

A weighted generative model of the human connectome

Danyal Akarca¹, Simona Schiavi^{2,3,4}, Jascha Achterberg^{1,5},
Sila Genc^{4,6}, Derek K. Jones⁴, Duncan E. Astle^{1,7}

1. MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
2. Department of Computer Science, University of Verona, Verona, Italy
3. ASG Superconductors S.p.A., Genoa, Italy
4. Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
5. Intel Labs, San Francisco, US
6. Department of Neurosurgery, The Royal Children's Hospital, Parkville, Australia
7. Department of Psychiatry, University of Cambridge, UK

Corresponding Author: Dr Danyal Akarca
Email: danyal.akarca@mrc-cbu.cam.ac.uk

Abstract

Probabilistic generative network models have offered an exciting window into the constraints governing the human connectome's organization. In particular, they have highlighted the economic context of network formation and the special roles that physical geometry and self-similarity likely play in determining the connectome's topology. However, a critical limitation of these models is that they do not consider the strength of anatomical connectivity between regions. This significantly limits their scope to answer neurobiological questions. The current work draws inspiration from the principle of redundancy reduction to develop a novel weighted generative network model. This weighted generative network model is a significant advance because it not only incorporates the theoretical advancements of previous models, but also has the ability to capture the dynamic strengthening or weakening of connections over time. Using a state-of-the-art Convex Optimization Modelling for Microstructure-Informed Tractography (COMMIT) approach, in a sample of children and adolescents ($n = 88$, aged 8 to 18 years), we show that this model can accurately approximate simultaneously the topology and edge-weights of the connectome (specifically, the MRI signal fraction attributed to axonal projections). We achieve this at both sparse and dense connectome densities. Generative model fits are comparable to, and in many cases better than, published findings simulating topology in the absence of weights. Our findings have implications for future research by providing new avenues for exploring normative developmental trends, models of neural computation and wider conceptual implications of the economics of connectomics supporting human functioning.

Introduction

The study of the brain as a connectome using graph theory provides a powerful framework for understanding its computational and organizational principles^{1,2}. There are well-characterized features of observable brain networks, such as its modular structure³, small-world propensity^{4,5}, hierachal organization^{6,7} and its geometric wiring structure⁸. Underlying these apparent features is the economic and energetic context in which brain network configurations exist^{9,10}; preserving its physical, metabolic, and cellular resources while sustaining required neural function^{9,11-14}. Due to intrinsic resource limitations for sustaining the brain's organization, the connectome achieves a balance between the valuable connections required for appropriate functioning versus the costs of those connections to form, maintain and propagate signals¹³⁻¹⁵.

To better account for this complex organization, various flavors of probabilistic generative network model have been proposed since the early 2000s^{12,16,17}. These models work by simulating the formation of connections in the brain in a step-wise fashion to produce synthetic connectomes. In essence, these models achieve compression in that they produce complex networks from just one or

A weighted generative model of the connectome

53 two tuned parameters¹⁸. Across studies, the systematic comparison of different parameter types, and
54 tuning properties, highlights the fundamental constraints that govern the formation of a given
55 network. When fit to empirical human brain data^{17,19–21}, these models can shed light on the possible
56 factors driving biological connectivity. For example, one emerging finding is that the preference for
57 topological self-similarity, when modelled as a wiring rule (termed *homophily*), can approximate
58 structural and functional connectome datasets across numerous species and scales (e.g.,^{22,23}). This
59 indicates that an important developmental principle may be that neural assemblies form connections
60 with each other, based on how similar these assemblies are to each other²⁴.

61 In contrast with graph theoretical analyses of connectomes derived from *in vivo* diffusion
62 magnetic resonance imaging (dMRI), which commonly consider the heterogeneous edge-weights that
63 are observed^{5,25,26} (e.g., in terms of number of streamlines or fractional anisotropy), one major
64 limitation of previous generative models is that they can only simulate the binary existence of
65 connections in the connectome (i.e., reflected by a one or a zero corresponding to a connection
66 existing or not, respectively). This means that they exclude consideration of connection weight
67 heterogeneity²⁷. This exclusion simplifies the engineering problem of simulating connectomes but
68 significantly limits the scope of the scientific questions they can answer. First, because connectomics
69 data have an intrinsic weighted structure, current generative network models largely ignore a
70 potentially essential source of information. As a result, we may be missing insights critical for
71 understanding the constraints that guide connectome formation. Second, the strength of relationships
72 between regions (rather than just their existence) are crucial in neurocognitive development and
73 highly sensitive to developmental change^{28,29}. If generative models are to be useful for understanding
74 this change they will need to capture weighted change. Third, in computational models that perform
75 tasks (e.g., neural networks), weights mediate the extent to which errors propagate and facilitate
76 computation. Without weights, it will be hard to integrate network formation and the computational
77 capacities those networks afford (e.g., as in^{30–33}).

78 We present a solution to these challenges through an extension of canonical generative
79 models^{16,17,20} to a *weighted* generative network model of the human connectome. This model draws
80 upon the economic insights from prior generative modelling^{16,17}. However, we further extend the
81 model, inspired by the principle of redundancy reduction³⁴, but through the lens of network
82 communication^{35,36}, to account for how weights can adjust dynamically over time to optimize how
83 signals are propagated across the brain's connectome. Using state-of-the-art *in vivo* Convex
84 Optimization Modelling for Microstructure-Informed Tractography (COMMIT)^{37–39} we demonstrate
85 that this model is able to accurately approximate both the topology and weights of the human
86 connectome. We provide potential future directions for the field and a framework for empirical
87 findings may be incorporated into future models.

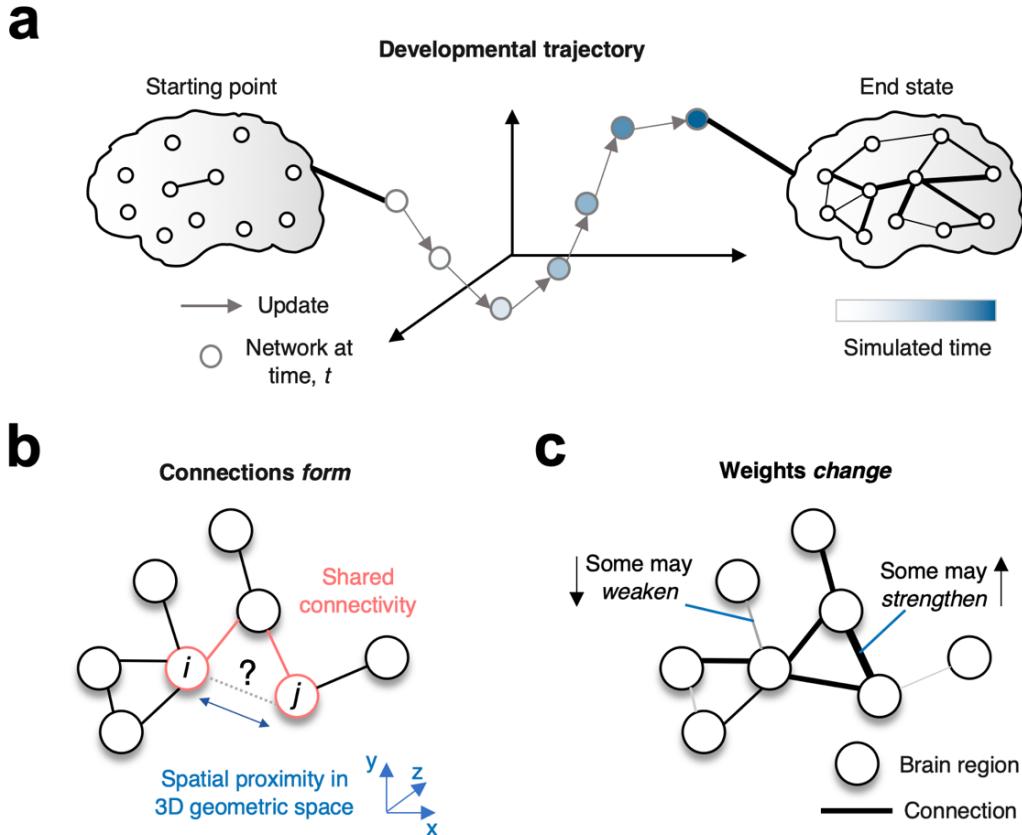
88

89 Results

90 The weighted generative network model

91 The weighted generative network model has two core algorithmic components driving the
92 network's developmental trajectory from its starting point to end state (**Fig. 1a**). The first is a binary
93 generative network model^{16,17}, in which connections *form* iteratively over time – a connection is
94 generated where it previously did not exist. The second component is a weight optimization step,
95 where connection strengths of existing connections *change* in a direction and magnitude to reduce
96 communication redundancy in the connectome.

97 The distinction between connections *forming* (the first component) versus *changing* (the
98 second component) in the model is not arbitrary. Before a connection is formed between two regions
99 in the brain, each region does not have *direct* information from the other via a direct connection.
100 Whatever information exists arises via other indirect connections (i.e., information passed via other,
101 currently available, connections) or via some other non-synaptic means (e.g., paracrine signaling)
102 (**Fig. 1b**). Once a connection has formed, we model changing connections as weights that change in a
103 direction so as to reduce redundant communication. It may be that, as in developing neural systems,
104 some weights strengthen and others weaken over time to achieve the goal of reducing unnecessary
105 communication (**Fig. 1c**).



106
107 **Fig. 1 | The network's developmental trajectory comprises of connections forming and weights**
108 **changing.** a An illustration of the weighted generative process. As the simulated developmental time unfolds,
109 the network moves through the feature space until it reaches its final destination. b In growing networks,
110 connections form between regions. The information driving this process must be driven by factors outside the
111 direct synaptic information present between the two regions, because this is absent. Two factors that could drive
112 this are the current indirect connections linking the two regions or the spatial proximity of the regions. In this
113 example, we highlight the shared connectivity (red) and spatial proximity (blue) between node i and j . An
114 accurate model should demonstrate how connections form to generate connection topologies consistent with
115 observations. c Connection weights change as some function of the presently available weights of the
116 connections. An accurate model should demonstrate both weakening and strengthening over time of
117 connections, that generates an organization of weights consistent with observations.

