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Abstract

Probabilistic generative network models have offered an exciting window into the constraints
governing the human connectome’s organization. In particular, they have highlighted the economic
context of network formation and the special roles that physical geometry and self-similarity likely
play in determining the connectome’s topology. However, a critical limitation of these models is that
they do not consider the strength of anatomical connectivity between regions. This significantly limits
their scope to answer neurobiological questions. The current work draws inspiration from the
principle of redundancy reduction to develop a novel weighted generative network model. This
weighted generative network model is a significant advance because it not only incorporates the
theoretical advancements of previous models, but also has the ability to capture the dynamic
strengthening or weakening of connections over time. Using a state-of-the-art Convex Optimization
Modelling for Microstructure-Informed Tractography (COMMIT) approach, in a sample of children
and adolescents (7 = 88, aged 8 to 18 years), we show that this model can accurately approximate
simultaneously the topology and edge-weights of the connectome (specifically, the MRI signal
fraction attributed to axonal projections). We achieve this at both sparse and dense connectome
densities. Generative model fits are comparable to, and in many cases better than, published findings
simulating topology in the absence of weights. Our findings have implications for future research by
providing new avenues for exploring normative developmental trends, models of neural computation
and wider conceptual implications of the economics of connectomics supporting human functioning.

Introduction

The study of the brain as a connectome using graph theory provides a powerful framework for
understanding its computational and organizational principles'?. There are well-characterized features
of observable brain networks, such as its modular structure®, small-world propensity**, hierarchal
organization®’ and its geometric wiring structure®. Underlying these apparent features is the economic
and energetic context in which brain network configurations exist™'’; preserving its physical,
metabolic, and cellular resources while sustaining required neural function”''™'*. Due to intrinsic
resource limitations for sustaining the brain’s organization, the connectome achieves a balance
between the valuable connections required for appropriate functioning versus the costs of those
connections to form, maintain and propagate signals'*™"*.

To better account for this complex organization, various flavors of probabilistic generative
network model have been proposed since the early 2000s'>'®!7. These models work by simulating the
formation of connections in the brain in a step-wise fashion to produce synthetic connectomes. In
essence, these models achieve compression in that they produce complex networks from just one or
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53  two tuned parameters'®. Across studies, the systematic comparison of different parameter types, and
54 tuning properties, highlights the fundamental constraints that govern the formation of a given

55  network. When fit to empirical human brain data'”'*', these models can shed light on the possible
56  factors driving biological connectivity. For example, one emerging finding is that the preference for
57  topological self-similarity, when modelled as a wiring rule (termed homophily), can approximate

58  structural and functional connectome datasets across numerous species and scales (e.g.,”**). This

59  indicates that an important developmental principle may be that neural assemblies form connections
60  with each other, based on how similar these assembles are to each other’* .

61 In contrast with graph theoretical analyses of connectomes derived from in vivo diffusion

62  magnetic resonance imaging (AMRI), which commonly consider the heterogeneous edge-weights that
63  are observed®**?¢ (e.g., in terms of number of streamlines or fractional anisotropy), one major

64  limitation of previous generative models is that they can only simulate the binary existence of

65  connections in the connectome (i.e., reflected by a one or a zero corresponding to a connection

66  existing or not, respectively). This means that they exclude consideration of connection weight

67  heterogeneity®’. This exclusion simplifies the engineering problem of simulating connectomes but
68  significantly limits the scope of the scientific questions they can answer. First, because connectomics
69  data have an intrinsic weighted structure, current generative network models largely ignore a

70  potentially essential source of information. As a result, we may be missing insights critical for

71  understanding the constraints that guide connectome formation. Second, the strength of relationships
72 between regions (rather than just their existence) are crucial in neurocognitive development and

73 highly sensitive to developmental change®®?. If generative models are to be useful for understanding
74  this change they will need to capture weighted change. Third, in computational models that perform
75  tasks (e.g., neural networks), weights mediate the extent to which errors propagate and facilitate

76  computation. Without weights, it will be hard to integrate network formation and the computational
77  capacities those networks afford (e.g., as in’>?).

78 We present a solution to these challenges through an extension of canonical generative

79  models'®'7? to a weighted generative network model of the human connectome. This model draws
80  upon the economic insights from prior generative modelling'®'’. However, we further extend the
81  model, inspired by the principle of redundancy reduction®*, but through the lens of network

82  communication®, to account for how weights can adjust dynamically over time to optimize how
83  signals are propagated across the brain’s connectome. Using state-of-the-art in vivo Convex

84  Optimization Modelling for Microstructure-Informed Tractography (COMMIT)*"* we demonstrate
85  that this model is able to accurately approximate both the topology and weights of the human

86  connectome. We provide potential future directions for the field and a framework for empirical

87  findings may be incorporated into future models.

88

89  Results

90 The weighted generative network model

91 The weighted generative network model has two core algorithmic components driving the

92  network’s developmental trajectory from its starting point to end state (Fig. 1a). The first is a binary

93  generative network model'®'’, in which connections form iteratively over time — a connection is

94  generated where it previously did not exist. The second component is a weight optimization step,

95  where connection strengths of existing connections change in a direction and magnitude to reduce

96  communication redundancy in the connectome.

