

1 **Is HDL-c plasma concentration a possible marker of HIV replication? A cross-sectional analysis in untreated**
2 **HIV-infected individuals accessing HIV care in Italy**

3
4 Stefania Piconi¹, Martina Bottanelli², Giulia Marchetti³, Andrea Gori⁴, Antonella Castagna², Nicola Squillce⁵,
5 Stefania Cicalini⁶, Giancarlo Orofino⁷, Francesca Ceccherini-Silverstein⁸, Antonio Di Biagio⁹, Antonella
6 d'Arminio Monforte¹⁰, Alessandro Cozzi-Lepri¹¹ for Icona Foundation Study Cohort

7

8

9 ¹Infectious Diseases Unit A. Manzoni Hospital ASST Lecco, Italy

10 ²Infectious Diseases Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy

11 ³University of Milan Department of Health Sciences, Clinic of Infectious and Tropical Diseases ASST Santi
12 Paolo and Carlo, Milan, Italy

13 ⁴University of Milan II Infectious Diseases Unit Sacco Hospital ASST Fbf-Sacco, Milan, Italy

14 ⁵Infectious Disease Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy

15 ⁶National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy

16 ⁷Division A of Infectious Diseases Amedeo of Savoia Hospital, Torino, Italy

17 ⁸Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy

18 ⁹ Infectious Diseases Unit, Ospedale Policlinico San Martino IRCCS, University of Genova, Department of
19 Health Sciences, Genoa, Italy

20 ¹⁰ Full Professor of Infectious Diseases, University of Milan, President of ICONA Foundation

21 ¹¹University College, London, United Kingdom

22

23

24

25

26

27

28

29

30

31

32

33

34 **Corresponding Author:**

35 Stefania Piconi

36 Infectious Diseases Unit

37 ASST A. Manzoni

38 Via dell'Eremo 9/11

39 23900 Lecco, Italy

40 +39 0341-489890, fax +39 0341-489890

41 s.piconi@asst-lecco.it

42 **Abstract**

43 **Aims:** HIV infection is associated with dyslipidemia and an increased risk for cardiovascular diseases. HIV Nef
44 protein downregulates the generation of nascent HDL. The interplay between HIV-RNA, HDL-c level and
45 CD4/CD8 ratio in naïve HIV patients remains to be elucidated.

46 **Methods:** We included untreated persons living with HIV (PLWH) of the ICONA Foundation Study cohort if
47 they also had ≥ 2 viral load (VL) measurements prior to ART initiation. We performed unadjusted correlation
48 and linear regression analyses evaluating the effect of VLset on HDL-C. VLset and CD4/CD8 ratio were fit in
49 the \log_{10} scale, while HDL-c, was fitted in the untransformed raw scale.

50 **Results:** We included 3,980 untreated PLWH. Fifty-eight (1.5%) were aviremic. We observed a negative
51 correlation between HDL-c and VLset (Pearson $R^2=0.03$), from fitting an unadjusted linear regression model
52 -8.5 mg/dl (95% CI: $-15.9 - -0.84$ $p<0.03$). There was a dose-response relationship between HDL-c levels and
53 VLset, however, this association was somewhat attenuated after further controlling for gender. Despite a
54 positive correlation between HDL-c and CD4/CD8 ratio, the HDL-c plasma concentration does not satisfy the
55 criteria for a strong surrogate marker.

56 **Conclusions:**

57 Our data show that HDL-c plasma concentration is significantly lower per higher level of VLSet although this
58 was in part explained by gender. Further analyses should be promoted to better understand the molecular
59 mechanisms that underline the relationship between HIV replication, HDL-c formation, and diseases
60 progression.

61

62

63 **Key words:** HDL-c, HIV Viral load, CD4/CD8 ratio

65 **Introduction**

66 HIV infection has been associated with changes in lipid concentration, characterized by decreased levels of
67 high-density lipoprotein cholesterol (HDL-c) and increased levels of low-density lipoprotein cholesterol (LDL-
68 c), total cholesterol (TC) and triglycerides (TGL) [1-3].

69 Antiretroviral therapy (ART) increases HDL-c concentration by eliminating active viral replication, although
70 this association might be confounded by demographic factors [4-6]. In addition, ART use leads to a rise in TC
71 and LDL-c that typically exceeds pre-infection levels, whereas the recovery of HDL-c may be incomplete [2].
72 HDL-c is considered protective against the development of atherosclerosis because it removes atherogenic
73 lipid molecules from foam-cells to the liver, facilitating its elimination in the intestinal tract [reverse
74 cholesterol transport (RCT)], and it has also several antioxidant and anti-inflammatory properties which can
75 help prevent LDL-c oxidation and inflammatory cell migration [7]. Consequently, ART and non-ART related
76 lipid alteration, associated with chronic inflammation and adipose tissue dysfunction, can be clearly
77 considered as one of the possible explanations for the increased risk of cardiovascular disease (CVD) events
78 reported for people living with HIV (PLWH), compared to uninfected controls [8-12].

79 In addition, there are several immunological mechanisms through which HDL-c has shown to have a protective
80 role, particularly in sepsis, due to its critical intermediary step in lipid-based pathogen clearance, bacterial
81 toxin binding and disposal [13-16], monocyte activation, macrophage and dendritic-cell migration, release of
82 inflammatory cytokines [17-18] and inhibition of vascular and intercellular adhesion molecule expression
83 [19].

84 Actually, it is known that cholesterol is a key component of cell membrane and virus envelope, and
85 cholesterol-rich microdomains, known as lipid rafts, on host cell plasma membranes have an important role
86 in viral entry and budding: in fact, it was demonstrated that cholesterol-depleting molecules, such as methyl-
87 B-cyclodextrin, inhibit the cellular entry of several viruses, such as HIV-1, rotaviruses and coronaviruses [20].

88 Focusing on lipid alteration during HIV infection, the change in HDL-c would suggest that there are several
89 steps of HIV replication that critically depend on cholesterol metabolism. The molecular confirmation of this
90 hypothesis is offered by Mujavar's [21] *in vitro* results. According to these results, the Nef HIV protein impairs

91 ATP-binding cassette transporter A1 (ABCA-1) dependent cholesterol efflux from human macrophages
92 generating several consequences, such as: cholesterol accumulation within monocytes (foam-cells
93 transformation), reduction of HDL-c plasma concentration, increased virus budding (due to the rise of
94 cytoplasmatic lipid rafts) and lastly an increase in HIV replication. Later in vitro studies with LXR- α agonists
95 (TO-901317), a strong stimulator of ABCA-1 expression, showed an improvement of cholesterol efflux from
96 HIV-infected T lymphocytes and macrophages associated with a reduction of HIV replication in both cell
97 types. The effect of this antagonist is remarkably reduced in ABCA-1 defective T-cells of a patient with Tangier
98 disease [22]. Furthermore, HIV Δ Nef infection in vivo resulted in much lower VL and in a milder presentation
99 of several elements of immunological dysfunction compared to patients infected with WT HIV [23].
100 Lipidomics techniques have also allowed the characterization of the lipidome of enveloped viruses. By this
101 way, HIV lipid envelope has been observed to be different from the producer cell plasma membrane,
102 suggesting that viruses bud from specialized membrane subdomains, which are enriched in particular lipids
103 [24].
104 The evidence summarised above, supports the notion that plasmatic HDL-c is a biochemical marker
105 which is likely to be related to HIV viral budding and inflammation. With this analysis, we aimed to
106 corroborate, in the setting of real-life untreated HIV-infection, the association between VLset and lipids (such
107 as total cholesterol and HDL-c plasma concentrations), and whether VLset mediated HDL-c changes might
108 also correlate with immunological parameters of HIV progressions, such as CD4/CD8 ratio.
109