118
119 **Generative component 1 – Forming connections**

120 Let's consider the first algorithmic component: *forming connections*. For this we use the
121 aforementioned generative network model. As stated previously, this model probabilistically adds a
122 single connection according to the modelled costs and values afforded to the network^{16,17}. The
123 simulation stops when the number of connections mirrors the empirical network it is being compared
124 to. It can be expressed as a simple wiring equation, updated over time:
125

$$p_{i,j} \propto (d_{i,j})^\eta (k_{i,j})^\gamma, \quad (1)$$

126 where $p_{i,j}$ denotes the probability score of node i and j forming a connection. The algorithm has a
127 winner-takes-all formalization such that a single connection is forced to form over the others,
128 depending on this probability score at each iteration of the simulation over discrete time. $d_{i,j}$ denotes
129 the cost of wiring between node i and j . To prevent overfitting of the model introduced from pre-
130 specifying fiber lengths (see *Discussion* for detail), we model this as the Euclidean distance between
131 regions (node regions are defined in *Methods; MRI acquisition, processing and COMMIT*). In our
132 sample (see *Methods; Participants*) the average correlation between fiber lengths and Euclidean
133

A weighted generative model of the connectome

134 distances for extant edges was $r = 0.773$ (SD 0.0119) corresponding to 59.7% explained variance. η is
135 a parameter that determines the strength of the relationship between the cost of wiring and the
136 probability of forming a connection. In empirical studies, best fitting models tend to show negative
137 values, meaning that networks prefer shorter connections to longer connections, as measured by the
138 Euclidean distance between two regions^{16,17,20}. $k_{i,j}$ denotes the topological value of forming a
139 connection between node i and j . γ is the parameter that determines the strength of the relationship
140 between the topological value and the probability of forming a connection.

141 The $k_{i,j}$ term is given by an arbitrary topological relationship postulated *a priori* (also termed
142 “wiring rule”). Prior work has shown that homophily (in particular, the *matching* rule) generative
143 models robustly achieve the best model fits relative to other models^{19–21}. Therefore, in order to make
144 progress with the second component of the model, we focus only on this best performing homophily
145 term for the first component, rather than cycling through all the various options. This matching rule
146 computes the normalized shared connectivity profile – the average proportion of shared neighbours
147 two regions have and has been used in numerous other studies to simulate the topology of empirical
148 binary brain networks^{12,19–21}. It is given by the following equation, where Γ_i where represents the set
149 of node i ’s neighbors:

150

$$k_{i,j} = \frac{|\Gamma_{i,j} \cap \Gamma_{j,i}|}{|\Gamma_{i,j} \cup \Gamma_{j,i}|} \quad (2)$$

151

152 Where $\Gamma_{i,j}$ is Γ_i but with j excluded from the set. \cap , from set theory, denotes the intersection of the
153 neighbours (i.e., the overlap – in both sets). \cup , in contrast, denotes the union of the neighbours (i.e.,
154 the total set of neighbors from both sets). If there is a total overlap in neighbours, $k_{i,j} = 1$. If there is
155 no overlap, $k_{i,j} = 0$. In summary, the formation of connections is modelled as a trade-off between the
156 cost of forming a connection versus the topological value derived from having shared connectivity
157 (under the matching rule).

158

159 Generative component 2 – Changing weights

160 We now consider our second algorithmic component: *changing weights*. As the brain constructs itself,
161 it does not simply add connections iteratively. Instead, as connections form, it simultaneously engages
162 in continual plasticity, with some connection strengthened and others weakened over time⁴⁰. But what
163 drives this change over time? We propose a single optimization process that, as we later show, can
164 simultaneously achieve the strengthening and weakening of connections: the weights of the network
165 change to minimize its communication redundancy between its spatially-configured components. This
166 idea stems from accounts of redundancy reduction as a core principle for economical sensory
167 coding^{34,41} but through the lens of network communication^{35,36}.

168 We will now outline how we operationalize redundancy in the context of communication. We
169 define communication in terms of topological random diffusion of signals between regions on the
170 weighted connectome^{42,43}:

171

$$c_{i,j} = e^{s^{-1/2} w_{i,j} s^{-1/2}}, \quad (3)$$

172

173 where $c_{i,j}$ is the normalized weighted communicability between node i and j . This measure captures
174 what proportion of signals that propagate randomly from node i would reach node j over an infinite
175 time-horizon. It can be considered as equivalent to random diffusion or a random walk on the network
176 graph. As such, it can be thought of as the extent to which node i and node j communicate. Here, s
177 defines the diagonal matrix with the node strengths on the diagonal. $w_{i,j}$ is the weighted matrix of the
178 network, representing the strength of connections between nodes.

179 We use this operationalization of communication within an objective function, in which the
180 growing network continuously updates its weights to minimize this evolving function. Crucially, in
181 addition to topological paths constraining communication, distance is a key determinant of the timing
182 of signal propagation in networks that may contribute to redundancy. Adding in these further distance
183 considerations, we achieve the following objective function:

184

$$f(w_{i,j}) = (c_{i,j} \cdot d_{i,j})^\omega, \quad (4)$$

185

186 where $f(w_{i,j})$ is the objective function that is calculated on the weight matrix $w_{i,j}$. This takes in all
187 learnable parameters (i.e., all non-zero elements of the weight matrix, $w_{i,j}$). $d_{i,j}$ is the Euclidean
188 distance between node i and j , reflecting that the weights of longer connections are costly to maintain.
189 ω is a parameter which varies the distribution of preference the network has to update weights. For
190 example, when ω is a large positive value, it skews the optimization towards longer and more
191 communicable edges. When ω is a small positive value, it softens this optimization disparity between
192 edges. A similar term to this has also been used recently⁴⁴.

193 Across the network, the goal is to minimize redundant communication in signals traversing
194 physically in space. To achieve this optimization, at each time step t in the generative process we
195 change the weights according to the following update rule:

196

$$w_{i,j,t+1} = w_{i,j,t} - \alpha[f'(w_{i,j})] \quad (5)$$

197

198 α is defined as the learning rate. The greater the learning rate the larger the jump in weight updates at
199 each time point. $f'(w_{i,j})$ is the first-order derivative of the objective function given in **Eqn. 4**, with
200 respect to the network weights, $w_{i,j}$. As previously stated, this has the effect of updating the weights
201 of the network in a direction that minimizes communication redundancy in space. The first order
202 derivative was estimated by simulating the objective function under small changes of individual
203 weights ($\delta w_{i,j}$) of 5% of the $w_{i,j}$ value, taken incrementally five times, each in the positive and
204 negative direction. The first order gradient is computed from these simulations, and weights are
205 updated by the learning rate, α , at each timestep in the direction of the gradient. The sign of the
206 update in **Eqn. 5** is negative because a positive gradient suggests that weights must be decreased to
207 minimize redundancy (and vice versa, i.e., the subtraction facilitates the minimization of redundancy).
208 For more detail as to the whole model algorithm, see Methods; *The weighted generative model*
209 *algorithm*.

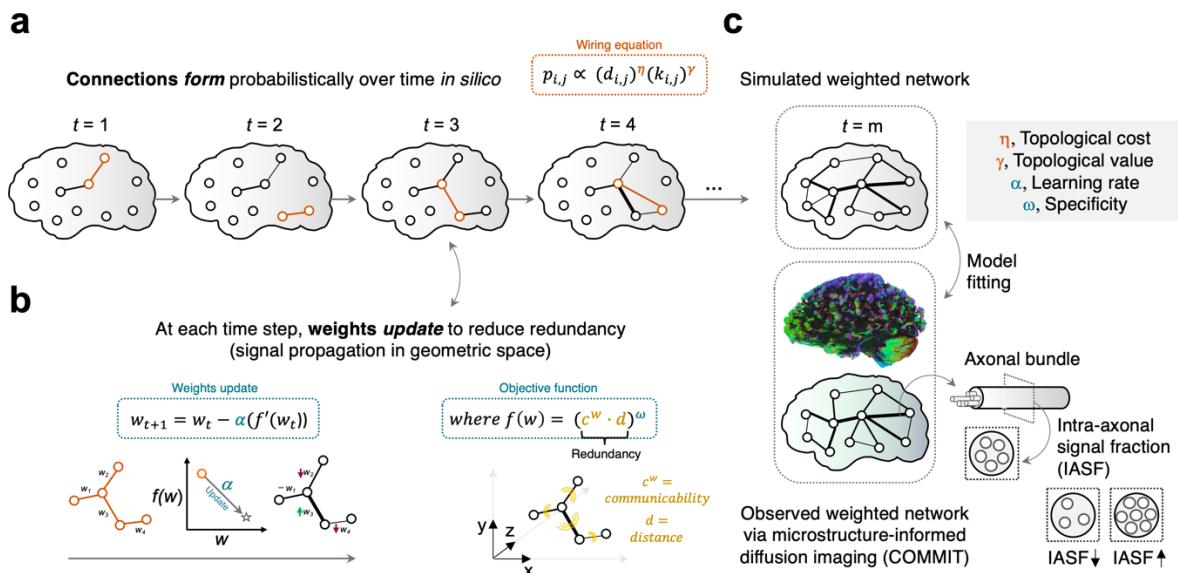
210

211 Once a weighted network was produced from the above process, we then assessed to what
212 extent it mirrored empirical observations. We did this via an extensive model fitting procedure to
213 compute model fit statistics called the *Energy_{weighted}* and *Energy_{binary}*, which considered how
214 well simulations approximated the empirical weights and topology respectively. Overall, the lower the
215 energy value, the better the model fit. These energy statistics were calculated as the worst fit over a
216 number of Kolmogorov-Smirnov (KS) statistics, which each measures the maximum distance between
217 the cumulative density functions (CDFs) of some graph theory statistics in observed and simulated
218 networks. To pick graph theory statistics, we extended those which have been used in prior work^{12,19–}
219 ²³. For more detail, see Methods; *Model fitting*.

