

1 **Genetic dissection of regulation by a repressing and novel activating corrinoid**
2 **riboswitch enables engineering of synthetic riboswitches**

3 Rebecca R. Procknow, Kristopher J. Kennedy, Maxwell Kluba, Lesley J. Rodriguez, and Michiko
4 E. Taga*

5 Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, CA USA

6 * Correspondence to taga@berkeley.edu

7

8 **Abstract**

9

10 The ability to sense and respond to intracellular metabolite levels enables cells to adapt to
11 environmental conditions. Many prokaryotes use riboswitches – structured RNA elements
12 usually located in the 5' untranslated region of mRNAs – to sense intracellular metabolites and
13 respond by modulating gene expression. The corrinoid riboswitch class, which responds to
14 adenosylcobalamin (coenzyme B₁₂) and related metabolites, is among the most widespread in
15 bacteria. The structural elements for corrinoid binding and the requirement for a kissing loop
16 interaction between the aptamer and expression platform domains have been established for
17 several corrinoid riboswitches. However, the conformational changes in the expression platform
18 that modulate gene expression in response to corrinoid binding remain unknown. Here, we
19 employ an *in vivo* GFP reporter system in *Bacillus subtilis* to define alternative secondary
20 structures in the expression platform of a corrinoid riboswitch from *Priestia megaterium* by
21 disrupting and restoring base-pairing interactions. Moreover, we report the discovery and
22 characterization of the first riboswitch known to activate gene expression in response to
23 corrinoids. In both cases, mutually exclusive RNA secondary structures are responsible for
24 promoting or preventing the formation of an intrinsic transcription terminator in response to the
25 corrinoid binding state of the aptamer domain. Knowledge of these regulatory mechanisms
26 allowed us to develop synthetic corrinoid riboswitches that convert repressing riboswitches to
27 riboswitches that robustly induce gene expression in response to corrinoids. Due to their high
28 expression levels, low background, and over 100-fold level of induction, these synthetic
29 riboswitches have potential use as biosensors or genetic tools.

30

31 **Introduction**

32 Organisms rely on gene regulation to direct resources toward the physiological needs of the
33 moment. Metabolites are often sensed via metabolite-binding receptor proteins, but bacteria
34 also sense and respond to metabolites using metabolite-binding RNAs known as riboswitches
35 (1, 2). Riboswitches are structured RNAs, usually located in the 5' untranslated region (UTR) of
36 mRNAs, that change conformation to either promote or prevent gene expression in response to
37 direct binding of an effector (3). They often regulate genes related to the synthesis, transport, or
38 use of the effector to which they respond (4). Since their discovery in 2002, over 50 riboswitch
39 classes have been characterized that respond to a range of effectors including amino acids,
40 metal ions, nucleotides, and vitamins (3, 5–10). In addition to their natural forms, synthetic
41 riboswitches have also been developed for use as biological tools (11, 12).

42 All riboswitches have two domains that communicate with each other via the formation of
43 alternative secondary structures. Binding of the effector to the aptamer domain induces the
44 formation of secondary structures in the expression platform domain that influence either
45 translation or transcription elongation of downstream genes (2). In translational riboswitches, a
46 hairpin can form in the expression platform that sequesters the ribosome binding site (RBS) to
47 prevent translation, while the expression platform in transcriptional riboswitches can form an
48 intrinsic transcription terminator hairpin. Most known riboswitches downregulate gene
49 expression in response to effector binding (repressing riboswitches), but some have been found
50 to induce expression (activating riboswitches).

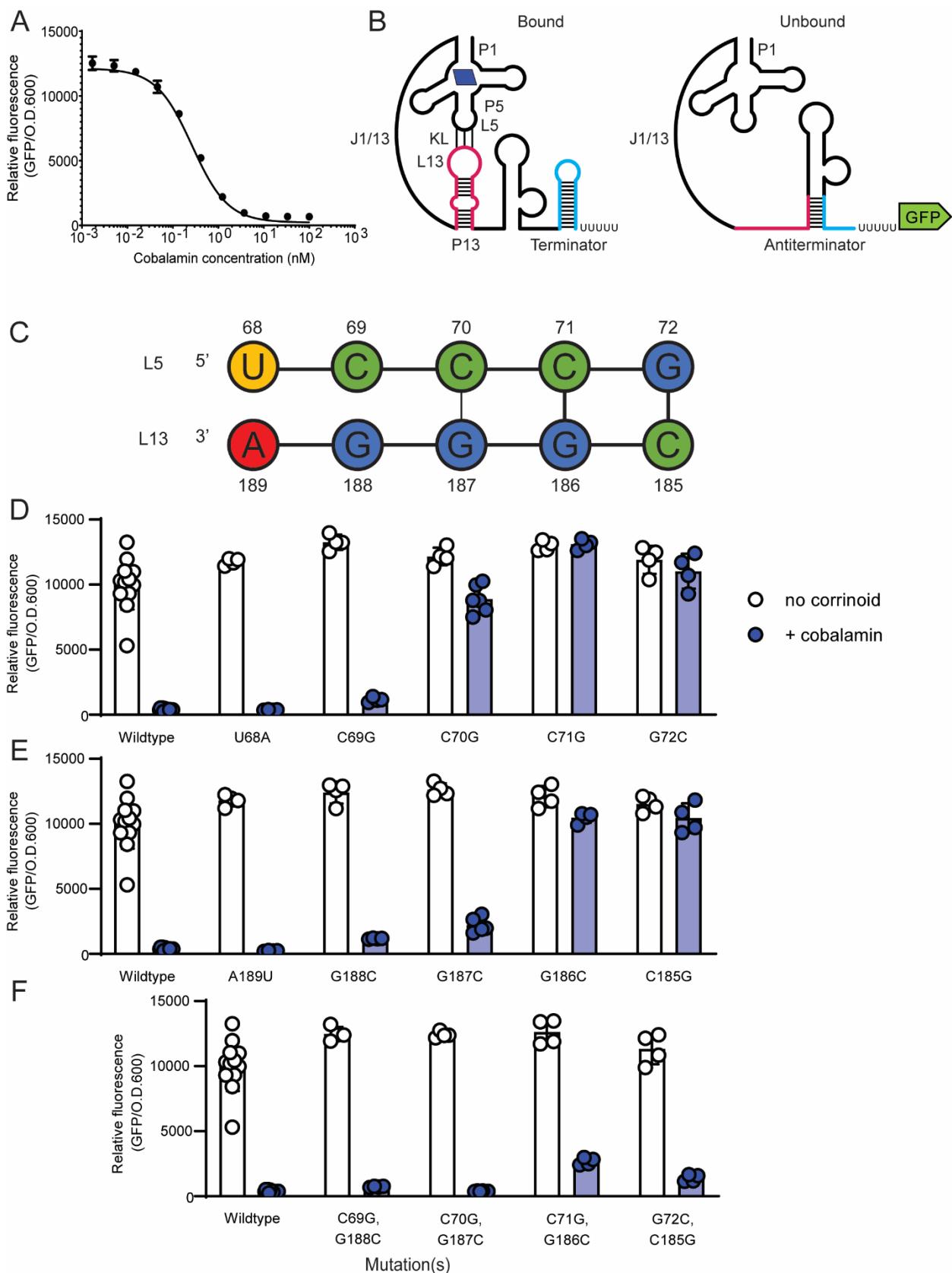
51 The corrinoid riboswitch class (originally named adenosylcobalamin, cobalamin, or B₁₂-
52 riboswitches) is among the most widespread in prokaryotic genomes (3, 13). All known corrinoid
53 riboswitches repress translation or transcription of genes for cobalamin biosynthesis, uptake,
54 cobalamin-independent isozymes, or other functions in response to cobalamin binding (14). Like
55 other riboswitch classes, corrinoid riboswitches can distinguish between structurally similar
56 metabolites such as different cobalamin forms containing either a large (deoxyadenosyl) or
57 small (methyl or hydroxyl) upper axial ligand (15). However, unlike other riboswitch classes, the
58 effectors for corrinoid riboswitches are a group of naturally occurring variants of cobalamin –
59 corrinoids with variation in the lower axial ligand – and we previously found that corrinoid
60 riboswitches can respond to multiple corrinoids (16).

