

1 **Mitochondrial fusion and altered beta-oxidation drive muscle wasting in a *Drosophila***
2 **cachexia model**

3
4

5 **Callum Dark^{1,2}, Nashia Ali¹, Sofia Golenkina¹, Ronnie Blazev³, Benjamin L Parker³,**
6 **Katherine Murphy³, Gordon Lynch³, Tarosi Senapati⁴, S Sean Millard⁴, Sarah M Judge⁵,**
7 **Andrew R Judge⁵, Louise Y Cheng^{1,2,3}**

8

9 1. Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia

10 2. Sir Peter MacCallum Department of Oncology, The University of Melbourne, VIC 3010,
11 Australia

12 3. Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia

13 4. School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, QLD
14 4072, Australia

15 5. Department of Physical Therapy, College of Public Health and Health Professions,
16 University of Florida, FL 32603, USA

17

18 Email: louise.cheng@petermac.org

19

20 **Keywords: *Drosophila*, cachexia, muscle, lipid metabolism**

21

22 **Abstract**

23 Cancer cachexia is a tumour-induced wasting syndrome, characterised by extreme loss
24 of skeletal muscle. Defective mitochondria can contribute to muscle wasting; however, the
25 underlying mechanisms remain unclear. Using a *Drosophila* larval model of cancer cachexia,
26 we observed enlarged and dysfunctional muscle mitochondria. Morphological changes were
27 accompanied by upregulation of beta-oxidation proteins and depletion of muscle glycogen and
28 lipid stores. Muscle lipid stores were also decreased in Colon-26 adenocarcinoma mouse
29 muscle samples, and expression of the beta-oxidation gene *CPT1A* was negatively associated
30 with muscle quality in cachectic patients. Mechanistically, mitochondrial defects result from
31 reduced muscle insulin signalling, downstream of tumour-secreted insulin growth factor
32 binding protein (IGFBP) homolog ImpL2. Strikingly, muscle-specific inhibition of Forkhead
33 box O (FOXO), mitochondrial fusion, or beta-oxidation in tumour-bearing animals preserved
34 muscle integrity. Finally, dietary supplementation with nicotinamide or lipids, improved
35 muscle health in tumour-bearing animals. Overall, our work demonstrates that muscle FOXO,
36 mitochondria dynamics/beta-oxidation and lipid utilisation are key regulators of muscle
37 wasting in cancer cachexia.

38

39 **Introduction**

40 Cancer cachexia is a metabolic wasting syndrome characterised by the involuntary loss
41 of muscle and adipose tissue, caused by tumour-secreted factors, and is the cause of up to 20%
42 of cancer-related deaths¹. The most prominent clinical feature of cachexia is the continuous
43 loss of skeletal muscle, which cannot be fully reversed by conventional nutritional support.

44 *Drosophila melanogaster* is emerging as an excellent model to identify tumour-secreted
45 factors that drive cancer cachexia. Adult and larval tumour models that induce cachectic
46 phenotypes have been established in *Drosophila*, and these models have revealed several
47 mechanisms by which tumours induce these phenotypes²⁻¹¹. In mouse and *Drosophila* models
48 of cachexia, it has been shown that tumours can induce a number of metabolic alterations in
49 the muscle^{12,13}, such as increased autophagy⁴, proteolysis⁵, decreased protein synthesis^{4,5},
50 defective mitochondrial function^{2,8}, reduced ATP production^{2,8} and depleted Extra Cellular
51 Matrix (ECM)⁴. While all these changes are symptomatic of cachexia, it is not clear whether
52 they directly drive cachexia; furthermore, it is unclear how these defects are linked to tumour-
53 secreted factors.

54 In this study, utilising our previously characterised eye imaginal disc tumour models⁴,
55 we identified two muscle-specific mechanisms that contribute to muscle wasting: 1) altered

56 activity of the transcription factor Forkhead box O (FOXO), a negative regulator of insulin
57 signalling and 2) increased beta-oxidation resulting from mitochondria fusion. Both
58 mechanisms are mediated by a reduction of systemic insulin signalling induced by tumour-
59 secreted insulin-like-peptide antagonist ImpL2 (Imaginal morphogenesis protein-Late 2).
60 Downstream of FOXO, mitochondrial fusion (mediated by Mitochondrial assembly regulatory
61 factor (Marf)) and increased beta-oxidation (mediated by Withered (Whd)) were responsible
62 for increased utilisation of muscle lipids. Strikingly, inhibiting FOXO, Marf or Whd
63 specifically in the muscle was sufficient to over-ride the effects of tumour-secreted factors and
64 improve muscle morphology when tumours were present. In addition, feeding cachectic
65 animals a diet supplemented with nicotinamide (Vitamin B3), or a high-fat coconut oil diet,
66 which replenished lipids in the muscle, were sufficient to improve muscle integrity. Finally,
67 we show that these processes are important in other cachexia models. We observed a similar
68 depletion of lipid reserves in a C-26 mouse cachexia model; furthermore, beta-oxidation gene
69 Carnitine Palmitoyltransferase 1A (*CPT1A*, the mammalian homolog of Whd) is negatively
70 correlated with muscle quality in cachectic patients with pancreatic ductal adenocarcinoma.
71 Together, our study shows that mitochondrial fusion, beta-oxidation and lipid utilisation are
72 likely early hallmarks of muscle disruption during cancer cachexia.

73

74 **Results**

75 **Inhibition of mitochondrial fusion prevents muscle detachment in tumour-bearing 76 animals**

77 Studies examining the muscles of cachectic patients have demonstrated increased
78 mitochondrial energy expenditure¹⁴ and size^{14,15}, however, how changes in mitochondrial
79 morphology underly cachexia is so far not clear. In this study, we utilise two *Drosophila* larval
80 tumour models to study muscle biology. In the first model, the tumour is induced via the GAL4-
81 UAS mediated overexpression of *Ras^{V12}* and Disc Large (Dlg) RNAi in the eye (Figure 1 A).
82 In the second model, the tumour is induced via the QF2-QUAS mediated overexpression of
83 *Ras^{V12}* and *scrib* RNAi (Figure 1 A), allowing us to knockdown or overexpress genes of interest
84 in the muscles of tumour-bearing animals using drivers such as *MHC-GAL4* or *mef2-GAL4*
85 (Figure 1 A). Using these models, we have previously shown that tumours caused a loss of
86 muscle integrity⁴.

87 Using Electron Microscopy (EM), we observed fewer and larger mitochondria in the
88 sub-sarcolemma of muscles of *Ras^{V12}dlg^{RNAi}* tumour bearing animals at 7 days after egg lay
89 (AEL, Figure 1 C-D). A disruption of muscle mitochondria morphology in the sub-sarcolemma

90 plane of the muscle (as depicted in a cartoon of a muscle section, Figure 1 B) was further
91 confirmed by antibody staining against mitochondria protein ATP5A, where a significant
92 increase in size was first detected at 7 days AEL (*Ras^{V12} dlg^{RNAi}*, Figure 1 E-G. For details on
93 mitochondria size quantification see Figure S1). To test whether this increase in mitochondrial
94 size could lead to compromised mitochondrial function, we performed live staining with
95 tetramethylrhodamine ethyl ester (TMRE), a compound used to measure the membrane
96 potential of mitochondria¹⁶. We detected a significant reduction in TMRE fluorescence in the
97 muscles of tumour-bearing animals (*QRas^{V12} scrib^{RNAi}*), indicative of reduced membrane
98 potential, and compromised mitochondrial function (Figure 1 H-J). Enlarged mitochondria has
99 been shown to be attributed to mitochondrial fusion, a process evoked to buffer against
100 mitochondrial damage caused by increased reactive oxygen species^{17,18}. We found that there
101 was a significant increase in ROS levels (as indicated by dihydroethidium (DHE) staining) in
102 the muscles of tumour-bearing animals (*QRas^{V12} scrib^{RNAi}*, Figure S2 A-C). To determine if
103 reducing ROS could preserve muscle morphology, we overexpressed ROS scavengers Catalase
104 (Cat) and superoxide dismutase (Sod1), or antioxidative enzyme glutathione peroxidase 1
105 (GPx1, previously validated in¹⁹⁻²¹), specifically in the muscles of tumour-bearing animals
106 (*QRas^{V12} scrib^{RNAi}*). However, these manipulations did not rescue muscle integrity (Figure S2
107 D-H, J), suggesting that ROS was a consequence but not the cause of muscle wasting.

108 Next, we asked if preventing mitochondrial fusion through muscle-specific knockdown
109 of Marf, a protein important for outer mitochondrial membrane fusion²², could improve muscle
110 integrity in tumour-bearing animals (*QRas^{V12} scrib^{RNAi}*). Indeed, Marf knockdown, which
111 effectively reduced mitochondria size (Figure 1 K-M), also significantly improved muscle
112 integrity (Figure 1 N-Q). This manipulation was also able to significantly improve
113 mitochondrial function as assessed by TMRE assay (Figure 1 R). In addition, knockdown of
114 Optic atrophy 1 (Opa1), a protein involved with inner mitochondrial membrane fusion, was
115 also able to improve muscle integrity in tumour-bearing animals (*QRas^{V12} scrib^{RNAi}*, Figure 1
116 S-U)²³. However, overexpression of mitochondrial fission protein Dynamin related protein 1
117 (Drp1)²³, did not help preserve muscle integrity (*QRas^{V12} scrib^{RNAi}*, Figure S2 G, I, J). Together,
118 these experiments suggest that preventing mitochondrial fusion (rather than increasing fission)
119 helps to improve muscle function.

120

121 **Reduced insulin signalling mediates changes in mitochondrial size**

122 Mitochondria are known to change in size in response to environmental stressors,
123 especially starvation^{24,25}. Upon subjecting wildtype larvae to 24 hrs of nutrient restriction,

124 which is known to reduce systemic insulin signalling²⁶, we observed an increase in
125 mitochondrial size (Figure 2 A-C), that is reminiscent of what we saw in the muscles of tumour-
126 bearing animals. We previously reported that *Ras^{V12}dlg^{RNAi}* eye imaginal disc tumours express
127 elevated levels of ImpL2, and its knockdown ameliorated muscle disruption without affecting
128 tumour size⁴. Here, we found that tumour-specific inhibition of ImpL2 significantly reduced
129 muscle mitochondrial size (*Ras^{V12}dlg^{RNAi}*, Figure 2 D-F). Together, these data suggest that
130 mitochondrial fusion may be caused by reduced systemic insulin signalling.

131 FOXO transcription factors have been implicated in muscle atrophy in wildtype
132 animals via ubiquitin-proteasome mediated mechanisms²⁷ and have been shown to be activated
133 in response to decreased insulin/IGF signalling. In cachectic muscles (*Ras^{V12}dlg^{RNAi}*), we found
134 a significant increase in nuclear FOXO signal, which first occurred at 5 days AEL (Figure 2
135 G-I). This preceded muscle disruption at 7 days AEL⁴, suggesting that FOXO may be a key
136 upstream mediator of muscle wasting. Furthermore, tumour-specific ImpL2 inhibition was able
137 to significantly reduce muscle FOXO levels at 5 days AEL (*Ras^{V12}dlg^{RNAi}*, Figure 2 J).

138 As the overexpression of FOXO has been linked with increased expression of
139 mitochondrial fusion proteins in mice²⁸⁻³⁰, we next assessed whether increased mitochondrial
140 size in cachectic muscles was regulated by FOXO. Muscle-specific FOXO knockdown was
141 able to reduce mitochondrial size in tumour-bearing animals (*QRas^{V12}scrib^{RNAi}*, Figure 2 K-M),
142 as well as significantly improve muscle integrity (Figure 2 N-Q). Conversely, overexpression
143 of dFOXO in the muscles of tumour bearing animals (*QRas^{V12}scrib^{RNAi}*), caused precocious
144 muscle detachment at 6 days AEL (Figure 2 R-U). Together, these results indicate that FOXO
145 plays an important role in regulating mitochondrial morphology as well as muscle integrity
146 downstream of tumour-induced signals.

147

148 **Disrupted autophagy and translation in cachectic muscles is not necessary for muscle 149 detachment**

150 Mitochondria disruption has been reported to be accompanied by increased autophagy³¹
151 and reduced protein translation³². Using a transgenic line that expresses a tandem autophagy
152 reporter (UAS pGFP-mCherry-Atg8a)³³ under the control of a muscle specific driver (*MHC-*
153 *GAL4*), we found the ratio of mCherry vs. EGFP was significantly elevated in tumour-bearing
154 animals (*QRas^{V12}scrib^{RNAi}*) at 6 days AEL (Figure S3 A-C). This indicates there is an increased
155 lysosomal degradation and autophagy in the muscles of tumour-bearing animals³⁴ prior to the
156 increase in mitochondrial size at day 7. Next, we examined the expression of the sarcomere
157 structural protein Myosin Heavy Chain (MHC), a previously reported proxy for protein

158 synthesis³⁵. We found MHC levels were significantly downregulated at 6 days AEL in tumour
159 bearing animals (*Ras^{VI2}dlg^{RNAi}*, Figure S3 D-F). Next, we inhibited tumour-secreted ImpL2
160 (*Ras^{VI2}dlg^{RNAi}*), and we found that translation levels were significantly restored by 5 days AEL
161 (Figure S3 J-L), and autophagy levels were restored by 7 days AEL (Figure S3 G-I), confirming
162 that muscle perturbations are driven by tumour-secreted ImpL2.

163 As disruptions to autophagy and protein synthesis preceded muscle detachment (at 7
164 days AEL⁴), we functionally assessed whether inhibiting autophagy or enhancing translation
165 could rescue muscle integrity (*QRas^{VI2}scrib^{RNAi}*). However, neither the expression of a
166 constitutively activated S6 kinase (S6K^{CA}), which has previously been shown to sufficiently
167 increase protein translation in the muscle³⁵, nor the inhibition of autophagy via the expression
168 of a RNAi against the protein kinase Atg1 which has previously been shown to reduce
169 autophagy³⁶, was able to prevent tumour-induced muscle detachment (Figure S3 M-R). Due
170 to the role of autophagy as a stress compensation mechanism³⁷, we also tried increasing
171 autophagy specifically in the muscles through the overexpression of Atg1. However, this led
172 to lethality of the larvae at the 1st instar (data not shown). Together this data suggests that
173 defects in autophagy and protein synthesis are not the primary cause of muscle wasting.

174

175 **Mitochondrial fusion promotes lipid utilisation in cachectic muscles**

176 To further investigate the role of insulin-mediated mitochondrial fusion on muscle
177 wasting, we next examined how these changes affected lipid and glycogen metabolism in the
178 muscle. Cachexia has been associated with the rewiring of lipid metabolism³⁸, and we have
179 previously shown that there is a significant reduction in total lipid stores of cachectic animals⁴.
180 Consistent with a reduction in overall lipid stores, we observed a significant reduction in the
181 number of lipid droplets (LDs, Figure 3 A-C and Figure S4 A-B, visualised by LipidTOXTM),
182 in the muscles of tumour bearing animals (*Ras^{VI2}dlg^{RNAi}*). The depletion of lipids is
183 phenocopied by nutrient restriction in wildtype animals (Figure 3 D-F). Furthermore, inhibition
184 of ImpL2 in the tumour was sufficient to significantly increase muscle LD levels by 6 days
185 AEL (*Ras^{VI2}dlg^{RNAi}*, Figure 3 G-I). Together, our data suggests that the depletion of muscle
186 lipid stores lies downstream of insulin signalling.

187 The lack of LDs in the muscle could be accounted for by an increase in lipolysis,
188 whereby fat storage is broken down and released as free fatty acids. However, we found that
189 by promoting LD formation through the overexpression of lipid storage droplet-2 (Lsd-2,
190 Figure S4 C-E) did not prevent the loss of muscle integrity in tumour-bearing animals
191 (*QRas^{VI2}scrib^{RNAi}*, Figure S4 F-H).

192 Next, we tested if inhibiting mitochondria fusion via Marf RNAi could restore lipid
193 stores. We found that Marf knockdown in the muscles of tumour-bearing animals restored LD
194 numbers (*QRas^{V12}scrib^{RNAi}*, Figure 3 J-L). It is known that utilisation of glycogen, which is a
195 readily available source of energy, often occurs before fat breakdown³⁹. Consistent with this,
196 we found that glycogen stores in the muscles were depleted earlier than lipid stores at 5 days
197 AEL (*Ras^{V12}dlg^{RNAi}*, Figure 3 M-O). However, muscle-specific knockdown of Marf was not
198 able to preserve the loss of muscle glycogen stores (*QRas^{V12}scrib^{RNAi}*, Figure 3 P-R), suggesting
199 that mitochondrial fusion had greater effects on lipid rather than glycogen stores in the muscles
200 of cachectic animals.