220

221 In **Fig. 2** we provide an illustration of the total weighted generative network modelling
222 procedure to approximate empirical connectivity. To generate empirical connectomes, we used a
223 *Convex Optimization Modelling for Microstructure-Informed Tractography* (COMMIT) approach^{37,38}.
224 COMMIT filters implausible streamlines from tractography and allowed us to assign the intra-axonal
225 signal fraction (IASF) to each streamline (see Methods; *MRI acquisition, processing and COMMIT*).
This provided us with a *in vivo* microstructural measure relating to measured axonal projection
properties to provide a biologically meaningful measure of connection weights (**Fig. 2c**).

A weighted generative model of the connectome



226
227 **Fig. 2 | The weighted generative network modelling procedure.** **a** Connections form probabilistically
228 over time according to the canonical binary generative network model. **b** At each time point, once a connection
229 has been formed, the network weights are optimized according to a learning rate, α , in a direction as to
230 minimize the objective function $f(w_{i,j})$. The first-order derivative $f'(w_{i,j})$ is taken to do this. The objective
231 function $f(w_{i,j})$ here is defined in terms of the total network communicability, $c_{i,j}$, and distance, $d_{i,j}$. See
232 *Methods; The weighted generative model algorithm* for detail of the whole generative process. **c** The
233 simulation concludes when the number of connections is the same as the consensus empirical brain network. In
234 the present work, we utilize microstructure-informed MRI which measures the intra-axonal signal fraction
235 (IASF).

Accurate simulation of weighted microstructure-informed connectomes

236 Through 3600 simulations of the above weighted generative network model, we charted the extent to
237 which weighted connectomes could be simulated (**Fig. 3a**). In **Fig. 3b**, we show the $Energy_{weighted}$
238 landscape as a function of the weight parameters, α and ω , at optimally fit η and γ parameters (see
239 *Methods; Parameter selection*). As shown, the learning rate α and specificity term ω trade-off in the
240 negative direction, such that low energy networks are generally found in the compromise between the
241 two terms. **Supplementary Fig. 1** provides further landscapes, including the $Energy_{binary}$.

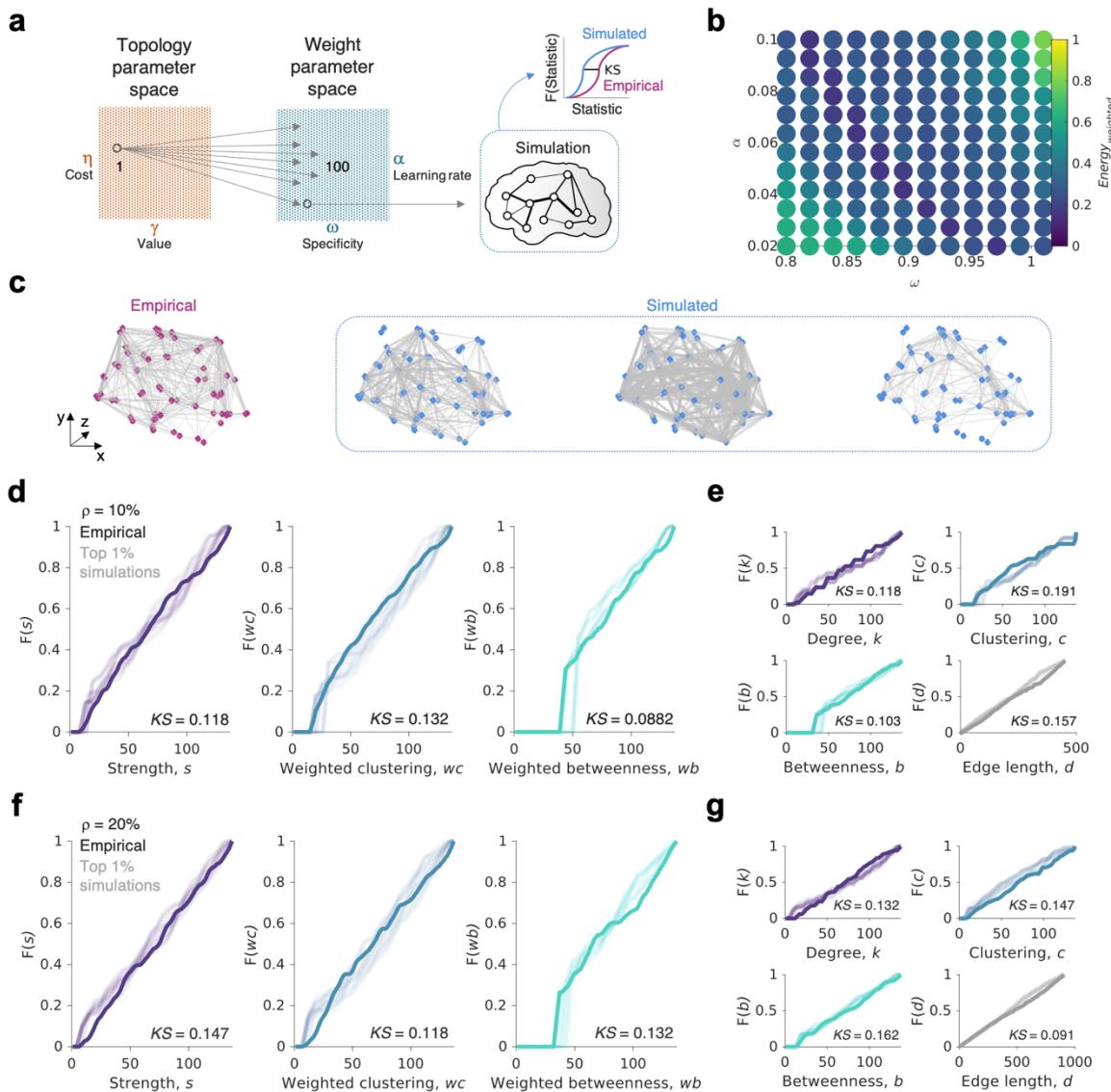
242 We then sought to test our core question: to what extent is it possible to recapitulate both the
243 topology and weights of empirical connectomes with a weighted generative network model? We first
244 look at models fit to relatively sparse $\rho = 10\%$ networks. At this density, we found across our
245 simulations, despite having to achieve more target features, the minimum energy concurrently
246 achieved in weights and topology were comparable with the low values for binary networks:
247 $Energy_{weighted}$ of 0.157 ($KS_s = 0.118$, $KS_{wc} = 0.132$, $KS_{wb} = 0.088$, $KS_d = 0.157$) and $Energy_{binary}$
248 of 0.191 ($KS_k = 0.118$, $KS_c = 0.191$, $KS_b = 0.103$, $KS_d = 0.157$). **Fig. 3c** and **Fig. 3d** show the
249 cumulative density functions of simulated statistics compared to the empirical $\rho = 10\%$ network.

250 One criticism of our results is that, as with earlier work^{19,20}, sparse networks may be easier to
251 simulate accurately and achieve a good fit, simply because there are less connections to model. As
252 such, we next aimed to replicate this finding in a denser $\rho = 20\%$ consensus network, containing twice
253 the number of connections. We find highly similar results, with the weighted model actually doing a
254 better job in most parts: $Energy_{weighted}$ of 0.147 ($KS_s = 0.147$, $KS_{wc} = 0.118$, $KS_{wb} = 0.132$, $KS_d =$
255 0.091) and $Energy_{binary}$ of 0.162 ($KS_k = 0.132$, $KS_c = 0.147$, $KS_b = 0.162$, $KS_d = 0.091$). **Fig. 3e** and
256 **Fig. 3f** show the cumulative density functions of simulated statistics compared to the empirical $\rho =$
257 20% network.

258 How do the weighted simulations presented here compare to model fits attained from binary
259 generative models? As one might expect, across our simulations, it is generally easier to simulate the

A weighted generative model of the connectome

262 network topology relative to being able to simulate the weights, with 96.1% and 98.8% of simulations
 263 showing a greater *Energy_{weighted}* relative to *Energy_{binary}* (respectively in sparse and dense
 264 consensus networks, **Supplementary Fig. 2a, b**). However, there are parallels in how the models fail
 265 to approximate the network statistics between weights and topology. In particular, prior findings have
 266 shown that binary homophily generative models struggle to approximate the clustering of the
 267 empirical observations and this is the part of the *Energy_{binary}* equation that tends to be worst
 268 approximated, reflected by being the highest *KS* statistic¹⁹. Here, we find a similar trend but for the
 269 weighted clustering measure, *KS_{wc}*, which also generates the highest *KS* statistic in 83.1% and 92.3%
 270 of the simulations respectively in sparse and dense consensus networks (**Supplementary Fig. 2c, d**).
 271 **Supplementary Fig. 2e, f** show the broad relationship between the energy and *KS* statistics achieved
 272 through our modelling procedure.