61 Another unusual feature of corrinoid riboswitches is that they rely on a tertiary base-pairing
62 interaction (kissing loop) between loops L5 of the aptamer domain and L13 of the expression
63 platform for effector sensing and repression of gene expression upon cobalamin binding (17,
64 18). Previous studies of the *E. coli* *btuB* and *env8HyCbl* riboswitches demonstrated that the
65 kissing loop interaction modulates the formation of the RBS hairpin to prevent translation (17,
66 18). Specifically, kissing loop formation stabilizes the P13 stem, which promotes the formation
67 of the RBS hairpin, while translation occurs when P13 formation is not stabilized by the kissing
68 loop (18). X-ray crystal structures of translational and transcriptional corrinoid riboswitches
69 resolve the effector-bound states, often including a kissing loop, but these crystal structures do
70 not include other parts of the expression platform such as the RBS hairpin or terminator (15, 19,
71 20). It is not known how the effector-binding state promotes the formation of alternative
72 secondary structures in the expression platform, leading to inhibition of translation or
73 transcription (21). It is also unknown whether the kissing loop modulates the formation of the
74 terminator hairpin in transcriptional riboswitches, as most prior studies focused on corrinoid
75 binding and structural conformations in translational riboswitches (20).

76 Here, we have determined how the effector binding state of the aptamer domain of a model
77 corrinoid riboswitch triggers the formation of alternative RNA structures in the expression
78 platform. Whereas previous studies primarily relied on *in vitro* biochemical and structural
79 approaches, the present study examines the regulatory mechanisms of transcriptional corrinoid
80 riboswitches using an *in vivo* approach, which enabled us to measure the impacts of dozens of
81 mutant riboswitches on regulation in an intracellular context. By constructing targeted mutations
82 predicted to disrupt and restore base-pairing interactions in the expression platform of the
83 *Priestia* (formerly *Bacillus*) *megaterium metE* riboswitch, we identified two alternative structural
84 states in the expression platform that couple corrinoid detection to transcription. We additionally
85 present the discovery of the first known corrinoid riboswitch that activates gene expression in
86 response to corrinoid binding and identify the alternative structural states involved in its corrinoid
87 response. Studying a repressing and an activating riboswitch allowed us to apply the ‘rules’ of
88 the two regulatory strategies to flip the regulatory sign of the repressing riboswitch to create
89 synthetic riboswitches that activate gene expression in response to cobalamin. Some of these
90 synthetic activating riboswitches have a higher maximum expression and fold change than the
91 natural activating riboswitch and could be used as corrinoid-detecting biosensors or regulatory
92 systems.

93

94 **Results**

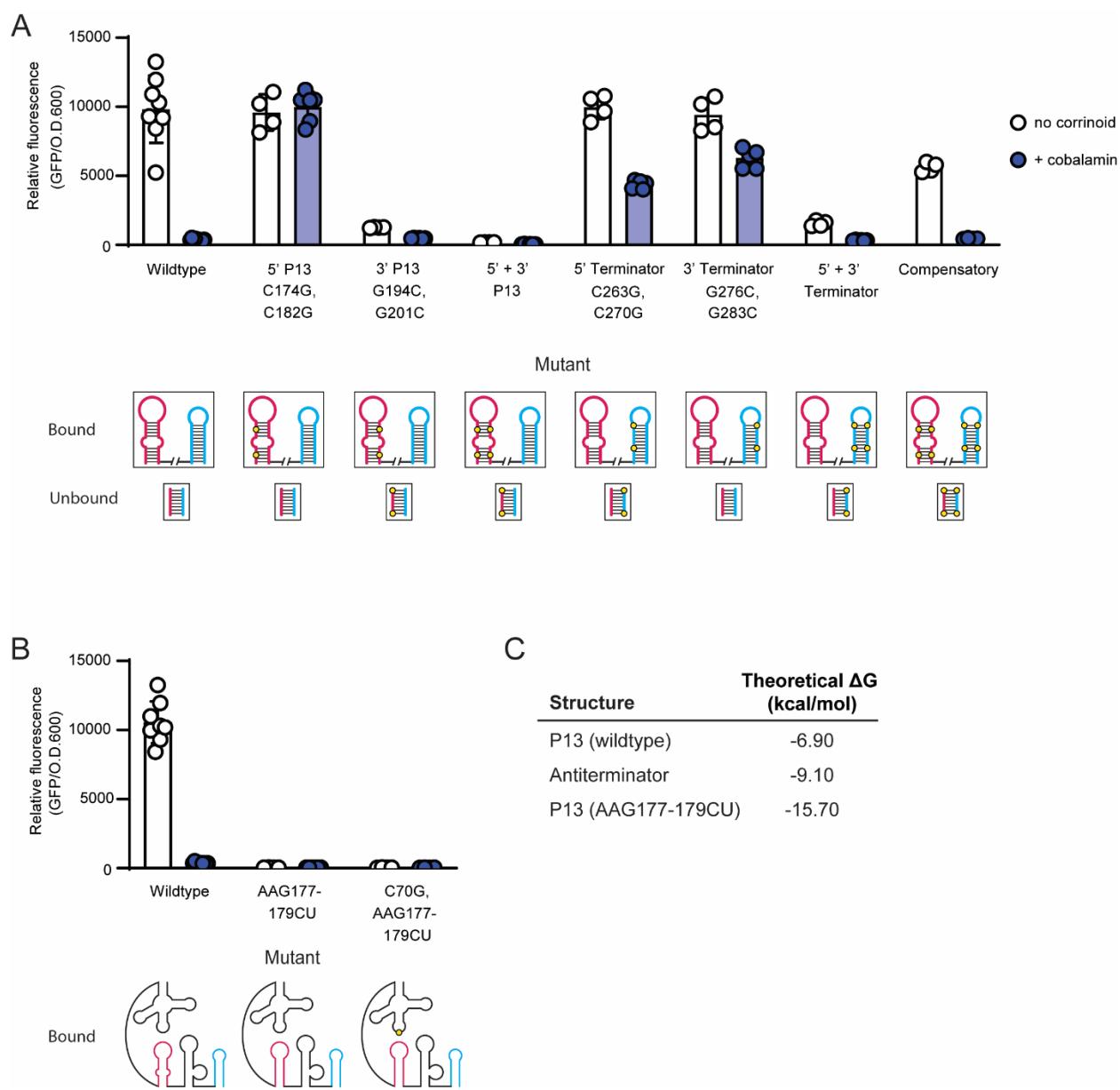

95 **Model for corrinoid-responsive regulation in the *P. megaterium* *metE* riboswitch**

96 We chose to dissect the regulatory mechanism of the *P. megaterium* *metE* riboswitch due to its
97 high fold repression (26-fold) in our *B. subtilis* GFP reporter system (16). This riboswitch
98 downregulates GFP expression in response to cobalamin binding in a dose-dependent manner
99 (Figure 1A) and is predicted to be a transcriptional riboswitch (16). We developed a model for
100 the formation of competing structures in the expression platform based on predicted secondary
101 structures in the expression platform (Figure 1B and Figure S1A and B) (13, 22). According to
102 this model, a kissing loop forms between L5 and L13 when the aptamer domain is bound to a
103 corrinoid. The P13 stem, when stabilized by the kissing loop, is predicted to promote the
104 formation of a terminator hairpin. In the absence of corrinoid binding, we predict that a portion of
105 the 3' side of the P13 stem pairs with part of the 5' side of the terminator stem, forming an
106 antiterminator that prevents the formation of the terminator hairpin. This model contrasts with
107 models of other corrinoid riboswitch expression platforms, which are proposed to form
108 alternative structures with bases from the aptamer domain or other portions of the expression
109 platform (18–20). To test different aspects of the model, we disrupted and restored Watson-
110 Crick-Franklin complementary base-pairing interactions predicted to stabilize one of the two
111 predicted conformations.