97 The distinction between connections forming (the first component) versus changing (the

98  second component) in the model is not arbitrary. Before a connection is formed between two regions

99  in the brain, each region does not have direct information from the other via a direct connection.
100  Whatever information exists arises via other indirect connections (i.e., information passed via other,
101  currently available, connections) or via some other non-synaptic means (e.g., paracrine signaling)
102  (Fig. 1b). Once a connection has formed, we model changing connections as weights that change in a
103  direction so as to reduce redundant communication. It may be that, as in developing neural systems,
104  some weights strengthen and others weaken over time to achieve the goal of reducing unnecessary
105 communication (Fig. 1c).
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Fig. 1 | The network’s developmental trajectory comprises of connections forming and weights
changing. a An illustration of the weighted generative process. As the simulated developmental time unfolds,
the network moves through the feature space until it reaches its final destination. b In growing networks,
connections form between regions. The information driving this process must be driven by factors outside the
direct synaptic information present between the two regions, because this is absent. Two factors that could drive
this are the current indirect connections linking the two regions or the spatial proximity of the regions. In this
example, we highlight the shared connectivity (red) and spatial proximity (blue) between node i and j. An
accurate model should demonstrate how connections form to generate connection topologies consistent with
observations. ¢ Connection weights change as some function of the presently available weights of the
connections. An accurate model should demonstrate both weakening and strengthening over time of
connections, that generates an organization of weights consistent with observations.

Generative component 1 — Forming connections

Let’s consider the first algorithmic component: forming connections. For this we use the
aforementioned generative network model. As stated previously, this model probabilistically adds a
single connection according to the modelled costs and values afforded to the network'®!”. The
simulation stops when the number of connections mirrors the empirical network it is being compared
to. It can be expressed as a simple wiring equation, updated over time:

Dij (di,j)n(ki,j)y: (1)

where p; ; denotes the probability score of node i and j forming a connection. The algorithm has a
winner-takes-all formalization such that a single connection is forced to form over the others,
depending on this probability score at each iteration of the simulation over discrete time. d; ; denotes
the cost of wiring between node i and j. To prevent overfitting of the model introduced from pre-
specifying fiber lengths (see Discussion for detail), we model this as the Euclidean distance between
regions (node regions are defined in Methods, MRI acquisition, processing and COMMIT). In our
sample (see Methods, Participants) the average correlation between fiber lengths and Euclidean
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134  distances for extant edges was » = 0.773 (SD 0.0119) corresponding to 59.7% explained variance. 7 is
135  aparameter that determines the strength of the relationship between the cost of wiring and the
136  probability of forming a connection. In empirical studies, best fitting models tend to show negative
137  values, meaning that networks prefer shorter connections to longer connections, as measured by the
138  Euclidean distance between two regions'®'”?’. k; ; denotes the topological value of forming a
139  connection between node i and j. y is the parameter that determines the strength of the relationship
140  between the topological value and the probability of forming a connection.
141 The k;; term is given by an arbitrary topological relationship postulated a priori (also termed
142  “wiring rule”). Prior work has shown that homophily (in particular, the matching rule) generative
143 models robustly achieve the best model fits relative to other models'®*'. Therefore, in order to make
144  progress with the second component of the model, we focus only on this best performing homophily
145  term for the first component, rather than cycling through all the various options. This matching rule
146  computes the normalized shared connectivity profile — the average proportion of shared neighbours
147  two regions have and has been used in numerous other studies to simulate the topology of empirical
148  binary brain networks'>'>?! It is given by the following equation, where I} where represents the set
149  of node i’s neighbors:
150
Ty N Tl (2)
“ Ty U Gl

151
152 Where [j is [} but with j excluded from the set. N, from set theory, denotes the intersection of the
153  neighbours (i.e., the overlap — in both sets). U, in contrast, denotes the union of the neighbours (i.e.,
154 the total set of neighbors from both sets). If there is a total overlap in neighbours, k; ; = 1. If there is
155  nooverlap, k; j; = 0. In summary, the formation of connections is modelled as a trade-off between the
156  cost of forming a connection versus the topological value derived from having shared connectivity
157  (under the matching rule).
158
159  Generative component 2 — Changing weights
160  We now consider our second algorithmic component: changing weights. As the brain constructs itself,
161 it does not simply add connections iteratively. Instead, as connections form, it simultaneously engages
162  in continual plasticity, with some connection strengthened and others weakened over time*’. But what
163  drives this change over time? We propose a single optimization process that, as we later show, can
164  simultaneously achieve the strengthening and weakening of connections: the weights of the network
165  change to minimize its communication redundancy between its spatially-configured components. This
166  idea stems from accounts of redundancy reduction as a core principle for economical sensory
167  coding®**' but through the lens of network communication®>~*,
168 We will now outline how we operationalize redundancy in the context of communication. We
169  define communication in terms of topological random diffusion of signals between regions on the
170  weighted connectome®**:
171

Cij=e wijsTH? €)
172
173 where ¢; j is the normalized weighted communicability between node i and j. This measure captures
174  what proportion of signals that propagate randomly from node 7 would reach node j over an infinite
175  time-horizon. It can be considered as equivalent to random diffusion or a random walk on the network
176  graph. As such, it can be thought of as the extent to which node i and node j communicate. Here, s
177  defines the diagonal matrix with the node strengths on the diagonal. w; ; is the weighted matrix of the
178  network, representing the strength of connections between nodes.
179 We use this operationalization of communication within an objective function, in which the
180  growing network continuously updates its weights to minimize this evolving function. Crucially, in
181  addition to topological paths constraining communication, distance is a key determinant of the timing
182  of signal propagation in networks that may contribute to redundancy. Adding in these further distance
183  considerations, we achieve the following objective function:
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184
flwis) = (cijdip)®, 4)