110 **Materials and Methods**

111 Study population

112 In this retrospective cross-sectional study, we included untreated HIV-infected people enrolled in the ICONA
113 Foundation cohort. The main aim was to evaluate the association between HDL-c plasma concentration and
114 VL set-point in absence of ART; a secondary objective was to evaluate the association between HDL-c levels
115 and markers of HIV disease progression like CD4/CD8 ratio. We included people for whom ≥ 2 viral load (VL)
116 measurements prior to ART initiation were available. The viral set point (VLset) was defined as the mean of

117 the first two VL and the date of the 2nd value chosen as the index date for this cross-sectional analysis.
118 Participants with an estimated VLset \leq 50 copies/mL were labelled as 'aviremic' and the remaining group as
119 'viremic'. People who had started statin therapy prior to the index data and those without a value of HDL
120 over 3 months of the index data were excluded. All laboratory markers test results were included in the
121 correlation analyses if measured within 6 months of the index VLset date.

122

123 Ethical considerations

124 The Icona Foundation study was approved by the Ethics Committees (institutional review board) of each
125 participating institution. All of the individuals enrolled provided a written informed consent at the time of
126 the enrolment. All procedures of the study were performed in accordance with the 1964 Helsinki declaration
127 and its later amendments.

128

129 Statistical analyses

130 Characteristics of the study population were described overall and after stratification according to VLset (\leq 50
131 copies/mL vs. $>$ 50 copies/mL). The distribution of categorical factors was compared using a chi-square test
132 and median values of continuous factors using the non-parametric Mann-Whitney test. Box plots were used
133 to depict the full distribution (Q1, Q3, median, range) of lipid markers across the two groups. Unadjusted
134 Pearson correlation coefficient was also used to test the hypothesis of a linear relationship between VLSet
135 and lipids.

136

137 In order to control for potential confounding factors, a multivariable analysis was conducted for total
138 cholesterol and HDL-c for which an univariable difference between groups was detected. In particular, the
139 association between VLSet (main exposure) and HDL-c (primary outcome) and total cholesterol (secondary
140 outcome) was evaluated by fitting a linear regression model after controlling for a minimal set confounders
141 chosen *a priori* including gender, age, CD4/CD8 ratio, HCV status (detection of HCVAb), and AIDS diagnosis.
142 Total cholesterol was essentially chosen as a negative control. This list of measured potential confounders

143 was put together using both axiomatic knowledge and literature review. In order to further assess the
144 robustness of the results against potential unmeasured confounding bias, the e-value was calculated and
145 compared to the magnitude of the mean difference seen for predictors showing the strongest association
146 with the outcome (25).

147 HDL-c and total cholesterol, which both showed a symmetric distribution, were fitted in the untransformed
148 raw scale. VLSet instead was fitted in three ways: i) comparing people with ≤ 50 copies/mL (aviremic) vs. > 50
149 copies/mL (viremic); ii) using the \log_{10} scale and iii) after splitting the study population in groups using pre-
150 specified HIV-RNA clinical cut-offs to evaluate a potential dose-response effect.

151

152 In addition, a refined model has been hypothesised for a third outcome: the CD4/CD8 ratio. In this model, on
153 the basis of the results of the main analysis, BMI was the only confounder of the association between VLSet
154 and CD4/CD8 ratio, while HDL-C was a mediator, i.e. some of the total effect of VLSet on CD4/CD8 is assumed
155 to be explained by a variation in HDL-C. This was visually described using a direct acyclic graph (DAG, Figure
156 1). A mediation analysis was formally performed using the 'medeff' command in Stata 15. All other results
157 were obtained from using SAS version 9.4 (Carey, USA).

158

159 **Results**

160 Study population

161 The clinical and demographic characteristics of HIV positive patients enrolled in the study are shown in Table
162 1. We included 3,980 HIV ART-naive individuals, 58 patients (1.5%) spontaneously aviremic and 3,922 (98.5%)
163 viremic patients, respectively. As shown in Table 1, the group of aviremic patients were significantly older
164 [aviremic vs. viremic median 41 (IQR: 35, 48) vs. 37 (IQR: 30, 44) years $p = 0.005$] and with more females
165 [aviremic vs. viremic 26 (45%) vs. 749 (19%) $p < .001$]. Furthermore, as expected, the aviremic patients
166 presented higher TCD4 cell counts [aviremic vs. viremic 766 (IQR: 546, 1001) cells/mm³ vs. 535 (IQR: 384,
167 707) cells/mm³ $p < 0.001$], and significantly lower TCD8 cells counts [aviremic vs. viremic 732 (IQR: 499, 997)

168 cells/mm³ vs 984 [IQR: 718, 1352] cells/mm³ p<0,001] and VL [aviremic vs viremic 1.40 (IQR: 1.30, 1.66) log₁₀
169 copies/ml vs 4.36 (IQR: 3.79, 4.85) log10 copies ml p<0.001] compared to viremic.
170 A significantly higher prevalence of Caucasian people (p=0.002), current smokers (p=0.026) and MSM
171 (p<0.001) was found in the viremic group. In contrast, no evidence for a difference by groups was found
172 regarding BMI [aviremic vs viremic 24 (IQR: 22, 27) Kg/m² vs 23 (IQR: 21, 25) Kg/m² p=0.06], CD4/CD8 ratio
173 [aviremic vs viremic 1.13 (IQR: 0.72, 1.66) vs 0.53 (IQR: 0.36, 0.77) p=0.476] HIV duration [aviremic vs viremic
174 631 (IQR: 574, 677) months vs 635 (IQR: 592, 679) months p=0.510] and hepatitis viruses serology [aviremic
175 vs viremic HBV p: 0.427; HCV p: 0.094 and hepatitis co-infections p: 0.155].

176

177 Unadjusted association between VLset and HDL-c, LDL-c, TC and Triglycerides plasma concentration in ART-
178 naïve patients

179 Figure 2 shows the distribution of lipid values in spontaneously aviremic an viremic patients enrolled in the
180 study. Aviremic patients showed a significantly higher level of HDL-c plasma concentration [aviremic vs
181 viremic median 48 (IQR: 42, 62) mg/dl vs. 42 (IQR: 35, 51) mg/dl p<0.001] and total cholesterol (TC) [aviremic
182 vs. viremic 183 (IQR: 155, 210) mg/dl vs. 166 (IQR: 142, 191) mg/dl p=0,002] compared to viremic patients.
183 Higher LDL-c plasma concentration and lower triglycerides (TGL) levels were found in aviremic patients
184 compared to viremic, although the association did not reach statistical significance [aviremic vs viremic LDL-
185 c: 111 (IQR: 87, 135) mg/dl vs. 100 (IQR: 80, 122) p= 0.087; TGL: 89 (IQR: 69, 116) mg/dl vs. 99 (IQR: 72, 142)
186 mg/dl p=0.094]. We also evaluated the linear correlation between all lipid parameters and HIV viremia; our
187 data shows a negative correlation between HIV viremia and HDL-c, LDL-c and TC as well as a positive
188 correlation with TGL plasma concentrations. In particular regarding HDL-c and VLset, we observed a
189 significant negative correlation (Pearson R²=0.03) and an absolute difference of -8.05 mg/dL when comparing
190 viremic with aviremic patients (95% CI:-15.3; -0.84, p=0.03, Table 2). In contrast, there was no evidence for
191 a difference in total cholesterol between the viremic and aviremic group from the unadjusted linear
192 regression with total cholesterol as outcome: -14.5 mg/dl (95% CI:-38.6; +9.36), p=0.23 (Table 4).

