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Abstract 19 
Probabilistic generative network models have offered an exciting window into the constraints 20 
governing the human connectome’s organization. In particular, they have highlighted the economic 21 
context of network formation and the special roles that physical geometry and self-similarity likely 22 
play in determining the connectome’s topology. However, a critical limitation of these models is that 23 
they do not consider the strength of anatomical connectivity between regions. This significantly limits 24 
their scope to answer neurobiological questions. The current work draws inspiration from the 25 
principle of redundancy reduction to develop a novel weighted generative network model. This 26 
weighted generative network model is a significant advance because it not only incorporates the 27 
theoretical advancements of previous models, but also has the ability to capture the dynamic 28 
strengthening or weakening of connections over time. Using a state-of-the-art Convex Optimization 29 
Modelling for Microstructure-Informed Tractography (COMMIT) approach, in a sample of children 30 
and adolescents (n = 88, aged 8 to 18 years), we show that this model can accurately approximate 31 
simultaneously the topology and edge-weights of the connectome (specifically, the MRI signal 32 
fraction attributed to axonal projections). We achieve this at both sparse and dense connectome 33 
densities. Generative model fits are comparable to, and in many cases better than, published findings 34 
simulating topology in the absence of weights. Our findings have implications for future research by 35 
providing new avenues for exploring normative developmental trends, models of neural computation 36 
and wider conceptual implications of the economics of connectomics supporting human functioning. 37 
 38 
Introduction 39 
The study of the brain as a connectome using graph theory provides a powerful framework for 40 
understanding its computational and organizational principles1,2. There are well-characterized features 41 
of observable brain networks, such as its modular structure3, small-world propensity4,5, hierarchal 42 
organization6,7 and its geometric wiring structure8. Underlying these apparent features is the economic 43 
and energetic context in which brain network configurations exist9,10; preserving its physical, 44 
metabolic, and cellular resources while sustaining required neural function9,11–14. Due to intrinsic 45 
resource limitations for sustaining the brain’s organization, the connectome achieves a balance 46 
between the valuable connections required for appropriate functioning versus the costs of those 47 
connections to form, maintain and propagate signals13–15. 48 

To better account for this complex organization, various flavors of probabilistic generative 49 
network model have been proposed since the early 2000s12,16,17. These models work by simulating the 50 
formation of connections in the brain in a step-wise fashion to produce synthetic connectomes. In 51 
essence, these models achieve compression in that they produce complex networks from just one or 52 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 25, 2023. ; https://doi.org/10.1101/2023.06.23.546237doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.23.546237
http://creativecommons.org/licenses/by/4.0/


A weighted generative model of the connectome 

 2 

two tuned parameters18. Across studies, the systematic comparison of different parameter types, and 53 
tuning properties, highlights the fundamental constraints that govern the formation of a given 54 
network. When fit to empirical human brain data17,19–21, these models can shed light on the possible 55 
factors driving biological connectivity. For example, one emerging finding is that the preference for 56 
topological self-similarity, when modelled as a wiring rule (termed homophily), can approximate 57 
structural and functional connectome datasets across numerous species and scales (e.g.,22,23). This 58 
indicates that an important developmental principle may be that neural assemblies form connections 59 
with each other, based on how similar these assembles are to each other24 . 60 

In contrast with graph theoretical analyses of connectomes derived from in vivo diffusion 61 
magnetic resonance imaging (dMRI), which commonly consider the heterogeneous edge-weights that 62 
are observed5,25,26 (e.g., in terms of number of streamlines or fractional anisotropy), one major 63 
limitation of previous generative models is that they can only simulate the binary existence of 64 
connections in the connectome (i.e., reflected by a one or a zero corresponding to a connection 65 
existing or not, respectively). This means that they exclude consideration of connection weight 66 
heterogeneity27. This exclusion simplifies the engineering problem of simulating connectomes but 67 
significantly limits the scope of the scientific questions they can answer. First, because connectomics 68 
data have an intrinsic weighted structure, current generative network models largely ignore a 69 
potentially essential source of information. As a result, we may be missing insights critical for 70 
understanding the constraints that guide connectome formation. Second, the strength of relationships 71 
between regions (rather than just their existence) are crucial in neurocognitive development and 72 
highly sensitive to developmental change28,29. If generative models are to be useful for understanding 73 
this change they will need to capture weighted change. Third, in computational models that perform 74 
tasks (e.g., neural networks), weights mediate the extent to which errors propagate and facilitate 75 
computation. Without weights, it will be hard to integrate network formation and the computational 76 
capacities those networks afford (e.g., as in30–33). 77 

We present a solution to these challenges through an extension of canonical generative 78 
models16,17,20 to a weighted generative network model of the human connectome. This model draws 79 
upon the economic insights from prior generative modelling16,17. However, we further extend the 80 
model, inspired by the principle of redundancy reduction34, but through the lens of network 81 
communication35,36, to account for how weights can adjust dynamically over time to optimize how 82 
signals are propagated across the brain’s connectome. Using state-of-the-art in vivo Convex 83 
Optimization Modelling for Microstructure-Informed Tractography (COMMIT)37–39 we demonstrate 84 
that this model is able to accurately approximate both the topology and weights of the human 85 
connectome. We provide potential future directions for the field and a framework for empirical 86 
findings may be incorporated into future models. 87 
 88 
Results 89 
The weighted generative network model 90 

The weighted generative network model has two core algorithmic components driving the 91 
network’s developmental trajectory from its starting point to end state (Fig. 1a). The first is a binary 92 
generative network model16,17, in which connections form iteratively over time – a connection is 93 
generated where it previously did not exist. The second component is a weight optimization step, 94 
where connection strengths of existing connections change in a direction and magnitude to reduce 95 
communication redundancy in the connectome. 96 

