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Abstract

Aims: HIV infection is associated with dyslipidemia and an increased risk for cardiovascular diseases. HIV Nef
protein downregulates the generation of nascent HDL. The interplay between HIV-RNA, HDL-c level and
CD4/CDS ratio in naive HIV patients remains to be elucidated.

Methods: We included untreated persons living with HIV (PLWH) of the ICONA Foundation Study cohort if
they also had 22 viral load (VL) measurements prior to ART initiation. We performed unadjusted correlation
and linear regression analyses evaluating the effect of VLset on HDL-C. Viset and CD4/CDS8 ratio were fit in
the log,o scale, while HDL-c, was fitted in the untransformed raw scale.

Results: We included 3,980 untreated PLWH. Fifty-eighty (1.5%) were aviremic. We observed a negative
correlation between HDL-c and VLset (Pearson R?=0.03), from fitting an unadjusted linear regression model
-8.5 mg/dl (95% Cl: -15,9 - -0,84 p<0.03). There was a dose-response relationship between HDL-c levels and
VLset, however, this association was somewhat attenuated after further controlling for gender. Despite a
positive correlation between HDL-c and CD4/CDS8 ratio, the HDL-c plasma concentration does not satisfy the
criteria for a strong surrogate marker.

Conclusions:

Our data show that HDL-c plasma concentration is significantly lower per higher level of VLSet although this
was in part explained by gender. Further analyses should be promoted to better understand the molecular
mechanisms that underline the relationship between HIV replication, HDL-c formation, and diseases

progression.

Key words: HDL-c, HIV Viral load, CD4/CDS ratio
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Introduction

HIV infection has been associated with changes in lipid concentration, characterized by decreased levels of
high-density lipoprotein cholesterol (HDL-c) and increased levels of low-density lipoprotein cholesterol (LDL-
c), total cholesterol (TC) and triglycerides (TGL) [1-3].

Antiretroviral therapy (ART) increases HDL-c concentration by eliminating active viral replication, although
this association might be confounded by demographic factors [4-6]. In addition, ART use leads to a rise in TC
and LDL-c that typically exceeds pre-infection levels, whereas the recovery of HDL-c may be incomplete [2].

HDL-c is considered protective against the development of atherosclerosis because it removes atherogenic
lipid molecules from foam-cells to the liver, facilitating its elimination in the intestinal tract [reverse
cholesterol transport (RCT)], and it has also several antioxidant and anti-inflammatory properties which can
help prevent LDL-c oxidation and inflammatory cell migration [7]. Consequently, ART and non-ART related
lipid alteration, associated with chronic inflammation and adipose tissue dysfunction, can be clearly
considered as one of the possible explanations for the increased risk of cardiovascular disease (CVD) events
reported for people living with HIV (PLWH), compared to uninfected controls [8-12].

In addition, there are several immunological mechanisms trough which HDL-c has shown to have a protective
role, particularly in sepsis, due to its critical intermediary step in lipid-based pathogen clearance, bacterial
toxin binding and disposal [13-16], monocyte activation, macrophage and dendritic-cell migration, release of
inflammatory cytokines [17-18] and inhibition of vascular and intercellular adhesion molecule expression
[19].

Actually, it is known that cholesterol is a key component of cell membrane and virus envelope, and
cholesterol-rich microdomains, known as lipid rafts, on host cell plasma membranes have an important role
in viral entry and budding: in fact, it was demonstrated that cholesterol-depleting molecules, such as methyl-
B-cyclodextrin, inhibit the cellular entry of several viruses, such as HIV-1, rotaviruses and coronaviruses [20].
Focusing on lipid alteration during HIV infection, the change in HDL-c would suggest that there are several
steps of HIV replication that critically depend on cholesterol metabolism. The molecular confirmation of this