193

194 Role of potential confounding factors

195 The relationship between VLset and HDL-c and TC was re-evaluated after controlling for potential
196 confounders using linear regression adjustment. When VLSet was fitted as a binary exposure (aviremic vs.
197 viremic) it was associated with HDL-C levels independently of age, AIDS diagnosis and HCVAb status.
198 However, after controlling for gender this effect was somewhat attenuated (Table 2). This is because females
199 are known to have a lower VLSet [26] and also a higher HDL-C. Interestingly, confounding was less strong in
200 the analysis in which VLSet was fitted as continuous in the \log_{10} scale which has greater statistical power.
201 Also, difference could still be seen when comparing aviremic patients with those with very high levels of HIV-
202 RNA (>10,000 copies/mL), even after controlling for gender (Table 3). Table 3 also shows a nice dose-response
203 relationship between HIV-RNA and HDL-c which, despite the cross-sectional nature of the analysis, seems to
204 suggest causality. In the main analysis with VLSet fitted as continuous in the log scale, with an observed
205 standardised difference of 2.57 logs in the fully adjusted model and a standard error for this difference of
206 0.49, an unmeasured confounder that was associated with both the outcome and the exposure each with a
207 log difference of at least 20.2 logs could explain away the estimate, but weaker confounding could not.
208 Similarly, to move the confidence interval to include the null, an unmeasured confounder that was associated
209 with the outcome and the exposure each by a difference of at least 8.1 logs could do so, but weaker
210 confounding could not. To put this in perspective, the difference associated with the measured factors
211 showing the strongest association was 9.3 logs for gender.

212

213 In contrast, the model with TC as outcome showed an association with VLSet only when the latter was fitted
214 as continuous in the \log_{10} scale (Table 4). The analysis show that other factors such as age, AIDS and HCVAb
215 status played a role in explaining the unadjusted difference in total cholesterol between the aviremic and
216 viremic group.

217

218 Mediation analysis

219 We further evaluated the total direct effect of VLSet on CD4/CD8 ratio by decomposing the effect in the
220 direct effect of VLSet on CD4/CD8 ratio and the indirect effect through the causal pathway of HDL-C (Figure
221 1). This analysis indicated that indeed some of the total effect of VLSet on CD4/CD8 is significantly mediated
222 by a variation in HDL-c induced by HIV-RNA. Although significant, this indirect effect is estimated to be only
223 a small percentage of the total effect (Table 5). There was also evidence that the indirect effect was larger,
224 although still small in absolute terms, in people with lower levels of HDL-c which was estimated after formally
225 testing for interaction (data not shown).

226

227 **Discussion**

228 In our retrospective cross-sectional analysis, for the first time on a large sample of real-life untreated PLWH,
229 we found evidence for a significant inverse relationship in vivo between HDL-c plasma concentration and HIV
230 viremia.

231 Regarding the important role that lipoproteins assume in infectious diseases, there is indeed evidence for a
232 strict relationship between lipid metabolism and viral replication. Specifically, membrane cholesterol-rich
233 lipid rafts have multiple functions for viral replication, recruiting and concentrate several receptors and
234 molecules involved in pathogen recognition and cellular signalling, which mediate pathogen internalization
235 and modulate the lipid raft-dependent immune response.

236 Focusing on the results of our analysis, we found an inverse relationship between HDL-c levels and VLSet
237 which could not be fully explained by a number of key measured confounding variables. Higher levels of HIV-
238 RNA were associated with a lower HDL-c independently of age, CD4/CD8 ratio, AIDS and HCVAb status;
239 despite the cross-sectional nature of the study design, under our strong assumptions of a correctly specified
240 model and no unmeasured confounding, the observed link could be interpreted as causal in that low levels
241 of HDL-c are determined by higher levels of HIV replication. When grouping study participants as viremic vs.
242 aviremic, the difference was largely attenuated by gender, although this analysis is likely to have low
243 statistical power. No association was detected between VLset and LDL-c, while a significant association
244 between VLset and both TGL and TC in unadjusted analysis was largely explained by confounding factors.

245 Especially when dealing with observational data it is important to question whether the findings might be
246 due to bias and these other results, which act as negative controls, are somewhat in support of the evidence.
247 Overall, our results appear to confirm the presence of a link between HIV replication and lipid metabolism.
248 In particular, we speculate that the inverse correlation seen between HIV viremia and HDL-c in our "in vivo"
249 study, is a result of the fact Nef HIV protein was able, through active viral replication, to reduce HDL-c
250 production by impairing ABCA-1, generating cholesterol accumulation within macrophages, promoting their
251 foam-cells transformation and increasing the cardiovascular risk among PLWH (27, 28).
252 Moreover, HIV-RNA is known to have a direct effect on immune-parameters such as CD4 count, CD8 and
253 their ratio [29-33]. On the basis of the results of our analysis, we could also speculate that higher HIV-RNA
254 replication may cause a reduction of HDL-c levels, which in turn leads to higher level of inflammation markers
255 (e.g. cytokines and monocyte activation), with a further effect in reducing the CD4/CD8 ratio. Our formal
256 mediation analysis supports the existence of this indirect effect although it represents only a very small
257 percentage of the total effect. In general, this result reinforces our hypothesis of the role of HIV-replication
258 in causing lipids and immunological abnormalities.
259 It is known that HDL-c might decrease the expression of several key components of the inflammasomes
260 during HIV infection, suggesting a crucial role of HDL-c in modulate the inflammatory state and consequently,
261 the progression of HIV infection. Moreover, greater interleukin-6 (IL-6) and intercellular adhesion molecule-
262 1 (ICAM-1) levels have been recently found to be associated with both lower total HDL-c and small HDL
263 particles.[27-28]. Further studies are needed to better evaluate the association between lower HDL-c and
264 small HDL particles on IL-6 and other cytokines (which were not included in our analysis because they were
265 available only for the subset of the aviremic individuals), considering also the potential contribute of these
266 mechanisms to increased CVD risk among PLWH [34-36].
267 Reasons for the increased risk in CVD in PLWH as compared to that observed in the general population remain
268 still partly unclear. Our data suggest that HIV replication alone could have a pivotal role in increasing this risk
269 by its direct effect on HDL-c reduction and triglycerides elevation, independently of ART. Other studies should
270 be conceived to further evaluate the causal link between HIV-RNA and the risk of CVD, carefully investigating

271 the role of HIV-RNA as the main exposure of interest, ART and HCV-RNA as key confounding factors, and
272 HDL-c as the potential key mediator; in contrast, most analysis thus far have considered lipids elevation,
273 perhaps wrongly, as a confounder for the effect of ART instead of being a mediator.