201

202 **Inhibition of beta-oxidation improves muscle integrity**

203 To better understand the metabolic changes that occur in the muscles of tumour-bearing
204 animals, we conducted proteomics to assess for protein expression levels in wildtype and
205 tumour-bearing (*Ras^{V12}dlg^{RNAi}*) muscles. Consistent with our immunostaining results (Figure
206 S3 D-F), where we observed a significant downregulation of MHC levels, we detected a global
207 downregulation of translational proteins (Figure 4 A). Furthermore, we found that proteins
208 involved in the GO term “metabolism of lipids” were significantly upregulated (Figure 4 A-
209 B). Interestingly, CPT1A/Whd, an important regulator of the beta-oxidation pathway⁴⁰, was
210 found to be upregulated both at the transcriptional (*QRas^{V12}scrib^{RNAi}*, Figure 4 C) and protein
211 levels (*Ras^{V12}dlg^{RNAi}*, Figure 4 D) in the muscles of tumour-bearing animals. Beta-oxidation is
212 the metabolic process by which fatty acids are broken down into acetyl-CoA molecules, which
213 can then be used to produce energy (Figure 4 E). As beta-oxidation proceeds, the fatty acids
214 stored in the LDs become depleted, leading to a reduction in the size and abundance of LDs in
215 the cell. To test if preventing beta-oxidation could affect muscle integrity, we next knocked
216 down Whd specifically in the cachectic muscles (*QRas^{V12}scrib^{RNAi}*). We found that Whd
217 inhibition was sufficient to significantly increase LD numbers (Figure 4 F) and improve muscle
218 integrity (Figure 4 G-I) by 7 days AEL, suggesting that beta-oxidation is a key regulator of
219 muscle integrity in cachectic muscles. Interestingly, while Whd knockdown was able to restore
220 mitochondrial function (as assessed via TMRE, Figure 4 J), it was however not able to restore
221 mitochondrial size (Figure 4 K-M). To assess if *whd* is regulated by insulin signalling, we
222 knocked down FOXO via RNAi, and found that this was able to inhibit the transcription of
223 *whd* (*QRas^{V12}scrib^{RNAi}*, Figure 4 C). Together, this data suggests that FOXO lies upstream of
224 beta-oxidation, and mitochondria function lies downstream of beta-oxidation.

225 To assess if there is an association between lipid metabolism and cachexia in patient
226 samples, we examined the relationship between muscle *CPT1A* mRNA levels and muscle
227 radiation attenuation (an indicator of muscle quality), using a microarray data set from patients
228 with pancreatic ductal adenocarcinoma (PDAC)⁴¹. We found a significant negative correlation
229 of these two parameters (Figure 4 N), suggesting that increased *CPT1A* is correlated with poor
230 muscle health in cachectic PDAC patients.

231 Finally, we also examined whether lipid metabolism plays a role in the Colon-26 (C-
232 26) xenograft model in the mouse. Cross-sections through muscle samples of control vs. C-26
233 mice demonstrated a significant depletion of lipid stores, as indicated by a significant decrease
234 in extramyocellular LD number and size (Figure 4 O-R, shaded in red). Interestingly, when we
235 examined intramyocellular LD levels, we observed an increase in density and size of LDs in
236 cachectic muscles compared to control (Figure 4 O-P', S, T, shaded in yellow), which is
237 consistent with reports of intramyocellular LD accumulation reported in human cachectic
238 muscles^{42,43}. Overall, this data suggests that the depletion of muscle lipid stores via beta-
239 oxidation affects mitochondrial function and is negatively correlated with muscle health in
240 cachectic flies, mice and patients.

241

242 **Modulation via dietary supplementation of nicotinamide or a high-fat diet improves 243 muscle integrity**

244 To determine whether we could prevent mitochondrial damage and muscle disruption
245 in tumour-bearing animals through dietary modulation, we fed cachectic animals with diets
246 supplemented with nicotinamide or coconut oil. Nicotinamide is a precursor of Vitamin B3
247 and is known to improve mitochondria health⁴⁴. Tumour-bearing animals (*QRas^{V12}scrib^{RNAi}*)
248 fed a diet containing 1 g/kg of nicotinamide exhibited reduced muscle mitochondrial size
249 (Figure 5 A-C), FOXO levels (Figure 5 D), and improved muscle integrity (Figure 5 E-G).
250 Coconut oil has previously been shown to enhance overall lipid levels in *Drosophila* larvae⁴⁵.
251 We found this high-fat diet significantly improved LD levels in the muscles of tumour-bearing
252 animals (*Ras^{V12}dlg^{RNAi}*, Figure 5 H-J). Most excitingly, this dietary supplementation
253 significantly improved muscle integrity (Figure 5 K-M), as well as mitochondrial function
254 (Figure 5 N). Together, this data demonstrates that dietary supplementation of lipids or
255 nicotinamide can potentially improve outcomes in cachexia through modulation of FOXO,
256 lipid metabolism or mitochondrial dynamics.

257

258 **Discussion**

259 Utilising a *Drosophila* model of cachexia, we have demonstrated that muscle wasting
260 in cachexia is mediated by two main mechanisms: insulin signalling via FOXO and beta-
261 oxidation via mitochondrial fusion (Figure 5 O). First, tumour-secreted ImpL2 systemically
262 decreases insulin signalling, which results in an increase in FOXO nuclear-localisation in the
263 muscle. This is accompanied by an increase in mitochondrial size and a depletion of the muscle
264 lipid stores. Knockdown of tumour-secreted ImpL2, or muscle-specific FOXO inhibition,
265 resulted in reduced mitochondrial size and improved muscle integrity. Furthermore, inhibition
266 of mitochondrial fusion via Marf, or beta-oxidation via Whd, were also able to improve
267 mitochondrial function and integrity, as well as increase muscle lipid stores. Finally,
268 supplementing dietary lipids through a high-fat diet was sufficient to significantly enhance
269 muscle integrity.

270 Changes in mitochondrial morphology have been reported in the muscles of cachectic
271 patients, however, so far, the underlying mechanisms are not clear. In our study, we have shown
272 that mitochondrial morphology and lipid oxidation are closely linked. It is likely that an
273 increased reliance on beta-oxidation of fatty acids in cachectic muscle causes it to exceed
274 mitochondrial capacity. This in turn results in mitochondrial damage and dysfunction, and
275 contributes to cancer-induced muscle wasting. Interestingly, in the muscles of mice and
276 humans, it has been reported that fatty-acid beta-oxidation and mitochondrial dynamics can
277 influence each other⁴⁶⁻⁴⁸, therefore, it would be interesting to explore the direct link between
278 these two parameters in the future.

279 It has been reported that cachectic patients exhibit decreased dietary lipids and
280 increased fatty acid release from the adipose tissue⁴⁹. It is therefore likely that the depletion of
281 available energy substrates (glycogen and fatty acids) contributes to the mitochondrial
282 dysfunction and loss of muscle integrity. In this study, we have shown that coconut oil
283 supplementation increases mitochondrial function and improves muscle integrity. While the
284 underlying mechanism is so far unclear, we think this dietary supplementation most likely acts
285 to increase lipid stores in general, therefore delaying mitochondrial damage caused by
286 excessive beta-oxidation. However, it is also possible that a high-fat diet could first lead to
287 reduced mitochondrial size^{47,48}, which in turn can cause decreased beta-oxidation⁴⁶, therefore,
288 leading to a slower utilisation of lipids.

289 We reported a decrease in LD number in the muscles of both cachectic flies and mice.
290 In contrast with this, studies in cachectic patient muscle samples have previously reported an
291 accumulation of intramyocellular lipids^{42,43}. When we examined LD levels in the flies, we did
292 not measure intramyocellular lipid levels, as our images were taken longitudinally. Upon

293 examination of LD levels in the muscles of the C-26 mouse model (via transverse section), we
294 saw a decrease in extramyocellular LD levels, and an increase in intramyocellular LDs. It is
295 therefore possible that the depletion of LDs we observed is in fact a mobilisation of
296 extramyocellular/subsarcolemmal LDs to intramyocellular LDs, for their use in mitochondrial
297 beta-oxidation. This would be consistent with reports that in starved mouse embryonic
298 fibroblasts, fatty acids stored in LDs undergo transfer to mitochondria for beta-oxidation⁵⁰. In
299 the future, it would be interesting to explore whether the increase in intramyocellular LDs in
300 human cachexia muscle samples also correlates with a decrease in extramyocellular LDs, and
301 if this is associated with changes in fatty acid beta-oxidation.

302 Together, our study demonstrates that targeting FOXO, mitochondrial fusion/beta-
303 oxidation and replenishing lipid stores in cachectic animals can prevent muscle wasting in
304 cachexia. Therefore, this work opens up new avenues for finding therapeutic targets to prevent
305 or attenuate the progression of cancer cachexia in patients.

306

307 **Acknowledgements**

308 We are grateful to Kieran Harvey, Donna Denton, Helena Richardson, Alex Gould, and
309 Tatsushi Igaki for generous sharing of fly stocks and antibodies. We would like to thank
310 Bloomington Drosophila Stock Center, Vienna Drosophila Resource Center and
311 Developmental Studies Hybridoma Bank for fly stocks and antibodies. We would like to also
312 thank OZDros for *Drosophila* quarantine, Peter MacCallum Cancer Institute Microscopy Core
313 for technical assistance. We are grateful to Kellie Veen and Khanh Nguyen for assistance with
314 illustrations, Yuchen Bai for technical assistance with mouse immunostaining experiments,
315 Michelle Meier for assistance with mitochondrial quantifications and Daniel Bakopolous for
316 intellectual input in this project. We would also like to thank Edel Alvarez and Khanh Nguyen
317 for critical reading of the manuscript. This work is funded by the NHMRC Ideas Grant
318 APP1182847 and the Peter MacCallum Cancer Foundation.

319

320 **Author contribution**

321 C.D, N.A, S.G, R.B, B.P, K.M, G.L, T.S, S.S.M, S.M.J, A.R.J and L.Y.C conducted the
322 experiments; C.D and L.Y.C wrote the manuscript.

323

324 **Declaration of Interests**

325 The authors declare no competing interests.

326

327 **Methods**

328 ***Drosophila* stocks and husbandry**

329 The following stocks were used from the Bloomington *Drosophila* stock centre:

330 *Mef2-GAL4* (BL27391),

331 *MHC-GAL4* (BL55133),

332 *UAS-Cat.A* (BL24621)

333 *UAS-Drp1* (BL51647),

334 *UAS-foxo^{RNAi}* (BL27656),

335 *UAS-foxo^{RNAi}* (BL32427), (of the two RNAi's, *foxo^{RNAi}* (27656) showed the stronger effect and
336 was used for all other experiments

337 *UAS-luciferase* (BL64774),

338 *UAS-marf^{RNAi}* (BL31157),

339 *UAS-marf^{RNAi}* (BL67158) (of the two RNAi's, *marf^{RNAi}* (67158) showed the stronger effect and
340 was used for all the experiments)

341 *UAS-mCherry^{RNAi}* (BL35785),

342 *UAS-Opa1^{RNAi}* (BL32358),

343 *UAS-pGFP-mCherryAtg8a* (BL37749),

344 *UAS-S6K^{CA}* (BL6914),

345 *UAS-Sod1* (BL24750),

346 *UAS-whd^{RNAi}* (BL33635),

347 *ey-FLP1;act>CD2>GAL4,UAS-GFP⁴*.

348

349 The following stocks were obtained from the Vienna *Drosophila* Resource Centre:

350 *UAS-Impl2^{RNAi}* (v30931).

351

352 The following stocks were also used:

353 *w¹¹¹⁸*,

354 *ey-FLP1;UAS-dlg RNAi,UAS-RasV12 /CyO, Gal80;act>CD2>GAL4,UAS-GFP*,

355 *Ey-FLP1; QUAS-Ras^{V12}, QUAS-scrib^{RNAi}/ CyOQS; MHC^{Gal4}, act>CD2>QF, UAS-
356 RFP/TMBQS⁴*,

357 *Ey-FLP1; QUAS-Ras^{V12}, QUAS-scrib^{RNAi}/ CyOQS; mef2^{Gal4}, act>CD2>QF, UAS-
358 RFP/TMBQS⁴*,

359 *UAS-Atg1^{RNAi}* (Donna Denton),

360 *UAS-Atg1 6A* (Donna Denton),

361 *UAS-dFO XO* (Kieran Harvey),
362 *UAS-GFP* (Kieran Harvey),
363 *UAS-GPx1* (Tatsushi Igaki),
364 *UAS-lacZ^{RNAi}* (Kieran Harvey),
365 *UAS-lsd2* (Alex Gould),
366 *UAS-Ras^{V12}* (Helena Richardson),
367 *mCherryAtg8a/CyOGFP*,
368 *mCherryAtg8a/CyOGFP;mCherry^{RNAi}/TM6cSb*,
369 *mCherryAtg8a/CyOGFP;ImpL2^{RNAi}/TM6cSb*.
370

371 Fly stocks were reared on standard *Drosophila* media, adults were allowed to lay for
372 24 hr at 25 °C and the progeny was then moved to 29 °C. Experiments were conducted on
373 animals lacking tumours at wandering stage, and on tumour-bearing animals on a specific
374 number of days after egg lay as indicated throughout the methods.

375

376 **Dietary supplementation and nutrient restriction**

377 Fly food supplemented with nicotinamide at a concentration of 1 g of nicotinamide per
378 1 kg of normal food was created as follows. 100 g of regular food was melted in a beaker using
379 a microwave until there were no solid lumps. 100 mg of nicotinamide⁴⁴ (Sigma-Aldrich,
380 #N0636-100G) was dissolved in 1 ml of sterile water at room temperature, added to the melted
381 fly food, and mixed thoroughly. The combined mixture was divided into ten fly vials with
382 approximately 10 ml of food per vial. 100 g of regular food without nicotinamide was also
383 melted and poured into ten vials to be used as control food. Both nicotinamide and regular food
384 was left to cool at 4 °C overnight. To control for density in feeding, crosses were laid on regular
385 food. On day 1 AEL, before the embryos hatched, 20-30 embryos were taken and placed on a
386 piece of cardboard and placed into the control or nicotinamide food. The larvae that hatch on
387 the food were then fed on the specified diets until dissection.

388 High-fat diet fly food was created as follows. 70 g of regular food was melted in a
389 beaker using a microwave until there were no solid lumps. 30 g of coconut oil⁴⁵ (Community
390 Co Virgin Coconut Oil 450 ml) was melted in a separate beaker using a microwave until there
391 were no solid lumps. The melted coconut oil was then poured into the beaker with the 70 g
392 regular food and mixed thoroughly. The mixture was then left to cool slightly for 5-10 mins,
393 then was mixed thoroughly again to prevent the food from separating from the coconut oil.

394 This was repeated if the mixture appeared to separate again. The combined mixture was divided
395 into ten fly vials with approximately 10 ml of food per vial. 100 g of regular food without
396 coconut oil was also melted and poured into ten vials to be used as control food. Both high-fat
397 food and regular food was left to cool at 4 °C overnight. A small piece of tissue paper
398 (approximately 1 x 3 cm) was placed into the food of control and high-fat vials to soak up
399 excess coconut oil. To control for density in feeding, crosses were laid on regular food. On day
400 1 AEL, before the embryos hatched, 20-30 embryos were taken and placed on a piece of
401 cardboard and placed into the control or high-fat food. The larvae that hatch on the food were
402 then fed on the specified diets until dissection.

403 For starvation/nutrient restriction, the larvae were fed on normal food for 60 hr.
404 Approximately 20 larvae were transferred onto either normal food or a diet consisting of 1%
405 agar in PBS at this time point. The animals were then either fed or starved for 24 hr before
406 dissection.