hypothesis is offered by Mujavar’s [21] in vitro results. According to these results, the Nef HIV protein impairs
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ATP-binding cassette transporter A1l (ABCA-1) dependent cholesterol efflux from human macrophages
generating several consequences, such as: cholesterol accumulation within monocytes (foam-cells
transformation), reduction of HDL-c plasma concentration, increased virus budding (due to the rise of
cytoplasmatic lipid rafts) and lastly an increase in HIV replication. Later in vitro studies with LXR-o. agonists
(TO-901317), a strong stimulator of ABCA-1 expression, showed an improvement of cholesterol efflux from
HIV-infected T lymphocytes and macrophages associated with a reduction of HIV replication in both cell
types. The effect of this antagonist is remarkably reduced in ABCA-1 defective T-cells of a patient with Tangier
disease [22]. Furthermore, HIV ANef infection in vivo resulted in much lower VL and in a milder presentation
of several elements of immunological dysfunction compared to patients infected with WT HIV [23].
Lipidomics techniques have also allowed the characterization of the lipidome of enveloped viruses. By this
way, HIV lipid envelope has been observed to be different from the producer cell plasma membrane,
suggesting that viruses bud from specialized membrane subdomains, which are enriched in particular lipids
[24].

The evidence summarised above, supports the notion that plasmatic HDL-c is-a should be biochemical marker
which is likely to be related to HIV viral budding and inflammation. With this analysis, we aimed to
corroborate, in the setting of real-life untreated HIV-infection, the association between VLset and lipids (such
as total cholesterol and HDL-c plasma concentrations), and whether VLset mediated HDL-c changes might

also correlate with immunological parameters of HIV progressions, such as CD4/CD8 ratio.

Materials and Methods

Study population

In this retrospective cross-sectional study, we included untreated HIV-infected people enrolled in the ICONA
Foundation cohort. The main aim was to evaluate the association between HDL-c plasma concentration and
VL set-point in absence of ART; a secondary objective was to evaluate the association between HDL-c levels
and markers of HIV disease progression like CD4/CDS8 ratio. We included people for whom >2 viral load (VL)

measurements prior to ART initiation were available. The viral set point (VLset) was defined as the mean of
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the first two VL and the date of the 2" value chosen as the index date for this cross-sectional analysis.
Participants with an estimated VLset <50 copies/mL were labelled as ‘aviremic’ and the remaining group as
‘viremic’. People who had started statin therapy prior to the index data and those without a value of HDL
over 3 months of the index data were excluded. All laboratory markers test results were included in the

correlation analyses if measured within 6 months of the index Vlset date.

Ethical considerations

The Icona Foundation study was approved by the Ethics Committees (institutional review board) of each
participating institution. All of the individuals enrolled provided a written informed consent at the time of
the enrolment. All procedures of the study were performed in accordance with the 1964 Helsinki declaration

and its later amendments.

Statistical analyses

Characteristics of the study population were described overall and after stratification according to VLset (<50
copies/mL vs. >50 copies/mL). The distribution of categorical factors was compared using a chi-square test
and median values of continuous factors using the non-parametric Mann-Whitney test. Box plots were used
to depict the full distribution (Q1, Q3, median, range) of lipid markers across the two groups. Unadjusted
Pearson correlation coefficient was also used to test the hypothesis of a linear relationship between VLSet

and lipids.

In order to control for potential confounding factors, a multivariable analysis was conducted for total
cholesterol and HDL-c for which an univariable difference between groups was detected. In particular, the
association between VLSet (main exposure) and HDL-c (primary outcome) and total cholesterol (secondary
outcome) was evaluated by fitting a linear regression model after controlling for a minimal set confounders
chosen a priori including gender, age, CD4/CDS8 ratio, HCV status (detection of HCVAb), and AIDS diagnosis.

Total cholesterol was essentially chosen as a negative control. This list of measured potential confounders
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was put together using both axiomatic knowledge and literature review. In order to further assess the
robustness of the results against potential unmeasured confounding bias, the e-value was calculated and
compared to the magnitude of the mean difference seen for predictors showing the strongest association
with the outcome (25).