274

275 Before drawing final conclusions, a number of limitations of our analysis need to be mentioned. First,
276 although HDL particles play a critical role in the maintenance of cholesterol balance in the arterial wall and
277 in reduction of pro-inflammatory responses by arterial cholesterol loaded macrophages, their plasmatic
278 concentration is not a perfect surrogate marker for macrophage cholesterol efflux. Therefore, it is possible
279 that HDL-c as routinely measured in the clinics is not a perfect surrogate of cellular cholesterol efflux and
280 measurement error for the outcome in our analysis might exist. However, this is potentially a conservative
281 bias as it implies that the magnitude of the association could have been diluted.

282 In addition, our analysis of the possible causal effect of VLSet on HDL-C is based on the assumption of no
283 unmeasured confounding and correct specification of our model (e.g. one of the underlying assumption of
284 our model is that BMI is a predictor of outcome but not a cause of variation in VLSet, etc. see Figure 1).
285 However unmeasured confounding can never be ruled out in real-world data. For example, HCV-RNA at ART
286 initiation which is not available in the database for the majority of our participants is a potential key
287 unmeasured confounding factor. Nevertheless, many important measured confounders have been
288 accounted for and our sensitivity analysis (through calculation of the e-value) shows that results are fairly
289 robust to potential unmeasured confounding bias. Similar considerations apply also to the second part of our
290 analysis, aiming to estimate the indirect and direct effect of VLSet on CD4/CD8 ratio and even more so as one
291 key assumption in mediation analysis is that there is no mediator-outcome unmeasured confounding.
292 Furthermore, there are many different factors that could influence our main exposure/intervention variable
293 (individuals' HIV-RNA set-point levels) and, in this situation according to some, one of the key conditions for
294 the identifiability of causal effects from observational data does not hold [37]. More in general, given the
295 cross-sectional design of the study, it is impossible to establish the exact temporality between VLSet and

296 HDL-c and it is an arbitrary assumption, based on the exact dates of biomarkers, that we have modelled HDL-c
297 (outcome) as a function of VLSet (exposure) and not viceversa.

298

299 In conclusion, our data show that HDL-c plasma concentration is significantly lower in absence of ART in
300 viremic compared to aviremic patients, although this association was in part explained by gender. Further
301 analyses should be promoted in order to study the molecular mechanisms that underline the relationship
302 between HIV replication, HDL-c formation, and diseases progression and the role of HIV replication alone in
303 increasing the risk of CVD in the HIV-infected population.

304

305 **Acknowledgments**

306 **Icona Foundation Study Group**

307 **BOARD OF DIRECTORS:** A d'Arminio Monforte (President), A Antinori (Vice-President), S Antinori, A

308 Castagna, R Cauda, G Di Perri, E Girardi, R Iardino, A Lazzarin, GC Marchetti, C Mussini, E Quiros-Roldan, L

309 Sarmati, B Suligoi, F von Schloesser, P Viale.

310 **SCIENTIFIC SECRETARY:** A d'Arminio Monforte, A Antinori, A Castagna, F Ceccherini-Silberstein, A Cingolani,

311 A Cozzi-Lepri, E Girardi, A Gori, S Lo Caputo, G Marchetti, F Maggiolo, C Mussini, M Puoti, CF Perno.

312 **STEERING COMMITTEE:** C Agrati, A Antinori, F Bai, A Bandera, S Bonora, A Calcagno, D Canetti, A Castagna,

313 F Ceccherini-Silberstein, A Cervo, S Cicalini, A Cingolani, P Cinque, A Cozzi-Lepri, A d'Arminio Monforte, A Di

314 Biagio, R Gagliardini, A Giacomelli, E Girardi, N Gianotti, A Gori, G Guaraldi, S Lanini, G Lapadula, M Lichtner,

315 A Lai, S Lo Caputo, G Madeddu, F Maggiolo, V Malagnino, G Marchetti, C Mussini, S Nozza, CF Perno, S

316 Piconi, C Pinnetti, M Puoti, E Quiros Roldan, R Rossotti, S Rusconi, MM Santoro, A Saracino, L Sarmati, V

317 Spagnuolo, N Squillace, V Svicher, L Taramasso, A Vergori.

318 **STATISTICAL AND MONITORING TEAM:** F Bovis, A Cozzi-Lepri, I Fanti, A Rodano', M Ponzano, A Tavelli.

319 **COMMUNITY ADVISORY BOARD:** A Bove, M Cernuschi, L Cosmaro, M Errico, A Perziano, V Calvino.

320 **BIOLOGICAL BANK INMI AND SAN PAOLO:** S Carrara, S Graziano, G Prota, S Truffa, D Vincenti, Y D'Errico.

321 **PARTICIPATING PHYSICIANS AND CENTERS:** Italy A Giacometti, A Costantini, V Barocci (Ancona); A

322 Saracino, C Santoro, E Milano (Bari); F Maggiolo, C Suardi (Bergamo); P Viale, L Badia, S Cretella (Bologna); E

323 Quiros Roldan, E Focà, C Minardi (Brescia); B Menzaghi, C Abeli (Busto Arsizio); L Chessa, F Pes (Cagliari); P

324 Maggi, L Alessio (Caserta); B Cacopardo, B Celestia (Catania); J Vecchiet, K Falasca (Chieti); A Pan, S Dal

325 Zoppo (Cremona); D Segala (Ferrara); F Vichi, MA Di Pietro (Firenze); T Santantonio, S Ferrara (Foggia); M

326 Bassetti, E Pontali, S Blanchi, N Bobbio, G Mazzarello (Genova); M Lichtner, L Fondaco (Latina); S Piconi, C

327 Molteni (Lecco); S Rusconi, G Canavesi (Legnano) A Chiodera, P Milini (Macerata); G Nunnari, G Pellicanò

328 (Messina); A d'Arminio Monforte, S Antinori, A Lazzarin, G Rizzardini, M Puoti, A Gori, A Castagna, A

329 Bandera, V Bono, MV Cossu, A Giacomelli, R Lolatto, MC Moioli, L Pezzati, C Tincati (Milano); C Mussini, C

330 Puzzolante (Modena); P Bonfanti, G Lapadula (Monza); V Sangiovanni, I Gentile, V Esposito, FM Fusco, G Di

331 Filippo, V Rizzo, N Sangiovanni (Napoli); AM Cattelan, S Marinello (Padova); A Cascio, C Colombo (Palermo);
332 D Francisci, E Schiaroli (Perugia); G Parruti, F Sozio (Pescara); P Blanc, A Vivarelli (Pistoia); C Lazzaretti, R
333 Corsini (Reggio Emilia); M Andreoni, A Antinori, R Cauda, C Mastroianni, A Cingolani, V Mazzotta, S
334 Lamonica, M Capozzi, A Mondi, M Rivano Capparuccia, G Iaiani, C Stingone, L Gianserra, J Paulicelli, MM
335 Plazzi, G d'Ettore, M Fusto (Roma); M Cecchetto, F Viviani (Rovigo); G Madeddu, A De Vito (Sassari); M
336 Fabbiani, F Montagnani (Siena); A Franco, R Fontana Del Vecchio (Siracusa); BM Pasticci, C Di Giuli (Terni);
337 GC Orofino, G Calleri, G Di Perri, S Bonora, G Accardo (Torino); C Tascini, A Londero (Udine); V Manfrin, G
338 Battagin (Vicenza); G Starnini, D Farinacci (Viterbo).
339
340
341