273
 274 **Fig. 3 | Simulating microstructure-informed connectome weights and topology simultaneously.** **a**
 275 3600 simulations were undertaken in total. This was done by sampling the topology parameter space from 36
 276 locations spaced evenly apart (left) and running 100 simulations on each at regular intervals in the weight
 277 parameter space (middle). For each weighted network that was produced through this process, it was compared
 278 to empirical networks via the model fitting procedure (see *Methods; Model fitting*). This allowed for the
 279 determination of how well the model could approximate the empirical findings. **b** The *Energy_{weighted}*
 280 landscape (for sparse, $\rho=10\%$ networks) which depicts what combination of the learning rate, α , and specificity,
 281 ω , produce networks with low dissimilarity to observations. As described, each point entails 100 simulations
 282 with different combinations of η , γ . **c** Observed (pink) and simulated (blue) weighted connectomes. The best (left), top 0.5%

A weighted generative model of the connectome

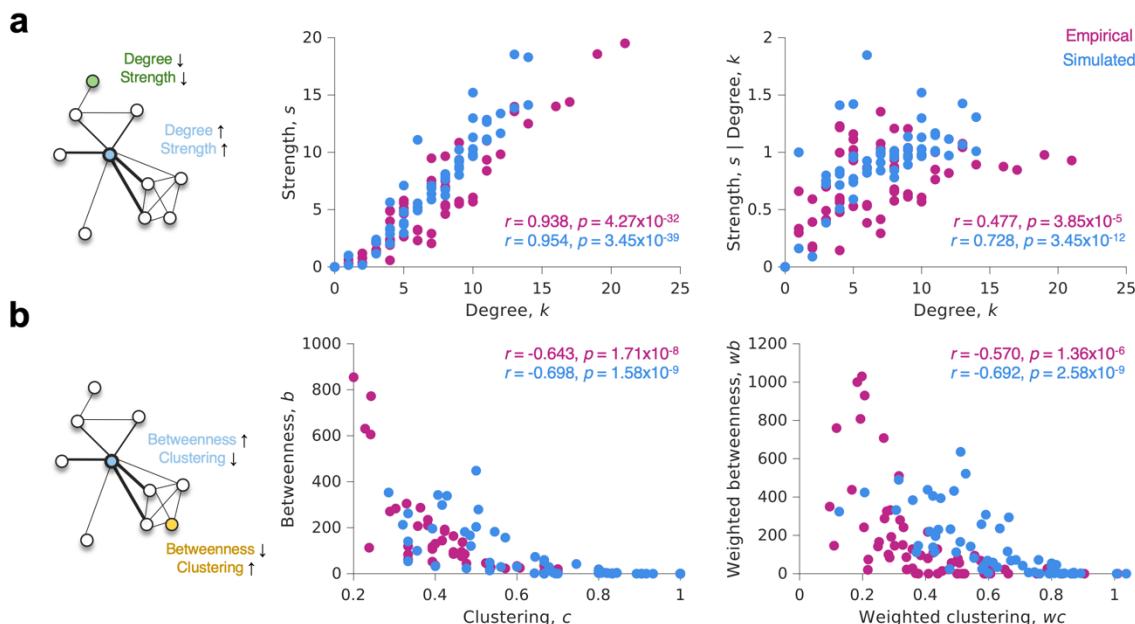
284 (middle) and top 1% (right) simulation is shown. **d** In sparse $\rho = 10\%$ networks, the cumulative distributions of
 285 strength (purple), weighted clustering coefficient (blue), weighted betweenness centrality (green). For each
 286 panel, the top 1% of simulations (36 in total) are shown in the lighter shade. The KS statistic is given only for
 287 the best performing simulation. **e** In sparse $\rho = 10\%$ networks, the cumulative distributions of degree (purple),
 288 clustering coefficient (blue), betweenness centrality (green) and edge length (grey). **f** The same as panel **d** but
 289 for denser $\rho = 20\%$ networks. **g** The same as panel **e** but for denser $\rho = 20\%$ networks.

290

291 Evaluating models by their weighted and binary topological relationships

292 There is a large covariance between graph theory measures due to the dependencies between nodes
 293 via their connectivity⁴⁵. For example, in empirical networks, it is common that regions with more
 294 connections tend to have connections with a higher average edge-weight⁴⁶. Furthermore, due in part to
 295 the small-world propensity of brain network organization, regions which have high levels of clustered
 296 weights tend to have low betweenness centrality⁵. While some studies have examined this topological
 297 fingerprint more formally²², so far due to the lack of weighted information, this has been limited to the
 298 assessment of binary connections.

299 In **Fig. 4**, we show that while we have not explicitly simulated weighted generative networks
 300 to encompass these types of covariances, they arise as a result of the generative process. We find that
 301 simulations mirror (and slightly exaggerate) the dominant trend found in empirical networks (see
 302 **Supplementary Fig. 3** for the same findings on denser $\rho = 20\%$ networks). At first, these results may
 303 seem surprising because the weighted generative model explicitly detaches how connections form
 304 from how weights change (see *Methods; The weighted generative algorithm*). However, as we will
 305 outline in the next section, while there is a distinction between how weights and topology occur
 306 algorithmically, the principle of redundancy reduction means that topology constrains how weights
 307 arrange in a direction that aligns with empirical data. Put simply, despite the computational separation
 308 of connection formation from weight change, one will shape the other.



309

310 **Fig. 4 | Topological relationships between weighted and binary network statistics in empirical**
 311 **and simulated connectomes.** **a** In canonical idealized brain networks (left), regions with high numbers of
 312 connections also have stronger connections (light blue node) and vice-versa (green node). We show that in the
 313 best simulated networks, this is also the case in terms of the relationship between the number of connections of
 314 region has and the strength of those connections (middle). To ensure that we control for the analytical
 315 relationship between degree and strength, we also provide a version here the degree is controlled for in the
 316 strength measure (right). **b** In canonical idealized brain networks (left), regions with high levels of clustering
 317 have lower levels of betweenness centrality (yellow node) and vice-versa (light blue node). We show that in the
 318 best simulated networks, this is also the case in terms of the relationship clustering and betweenness (middle).
 319 We show this also for the weighted versions of the measure (right). All findings are given for $\rho = 10\%$ networks
 320 (see **Supplementary Fig. 3** for $\rho = 20\%$ networks).

321

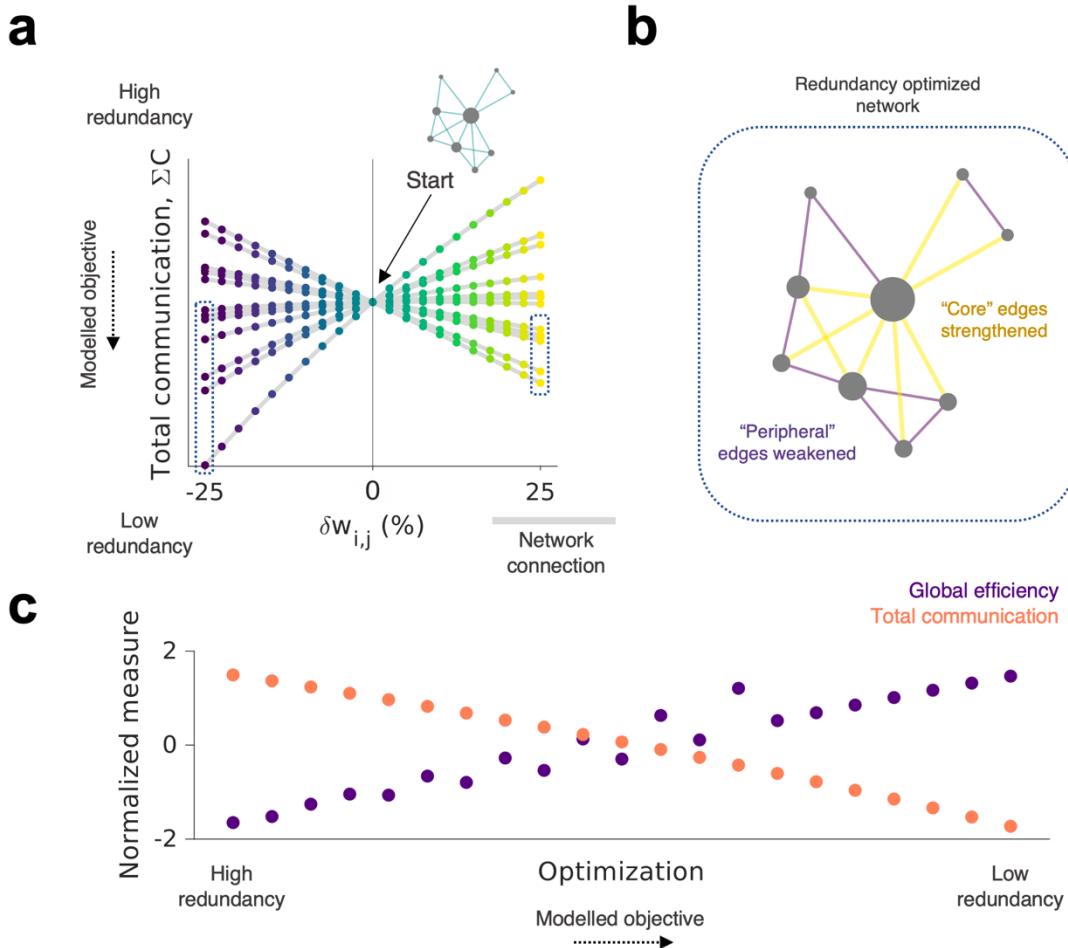
322 Communication redundancy reduction and the weighted connectome

323 So far, we have shown that by developing *in silico* networks which form incrementally according to
324 self-similarity (i.e., homophily) in space, while concurrently optimizing weights to minimize
325 communication redundancy in space, it is possible to produce macroscopic networks with high
326 statistical similarity to observations. Although we have outlined the logic underpinning our
327 formulation of the weighted generative algorithm, we have not directly provided an account for
328 precisely *why* the model successfully fits the data.