The distinction between connections forming (the first component) versus changing (the 97 
second component) in the model is not arbitrary. Before a connection is formed between two regions 98 
in the brain, each region does not have direct information from the other via a direct connection. 99 
Whatever information exists arises via other indirect connections (i.e., information passed via other, 100 
currently available, connections) or via some other non-synaptic means (e.g., paracrine signaling) 101 
(Fig. 1b). Once a connection has formed, we model changing connections as weights that change in a 102 
direction so as to reduce redundant communication. It may be that, as in developing neural systems, 103 
some weights strengthen and others weaken over time to achieve the goal of reducing unnecessary 104 
communication (Fig. 1c). 105 
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 106 
Fig. 1 | The network’s developmental trajectory comprises of connections forming and weights 107 
changing. a An illustration of the weighted generative process. As the simulated developmental time unfolds, 108 
the network moves through the feature space until it reaches its final destination. b In growing networks, 109 
connections form between regions. The information driving this process must be driven by factors outside the 110 
direct synaptic information present between the two regions, because this is absent. Two factors that could drive 111 
this are the current indirect connections linking the two regions or the spatial proximity of the regions. In this 112 
example, we highlight the shared connectivity (red) and spatial proximity (blue) between node i and j. An 113 
accurate model should demonstrate how connections form to generate connection topologies consistent with 114 
observations. c Connection weights change as some function of the presently available weights of the 115 
connections. An accurate model should demonstrate both weakening and strengthening over time of 116 
connections, that generates an organization of weights consistent with observations. 117 
 118 
Generative component 1 – Forming connections 119 
Let’s consider the first algorithmic component: forming connections. For this we use the 120 
aforementioned generative network model. As stated previously, this model probabilistically adds a 121 
single connection according to the modelled costs and values afforded to the network16,17. The 122 
simulation stops when the number of connections mirrors the empirical network it is being compared 123 
to. It can be expressed as a simple wiring equation, updated over time: 124 
 125 

𝑝",$ ∝ &𝑑",$(
)&𝑘",$(

+
, (1) 

 126 
where 𝑝",$ denotes the probability score of node i and j forming a connection. The algorithm has a 127 
winner-takes-all formalization such that a single connection is forced to form over the others, 128 
depending on this probability score at each iteration of the simulation over discrete time. 𝑑",$  denotes 129 
the cost of wiring between node i and j. To prevent overfitting of the model introduced from pre-130 
specifying fiber lengths (see Discussion for detail), we model this as the Euclidean distance between 131 
regions (node regions are defined in Methods; MRI acquisition, processing and COMMIT). In our 132 
sample (see Methods; Participants) the average correlation between fiber lengths and Euclidean 133 
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distances for extant edges was r = 0.773 (SD 0.0119) corresponding to 59.7% explained variance. 𝜂 is 134 
a parameter that determines the strength of the relationship between the cost of wiring and the 135 
probability of forming a connection. In empirical studies, best fitting models tend to show negative 136 
values, meaning that networks prefer shorter connections to longer connections, as measured by the 137 
Euclidean distance between two regions16,17,20. 𝑘",$  denotes the topological value of forming a 138 
connection between node i and j. 𝛾 is the parameter that determines the strength of the relationship 139 
between the topological value and the probability of forming a connection. 140 

The ki,j term is given by an arbitrary topological relationship postulated a priori (also termed 141 
“wiring rule”). Prior work has shown that homophily (in particular, the matching rule) generative 142 
models robustly achieve the best model fits relative to other models19–21. Therefore, in order to make 143 
progress with the second component of the model, we focus only on this best performing homophily 144 
term for the first component, rather than cycling through all the various options. This matching rule 145 
computes the normalized shared connectivity profile – the average proportion of shared neighbours 146 
two regions have and has been used in numerous other studies to simulate the topology of empirical 147 
binary brain networks12,19–21. It is given by the following equation, where Γ/ where represents the set 148 
of node i’s neighbors: 149 
 150 

𝑘",$ =
|Γ/\3 ∩ Γ3\/|
|Γ/\3 ∪ Γ3\/|

 
(2) 

 151 
Where Γ/\3 is Γ/ but with j excluded from the set. ∩, from set theory, denotes the intersection of the 152 
neighbours (i.e., the overlap – in both sets). ∪, in contrast, denotes the union of the neighbours (i.e., 153 
the total set of neighbors from both sets). If there is a total overlap in neighbours, 𝑘",$ = 1. If there is 154 
no overlap, 𝑘",$ = 0. In summary, the formation of connections is modelled as a trade-off between the 155 
cost of forming a connection versus the topological value derived from having shared connectivity 156 
(under the matching rule). 157 
 158 
Generative component 2 – Changing weights 159 
We now consider our second algorithmic component: changing weights. As the brain constructs itself, 160 
it does not simply add connections iteratively. Instead, as connections form, it simultaneously engages 161 
in continual plasticity, with some connection strengthened and others weakened over time40. But what 162 
drives this change over time? We propose a single optimization process that, as we later show, can 163 
simultaneously achieve the strengthening and weakening of connections: the weights of the network 164 
change to minimize its communication redundancy between its spatially-configured components. This 165 
idea stems from accounts of redundancy reduction as a core principle for economical sensory 166 
coding34,41 but through the lens of network communication35,36. 167 

We will now outline how we operationalize redundancy in the context of communication. We 168 
define communication in terms of topological random diffusion of signals between regions on the 169 
weighted connectome42,43: 170 
 171 

𝑐",$ = 𝑒:;</>?@,A:;</> , (3) 
 172 
where 𝑐",$	is the normalized weighted communicability between node i and j. This measure captures 173 
what proportion of signals that propagate randomly from node i would reach node j over an infinite 174 
time-horizon. It can be considered as equivalent to random diffusion or a random walk on the network 175 
graph. As such, it can be thought of as the extent to which node i and node j communicate. Here, s 176 
defines the diagonal matrix with the node strengths on the diagonal. 𝑤",$  is the weighted matrix of the 177 
network, representing the strength of connections between nodes. 178 

We use this operationalization of communication within an objective function, in which the 179 
growing network continuously updates its weights to minimize this evolving function. Crucially, in 180 
addition to topological paths constraining communication, distance is a key determinant of the timing 181 
of signal propagation in networks that may contribute to redundancy. Adding in these further distance 182 
considerations, we achieve the following objective function: 183 
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 184 
𝑓&𝑤",$( = (𝑐",$ ∙ 𝑑",$)H, (4) 

