annotations, and the scRNA-seq count matrix data. 
CNVs were inferred using the Hidden Markov Model (HMM) approach implemented in the 6-state i6 
HMM model (https://github.com/broadinstitute/infercnvApp/blob/master/inst/shiny/www/Infercnv-i6-
HMM-type.md). In accordance with the inferCVN guidelines in the document "Using 10X data'' section 
(https://github.com/broadinstitute/infercnv/wiki/infercnv-10x), we adjusted the "cutoff" parameter from 
1 to 0.1, and subsequently computed the CNV profiles from the scRNA-seq expression counts. To 
explore the subclonal structures, we used the "subcluster" method on the HMM predicted CNVs. 

After identifying the genetically distinct subclones, we used Uphyloplot247 to visualize intra-tumoral 
heterogeneity and clonal evolution using the CNV calls from the inferCNV 6-state HMM "subcluster" 
method and its “.cellgroupings” file. We note that the resultant evolutionary tree does not follow a 
molecular clock; rather, the branch length is proportional to the percentage of cells in the subclone, 
hence providing information about which subclone dominates the tumor mass. Next, two broad-level 
subclones detected from the evolutionary tree were identified and, along with normal cells, overlaid on 
a UMAP projection for further analysis. To quantify gene expression differences between the normal 
cells (identified in Step 3) and the broad-level subclones (identified in Step 4), log-fold change values 
and determined significance levels via the nonparametric Wilcoxon rank-sum test, applied in Seurat 
4.3.0 using the FindMarkers command. 
 
Step 5: Predictive modeling of multi-targeting therapies 
When applied to patient samples, the subclone-specific differentially expressed genes (DEGs) were 
used as input for the pre-trained LightGBM model to predict single-agent cell inhibition percentages 
for each compound-dose pair in the particular patient cells. This allows us to take into account both 
the intratumoral and intertumoral heterogeneity, as captured by the scRNA-seq profiles of the patient 
samples. Our prediction approach is highly flexible and can be used in two ways: first, by utilizing a 
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predefined set of drug-dose pairs for predictions, or second, by customizing the analysis with 
additional input of new drug structures (ECFP4 fingerprints) and/or specific doses of interest.  
 
As any ML model predictions inherently come with some degree of uncertainty, we used conformal 
prediction (CP) to eliminate low-confidence predictions and improve the prediction accuracy48. CP 
generates confidence intervals for each prediction by measuring uncertainty based on repeated CV 
residuals. Predictions with a nonconformity score <0.8 were excluded, thereby ensuring inclusion of 
only confident and accurate predictions. In addition, to ensure that our model returns clinically more 
relevant predictions, we imposed a 1 μM dose maximum when utilizing the pre-defined set of drug-
dose pairs. High drug doses, even though potentially increasing cancer cell inhibition, may also inhibit 
normal cells, hence compromising the selectivity of targeted agents49. By using such a dose 
restriction, we ensured the selectivity of targeted agents returned by the model and minimized the risk 
of toxic effects, making our predictions more clinically actionable. We applied this approach to each 
subclone, hence generating a set of drug-dose-response tuples for the experimental validation. 
 
Retrospective testing of the model predictions in single-agent data from AML patients 
To validate the performance of our model, we first used existing data from bulk drug response assays, 
available for the 12 patient samples from previous studies39. For the single-agent response testing, 20 
μl of fresh AML cell (approximately 10,000) suspension in mononuclear cell medium was added per 
well to pre-drugged plates with 10-fold dilution series of five concentrations, and the whole-well cell 
viability was measured with CellTiter-Glo (CTG; Promega) in duplicate, as previously described30,39. 
After 72 h of incubation at 37°C and 5% CO2, cell viability of each well was measured using the CTG 
luminescent assay and a PHERAstar FS (BMG Labtech) plate reader. The percentage inhibition was 
calculated by normalizing the cell viability to negative control wells containing 0.1% dimethyl sulfoxide 
(DMSO), and positive control wells containing 100 μM cell killing benzethonium chloride (BzCl). 
Notably, these existing single-agent response data were not used in the model training, and were only 
employed retrospectively to test the accuracy of the model to predict effective monotherapies. Since 
the whole-well assay is not a cell population-specific assay, we performed this validation using the 
differentially expressed genes (DEGs) between the malignant cell types and normal cells to generate 
single-agent predictions for each patient sample. Subsequently, we matched the drugs and doses 
predicted by the model to the available patient-specific cell viability dose-response data (Fig. 2b).   
 