HDL-c and total cholesterol, which both showed a symmetric distribution, were fitted in the untransformed
raw scale. VLSet instead was fitted in three ways: i) comparing people with <50 copies/mL (aviremic) vs. >50
copies/mL (viremic); ii) using the log;, scale and iii) after splitting the study population in groups using pre-

specified HIV-RNA clinical cut-offs to evaluate a potential dose-response effect.

In addition, a refined model has been hypothesised for a third outcome: the CD4/CDS ratio. In this model, on
the basis of the results of the main analysis, BMI was the only confounder of the association between VLSet
and CD4/CDS8 ratio, while HDL-C was a mediator, i.e. some of the total effect of VLSet on CD4/CD8 is assumed
to be explained by a variation in HDL-C. This was visually described using a direct acyclic graph (DAG, Figure
1). A mediation analysis was formally performed using the ‘medeff’ command in Stata 15. All other results

were obtained from using SAS version 9.4 (Carey, USA).

Results

Study population

The clinical and demographic characteristics of HIV positive patients enrolled in the study are shown in Table
1. We included 3,980 HIV ART-naive individuals, 58 patients (1.5%) spontaneously aviremic and 3,922 (98.5%)
viremic patients, respectively. As shown in Table 1, the group of aviremic patients were significantly older
[aviremic vs. viremic median 41 (IQR: 35, 48) vs. 37 (IQR: 30, 44) years p= 0.005] and with more females
[aviremic vs. viremic 26 (45%) vs. 749 (19%) p<.001]. Furthermore, as expected, the aviremic patients
presented higher TCD4 cell counts [aviremic vs. viremic 766 (IQR: 546, 1001) cells/mm?3 vs. 535 (IQR: 384,

707) cells/mm?3 p<0,001], and significantly lower TCD8 cells counts [aviremic vs. viremic 732 (IQR: 499, 997)
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cells/mm?3vs 984 (IQR: 718, 1352) cells/mm?3 p<0,001] and VL [aviremic vs viremic 1.40 (IQR: 1.30, 1.66) logyo
copies/ml vs 4.36 (IQR: 3.79, 4.85) log10 copies ml p<0.001] compared to viremic.

A significantly higher prevalence of Caucasian people (p=0.002), current smokers (p=0.026) and MSM
(p<0.001) was found in the viremic group. In contrast, no evidence for a difference by groups was found
regarding BMI [aviremic vs viremic 24 (IQR: 22, 27) Kg/m? vs 23 (IQR: 21, 25) Kg/m? p=0.06], CD4/CDS8 ratio
[aviremic vs viremic 1.13 (IQR: 0.72, 1.66) vs 0.53 (IQR: 0.36, 0.77) p=0.476] HIV duration [aviremic vs viremic
631 (IQR: 574, 677) months vs 635 (IQR: 592, 679) months p=0.510] and hepatitic viruses serology [aviremic

vs viremic HBV p: 0.427; HCV p: 0.094 and hepatitis co-infections p: 0.155].

Unadjusted association between VLset and HDL-c, LDL-c, TC and Triglycerides plasma concentration in ART-

naive patients

Figure 2 shows the distribution of lipid values in spontaneously aviremic an viremic patients enrolled in the
study. Aviremic patients showed a significantly higher level of HDL-c plasma concentration [aviremic vs
viremic median 48 (IQR: 42, 62) mg/dl vs. 42 (IQR: 35, 51) mg/dl p<0.001] and total cholesterol (TC) [aviremic
vs. viremic 183 (IQR: 155, 210) mg/dl vs. 166 (IQR: 142, 191) mg/dl p=0,002] compared to viremic patients.
Higher LDL-c plasma concentration and lower triglicerydes (TGL) levels were found in aviremic patients
compared to viremic, although the association did not reach statistical significance [aviremic vs viremic LDL-
c: 111 (IQR: 87, 135) mg/dl vs. 100 (IQR: 80, 122) p= 0.087; TGL: 89 (IQR: 69, 116) mg/dl vs. 99 (IQR: 72, 142)
mg/dl p=0.094]. We also evaluated the linear correlation between all lipid parameters and HIV viremia; our
data shows a negative correlation between HIV viremia and HDL-c, LDL-c and TC as well as a positive
correlation with TGL plasma concentrations. In particular regarding HDL-c and VLset, we observed a
significant negative correlation (Pearson R?=0.03) and an absolute difference of -8.05 mg/dL when comparing
viremic with aviremic patients (95% Cl:-15.3; -0.84, p=0.03, Table 2). In contrast, there was no evidence for
a difference in total cholesterol between the viremic and aviremic group from the unadjusted linear