 185 
where 𝑓&𝑤",$( is the objective function that is calculated on the weight matrix 𝑤",$ . This takes in all 186 
learnable parameters (i.e., all non-zero elements of the weight matrix, 𝑤",$). 𝑑",$  is the Euclidean 187 
distance between node i and j, reflecting that the weights of longer connections are costly to maintain. 188 
𝜔 is a parameter which varies the distribution of preference the network has to update weights. For 189 
example, when 𝜔 is a large positive value, it skews the optimization towards longer and more 190 
communicable edges. When 𝜔 is a small positive value, it softens this optimization disparity between 191 
edges. A similar term to this has also been used recently44. 192 

Across the network, the goal is to minimize redundant communication in signals traversing 193 
physically in space. To achieve this optimization, at each time step 𝑡 in the generative process we 194 
change the weights according to the following update rule: 195 
 196 

𝑤",$KLM = 𝑤",$K − 𝛼[𝑓′&𝑤",$(] (5) 
 197 
α is defined as the learning rate. The greater the learning rate the larger the jump in weight updates at 198 
each time point. 𝑓′&𝑤",$( is the first-order derivative of the objective function given in Eqn. 4, with 199 
respect to the network weights, 𝑤",$ . As previously stated, this has the effect of updating the weights 200 
of the network in a direction that minimizes communication redundancy in space. The first order 201 
derivative was estimated by simulating the objective function under small changes of individual 202 
weights (𝛿𝑤",$) of 5% of the 𝑤",$ value, taken incrementally five times, each in the positive and 203 
negative direction. The first order gradient is computed from these simulations, and weights are 204 
updated by the learning rate, 𝛼, at each timestep in the direction of the gradient. The sign of the 205 
update in Eqn. 5 is negative because a positive gradient suggests that weights must be decreased to 206 
minimize redundancy (and vice versa, i.e., the subtraction facilitates the minimization of redundancy). 207 
For more detail as to the whole model algorithm, see Methods; The weighted generative model 208 
algorithm. 209 

Once a weighted network was produced from the above process, we then assessed to what 210 
extent it mirrored empirical observations. We did this via an extensive model fitting procedure to 211 
compute model fit statistics called the 𝐸𝑛𝑒𝑟𝑔𝑦?Y"Z[KY\ and 𝐸𝑛𝑒𝑟𝑔𝑦]"^_`a, which considered how 212 
well simulations approximated the empirical weights and topology respectively. Overall, the lower the 213 
energy value, the better the model fit. These energy statistics were calculated as the worst fit over a 214 
number of Kolmogorov-Smirnov (KS) statistics, which each measures the maximum distance between 215 
the cumulative density functions (CDFs) of some graph theory statistics in observed and simulated 216 
networks. To pick graph theory statistics, we extended those which have been used in prior work12,19–217 
23. For more detail, see Methods; Model fitting. 218 

In Fig. 2 we provide an illustration of the total weighted generative network modelling 219 
procedure to approximate empirical connectivity. To generate empirical connectomes, we used a 220 
Convex Optimization Modelling for Microstructure-Informed Tractography (COMMIT) approach37,38. 221 
COMMIT filters implausible streamlines from tractography and allowed us to assign the intra-axonal 222 
signal fraction (IASF) to each streamline (see Methods; MRI acquisition, processing and COMMIT). 223 
This provided us with a in vivo microstructural measure relating to measured axonal projection 224 
properties to provide a biologically meaningful measure of connection weights (Fig. 2c). 225 
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 226 
Fig. 2 | The weighted generative network modelling procedure. a Connections form probabilistically 227 
over time according to the canonical binary generative network model. b At each time point, once a connection 228 
has been formed, the network weights are optimized according to a learning rate, 𝛼, in a direction as to 229 
minimize the objective function 𝑓&𝑤",$(. The first-order derivative 𝑓′&𝑤",$( is taken to do this. The objective 230 
function 𝑓&𝑤",$( here is defined in terms of the total network communicability, 𝑐",$ ,	and distance, 𝑑",$. See 231 
Methods; The weighted generative model algorithm for detail of the whole generative process. 1. c The 232 
simulation concludes when the number of connections is the same as the consensus empirical brain network. In 233 
the present work, we utilize microstructure-informed MRI which measures the intra-axonal signal fraction 234 
(IASF). 235 
 236 
Accurate simulation of weighted microstructure-informed connectomes 237 
Through 3600 simulations of the above weighted generative network model, we charted the extent to 238 
which weighted connectomes could be simulated (Fig. 3a). In Fig. 3b, we show the 𝐸𝑛𝑒𝑟𝑔𝑦?Y"Z[KY\ 239 
landscape as a function of the weight parameters, 𝛼 and 𝜔, at optimally fit 𝜂 and 𝛾 parameters (see 240 
Methods; Parameter selection). As shown, the learning rate 𝛼 and specificity term 𝜔 trade-off in the 241 
negative direction, such that low energy networks are generally found in the compromise between the 242 
two terms. Supplementary Fig. 1 provides further landscapes, including the 𝐸𝑛𝑒𝑟𝑔𝑦]"^_`a. 243 

We then sought to test our core question: to what extent is it possible to recapitulate both the 244 
topology and weights of empirical connectomes with a weighted generative network model? We first 245 
look at models fit to relatively sparse r = 10% networks. At this density, we found across our 246 
simulations, despite having to achieve more target features, the minimum energy concurrently 247 
achieved in weights and topology were comparable with the low values for binary networks: 248 
𝐸𝑛𝑒𝑟𝑔𝑦?Y"Z[KY\ of 0.157 (KSs = 0.118, KSwc = 0.132, KSwb = 0.088, KSd = 0.157) and 𝐸𝑛𝑒𝑟𝑔𝑦]"^_`a 249 
of 0.191 (KSk = 0.118, KSc = 0.191, KSb = 0.103, KSd = 0.157). Fig. 3c and Fig. 3d show the 250 
cumulative density functions of simulated statistics compared to the empirical r = 10% network. 251 