112 **Mutational analysis defines the kissing loop in the *P. megaterium* *metE* riboswitch**

113 To determine the mechanism of regulation in the *P. megaterium* *metE* riboswitch, we first
114 mutated each base in the predicted kissing loop and measured its impact on GFP expression in
115 the *B. subtilis* reporter assay. The sequence of L5 exactly matches the UCCCG consensus
116 defined by McCown et al. 2017 (13), and the predicted L5-L13 kissing loop contains five
117 contiguous and complementary base pairs (Figure 1C), as in the *E. coli* *btuB* translational
118 riboswitch (18), but distinct from the *env8* translational riboswitch, which contains both a
119 mismatch and a bulge (17).

Figure 1. Model for the regulatory mechanism of the repressing *P. megaterium* *metE* riboswitch and dissection of the kissing loop. (A) Dose response of the *P. megaterium* *metE* riboswitch to cobalamin in the *B. subtilis* GFP reporter. (B) A model for the effector-bound (left) and unbound (right) conformations of the riboswitch. The effector-bound state is depicted with cobalamin (blue parallelogram) and the kissing loop (KL) interaction between loop (L) 5 and L13. Bases belonging to the paired stem (P) 13 and terminator hairpins are depicted as pink or blue in both structures, respectively. (C) The wildtype kissing loop sequence. Base numbers are relative to the first base in the P1 stem. The influence of point mutations in (D) L5, (E) L13, or (F) combined point mutations in L5 and L13 meant to restore the kissing loop interaction was measured in the *B. subtilis* GFP reporter system without (white) or with (blue) addition of 100 nM cobalamin. Genotypes are listed in Table S1. Data from four or more biological replicates are shown; bars and error bars represent mean and standard deviation, respectively.


121 We found that some of the mutations in L5 and L13 of the *P. megaterium metE* riboswitch result
122 in constitutive GFP expression, indicating a disruption in the ability to sense and respond to
123 corrinoid, while other mutations have little or no impact on expression despite all L5 bases being
124 highly conserved (Figure 1D, E). According to these results, the base pairs in L5-L13 that are
125 most involved in the kissing loop interaction are G72-C185, C71-G186 and, to a lesser extent,
126 C70-G187. Mutation of C69 or G188 had a minimal effect on function, and we observed no
127 effect of mutating U68 or A189. Double mutants that restore the G72-C185, C71-G186 and
128 C70-G187 base-pairing interactions resulted in a complete or nearly complete rescue of the
129 regulatory response, confirming that these base pairs are important for responding to the
130 corrinoid binding state of the aptamer domain (Fig 1F). Together, these results define the
131 functional bases of the kissing loop in this riboswitch as bases C70-C71-G72 in L5 and C185-
132 G186-G187 in L13.

133 **Dissection of the expression platform of the *P. megaterium metE* riboswitch by**
134 **mutational analysis**

135 Having established that L13 is part of the kissing loop, we next investigated the mechanism of
136 regulation by alternative RNA conformations in the expression platform by disrupting and
137 restoring predicted base-pairing interactions in the P13, antiterminator, and terminator stems
138 (Figure 2A). We chose to disrupt G-C pairs in the middle of each stem by changing each base
139 to its Watson-Crick-Franklin complement. First, we introduced two C to G point mutations in the
140 5' side of the P13 stem. According to the model, mutations at these positions would disrupt the
141 P13 stem, allowing the antiterminator to form and thus preventing stabilization of the terminator.
142 As predicted, these mutations result in constitutive expression (Figure 2A). Next, we introduced
143 two G to C point mutations in the complementary bases on the 3' side of the P13 stem. In
144 addition to disrupting the P13 stem like the mutations in the 5' side, these mutations are
145 predicted to disrupt the antiterminator stem, allowing the terminator to form under all conditions.
146 Indeed, this strain has low GFP expression, suggesting the terminator can form even in the
147 absence of corrinoid binding (Figure 2A). We then aimed to restore complementary base-pairing
148 in the P13 stem by combining the mutations in the 5' and 3' sides of the P13 stem. As expected,
149 we observed a strong non-inducible phenotype, as this mutant is predicted to be unable to form
150 the antiterminator despite the restoration of base-pairing in the P13 stem (Figure 2A).

151 We next made mutations predicted to disrupt the terminator stem. Strains harboring two point
152 mutations in either the 5' or 3' sides of the terminator stem were predicted to express GFP
153 constitutively. These strains showed increased expression in the presence of cobalamin, as
154 expected, but retained some inducibility (2.3-fold and 1.5-fold, respectively), suggesting the
155 mutations partially disrupt terminator function (Figure 2A). We then combined the mutations in
156 the 5' and 3' sides of the terminator stem, which is predicted to restore complementary base-
157 pairing in the terminator hairpin with the antiterminator stem remaining disrupted, resulting in a
158 non-inducible phenotype. We observed 6-fold reduced expression in the absence of cobalamin,
159 consistent with an inability to form the antiterminator (Figure 2A). These results are consistent
160 with the model shown in Figure 1B.

161

162

Figure 2. Dissection of the expression platform of the repressing *P. megaterium metE* riboswitch. (A) Influence of point mutations in P13, the terminator, or both stems on gene expression in the *B. subtilis* GFP reporter system without (white) or with (blue) addition of 100 nM cobalamin. The label for each mutant includes the mutated region or the specific mutation, or both. Base numbers are relative to the first base in the P1 stem. For each mutant, a diagram of the P13 (pink) and terminator (blue) hairpins is shown below for the predicted effector-bound conformation and the lower part of the antiterminator stem (pink paired with blue) for the effector-unbound conformation, with the location of each mutation shown as a yellow circle. (B) Phenotypes of mutants designed to close the internal loop in P13. (C) Theoretical ΔG of the wildtype P13, antiterminator, and AAG177-179CU P13 stems calculated in the Structure Editor program (22). Data from four or more biological replicates are shown; bars and error bars represent mean and standard deviation, respectively.

163

164 As an ultimate test of the model for regulation by this riboswitch, we combined the mutations on
165 the 5' and 3' sides of P13 and the terminator. This mutant is expected to restore base-pairing in
166 the P13, terminator, and antiterminator stems, and as a result, restore corrinoid-responsive
167 regulatory function. Despite having eight mutations in a structurally complex regulatory domain,
168 this “compensatory” mutant showed an inducible phenotype, indicating restored regulatory
169 function (Figure 2A). This result provides strong evidence in support of our model for the
170 regulatory mechanism of this riboswitch.