342 **References**

343 1) El-Sadr WM., Mullin CM., Carr A., Gilbert C., Rappoport C., Visnegarwala F., Grunfeld C., Reghavan SS.
344 Effect of HIV disease on lipid, glucose and insulin levels: results from a large antiretroviral-naïve cohort. HIV
345 Med 2005;6:114-121

346 2) Riddler SA., Smit E., Cole SR., Li R., Chmiel JS., Dobs A., Palella F., Visscher B., Evans R., Kingsley LA.- Impact
347 of HIV infection and HAART on serum lipids in men JAMA, 2003;289:2978-82

348 3) Law MG., Achhra A., Deeks SG., Gazzard B., Migueles SA., Novak RM., Ristola M for the INSIGHT START
349 Study Group Clinical and demographic factors associated with low viral load in early untreated HIV infection
350 in the INSIGHT Strategic Timing of antiretroviral treatment trial HIV Med 2015; 16:37-45

351 4) Lo J., Rosenberg ES., Fitzgerald ML., Bazner SB., Ihenachor EJ., Hawxhurst V., Borkowska AH., Wei J.,
352 Zimmerman CO., Burdo TH., Williams KC., Freeman MW., Grinspoon SK. High-density lipoprotein-mediated
353 cholesterol efflux capacity is improved by treatment with antiretroviral therapy in acute human
354 immunodeficiency virus infection Open Forum Infection Diseases2014 Dec 16;1(3):ofu108

355 5) Piconi S., Parisotto S., Rizzardini G., Passerini S., Meraviglia P., Schiavini M., Niero F., Biasin M., Bonfanti P.,
356 Ricci ED., Trabattoni D., Clerici M. Atherosclerosis is associated with multiple pathogenetic mechanisms in
357 HIV- infected antiretroviral- naïve or treated individuals AIDS 2013;27:381-9

358 6) Parrinello CM., Landay AL., Hodis HN., Gange SJ., Norris PJ., Young M., Anastos K., Tien PC., Xue X., Lazar
359 J., Benning L., Tracy RP., Kaplan RC. Treatment-related changes in serum lipids and inflammation: clinical
360 relevance remain unclear. Analyses from the women's interagency HIV Study AIDS 2013;27:1516-1519

361 7) Duffy D., Rader DJ., Update on strategies to increase HDL quantity and function Nat. Rev. Cardiol.
362 2009;6:455-63

363 8) Grinspoon S., Carr A., Cardiovascular risk and body-fat abnormalities in HIV-infected adults. N. Engl. J. Med.
364 2005;352:48-62 Kotler DP. HIV and antiretroviral therapy: lipid abnormalities and associated cardiovascular
365 risk in HIV-infected patients. J Acquir Immune Defic Syndr 2008; 49 Suppl 2:S79-85

366 9) Triant VA., Lee H., Hadigan C., Grinspoon SK. Increased acute myocardial infarction rates and
367 cardiovascular risk factors among patients with human immunodeficiency virus disease J. Clin Endocrinol
368 Metabol 2007;92:2506-12

369 10) Gori E, Mduluza T, Nyagura M, Stray-Pedersen B, Gomo ZA. Inflammation-modulating cytokine profile
370 and lipid interaction in HIV-related risk factors for cardiovascular diseases. Ther Clin Risk Manag. 2016 Nov
371 11;12:1659-1666. doi: 10.2147/TCRM.S117980. PMID: 27956833; PMCID: PMC5113933.

372 11) Touloumi G, Kalpourtzi N, Papastamopoulos V, Paparizos V, Adamis G, Antoniadou A, Chini M, Karakosta
373 A, Makriliais K, Gavana M, Vantarakis A, Psichogiou M, Metallidis S, Sipsas NV, Sambatakou H,
374 Hadjichristodoulou C, Voulgari PV, Chrysos G, Gogos C, Chlouverakis G, Tripsianis G, Alamanos Y, Stergiou G;
375 AMACS and EMENO. Cardiovascular risk factors in HIV infected individuals: Comparison with general adult
376 control population in Greece. PLoS One. 2020 Mar 30;15(3):e0230730. doi: 10.1371/journal.pone.0230730.
377 PMID: 32226048; PMCID: PMC7105103.

378 12) Hudson P, Woudberg NJ, Kamau F, Strijdom H, Frias MA, Lecour S. HIV-related cardiovascular disease:
379 any role for high-density lipoproteins? Am J Physiol Heart Circ Physiol. 2020 Dec 1;319(6):H1221-H1226. doi:
380 10.1152/ajpheart.00445.2020. Epub 2020 Oct 2. PMID: 33006917.

381 13) Catapano AI., Pirillo A., Bonacina F., Norata GD. HDL in innate and adaptative immunity Cardiovasc. Res
382 2014;103:372-383

383 14) Knovidhunkit W., Kim MS., Memon RA., Shigenaga JK., Moser AH., Feingold KR., Grunfeld C. Effects of
384 infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host
385 J Lipid Res 2004 ;45:1169-96

386 15) Chien J-Y, Jeng J-S., Yu C-J Yang P-C. Low serum level of high-density lipoprotein cholesterol is a poor
387 prognostic factor for severe sepsis Crit Care Med 2005;33:1688-93

388 16) Chien J-Y., Chen C-Y., Hsu C-L., Chen K-Y., Yu C-J. Decreased serum level of lipoprotein cholesterol is a
389 poor prognostic factor for patients with severe community-acquired pneumonia that required intensive care
390 unit admission J Crit Care 2015;30:506-10

391 17) Murhy AJ., Woollard KJ., Hoang A., Mukhamedova N., Stirzaker RA., McCormick SP., Remaley AT., Sviridov
392 D., Chin-Dusting J. High-density lipoprotein reduces in human monocyte inflammatory response Arterioscler
393 Thromb Vasc Biol. 2008; 28:2071-7

394 18) Murphy AJ., Woollard KJ., Suharto A., Stirzaker RA., Shaw J., Sviridov D., Chin-Dusting JP. Neutrophil
395 activation is attenuated by high-density lipoprotein and apolipoprotein A-I in vitro and in vivo models of
396 inflammation Arterioscler Thromb Vasc Biol 2011;31:1333-41

397 19) Heitzer T Schlinzig T., Krohn K., Meinertz R., Munzel T Endothelial dysfunction, oxidative stress and risk of
398 cardiovascular events in patients with coronary artery disease Circulation 2001; 104:2673-8

399 20) Kluck GEG, Yoo JA, Sakarya EH, Trigatti BL. Good Cholesterol Gone Bad? HDL and COVID-19. Int J Mol Sci.
400 2021 Sep 22;22(19):10182. doi: 10.3390/ijms221910182. PMID: 34638523; PMCID: PMC8507803.