407

408 ***Drosophila* immunostaining**

409 For FOXO, MHC staining as well as phalloidin staining (muscle integrity), larvae were
410 heat-killed^{4,51}, muscle fillets (prepared as previously described^{4,51}) were then fixed for 20 min
411 in PBS containing 4% formaldehyde and washed three times for 10 mins each with PBS
412 containing 0.3% Triton-X (PBST-0.3). For Atg8a and LipidTOXTM experiments, animals were
413 dissected in cold 1x PBS, fixed for 45 mins and washes were performed in 1x PBS. For ATP5A
414 staining, DHE and TMRE experiments, animals were dissected in cold *Drosophila* Schneider's
415 Medium. ATP5A samples were fixed for 20 min followed by three 10 min washes in PBST-
416 0.3. For DHE and TMRE there was no fixation or wash steps before staining. Tissues were
417 then stained as per the manufacturer's specifications. All samples were imaged on an Olympus
418 FV3000 confocal microscope. Muscle integrity and TMRE samples were imaged using a 10x
419 objective lens. FOXO, MHC, Atg8a, LipidTOXTM, and DHE were imaged with a 40x objective
420 lens. ATP5A was imaged with a combination of 40x and 63x lenses. All confocal samples were
421 mounted in glycerol except for LipidTOXTM and TMRE, which were mounted in 1 x PBS and
422 25 nM TMRE in *Drosophila* Schneider's Medium, respectively. Within a given experiment,
423 all images were acquired using identical settings. Primary antibodies used: dFOXO (Abcam,
424 1:100, #ab195977), MHC (DHSB, 1:10, #3E8-3D3), ATP5A (Abcam, 1:500, #ab14748).
425 Secondary donkey antibodies conjugated to Alexa 488 and Alexa 555 (Molecular Probes) were
426 used at 1:200. DAPI 405 (Abcam, #ab228549) was used at 1:10000, Phalloidin 647 (Abcam,
427 #ab176759) was used at 1:10000, HCS LipidTOXTM Red Neutral Lipid Stain (Invitrogen,

428 #H34476) was used at 1:1000. MitoTracker™ Green FM (Invitrogen, #M7514) was used at a
429 concentration of 250 nm⁵². TMRE was used as previously described (Invitrogen, #T669, 100
430 nm)⁵³. DHE staining was performed as previously described (10 mins DHE stain)⁵⁴.

431

432 **Glycogen staining**

433 Muscle fillets were dissected in 1% BSA in PBS, fixed in 4% formaldehyde in PBS for
434 20 min, and washed twice in 1% BSA in PBS. Periodic acid stain (PAS) was used as previously
435 described⁵⁵. The samples were mounted in glycerol and imaged on an Olympus BX53
436 Brightfield microscope using a 4x objective lens.

437

438 **Experimental animals (mice)**

439 All experiments were approved by the Animal Ethics Committee of The University of
440 Melbourne and conducted in accordance with the Australian code of practice for the care and
441 use of animals for scientific purposes as stipulated by the National Health and Medical
442 Research Council (Australia). Male Balb/c mice were obtained from the Animal Resources
443 Centre (Canning Vale, Western Australia). All mice were housed in the Biological Research
444 Facility under a 12:12 hr light-dark cycle, with water and standard laboratory chow available
445 *ad libitum*.

446

447 **Mouse model of cancer cachexia**

448 The procedures used to thaw and count the Colon-26 (C-26) cells used to inject mice
449 has been previously described⁵⁶. Twelve-week-old male Balb/c mice were anaesthetized with
450 isoflurane (induction, 3-4% oxygen-isoflurane at 0.5 L.min⁻¹; maintenance, 2-3% at 0.5 L.min⁻¹),
451 such that they were unresponsive to tactile stimuli. Mice were then given a subcutaneous
452 (s.c.) injection of 5×10^5 C-26 cells suspended in 100 µl of sterilized phosphate buffered saline
453 (PBS; n = 4) or 100 µl of sterilized PBS only (control; n = 4) and recovered from anaesthesia
454 on a heat pad. After 17-25 days, when end-point criteria was met, mice were anaesthetized
455 deeply with sodium pentobarbitone (Nembutal; 60 mg/kg; Sigma-Aldrich, Castle Hill, NSW,
456 Australia) via intraperitoneal (*i.p.*) injection and the tibialis anterior (TA) muscles were
457 carefully excised, blotted on filter paper, trimmed of tendons and any adhering non-muscle
458 tissue and weighed on an analytical balance. The LTA muscle was mounted in embedding
459 medium, frozen in thawing isopentane and stored at -80 °C for subsequent analyses. Mice were
460 killed by cardiac excision while still anaesthetized deeply.

461

462

463 **Mouse immunostaining:**

464 Serial sections (8 μ m) were cut transversely through the TA muscle using a refrigerated
465 (-20 °C) cryostat (CTI Cryostat; IEC, Needham Heights, MA, USA). Frozen mouse TA tissue
466 was thawed at room temperature for 10 mins, then fixed in 4% neutral buffered formalin for
467 10 mins and washed twice for 5 mins in 1x PBS. Samples were then stained as per the
468 manufacturer's specifications. Samples were mounted in 1x PBS and imaged on an Olympus
469 FV3000 confocal microscope with a 40x objective lens. All images were acquired using
470 identical settings. HCS LipidTOX™ Red Neutral Lipid Stain (Invitrogen, #H34476) was used
471 at 1:1000.

472

473 **Image analysis:**

474 All images were quantified using FIJI⁵⁷. FOXO intensity was normalised to DAPI,
475 FOXO and DAPI levels were quantified by drawing a circle around the nucleus in the DAPI
476 channel, and the mean grey value (m.g.v.) determined for FOXO and DAPI channels. To
477 measure fluorescence intensity of MHC, Atg8a, PAS and DHE, a ROI was drawn around a
478 sarcomere (MHC), nucleus plus adjacent to nucleus (Atg8a), section of a muscle segment
479 (PAS), and nucleus only (DHE), on the z-plane where fluorescence was most intense. For the
480 MHC, single Atg8a, PAS, and DHE quantifications, the levels of fluorescence were calculated
481 with respect to background fluorescence, using total corrected cell fluorescence (TCCF), as
482 described previously⁵⁸. For the Tandem Atg8a-mCherry-GFP quantifications, a measurement
483 was taken in both the mCherry and GFP channels, and total autophagy was calculated as a ratio
484 of Atg8a-mCherry to Atg8a-GFP.

485 Percentage muscle/cuticle was determined using FIJI as previously described^{4,51}. In
486 brief, dissected muscle fillets stained with Phalloidin to mark actin were analysed using a FIJI
487 macro⁵¹. A ROI was drawn around the cuticle of the muscle fillet, and the image was converted
488 to a binary mask using the “Auto Threshold” tool. The total area of fluorescence detected within
489 the ROI was divided by the total ROI area, which we calculated as % muscle attachment.

490 The number of LDs present in the fly muscle was determined through the use of a macro
491 in FIJI (Supplementary File 1). In brief, files were imported into FIJI, and a 200 x 200 pixel
492 ROI was created on an 8-bit converted representative slice. The image was cropped to the ROI,
493 then the “Auto-threshold” function was used to convert the image into binary. The “Analyse
494 Particles” function using a size range of “0.00-10” was then used to count the number of LDs
495 present in the image.

496 The number of large extramyocellular LDs present in the mouse muscle was determined
497 using a macro in FIJI (Supplementary File 1). In brief, files were imported into FIJI, a
498 representative slice was converted to 8-bit. The “Auto-threshold” function was used to convert
499 the image into binary. The “Analyse Particles” function using a size range of “2-infinity” was
500 then used to count the number and size of extramyocellular LDs present in the image.

501 The number of intramyocellular LDs present in the mouse muscle was determined using
502 a macro in FIJI (Supplementary File 1). In brief, files were imported into FIJI, and the “Auto-
503 threshold” function was used to convert the image into binary. Five polygon ROIs that each
504 encompassed the interior of a different myofiber was created on an 8-bit converted
505 representative slice. The “Analyse Particles” function using a size range of “0.00-10” was then
506 used to count the number and size of LDs present in the image. The density and size of LDs
507 was averaged between the five myofibers for one image.

508 The proportion of large mitochondria in the muscle was determined through the use of
509 a macro in FIJI (Supplementary File 2). For more details on the use of the macro and how large
510 mitochondria were selected, see Figure S1. The output of the macro was a list of individual
511 mitochondrial areas. Once the output was acquired, a Log_{10} transformation was then applied to
512 this list of areas to bring it closer to a normal distribution. The data was then binned into four
513 sizes, those with a Log_{10} transformed value: $X \leq -0.5$, $-0.5 < X \leq 0$, $0 < X \leq 0.5$, and $0.5 < X \leq$
514 1.0 . The mitochondria in the bin of $0.5 < X \leq 1.0$ were considered the largest mitochondria,
515 and the proportion of these out of the total number of mitochondria was calculated.

516 The level of TMRE activity was determined through the use of a macro in FIJI
517 (Supplementary File 3). In brief, files were imported into FIJI and split into MitoTrackerTM
518 Green and TMRE channels. A max intensity z-projection of the MitoTrackerTM Green channel
519 was converted to 8-bit, smoothed using the “Gaussian Blur” and “Remove Outliers” functions,
520 and a square ROI was drawn around the muscle fillet. The image was then converted to a binary
521 mask using the “Auto Threshold” function using the “IsoData” method. A selection was then
522 created around all the thresholded MitoTrackerTM Green area, and this area was measured. A
523 max intensity z-projection of the TMRE channel was then processed in the same way as the
524 MitoTrackerTM Green channel. The final result was an area measurement for total mitochondria
525 via MitoTrackerTM Green and active mitochondria via TMRE. The total area of TMRE was
526 divided by the total area of MitoTrackerTM Green, to give a percentage value of how many total
527 mitochondria are active.

528

529 **Electron Microscopy**

530 *Drosophila* 3rd instar larvae were dissected and fixed in 2.5% glutaraldehyde solution
531 in 0.1 M sodium cacodylate buffer overnight at 4 °C or for 2 hr at room temperature. The
532 samples were then washed with 0.1 M sodium cacodylate, followed by staining with 1%
533 osmium tetroxide and 2% uranyl acetate using a Pelco Biowave and washed in 0.1 M sodium
534 cacodylate. They were then dehydrated in an ethanol series (1x-50%, 70%, 90% and 2x-100%)
535 followed by infiltration with increasing concentrations of epon resin (1x-25%, 50%, 75% and
536 2x-100%). Samples were subsequently processed in the resin with the Biowave high vacuum
537 function before being embedded in fresh resin and polymerized in a 60 °C oven for 48 hr.
538 Formvar-coated, one-slot grids were used to collect thin sections (50 nm) obtained via a Leica
539 Ultracut UC6 Ultramicrotome by taking longitudinal sections of muscles. Images were
540 collected in a JEOL 1011 electron microscope at 80 kV.

541

542 **Proteomics**

543 Samples were lysed by tip-probe sonication in 1% SDS containing 10 mM tris(2-
544 carboxyethyl)phosphine and 40 mM chloroacetamide in 100 mM HEPES pH 8.5. The lysate
545 was incubated at 95 °C for 5 mins and centrifuged at 20,000 x g for 30 mins at 4 °C. Peptides
546 were prepared using a modified SP3 approach with paramagnetic beads⁵⁹. Briefly, lysates were
547 shaken with a 1:1 mixture of hydrophilic and hydrophobic Sera-Mag SpeedBeads (GE
548 Healthcare) in a final concentration of 50% ethanol for 8 mins at 23 °C. The beads were washed
549 three times with 80% ethanol and dried at 23 °C for 20 mins. Proteins were digested directly
550 on the beads in 50 µL of 10% trifluoroethanol in 100 mM HEPES, pH 7.5 sequencing-grade
551 LysC (Wako Chemicals) and sequencing-grade trypsin (Sigma) for 16 hr at 37 °C. The
552 supernatant containing peptides were removed and mixed with 150 µl of 1% trifluoroacetic
553 acid (TFA) and purified using styrenedivinylbenzene- reverse phase sulfonate microcolumns.
554 The columns were washed with 100 µl of 99% isopropanol containing 1% TFA followed by
555 100 µl of 99% ethyl acetate containing 1% TFA followed by 5% acetonitrile containing 0.2%
556 TFA and eluted with 80% acetonitrile containing 1% ammonium hydroxide then dried by
557 vacuum centrifugation. Peptides were resuspended 2% acetonitrile, 0.1% TFA and stored at -
558 80 °C.

559

560 Peptides were separated on a 40 cm x 75 µm inner diameter PepMap column packed with 1.9
561 µm C18 particles (Thermo Fisher) using Dionex nanoUHPLC. Peptides were separated using
562 a linear gradient of 5 – 30% Buffer B over 70 mins at 300 nl/min (Buffer A = 0.1% formic
563 acid; Buffer B = 80% acetonitrile, 0.1% formic acid). The column was maintained at 50 °C

564 coupled directly to an Orbitrap Exploris 480 mass spectrometer (MS). A full-scan MS1 was
565 measured at 60,000 resolution at 200 m/z (350 – 951 m/z; 50 ms injection time; 2.5e6 automatic
566 gain control target) followed by data-independent analysis (16 m/z isolation with 37 windows
567 and a 1 m/z overlap, 28 normalized collision energy; 30 K resolution; auto injection time, 2e6
568 automatic gain control target).

569

570 Mass spectrometry data were processed using Spectronaut DirectDIA (v15.1.210713.50606)
571 and searched against the *Drosophila melanogaster* UniProt database (October, 2019) using all
572 default settings with peptide spectral matches and protein false discovery rate (FDR) set to 1%.
573 The data were searched with a maximum of 2 miss-cleavages, and methionine oxidation and
574 protein N-terminus acetylation were set as variable modifications while carbamidomethylation
575 of cysteine was set as a fixed modification. Quantification was performed using MS2-based
576 extracted ion chromatograms employing 3-6 fragment ions >450 m/z with automated fragment-
577 ion interference removal as described previously⁶⁰. Data was analysed in Perseus⁶¹ and
578 included median normalisation and differential expression analysis using t-tests with multiple
579 hypothesis correction using Benjamini-Hochberg FDR adjustment.

580

581 **Human sample collection**

582 Collection of biospecimens of rectus abdominus muscle from patients with
583 pathologically diagnosed pancreatic ductal adenocarcinoma (PDAC; n = 10 females/10 males)
584 undergoing tumour resection surgery was compliant with an approved Institutional Review
585 Board protocol at the University of Florida, with written informed consent obtained from all
586 patients, and conformed to the Declaration of Helsinki. The detailed patient demographics and
587 analysis of preoperative CT scans for skeletal muscle index (SMI) and muscle radiation
588 attenuation as quantitative measures of skeletal muscularity and myosteatosis, respectively,
589 have been published previously^{41,62}. The methods for obtaining the microarray data have been
590 published previously⁴¹.

591

592 **Statistical analysis:**

593 All statistical analyses were conducted using GraphPad Prism 9.0 (©GraphPad
594 software Inc.). For experiments measuring % muscle/cuticle, FOXO/DAPI levels, PAS
595 staining, MHC staining, DHE staining, Atg8a intensity, and TMRE/MitoTracker™ Green
596 ratios, experimental values were normalised to the average value of their respective controls.
597 At least three animals per genotype were used for all muscle experiments. For FOXO, DHE,

598 Atg8a, MHC staining intensity quantifications, individual data points represent fluorescence
599 intensity of a single nucleus or muscle fibre. For muscle integrity, PAS staining, LD number,
600 mitochondrial size, and TMRE quantifications, individual data points represent a single larva.
601 For experiments with two genotypes or treatments, two-tailed unpaired student's t-tests were
602 used to test for significant differences. The Welch's correction was applied in cases of unequal
603 variances, and the Mann-Whitney U tests was used in the cases of violated normality. For
604 experiments with more than two genotypes, significant differences between specific genotypes
605 were tested using a one-way ANOVA and a subsequent Šidák post-hoc test. A Brown-Forsythe
606 correction was applied in cases of unequal variances, and in the cases of violated normality,
607 the Kruskal-Wallis test was used. The results for all post-hoc tests conducted in a given analysis
608 are shown in graphs. For all graphs, error bars represent SEM. p and adjusted-p values are
609 reported as follows: p>0.05, ns (not significant); p<0.05, *; p<0.01, **; p<0.001, ***;
610 p<0.0001, ****.