regression with total cholesterol as outcome: -14.5 mg/dl (95% Cl:-38.6; +9.36), p=0.23 (Table 4).
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Role of potential confounding factors

The relationship between VLset and HDL-c and TC was re-evaluated after controlling for potential
confounders using linear regression adjustment. When VLSet was fitted as a binary exposure (aviremic vs.
viremic) it was associated with HDL-C levels independently of age, AIDS diagnosis and HCVAb status.
However, after controlling for gender this effect was somewhat attenuated (Table 2). This is because females
are known to have a lower VLSet [26] and also a higher HDL-C. Interestingly, confounding was less strong in
the analysis in which VLSet was fitted as continuous in the logyo scale which has greater statistical power.
Also, difference could still be seen when comparing aviremic patients with those with very high levels of HIV-
RNA (>10,000 copies/mL), even after controlling for gender (Table 3). Table 3 also shows a nice dose-response
relationship between HIV-RNA and HDL-c which, despite the cross-sectional nature of the analysis, seems to
suggest causality. In the main analysis with VLSet fitted as continuous in the log scale, with an observed
standardised difference of 2.57 logs in the fully adjusted model and a standard error for this difference of
0.49, an unmeasured confounder that was associated with both the outcome and the exposure each with a
log difference of at least 20.2 logs could explain away the estimate, but weaker confounding could not.
Similarly, to move the confidence interval to include the null, an unmeasured confounder that was associated
with the outcome and the exposure each by a difference of at least 8.1 logs could do so, but weaker
confounding could not. To put this in prospective, the difference associated with the measured factors

showing the strongest association was 9.3 logs for gender.

In contrast, the model with TC as outcome showed an association with VLSet only when the latter was fitted
as continuous in the log, scale (Table 4). The analysis show that other factors such as age, AIDS and HCVAb
status played a role in explaining the unadjusted difference in total cholesterol between the aviremic and

viremic group.

Mediation analysis
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We further evaluated the total direct effect of VLSet on CD4/CD8 ratio by decomposing the effect in the
direct effect of VLSet on CD4/CDS8 ratio and the indirect effect through the causal pathway of HDL-C (Figure
1). This analysis indicated that indeed some of the total effect of VLSet on CD4/CDS8 is significantly mediated
by a variation in HDL-c induced by HIV-RNA. Although significant, this indirect effect is estimated to be only
a small percentage of the total effect (Table 5). There was also evidence that the indirect effect was larger,
although still small in absolute terms, in people with lower levels of HDL-c which was estimated after formally

testing for interaction (data not shown).

Discussion

In our retrospective cross-sectional analysis, for the first time on a large sample of real-life untreated PLWH,
we found evidence for a significant inverse relationship in vivo between HDL-c plasma concentration and HIV
viremia.

Regarding the important role that lipoproteins assume in infectious diseases, there is indeed evidence for a
strict relationship between lipid metabolism and viral replication. Specifically, membrane cholesterol-rich
lipid rafts have multiple functions for viral replication, recruiting and concentrate several receptors and
molecules involved in pathogen recognition and cellular signalling, which mediate pathogen internalization
and modulate the lipid raft-dependent immune response.