One criticism of our results is that, as with earlier work19,20, sparse networks may be easier to 252 
simulate accurately and achieve a good fit, simply because there are less connections to model. As 253 
such, we next aimed to replicate this finding in a denser r = 20% consensus network, containing twice 254 
the number of connections. We find highly similar results, with the weighted model actually doing a 255 
better job in most parts: 𝐸𝑛𝑒𝑟𝑔𝑦?Y"Z[KY\ of 0.147 (KSs = 0.147, KSwc = 0.118, KSwb = 0.132, KSd = 256 
0.091) and 𝐸𝑛𝑒𝑟𝑔𝑦]"^_`a of 0.162 (KSk = 0.132, KSc = 0.147, KSb = 0.162, KSd = 0.091). Fig. 3e and 257 
Fig. 3f show the cumulative density functions of simulated statistics compared to the empirical r = 258 
20% network. 259 

How do the weighted simulations presented here compare to model fits attained from binary 260 
generative models? As one might expect, across our simulations, it is generally easier to simulate the  261 
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network topology relative to being able to simulate the weights, with 96.1% and 98.8% of simulations 262 
showing a greater 𝐸𝑛𝑒𝑟𝑔𝑦?Y"Z[KY\ relative to 𝐸𝑛𝑒𝑟𝑔𝑦]"^_`a (respectively in sparse and dense 263 
consensus networks, Supplementary Fig. 2a, b). However, there are parallels in how the models fail 264 
to approximate the network statistics between weights and topology. In particular, prior findings have 265 
shown that binary homophily generative models struggle to approximate the clustering of the 266 
empirical observations and this is the part of the 𝐸𝑛𝑒𝑟𝑔𝑦]"^_`a equation that tends to be worst 267 
approximated, reflected by being the highest KS statistic19. Here, we find a similar trend but for the 268 
weighted clustering measure, KSwc, which also generates the highest KS statistic in 83.1% and 92.3% 269 
of the simulations respectively in sparse and dense consensus networks (Supplementary Fig. 2c, d). 270 
Supplementary Fig. 2e, f show the broad relationship between the energy and KS statistics achieved 271 
through our modelling procedure. 272 

 273 
Fig. 3 | Simulating microstructure-informed connectome weights and topology simultaneously. a 274 
3600 simulations were undertaken in total. This was done by sampling the topology parameter space from 36 275 
locations spaced evenly apart (left) and running 100 simulations on each at regular intervals in the weight 276 
parameter space (middle). For each weighted network that was produced through this process, it was compared 277 
to empirical networks via the model fitting procedure (see Methods; Model fitting). This allowed for the 278 
determination of how well the model could approximate the empirical findings. b The 𝐸𝑛𝑒𝑟𝑔𝑦?Y"Z[KY\ 279 
landscape (for sparse, r=10% networks) which depicts what combination of the learning rate, 𝛼, and specificity, 280 
𝜔, produce networks with low dissimilarity to observations. As described, each point entails 100 simulations 281 
with different combinations of 𝜂, 𝛾. The best (i.e., minimum) 𝐸𝑛𝑒𝑟𝑔𝑦?Y"Z[KY\ is given as the color (dark blue is 282 
low, yellow is high). c Observed (pink) and simulated (blue) weighted connectomes. The best (left), top 0.5% 283 
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(middle) and top 1% (right) simulation is shown. d In sparse r = 10% networks, the cumulative distributions of 284 
strength (purple), weighted clustering coefficient (blue), weighted betweenness centrality (green). For each 285 
panel, the top 1% of simulations (36 in total) are shown in the lighter shade. The KS statistic is given only for 286 
the best performing simulation. e In sparse r = 10% networks, the cumulative distributions of degree (purple), 287 
clustering coefficient (blue), betweenness centrality (green) and edge length (grey). f The same as panel d but 288 
for denser r = 20% networks. g The same as panel e but for denser r = 20% networks. 289 
 290 
Evaluating models by their weighted and binary topological relationships 291 
There is a large covariance between graph theory measures due to the dependencies between nodes 292 
via their connectivity45. For example, in empirical networks, it is common that regions with more 293 
connections tend to have connections with a higher average edge-weight46. Furthermore, due in part to 294 
the small-world propensity of brain network organization, regions which have high levels of clustered 295 
weights tend to have low betweenness centrality5. While some studies have examined this topological 296 
fingerprint more formally22, so far due to the lack of weighted information, this has been limited to the 297 
assessment of binary connections. 298 

In Fig. 4, we show that while we have not explicitly simulated weighted generative networks 299 
to encompass these types of covariances, they arise as a result of the generative process. We find that 300 
simulations mirror (and slightly exaggerate) the dominant trend found in empirical networks (see 301 
Supplementary Fig. 3 for the same findings on denser r = 20% networks). At first, these results may 302 
seem surprising because the weighted generative model explicitly detaches how connections form 303 
from how weights change (see Methods; The weighted generative algorithm). However, as we will 304 
outline in the next section, while there is a distinction between how weights and topology occur 305 
algorithmically, the principle of redundancy reduction means that topology constrains how weights 306 
arrange in a direction that aligns with empirical data. Put simply, despite the computational separation 307 
of connection formation from weight change, one will shape the other. 308 

 309 
Fig. 4 | Topological relationships between weighted and binary network statistics in empirical 310 
and simulated connectomes. a In canonical idealized brain networks (left), regions with high numbers of 311 
connections also have stronger connections (light blue node) and vice-versa (green node). We show that in the 312 
best simulated networks, this is also the case in terms of the relationship between the number of connections of 313 
region has and the strength of those connections (middle). To ensure that we control for the analytical 314 
relationship between degree and strength, we also provide a version here the degree is controlled for in the 315 
strength measure (right). b In canonical idealized brain networks (left), regions with high levels of clustering 316 
have lower levels of betweenness centrality (yellow node) and vice-versa (light blue node). We show that in the 317 
best simulated networks, this is also the case in terms of the relationship clustering and betweenness (middle). 318 
We show this also for the weighted versions of the measure (right). All findings are given for r = 10% networks 319 
(see Supplementary Fig. 3 for r = 20% networks). 320 
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 321 
Communication redundancy reduction and the weighted connectome 322 
So far, we have shown that by developing in silico networks which form incrementally according to 323 
self-similarity (i.e., homophily) in space, while concurrently optimizing weights to minimize 324 
communication redundancy in space, it is possible to produce macroscopic networks with high 325 
statistical similarity to observations. Although we have outlined the logic underpinning our 326 
formulation of the weighted generative algorithm, we have not directly provided an account for 327 
precisely why the model successfully fits the data. 328 