611

612 **References**

613

- 614 1. Argilés, J. M., Busquets, S., Stemmler, B. & López-Soriano, F. J. Cancer cachexia:
615 understanding the molecular basis. *Nat Rev Cancer* **14**, 754–762 (2014).
- 616 2. Kwon, Y. *et al.* Systemic Organ Wasting Induced by Localized Expression of the
617 Secreted Insulin/IGF Antagonist ImpL2. *Dev Cell* **33**, 36–46 (2015).
- 618 3. Song, W. *et al.* Tumor-derived ligands trigger tumor growth and host wasting via
619 differential MEK activation. *Dev Cell* **48**, 277-286.e6 (2019).
- 620 4. Lodge, W. *et al.* Tumor-derived MMPs regulate cachexia in a Drosophila cancer model.
621 *Dev Cell* **56**, 2664-2680.e6 (2021).
- 622 5. Newton, H. *et al.* Systemic muscle wasting and coordinated tumour response drive
623 tumourigenesis. *Nature Communications* **11**, 4653 (2020).
- 624 6. Santabárbara-Ruiz, P. & Léopold, P. An Oatp transporter-mediated steroid sink promotes
625 tumor-induced cachexia in Drosophila. *Developmental Cell* **56**, 2741-2751.e7 (2021).
- 626 7. Hodgson, J. A., Parvy, J.-P., Yu, Y., Vidal, M. & Cordero, J. B. Drosophila Larval
627 Models of Invasive Tumorigenesis for In Vivo Studies on Tumour/Peripheral Host Tissue
628 Interactions during Cancer Cachexia. *International Journal of Molecular Sciences* **22**,
629 8317 (2021).
- 630 8. Figueroa-Clarevega, A. & Bilder, D. Malignant Drosophila tumors interrupt insulin
631 signaling to induce cachexia-like wasting. *Dev Cell* **33**, 47–55 (2015).

632 9. Ding, G. *et al.* Coordination of tumor growth and host wasting by tumor-derived Upd3.
633 *Cell Reports* **36**, 109553 (2021).

634 10. Khezri, R. *et al.* Host autophagy mediates organ wasting and nutrient mobilization for
635 tumor growth. *EMBO J* **40**, e107336 (2021).

636 11. Lee, J., Ng, K. G.-L., Dombek, K. M., Eom, D. S. & Kwon, Y. V. Tumors overcome the
637 action of the wasting factor ImpL2 by locally elevating Wnt/Wingless. *Proceedings of*
638 *the National Academy of Sciences* **118**, e2020120118 (2021).

639 12. Bonetto, A., Rupert, J. E., Barreto, R. & Zimmers, T. A. The Colon-26 Carcinoma
640 Tumor-bearing Mouse as a Model for the Study of Cancer Cachexia. *JoVE (Journal of*
641 *Visualized Experiments*) e54893 (2016) doi:10.3791/54893.

642 13. Judge, S. M. *et al.* Genome-wide identification of FoxO-dependent gene networks in
643 skeletal muscle during C26 cancer cachexia. *BMC Cancer* **14**, 997 (2014).

644 14. Dolly, A. *et al.* Pectoralis major muscle atrophy is associated with mitochondrial energy
645 wasting in cachectic patients with gastrointestinal cancer. *Journal of Cachexia,*
646 *Sarcopenia and Muscle* **13**, 1837–1849 (2022).

647 15. de Castro, G. S. *et al.* Human Cachexia Induces Changes in Mitochondria, Autophagy
648 and Apoptosis in the Skeletal Muscle. *Cancers* **11**, 1264 (2019).

649 16. Scaduto, R. C. & Grottohann, L. W. Measurement of Mitochondrial Membrane Potential
650 Using Fluorescent Rhodamine Derivatives. *Biophysical Journal* **76**, 469–477 (1999).

651 17. Shutt, T., Geoffrion, M., Milne, R. & McBride, H. M. The intracellular redox state is a
652 core determinant of mitochondrial fusion. *EMBO Rep* **13**, 909–915 (2012).

653 18. Godenschwege, T. *et al.* Mitochondrial Superoxide Radicals Differentially Affect Muscle
654 Activity and Neural Function. *Genetics* **183**, 175–184 (2009).

655 19. Owusu-Ansah, E. & Banerjee, U. Reactive oxygen species prime Drosophila
656 haematopoietic progenitors for differentiation. *Nature* **461**, 537–541 (2009).

657 20. Ohsawa, S. *et al.* Mitochondrial defect drives non-autonomous tumour progression
658 through Hippo signalling in Drosophila. *Nature* **490**, 547–551 (2012).

659 21. Lim, H.-Y., Wang, W., Chen, J., Ocorr, K. & Bodmer, R. ROS regulate cardiac function
660 via a distinct paracrine mechanism. *Cell Rep* **7**, 35–44 (2014).

661 22. Sandoval, H. *et al.* Mitochondrial fusion but not fission regulates larval growth and
662 synaptic development through steroid hormone production. *Elife* **3**, (2014).

663 23. van der Bliek, A. M., Shen, Q. & Kawajiri, S. Mechanisms of Mitochondrial Fission and
664 Fusion. *Cold Spring Harb Perspect Biol* **5**, (2013).

665 24. Gomes, L. C., Benedetto, G. D. & Scorrano, L. During autophagy mitochondria elongate,
666 are spared from degradation and sustain cell viability. *Nature Cell Biology* **13**, 589–598
667 (2011).

668 25. Rambold, A. S., Kostelecky, B., Elia, N. & Lippincott-Schwartz, J. Tubular network
669 formation protects mitochondria from autophagosomal degradation during nutrient
670 starvation. *Proceedings of the National Academy of Sciences* **108**, 10190–10195 (2011).

671 26. Britton, J. S., Lockwood, W. K., Li, L., Cohen, S. M. & Edgar, B. A. Drosophila's
672 Insulin/PI3-Kinase Pathway Coordinates Cellular Metabolism with Nutritional
673 Conditions. *Developmental Cell* **2**, 239–249 (2002).

674 27. Hunt, L. C. *et al.* A Key Role for the Ubiquitin Ligase UBR4 in Myofiber Hypertrophy in
675 Drosophila and Mice. *Cell Rep* **28**, 1268–1281.e6 (2019).

676 28. Cheng, Z. *et al.* Foxo1 integrates insulin signaling with mitochondrial function in the
677 liver. *Nature Medicine* **15**, 1307–1311 (2009).

678 29. Lidell, M. E. *et al.* The Adipocyte-Expressed Forkhead Transcription Factor Foxc2
679 Regulates Metabolism Through Altered Mitochondrial Function. *Diabetes* **60**, 427–435
680 (2011).

681 30. Pancrazi, L. *et al.* Foxg1 localizes to mitochondria and coordinates cell differentiation
682 and bioenergetics. *Proceedings of the National Academy of Sciences* **112**, 13910–13915
683 (2015).

684 31. Kroemer, G., Mariño, G. & Levine, B. Autophagy and the integrated stress response. *Mol
685 Cell* **40**, 280–293 (2010).

686 32. Samluk, L. *et al.* Cytosolic translational responses differ under conditions of severe short-
687 term and long-term mitochondrial stress. *Mol Biol Cell* **30**, 1864–1877 (2019).

688 33. Nezis, I. P. *et al.* Autophagic degradation of dBruce controls DNA fragmentation in nurse
689 cells during late *Drosophila melanogaster* oogenesis. *J Cell Biol* **190**, 523–531 (2010).

690 34. Mauvezin, C., Ayala, C., Braden, C. R., Kim, J. & Neufeld, T. P. Assays to monitor
691 autophagy in *Drosophila*. *Methods* **68**, 134–139 (2014).

692 35. Kim, M.-J. & O'Connor, M. B. *Drosophila* Activin signaling promotes muscle growth
693 through InR/TORC1-dependent and -independent processes. *Development* **148**, (2021).

694 36. Xu, T., Nicolson, S., Denton, D. & Kumar, S. Distinct requirements of Autophagy-related
695 genes in programmed cell death. *Cell Death Differ* **22**, 1792–1802 (2015).

696 37. Heymann, D. Autophagy: A protective mechanism in response to stress and
697 inflammation. *Curr Opin Investig Drugs* **7**, 443–450 (2006).

698 38. Joshi, M. & Patel, B. M. The burning furnace: Alteration in lipid metabolism in cancer-
699 associated cachexia. *Mol Cell Biochem* **477**, 1709–1723 (2022).

700 39. Soeters, M. R., Soeters, P. B., Schooneman, M. G., Houten, S. M. & Romijn, J. A.
701 Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation.
702 *American Journal of Physiology-Endocrinology and Metabolism* **303**, E1397–E1407
703 (2012).

704 40. Strub, B. R. S. R. *et al.* Mutations of the withered (whd) gene in *Drosophila melanogaster*
705 confer hypersensitivity to oxidative stress and are lesions of the carnitine
706 palmitoyltransferase I (CPT I) gene. *Genome* (2008) doi:10.1139/G08-023.

707 41. Judge, S. M. *et al.* MEF2c-Dependent Downregulation of Myocilin Mediates Cancer-
708 Induced Muscle Wasting and Associates with Cachexia in Patients with Cancer. *Cancer*
709 *Res* **80**, 1861–1874 (2020).

710 42. Stephens, N. A. *et al.* Intramyocellular lipid droplets increase with progression of
711 cachexia in cancer patients. *J Cachexia Sarcopenia Muscle* **2**, 111 (2011).

712 43. Weber, M.-A. *et al.* Morphology, metabolism, microcirculation, and strength of skeletal
713 muscles in cancer-related cachexia. *Acta Oncologica* **48**, 116–124 (2009).

714 44. Jia, H. *et al.* High doses of nicotinamide prevent oxidative mitochondrial dysfunction in a
715 cellular model and improve motor deficit in a *Drosophila* model of Parkinson’s disease. *J*
716 *Neurosci Res* **86**, 2083–2090 (2008).

717 45. Birse, R. T. *et al.* High-Fat-Diet-Induced Obesity and Heart Dysfunction Are Regulated
718 by the TOR Pathway in *Drosophila*. *Cell Metabolism* **12**, 533–544 (2010).

719 46. Castro-Sepulveda, M. *et al.* Relative lipid oxidation associates directly with
720 mitochondrial fusion phenotype and mitochondria-sarcoplasmic reticulum interactions in
721 human skeletal muscle. *American Journal of Physiology-Endocrinology and Metabolism*
722 **318**, E848–E855 (2020).

723 47. Jheng, H.-F. *et al.* Mitochondrial Fission Contributes to Mitochondrial Dysfunction and
724 Insulin Resistance in Skeletal Muscle. *Mol Cell Biol* **32**, 309–319 (2012).

725 48. Liu, R. *et al.* Impaired Mitochondrial Dynamics and Bioenergetics in Diabetic Skeletal
726 Muscle. *PLOS ONE* **9**, e92810 (2014).

727 49. Hodson, L., Skeaff, C. M. & Fielding, B. A. Fatty acid composition of adipose tissue and
728 blood in humans and its use as a biomarker of dietary intake. *Prog Lipid Res* **47**, 348–380
729 (2008).

730 50. Rambold, A. S., Cohen, S. & Lippincott-Schwartz, J. Fatty Acid Trafficking in Starved
731 Cells: Regulation by Lipid Droplet Lipolysis, Autophagy, and Mitochondrial Fusion
732 Dynamics. *Developmental Cell* **32**, 678–692 (2015).

733 51. Dark, C., Cheung, S. & Cheng, L. Y. Analyzing cachectic phenotypes in the muscle and
734 fat body of Drosophila larvae. *STAR Protocols* **3**, 101230 (2022).

735 52. Parker, D., Moran, A. & Mitra, K. Studying Mitochondrial Structure and Function in
736 Drosophila Ovaries. *J Vis Exp* (2016) doi:10.3791/54989.

737 53. Rana, A. *et al.* Promoting Drp1-mediated mitochondrial fission in midlife prolongs
738 healthy lifespan of Drosophila melanogaster. *Nature Communications* **8**, 448 (2017).

739 54. Owusu-Ansah, E., Yavari, A. & Banerjee, U. A protocol for in vivo detection of reactive
740 oxygen species. *Protocol Exchange* (2008) doi:10.1038/nprot.2008.23.

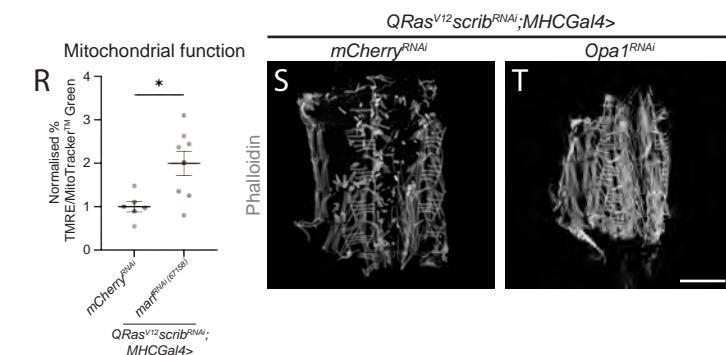
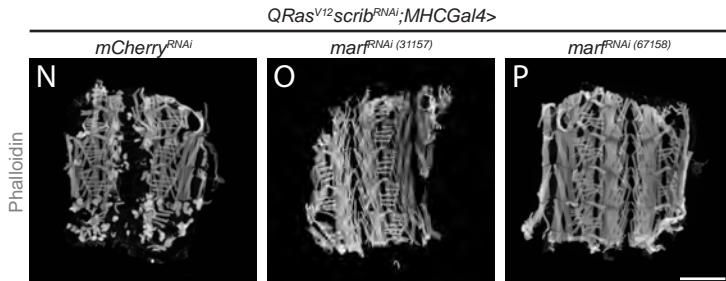
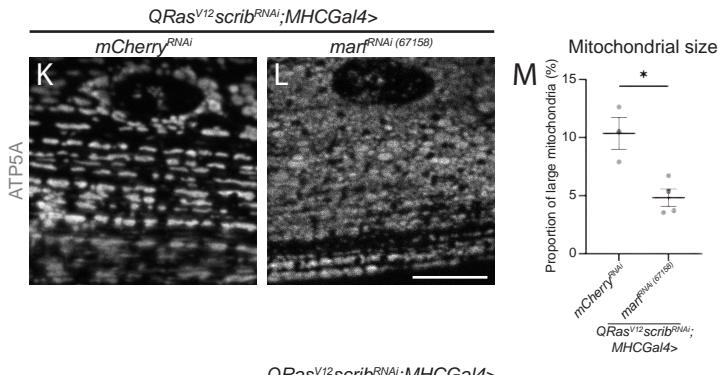
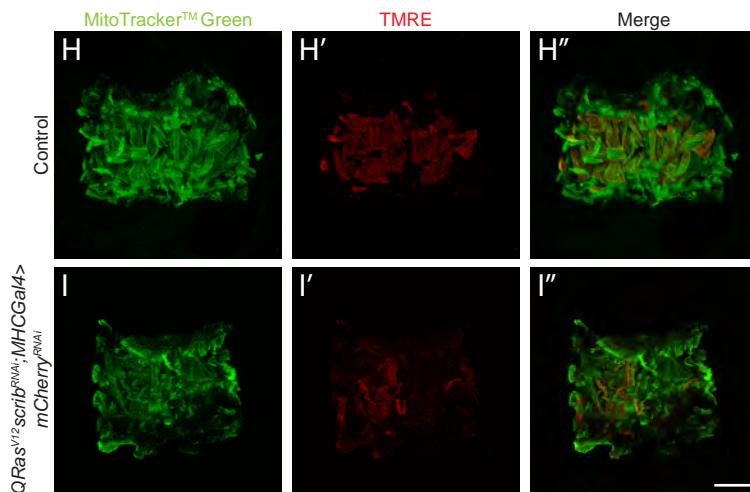
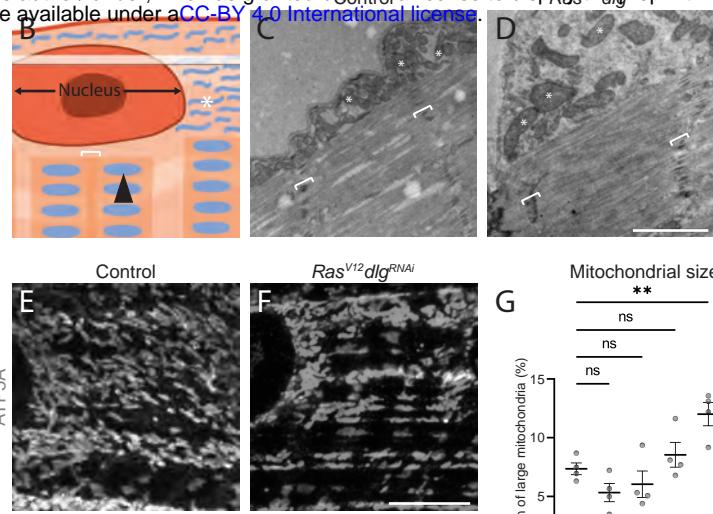
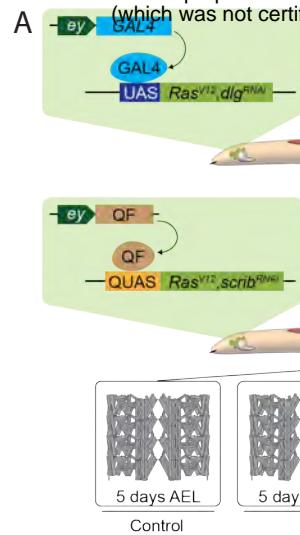
741 55. Yamada, T., Habara, O., Kubo, H. & Nishimura, T. Fat body glycogen serves as a
742 metabolic safeguard for the maintenance of sugar levels in Drosophila. *Development* **145**,
743 dev158865 (2018).