185
186  where f (Wi, j) is the objective function that is calculated on the weight matrix w; ;. This takes in all
187  learnable parameters (i.e., all non-zero elements of the weight matrix, w; ;). d; ; is the Euclidean
188  distance between node i and j, reflecting that the weights of longer connections are costly to maintain.
189  w is a parameter which varies the distribution of preference the network has to update weights. For
190 example, when w is a large positive value, it skews the optimization towards longer and more
191 communicable edges. When w is a small positive value, it softens this optimization disparity between
192  edges. A similar term to this has also been used recently**.
193 Across the network, the goal is to minimize redundant communication in signals traversing
194  physically in space. To achieve this optimization, at each time step ¢t in the generative process we
195  change the weights according to the following update rule:
196

Wijeor = Wij, — alf'(wi ;)] (5)
197
198 s defined as the learning rate. The greater the learning rate the larger the jump in weight updates at
199  each time point. f ’(Wi, ]-) is the first-order derivative of the objective function given in Eqn. 4, with
200  respect to the network weights, w; ;. As previously stated, this has the effect of updating the weights
201  of the network in a direction that minimizes communication redundancy in space. The first order
202  derivative was estimated by simulating the objective function under small changes of individual
203 weights (6w; ;) of 5% of the w; ; value, taken incrementally five times, each in the positive and
204  negative direction. The first order gradient is computed from these simulations, and weights are
205  updated by the learning rate, @, at each timestep in the direction of the gradient. The sign of the
206  update in Eqn. 5 is negative because a positive gradient suggests that weights must be decreased to
207  minimize redundancy (and vice versa, i.e., the subtraction facilitates the minimization of redundancy).
208  For more detail as to the whole model algorithm, see Methods; The weighted generative model
209  algorithm.
210 Once a weighted network was produced from the above process, we then assessed to what
211  extent it mirrored empirical observations. We did this via an extensive model fitting procedure to
212 compute model fit statistics called the Energyyeigntea and Energypinary, which considered how
213 well simulations approximated the empirical weights and topology respectively. Overall, the lower the
214  energy value, the better the model fit. These energy statistics were calculated as the worst fit over a
215  number of Kolmogorov-Smirnov (KS) statistics, which each measures the maximum distance between
216  the cumulative density functions (CDFs) of some graph theory statistics in observed and simulated
217  networks. To pick graph theory statistics, we extended those which have been used in prior work'*'*-
218  *. For more detail, see Methods; Model fitting.
219 In Fig. 2 we provide an illustration of the total weighted generative network modelling
220  procedure to approximate empirical connectivity. To generate empirical connectomes, we used a
221 Convex Optimization Modelling for Microstructure-Informed Tractography (COMMIT) approach®’*,
222  COMMIT filters implausible streamlines from tractography and allowed us to assign the intra-axonal
223  signal fraction (IASF) to each streamline (see Methods, MRI acquisition, processing and COMMIT).
224  This provided us with a in vivo microstructural measure relating to measured axonal projection
225  properties to provide a biologically meaningful measure of connection weights (Fig. 2¢).


https://doi.org/10.1101/2023.06.23.546237
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.23.546237; this version posted June 25, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

A weighted generative model of the connectome

a C

Wiring equation

Connections form probabilistically over time in silico  © Pij * (di,)" (ki )" Simulated weighted network

t=m

n, Topological cost
v, Topological value
o, Learning rate
o, Specificity

Model
/ fitting
At each time step, weights update to reduce redundancy

(signal propagation in geometric space) Axonal bundle

Weights update ) Objective function )
Wi = we — a(f'(w)) where f(w) = (‘ ! ““)m .. .| Intra-axonal
) Redundancy signal fraction
y " NS7i° (ASF)
= > mur ) i LO0\!
™ o/{ Observed weighted network oé)g
e 2 Y4z 0 , via microstructure-informed N
diffusion imaging (COMMIT) IASFy IASF4

X

226
227  Fig. 2 | The weighted generative network modelling procedure. a Connections form probabilistically

228 over time according to the canonical binary generative network model. b At each time point, once a connection
229 has been formed, the network weights are optimized according to a learning rate, a, in a direction as to

230  minimize the objective function f(w; ]-). The first-order derivative f'(w; ]-) is taken to do this. The objective
231 function f (wi' ]-) here is defined in terms of the total network communicability, c; ;, and distance, d; ;. See

232 Methods, The weighted generative model algorithm for detail of the whole generative process. 1. ¢ The

233 simulation concludes when the number of connections is the same as the consensus empirical brain network. In
234 the present work, we utilize microstructure-informed MRI which measures the intra-axonal signal fraction

235  (IASF).

236

237  Accurate simulation of weighted microstructure-informed connectomes

238  Through 3600 simulations of the above weighted generative network model, we charted the extent to
239 which weighted connectomes could be simulated (Fig. 3a). In Fig. 3b, we show the Energyyeigntea
240  landscape as a function of the weight parameters, @ and w, at optimally fit 7 and y parameters (see
241  Methods, Parameter selection). As shown, the learning rate a and specificity term w trade-off in the
242  negative direction, such that low energy networks are generally found in the compromise between the
243 two terms. Supplementary Fig. 1 provides further landscapes, including the Energypinqary-

244 We then sought to test our core question: to what extent is it possible to recapitulate both the
245  topology and weights of empirical connectomes with a weighted generative network model? We first
246  look at models fit to relatively sparse p = 10% networks. At this density, we found across our

247  simulations, despite having to achieve more target features, the minimum energy concurrently

248  achieved in weights and topology were comparable with the low values for binary networks:

249 Energyweightea of 0.157 (KS; = 0.118, KS,.c = 0.132, KS\» = 0.088, KS; = 0.157) and Energypinary
250  of 0.191 (KSk=0.118, KS. = 0.191, KS, = 0.103, KS; = 0.157). Fig. 3¢ and Fig. 3d show the

251  cumulative density functions of simulated statistics compared to the empirical p = 10% network.