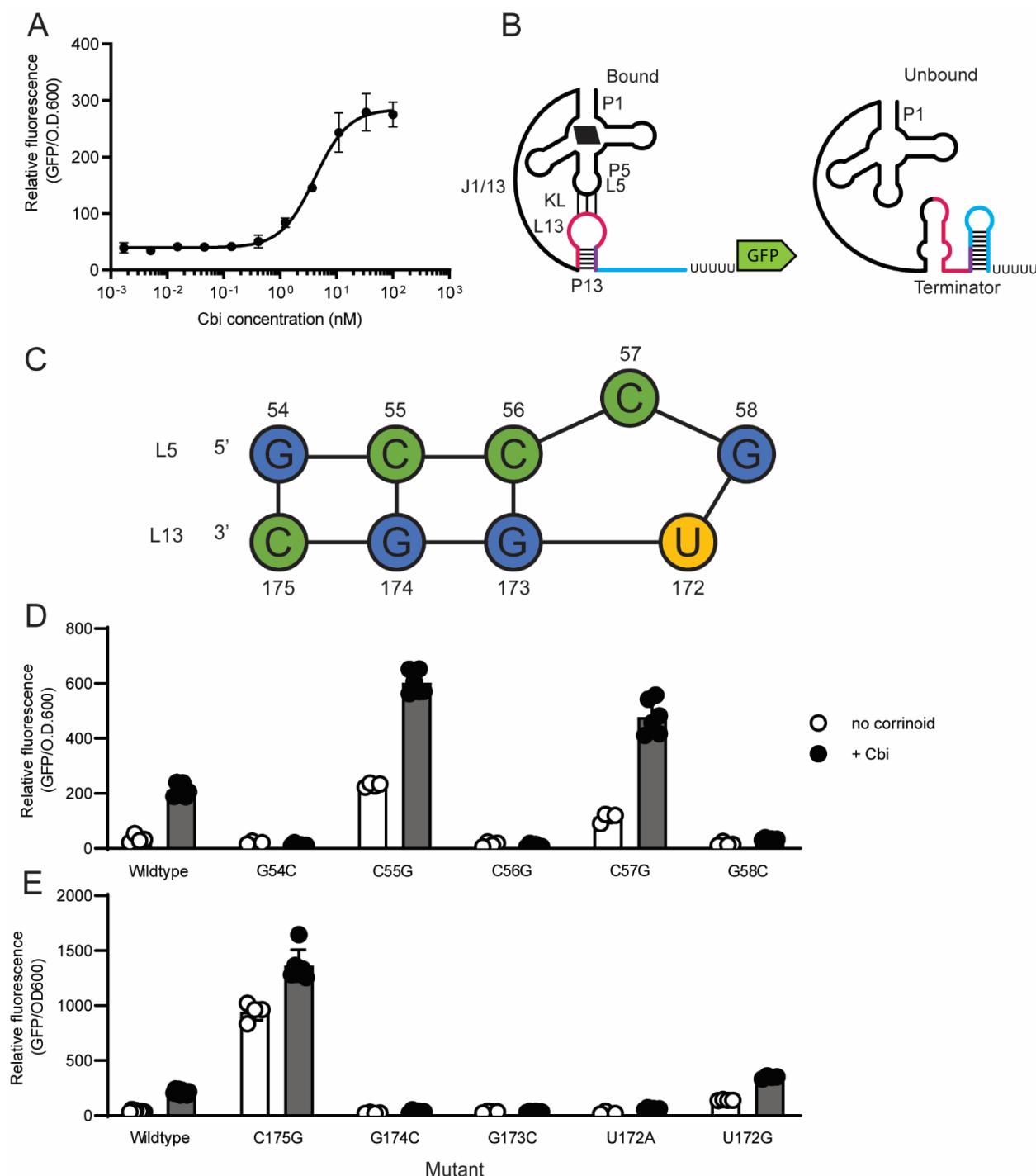
171 **Examining the unpaired regions of the expression platform of the *P. megaterium metE***
172 **riboswitch**

173 Our model predicts the presence of an additional structured region containing a large bulge,
174 located between P13 and the terminator in the bound state, which forms the top of the
175 antiterminator in the unbound state (Figure 1B). We found that the large bulge is dispensable for
176 regulation, yet deletion of the entire structured region impacted both repression and maximal
177 expression, suggesting it is important for function (Figure S2).

178 Our model for corrinoid-responsive regulatory switching relies on the formation of alternative
179 stem-loops in response to the corrinoid-binding state of the aptamer domain (Figure 1B). Implicit
180 in the model is that the antiterminator should be more stable than P13 in the absence of the
181 kissing loop interaction. In this riboswitch, P13 contains an internal loop that we predict
182 sufficiently destabilizes P13 in the absence of the kissing loop to favor formation of the
183 antiterminator stem. To test this aspect of the model, we mutated the 5' side of the internal loop
184 to bases complementary to those in the 3' side of the loop, resulting in a closed stem predicted
185 to be more stable than the antiterminator. This mutant showed very low expression (Figure 2B,
186 AAG177-179CU), indicating the stabilized P13 stem prevents antiterminator formation, thus
187 promoting formation of the terminator regardless of the corrinoid-binding state of the aptamer
188 domain. This phenotype is independent of the kissing loop, as disruption of the kissing loop did
189 not influence the phenotype of this mutant (Figure 2B, C70G, AAG177-179CU). Our model for
190 regulatory switching is further supported by calculations of the stability of the wild type and
191 mutant P13 and antiterminator stems. Using the Structure Editor program (22), we estimated
192 the free energy of each predicted stem and found that the antiterminator stem is estimated to be
193 more stable than the wildtype P13 stem, but less stable than the closed AAG177-179CU P13
194 stem (Figure 2C). Taken together, our mutational analysis of this riboswitch established the
195 interdependent roles of the kissing loop, P13, antiterminator, and terminator stem in regulating
196 gene expression in response to corrinoid binding.

197 **A model for regulation via a novel activating corrinoid riboswitch**

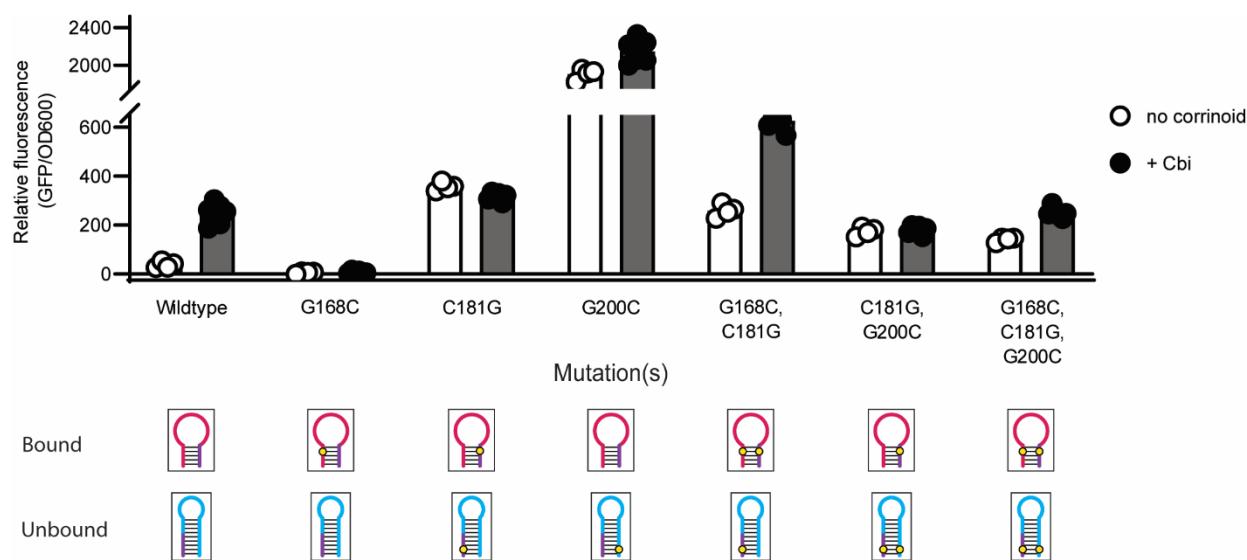
198 In the course of our study of corrinoid riboswitches from diverse bacteria, we have discovered
199 the first known riboswitch that activates gene expression in response to corrinoids, located
200 upstream of the cobalamin lower ligand activation gene *cobT* in the bacterium *Alkalihalobacillus*
201 (formerly *Bacillus*) *halodurans*. This riboswitch responds to cobinamide (Cbi), a corrinoid lacking
202 a lower ligand, with 8-fold induction in the *B. subtilis* GFP reporter system (Figure 3A). This
203 sequence was previously annotated as a cobalamin riboswitch in a bioinformatic study, but its


204 function has not been experimentally validated (23). We investigated the regulatory mechanism
205 of the *A. halodurans* *cobT* riboswitch, both to understand how corrinoid binding is coupled to
206 activation and to compare its mechanism with that of the *P. megaterium* *metE* riboswitch. We
207 propose a model in which L5 and L13 form a kissing loop that stabilizes P13 when a corrinoid is
208 bound to the aptamer domain, as in the *P. megaterium* *metE* riboswitch (Figure 3B and Figure
209 S1C and D). Unlike the repressing riboswitch, however, P13 and the transcription terminator are
210 mutually exclusive in this model, and thus P13 functions as an antiterminator upon corrinoid
211 binding. We tested the model by introducing mutations predicted to disrupt and restore the
212 kissing loop, P13, and the terminator, using the *B. subtilis* GFP reporter.