329 Redundancy reduction is a core neuroscience principle dating to the 1960s³⁴ where Barlow
330 hypothesized that the goal of sensory processing was to recode redundant sensory inputs into a
331 factorial code with statistically independent components⁴¹. This idea has since inspired numerous
332 learning algorithms⁴⁷⁻⁴⁹. The current work, rather than focusing on redundancy in sensory processing,
333 focusses on redundancy in terms of how regions themselves propagate signals between each other.
334 For example, a network that has a lot of communication is likely to be redundantly communicating an
335 abundance of signals between numerous regions. In contrast, a network with little communication is
336 required to communicate efficiently its relatively sparse signals between regions. This way of
337 considering communication redundancy is consistent with an efficient coding framework, which
338 proposes that the brain transmits maximal information in a metabolically economical or compressed
339 form to improve future behavior^{36,50}. By operationalizing this mathematically in **Eqn. 3** (as in
340 analogous work⁵¹) we have defined a type of redundancy that is minimized throughout the generative
341 process.

342 How does this principle of redundancy reduction in communication lead to our empirical
343 observations of connectome organization? To examine this question, we conducted the following
344 experiment. We undertook the same optimization process in the weighted generative model, but
345 carefully evaluated how redundancy changes as a function of individual weights changing over time.
346 We depict the main findings of this experiment in **Fig. 5a**. Starting from a simple exemplar binary
347 network of nine nodes, we compute how changing individual weights in small increments of 2.5% in
348 the positive and negative direction ($\delta w_{i,j}$) changes the total level of communication (ΣC) in the
349 network (as computed from **Eqn. 3**). As shown, not all changes of weights cause the same effect: as
350 some connections are strengthened communication decreases, but in others, you must weaken
351 connections to get the same trend of communication decrease.

352 This “crossing” phenomenon (as seen in **Fig. 5a**) can be explained by the fact that
353 communication redundancy is minimized when core connections – that are topologically central to
354 information flow – are strengthened, but peripheral edges are weakened (visualized in **Fig. 5b**). In
355 summary, the process of redundancy reduction leads to the bottlenecking of signal propagations
356 within relatively few core connections, consequently leading to an increased efficiency in regional
357 communication (**Fig. 5c**). This allows for the network to prioritize the flow of communication through
358 topologically central nodes, allowing for efficient integration of communication across the
359 connectome.



360
361 **Fig. 5 | Redundancy reduction leads to an efficient patterning of connectivity weights.** **a** Starting
362 from the given binary network, we incrementally strengthened or weakened the edge weights ($\delta w_{i,j}$) in
363 increments of 2.5%. At each change, we recorded the total communication across the network (ΣC) which is a
364 measure of redundant communication existing in the network. Each line represents a different edge in the
365 network (a total of 16 edges) as the connection is changed. As shown, there is a “crossing” phenomenon, where
366 strengthening or weakening of connections cause opposite effects on the redundancy present in the network. As
367 highlighted, some connections achieve minimal redundancy when the connection has been weakened (left, blue
368 dashed box) but others achieve this when they have been strengthened (right, blue dashed box). **b** There is a
369 topological relationship between where the connection is in the network and its relationship between connection
370 weights and redundancy, such that to achieve a redundancy optimized network you must strengthen core
371 connections but weaken peripheral connections. **c** This phenomenon has the effect of causing the weights to
372 become strengthened in the core of the network – equivalent to greater integration – causing greater efficiency
373 (purple) but reduced communication (orange).

374

375 Discussion

376 Redundancy reduction in network communication

377 One key finding is that by reducing communication redundancy, it is possible to approximate both
378 connectome topology and weights. There are many other ways, in principle, that the goal of this
379 algorithm could have been instantiated. For example, one could imagine an alternative multi-step
380 algorithm in which connections are added and/or then removed in sequence at each time-step.
381 However, the present approach provides several major benefits relative to such a solution. First, in the
382 current model the strengthening and weakening of connections can be accounted for via a single
383 optimization process depending only on the communication redundancy within the network.
384 Achieving these heterogeneous magnitudes and directions of weight changes over time (i.e., both
385 strengthening and weakening) is not trivial, particularly when there is no supervision in the learning

386 process. Second, our optimization process is theory-driven, rather than mathematically arbitrary. The
387 idea that redundancy should be constrained in biological systems is highly congruent with multiple
388 theoretical perspectives in neuroscience^{34,41,52,53}. In summary, not only does this model solve a
389 somewhat challenging engineering problem, but it does so in a way that resonates with biological
390 theory.

391 The way we formalize redundancy reduction here is not identical to how the original efficient
392 coding hypothesis framed redundancy. The original hypothesis concerned how the goal of sensory
393 processing was to recode redundant sensory inputs into a code with statistically independent
394 components, as to remove redundant signals from external stimuli within the internal
395 representations³⁴. Here, rather than focusing on the redundancy within internal representations, we
396 focus on redundancy within the *communication* of the network. This work draws parallels between
397 information theory accounts of neural communication via compression in the connectome³⁶ but
398 through the lens of resource rationality^{54,55}, where each node in the graph, as it develops, aims expend
399 the least possible amount of communication expenditure^{13,56}. Moreover, we demonstrate a particularly
400 interesting observation that the reduction of redundant communication can account for how, over
401 time, networks may incrementally integrate their weighted connections – an observation entirely
402 congruent with studies examining topological changes throughout child development⁵⁷.
403

404 **In context of prior structural generative network model findings**

405 To date, generative models have highlighted numerous insights regarding connectome organization
406 ^{18,58}. In particular, cost-minimizing homophily models (as used within the current work) have been
407 shown to quite consistently generate realistic connectome topologies across a range of scales, species
408 and modalities^{12,17,19,21,23} (although see⁵⁹). Wiring parameters have been shown to link to cognition^{19,21},
409 age^{19,20}, polygenic risk for Schizophrenia²¹ and adversity in a rodent model²³. As our weighted models
410 builds on this foundation, we expect that theoretical questions they can answer may extend and
411 compliment this previous work.

412 One way it may do this by capturing more biologically meaningful parameters which relate to
413 the organization of connectome edge-weights. For example, the parameter controlling wiring length,
414 η , has been shown to correlate with polygenic risk for Schizophrenia²¹ – where subjects with higher
415 scores tended to have a lower magnitude negative η , suggesting a softer cost penalty on connectivity.
416 A weighted model may be able to elucidate more specific weight-topology interactions that may play
417 a role in disease onset or altered development⁵⁸. It may be able to better elucidate age-related changes
418 shown in lifespan data²⁰ or how weighted connectivity early in development⁶⁰ may be modelled in
419 combination with genomic¹² or cytoarchitectural⁶¹ data.

420 Another way weighted models may extend our analysis is by informing how topology and
421 weights both interact to provide computationally efficient networks able to perform computation^{30–}
422 ^{32,44}. For example, recurrent (task-solving) neural networks have been shown to develop brain-like
423 topological features through a very similar optimization procedure described in the current work⁴⁴. In
424 this network in particular, we highlight the interplay between a growing topological network (via a
425 homophily rule) which subsequently shapes how weights organize themselves through bottlenecking
426 of weights within topological core regions of the network (see **Fig. 5**). We anticipate this observation
427 will lead to a number of new theoretical insights at the intersection of network neuroscience and
428 neural network research^{24,62}.
429

430 **Limitations and future research**

431 Below we list numerous limitations of the present study and point to how these can be reasonably
432 mitigated in future research:

433 *Computational expense.* On a typical desktop computer, binary generative models take
434 approximately one second to compute a binary generative model ($\rho = 10\%$ connectome, 227
435 connections). However, our weighted models take approximately 300 seconds (~300x slower). This is
436 for two main reasons. The first is that computing the first-order derivative of our objective function
437 (**Eqn. 4**) becomes increasingly difficult as the network grows. This leads to an intrinsic slowing down
438 of the model over the network's formation. The second more important factor is that in the present
439 study we compute the gradient manually through a model-based simulation of the objective function

440 with respect to the weights. This is computationally expensive, but future work will be able to
441 mitigate this through employing faster approaches to compute derivatives.

442 *Consensus model fits rather than individual subjects.* As there is a large computational
443 expense for computing the current models, it limited our ability to accurately fit models to individual
444 subjects. This leaves numerous open questions: how do weight parameters vary across individuals?
445 Do these models better map to measures of cognitive performance or polygenic risk? While we
446 suspect they will, we cannot yet confirm our findings will generalize to individual subjects robustly. It
447 also may be that our parameter search would need to be widened to encompass individual subjects.
448 An extended approach similar to the fast landscape generation method⁶³ would be particularly helpful
449 to approximate individual subject accurate parameter estimates.

450 *Parcellation coarseness.* We limited our analysis to the 68-node DK parcellation which,
451 although studied before with generative models¹⁹, is a coarse parcellation. It is unknown how these
452 results will generalize to finer resolutions such as the Brainnetome⁶⁴ or Schaefer⁶⁵ atlases. Another
453 effect of the parcellation may reside in the inter-node distance distributions. For example, more
454 heterogeneously spaced parcellations will likely more easily generate modular networks simply by
455 virtue of the *a priori* locations of the regions. Our current study is limited by not exploring these
456 effects, but future work can explore this.

457 *Negative weights.* Numerous studies have used functional, rather than structural connectomes,
458 when using binary generative models^{17,22}. While communication models have been argued to allow
459 for better mappings between structural and functional modalities³⁵, our model does not deal with
460 negative weights, which is intrinsic to correlations. This leads to a natural fit between our model and
461 structural data, which naturally contains non-negative edge-weights. Of note, other generative models
462 which can capture weights, in the form of stochastic blockmodels (which are useful characteristic
463 network community structure), can deal with negative edge weights⁶⁶.

464 *Wiring rules.* In context of prior work, we only looked into the homophily model. However,
465 given that topology is an influence on weighed optimization process, we think it is possible that other
466 rules will yield subtly different results. Future work should look to explore how weights differentially
467 configure themselves in context of different connection formation rules.