252 One criticism of our results is that, as with earlier work'*?’, sparse networks may be easier to
253  simulate accurately and achieve a good fit, simply because there are less connections to model. As
254  such, we next aimed to replicate this finding in a denser p = 20% consensus network, containing twice
255  the number of connections. We find highly similar results, with the weighted model actually doing a
256  better job in most parts: Energyweigntea of 0.147 (KS; = 0.147, KSy.c = 0.118, KSy» = 0.132, KSi =
257  0.091) and Energypinary of 0.162 (KSx=0.132, KS. = 0.147, KS, = 0.162, KS; = 0.091). Fig. 3e and

258  Fig. 3f show the cumulative density functions of simulated statistics compared to the empirical p =
259  20% network.

260 How do the weighted simulations presented here compare to model fits attained from binary
261  generative models? As one might expect, across our simulations, it is generally easier to simulate the
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262  network topology relative to being able to simulate the weights, with 96.1% and 98.8% of simulations
263  showing a greater Energyyeigntea relative to Energypinary (respectively in sparse and dense

264  consensus networks, Supplementary Fig. 2a, b). However, there are parallels in how the models fail
265  to approximate the network statistics between weights and topology. In particular, prior findings have
266  shown that binary homophily generative models struggle to approximate the clustering of the

267  empirical observations and this is the part of the Energypinqry €quation that tends to be worst

268  approximated, reflected by being the highest K statistic'’. Here, we find a similar trend but for the
269  weighted clustering measure, KS,., which also generates the highest K statistic in 83.1% and 92.3%
270  of the simulations respectively in sparse and dense consensus networks (Supplementary Fig. 2¢, d).
271  Supplementary Fig. 2e, f show the broad relationship between the energy and K statistics achieved
272  through our modelling procedure.
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274  Fig. 3 | Simulating microstructure-informed connectome weights and topology simultaneously. a
275 3600 simulations were undertaken in total. This was done by sampling the topology parameter space from 36
276 locations spaced evenly apart (left) and running 100 simulations on each at regular intervals in the weight

277  parameter space (middle). For each weighted network that was produced through this process, it was compared
278  to empirical networks via the model fitting procedure (see Methods, Model fitting). This allowed for the

279 determination of how well the model could approximate the empirical findings. b The Energy,eigntea

280 landscape (for sparse, p=10% networks) which depicts what combination of the learning rate, a, and specificity,
281  w, produce networks with low dissimilarity to observations. As described, each point entails 100 simulations
282 with different combinations of 17, y. The best (i.e., minimum) Energy,eignreq is given as the color (dark blue is
283 low, yellow is high). ¢ Observed (pink) and simulated (blue) weighted connectomes. The best (left), top 0.5%
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284 (middle) and top 1% (right) simulation is shown. d In sparse p = 10% networks, the cumulative distributions of
285 strength (purple), weighted clustering coefficient (blue), weighted betweenness centrality (green). For each

286 panel, the top 1% of simulations (36 in total) are shown in the lighter shade. The KS statistic is given only for
287 the best performing simulation. e In sparse p = 10% networks, the cumulative distributions of degree (purple),
288 clustering coefficient (blue), betweenness centrality (green) and edge length (grey). f The same as panel d but
289 for denser p = 20% networks. g The same as panel e but for denser p = 20% networks.

290

291  Evaluating models by their weighted and binary topological relationships

292  There is a large covariance between graph theory measures due to the dependencies between nodes
293  via their connectivity*’. For example, in empirical networks, it is common that regions with more

294  connections tend to have connections with a higher average edge-weight*®. Furthermore, due in part to
295  the small-world propensity of brain network organization, regions which have high levels of clustered
296  weights tend to have low betweenness centrality’. While some studies have examined this topological
297  fingerprint more formally®*, so far due to the lack of weighted information, this has been limited to the
298  assessment of binary connections.

299 In Fig. 4, we show that while we have not explicitly simulated weighted generative networks
300 to encompass these types of covariances, they arise as a result of the generative process. We find that
301  simulations mirror (and slightly exaggerate) the dominant trend found in empirical networks (see

302  Supplementary Fig. 3 for the same findings on denser p = 20% networks). At first, these results may
303  seem surprising because the weighted generative model explicitly detaches how connections form
304  from how weights change (see Methods; The weighted generative algorithm). However, as we will
305  outline in the next section, while there is a distinction between how weights and topology occur

306  algorithmically, the principle of redundancy reduction means that topology constrains how weights
307  arrange in a direction that aligns with empirical data. Put simply, despite the computational separation
308  of connection formation from weight change, one will shape the other.
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309

310 Fig. 4 | Topological relationships between weighted and binary network statistics in empirical
311  and simulated connectomes. a In canonical idealized brain networks (left), regions with high numbers of
312 connections also have stronger connections (light blue node) and vice-versa (green node). We show that in the
313 best simulated networks, this is also the case in terms of the relationship between the number of connections of
314 region has and the strength of those connections (middle). To ensure that we control for the analytical

315 relationship between degree and strength, we also provide a version here the degree is controlled for in the

316 strength measure (right). b In canonical idealized brain networks (left), regions with high levels of clustering
317 have lower levels of betweenness centrality (yellow node) and vice-versa (light blue node). We show that in the
318 best simulated networks, this is also the case in terms of the relationship clustering and betweenness (middle).
319  We show this also for the weighted versions of the measure (right). All findings are given for p = 10% networks
320  (see Supplementary Fig. 3 for p = 20% networks).
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321

322 Communication redundancy reduction and the weighted connectome

323 So far, we have shown that by developing in silico networks which form incrementally according to
324  self-similarity (i.e., homophily) in space, while concurrently optimizing weights to minimize

325  communication redundancy in space, it is possible to produce macroscopic networks with high

326  statistical similarity to observations. Although we have outlined the logic underpinning our

327  formulation of the weighted generative algorithm, we have not directly provided an account for

328  precisely why the model successfully fits the data.