401 21) Mujawar Z., Rose H., Morrow MP., Pushkarsky T., Dubrovsky L., Mukhamedova N., Fu Y., Dart A.,
402 Orenstein JM., Bobryshev YV., Bukrinsky M., Sviridov D. Human immunodeficiency virus impairs reverse
403 cholesterol transport from macrophages PLoS Biol 2006;4:e365

404 22) Morrow MP., Grant A., Mujawar Z., Dubrovsky L., Pushkarsky T., Kiselyeva Y., Jennelle L., Mukhamedova
405 N., Remaley AT., Kashanchi F., Sviridov D., Bukrinsky M. Stimulation of liver X receptor pathway inhibits HIV-
406 1 replication via induction of ATP-binding cassette transporter A1 Molecular pharmacology 2010;78:215-225

407 23) Low H., Cheng L., Di Yacono MS., Churchill MJ., Meikle P., Bukrinsky M., Hill AF., Sviridov D. Lipid
408 metabolism in patients infected with Nef-deficient HIV-1 strain Atherosclerosis 2016; 244:22-28

409 24) Lorizate M, Sachsenheimer T, Glass B, Habermann A, Gerl MJ, Kräusslich HG, Brügger B. Comparative
410 lipidomics analysis of HIV-1 particles and their producer cell membrane in different cell lines. Cell Microbiol.
411 2013 Feb;15(2):292-304. doi: 10.1111/cmi.12101. Epub 2013 Jan 10. PMID: 23279151.

412 25) VanderWeele TJ, Ding P. Sensitivity Analysis in Observational Research: Introducing the E-Value. Ann
413 Intern Med. 2017 Aug 15;167(4):268-274).

414 26) Rezza G., Cozzi-Lepri A., d'Arminio-Monforte A., Pezzotti P., Castelli F., Dianzani F., Lazzarin A., De Luca
415 A., Arlotti M., Leoncini F., Manconi PE., Milazzo F., Minoli L., Poggio A., Ippolito G., Phillips AN., Moroni M.

416 for the I.CO.NA Study Group. Plasma viral load concentration in women and men from different exposure
417 categories and known duration in HIV infection J. Acquir Immune Defic Syndr. 2000;25:56-62

418 27) Marín-Palma D, Castro GA, Cardona-Arias JA, Urcuqui-Inchima S, Hernandez JC. Lower High-Density
419 Lipoproteins Levels During Human Immunodeficiency Virus Type 1 Infection Are Associated With Increased
420 Inflammatory Markers and Disease Progression. Front Immunol. 2018 Jun 14;9:1350. doi:
421 10.3389/fimmu.2018.01350. PMID: 29963050; PMCID: PMC6010517.

422 28) Sarkar, S., Haberlen, S., Whelton, S., E Schneider, E., Kingsley, L., Palella, F., Witt, M. D., Kelesidis, T.,
423 Rodriguez, A., Post, W. S., & Brown, T. T. (2019). Greater IL-6, D-dimer, and ICAM-1 Levels Are Associated
424 With Lower Small HDL Particle Concentration in the Multicenter AIDS Cohort Study. *Open forum infectious*
425 *diseases*, 6(12), ofz474. <https://doi.org/10.1093/ofid/ofz474>

426 29) de Wolf F, Spijkerman I, Schellekens PT, et al. AIDS prognosis based on HIV-1 RNA, CD4+ T-cell count and
427 function: markers with reciprocal predictive value over time after seroconversion. AIDS. 1997;11:1799–1806

428 30) Rodriguez B, Sethi AK, Cheruvu VK, et al. Predictive value of plasma HIV RNA level on rate of CD4 T-cell
429 decline in untreated HIV infection. JAMA. 2006; 296:1498–1506.

430 31) Lima VD, Fink V, Yip B, Hogg RS, Harrigan PR, Montaner JS. Association between HIV-1 RNA level and CD4
431 cell count among untreated HIV-infected individuals. Am J Public Health. 2009 Apr;99 Suppl 1(Suppl 1):S193-
432 6. doi: 10.2105/AJPH.2008.137901. Epub 2009 Feb 12. PMID: 19218172; PMCID: PMC2724944.

433 32) Mussini C, Lorenzini P, Cozzi-Lepri A, Lapadula G, Marchetti G, Nicastri E, Cingolani A, Lichtner M, Antinori
434 A, Gori A, d'Arminio Monforte A; Icona Foundation Study Group. CD4/CD8 ratio normalisation and non-AIDS-
435 related events in individuals with HIV who achieve viral load suppression with antiretroviral therapy: an
436 observational cohort study. Lancet HIV. 2015 Mar;2(3):e98-106. doi: 10.1016/S2352-3018(15)00006-5. Epub
437 2015 Feb 6. PMID: 26424550.

438 33) Han WM, Apornpong T, Kerr SJ, Hiransuthikul A, Gatechompol S, Do T, Ruxrungtham K, Avihingsanon A.
439 CD4/CD8 ratio normalization rates and low ratio as prognostic marker for non-AIDS defining events among
440 long-term virologically suppressed people living with HIV. AIDS Res Ther. 2018 Sep 27;15(1):13. doi:
441 10.1186/s12981-018-0200-4. PMID: 30261902; PMCID: PMC6158807.

442 34) Achhra AC, Lyass A, Borowsky L, Bogorodskaya M, Plutzky J, Massaro JM, D'Agostino RB Sr, Triant VA.
443 Assessing Cardiovascular Risk in People Living with HIV: Current Tools and Limitations. *Curr HIV/AIDS Rep.*
444 2021 Aug;18(4):271-279. doi: 10.1007/s11904-021-00567-w. Epub 2021 Jul 11. PMID: 34247329; PMCID:
445 PMC8733948.
446 35) Vos, A. G., Dodd, C. N., Delemarre, E. M., Nierkens, S., Serenata, C., Grobbee, D. E., Klipstein-Grobusch,
447 K., & Venter, W. (2021). Patterns of Immune Activation in HIV and Non HIV Subjects and Its Relation to
448 Cardiovascular Disease Risk. *Frontiers in immunology*, 12, 647805.
449 <https://doi.org/10.3389/fimmu.2021.647805>
450 36) Durstenfeld MS, Hsue PY. Mechanisms and primary prevention of atherosclerotic cardiovascular disease
451 among people living with HIV. *Curr Opin HIV AIDS.* 2021 May 1;16(3):177-185. doi:
452 10.1097/COH.0000000000000681. PMID: 33843806; PMCID: PMC8064238.
453 37) Hernán MA, Taubman SL. Does obesity shorten life? The importance of well-defined interventions to
454 answer causal questions. *Int J Obes (Lond).* 2008 Aug;32 Suppl 3:S8-14.