744 56. Murphy, K. T., Chee, A., Trieu, J., Naim, T. & Lynch, G. S. Importance of functional and
745 metabolic impairments in the characterization of the C-26 murine model of cancer
746 cachexia. *Dis Model Mech* **5**, 533–545 (2012).

747 57. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nature
748 Methods* **9**, 676–682 (2012).

749 58. McCloy, R. A. *et al.* Partial inhibition of Cdk1 in G2 phase overrides the SAC and
750 decouples mitotic events. *Cell Cycle* **13**, 1400–1412 (2014).

751 59. Hughes, C. S. *et al.* Single-pot, solid-phase-enhanced sample preparation for proteomics
752 experiments. *Nat Protoc* **14**, 68–85 (2019).







753 60. Bruderer, R. *et al.* Extending the limits of quantitative proteome profiling with data-
754 independent acquisition and application to acetaminophen-treated three-dimensional liver
755 microtissues. *Mol Cell Proteomics* **14**, 1400–1410 (2015).

756 61. Tyanova, S. *et al.* The Perseus computational platform for comprehensive analysis of
757 (prote)omics data. *Nat Methods* **13**, 731–740 (2016).

758 62. Judge, S. M. *et al.* Skeletal Muscle Fibrosis in Pancreatic Cancer Patients with Respect to
759 Survival. *JNCI Cancer Spectr* **2**, (2019).

760

761

762 **Figure 1. Blocking mitochondrial fusion in cachectic muscles is sufficient to restore**
763 **muscle mitochondrial defects, as well as muscle health.**

764 A) Cartoon schematic depicting the two tumour models used in this study. The first model
765 utilises the GAL4-UAS system to overexpress *Ras^{V12}* and *dlg^{RNAi}* in the eye discs of
766 *Drosophila* larvae. The second model uses the QF2-QUAS system to overexpress *Ras^{V12}* and
767 *scrib^{RNAi}* in the eye discs, which allows us to utilise the GAL4-UAS system to simultaneously
768 drive genetic manipulations in the muscle. Both of these systems have comparable muscle
769 integrity to controls at 5 days AEL, but show muscle detachment by 7 days AEL.

770 B) Cartoon representation of a cross section through a larval muscle. The black arrow points
771 to a mitochondrion found in the sarcomere, while white asterisks point to the mitochondria
772 found in the sub-sarcolemma. The white bracket indicates the z-disc of the sarcomere. The
773 transparent white rectangle indicates the plane at which the confocal images and
774 mitochondrial quantifications were acquired in (at the level of the sub-sarcolemma).

775 C, D) Electron microscopy images of mitochondria in the muscles of control and
776 *Ras^{V12}dlg^{RNAi}* larvae. White asterisks mark mitochondria in the sub-sarcolemma, white
777 brackets indicate z-discs of the sarcomeres.

778 E, F) Representative images of ATP5A staining of mitochondria in the muscles of control
779 and *Ras^{V12}dlg^{RNAi}* larvae.

780 G) Quantification of the proportion of large mitochondria out of total mitochondria in control
781 and *Ras^{V12}dlg^{RNAi}* larvae at days 4-7 AEL, performed using One-Way ANOVA (n = 4, 4, 4,
782 4).

783 H-I'') Representative images of control and *QRas^{V12}scrib^{RNAi};MHC-Gal4>mCherry^{RNAi}* larval
784 muscle fillets stained with MitoTrackerTM Green which labels all mitochondria (H, I), and
785 active mitochondria with TMRE (H', I'). Merged images are shown in H'' and I''.

786 J) Quantification of the percentage of total mitochondria stained with MitoTrackerTM Green
787 that are also positive for TMRE in H'' and I'', performed using Student's t-test (n = 5, 5).

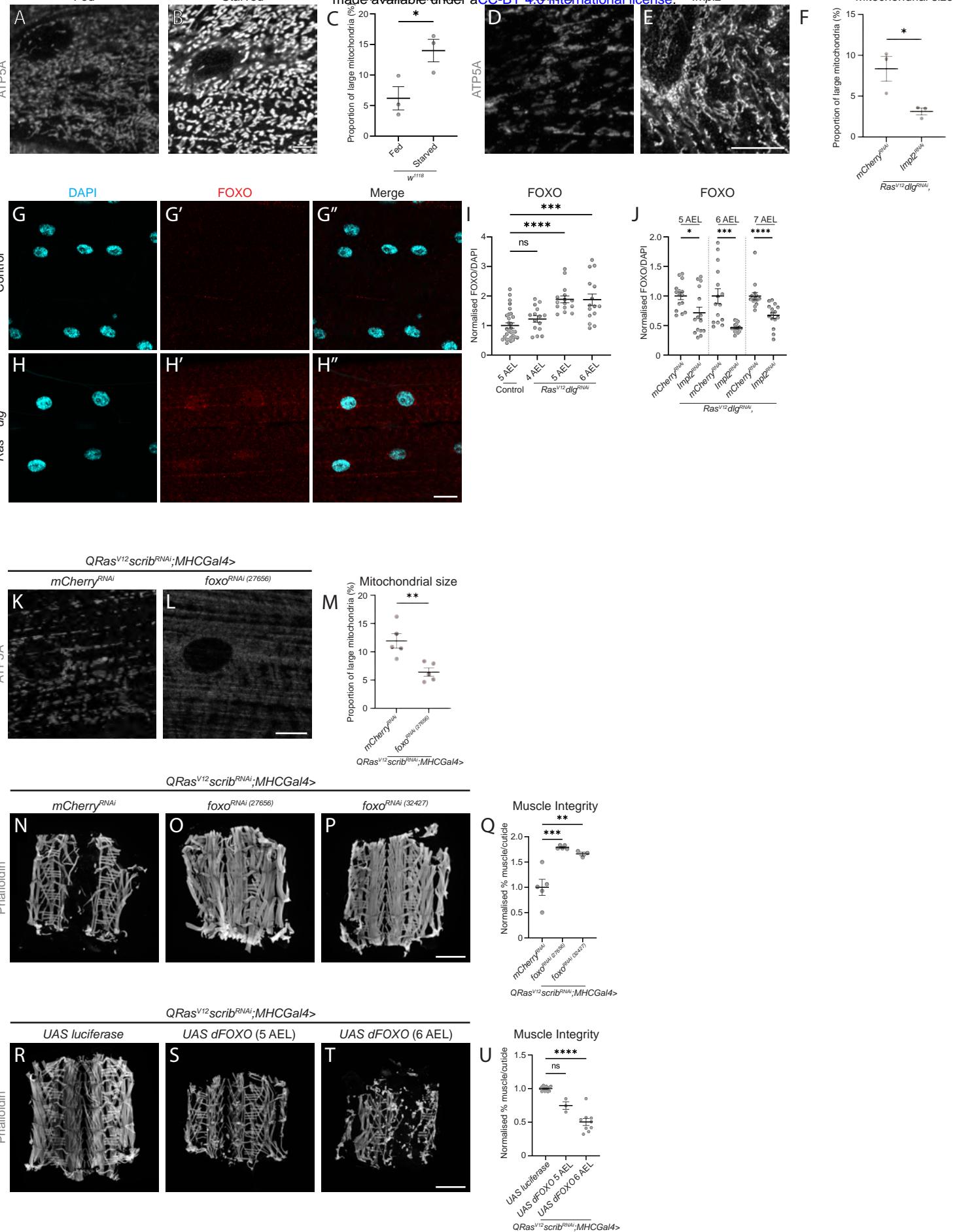
788 K, L) Representative images of ATP5A staining of mitochondria in the muscles of
789 *QRas^{V12}scrib^{RNAi};MHC-Gal4>mCherry^{RNAi}* and *QRas^{V12}scrib^{RNAi};MHC-Gal4>marf^{RNAi (67158)}*
790 larvae.

791 M) Quantification of the proportion of large mitochondria out of total mitochondria in K and
792 L, performed using Student's t-test (n = 3, 4).

793 N, O, P) Representative muscle fillets from *QRas^{V12}scrib^{RNAi};MHC-Gal4>mCherry^{RNAi}* (N),
794 *QRas^{V12}scrib^{RNAi};MHC-Gal4>marf^{RNAi (31157)}* (O), and *QRas^{V12}scrib^{RNAi};MHC-Gal4>marf^{RNAi (67158)}* (P) larvae, stained with Phalloidin to visualise actin.

796 Q) Quantification of muscle integrity in N, O and P, performed using Brown-Forsythe (n =
797 22, 6, 13).

798 R) Quantification of the percentage of total mitochondria stained with MitoTrackerTM Green
799 that are shown to be active via TMRE incorporation in the muscles of 6 days AEL
800 *QRas^{V12}scrib^{RNAi};MHC-Gal4>mCherry^{RNAi}* and *QRas^{V12}scrib^{RNAi};MHC-Gal4>marf^{RNAi}*⁽⁶⁷¹⁵⁸⁾
801 larvae, performed using Student's t-test (n = 6, 8).


802 S, T) Representative muscle fillets from *QRas^{V12}scrib^{RNAi};MHC-Gal4>mCherry^{RNAi}* and
803 *QRas^{V12}scrib^{RNAi};MHC-Gal4>Opa1^{RNAi}* larvae, stained with Phalloidin to visualise actin.

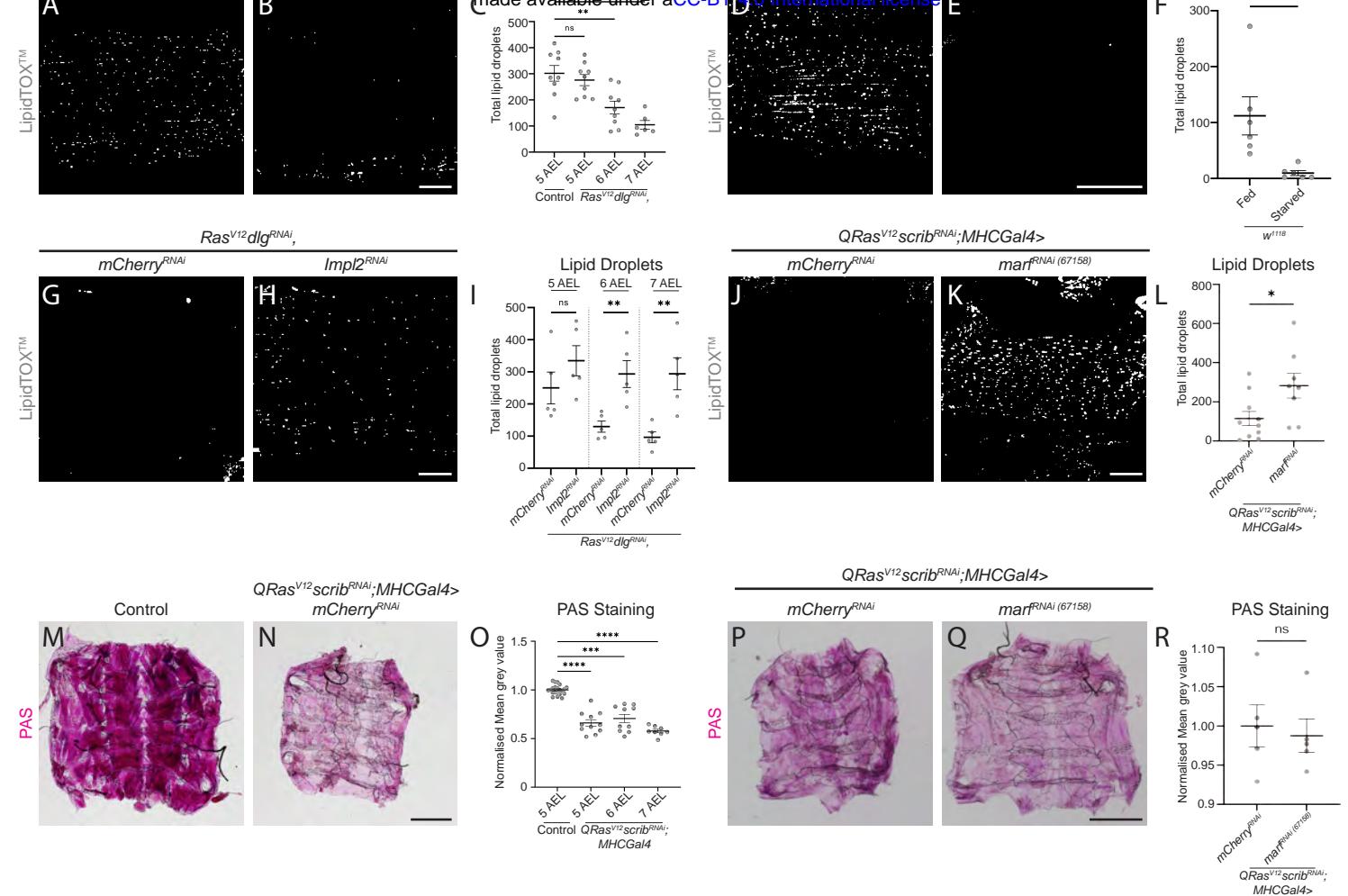
804 U) Quantification of muscle integrity in S and T, performed using Student's t-test (n = 10, 7).
805 Images were taken at 5 days AEL for (C and E), 6 days AEL for (H, H', H'', I, I', I''), and 7
806 days AEL for (D, F, K, L, N, O, P, S and T).

807 Scale bars: 1 μ m for (C and D), 10 μ m for (E, F, K and L), and 500 μ m for (H, H', H'', I, I',
808 I'', N, O, P, S and T).

809 All error bars are +/- SEM. P values are: ns (not significant), p > 0.05; *, p < 0.05; **, p <
810 0.01; ***, p < 0.001; ****, p < 0.0001.

811

812 **Figure 2. Tumour-secreted Impl2 mediates muscle mitochondrial morphology via**
813 **FOXO.**

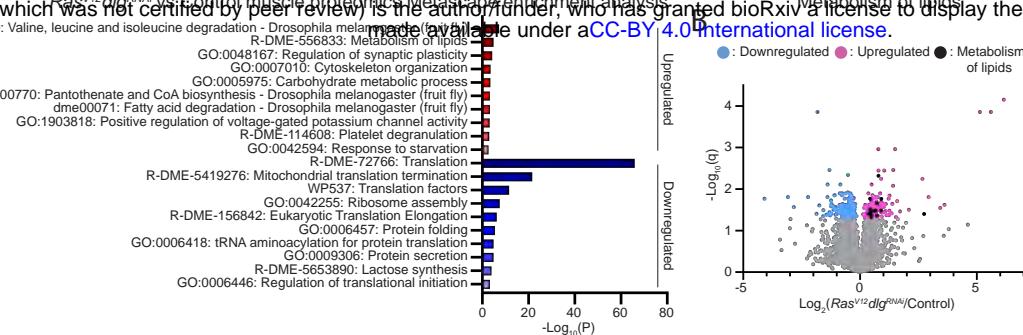

814 A, B) Representative images of ATP5A staining of mitochondria in the muscles of w^{1118}
815 larvae raised on a normal diet and w^{1118} larvae undergoing nutrient restriction from critical
816 weight (60 hr after larval hatching (ALH)).
817 C) Quantification of the proportion of large mitochondria out of total mitochondria in A and
818 B, performed using Student's t-test (n = 3, 3)
819 D, E) Representative images of ATP5A staining of mitochondria in the muscles of
820 $Ras^{VI2}dlg^{RNAi},mCherry^{RNAi}$ and $Ras^{VI2}dlg^{RNAi},ImpL2^{RNAi}$ larvae.
821 F) Quantification of the proportion of large mitochondria out of total mitochondria in D and
822 E, performed using Student's t-test (n = 3, 3).
823 G-H'') Representative images of control and $Ras^{VI2}dlg^{RNAi}$ larval muscles stained with DAPI
824 to label the nucleus (G, H), and FOXO (G', H'). Merged images are shown in G'' and H''.
825 I) Quantification of nuclear FOXO staining in control and $Ras^{VI2}dlg^{RNAi}$ larvae at days 5 and
826 6 AEL performed using Kruskal-Wallis (n = 30, 15, 15, 15).
827 J) Quantification of nuclear FOXO staining of $Ras^{VI2}dlg^{RNAi},mCherry^{RNAi}$ and
828 $Ras^{VI2}dlg^{RNAi},ImpL2^{RNAi}$ larval muscles at 5, 6 and 7 days AEL, performed using Mann-
829 Whitney U (5 and 7 days AEL), and Welch's t-test (6 days AEL, n = 15, 15, 15, 15, 15, 15).
830 K, L) Representative images of ATP5A staining of mitochondria in the muscles of
831 $QRas^{VI2}scrib^{RNAi};MHC-Gal4>mCherry^{RNAi}$ and $QRas^{VI2}scrib^{RNAi};MHC-Gal4>foxo^{RNAi}$ (27656)
832 larvae.
833 M) Quantification of the proportion of large mitochondria out of total mitochondria in K and
834 L, performed using Student's t-test (n = 5, 5).
835 N, O, P) Representative muscle fillets from $QRas^{VI2}scrib^{RNAi};MHC-Gal4>mCherry^{RNAi}$ (N),
836 $QRas^{VI2}scrib^{RNAi};MHC-Gal4>foxo^{RNAi}$ (27656) (O), and $QRas^{VI2}scrib^{RNAi};MHC-Gal4>foxo^{RNAi}$
837 (32427) (P) larvae, stained with Phalloidin to visualise actin.
838 Q) Quantification of muscle integrity in N, O and P, performed using One-Way ANOVA (n =
839 5, 5, 3).
840 R, S, T) Representative muscle fillets from $QRas^{VI2}scrib^{RNAi};MHC-Gal4>UAS luciferase$ (R),
841 $QRas^{VI2}scrib^{RNAi};MHC-Gal4>UAS-dFOXO$ (5 days AEL, S), and $QRas^{VI2}scrib^{RNAi};MHC-$
842 $Gal4>UAS-dFOXO$ (6 days AEL, T) larvae, stained with Phalloidin to visualise actin.
843 U) Quantification of muscle integrity in R, S and T, performed using Brown-Forsythe (n =
844 14, 3, 9).