Focusing on the results of our analysis, we found an inverse relationship between HDL-c levels and VLSet
which could not be fully explained by a number of key measured confounding variables. Higher levels of HIV-
RNA were associated with a lower HDL-c independently of age, CD4/CD8 ratio, AIDS and HCVAb status;
despite the cross-sectional nature of the study design, under our strong assumptions of a correctly specified
model and no unmeasured confounding, the observed link could be interpreted as causal in that low levels
of HDL-c are determined by higher levels of HIV replication. When grouping study participants as viremic vs.
aviremic, the difference was largely attenuated by gender, although this analysis is likely to have low
statistical power. No association was detected between VLset and LDL-c, while a significant association

between VLset and both TGL and TC in unadjusted analysis was largely explained by confounding factors.
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Especially when dealing with observational data it is important to question whether the findings might be
due to bias and these other results, which act as negative controls, are somewhat in support of the evidence.
Overall, our results appear to confirm the presence of a link between HIV replication and lipid metabolism.
In particular, we speculate that the inverse correlation seen between HIV viremia and HDL-c in our “in vivo”
study, is a result of the fact Nef HIV protein was able, through active viral replication, to reduce HDL-c
production by impairing ABCA-1, generating cholesterol accumulation within macrophages, promoting their
foam-cells transformation and increasing the cardiovascular risk among PLWH (27, 28).

Moreover, HIV-RNA is known to have a direct effect on immune-parameters such as CD4 count, CD8 and
their ratio [29-33]. On the basis of the results of our analysis, we could also speculate that higher HIV-RNA
replication may cause a reduction of HDL-c levels, which in turn leads to higher level of inflammation markers
(e.g. cytokines and monocyte activation), with a further effect in reducing the CD4/CD8 ratio. Our formal
mediation analysis supports the existence of this indirect effect although it represents only a very small
percentage of the total effect. In general, this result reinforces our hypothesis of the role of HIV-replication
in causing lipids and immunological abnormalities.

It is known that HDL-c might decrease the expression of several key components of the inflammasomes
during HIV infection, suggesting a crucial role of HDL-c in modulate the inflammatory state and consequently,
the progression of HIV infection. Moreover, greater interleukin-6 (IL-6) and intercellular adhesion molecule-
1 (ICAM-1) levels have been recently found to be associated with both lower total HDL-c and small HDL
particles.[27-28]. Further studies are needed to better evaluate the association between lower HDL-c and
small HDL particles on IL-6 and other cytokines (which were not included in our analysis because they were
available only for the subset of the aviremic individuals), considering also the potential contribute of these
mechanisms to increased CVD risk among PLWH [34-36].

Reasons for the increased risk in CVD in PLWH as compared to that observed in the general population remain
still partly unclear. Our data suggest that HIV replication alone could have a pivotal role in increasing this risk
by its direct effect on HDL-c reduction and triglycerides elevation, independently of ART. Other studies should

be conceived to further evaluate the causal link between HIV-RNA and the risk of CVD, carefully investigating
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the role of HIV-RNA as the main exposure of interest, ART and HCV-RNA as key confounding factors, and
HDL-c as the potential key mediator; in contrast, most analysis thus far have considered lipids elevation,

perhaps wrongly, as a confounder for the effect of ART instead of being a mediator.

Before drawing final conclusions, a number of limitations of our analysis need to be mentioned. First,
although HDL particles play a critical role in the maintenance of cholesterol balance in the arterial wall and
in reduction of pro-inflammatory responses by arterial cholesterol loaded macrophages, their plasmatic
concentration is not a perfect surrogate marker for macrophage cholesterol efflux. Therefore, it is possible
that HDL-c as routinely measured in the clinics is not a perfect surrogate of cellular cholesterol efflux and
measurement error for the outcome in our analysis might exist. However, this is potentially a conservative
bias as it implies that the magnitude of the association could have been diluted.