329 Redundancy reduction is a core neuroscience principle dating to the 1960s** where Barlow
330  hypothesized that the goal of sensory processing was to recode redundant sensory inputs into a

331 factorial code with statistically independent components*'. This idea has since inspired numerous
332 learning algorithms*’*°. The current work, rather than focusing on redundancy in sensory processing,
333 focusses on redundancy in terms of how regions themselves propagate signals between each other.
334  For example, a network that has a lot of communication is likely to be redundantly communicating an
335  abundance of signals between numerous regions. In contrast, a network with little communication is
336  required to communicate efficiently its relatively sparse signals between regions. This way of

337  considering communication redundancy is consistent with an efficient coding framework, which

338  proposes that the brain transmits maximal information in a metabolically economical or compressed
339  form to improve future behavior’®*". By operationalizing this mathematically in Eqn. 3 (as in

340  analogous work’") we have defined a type of redundancy that is minimized throughout the generative
341  process.

342 How does this principle of redundancy reduction in communication lead to our empirical
343  observations of connectome organization? To examine this question, we conducted the following
344  experiment. We undertook the same optimization process in the weighted generative model, but

345  carefully evaluated how redundancy changes as a function of individual weights changing over time.
346  We depict the main findings of this experiment in Fig. Sa. Starting from a simple exemplar binary
347  network of nine nodes, we compute how changing individual weights in small increments of 2.5% in
348  the positive and negative direction (6w; ;) changes the total level of communication (ZC) in the

349  network (as computed from Eqn. 3). As shown, not all changes of weights cause the same effect: as
350 some connections are strengthened communication decreases, but in others, you must weaken

351  connections to get the same trend of communication decrease.

352 This “crossing” phenomenon (as seen in Fig. 5a) can be explained by the fact that

353  communication redundancy is minimized when core connections — that are topologically central to
354  information flow — are strengthened, but peripheral edges are weakened (visualized in Fig. 5b). In
355  summary, the process of redundancy reduction leads to the bottlenecking of signal propagations

356  within relatively few core connections, consequently leading to an increased efficiency in regional
357  communication (Fig. 5c¢). This allows for the network to prioritize the flow of communication through
358  topologically central nodes, allowing for efficient integration of communication across the

359  connectome.
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360
361  Fig. 5| Redundancy reduction leads to an efficient patterning of connectivity weights. a Starting

362 from the given binary network, we incrementally strengthened or weakened the edge weights (6w, ;) in

363  increments of 2.5%. At each change, we recorded the total communication across the network (£C) which is a
364 measure of redundant communication existing in the network. Each line represents a different edge in the

365 network (a total of 16 edges) as the connection is changed. As shown, there is a “crossing” phenomenon, where
366 strengthening or weakening of connections cause opposite effects on the redundancy present in the network. As
367  highlighted, some connections achieve minimal redundancy when the connection has been weakened (left, blue
368  dashed box) but others achieve this when they have been strengthened (right, blue dashed box). b There is a
369 topological relationship between where the connection is in the network and its relationship between connection
370  weights and redundancy, such that to achieve a redundancy optimized network you must strengthen core

371 connections but weaken peripheral connections. ¢ This phenomenon has the effect of causing the weights to
372 become strengthened in the core of the network — equivalent to greater integration — causing greater efficiency
373  (purple) but reduced communication (orange).

374

375 Discussion

376  Redundancy reduction in network communication

377  One key finding is that by reducing communication redundancys, it is possible to approximate both
378  connectome topology and weights. There are many other ways, in principle, that the goal of this
379  algorithm could have been instantiated. For example, one could imagine an alternative multi-step
380  algorithm in which connections are added and/or then removed in sequence at each time-step.

381  However, the present approach provides several major benefits relative to such a solution. First, in the
382  current model the strengthening and weakening of connections can be accounted for via a single
383  optimization process depending only on the communication redundancy within the network.

384  Achieving these heterogeneous magnitudes and directions of weight changes over time (i.e., both
385  strengthening and weakening) is not trivial, particularly when there is no supervision in the learning
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386  process. Second, our optimization process is theory-driven, rather than mathematically arbitrary. The
387  idea that redundancy should be constrained in biological systems is highly congruent with multiple
388 theoretical perspectives in neuroscience***'**> In summary, not only does this model solve a

389  somewhat challenging engineering problem, but it does so in a way that resonates with biological
390 theory.

391 The way we formalize redundancy reduction here is not identical to how the original efficient
392  coding hypothesis framed redundancy. The original hypothesis concerned how the goal of sensory
393  processing was to recode redundant sensory inputs into a code with statistically independent

394  components, as to remove redundant signals from external stimuli within the internal

395  representations®®. Here, rather than focusing on the redundancy within internal representations, we
396  focus on redundancy within the communication of the network. This work draws parallels between
397  information theory accounts of neural communication via compression in the connectome® but

398  through the lens of resource rationality®*": where each node in the graph, as it develops, aims expend
399 the least possible amount of communication expenditure'**®, Moreover, we demonstrate a particularly
400 interesting observation that the reduction of redundant communication can account for how, over

401 time, networks may incrementally integrate their weighted connections — an observation entirely

402  congruent with studies examining topological changes throughout child development®’.