845 Images were taken at 5 days AEL for (A, B, G, G', G'' and S), 6 days AEL for (D, E, K, L, R
846 and T), and 7 days AEL for (H, H', H'', N, O and P).

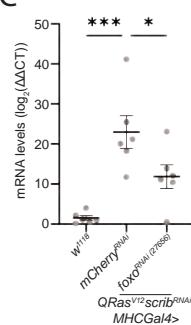
847 Scale bars: 10 μm for (A, B, D, E, K and L), 20 μm for (G, G', G'', H, H' and H''), and 500
848 μm for (N, O, P, R, S and T).

849 All error bars are +/- SEM. P values are: ns (not significant), $p > 0.05$; *, $p < 0.05$; **, $p <$
850 0.01 ; ***, $p < 0.001$; ****, $p < 0.0001$.

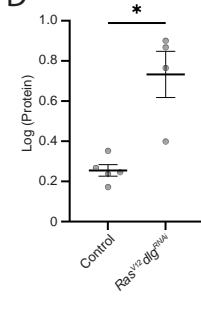
851

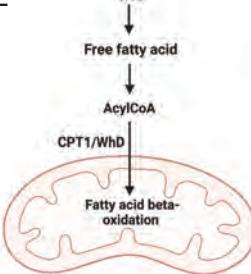


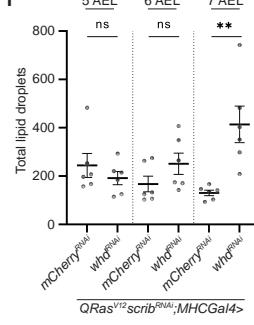
852 **Figure 3. Blocking mitochondrial fusion restores muscle lipid stores, but not glycogen**
853 **stores.**

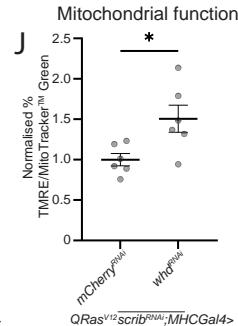
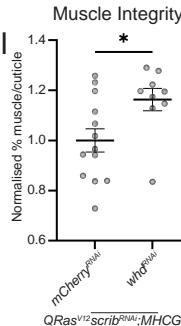
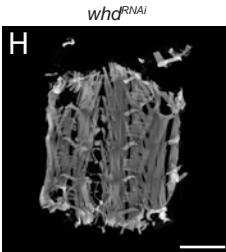
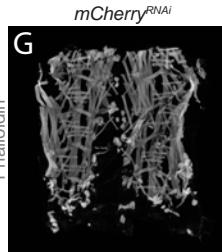

854 A, B) Binary representation of lipid droplets (LDs) stained with LipidTOXTM in the muscles
855 of control and *Ras^{V12}dlg^{RNAi}* larvae from S4 A, B, obtained through thresholding in FIJI. More
856 details on thresholding can be found in the Methods and Materials.
857 C) Quantification of the number of LDs in control and *Ras^{V12}dlg^{RNAi}* larvae at days 5-7 AEL,
858 performed using One-Way ANOVA (n = 9, 9, 9, 6).
859 D, E) Binary images of LDs stained with LipidTOXTM in the muscles of *w¹¹¹⁸* larvae raised
860 on a normal diet and *w¹¹¹⁸* larvae undergoing nutrient restriction from critical weight (60 hr
861 after larval hatching (ALH)), obtained through thresholding in FIJI.
862 F) Quantification of the number of LDs in D and E, performed using Mann-Whitney U (n =
863 6, 6).
864 G, H) Binary representation of LDs stained with LipidTOXTM in the muscles of
865 *Ras^{V12}dlg^{RNAi},mCherry^{RNAi}* and *Ras^{V12}dlg^{RNAi},ImpL2^{RNAi}* larvae obtained through thresholding
866 in FIJI.
867 I) Quantification of the number of LDs in G and H, as well as from earlier timepoints,
868 performed using Student's t-tests (n = 5, 5, 5, 5, 5, 5).
869 J, K) Binary representation of LDs stained with LipidTOXTM in the muscles of
870 *QRas^{V12}scrib^{RNAi};MHC-Gal4>mCherry^{RNAi}* and *QRas^{V12}scrib^{RNAi};MHC-Gal4>marf^{RNAi (67158)}*
871 larvae, obtained through thresholding in FIJI.
872 L) Quantification of the number of LDs in J and K, performed using Student's t-test (n = 10,
873 8).
874 M, N) Representative images of muscle fillets from control and *QRas^{V12}scrib^{RNAi};MHC-*
875 *Gal4>mCherry^{RNAi}* larvae, stained with periodic acid solution (PAS) to visualise
876 polysaccharides such as glycogen.
877 O) Quantification of PAS staining in control and *QRas^{V12}scrib^{RNAi};MHC-Gal4>mCherry^{RNAi}*
878 at days 5-7 AEL using Brown-Forsythe (n = 21, 11, 10, 8).
879 P, Q) Representative images of muscle fillets from *QRas^{V12}scrib^{RNAi};MHC-*
880 *Gal4>mCherry^{RNAi}* and *QRas^{V12}scrib^{RNAi};MHC-Gal4>marf^{RNAi (67158)}* larvae, stained with
881 periodic acid solution (PAS) to visualise polysaccharides such as glycogen.
882 R) Quantification of PAS staining in P and Q, performed using Student's t-test (n = 5, 5).
883 Images were taken at 5 days AEL for (A, D, E and M), and 7 days AEL for (B, G, H, J, K, N,
884 P and Q).
885 Scale bars: 20 μ m for (A, B, D, E, G, H, J and K), and 500 μ m for (M, N, P and Q).

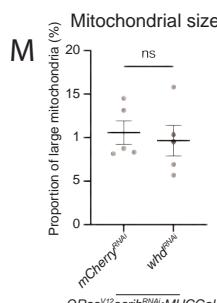
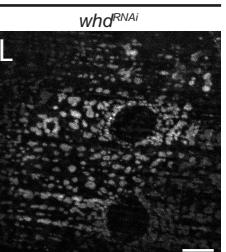
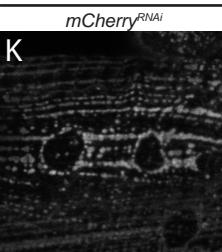
886 All error bars are +/- SEM. P values are: ns (not significant), $p > 0.05$; *, $p < 0.05$; **, $p <$
887 0.01; ***, $p < 0.001$; ****, $p < 0.0001$.
888

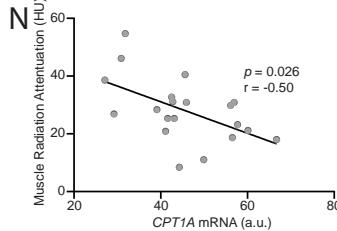

A


whd qPCR

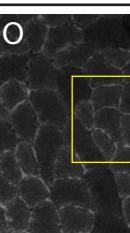

Whd proteomics





E

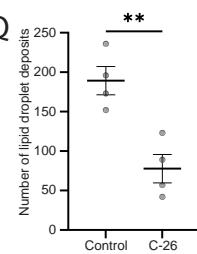



Lipid Droplets


QRas^{V12} scrib^{RNAi}; MHC Gal4

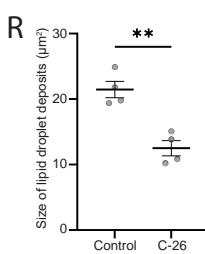
QRas^{V12} scrib^{RNAi}; MHC Gal4

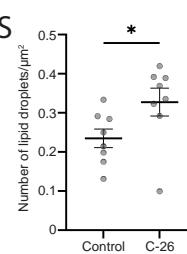


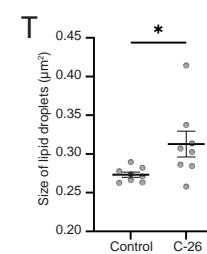
Human PDAC muscle



Control


C-26


Extramyocellular lipid deposit number


Extramyocellular lipid deposit size

Intramyocellular lipid droplet number

Intramyocellular lipid droplet size

889 **Figure 4. Lipid metabolism via beta-oxidation is a mediator of muscle wasting.**

890 A) Proteomics were performed using the muscles from 5 days AEL control and 7 days AEL

891 *Ras^{V12}dlg^{RNAi}* larvae (n = 5, 4). The top ten up and downregulated enrichment terms from

892 Metascape enrichment analysis are displayed.

893 B) Volcano plot showing differentially regulated proteins in control vs *Ras^{V12}dlg^{RNAi}* larval

894 muscles, with proteins found in the “R-DME-556833: Metabolism of lipids” enrichment term

895 highlighted (n= 5, 4).

896 C) Quantification of qPCR results examining whd mRNA levels in *w¹¹¹⁸*,

897 *QRas^{V12}scrib^{RNAi};MHCGal4>mCherry^{RNAi}*, and *QRas^{V12}scrib^{RNAi};MHCGal4>foxo^{RNAi} (27656)*

898 larval muscles at 6 days AEL, performed using One-Way ANOVA (n = 6, 6, 6)

899 D) Quantification of Log transformed whd protein levels, from proteomics in B, performed

900 using Mann-Whitney U (n = 5, 4).

901 E) Schematic detailing Whd’s role in mitochondrial beta-oxidation.

902 F) Quantification of the number of lipid droplets in *QRas^{V12}scrib^{RNAi};MHC-*

903 *Gal4>mCherry^{RNAi}* and *QRas^{V12}scrib^{RNAi};MHC-Gal4>whd^{RNAi}* larval muscles, at 5, 6 and 7

904 days AEL, performed using Mann-Whitney U (5 and 6 days AEL) and Student’s t-test (7

905 days AEL, n = 6, 6, 6).

906 G, H) Representative muscle fillets from *QRas^{V12}scrib^{RNAi};MHC-Gal4>mCherry^{RNAi}* and

907 *QRas^{V12}scrib^{RNAi};MHC-Gal4>whd^{RNAi}* larvae, stained with Phalloidin to visualise actin.

908 I) Quantification of muscle integrity in G and H, performed using Student’s t-test (n = 13, 9).

909 J) Quantification of the percentage of total mitochondria stained with MitoTracker™ Green

910 that are shown to be active via TMRE incorporation in the muscles of 6 days AEL

911 *QRas^{V12}scrib^{RNAi};MHC-Gal4>mCherry^{RNAi}* and *QRas^{V12}scrib^{RNAi};MHC-Gal4>whd^{RNAi}* larvae,

912 performed using Student’s t-test (n = 6, 6).

913 K, L) Representative images of ATP5A staining of mitochondria in the muscles of

914 *QRas^{V12}scrib^{RNAi};MHC-Gal4>mCherry^{RNAi}* and *QRas^{V12}scrib^{RNAi};MHC-Gal4>whd^{RNAi}* larvae.

915 M) Quantification of the proportion of large mitochondria out of total mitochondria in K and

916 L, performed using Student’s t-test (n = 5, 5).

917 N) Quantification of human PDAC muscle CPT1A mRNA levels plotted against Muscle

918 Radiation attenuation, performed using Non-parametric Spearman’s Correlation (n = 20).

919 (a.u.: average unit).

920 O, O’, P, P’) Representative images of cross-sections of Type IIa muscle fibres in mouse

921 tibialis anterior muscle, stained with LipidTOX™, taken from control (O) and C-26 tumour

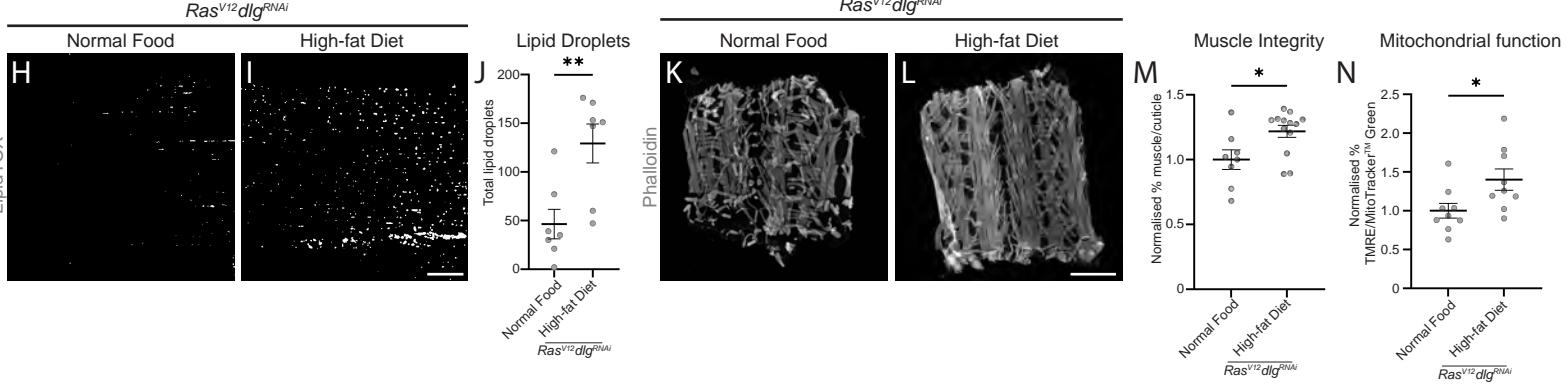
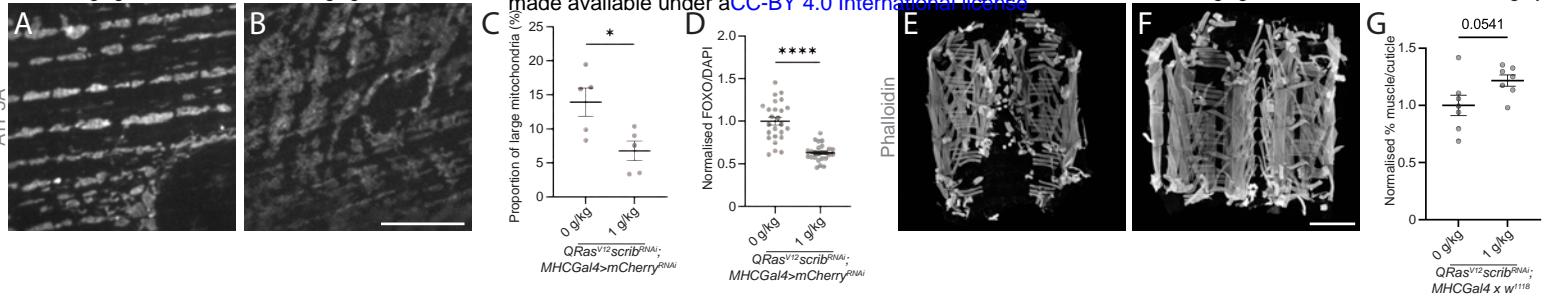
922 (P) animals. Yellow boxes highlight zoomed in areas to better visualise intramyocellular and

923 extramyocellular lipid deposits. Examples of extramyocellular lipid droplets have been
924 labelled with red shading. Examples of where intramyocellular lipid droplets were measured
925 have been labelled with yellow shading.