In addition, our analysis of the possible causal effect of VLSet on HDL-C is based on the assumption of no
unmeasured confounding and correct specification of our model (e.g. one of the underlying assumption of
our model is that BMI is a predictor of outcome but not a cause of variation in VLSet, etc. see Figure 1).
However unmeasured confounding can never be ruled out in real-world data. For example, HCV-RNA at ART
initiation which is not available in the database for the majority of our participants is a potential key
unmeasured confounding factor. Nevertheless, many important measured confounders have been
accounted for and our sensitivity analysis (through calculation of the e-value) shows that results are fairly
robust to potential unmeasured confounding bias. Similar considerations apply also to the second part of our
analysis, aiming to estimate the indirect and direct effect of VLSet on CD4/CDS8 ratio and even more so as one
key assumption in mediation analysis is that there is no mediator-outcome unmeasured confounding.
Furthermore, there are many different factors that could influence our main exposure/intervention variable
(individuals’ HIV-RNA set-point levels) and, in this situation according to some, one of the key conditions for
the identifiability of causal effects from observational data does not hold [37]. More in general, given the

cross-sectional design of the study, it is impossible to establish the exact temporality between VLSet and
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HDL-c and it is an arbitrary assumption, based on the exact dates of biomarkers, that we have modelled HDL-c

(outcome) as a function of VLSet (exposure) and not viceversa.

In conclusion, our data show that HDL-c plasma concentration is significantly lower in absence of ART in
viremic compared to aviremic patients, although this association was in part explained by gender. Further
analyses should be promoted in order to study the molecular mechanisms that underline the relationship
between HIV replication, HDL-c formation, and diseases progression and the role of HIV replication alone in

increasing the risk of CVD in the HIV-infected population.
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Figures and Tables

Table 1 Characteristics of the study populations stratified by HIV-RNA group

Characteristics

Gender, n (%)

Female

Mode of HIV Transmission, n (%)
PWID

MSM

Heterosexual contacts
Other/Unknown

Ethnicity, n (%)

Caucasian

South America

Africa

Asian

BMI

Median (IQR)

Smoking, n (%)

No

Current

Unknown

CNS diagnosis, n (%)

Yes

HBsAg, n (%)

Negative

Positive

Not tested

HCVAb, n (%)

Negative

Positive

Not tested

Hepatitis co-infection, n (%)
No

Yes

Not tested

Calendar year of index date
Median (IQR)

Age, years

Median (IQR)

CD4 count, cells/mmc
Median (IQR)

CDS8 count, cells/mmc
Median (IQR)

CD4/CDS8 ratio

Median (IQR)

VL set point, log10 copies/mL
Median (IQR)

Time from HIV diagnosis to index date, months
Median (IQR)

0-50
N=58
26 (44.8%)
14 (24.1%)
12 (20.7%)
28 (48.3%)
4 (6.9%)
44 (75.9%)
6 (10.3%)
8 (13.8%)
0 (0.0%)
24 (22, 27)
33 (56.9%)
20 (34.5%)
5 (8.6%)
5 (8.6%)
39 (67.2%)
0 (0.0%)
19 (32.8%)
31(53.4%)
8 (13.8%)
19 (32.8%)
30 (51.7%)

8 (13.8%)
20 (34.5%)
2012 (2007, 2016)
41 (35, 48)
766 (546, 1001)
732 (499, 997)
1.13(0.72, 1.62)

1.40 (1.30, 1.66)

631 (574, 677)

Viral load set point (copies/mL)

>50
N=3922
749 (19.1%)
356 (9.2%)
1953 (50.2%)
1365 (34.8%)
214 (5.5%)
3518 (89.7%)
178 (4.5%)
188 (4.8%)
38 (1.0%)
23 (21, 25)
1590 (40.5%)
1612 (41.1%)
720 (18.4%)
354 (9.0%)
2922 (74.5%)
5(0.1%)
995 (25.4%)
2618 (66.8%)
346 (8.8%)
958 (24.4%)
2490 (63.5%)
351 (8.9%)
1081 (27.6%)
2012 (2009, 2016)
37 (30, 44)
535 (384, 707)
984 (718, 1352)
0.53 (0.36, 0.77)

4.36 (3.79, 4.85)

635 (592, 679)

p-
value®

<.001

<.001

0.002

0.057

0.026

0.915

0.427

0.094

0.155

0.476

0.005

<.001

<.001

0.476

<.001

0.510

Total
N= 3980

775 (19.5%)