455

456 **Funding**

457 ICONA Foundation is supported by unrestricted grants from BMS, Gilead Sciences, Janssen, MSD and ViiV
458 Healthcare

459

460 **Disclosures**

461 Grants for her Institution by Gilead Int, ViiV Healthcare, MSD, Jannsen

462 Fees for advisory boards or lectures: Gilead, ViiV Healthcare, MSD, GSK, Angelini

463

464

465

466

467

468

469

470 **Figures and Tables**

471
472 **Table 1 Characteristics of the study populations stratified by HIV-RNA group**
473

Characteristics	Viral load set point (copies/mL)		
	0-50 N= 58	>50 N= 3922	p-value* <.001
Gender, n (%)			N= 3980
Female	26 (44.8%)	749 (19.1%)	775 (19.5%)
Mode of HIV Transmission, n (%)			<.001
PWID	14 (24.1%)	356 (9.2%)	370 (9.4%)
MSM	12 (20.7%)	1953 (50.2%)	1965 (49.8%)
Heterosexual contacts	28 (48.3%)	1365 (34.8%)	1393 (35.0%)
Other/Unknown	4 (6.9%)	214 (5.5%)	218 (5.5%)
Ethnicity, n (%)			0.002
Caucasian	44 (75.9%)	3518 (89.7%)	3562 (89.5%)
South America	6 (10.3%)	178 (4.5%)	184 (4.6%)
Africa	8 (13.8%)	188 (4.8%)	196 (4.9%)
Asian	0 (0.0%)	38 (1.0%)	38 (1.0%)
BMI			0.057
Median (IQR)	24 (22, 27)	23 (21, 25)	23 (21, 25)
Smoking, n (%)			0.026
No	33 (56.9%)	1590 (40.5%)	1623 (40.8%)
Current	20 (34.5%)	1612 (41.1%)	1632 (41.0%)
Unknown	5 (8.6%)	720 (18.4%)	725 (18.2%)
CNS diagnosis, n (%)			0.915
Yes	5 (8.6%)	354 (9.0%)	359 (9.0%)
HBsAg, n (%)			0.427
Negative	39 (67.2%)	2922 (74.5%)	2961 (74.4%)
Positive	0 (0.0%)	5 (0.1%)	5 (0.1%)
Not tested	19 (32.8%)	995 (25.4%)	1014 (25.5%)
HCVAb, n (%)			0.094
Negative	31 (53.4%)	2618 (66.8%)	2649 (66.6%)
Positive	8 (13.8%)	346 (8.8%)	354 (8.9%)
Not tested	19 (32.8%)	958 (24.4%)	977 (24.5%)
Hepatitis co-infection, n (%)			0.155
No	30 (51.7%)	2490 (63.5%)	2520 (63.3%)
Yes	8 (13.8%)	351 (8.9%)	359 (9.0%)
Not tested	20 (34.5%)	1081 (27.6%)	1101 (27.7%)
Calendar year of index date			0.476
Median (IQR)	2012 (2007, 2016)	2012 (2009, 2016)	2012 (2009, 2016)
Age, years			0.005
Median (IQR)	41 (35, 48)	37 (30, 44)	37 (30, 44)
CD4 count, cells/mm³			<.001
Median (IQR)	766 (546, 1001)	535 (384, 707)	537 (385, 711)
CD8 count, cells/mm³			<.001
Median (IQR)	732 (499, 997)	984 (718, 1352)	978 (715, 1348)
CD4/CD8 ratio			0.476
Median (IQR)	1.13 (0.72, 1.62)	0.53 (0.36, 0.77)	0.54 (0.36, 0.78)
VL set point, log₁₀ copies/mL			<.001
Median (IQR)	1.40 (1.30, 1.66)	4.36 (3.79, 4.85)	4.35 (3.76, 4.84)
Time from HIV diagnosis to index date, months			0.510
Median (IQR)	631 (574, 677)	635 (592, 679)	634 (592, 679)

474

475

476

477 **Table 2 Mean HDL-C concentrations according to HIV-RNA from fitting a linear regression model**

478

HDL cholesterol mg/dl, Mean Difference (95% CI)			
Models	VLSet <=50	VLSet >50	per log10 VLSet higher
<i>Unadjusted</i>	<i>Ref.</i>	-8.05 (-15.3, -0.84)	-3.21 (-4.14, -2.27)
<i>p-value</i>		0.029	<.001
<i>Adjusted¹</i>	<i>Ref.</i>	-7.65 (-14.9, -0.44)	-3.11 (-4.06, -2.16)
<i>p-value</i>		0.038	<.001
<i>Adjusted²</i>	<i>Ref.</i>	-5.24 (-12.4, 1.94)	-2.57 (-3.52, -1.62)
<i>p-value</i>		0.153	<.001

¹for CD4/CD8, age, AIDS and HCVA_b status

²for those in model¹ plus gender

479

480

481

482

483 **Table 3 Mean HDL-C concentrations according to HIV-RNA from fitting a linear regression model dose-response**
484 **model**

485

HDL cholesterol mg/dl, Mean (95% CI)							
Factors	Absolute value	Unadjusted difference	p-value	Adjusted ¹ difference ^{&}	p-value	Adjusted ² difference ^{&}	p-value
<i>Viral load, copies/mL</i>							
0-50	52.36 (45.22, 59.50)	<i>Ref.</i>		<i>Ref.</i>		<i>Ref.</i>	
51-100	48.89 (45.75, 52.02)	-3.48 (-11.3, 4.32)	0.382	-3.12 (-10.9, 4.68)	0.434	-1.79 (-9.53, 5.96)	0.651
1001-10,000	44.73 (43.72, 45.74)	-7.63 (-14.8, -0.42)	0.038	-7.38 (-14.6, -0.16)	0.045	-5.01 (-12.2, 2.18)	0.172
10,000+	40.64 (38.60, 42.69)	-11.7 (-19.1, -4.29)	0.002	-11.1 (-18.6, -3.67)	0.003	-8.45 (-15.9, -1.03)	0.026

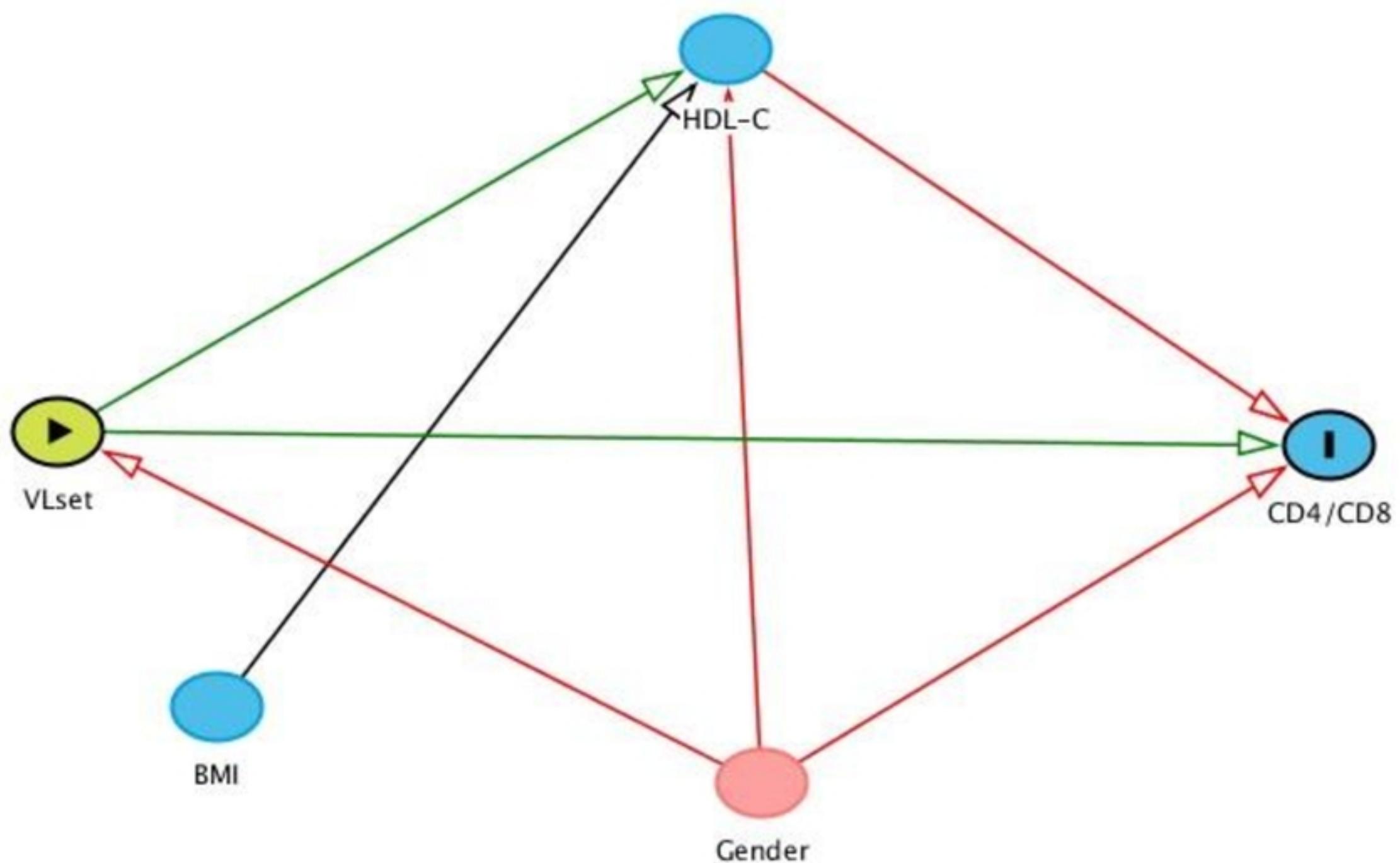
¹for CD4/CD8, age, AIDS and HCVA_b status