Prospective testing using whole-well and flow cytometry assays in the AML patient cells 
The patient-specific predicted combinations were first tested on the bone marrow mononuclear cells 
of each patient in a 4 × 4 dose-response matrix using the bulk CTG viability assay, similarly as 
before17. The combination synergy in the experimental validations was quantified using ZIP model50, 
calculated based on the dose region around the predicted effective dose of each compound in the 
combination. 
 
Cell population-specific drug combination effects in primary AML patient samples were assessed by 
high-throughput flow cytometry assay, as described previously17,51. Briefly, the compounds were 
dissolved in 100% dimethyl sulfoxide and dispensed on conical bottom 384-well plates (Greiner) 
either as single agents or combinations using an Echo 650 liquid handler (Beckman Coulter). 
Cryopreserved bone marrow mononuclear cells were thawed and suspended in 12.5% HS-5 derived 
conditioned medium, and 2-3x104 live cells were seeded with a MultiFlo FX.RAD (BioTek) to 384 well-
plates, followed by incubation for 72 h at 37°C and 5% CO2. To profile the cell subpopulation 
responses, the cells were stained with BV785 Mouse Anti-Human CD14 (Biolegend), VB515 
Recombinant Anti-Human CD56 (Miltenyi), and following antibodies from BD Biosciences; V500 
Mouse Anti-Human CD45, BV650 Mouse Anti-Human CD19, PE-Cy7 Mouse Anti-Human CD3, PE 
Mouse Anti-Human CD34, BV421 Mouse Anti-Human CD38 and APC Mouse Anti-Human CD117, 
together with APC-Fire 750 Annexin V (Biolegend) and DRAQ7 (BD Biosciences). The cells were 
analyzed with an iQue3 flow cytometer (Sartorius). Remaining live cells after drug treatments were 
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gated using Forecyt (Sartorius). Briefly, cell singlets were identified on the basis of FSC-A (forward-
scattered area) versus FSC-H ratio, and live cells were identified by excluding annexin V- and 
DRAQ7-positive cells, followed by identification of leukocytes (CD45+). Further characterization was 
done for NK cells (CD56+CD3-), leukemic blasts (CD34+ and/or CD117+) leukemic stem cells 
(CD34+CD38-), monocytes (CD14) and T/B- cells (SSC-A and CD3/19) from the leukocytes.  
 
Tailoring the experimental-computational approach to ovarian tumor patient samples 
To differentiate between cancer and non-cancerous cells in ovarian cancer patient scRNA-seq data, 
we utilized a panel of established marker genes, including PAX8, CA125, MUC16, WFDC2, and 
EPCAM, collectively referred to as PAX8+ cells; PAX8 is expressed in 80–96% of high-grade serous 
ovarian cancer (HGSC) tumors (Suppl. Fig. 4)52,53. Our initial analysis focused on the HGSC Patient 1 
sample, selected due to the availability of both scRNAseq data and viable cells for experimental 
validation. Due to the small proportion of PAX8+ malignant cells detected in the scRNAseq data, we 
opted to predict only single-agent therapies as opposed to combination therapies. However, during 
the validation phase, the PAX8- fibroblasts of Patient 1, serving as normal controls, died. This led us 
to integrate this sample with two other HGSC Patient 2 and 3 samples, which had readily available 
PAX8- cells. The integration was achieved using the standard Seurat workflow, and the cell types 
were assigned using ScType. Both combined PAX8+ and PAX8- cell populations were visualized 
using Seurat “FeaturePlots”. We used an average of previously-measured responses of PAX8- cells 
from patient 2 and 3 samples (serving as combined ovarian-sample normal controls) to 372 
compounds overlapping with the LINCS 2020 compounds.   
 