468 *Other constraints.* As in most other studies^{20,21}, we use Euclidean distance as a measure of
469 cost of connection formation guiding topology and weight change. In contrast with fiber length
470 constraints, this has the benefit of removing any *a priori* limits to how the network's topology can be
471 generated. This is because fiber length data only exists for extant connections but Euclidean distances
472 can be computed between all nodes. However, in this study approximately 60% of variance in fiber
473 lengths of extant connections can be explained by the Euclidean distance – representing a relatively
474 large variance explained (see²⁰ for comparisons). Adding fiber lengths as a constraint will, on one
475 hand, reduce the search-space for simulations that mirror observations but, on the other, may reveal
476 more specific generative principles specific to our observations. Moreover, while distance is a key
477 determinant of signal propagation (and hence influences weight change in our model), so too are other
478 factors we hitherto do not model such as axon diameter or the g-ratio⁶⁷. Other constraints could be
479 added into the model, such as cytoarchitectural, gene-expression or receptor-expression similarity^{68–70}.

480 *Seeding and connection formation weighting.* This study initializes the formation of the
481 network from an empty network so that no prior information is given to the network. In practice, this
482 means that development starts where the connectivity cost is least, which is by definition in the center
483 of the space. This early initialization will have a key effect on the model⁷¹ but is not very biologically
484 plausible (see^{72,73}). Aside from the earliest simple generative models¹⁶, this fact been largely ignored.
485 Future work should address this by systematically testing how initial network conditions influence the
486 resulting simulation.

487

488 **Conclusions**

489 We present a new weighted generative network model, capable of capturing the weighted topology of
490 the human connectome. This model solves a major limitation of prior research, principally because it
491 is weighted, extending our capability to accurately approximate both the weights and topology of the
492 connectome. We introduce several novel contributions, including an openly-available function that
493 can be used to simulate empirical neuroscience data, a demonstration of this model applied to

494 microstructure-informed tractography data (COMMIT), in addition to a principled mechanism for
495 explaining why weights become configured as they do via a principle of communication redundancy
496 reduction. By using this model, we extend the economic accounts of brain organization, providing a
497 better understanding of how the brain may not only balance the valuable connections necessary for
498 appropriate functioning with metabolic costs, but also how their weights may be modified, in context
499 of the topology, to minimize redundant communication as it forms.

500

501 Acknowledgements

502 Danyal Akarca, Jascha Achterberg and Duncan Astle are supported by UKRI MRC funding (MC-
503 A0606-5PQ41). Danyal Akarca and Duncan Astle are funded by the James S. McDonnell Foundation
504 Opportunity Award for Understanding Human Cognition and the Templeton World Charity
505 Foundation, Inc. (funder DOI 501100011730) under the grant TWCF-2022-30510. Jascha Achterberg
506 receives a Gates Cambridge Scholarship. Jascha Achterberg was an intern at Intel Labs at the time of
507 writing. The data were acquired at the UK *National Facility for In Vivo MR Imaging of Human Tissue*
508 *Microstructure* funded by the EPSRC (grant EP/M029778/1), and The Wolfson Foundation. This
509 research was funded in whole, or in part, by a Wellcome Trust Investigator Award (096646/Z/11/Z)
510 and a Wellcome Trust Strategic Award (104943/Z/14/Z). For the purpose of open access, the author
511 has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising
512 from this submission.

513

514 Methods

515

516 Participants

517 Our main cohort contains $n = 88$ total participants (mean age = 12.56 years, SD age = 2.94 years,
518 minimum age = 8.01 years, maximum age = 18.96 years). The sample contains $n = 46$ girls (mean age
519 = 13.23 years, SD age = 3.13 years, minimum age = 8.01 years, maximum age = 18.96 years) and $n =$
520 42 boys (mean age = 11.82 years, SD age = 2.57 years, minimum age = 8.03 years, maximum age =
521 16.77 years). There is a slight interaction between age and sex, whereby the girls in our cohort were
522 older ($p = 0.025$) (**Supplementary Fig. 4**).

523

524 MRI acquisition, processing and COMMIT

525 All $n = 88$ participants were scanned on a 3T Siemens Connectom system with ultra-strong
526 (300mT/m) gradients, using: multi-shell diffusion magnetic resonance imaging (dMRI) acquisition
527 ($TE/TR = 59/3000$ ms; resolution $2 \times 2 \times 2$ mm 3) with $b \in \{500, 1200, 2400, 4000, 6000\}$ s/mm 2 in
528 30,30,60,60,60 directions, respectively and additional 14 $b = 0$ s/mm 2 interleaved volumes; 3D
529 MPRAGE ($TE/TR = 2/2300$ ms; resolution $1 \times 1 \times 1$ mm 3). dMRI data were pre-processed as outlined
530 elsewhere⁷⁴.

531 To provide a more ‘biologically-informative’ assessment of brain connectivity, we used a
532 *Convex Optimization Modelling for Microstructure-Informed Tractography* (COMMIT) approach^{37,38}.
533 Briefly, COMMIT deconvolves specific microstructural features on each fiber to recover individual
534 streamline contributions to the measured signal. To achieve this, we performed multi-shell multi-
535 tissue constrained spherical deconvolution (MSMT-CSD) and generated a whole-brain probabilistic
536 tractogram seeding from the white matter to generate 3 million streamlines. We then applied
537 COMMIT with a stick-zeppelin-ball model⁷⁵ to simultaneously filter out implausible streamlines and
538 assign an intra-axonal signal fraction (IASF) to each one. Thus, for all subjects we set the following
539 diffusivities $d_{par} = d_{par_{sep}} = 1.7 \times 10^{-3}$ mm 2 /s, $d_{perp} = 0.6 \times 10^{-3}$ mm 2 /s, $d_{iso} \in \{1.7, 3.0\} \times 10^{-3}$ mm 2 /s⁷⁶.

540 Connectomes were subsequently built using the FreeSurfer Desikan-Killiany (DK)
541 parcellation as nodes (68 cortical) and by then assigning the total IASF associated to each bundle as
542 edge-weights³⁹.

543

544 Group consensus thresholding

545 As the modeling approach given is highly computationally expensive (taking ~300x more
546 computational time than the binary model alone), rather than fitting our models to each of the $n = 88$

A weighted generative model of the connectome

547 participants we performed our modelling procedure on a consensus network built from the $n = 88$
548 sample. Utilizing a consensus also reduced the impact of false positives, false negatives⁷⁷ and any
549 effect of inconsistencies in the reconstruction of subject-level connectomes⁷⁸. We generated the
550 group-level consensus networks from the sample level IASF-weighted connectomes, which had a
551 thresholded mean density of $\rho = 34.5\%$. We provided absolute thresholds of 0.1839 and 0.0467 to
552 these IASF-weighted networks to enforce a density of both $\rho = 10\%$ and $\rho = 20\%$ across the sample,
553 before running the consensus procedure. These densities were picked to best replicate the literature,
554 which has commonly used $\rho = 10\%$ or $\rho = 20\%$ networks^{12,20,22} but more importantly so that we can
555 establish any effects of the models on relative sparse versus dense networks.

556 To generate an accurate group-level representative consensus, we used *fcn_group_bins()* in
557 Matlab 2020b, which has been comprehensively detailed elsewhere constraining node-to-node
558 distances by the node-centroid Euclidean distances⁷⁹. This approach retains the topological
559 characteristics of individual subject networks and preserve within-/between-hemisphere connection
560 length distributions of the individual participants.

561 The result of this procedure were two binary graphs ($\rho = 10\%$ and $\rho = 20\%$), which acted as
562 the observed group topological consensus network. We then used the mean IASF weights across all
563 participants as the attributed weighted edges to complete the consensus weighed network. These
564 consensus networks contained 227 and 454 connections respectively across the 68-node DK
565 parcellation. See **Supplementary Fig. 5** for more detail of these consensus networks, including their
566 network statistics. All network statistics were computed using the Brain Connectivity Toolbox
567 (BCT)⁸⁰.

568 The weighted generative model algorithm

569 In this work, we construct simulated networks using a weighted generative network model, extending
570 prior work^{16,17,19,20}, to additionally encompass weights. We described the approach in earlier sections
571 (see *Results; The weighted generative network model*) but we additionally provide a step-by-step
572 algorithm here.

573 The algorithm begins from some initial starting condition. Here, we initialize the network as
574 empty (i.e., zero connections) within the 68 cortical node DK parcellation scheme.

575 Edge connections are added in a highly analogous way to previous work which employs the
576 canonical generative network model (see²⁰ for further detail). Connections are added one at a time
577 (i.e., connections *form*) over a series of steps until m total connections are placed. As stated in the
578 above section, the m was computed as a group consensus over different controlled densities, leading
579 to $m = 227$ and $m = 454$ ($\rho = 10\%$ and $\rho = 20\%$ respectively). This meant that the simulation achieved
580 the same number of connections as the empirical data.

581 At each step, we allow for the possibility that any pair of presently unconnected nodes, i and j , to
582 become connected. But this happens probabilistically, such that the relative probability score is given
583 by **Eqn. 1**. As described in **Eqn. 1**, this is governed by a trade-off between the wiring cost
584 (determined via Euclidean distances) and the homophily matching rule, which demarcates the
585 topological overlap in connectivity of two nodes (given in **Eqn. 2**). We provide some extended
586 reasoning for this part of the algorithm (see *Results; Generative component 1 – forming connections*).

587 At each point in which a connection is added (e.g., see **Fig. 2**) we take some property of the
588 network and change the weights of the network, incrementally, in a direction as to partially minimize
589 this property. This property (also termed objective function, $f(w_{i,j})$) is defined in **Eqn. 4** and is
590 computed as the combined total weighted communicability (**Eqn. 3**) multiplied by the Euclidean
591 distances present in the network. We provide our reasoning for this in terms of communicative
592 redundancy reduction (see *Results; Generative component 2 – changing weights*). The ω term
593 changes the specificity of the objective function to specific weights, such that the closer ω tends to
594 zero the more equally distributed the weight changes are across the network over its simulated
595 development. The greater ω becomes in the positive direction, the greater it emphasizes changes to
596 weights that contribute to highly communicable and physically distinct connections.