Redundancy reduction is a core neuroscience principle dating to the 1960s34 where Barlow 329 
hypothesized that the goal of sensory processing was to recode redundant sensory inputs into a 330 
factorial code with statistically independent components41. This idea has since inspired numerous 331 
learning algorithms47–49. The current work, rather than focusing on redundancy in sensory processing, 332 
focusses on redundancy in terms of how regions themselves propagate signals between each other. 333 
For example, a network that has a lot of communication is likely to be redundantly communicating an 334 
abundance of signals between numerous regions. In contrast, a network with little communication is 335 
required to communicate efficiently its relatively sparse signals between regions. This way of 336 
considering communication redundancy is consistent with an efficient coding framework, which 337 
proposes that the brain transmits maximal information in a metabolically economical or compressed 338 
form to improve future behavior36,50. By operationalizing this mathematically in Eqn. 3 (as in 339 
analogous work51) we have defined a type of redundancy that is minimized throughout the generative 340 
process. 341 

How does this principle of redundancy reduction in communication lead to our empirical 342 
observations of connectome organization? To examine this question, we conducted the following 343 
experiment. We undertook the same optimization process in the weighted generative model, but 344 
carefully evaluated how redundancy changes as a function of individual weights changing over time. 345 
We depict the main findings of this experiment in Fig. 5a. Starting from a simple exemplar binary 346 
network of nine nodes, we compute how changing individual weights in small increments of 2.5% in 347 
the positive and negative direction (𝛿𝑤",$) changes the total level of communication (Σ𝐶) in the 348 
network (as computed from Eqn. 3). As shown, not all changes of weights cause the same effect: as 349 
some connections are strengthened communication decreases, but in others, you must weaken 350 
connections to get the same trend of communication decrease.  351 

This “crossing” phenomenon (as seen in Fig. 5a) can be explained by the fact that 352 
communication redundancy is minimized when core connections – that are topologically central to 353 
information flow – are strengthened, but peripheral edges are weakened (visualized in Fig. 5b). In 354 
summary, the process of redundancy reduction leads to the bottlenecking of signal propagations 355 
within relatively few core connections, consequently leading to an increased efficiency in regional 356 
communication (Fig. 5c). This allows for the network to prioritize the flow of communication through 357 
topologically central nodes, allowing for efficient integration of communication across the 358 
connectome. 359 
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 360 
Fig. 5 | Redundancy reduction leads to an efficient patterning of connectivity weights. a Starting 361 
from the given binary network, we incrementally strengthened or weakened the edge weights (𝛿𝑤",$) in 362 
increments of 2.5%. At each change, we recorded the total communication across the network (Σ𝐶) which is a 363 
measure of redundant communication existing in the network. Each line represents a different edge in the 364 
network (a total of 16 edges) as the connection is changed. As shown, there is a “crossing” phenomenon, where 365 
strengthening or weakening of connections cause opposite effects on the redundancy present in the network. As 366 
highlighted, some connections achieve minimal redundancy when the connection has been weakened (left, blue 367 
dashed box) but others achieve this when they have been strengthened (right, blue dashed box). b There is a 368 
topological relationship between where the connection is in the network and its relationship between connection 369 
weights and redundancy, such that to achieve a redundancy optimized network you must strengthen core 370 
connections but weaken peripheral connections. c This phenomenon has the effect of causing the weights to 371 
become strengthened in the core of the network – equivalent to greater integration – causing greater efficiency 372 
(purple) but reduced communication (orange). 373 
 374 
Discussion 375 
Redundancy reduction in network communication 376 
One key finding is that by reducing communication redundancy, it is possible to approximate both 377 
connectome topology and weights. There are many other ways, in principle, that the goal of this 378 
algorithm could have been instantiated. For example, one could imagine an alternative multi-step 379 
algorithm in which connections are added and/or then removed in sequence at each time-step. 380 
However, the present approach provides several major benefits relative to such a solution. First, in the 381 
current model the strengthening and weakening of connections can be accounted for via a single 382 
optimization process depending only on the communication redundancy within the network. 383 
Achieving these heterogeneous magnitudes and directions of weight changes over time (i.e., both 384 
strengthening and weakening) is not trivial, particularly when there is no supervision in the learning 385 
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process. Second, our optimization process is theory-driven, rather than mathematically arbitrary. The 386 
idea that redundancy should be constrained in biological systems is highly congruent with multiple 387 
theoretical perspectives in neuroscience34,41,52,53. In summary, not only does this model solve a 388 
somewhat challenging engineering problem, but it does so in a way that resonates with biological 389 
theory. 390 

The way we formalize redundancy reduction here is not identical to how the original efficient 391 
coding hypothesis framed redundancy. The original hypothesis concerned how the goal of sensory 392 
processing was to recode redundant sensory inputs into a code with statistically independent 393 
components, as to remove redundant signals from external stimuli within the internal 394 
representations34. Here, rather than focusing on the redundancy within internal representations, we 395 
focus on redundancy within the communication of the network. This work draws parallels between 396 
information theory accounts of neural communication via compression in the connectome36 but 397 
through the lens of resource rationality54,55: where each node in the graph, as it develops, aims expend 398 
the least possible amount of communication expenditure13,56. Moreover, we demonstrate a particularly 399 
interesting observation that the reduction of redundant communication can account for how, over 400 
time, networks may incrementally integrate their weighted connections – an observation entirely 401 
congruent with studies examining topological changes throughout child development57. 402 
 403 
In context of prior structural generative network model findings 404 
To date, generative models have highlighted numerous insights regarding connectome organization 405 
18,58. In particular, cost-minimizing homophily models (as used within the current work) have been 406 
shown to quite consistently generate realistic connectome topologies across a range of scales, species 407 
and modalities12,17,19,21,23 (although see59). Wiring parameters have been shown to link to cognition19,21, 408 
age19,20, polygenic risk for Schizophrenia21 and adversity in a rodent model23. As our weighted models 409 
builds on this foundation, we expect that theoretical questions they can answer may extend and 410 
compliment this previous work. 411 