Prospective testing in ovarian tumor organoids and drug response assays 
To predict the compounds that specifically target and eliminate cancer PAX8+ cells, while sparing 
PAX8- cells, we utilized the differentially expressed genes (DEGs) from the comparison between 
PAX8+ and PAX8- cells in the scRNA-seq data. These DEGs were used as input for the pre-trained 
LightGBM model. Among the predicted 372 compound responses (that overlapped with drugs tested 
on PAX8- cells), we selected the top-20 most effective compounds, and removed two with low 
confidence, hence resulting in 18 predicted agents. Subsequently, we validated the efficacy of these 
compounds in PAX8+ tumor organoids and compared the results, as shown in Fig. 3b (3 replicates).   
 
Ovarian cancer organoids were established and characterized as previously16, and propagated in 
BME-2 matrix droplets in the sample-specific growth medium. The organoid cultures consisted only of 
cancer cells as judged by whole-genome sequencing and copy number variation analysis. For the 
organoid drug sensitivity testing, the organoid cultures were trypsinized to obtain the single-cell 
suspension. The cells were resuspended in the fresh gel, dispensed to 384-well Ultra-Low Attachment 
microplates (#4588, Corning) at 103 cells per well in 10 µl of the matrix, and covered with 60 µl of 
growth medium containing 5 µM ROCK inhibitor to facilitate the organoids formation. After 6 days, the 
medium was exchanged to 30 μl/well of the ROCK inhibitor-free growth medium. Drug testing was 
performed as described above for single-agent AML sample testing, with the following modifications. 
The tested compounds (10-fold dilution series of five concentrations), vehicle (DMSO), or positive 
control compounds (100 μM benzethonium chloride or 10 μM staurosporine) were transferred to the 
wells using Echo 550 acoustic dispenser (Labcyte). The organoids were incubated with drugs for 7 
days in the humidified incubator at 37°C and the viability was assessed using CellTiter-Glo 3D Cell 
Viability Assay (#G9683, Promega) using a SpectraMax Paradigm microplate reader (Molecular 
Devices) after 5 min of agitation and 25 min of incubation at room temperature, as indicated by the 
manufacturer. The PAX8-negative cells from the ovarian tumor samples were expanded in RPMI-
1640 medium, supplemented with 2 mM glutamine, 1% Pen/Strep and 10% fetal bovine serum 
(Gibco). Drug testing was performed as above. The culture was trypsinized, resuspended in fresh 
medium and seeded at 1000 cells in 25 μl of medium per well in pre-drugged 384-well microplates 
(#3864, Corning). After 7 days of the drug treatment, the viability was measured using the CellTiter-
Glo 2.0 (Promega). 
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Ethical approvals 
AML patient samples and data were collected with signed informed consent in accordance with the 
Declaration of Helsinki (Ethical Committee Statement 303/13/03/01/201, latest amendment 7 dated 
June 15, 2016. Latest HUS study permit HUS/395/2018 dated February 13, 2018). HGSC patients 
participating in the study gave their informed consent, and the study was approved by the Ethics 
Committee of the Hospital District of Southwest Finland (ETMK 145/1801/2015). 
 
Data and code availability 
● The raw single-cell RNA sequencing data for the AML Patients 5, 6 and 12 have been made 

available at the European Genome-phenome Archive (EGA) under the code (pending).  
● The previously published single-cell RNA-seq data of the remaining 9 AML patient samples are 

available at EGA. The raw single-cell RNA sequencing data for the AML Patients 2, 3, 8 and 10 
are available under the code EGAS0000100461417, and for the AML Patients 1, 4, 7, 9 and 11 
under the code EGAS0000100444454.  

● The previously published single-cell RNA-seq data of the 3 HGSC patient samples are available 
at EGA. The raw single-cell RNA sequencing data for the HGSC Patient 1 and Patient 2 are  
available under the code EGAS0000100501014, and raw data for the HGSC Patient 3 under the 
code EGAS0000100506615. 

● The R codes for reproducing and making new patient-specific predictions are available at GitHub: 
https://github.com/kris-nader/scTherapy   
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