213 **The activating cobalamin riboswitch relies on a kissing loop**

214 Our model predicts that, like other corrinoid riboswitches, the *A. halodurans* *cobT* riboswitch
215 relies on a kissing loop for sensing and responding to corrinoids, and therefore disruption of the
216 kissing loop should prevent the riboswitch from activating gene expression. The predicted L5
217 sequence, GCCCG, is similar to the reported UCCCG consensus sequence. This loop could
218 form base-pairing interactions with four of the ten bases in the predicted L13 sequence, UGGC,
219 with an unpaired C creating a bulge in L5, as observed previously in L13 of the *env8HyCbl*
220 riboswitch (Figure 3C) (17). We found that single point mutations in any of the predicted kissing
221 loop bases disrupted regulatory function, suggesting all are involved in corrinoid-responsive
222 regulation. Mutation of G54, C56, or G58 in L5 or G174, G173, or U172 in L13 to their Watson-
223 Crick-Franklin complement disrupted kissing loop function in the expected way, resulting in non-
224 inducible GFP expression indicative of an inability to sense or to respond to corrinoids (Figure
225 3D, E). However, mutation of C55 or C57 in L5 or C175 in L13 to their Watson-Crick-Franklin
226 complement, or mutation of U172 to G, resulted in expression levels exceeding that of the
227 wildtype riboswitch, suggesting that the terminator was prevented from forming in these mutants
228 (Figure 3D, E). These are the only mutants with the potential to form four consecutive base
229 pairs, likely a more stable structure than the wildtype kissing loop. Thus, our results suggest that
230 a kissing loop containing four consecutive base pairs stabilizes P13 to the extent that the
231 riboswitch is rarely able to adopt the unbound conformation, similar to the closed-bulge mutant
232 (g) of the *env8HyCbl* riboswitch made by Polaski et al. (17). The 54C-C175G double mutant,
233 which is also predicted to be capable of forming four consecutive base pairs, similarly showed
234 expression levels higher than the wild type (Figure S3). In contrast, double mutants C55G-
235 G174C and C56G-G173C show non-inducible expression despite restoring four base pairs with
236 a bulge, suggesting that both the strength of the kissing loop interaction and the specific bases
237 contained in L5 and L13 contribute to sensing and responding to corrinoid bound by the
238 aptamer domain. Overall, our results support a model in which the bases in L5 and L13 form a
239 kissing loop containing a bulge to stabilize P13 when corrinoid is bound to the aptamer domain
240 and allow the terminator to form when corrinoid is absent (Figure 3B).

241 **Alternative pairing between bases in P13 and the terminator is responsible for the
242 activating mechanism**


243 We tested this aspect of the model by disrupting and restoring the stems of P13 and the
244 terminator. We found that mutating a single base in the 5' side of the P13 stem (G168C)

245

Figure 3. Model for the regulatory mechanism and dissection of the novel activating *A. halodurans* *cobT* riboswitch. (A) Dose response of the *A. halodurans* *cobT* riboswitch to cobinamide (Cbi) in the *B. subtilis* GFP reporter. (B) A model for the effector-bound (left) and effector-unbound (right) conformations. The effector-bound state is depicted with Cbi (black parallelogram) and the kissing loop (KL). The color scheme follows that of Fig. 1, but with the region common to P13 and the terminator shown in purple. (C) Diagram of the kissing loop depicting the hypothesized bulge at C57. Base numbers are relative to the first base of P1. The influence of point mutations in (D) L5 and (E) L13 on gene expression was measured in the *B. subtilis* GFP reporter system without (white) or with (blue) addition of 100nM Cbi. Data from four or more biological replicates are shown; bars and error bars represent mean and standard deviation, respectively.

246 results in a non-inducible phenotype, consistent with P13 functioning as an antiterminator
247 (Figure 4). In contrast, changing a single base in the sequence shared by the 3' side of the P13
248 stem and the 5' side of the terminator stem (C181G) results in a constitutive phenotype, as
249 expected, due to disruption of the terminator stem (Figure 4). Disrupting a single base in the 3'
250 side of the terminator stem (G200C) also results in constitutive expression, but at an expression
251 level 5.3-fold higher compared to disruption of the 5' side of the terminator, suggesting the
252 sequence context of the terminator influences its strength (Figure 4). The phenotypes of these
253 three single mutants support the hypothesis that P13 and the terminator are alternative
254 secondary structures that inversely influence gene expression.

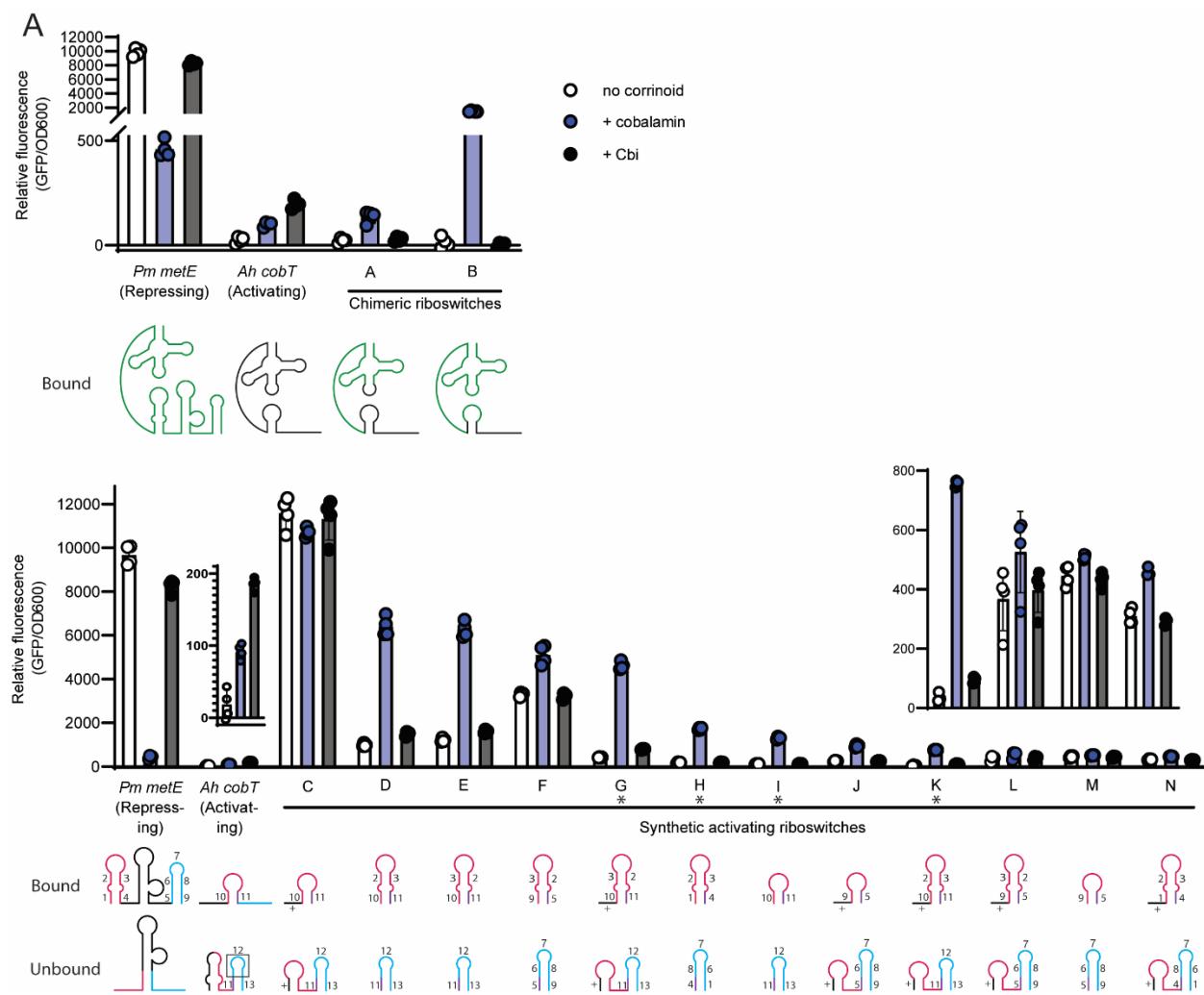
Figure 4. Dissection of the expression platform of the novel activating *A. halodurans* *cobT* riboswitch. The influence of mutations in P13, the terminator, or both stems on gene expression was measured in the *B. subtilis* GFP reporter system without (white) or with (black) addition of 100nM Cbi. (Bottom) Diagrams of P13 in the predicted effector-bound state and the terminator in the predicted unbound state are shown with the location of each mutation as in Figure 2. The purple region shows the bases that belong to both P13 and the terminator. Data from four or more biological replicates are shown; bars and error bars represent mean and standard deviation, respectively.