370 (9.4%)
1965 (49.8%)
1393 (35.0%)

218 (5.5%)
3562 (89.5%)

184 (4.6%)

196 (4.9%)

38 (1.0%)

23 (21, 25)
1623 (40.8%)
1632 (41.0%)
725 (18.2%)

359 (9.0%)
2961 (74.4%)

5 (0.1%)
1014 (25.5%)
2649 (66.6%)

354 (8.9%)
977 (24.5%)
2520 (63.3%)

359 (9.0%)
1101 (27.7%)

2012 (2009, 2016)
37 (30, 44)
537 (385, 711)
978 (715, 1348)
0.54 (0.36, 0.78)

4.35 (3.76, 4.84)

634 (592, 679)
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Table 2 Mean HDL-C concentrations according to HIV-RNA from fitting a linear regression model

Models VLSet <=50
Unadjusted Ref.
p-value

Adjusted* Ref.
p-value

Adjusted? Ref.
p-value

for CD4/CDS8, age, AIDS and HCVADb status

’for those in model® plus gender

HDL cholesterol mg/dl, Mean Difference (95% Cl)

VLSet >50
-8.05 (-15.3, -0.84)
0.029
-7.65 (-14.9, -0.44)
0.038
-5.24 (-12.4, 1.94)
0.153

per log10 VLSet higher
-3.21 (-4.14, -2.27)
<.001
-3.11 (-4.06, -2.16)
<.001
-2.57 (-3.52,-1.62)
<.001

Table 3 Mean HDL-C concentrations according to HIV-RNA from fitting a linear regression model dose-response

model

HDL cholesterol mg/dl, Mean (95% Cl)
Factors Absolute value Unadjusted difference vapl;e Adjusted! difference®
Viral load, copies/mL
0-50 52.36 (45.22, 59.50) Ref. Ref.
51-100 48.89 (45.75, 52.02) -3.48 (-11.3, 4.32) 0.382 -3.12 (-10.9, 4.68)
1001-10,000 44.73 (43.72, 45.74) -7.63 (-14.8,-0.42) 0.038 -7.38 (-14.6, -0.16)
10,000+ 40.64 (38.60, 42.69) -11.7(-19.1,-4.29)  0.002  -11.1(-18.6, -3.67)

for CD4/CD8, age, AIDS and HCVAD status
2for those in model* plus gender

p- Adjusted? difference® P
value value
Ref.

0.434 -1.79 (-9.53, 5.96) 0.651
0.045 -5.01 (-12.2, 2.18) 0.172
0.003  -8.45(-15.9,-1.03)  0.026

Table 4 Mean total Cholesterol concentrations according to HIV-RNA from fitting a linear regression model

HDL cholesterol mg/dl, Mean Difference (95% Cl)

Models VLSet <=50 VLSet >50
Unadjusted Ref. -14.6 (-38.6, 9.36)
p-value 0.232
Adjusted* Ref. -11.2 (-35.1, 12.67)
p-value 0.357
Adjusted? Ref. -8.96 (-32.9, 15.00)
p-value 0.464

for CD4/CDS, age, AIDS and HCVADb status

’for those in model® plus gender

per log10 VLSet higher
-4.46 (-7.59, -1.33)
0.005
-4.36 (-7.52,-1.20)
0.007
-3.88 (-7.07, -0.69)
0.017
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Tab 5 Results of the mediation analysis with outcome CD4/CD8

VL Set-point (per

mediated by HDL-C

log10 higher)

Mean CD4/CD8 95% ClI p-value
Direct Effect -0.13 -0.14; -0.11 <0.0001
Indirect effect via -0.0009 -0.002; -0.0003
HDL-C
Total Effect -0.13 -0.14; -0.11
% of Tot Effect 0.69% 0.61%; 0.79%

Mediation analysis on the assumptions described in the DAG (Figure 1).
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Figure 1 DAG of the mediation model with outcome CD4/CD8
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Figure 2.: Box plots of biomarkers according to VLset
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