403

404  In context of prior structural generative network model findings

405  To date, generative models have highlighted numerous insights regarding connectome organization
406  '3% In particular, cost-minimizing homophily models (as used within the current work) have been
407  shown to quite consistently generate realistic connectome topologies across a range of scales, species
408  and modalities'>'"'**!* (although see®®). Wiring parameters have been shown to link to cognition'®*!,
409  age'’?, polygenic risk for Schizophrenia®' and adversity in a rodent model®. As our weighted models
410  builds on this foundation, we expect that theoretical questions they can answer may extend and

411  compliment this previous work.

412 One way it may do this by capturing more biologically meaningful parameters which relate to
413  the organization of connectome edge-weights. For example, the parameter controlling wiring length,
414  m, has been shown to correlate with polygenic risk for Schizophrenia?' — where subjects with higher
415  scores tended to have a lower magnitude negative m, suggesting a softer cost penalty on connectivity.
416 A weighted model may be able to elucidate more specific weight-topology interactions that may play
417  arole in disease onset or altered development™. It may be able to better elucidate age-related changes
418  shown in lifespan data® or how weighted connectivity early in development® may be modelled in
419  combination with genomic'? or cytoarchitectural®' data.

420 Another way weighted models may extend our analysis is by informing how topology and
421  weights both interact to provide computationally efficient networks able to perform computation®*
422  3** For example, recurrent (task-solving) neural networks have been shown to develop brain-like
423  topological features through a very similar optimization procedure described in the current work*. In
424 this network in particular, we highlight the interplay between a growing topological network (via a
425  homophily rule) which subsequently shapes how weights organize themselves through bottlenecking
426  of weights within topological core regions of the network (see Fig. 5). We anticipate this observation
427  will lead to a number of new theoretical insights at the intersection of network neuroscience and

428  neural network research®*%,

429

430 Limitations and future research

431  Below we list numerous limitations of the present study and point to how these can be reasonably
432  mitigated in future research:

433 Computational expense. On a typical desktop computer, binary generative models take

434  approximately one second to compute a binary generative model (p = 10% connectome, 227

435  connections). However, our weighted models take approximately 300 seconds (~300x slower). This is
436  for two main reasons. The first is that computing the first-order derivative of our objective function
437  (Eqn. 4) becomes increasingly difficult as the network grows. This leads to an intrinsic slowing down
438  of the model over the network’s formation. The second more important factor is that in the present
439  study we compute the gradient manually through a model-based simulation of the objective function
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440  with respect to the weights. This is computationally expensive, but future work will be able to

441  mitigate this through employing faster approaches to compute derivatives.

442 Consensus model fits rather than individual subjects. As there is a large computational

443  expense for computing the current models, it limited our ability to accurately fit models to individual
444  subjects. This leaves numerous open questions: how do weight parameters vary across individuals?
445 Do these models better map to measures of cognitive performance or polygenic risk? While we

446  suspect they will, we cannot yet confirm our findings will generalize to individual subjects robustly. It
447  also may be that our parameter search would need to be widened to encompass individual subjects.
448  An extended approach similar to the fast landscape generation method® would be particularly helpful
449  to approximate individual subject accurate parameter estimates.

450 Parcellation coarseness. We limited our analysis to the 68-node DK parcellation which,

451  although studied before with generative models'’, is a coarse parcellation. It is unknown how these
452  results will generalize to finer resolutions such as the Brainnetome® or Schaefer® atlases. Another
453  effect of the parcellation may reside in the inter-node distance distributions. For example, more

454  heterogeneously spaced parcellations will likely more easily generate modular networks simply by
455  virtue of the a priori locations of the regions. Our current study is limited by not exploring these

456 effects, but future work can explore this.

457 Negative weights. Numerous studies have used functional, rather than structural connectomes,
458  when using binary generative models'’**. While communication models have been argued to allow
459  for better mappings between structural and functional modalities®®, our model does not deal with

460  negative weights, which is intrinsic to correlations. This leads to a natural fit between our model and
461  structural data, which naturally contains non-negative edge-weights. Of note, other generative models
462  which can capture weights, in the form of stochastic blockmodels (which are useful characteristic

463  network community structure), can deal with negative edge weights®.

464 Wiring rules. In context of prior work, we only looked into the homophily model. However,
465  given that topology is an influence on weighed optimization process, we think it is possible that other
466  rules will yield subtly different results. Future work should look to explore how weights differentially
467  configure themselves in context of different connection formation rules.

468 Other constraints. As in most other studies’®?!, we use Euclidean distance as a measure of
469  cost of connection formation guiding topology and weight change. In contrast with fiber length

470  constraints, this has the benefit of removing any a priori limits to how the network’s topology can be
471  generated. This is because fiber length data only exists for extant connections but Euclidean distances
472  can be computed between all nodes. However, in this study approximately 60% of variance in fiber
473  lengths of extant connections can be explained by the Euclidean distance — representing a relatively
474  large variance explained (see’® for comparisons). Adding fiber lengths as a constraint will, on one
475 hand, reduce the search-space for simulations that mirror observations but, on the other, may reveal
476  more specific generative principles specific to our observations. Moreover, while distance is a key
477  determinant of signal propagation (and hence influences weight change in our model), so too are other
478  factors we hitherto do not model such as axon diameter or the g-ratio®”. Other constraints could be
479  added into the model, such as cytoarchitectural, gene-expression or receptor-expression similarity® 7",
480 Seeding and connection formation weighting. This study initializes the formation of the

481  network from an empty network so that no prior information is given to the network. In practice, this
482  means that development starts where the connectivity cost is least, which is by definition in the center
483  of the space. This early initialization will have a key effect on the model”" but is not very biologically
484  plausible (see™ ). Aside from the earliest simple generative models'®, this fact been largely ignored.
485  Future work should address this by systematically testing how initial network conditions influence the
486  resulting simulation.