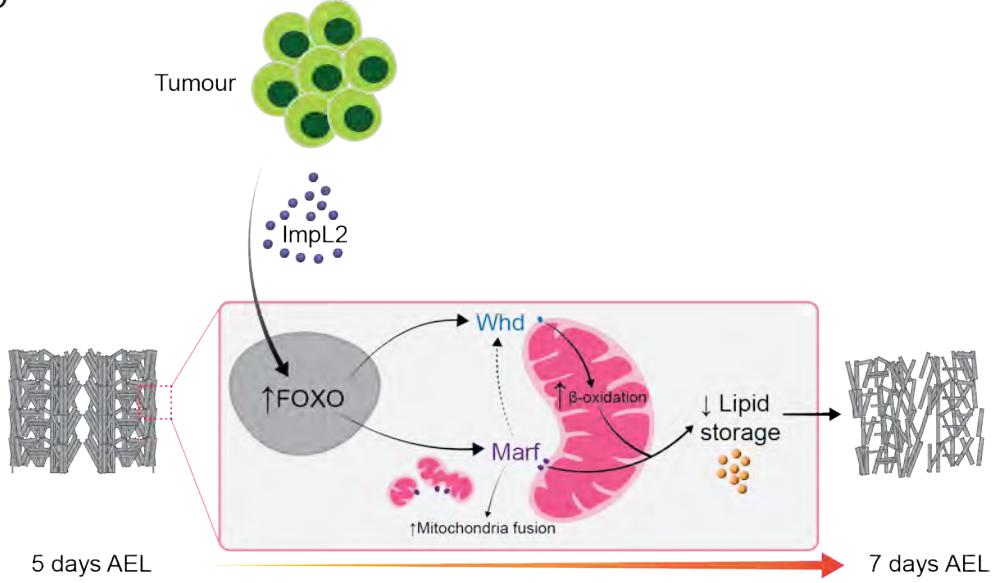
926 Q) Quantification of the number of extramyocellular lipid deposits in O and P, performed
927 using Student's t-test, (n = 4, 4).

928 R) Quantification of the size of extramyocellular lipid deposits in O and P, performed using
929 Student's t-test, (n = 4, 4).

930 S) Quantification of the density of intramyocellular lipid deposits in O and P, performed
931 using Student's t-test, (n = 4, 4).



932 T) Quantification of the size of intramyocellular lipid deposits in O and P, performed using
933 Student's t-test, (n = 4, 4)

934 Images were taken at 6 days AEL for (K and L), 7 days AEL for (G and H), and 12 weeks
935 plus 17-25 days after subcutaneous injection of PBS or C-26 tumour cells for (O, O', P and
936 P').


937 Scale bars: 10 μ m for (K and L), 20 μ m for (O' and P'), 50 μ m for (O and P), and 500 μ m for
938 (G and H).

939 All error bars are +/- SEM. P values are: ns (not significant), $p > 0.05$; *, $p < 0.05$; **, $p <$
940 0.01; ***, $p < 0.001$; ****, $p < 0.0001$.

941

O

942 **Figure 5. Nicotinamide and high fat diets improve muscle health in tumour-bearing**
943 **animals.**

944 A, B) Representative images of ATP5A staining of mitochondria in the muscles of
945 *QRas^{VI2}scrib^{RNAi};MHC-Gal4>mCherry^{RNAi}* larvae raised on a normal diet, or raised on a diet
946 containing 1 g/kg nicotinamide (NAM).

947 C) Quantification of the proportion of large mitochondria out of total mitochondria in A and
948 B, performed using Student's t-test (n = 5, 5).

949 D) Quantification of nuclear FOXO staining in the muscles of 6 days AEL
950 *QRas^{VI2}scrib^{RNAi};MHC-Gal4>mCherry^{RNAi}* larvae raised on a normal diet, or raised on a diet
951 containing 1 g/kg nicotinamide (NAM), performed using Welch's t-test (n = 25, 25).

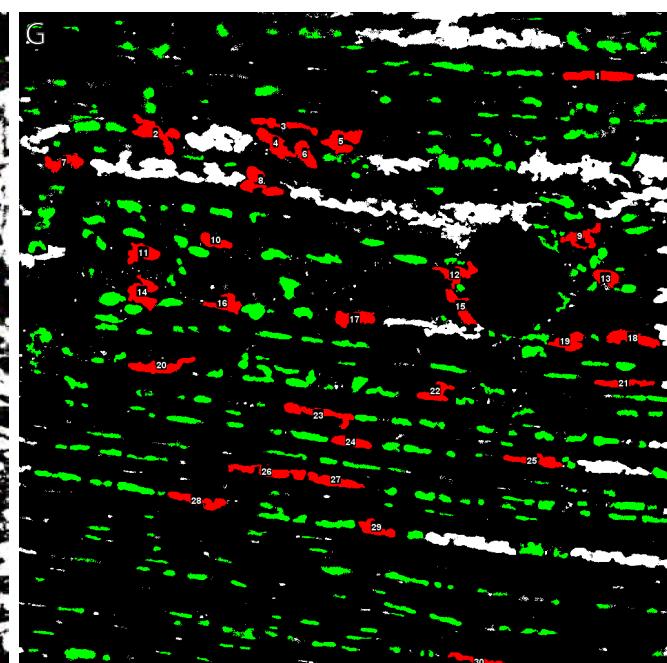
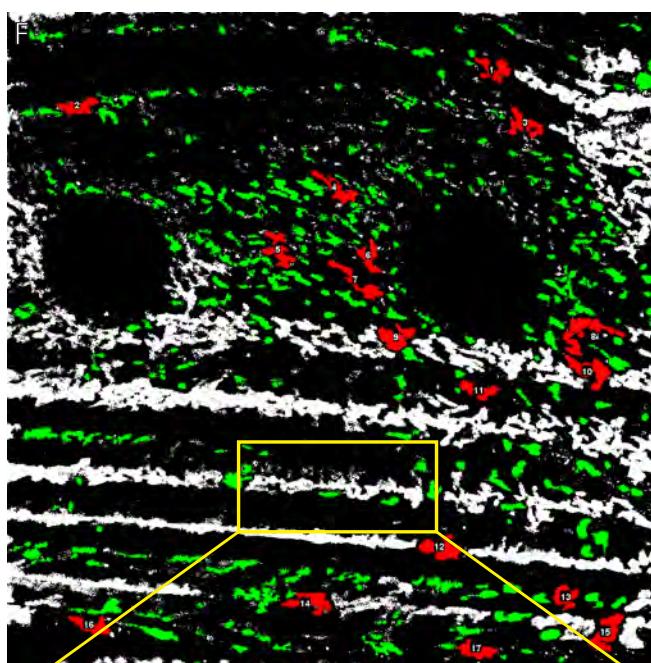
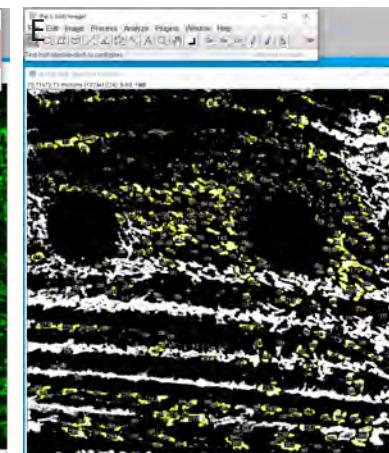
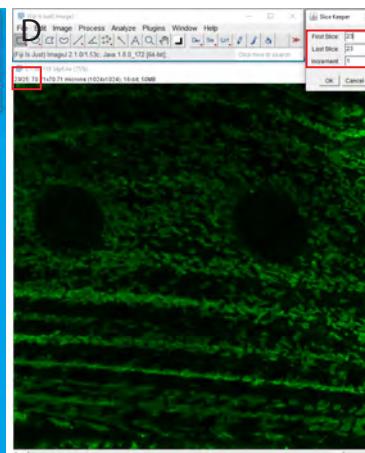
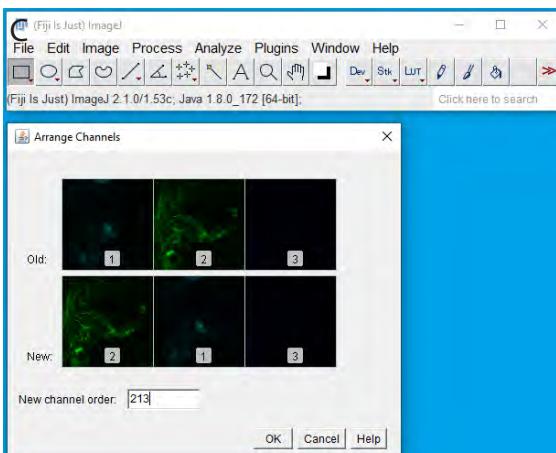
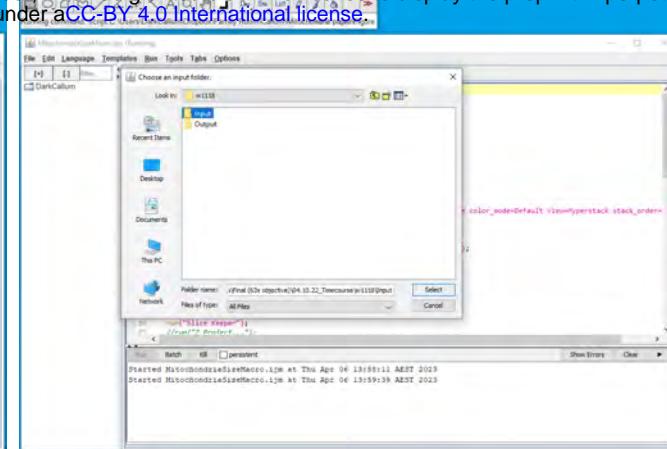
952 E, F) Representative muscle fillets from *QRas^{VI2}scrib^{RNAi};MHC-Gal4>w¹¹¹⁸* larvae raised on
953 a normal diet, or raised on a diet containing 1 g/kg nicotinamide (NAM), stained with
954 Phalloidin to visualise actin.

955 G) Quantification of muscle integrity in E and F, performed using Student's t-test (n = 7, 7).

956 H, I) Binary representation of lipid droplets (LDs) stained with LipidTOXTM in the muscles
957 of *Ras^{VI2}dlg^{RNAi}* larvae raised on a normal diet, and raised on a high fat diet, obtained through
958 thresholding in FIJI.

959 J) Quantification of the number of LDs in H and I, performed using Mann-Whitney U (n = 7,
960 7).

961 K, L) Representative muscle fillets from *Ras^{VI2}dlg^{RNAi}* larvae raised on a normal diet, or
962 raised on a high fat diet, stained with Phalloidin to visualise actin.







963 M) Quantification of muscle integrity in K and L, performed using Mann-Whitney U (n = 8,
964 13).

965 N) Quantification of the percentage of total mitochondria stained with MitoTrackerTM Green
966 that are shown to be active via TMRE incorporation in the muscles of 6 days AEL
967 *Ras^{VI2}dlg^{RNAi}* larvae raised on a normal diet, or raised on a high fat diet, performed using
968 Student's t-test (n = 9, 9).

969 O) Tumour-secreted ImpL2 mediates insulin signalling in the muscle of tumour-bearing
970 animals by influencing the nuclear localisation of FOXO. This reduction in muscle insulin
971 signalling influences mitochondria fusion via Marf. Increased mitochondrial fusion is
972 accompanied by a decrease in muscle lipid stores, which is the result of increased fatty-acid
973 beta-oxidation via Whd in the mitochondria. This results in muscles that have depleted their
974 energy reserves, contributing to a loss of muscle integrity.

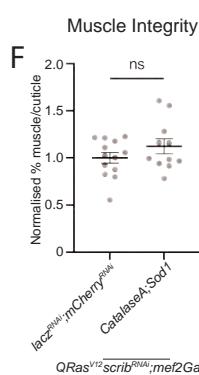
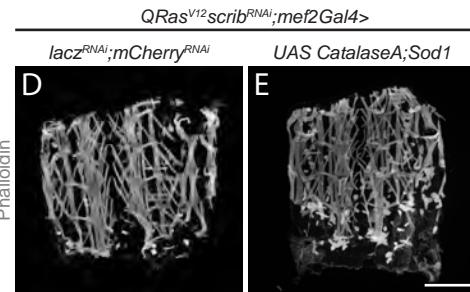
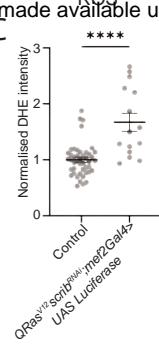
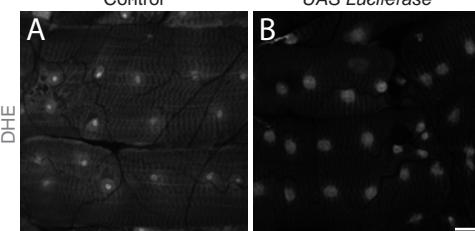
975 Images were taken at 6 days AEL for (H and I), and 7 days AEL for (A, B, D, E, K and L).

976 Scale bars: 10 μ m for (D and E), 20 μ m for (H and I), and 500 μ m for (A, B, K and L).
977 All error bars are +/- SEM. P values are: ns (not significant), $p > 0.05$; *, $p < 0.05$; **, $p <$
978 0.01; ***, $p < 0.001$; ****, $p < 0.0001$.
979

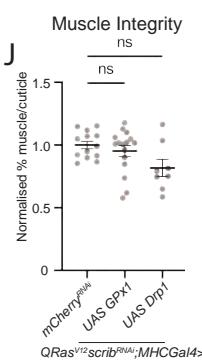
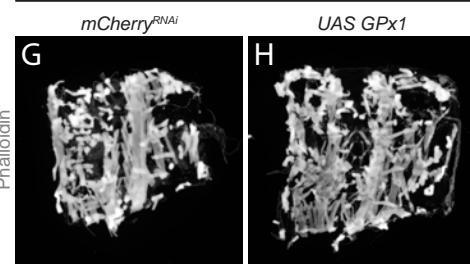
980 **Figure S1. Instructions for utilising FIJI macro for the quantification of mitochondrial
981 size**

982 A) Import the Mitochondrial Macro (Supplementary File 2) into FIJI and hit “Run”, as
983 indicated by the red box.

984 B) The macro will ask you to select first an Input folder and then an Output folder. We
985 recommend creating separate folders and then moving the z-stacks you have acquired and
986 require to be analysed into the “Input” folder.





987 C) Next, the macro will seek to isolate the fluorescence channel for the mitochondrial marker
988 (in this case ATP5A). To do this, it will ask "Arrange channels so that the Mitochondria is the
989 first channel". Click “Ok”. When the “Arrange Channels” window appears you will see the
990 original channel order, in this case the mitochondria channel was the second channel out of
991 three (Order: 123), so we have changed the order to put it first, by typing in the “New channel
992 order” box (Order: 213). The macro then splits the channels and closes all other channels.

993 D) You then will be asked to “Select a representative slice”. Before you click “Ok”, scroll
994 through the z-stack to find a slice that best shows the sub-sarcolemmal mitochondria. Here,
995 we have selected slice 23, as indicated by the red boxes. Click “Ok”, then the “Slice Keeper”
996 window will appear. Type your desired slice number into both the “First Slice” and “Last
997 Slice” boxes and put the number “1” into the “Increment” box. It will then perform an 8-bit
998 conversion, change the colour to Grays, and will “Auto Threshold” the image using the
999 “IsoData” method.



1000 E) The macro will then use the “Analyze Particles” tool to measure the size and number of
1001 mitochondria in the image. We have set the macro to only measure structures been 0.2 and 7
1002 μm^2 in size. This avoids detecting structures that are too small ($< 0.2 \mu\text{m}^2$), which are likely
1003 background, and avoids detecting structures that are too big ($> 7 \mu\text{m}^2$). The macro will then
1004 output the thresholded image, as well as an excel file with the number of mitochondria that
1005 were measured and their respective sizes. It will then move onto the next z-stack.