One way it may do this by capturing more biologically meaningful parameters which relate to 412 
the organization of connectome edge-weights. For example, the parameter controlling wiring length, 413 
h, has been shown to correlate with polygenic risk for Schizophrenia21 – where subjects with higher 414 
scores tended to have a lower magnitude negative h, suggesting a softer cost penalty on connectivity. 415 
A weighted model may be able to elucidate more specific weight-topology interactions that may play 416 
a role in disease onset or altered development58. It may be able to better elucidate age-related changes 417 
shown in lifespan data20 or how weighted connectivity early in development60 may be modelled in 418 
combination with genomic12 or cytoarchitectural61 data. 419 

Another way weighted models may extend our analysis is by informing how topology and 420 
weights both interact to provide computationally efficient networks able to perform computation30–421 
32,44. For example, recurrent (task-solving) neural networks have been shown to develop brain-like 422 
topological features through a very similar optimization procedure described in the current work44. In 423 
this network in particular, we highlight the interplay between a growing topological network (via a 424 
homophily rule) which subsequently shapes how weights organize themselves through bottlenecking 425 
of weights within topological core regions of the network (see Fig. 5). We anticipate this observation 426 
will lead to a number of new theoretical insights at the intersection of network neuroscience and 427 
neural network research24,62. 428 
 429 
Limitations and future research 430 
Below we list numerous limitations of the present study and point to how these can be reasonably 431 
mitigated in future research: 432 

Computational expense. On a typical desktop computer, binary generative models take 433 
approximately one second to compute a binary generative model (r = 10% connectome, 227 434 
connections). However, our weighted models take approximately 300 seconds (~300x slower). This is 435 
for two main reasons. The first is that computing the first-order derivative of our objective function 436 
(Eqn. 4) becomes increasingly difficult as the network grows. This leads to an intrinsic slowing down 437 
of the model over the network’s formation. The second more important factor is that in the present 438 
study we compute the gradient manually through a model-based simulation of the objective function 439 
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with respect to the weights. This is computationally expensive, but future work will be able to 440 
mitigate this through employing faster approaches to compute derivatives. 441 

Consensus model fits rather than individual subjects. As there is a large computational 442 
expense for computing the current models, it limited our ability to accurately fit models to individual 443 
subjects. This leaves numerous open questions: how do weight parameters vary across individuals? 444 
Do these models better map to measures of cognitive performance or polygenic risk? While we 445 
suspect they will, we cannot yet confirm our findings will generalize to individual subjects robustly. It 446 
also may be that our parameter search would need to be widened to encompass individual subjects. 447 
An extended approach similar to the fast landscape generation method63 would be particularly helpful 448 
to approximate individual subject accurate parameter estimates. 449 

Parcellation coarseness. We limited our analysis to the 68-node DK parcellation which, 450 
although studied before with generative models19, is a coarse parcellation. It is unknown how these 451 
results will generalize to finer resolutions such as the Brainnetome64 or Schaefer65 atlases. Another 452 
effect of the parcellation may reside in the inter-node distance distributions. For example, more 453 
heterogeneously spaced parcellations will likely more easily generate modular networks simply by 454 
virtue of the a priori locations of the regions. Our current study is limited by not exploring these 455 
effects, but future work can explore this. 456 

Negative weights. Numerous studies have used functional, rather than structural connectomes, 457 
when using binary generative models17,22. While communication models have been argued to allow 458 
for better mappings between structural and functional modalities35, our model does not deal with 459 
negative weights, which is intrinsic to correlations. This leads to a natural fit between our model and 460 
structural data, which naturally contains non-negative edge-weights. Of note, other generative models 461 
which can capture weights, in the form of stochastic blockmodels (which are useful characteristic 462 
network community structure), can deal with negative edge weights66. 463 

Wiring rules. In context of prior work, we only looked into the homophily model. However, 464 
given that topology is an influence on weighed optimization process, we think it is possible that other 465 
rules will yield subtly different results. Future work should look to explore how weights differentially 466 
configure themselves in context of different connection formation rules. 467 

Other constraints. As in most other studies20,21, we use Euclidean distance as a measure of 468 
cost of connection formation guiding topology and weight change. In contrast with fiber length 469 
constraints, this has the benefit of removing any a priori limits to how the network’s topology can be 470 
generated. This is because fiber length data only exists for extant connections but Euclidean distances 471 
can be computed between all nodes. However, in this study approximately 60% of variance in fiber 472 
lengths of extant connections can be explained by the Euclidean distance – representing a relatively 473 
large variance explained (see20 for comparisons). Adding fiber lengths as a constraint will, on one 474 
hand, reduce the search-space for simulations that mirror observations but, on the other, may reveal 475 
more specific generative principles specific to our observations. Moreover, while distance is a key 476 
determinant of signal propagation (and hence influences weight change in our model), so too are other 477 
factors we hitherto do not model such as axon diameter or the g-ratio67. Other constraints could be 478 
added into the model, such as cytoarchitectural, gene-expression or receptor-expression similarity68–70. 479 