255
256 The G168C, C181G double mutant was expected to restore the P13 stem but retain the
257 constitutive phenotype of the single C181G mutant due to the disruption of the terminator. This
258 strain shows higher uninduced and induced expression than wild type, with 2.4-fold induction
259 with Cbi addition, suggesting that the terminator retains partial function, allowing some corrinoid-
260 dependent regulation via the restored P13 (Figure 4). The C181G, G200C double mutant was
261 expected to have a non-inducible phenotype due to the restored terminator stem and disrupted
262 P13. This mutant was unable to respond to corrinoid addition, but its intermediate level of
263 expression suggests the restored terminator hairpin is weaker than the wildtype terminator
264 (Figure 4). In the triple G168C, C181G, G200C mutant, nearly 2-fold activation is restored,
265 suggesting that both P13 and the terminator retain partial function in this strain (Figure 4).
266 Overall, these results support the proposed regulatory model, and additionally reveal that both
267 the ability to form alternative structures and the sequences within these structures contribute to
268 the switching function of this riboswitch.

269 **Corrinoid riboswitches are diverse in sequence and mechanism**

270 Having established and tested models for corrinoid-responsive regulation in one repressing and
271 one activating riboswitch, we sought to understand the extent to which other corrinoid
272 riboswitches may function via the same mechanism. We generated models for the formation of
273 competing structures in the expression platform of two repressing corrinoid riboswitches from
274 *Sporomusa ovata* and tested them by mutational analysis. The *S. ovata cobT* riboswitch
275 responded as predicted when disrupting and restoring P13, but the compensatory mutant did
276 not restore function (Figure S4 and S5). In contrast, the mutations predicted to disrupt and
277 restore regulation in the the *S. ovata nikA* riboswitch did not result in predicted phenotypes,
278 indicating this riboswitch functions via a different mechanism. We hypothesize that multiple
279 alternative base-pairing strategies exist for sensing and responding to corrinoids, due to the
280 remarkable diversity in corrinoid riboswitch sequences (13, 23, 24). This diversity is apparent
281 when comparing the lengths of each subdomain in the 38 corrinoid riboswitches we previously
282 studied in the *B. subtilis* GFP reporter assay (Figure S6) (16). For example, P13 stems range
283 from six to 17 bases in length, and the region between P13 and the terminator, which contains
284 the antiterminator in the *P. megaterium metE* riboswitch, ranges from zero to 82 bases (Figure
285 S6). Thus, it is likely that numerous mechanisms exist for coupling corrinoid binding to gene
286 regulation.

287 **Flipping the regulatory sign using synthetic expression platforms.**


288 A comparison of the regulatory mechanisms for the two riboswitches investigated in this work
289 shows that the main mechanistic difference between the repressing and activating riboswitches
290 is in the nature of the antiterminator: in the repressing riboswitch, it is a structure that forms only
291 when P13 does not form, while in the activating riboswitch the antiterminator is P13 itself. We
292 tested whether these regulatory “rules” can be applied to the design of synthetic riboswitches by
293 attempting to flip the regulatory sign of a repressing or activating riboswitch. In the *B. subtilis yitJ*
294 repressing SAM riboswitch, the regulatory sign was flipped by replacing the expression platform
295 with a modified one from the *B. subtilis pbuE* activating adenine riboswitch (25). However, the
296 kissing loop interaction between the aptamer and expression platform domains in the corrinoid
297 riboswitch makes it less likely that simply exchanging the expression platform will preserve
298 regulatory function.

299 We constructed a series of engineered expression platforms fused to the aptamer domains of
300 the *P. megaterium metE* or *A. halodurans cobT* riboswitches using two strategies. First, we
301 replaced the entire expression platform of one riboswitch with the other and swapped the
302 sequence in L5 or L13 to preserve the kissing loop interaction. The two chimeric riboswitches
303 designed to activate gene expression in response to corrinoid addition induced GFP expression
304 in response to cobalamin (Figure 5A). Consistent with corrinoid selectivity being encoded in the
305 aptamer domain, these chimeric riboswitches retained selectivity for cobalamin, as they showed
306 little or no response to Cbi (Figure 5A). The two chimeric riboswitches designed to repress GFP
307 expression did not respond to corrinoid addition (Figure S7A).

308 In a second strategy, we constructed 20 synthetic expression platforms composed of P13,
309 antiterminator, and terminator hairpins, with different combinations of sequences and lengths.
310 Seven of the 12 synthetic riboswitches designed to activate GFP expression showed induction
311 in response to cobalamin. Notably, these synthetic riboswitches ranged from 8- to over 24-fold
312 induction, higher than in the wildtype *A. halodurans cobT* riboswitch, which was activated 6-fold
313 (Figure 5B). These riboswitches responded only to cobalamin, indicating that, like the chimeric
314 riboswitches, corrinoid selectivity was encoded in the aptamer domain (Figure 5B). There
315 appears to be no correlation between fold induction or expression level and any specific
316 sequence, length of subdomains, or accessory structures among the synthetic riboswitches.
317 Further, none of the synthetic riboswitches designed to convert the *A. halodurans cobT*
318 riboswitch to a repressing riboswitch showed a response to corrinoid (Figure S7B).
319 Nevertheless, these results demonstrate that the mechanistic rules discovered for the activating
320 riboswitch – namely, the formation of alternative structures containing P13 stabilized by the
321 kissing loop in the corrinoid-bound form versus the terminator hairpin in the unbound form – can
322 be applied to design a variety of synthetic riboswitches with higher maximal expression and fold
323 activation than the naturally occurring activating riboswitch of *A. halodurans*.