487

488  Conclusions

489  We present a new weighted generative network model, capable of capturing the weighted topology of
490  the human connectome. This model solves a major limitation of prior research, principally because it
491  is weighted, extending our capability to accurately approximate both the weights and topology of the
492  connectome. We introduce several novel contributions, including an openly-available function that
493  can be used to simulate empirical neuroscience data, a demonstration of this model applied to
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494  microstructure-informed tractography data (COMMIT), in addition to a principled mechanism for
495  explaining why weights become configured as they do via a principle of communication redundancy
496  reduction. By using this model, we extend the economic accounts of brain organization, providing a
497  better understanding of how the brain may not only balance the valuable connections necessary for
498  appropriate functioning with metabolic costs, but also how their weights may be modified, in context
499  of the topology, to minimize redundant communication as it forms.

500
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513

514 Methods

515

516 Participants

517  Our main cohort contains n = 88 total participants (mean age = 12.56 years, SD age = 2.94 years,
518  minimum age = 8.01 years, maximum age=18.96 years). The sample contains n = 46 girls (mean age
519  =13.23 years, SD age = 3.13 years, minimum age = 8.01 years, maximum age = 18.96 years) and n =
520 42 boys (mean age = 11.82 years, SD age = 2.57 years, minimum age = 8.03 years, maximum age =
521  16.77 years). There is a slight interaction between age and sex, whereby the girls in our cohort were
522 older (p = 0.025) (Supplementary Fig. 4).

523

524  MRI acquisition, processing and COMMIT

525  All n = 88 participants were scanned on a 3T Siemens Connectom system with ultra-strong

526  (300mT/m) gradients, using: multi-shell diffusion magnetic resonance imaging (dMRI) acquisition
527  (TE/TR = 59/3000 ms; resolution 2x2x2 mm?*) with b € {500, 1200, 2400, 4000, 6000} s/mm? in
528 30,30,60,60,60 directions, respectively and additional 14 b = 0s/mm? interleaved volumes; 3D

529  MPRAGE (TE/TR = 2/2300ms; resolution 1x1x1mm?). dMRI data were pre-processed as outlined
530 elsewhere™.

531 To provide a more ‘biologically-informative’ assessment of brain connectivity, we used a
532 Convex Optimization Modelling for Microstructure-Informed Tractography (COMMIT) approach?®’-%,
533  Briefly, COMMIT deconvolves specific microstructural features on each fiber to recover individual
534  streamline contributions to the measured signal. To achieve this, we performed multi-shell multi-
535 tissue constrained spherical deconvolution (MSMT-CSD) and generated a whole-brain probabilistic
536  tractogram seeding from the white matter to generate 3 million streamlines. We then applied

537  COMMIT with a stick-zeppelin-ball model” to simultaneously filter out implausible streamlines and
538  assign an intra-axonal signal fraction (IASF) to each one. Thus, for all subjects we set the following
539  diffusivities dpw= dparzep= 1.7 X 107 mm?/s, dper, = 0.6x10~ mm?s, djs € {1.7, 3.0} 107 mm?/s®,
540 Connectomes were subsequently built using the FreeSurfer Desikan-Killiany (DK)

541  parcellation as nodes (68 cortical) and by then assigning the total IASF associated to each bundle as
542  edge-weights®’.

543

544  Group consensus thresholding

545  As the modeling approach given is highly computationally expensive (taking ~300x more

546  computational time than the binary model alone), rather than fitting our models to each of the » = 88
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547  participants we performed our modelling procedure on a consensus network built from the n = 88
548  sample. Utilizing a consensus also reduced the impact of false positives, false negatives’’ and any
549  effect of inconsistencies in the reconstruction of subject-level connectomes’®. We generated the

550  group-level consensus networks from the sample level IASF-weighted connectomes, which had a
551  thresholded mean density of p = 34.5%. We provided absolute thresholds of 0.1839 and 0.0467 to
552  these IASF-weighted networks to enforce a density of both p = 10% and p = 20% across the sample,
553  before running the consensus procedure. These densities were picked to best replicate the literature,
554  which has commonly used p = 10% or p = 20% networks'***** but more importantly so that we can
555  establish any effects of the models on relative sparse versus dense networks.

556 To generate an accurate group-level representative consensus, we used fcn_group bins() in
557  Matlab 2020b, which has been comprehensively detailed elsewhere constraining node-to-node

558  distances by the node-centroid Euclidean distances’. This approach retains the topological

559  characteristics of individual subject networks and preserve within-/between-hemisphere connection
560 length distributions of the individual participants.

561 The result of this procedure were two binary graphs (p = 10% and p = 20%), which acted as
562  the observed group topological consensus network. We then used the mean IASF weights across all
563  participants as the attributed weighted edges to complete the consensus weighed network. These
564  consensus networks contained 227 and 454 connections respectively across the 68-node DK

565  parcellation. See Supplementary Fig. 5 for more detail of these consensus networks, including their
566  network statistics. All network statistics were computed using the Brain Connectivity Toolbox

567 (BCT)™.

568

569 The weighted generative model algorithm

570 In this work, we construct simulated networks using a weighted generative network model, extending
571  prior work'®!7"%% to additionally encompass weights. We described the approach in earlier sections
572 (see Results; The weighted generative network model) but we additionally provide a step-by-step
573  algorithm here.