²for those in model¹ plus gender

Table 4 Mean total Cholesterol concentrations according to HIV-RNA from fitting a linear regression model

HDL cholesterol mg/dl, Mean Difference (95% CI)			
Models	VLSet <=50	VLSet >50	per log10 VLSet higher
<i>Unadjusted</i>	<i>Ref.</i>	-14.6 (-38.6, 9.36)	-4.46 (-7.59, -1.33)
<i>p-value</i>		0.232	0.005
<i>Adjusted¹</i>	<i>Ref.</i>	-11.2 (-35.1, 12.67)	-4.36 (-7.52, -1.20)
<i>p-value</i>		0.357	0.007
<i>Adjusted²</i>	<i>Ref.</i>	-8.96 (-32.9, 15.00)	-3.88 (-7.07, -0.69)
<i>p-value</i>		0.464	0.017

¹for CD4/CD8, age, AIDS and HCVA_b status


²for those in model¹ plus gender

Tab 5 Results of the mediation analysis with outcome CD4/CD8

VL Set-point (per log10 higher)	Mean CD4/CD8	95% CI	p-value
Direct Effect	-0.13	-0.14; -0.11	<0.0001
Indirect effect via HDL-C	-0.0009	-0.002; -0.0003	
Total Effect	-0.13	-0.14; -0.11	
% of Tot Effect mediated by HDL-C	0.69%	0.61%; 0.79%	

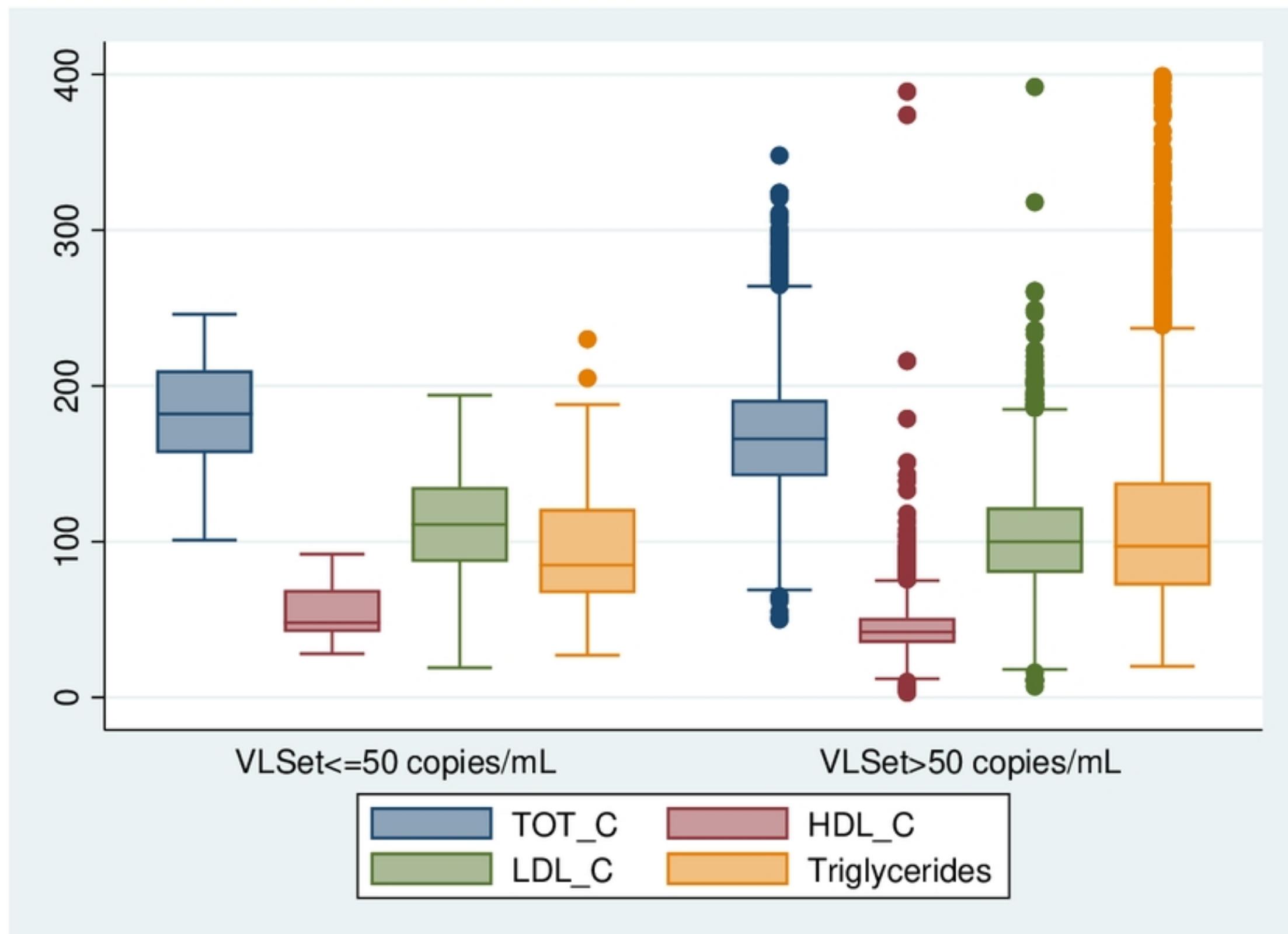

Mediation analysis on the assumptions described in the DAG (Figure 1).

Figure 1 DAG of the mediation model with outcome CD4/CD8

Figure

Figure 2.: Box plots of biomarkers according to VLset

Figure