Seeding and connection formation weighting. This study initializes the formation of the 480 
network from an empty network so that no prior information is given to the network. In practice, this 481 
means that development starts where the connectivity cost is least, which is by definition in the center 482 
of the space. This early initialization will have a key effect on the model71 but is not very biologically 483 
plausible (see72,73). Aside from the earliest simple generative models16, this fact been largely ignored. 484 
Future work should address this by systematically testing how initial network conditions influence the 485 
resulting simulation. 486 
 487 
Conclusions 488 
We present a new weighted generative network model, capable of capturing the weighted topology of 489 
the human connectome. This model solves a major limitation of prior research, principally because it 490 
is weighted, extending our capability to accurately approximate both the weights and topology of the 491 
connectome. We introduce several novel contributions, including an openly-available function that 492 
can be used to simulate empirical neuroscience data, a demonstration of this model applied to 493 
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microstructure-informed tractography data (COMMIT), in addition to a principled mechanism for 494 
explaining why weights become configured as they do via a principle of communication redundancy 495 
reduction. By using this model, we extend the economic accounts of brain organization, providing a 496 
better understanding of how the brain may not only balance the valuable connections necessary for 497 
appropriate functioning with metabolic costs, but also how their weights may be modified, in context 498 
of the topology, to minimize redundant communication as it forms. 499 
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 513 
Methods 514 
 515 
Participants 516 
Our main cohort contains n = 88 total participants (mean age = 12.56 years, SD age = 2.94 years, 517 
minimum age = 8.01 years, maximum age=18.96 years). The sample contains n = 46 girls (mean age 518 
= 13.23 years, SD age = 3.13 years, minimum age = 8.01 years, maximum age = 18.96 years) and n = 519 
42 boys (mean age = 11.82 years, SD age = 2.57 years, minimum age = 8.03 years, maximum age = 520 
16.77 years). There is a slight interaction between age and sex, whereby the girls in our cohort were 521 
older (p = 0.025) (Supplementary Fig. 4).  522 
 523 
MRI acquisition, processing and COMMIT 524 
All n = 88 participants were scanned on a 3T Siemens Connectom system with ultra-strong 525 
(300mT/m) gradients, using: multi-shell diffusion magnetic resonance imaging (dMRI) acquisition 526 
(TE/TR = 59/3000 ms; resolution 2×2×2 mm3) with b ∈	{500, 1200, 2400, 4000, 6000} s/mm2 in 527 
30,30,60,60,60 directions, respectively and additional 14 b = 0s/mm2 interleaved volumes; 3D 528 
MPRAGE (TE/TR = 2/2300ms; resolution 1×1×1mm3). dMRI data were pre-processed as outlined 529 
elsewhere74. 530 

To provide a more ‘biologically-informative’ assessment of brain connectivity, we used a 531 
Convex Optimization Modelling for Microstructure-Informed Tractography (COMMIT) approach37,38. 532 
Briefly, COMMIT deconvolves specific microstructural features on each fiber to recover individual 533 
streamline contributions to the measured signal. To achieve this, we performed multi-shell multi-534 
tissue constrained spherical deconvolution (MSMT-CSD) and generated a whole-brain probabilistic 535 
tractogram seeding from the white matter to generate 3 million streamlines. We then applied 536 
COMMIT with a stick-zeppelin-ball model75 to simultaneously filter out implausible streamlines and 537 
assign an intra-axonal signal fraction (IASF) to each one. Thus, for all subjects we set the following 538 
diffusivities dpar = dparzep = 1.7 × 10-3 mm2/s, dperp = 0.6×10-3 mm2/s, diso ∈	{1.7, 3.0}×10-3 mm2/s76.  539 

Connectomes were subsequently built using the FreeSurfer Desikan-Killiany (DK) 540 
parcellation as nodes (68 cortical) and by then assigning the total IASF associated to each bundle as 541 
edge-weights39. 542 
 543 
Group consensus thresholding 544 
As the modeling approach given is highly computationally expensive (taking ~300x more 545 
computational time than the binary model alone), rather than fitting our models to each of the n = 88 546 
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participants we performed our modelling procedure on a consensus network built from the n = 88 547 
sample. Utilizing a consensus also reduced the impact of false positives, false negatives77 and any 548 
effect of inconsistencies in the reconstruction of subject-level connectomes78. We generated the 549 
group-level consensus networks from the sample level IASF-weighted connectomes, which had a 550 
thresholded mean density of r = 34.5%. We provided absolute thresholds of 0.1839 and 0.0467 to 551 
these IASF-weighted networks to enforce a density of both r = 10% and r = 20% across the sample, 552 
before running the consensus procedure. These densities were picked to best replicate the literature, 553 
which has commonly used r = 10% or r = 20% networks12,20,22 but more importantly so that we can 554 
establish any effects of the models on relative sparse versus dense networks. 555 

To generate an accurate group-level representative consensus, we used fcn_group_bins() in 556 
Matlab 2020b, which has been comprehensively detailed elsewhere constraining node-to-node 557 
distances by the node-centroid Euclidean distances79. This approach retains the topological 558 
characteristics of individual subject networks and preserve within-/between-hemisphere connection 559 
length distributions of the individual participants.  560 

The result of this procedure were two binary graphs (r = 10% and r = 20%), which acted as 561 
the observed group topological consensus network. We then used the mean IASF weights across all 562 
participants as the attributed weighted edges to complete the consensus weighed network. These 563 
consensus networks contained 227 and 454 connections respectively across the 68-node DK 564 
parcellation. See Supplementary Fig. 5 for more detail of these consensus networks, including their 565 
network statistics. All network statistics were computed using the Brain Connectivity Toolbox 566 
(BCT)80. 567 
 568 
The weighted generative model algorithm 569 
In this work, we construct simulated networks using a weighted generative network model, extending 570 
prior work16,17,19,20, to additionally encompass weights. We described the approach in earlier sections 571 
(see Results; The weighted generative network model) but we additionally provide a step-by-step 572 
algorithm here. 573 

The algorithm begins from some initial starting condition. Here, we initialize the network as 574 
empty (i.e., zero connections) within the 68 cortical node DK parcellation scheme.  575 

Edge connections are added in a highly analogous way to previous work which employs the 576 
canonical generative network model (see20 for further detail). Connections are added one at a time 577 
(i.e., connections form) over a series of steps until m total connections are placed. As stated in the 578 
above section, the m was computed as a group consensus over different controlled densities, leading 579 
to m = 227 and m = 454 (r = 10% and r = 20% respectively). This meant that the simulation achieved 580 
the same number of connections as the empirical data.  581 

At each step, we allow for the possibility that any pair of presently unconnected nodes, i and j, to 582 
become connected. But this happens probabilistically, such that the relative probability score is given 583 
by Eqn. 1. As described in Eqn. 1, this is governed by a trade-off between the wiring cost 584 
(determined via Euclidean distances) and the homophily matching rule, which demarcates the 585 
topological overlap in connectivity of two nodes (given in Eqn. 2). We provide some extended 586 
reasoning for this part of the algorithm (see Results; Generative component 1 – forming connections). 587 