1006 F, F') An example of mitochondria that are above the “large” threshold (\log_{10} transformed
1007 value, $0.5 < X \leq 1.0$, depicted in red), and below the threshold (\log_{10} transformed value, $X \leq$
1008 0.5, depicted in green), in a control muscle fillet. All other mitochondria depicted in white
1009 were not measured as they were outside the “Analyze Particles” size range. 17 mitochondria
1010 were considered in the “large” range (for more details on how mitochondria were binned for
1011 size, see Methods and Materials. The yellow box shows a zoomed in example of a large
1012 structure (marked in white) that is excluded from the analysis in F', as it exceeds the size
1013 threshold.

1014 G) An example of mitochondria that are above the “large” threshold (\log_{10} transformed value,
1015 $0.5 < X \leq 1.0$, depicted in red), and below the threshold (\log_{10} transformed value, $X \leq 0.5$,
1016 depicted in green), in a 7 days AEL $Ras^{V12}dlg^{RNAi}$ muscle fillet. All other mitochondria
1017 depicted in white were not measured as they were outside the “Analyze Particles” size range.
1018 30 mitochondria were considered in the “large” range.
1019

QRas^{V12}scrib^{RNAi};mef2Gal4>

1020 **Figure S2. Reduced ROS in the muscles of tumour-bearing animals does not rescue**
1021 **muscle wasting.**

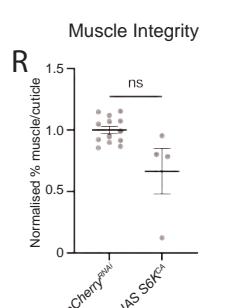
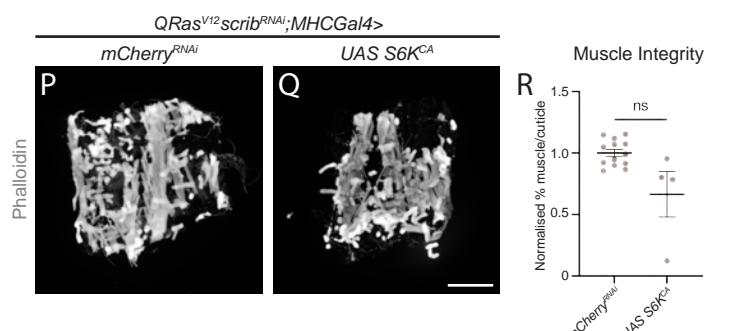
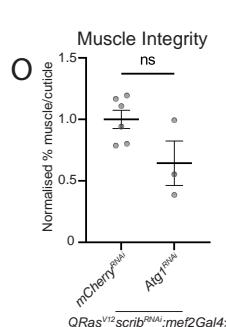
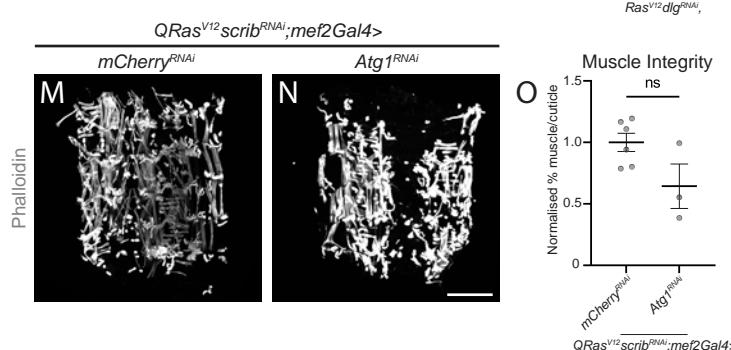
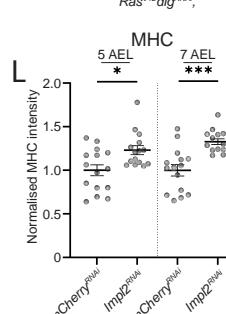
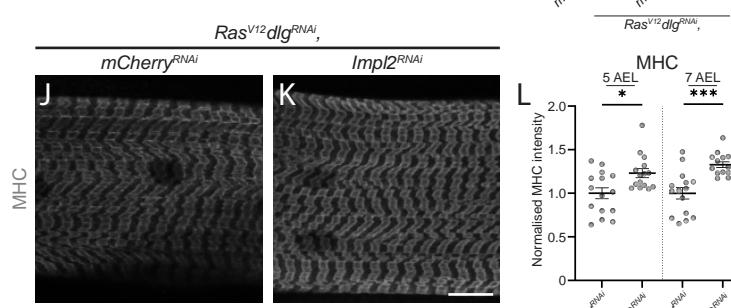
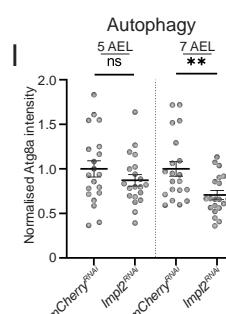
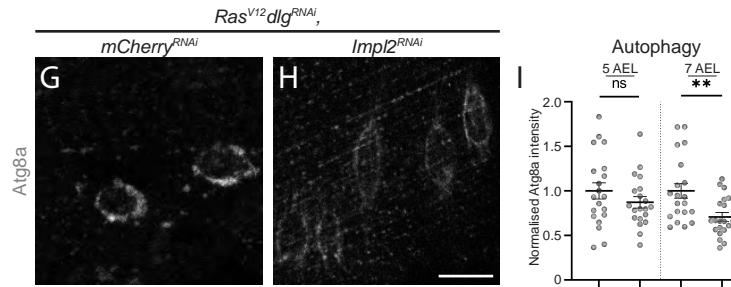
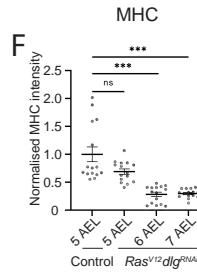
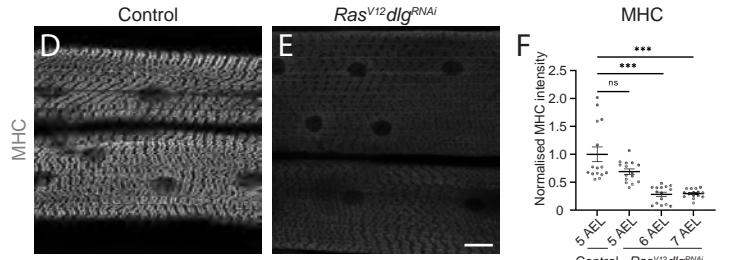
1022 A, B) Representative images of DHE staining in the muscles of control and
1023 *QRas^{V12}scrib^{RNAi};mef2-Gal4>UAS luciferase* larvae.

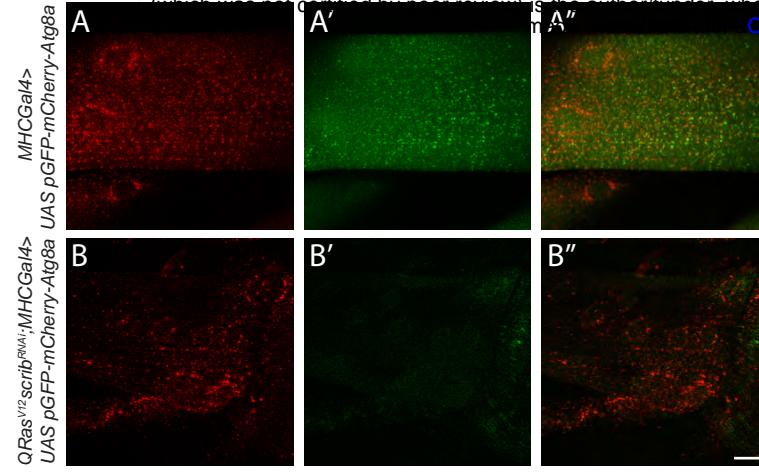
1024 C) Quantification of DHE staining in A and B, performed using Mann-Whitney U (n = 45,
1025 15).

1026 D, E) Representative muscle fillets from *QRas^{V12}scrib^{RNAi};mef2-Gal4>lacZ^{RNAi};mCherry^{RNAi}*
1027 and *QRas^{V12}scrib^{RNAi};mef2-Gal4>UAS-CatalaseA;UAS-Sod1* larvae, stained with Phalloidin
1028 to visualise actin.

1029 F) Quantification of muscle integrity in D and E, performed using Student's t-test (n = 13,
1030 11).

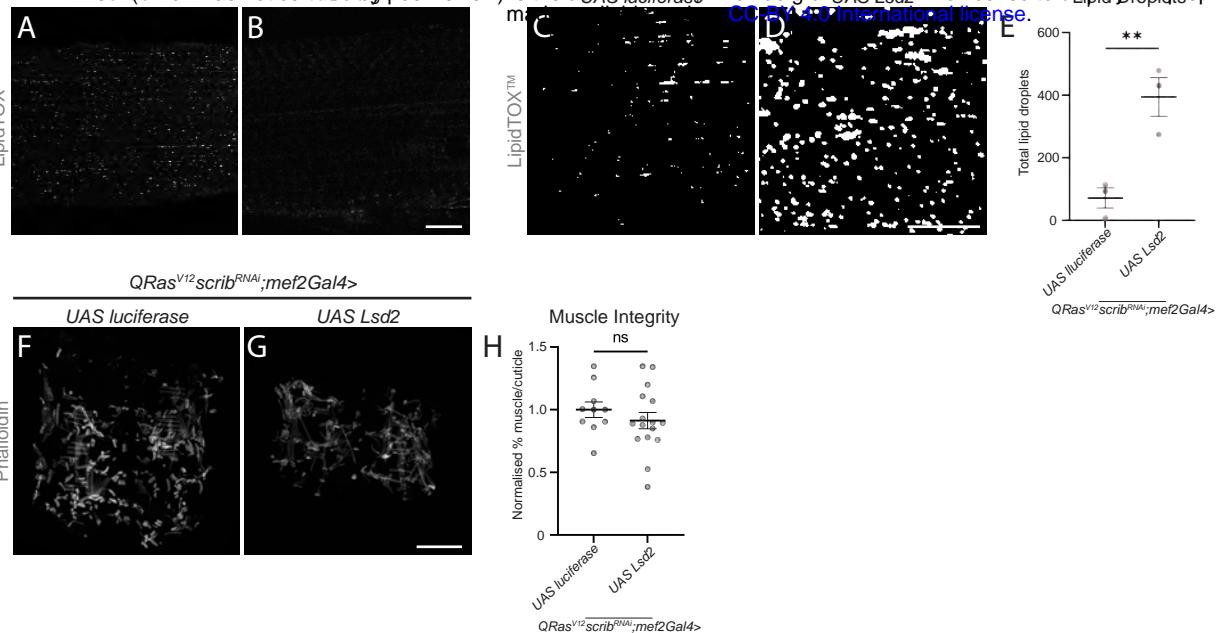
1031 G, H, I) Representative muscle fillets from *QRas^{V12}scrib^{RNAi};MHC-Gal4>mCherry^{RNAi}* (G),
1032 *QRas^{V12}scrib^{RNAi};MHC-Gal4>UAS-GPx1* (H) and *QRas^{V12}scrib^{RNAi};MHC-Gal4>UAS-Drp1*
1033 (I) larvae, stained with Phalloidin to visualise actin.


1034 J) Quantification of muscle integrity in G, H and I, performed using Kruskal-Wallis as part of
1035 an analysis with S3 R, which used the same controls (n = 13, 16, 8).

1036 Images were taken at 6 days AEL for (A), and 7 days AEL for (B, D, E, G, H and I).

1037 Scale bars: 20 μ m for (A, B), and 500 μ m for (D, E, G, H and I).


1038 All error bars are +/- SEM. P values are: ns (not significant), p > 0.05; *, p < 0.05; **, p <
1039 0.01; ***, p < 0.001; ****, p < 0.0001.

1040

1041 **Figure S3. Muscles of tumour bearing *Drosophila* larvae show defects associated with**
1042 **autophagy and translation, but these phenotypes are not necessary for muscle wasting.**
1043 A, A', A'', B, B', B'') Representative images of larval muscles of *MHCGal4* and
1044 *QRas^{VI2}scrib^{RNAi};MHC-Gal4* animals crossed to a reporter of autophagy, Atg8a, tagged with
1045 both mCherry (A, B) and GFP (A', B'). Merged images are shown in A'' and B''.
1046 C) Quantification of the ratio of Atg8a-mCherry to Atg8a-GFP in control and *Ras^{VI2}dlg^{RNAi}*
1047 larvae at days 5-7 AEL, performed using Brown-Forsythe (n = 15, 15, 15, 15, 15).
1048 D, E) Representative images of Myosin Heavy chain (MHC) staining in the muscles of
1049 control and *Ras^{VI2}dlg^{RNAi}* larvae.
1050 F) Quantification of MHC staining in control and *Ras^{VI2}dlg^{RNAi}* larvae from days 5-7 AEL,
1051 performed using Brown-Forsythe (n = 15, 15, 15, 15).
1052 G, H) Representative images of larval muscles of *Ras^{VI2}dlg^{RNAi},mCherry^{RNAi}* and
1053 *Ras^{VI2}dlg^{RNAi},ImpL2^{RNAi}* crossed to a reporter of autophagy, Atg8a, tagged with mCherry.
1054 I) Quantification of Atg8a-mCherry levels in G and H, as well as from earlier timepoints,
1055 performed using Student's t-test (5 days AEL), Welch's t-test (6 days AEL), and Mann-
1056 Whitney U (7 days AEL, n = 20, 20, 20, 20, 20, 20).
1057 J, K) Representative images of Myosin Heavy chain (MHC) staining in the muscles of
1058 *Ras^{VI2}dlg^{RNAi},mCherry^{RNAi}* and *Ras^{VI2}dlg^{RNAi},ImpL2^{RNAi}* larvae.
1059 L) Quantification of MHC staining in J and K, as well as staining from earlier timepoints,
1060 performed using Mann-Whitney U (5 and 6 days AEL) and Welch's t-test (7 days AEL, n =
1061 15, 15, 15, 15, 15, 15).
1062 M, N) Representative muscle fillets from *QRas^{VI2}scrib^{RNAi};mef2-Gal4>mCherry^{RNAi}* and
1063 *QRas^{VI2}scrib^{RNAi};mef2-Gal4>Atg1^{RNAi}* larvae, stained with Phalloidin to visualise actin.
1064 O) Quantification of muscle integrity in M and N, performed using Student's t-test (n = 6, 3).
1065 P, Q) Representative muscle fillets from *QRas^{VI2}scrib^{RNAi};MHC-Gal4>mCherry^{RNAi}*,
1066 *QRas^{VI2}scrib^{RNAi};MHC-Gal4>UAS-S6K^{CA}* larvae, stained with Phalloidin to visualise actin.
1067 R) Quantification of muscle integrity in P and Q, performed using Kruskal-Wallis as part of
1068 an analysis with S2 J, which used the same controls (n = 13, 4).
1069 Images were taken at 5 days AEL for (A, A', A'' and D), and 7 days AEL for (B, B', B'', E,
1070 G, H, J, K, M, N, P and Q).
1071 Scale bars: 20 μ m for (A, A', A'', B, B', B'', D, E, G, H, J and K), and 500 μ m for (M, N, P
1072 and Q).
1073 All error bars are +/- SEM. P values are: ns (not significant), p > 0.05; *, p < 0.05; **, p <
1074 0.01; ***, p < 0.001; ****, p < 0.0001.

1076 **Figure S4. Increasing storage of lipids in lipid droplets does not rescue muscle integrity.**
1077 A, B) Representative images of lipid droplets (LDs) stained with LipidTOX™ in the muscles
1078 of control and *Ras^{V12}dlg^{RNAi}* larvae.
1079 C, D) Binary representation of LDs stained with LipidTOX™ in the muscles of
1080 *QRas^{V12}scrib^{RNAi};mef2-Gal4>UAS-luciferase* and *QRas^{V12}scrib^{RNAi};mef2-Gal4>UAS-lsd2*
1081 larvae.
1082 E) Quantification of the number of LDs in C and D, performed using Student's t-test (n = 3,
1083 3).
1084 F, G) Representative muscle fillets from *QRas^{V12}scrib^{RNAi};mef2-Gal4>UAS-luciferase* and
1085 *QRas^{V12}scrib^{RNAi};mef2-Gal4>UAS-lsd2* larvae, stained with Phalloidin to visualise actin.
1086 H) Quantification of muscle integrity in N and O, performed using Student's t-test (n = 10,
1087 16).
1088 Images were taken at 5 days AEL for (A), 6 days AEL for (C and D), and 7 days AEL for (B,
1089 F and G).
1090 Scale bars: 20 μ m for (A, B, C and D), and 500 μ m for (F and G).
1091 All error bars are +/- SEM. P values are: ns (not significant), p > 0.05; *, p < 0.05; **, p <
1092 0.01; ***, p < 0.001; ****, p < 0.0001.
1093