597 To change the weights at each time step, we compute the first order derivative of the objective
598 function, $f'(w_{i,j})$, which calculates an estimated gradient for each edge-weight must move to achieve
599 the objective. Some weights are strengthened and some are weakened in this process. We then update
600

601 the weights in this direction according to the update rule given in **Eqn. 5**, by some magnitude,
602 otherwise termed learning rate, α . The greater α is, the greater that weights change at each time point
603 after a new edge is added.

604

605 Model fitting

606 In binary generative modelling work, numerous model-fitting functions have been proposed that
607 assess network statistics²⁰ or their statistical correlations^{22,81}. To ensure we are fitting both the
608 topology and the weights of the network, we simultaneously assessed (i) the binary representation of
609 the produced network using a documented binary energy equation²⁰ and (ii) a weighted version of the
610 same energy equation, where weighted versions of the same graph measures are considered. These are
611 given respectively in the following equations:

612

$$Energy_{binary} = \max (KS_k, KS_c, KS_b, KS_d) \quad (6)$$

613

$$Energy_{weighted} = \max (KS_s, KS_{wc}, KS_{wb}) \quad (7)$$

614

615 KS is the Kolmogorov-Smirnov statistic, defined as maximum difference between the empirical and
616 simulated cumulative density function of the graph theory statistic. As a result, both the
617 $Energy_{binary}$ and $Energy_{weighted}$ can be thought of taking the worst of the measured comparisons.
618 If the model fit remains low, the fit must necessarily be the same or lower across all considered
619 statistics. The $Energy_{binary}$ equation considers the node degree, k , clustering coefficient, c ,
620 betweenness centrality b , and edge lengths, d . The $Energy_{weighted}$ equation considers the node
621 strength, s , weighted clustering coefficient, wc , betweenness centrality wb . The edge length is not
622 considered again because it was captured in the **Eqn. 6**. In all cases, we report the simultaneous model
623 fits for both $Energy_{binary}$ and $Energy_{weighted}$. To enable comparability of intra-axonal signal
624 fraction (IASF)-weighted connectomes, we normalized all connectomes using BCT's
625 `weight_conversion()` function⁸⁰.

626

627 Parameter selection

628 Our weighted generative algorithm contains four free parameters: η , γ , α and ω . The first two relate to
629 the formation of connections within a binary model: η (connection length) and γ (topological value),
630 and have been previously documented under a matching homophily rule to approximate networks
631 accurately in the range of moderately negative η scalar values and positive γ scalar values slightly
632 above zero^{19,20}. Following some trial tests, we established an approximate window of $-3.7 < \eta < -2.7$
633 and $0.35 < \gamma < 0.40$ for which we undertook more thorough parameter fitting. As the generative
634 algorithm detaches the connection formation η, γ parameters from α, ω weight update parameters, we
635 used these previously reported ranges of η and γ to significantly reduce our computational burden.
636 We subsequently conducted a parameter grid-search across α (the weight learning rate) and ω
637 (connection optimization specificity) to examine to what extent the weighted generative model could
638 approximate both the topology and weights within these parameter windows. Following basic
639 exploration, we conducted our search in the range of $0.02 < \alpha < 0.1$ and $0.85 < \omega < 1.05$. We fit our
640 models to consensus IASF brain networks, derived at a density of both $\rho = 10\%$ and $\rho = 20\%$ to
641 observe effects of numbers of connections on the network (see *Methods*; *COMMIT Signal fraction &*
642 *Methods*; *Group network consensus procedure*). A total of 3600 simulations were run on these
643 networks (total 7200) to fit the four parameters. All analyses were conducted with no seed network.

644

645 Data availability

646 Derived MRI outputs can be made available upon request. Generative model outputs will become
647 available on the Open Science Framework upon publication. A pointer to these will become available
648 at https://github.com/DanAkcarca/weighted_generative_models.

649 **Code availability**

650 The weighted generative model function is available for open use at:
651 https://github.com/DanAkarca/weighted_generative_models. All code to replicate the present study
652 will become available at the same repository, upon publication. The code we used run COMMIT is
653 available at <https://github.com/daducci/COMMIT>.

654

655 **Author disclosures**

656 Simona Schiavi worked at ASG Superconductors S.p.A on unrelated work during the production of
657 this study. Jascha Achterberg interned at Intel Labs on unrelated work during the production of this
658 study. All other authors declare no conflict of interest.

659

660 **References**

- 661 1. Bassett, D. S. & Gazzaniga, M. S. Understanding complexity in the human brain. *Trends in*
662 *Cognitive Sciences* **15**, 200–209 (2011).
- 663 2. Sporns, O., Chialvo, D. R., Kaiser, M. & Hilgetag, C. C. Organization, development and function
664 of complex brain networks. *Trends in Cognitive Sciences* **8**, 418–425 (2004).
- 665 3. Sporns, O. & Betzel, R. F. Modular Brain Networks. *Annu Rev Psychol* **67**, 613–640 (2016).
- 666 4. Bassett, D. S. & Bullmore, E. T. Small-World Brain Networks Revisited. *Neuroscientist* **23**, 499–
667 516 (2017).
- 668 5. Muldoon, S. F., Bridgeford, E. W. & Bassett, D. S. Small-World Propensity and Weighted Brain
669 Networks. *Sci Rep* **6**, 22057 (2016).
- 670 6. Honey, C. J., Kötter, R., Breakspear, M. & Sporns, O. Network structure of cerebral cortex
671 shapes functional connectivity on multiple time scales. *Proceedings of the National Academy of*
672 *Sciences* **104**, 10240–10245 (2007).
- 673 7. Vidaurre, D., Smith, S. M. & Woolrich, M. W. Brain network dynamics are hierarchically
674 organized in time. *Proceedings of the National Academy of Sciences* **114**, 12827–12832 (2017).
- 675 8. Betzel, R. F. & Bassett, D. S. Specificity and robustness of long-distance connections in
676 weighted, interareal connectomes. *Proceedings of the National Academy of Sciences* **115**, E4880–
677 E4889 (2018).
- 678 9. Bullmore, E. & Sporns, O. The economy of brain network organization. *Nat Rev Neurosci* **13**,
679 336–349 (2012).
- 680 10. Wang, I. E. & Clandinin, T. R. The Influence of Wiring Economy on Nervous System Evolution.
681 *Current Biology* **26**, R1101–R1108 (2016).
- 682 11. Cajal, S. R. y, Swanson, N. & Swanson, L. W. *Cajal's Histology of the Nervous System of Man*
683 *and Vertebrates*. (Oxford University Press, 1995).
- 684 12. Oldham, S. *et al.* Modeling spatial, developmental, physiological, and topological constraints on
685 human brain connectivity. *Science Advances* **8**, (2022).
- 686 13. Attwell, D. & Laughlin, S. B. An Energy Budget for Signaling in the Grey Matter of the Brain.
687 *Journal of Cerebral Blood Flow & Metabolism* **21**, 1133–1145 (2001).
- 688 14. Harris, J. J., Jolivet, R. & Attwell, D. Synaptic Energy Use and Supply. *Neuron* **75**, 762–777
689 (2012).
- 690 15. Laughlin, S. B., de Ruyter van Steveninck, R. R. & Anderson, J. C. The metabolic cost of neural
691 information. *Nat Neurosci* **1**, 36–41 (1998).
- 692 16. Kaiser, M. & Hilgetag, C. C. Modelling the development of cortical systems networks.
693 *Neurocomputing* **58–60**, 297–302 (2004).
- 694 17. Vértes, P. E. *et al.* Simple models of human brain functional networks. *Proc Natl Acad Sci U S A*
695 **109**, 5868–5873 (2012).
- 696 18. Betzel, R. F. & Bassett, D. S. Generative models for network neuroscience: prospects and
697 promise. *Journal of The Royal Society Interface* **14**, 20170623 (2017).
- 698 19. Akarca, D., Vértes, P. E., Bullmore, E. T. & Astle, D. E. A generative network model of
699 neurodevelopmental diversity in structural brain organization. *Nat Commun* **12**, 4216 (2021).
- 700 20. Betzel, R. F. *et al.* Generative models of the human connectome. *Neuroimage* **124**, 1054–1064
701 (2016).

702 21. Zhang, X. *et al.* Generative network models of altered structural brain connectivity in
703 schizophrenia. *Neuroimage* **225**, 117510 (2021).

704 22. Akarca, D. *et al.* Homophilic wiring principles underpin neuronal network topology in vitro.
705 *bioRxiv* (2022) doi:10.1101/2022.03.09.483605.

706 23. Carozza, S. *et al.* Early adversity changes the economic conditions of structural brain network
707 organisation. *bioRxiv* (2022) doi:10.1101/2022.06.08.495303.

708 24. Astle, D. E., Johnson, M. H. & Akarca, D. Toward computational neuroconstructivism: a
709 framework for developmental systems neuroscience. *Trends in Cognitive Sciences* **0**, (2023).

710 25. Sporns, O. Graph theory methods: applications in brain networks. *Dialogues Clin Neurosci* **20**,
711 111–121 (2018).

712 26. Rubinov, M. & Sporns, O. Weight-conserving characterization of complex functional brain
713 networks. *NeuroImage* **56**, 2068–2079 (2011).

714 27. Buzsáki, G. & Mizuseki, K. The log-dynamic brain: how skewed distributions affect network
715 operations. *Nat Rev Neurosci* **15**, 264–278 (2014).

716 28. Bethlehem, R. a. I. *et al.* Brain charts for the human lifespan. *Nature* **604**, 525–533 (2022).

717 29. Lebel, C. & Deoni, S. The development of brain white matter microstructure. *Neuroimage* **182**,
718 207–218 (2018).