At each point in which a connection is added (e.g., see Fig. 2) we take some property of the 588 
network and change the weights of the network, incrementally, in a direction as to partially minimize 589 
this property. This property (also termed objective function, 𝑓&𝑤",$() is defined in Eqn. 4 and is 590 
computed as the combined total weighted communicability (Eqn. 3) multiplied by the Euclidean 591 
distances present in the network. We provide our reasoning for this in terms of communicative 592 
redundancy reduction (see Results; Generative component 2 – changing weights). The 𝜔 term 593 
changes the specificity of the objective function to specific weights, such that the closer 𝜔 tends to 594 
zero the more equally distributed the weight changes are across the network over its simulated 595 
development. The greater 𝜔 becomes in the positive direction, the greater it emphasizes changes to 596 
weights that contribute to highly communicable and physically distinct connections. 597 

To change the weights at each time step, we compute the first order derivative of the objective 598 
function, 𝑓′&𝑤",$(, which calculates an estimated gradient for each edge-weight must move to achieve 599 
the objective. Some weights are strengthened and some are weakened in this process. We then update 600 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 25, 2023. ; https://doi.org/10.1101/2023.06.23.546237doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.23.546237
http://creativecommons.org/licenses/by/4.0/


A weighted generative model of the connectome 

 15 

the weights in this direction according to the update rule given in Eqn. 5, by some magnitude, 601 
otherwise termed learning rate, 𝛼. The greater 𝛼 is, the greater that weights change at each time point 602 
after a new edge is added. 603 
 604 
Model fitting 605 
In binary generative modelling work, numerous model-fitting functions have been proposed that 606 
assess network statistics20 or their statistical correlations22,81. To ensure we are fitting both the 607 
topology and the weights of the network, we simultaneously assessed (i) the binary representation of 608 
the produced network using a documented binary energy equation20 and (ii) a weighted version of the 609 
same energy equation, where weighted versions of the same graph measures are considered. These are 610 
given respectively in the following equations: 611 
 612 

𝐸𝑛𝑒𝑟𝑔𝑦]"^_`a = max	(𝐾𝑆k, 𝐾𝑆l,	𝐾𝑆], 𝐾𝑆\) (6) 
  

𝐸𝑛𝑒𝑟𝑔𝑦?Y"Z[KY\ = max	(𝐾𝑆:, 𝐾𝑆?l,	𝐾𝑆?]) (7) 
 613 
KS is the Kolmogorov-Smirnov statistic, defined as maximum difference between the empirical and 614 
simulated cumulative density function of the graph theory statistic. As a result, both the 615 
𝐸𝑛𝑒𝑟𝑔𝑦]"^_`a and 𝐸𝑛𝑒𝑟𝑔𝑦?Y"Z[KY\ can be thought of taking the worst of the measured comparisons. 616 
If the model fit remains low, the fit must necessarily be the same or lower across all considered 617 
statistics. The  𝐸𝑛𝑒𝑟𝑔𝑦]"^_`a equation considers the node degree, 𝑘, clustering coefficient, 𝑐, 618 
betweenness centrality 𝑏, and edge lengths, 𝑑. The  𝐸𝑛𝑒𝑟𝑔𝑦?Y"Z[KY\ equation considers the node 619 
strength, 𝑠, weighted clustering coefficient, 𝑤𝑐, betweenness centrality 𝑤𝑏. The edge length is not 620 
considered again because it was captured in the Eqn. 6. In all cases, we report the simultaneous model 621 
fits for both 𝐸𝑛𝑒𝑟𝑔𝑦]"^_`a and 𝐸𝑛𝑒𝑟𝑔𝑦?Y"Z[KY\. To enable comparability of intra-axonal signal 622 
fraction (IASF)-weighted connectomes, we normalized all connectomes using BCT’s 623 
weight_conversion() function80. 624 
 625 
Parameter selection 626 
Our weighted generative algorithm contains four free parameters: 𝜂, 𝛾, 𝛼	and 𝜔. The first two relate to 627 
the formation of connections within a binary model: 𝜂 (connection length) and 𝛾 (topological value), 628 
and have been previously documented under a matching homophily rule to approximate networks 629 
accurately in the range of moderately negative 𝜂 scalar values and positive 𝛾 scalar values slightly 630 
above zero19,20. Following some trial tests, we established an approximate window of -3.7 < 𝜂 < -2.7 631 
and 0.35 < 𝛾 < 0.40 for which we undertook more thorough parameter fitting. As the generative 632 
algorithm detaches the connection formation 𝜂, 𝛾 parameters from 𝛼,𝜔 weight update parameters, we 633 
used these previously reported ranges of	𝜂 and 𝛾 to significantly reduce our computational burden. 634 
We subsequently conducted a parameter grid-search across 𝛼 (the weight learning rate) and 𝜔 635 
(connection optimization specificity) to examine to what extent the weighted generative model could 636 
approximate both the topology and weights within these parameter windows. Following basic 637 
exploration, we conducted our search in the range of 0.02 < 𝛼 < 0.1 and 0.85 < 𝜔 < 1.05. We fit our 638 
models to consensus IASF brain networks, derived at a density of both r = 10% and r = 20% to 639 
observe effects of numbers of connections on the network (see Methods; COMMIT Signal fraction & 640 
Methods; Group network consensus procedure). A total of 3600 simulations were run on these 641 
networks (total 7200) to fit the four parameters. All analyses were conducted with no seed network. 642 
 643 
Data availability 644 
Derived MRI outputs can be made available upon request. Generative model outputs will become 645 
available on the Open Science Framework upon publication. A pointer to these will become available 646 
at https://github.com/DanAkarca/weighted_generative_models. 647 
 648 
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Code availability 649 
The weighted generative model function is available for open use at: 650 
https://github.com/DanAkarca/weighted_generative_models. All code to replicate the present study 651 
will become available at the same repository, upon publication. The code we used run COMMIT is 652 
available at https://github.com/daducci/COMMIT. 653 
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