324

Figure 5. Chimeric and synthetic riboswitches effectively flip the regulatory sign. (A) Chimeric
riboswitches were constructed by fusing the *P. megaterium metE* aptamer with the *A. halodurans*
cobT expression platform, and gene expression was measured in the *B. subtilis* GFP reporter system
with no corrinoid (white), or with addition of 100 nM cobalamin (blue), or Cbi (black). *P. megaterium*
metE riboswitch sequences are shown in green and *A. halodurans cobT* sequences in black in the
diagrams below, depicting the effector-bound conformation. Kissing loops were preserved by
changing either L5 (Riboswitch A) or L13 (Riboswitch B). (B) Synthetic riboswitches were constructed
by appending the *P. megaterium metE* aptamer with combined portions of the expression platforms of
the *P. megaterium metE* and *A. halodurans cobT* riboswitches. Insets of the wildtype *A. halodurans*
cobT riboswitch and synthetic riboswitches K, L, M, and N are shown above the respective strains.
Diagrams of the expression platform of each riboswitch construct in the bound (top) and unbound
(bottom) conformations are shown below. Numbers represent sequences from P13 (pink and purple)
and the terminator (blue and purple) from either the *P. megaterium metE* (numbered 1-9) or *A.*
halodurans cobT (10-13) riboswitch. Sequence 12 includes both the loop and part of the terminator
stem. Sequences designated with a '+' are entirely synthetic and are the reverse complement of L13
of the *P. megaterium metE* riboswitch. Riboswitches with an asterisk (G, H, I, and K) showed the
highest fold change. Data from four biological replicates are shown bars and error bars represent
mean and standard deviation, respectively.

343 have been known to repress the expression of genes for corrinoid biosynthesis and uptake to
344 maintain homeostatic intracellular corrinoid levels (4). The presence of an activating corrinoid
345 riboswitch upstream of the corrinoid biosynthesis gene *cobT* in *A. halodurans* diverges from this
346 trend. Riboswitches have been found upstream of *cobT* in many other bacteria, but all of those
347 tested previously repress gene expression upon corrinoid binding (16). *cobT* functions in the
348 late stages of corrinoid biosynthesis by phosphoribosylating the lower ligand base to be
349 attached to Cbi to form a complete corrinoid (29). We hypothesize the difference in regulatory
350 sign between the *A. halodurans* *cobT* riboswitch and other *cobT* riboswitches lies in their
351 selectivity. Other *cobT* riboswitches tested to date respond most strongly to complete corrinoids
352 (16), which could signal that *cobT* expression is no longer needed and should be repressed. In
353 contrast, the *A. halodurans* *cobT* riboswitch responds most strongly to Cbi, which is a substrate
354 for enzymes downstream of CobT in the synthesis pathway. Thus, this riboswitch may enable
355 the cell to sense and respond to increased Cbi levels by increasing *cobT* expression in order to
356 complete the final stages of corrinoid biosynthesis.

357
358 Overall, our results demonstrate that the main driver of corrinoid riboswitch function is the
359 relative stabilization of alternative secondary structures that promote or prevent transcription
360 elongation. Our results additionally reveal that the sequences within the stems can affect
361 function. For example, changing a single G base on the 5' side of the terminator of the *A.*
362 *halodurans* *cobT* riboswitch affects expression differently from a change in its complement on
363 the 3' side (Figure 4). We further observed the effect of sequence location when testing
364 synthetic riboswitches G and K (Figure 5B): swapping sequences 2 and 3 in the P13 stem while
365 preserving the same secondary structure and nucleotide content led to differences in
366 expression, again suggesting that the sequence context within hairpins impacts function. The
367 mechanistic basis of these differences should be the subject of future study.

368
369 Our experimental results, coupled with the variability in the lengths of hairpins and junctions
370 between hairpins in the expression platform, highlight the versatility of RNA in adopting multiple
371 strategies for achieving the same outcome. The *P. megaterium* *metE* riboswitch, for example,
372 relies on a large internal structured region between P13 and the terminator for regulatory
373 function. This region of the expression platform is the most variable in length across corrinoid
374 riboswitches, suggesting there are diverse strategies for using alternative secondary structures
375 to regulate expression rather than a single universal mechanism of corrinoid riboswitch
376 regulatory function. Several different models of competing secondary structures in the
377 expression platform have been proposed previously (18–20) and additional mechanisms likely
378 remain to be discovered.

379
380 We used the mechanistic rules we uncovered in the mutational analysis of repressing and
381 activating riboswitches to design synthetic riboswitches that convert a repressing riboswitch to
382 an activating riboswitch. The range in corrinoid response in the synthetic riboswitches was
383 surprising, particularly given that they all showed higher maximal expression and most showed
384 higher fold induction than the natural activating riboswitch. Due to their stronger signal, these
385 synthetic riboswitches could potentially be used to detect corrinoids in live cells, food, patient
386 samples, and other samples of interest, or as tools to control gene expression. In light of this,

387 naturally occurring expression platforms can be better utilized as blueprints for engineering
388 precise and robust biosensors and gene regulatory devices.

389 **Materials and Methods**

390 *Riboswitch sequence manipulation:*

391 Secondary structures in the aptamer domain were annotated manually based on the consensus
392 sequence reported in McCown et al. 2017 (13). The P13, terminator, and other stems in the
393 expression platform were annotated using predictions from the StructureEditor program of
394 RNAstructure 6.2 (22). All riboswitch mutant constructs were designed in Benchling. Synthetic
395 expression platforms were designed by combining sequences from the P13 and terminator
396 stems from the *P. megaterium metE* and *A. halodurans cobT* riboswitches. The L13 sequence
397 was sourced from the same riboswitch as the aptamer domain. The P13 stem adopted the five
398 base stem or split ten base stem structure as the two wildtype riboswitches. The terminator was
399 designed to either pair with or overlap with the P13 stem. For the synthetic repressing
400 riboswitches, the 3' side of P13 paired with the 5' side of the terminator. For the synthetic
401 activating riboswitches, the 3' side of P13 shared sequence with the 5' side of the terminator.

402 *Strain construction:*

403 All *B. subtilis* reporter strains were derived from KK642 (*Em his nprE18 aprE3 eglSΔ102*
404 *bglT/bglSΔEV lacA::PxyIA-comK loxP-Pveg-btuFCDR queG::loxP*) which was derived from
405 strain 1A976 of Zhang et al. (16, 30). All riboswitch mutant constructs were ordered as eBlocks
406 from IDT (Benchling links in Table S1). Each was designed to contain the full-length riboswitch
407 with homology to pKK374 at the Nhel (NEB) cut site (16). Linearized pKK374 and the eBlocks
408 were assembled via Gibson assembly. Plasmids were then transformed into XL1-Blue
409 competent cells (UC Berkeley Macrolab) and plated on LB with 100 µg/mL ampicillin. Plasmids
410 from three or four colonies were purified and Sanger sequenced at the Barker DNA Sequencing
411 facility. Plasmids with the correct sequence were linearized with Scal-HF (NEB) and
412 transformed into the *B. subtilis* fluorescent reporter strain KK642 where they were integrated
413 into the chromosome at the *amyE* locus and plated on LB with 100 µg/mL spectinomycin.
414 Successful integration was confirmed by PCR.

415 *Riboswitch fluorescent reporter assay:*

416 The *B. subtilis* fluorescent reporter strain used in this study and the corrinoid addition assay of
417 riboswitch reporter constructs were developed by Kennedy et al. 2022 (16). Strains containing
418 each riboswitch construct were grown from colonies in LB in a 96-well 2 mL deep well plate and
419 shaken in a benchtop heated plate shaker (Southwest Science) at 37 °C until the cultures
420 reached an optical density at 600 nm OD₆₀₀ of 1.0, usually after 4-5 hours. Cultures were then
421 diluted to a starting OD₆₀₀ of 0.05 into a 96-well microtiter plate (Corning) with either 100 nM
422 cobalamin or Cbi or no corrinoid. Plates were shaken for five hours at 37 °C. A single end point
423 reading of absorbance at 600 nm and GFP fluorescence (excitation/emission/bandwidth =

424 485/525/10 nm) were measured with a Tecan Infinite M1000 Pro plate reader. Data were plotted
425 and analyzed in GraphPad Prism 9.