574 The algorithm begins from some initial starting condition. Here, we initialize the network as
575  empty (i.e., zero connections) within the 68 cortical node DK parcellation scheme.
576 Edge connections are added in a highly analogous way to previous work which employs the

577  canonical generative network model (see* for further detail). Connections are added one at a time
578  (i.e., connections form) over a series of steps until m total connections are placed. As stated in the
579  above section, the m was computed as a group consensus over different controlled densities, leading
580 tom =227 and m =454 (p = 10% and p = 20% respectively). This meant that the simulation achieved
581  the same number of connections as the empirical data.

582 At each step, we allow for the possibility that any pair of presently unconnected nodes, i and j, to
583  become connected. But this happens probabilistically, such that the relative probability score is given
584 by Eqn. 1. As described in Eqn. 1, this is governed by a trade-off between the wiring cost

585  (determined via Euclidean distances) and the homophily matching rule, which demarcates the

586  topological overlap in connectivity of two nodes (given in Eqn. 2). We provide some extended

587  reasoning for this part of the algorithm (see Results, Generative component 1 — forming connections).
588 At each point in which a connection is added (e.g., see Fig. 2) we take some property of the

589  network and change the weights of the network, incrementally, in a direction as to partially minimize
590 this property. This property (also termed objective function, f (Wi, ]-)) is defined in Eqn. 4 and is

591  computed as the combined total weighted communicability (Eqn. 3) multiplied by the Euclidean

592  distances present in the network. We provide our reasoning for this in terms of communicative

593  redundancy reduction (see Results, Generative component 2 — changing weights). The w term

594  changes the specificity of the objective function to specific weights, such that the closer w tends to
595  zero the more equally distributed the weight changes are across the network over its simulated

596  development. The greater w becomes in the positive direction, the greater it emphasizes changes to
597  weights that contribute to highly communicable and physically distinct connections.

598 To change the weights at each time step, we compute the first order derivative of the objective
599  function, f ’(Wi, ]-), which calculates an estimated gradient for each edge-weight must move to achieve
600 the objective. Some weights are strengthened and some are weakened in this process. We then update
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601  the weights in this direction according to the update rule given in Eqn. 5, by some magnitude,
602  otherwise termed learning rate, a. The greater « is, the greater that weights change at each time point
603  after a new edge is added.
604
605 Model fitting
606  In binary generative modelling work, numerous model-fitting functions have been proposed that
607  assess network statistics® or their statistical correlations’**'. To ensure we are fitting both the
608  topology and the weights of the network, we simultaneously assessed (i) the binary representation of
609  the produced network using a documented binary energy equation® and (ii) a weighted version of the
610  same energy equation, where weighted versions of the same graph measures are considered. These are
611  given respectively in the following equations:
612

Energypinary = max (KSy, KS¢, KSp, KSy4) (6)

Energ}’weighted = max (KSs, KSwe, KSwp) (7)
613
614  KSis the Kolmogorov-Smirnov statistic, defined as maximum difference between the empirical and
615  simulated cumulative density function of the graph theory statistic. As a result, both the
616  Energypinary and Energyyeigntea can be thought of taking the worst of the measured comparisons.
617  If the model fit remains low, the fit must necessarily be the same or lower across all considered
618  statistics. The Energypinqary €quation considers the node degree, k, clustering coefficient, c,
619  betweenness centrality b, and edge lengths, d. The Energyyeigntea €quation considers the node
620  strength, s, weighted clustering coefficient, wc, betweenness centrality wb. The edge length is not
621  considered again because it was captured in the Eqn. 6. In all cases, we report the simultaneous model
622 fits for both Energypinary and Energyyeignteqa- T0 enable comparability of intra-axonal signal
623  fraction (IASF)-weighted connectomes, we normalized all connectomes using BCT’s
624  weight conversion() function®.
625
626 Parameter selection
627  Our weighted generative algorithm contains four free parameters: 17, y, @ and w. The first two relate to
628  the formation of connections within a binary model: 7 (connection length) and y (topological value),
629  and have been previously documented under a matching homophily rule to approximate networks
630  accurately in the range of moderately negative 1 scalar values and positive y scalar values slightly
631  above zero'?. Following some trial tests, we established an approximate window of -3.7 <7 < -2.7
632  and 0.35 <y <0.40 for which we undertook more thorough parameter fitting. As the generative
633  algorithm detaches the connection formation 7, y parameters from «, w weight update parameters, we
634  used these previously reported ranges of p and y to significantly reduce our computational burden.
635  We subsequently conducted a parameter grid-search across a (the weight learning rate) and w
636  (connection optimization specificity) to examine to what extent the weighted generative model could
637  approximate both the topology and weights within these parameter windows. Following basic
638  exploration, we conducted our search in the range of 0.02 < a < 0.1 and 0.85 < w < 1.05. We fit our
639  models to consensus IASF brain networks, derived at a density of both p = 10% and p = 20% to
640  observe effects of numbers of connections on the network (see Methods, COMMIT Signal fraction &
641  Methods, Group network consensus procedure). A total of 3600 simulations were run on these
642  networks (total 7200) to fit the four parameters. All analyses were conducted with no seed network.

643
644 Data availability
645  Derived MRI outputs can be made available upon request. Generative model outputs will become

646  available on the Open Science Framework upon publication. A pointer to these will become available
647  at https://github.com/DanAkarca/weighted generative_models.
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Code availability
The weighted generative model function is available for open use at:
https://github.com/DanAkarca/weighted generative_models. All code to replicate the present study

will become available at the same repository, upon publication. The code we used run COMMIT is
available at https://github.com/daducci/COMMIT.
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