719 30. Damicelli, F., Hilgetag, C. C. & Goulas, A. Brain Connectivity meets Reservoir Computing.
720 *bioRxiv* 2021.01.22.427750 (2021) doi:10.1101/2021.01.22.427750.

721 31. Suárez, L. E., Richards, B. A., Lajoie, G. & Misic, B. Learning function from structure in
722 neuromorphic networks. *Nat Mach Intell* **3**, 771–786 (2021).

723 32. Goulas, A., Damicelli, F. & Hilgetag, C. C. Bio-instantiated recurrent neural networks:
724 Integrating neurobiology-based network topology in artificial networks. *Neural Networks* **142**,
725 608–618 (2021).

726 33. Laura E Suarez *et al.* conn2res: A toolbox for connectome-based reservoir computing. *bioRxiv*
727 2023.05.31.543092 (2023) doi:10.1101/2023.05.31.543092.

728 34. Barlow, H. B. Possible Principles Underlying the Transformations of Sensory Messages. in
729 *Sensory Communication* (ed. Rosenblith, W. A.) 216–234 (The MIT Press, 1961).
730 doi:10.7551/mitpress/9780262518420.003.0013.

731 35. Seguin, C., Mansour L, S., Sporns, O., Zalesky, A. & Calamante, F. Network communication
732 models narrow the gap between the modular organization of structural and functional brain
733 networks. *NeuroImage* **257**, 119323 (2022).

734 36. Zhou, D. *et al.* Efficient coding in the economics of human brain connectomics. *Network
735 Neuroscience* 1–41 (2022) doi:10.1162/netn_a_00223.

736 37. A convex optimization framework for global tractography. *2013 IEEE 10th International
737 Symposium on Biomedical Imaging* (2013) doi:10.1109/ISBI.2013.6556527.

738 38. Daducci, A., Dal Palù, A., Lemkadem, A. & Thiran, J.-P. COMMIT: Convex Optimization
739 Modeling for Microstructure Informed Tractography. *IEEE Transactions on Medical Imaging* **34**,
740 246–257 (2015).

741 39. Schiavi, S. *et al.* A new method for accurate in vivo mapping of human brain connections using
742 microstructural and anatomical information. *Sci Adv* **6**, eaba8245 (2020).

743 40. Fields, R. D. A new mechanism of nervous system plasticity: activity-dependent myelination. *Nat
744 Rev Neurosci* **16**, 756–767 (2015).

745 41. Barlow, H. B. Redundancy reduction revisited. *Network* **12**, 241–253 (2001).

746 42. Crofts, J. J. & Higham, D. J. A weighted communicability measure applied to complex brain
747 networks. *J R Soc Interface* **6**, 411–414 (2009).

748 43. Estrada, E. & Hatano, N. Communicability in complex networks. *Phys. Rev. E* **77**, 036111
749 (2008).

750 44. Achterberg, J., Akarca, D., Strouse, D., Duncan, J. & Astle, D. E. Spatially-embedded recurrent
751 neural networks reveal widespread links between structural and functional neuroscience findings.
752 *bioRxiv* 2022.11.17.516914 (2022) doi:10.1101/2022.11.17.516914.

753 45. Valente, T. W., Coronges, K., Lakon, C. & Costenbader, E. How Correlated Are Network
754 Centrality Measures? *Connect (Tor)* **28**, 16–26 (2008).

755 46. Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N. & Petersen, S. E. Evidence for Hubs in
756 Human Functional Brain Networks. *Neuron* **79**, 798–813 (2013).

A weighted generative model of the connectome

757 47. Ballé, J., Laparra, V. & Simoncelli, E. P. *End-to-end Optimized Image Compression*.
758 <http://arxiv.org/abs/1611.01704> (2017).

759 48. Schmidhuber, J., Eldracher, M. & Foltin, B. Semilinear Predictability Minimization Produces
760 Well-Known Feature Detectors. *Neural Computation* **8**, 773–786 (1996).

761 49. Zbontar, J., Jing, L., Misra, I., LeCun, Y. & Deny, S. *Barlow Twins: Self-Supervised Learning via*
762 *Redundancy Reduction*. <http://arxiv.org/abs/2103.03230> (2021).

763 50. Sims, C. R. Efficient coding explains the universal law of generalization in human perception.
764 *Science* **360**, 652–656 (2018).

765 51. Avena-Koenigsberger, A., Misic, B. & Sporns, O. Communication dynamics in complex brain
766 networks. *Nat Rev Neurosci* **19**, 17–33 (2018).

767 52. Friston, K. Functional integration and inference in the brain. *Progress in Neurobiology* **68**, 113–
768 143 (2002).

769 53. Hennig, J. A. *et al.* Constraints on neural redundancy. *eLife* **7**, e36774.

770 54. Gershman, S. J., Horvitz, E. J. & Tenenbaum, J. B. Computational rationality: A converging
771 paradigm for intelligence in brains, minds, and machines. *Science* **349**, 273–278 (2015).

772 55. Lieder, F. & Griffiths, T. L. Resource-rational analysis: Understanding human cognition as the
773 optimal use of limited computational resources. *Behavioral and Brain Sciences* **43**, e1 (2020).

774 56. Lennie, P. The Cost of Cortical Computation. *Current Biology* **13**, 493–497 (2003).

775 57. Fair, D. A. *et al.* Development of distinct control networks through segregation and integration.
776 *PNAS* **104**, 13507–13512 (2007).

777 58. Vértes, P. E. Computational Models of Typical and Atypical Brain Network Development.
778 *Biological Psychiatry* **93**, 464–470 (2023).

779 59. Arnatkevičiūtė, A. *et al.* Genetic influences on hub connectivity of the human connectome. *Nat*
780 *Commun* **12**, 4237 (2021).

781 60. Oldham, S. & Fornito, A. The development of brain network hubs. *Developmental Cognitive*
782 *Neuroscience* **36**, 100607 (2019).

783 61. Beul, S. F., Grant, S. & Hilgetag, C. C. A predictive model of the cat cortical connectome based
784 on cytoarchitecture and distance. *Brain Structure & Function* (2015) doi:10.1007/S00429-014-
785 0849-Y.

786 62. Doerig, A. *et al.* The neuroconnectionist research programme. *Nature Reviews Neuroscience*
787 (2023) doi:10.1038/s41583-023-00705-w.

788 63. Liu, Y. *et al.* Parameter estimation for connectome generative models: Accuracy, reliability, and a
789 fast parameter fitting method. *NeuroImage* **270**, 119962 (2023).

790 64. Fan, L. *et al.* The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional
791 Architecture. *Cereb Cortex* **26**, 3508–3526 (2016).

792 65. Schaefer, A. *et al.* Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic
793 Functional Connectivity MRI. *Cereb Cortex* **28**, 3095–3114 (2018).

794 66. Faskowitz, J., Yan, X., Zuo, X.-N. & Sporns, O. Weighted Stochastic Block Models of the
795 Human Connectome across the Life Span. *Sci Rep* **8**, 12997 (2018).

796 67. Chomiak, T. & Hu, B. What Is the Optimal Value of the g-Ratio for Myelinated Fibers in the Rat
797 CNS? A Theoretical Approach. *PLoS One* **4**, e7754 (2009).

798 68. Arnatkevičiūtė, A., Fulcher, B. D. & Fornito, A. A practical guide to linking brain-wide gene
799 expression and neuroimaging data. *NeuroImage* **189**, 353–367 (2019).

800 69. Goulas, A. *et al.* Cytoarchitectonic similarity is a wiring principle of the human connectome.
801 *bioRxiv* (2016) doi:10.1101/068254.

802 70. Hansen, J. Y. *et al.* Mapping neurotransmitter systems to the structural and functional
803 organization of the human neocortex. *Nat Neurosci* **25**, 1569–1581 (2022).

804 71. Kaiser, M. Mechanisms of Connectome Development. *Trends in Cognitive Sciences* **21**, 703–717
805 (2017).

806 72. Sydnor, V. J. *et al.* Neurodevelopment of the association cortices: Patterns, mechanisms, and
807 implications for psychopathology. *Neuron* **109**, 2820–2846 (2021).

808 73. Tooley, U. A. *et al.* The age of reason: Functional brain network development during childhood.
809 *bioRxiv* 2022.07.07.499176 (2022) doi:10.1101/2022.07.07.499176.

810 74. Genc, S. *et al.* Impact of b-value on estimates of apparent fibre density. *Human Brain Mapping*
811 **41**, 2583–2595 (2020).

A weighted generative model of the connectome

812 75. Panagiotaki, E. *et al.* Compartment models of the diffusion MR signal in brain white matter: a
813 taxonomy and comparison. *Neuroimage* **59**, 2241–2254 (2012).

814 76. Schiavi, S. *et al.* Sensory-motor network topology in multiple sclerosis: Structural connectivity
815 analysis accounting for intrinsic density discrepancy. *Human Brain Mapping* **41**, 2951–2963
816 (2020).

817 77. Zalesky, A. *et al.* Connectome sensitivity or specificity: which is more important? *Neuroimage*
818 **142**, 407–420 (2016).

819 78. Jones, D. K., Knösche, T. R. & Turner, R. White matter integrity, fiber count, and other fallacies:
820 The do's and don'ts of diffusion MRI. *NeuroImage* **73**, 239–254 (2013).

821 79. Betzel, R. F., Griffa, A., Hagmann, P. & Mišić, B. Distance-dependent consensus thresholds for
822 generating group-representative structural brain networks. *Netw Neurosci* **3**, 475–496 (2019).

823 80. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and
824 interpretations. *Neuroimage* **52**, 1059–1069 (2010).

825 81. Nicosia, V., Vértes, P. E., Schafer, W. R., Latora, V. & Bullmore, E. T. Phase transition in the
826 economically modeled growth of a cellular nervous system. *Proceedings of the National
827 Academy of Sciences* **110**, 7880–7885 (2013).

828