426 **Acknowledgements**

427 We thank Ming Hammond, Karine Gibbs, Kathleen Ryan, Kathleen Collins, Elliotte Garling,
428 Christine Qabar, and all members of the Taga lab for helpful discussions. We thank Zoila
429 Alvarez-Aponte, Zachary Hallberg, Janani Hariharan, Kenny Mok, and Dennis Suazo for critical
430 reading of the manuscript. This work was supported by NIH grant R35GM139633 to M.E.T., NIH
431 grant T32GM132022 to R.R.P. and the Sponsored Projects for Undergraduate Researchers
432 program at UC Berkeley (M.K.). We acknowledge that this work was conducted on the ancestral
433 and unceded land of the Ohlone people.

434 **References**

- 435 1. Bervoets I, Charlier D. 2019. Diversity, versatility and complexity of bacterial gene
436 regulation mechanisms: opportunities and drawbacks for applications in synthetic biology.
437 *FEMS Microbiol Rev* 43:304–339.
- 438 2. Winkler WC, Breaker RR. 2005. Regulation of Bacterial Gene Expression by Riboswitches.
439 *Annual Review of Microbiology* 59:487–517.
- 440 3. Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL, Breaker RR. 2002. Genetic Control by
441 a Metabolite Binding mRNA. *Chemistry & Biology* 9.
- 442 4. Barrick JE, Breaker RR. 2007. The distributions, mechanisms, and structures of
443 metabolite-binding riboswitches. *Genome Biol* 8:R239.
- 444 5. Kavita K, Breaker RR. 2022. Discovering riboswitches: the past and the future. *Trends in
445 Biochemical Sciences* 48:119–141.
- 446 6. Winkler WC, Cohen-Chalamish S, Breaker RR. 2002. An mRNA structure that controls
447 gene expression by binding FMN. *Proceedings of the National Academy of Sciences* 99.
- 448 7. Winkler W, Nahvi A, Breaker RR. 2002. Thiamine derivatives bind messenger RNAs
449 directly to regulate bacterial gene expression. *Nature* 419.
- 450 8. Sudarsan N, Barrick JE, Breaker RR. 2003. Metabolite-binding RNA domains are present
451 in the genes of eukaryotes. *RNA* 9:644–647.
- 452 9. Furukawa K, Ramesh A, Zhou Z, Weinberg Z, Vallery T, Winkler WC, Breaker RR. 2015.
453 Bacterial riboswitches cooperatively bind Ni²⁺ or Co²⁺ ions and control expression of
454 heavy metal transporters. *Mol Cell* 57:1088–1098.

455 10. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. 2003. Regulation of lysine
456 biosynthesis and transport genes in bacteria: yet another RNA riboswitch? *Nucleic Acids*
457 *Res* 31:6748–6757.

458 11. Hallberg ZF, Su Y, Kitto RZ, Hammond MC. 2017. Engineering and In Vivo Applications of
459 Riboswitches. *Annual Review of Biochemistry* 86:515–539.

460 12. Wachsmuth M, Findeiß S, Weissheimer N, Stadler PF, Mörl M. 2012. De novo design of a
461 synthetic riboswitch that regulates transcription termination. *Nucleic Acids Res* 41:2541–
462 2551.

463 13. McCown PJ, Corbino KA, Stav S, Sherlock ME, Breaker RR. 2017. Riboswitch diversity
464 and distribution. *RNA* 23:995.

465 14. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. 2003. Comparative genomics of
466 the vitamin B12 metabolism and regulation in prokaryotes. *J Biol Chem* 278:41148–41159.

467 15. Johnson Jr JE, Reyes FE, Polaski JT, Batey RT. 2012. B12 cofactors directly stabilize an
468 mRNA regulatory switch. *Nature* 492.

469 16. Kennedy KJ, Widner FJ, Sokolovskaya OM, Innocent LV, Procknow RR, Mok KC, Taga
470 ME. 2022. Cobalamin Riboswitches Are Broadly Sensitive to Corrinoid Cofactors to Enable
471 an Efficient Gene Regulatory Strategy. *mBio* 13:e01121-22.

472 17. Polaski JT, Holmstrom ED, Nesbitt DJ, Batey RT. 2016. Mechanistic Insights into Cofactor-
473 Dependent Coupling of RNA Folding and mRNA Transcription/Translation by a Cobalamin
474 Riboswitch. *Cell reports* 15:1100.

475 18. Lussier A, Bastet L, Chauvier A, Lafontaine DA. 2015. A Kissing Loop Is Important for btuB
476 Riboswitch Ligand Sensing and Regulatory Control. *The Journal of Biological Chemistry*
477 290:26739.

478 19. Peselis A, Serganov A. 2012. Structural insights into ligand binding and gene expression
479 control by an adenosylcobalamin riboswitch. *Nature Structural & Molecular Biology*
480 19:1182–1184.

481 20. Chan CW, Mondragón A. 2020. Crystal structure of an atypical cobalamin riboswitch
482 reveals RNA structural adaptability as basis for promiscuous ligand binding. *Nucleic Acids*
483 *Research* 48:7569–7583.

484 21. Lennon SR, Batey RT. 2022. Regulation of Gene Expression Through Effector-dependent
485 Conformational Switching by Cobalamin Riboswitches. *J Mol Biol* 434:167585.

486 22. Reuter JS, Mathews DH. 2010. RNAstructure: software for RNA secondary structure
487 prediction and analysis. *BMC Bioinformatics* 11:129.

488 23. Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS. 2003. Regulation of the vitamin
489 B12 metabolism and transport in bacteria by a conserved RNA structural element. *RNA*
490 9:1084–1097.

491 24. Choudhary PK, Duret A, Rohrbach-Brandt E, Holliger C, Sigel RKO, Maillard J. 2013.
492 Diversity of Cobalamin Riboswitches in the Corrinoid-Producing Organohalide Respirer
493 *Desulfitobacterium hafniense*. *Journal of Bacteriology* 195:5186.

494 25. Ceres P, Trausch JJ, Batey RT. 2013. Engineering modular 'ON' RNA switches using
495 biological components. *Nucleic Acids Research* 41:10449–10461.

496 26. Polaski JT, Webster SM, Johnson JE, Batey RT. 2017. Cobalamin riboswitches exhibit a
497 broad range of ability to discriminate between methylcobalamin and adenosylcobalamin.
498 *Journal of Biological Chemistry* 292.

499 27. Holmstrom ED, Polaski JT, Batey RT, Nesbitt DJ. 2014. Single-molecule conformational
500 dynamics of a biologically functional hydroxocobalamin riboswitch. *J Am Chem Soc*
501 136:16832–16843.

502 28. Ding J, Lee Y-T, Bhandari Y, Schwieters CD, Fan L, Yu P, Tarosov SG, Stagno JR, Ma B,
503 Nussinov R, Rein A, Zhang J, Wang Y-X. 2023. Visualizing RNA conformational and
504 architectural heterogeneity in solution. 1. *Nat Commun* 14:714.

505 29. Cameron B, Guilhot C, Blanche F, Cauchois L, Rouyez MC, Rigault S, Levy-Schil S,
506 Crouzet J. 1991. Genetic and sequence analyses of a *Pseudomonas denitrificans* DNA
507 fragment containing two cob genes. *J Bacteriol* 173:6058–6065.

508 30. Zhang X, Zhang Y -H. P. 2011. Simple, fast and high-efficiency transformation system for
509 directed evolution of cellulase in *Bacillus subtilis*. *Microb Biotechnol* 4:98–105.

510