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Abstract 

Background 

Due to inter-individual variation in the cellular composition of the human cortex, it is essential 

that covariates that capture these differences are included in epigenome-wide association 

studies using bulk tissue. As experimentally derived cell counts are often unavailable, 

computational solutions have been adopted to estimate the proportion of different cell-types 

using DNA methylation data. Here, we validate and profile the use of an expanded reference 

DNA methylation dataset incorporating two neuronal- and three glial-cell subtypes for 

quantifying the cellular composition of the human cortex. 

 

Results 

We tested eight reference panels containing different combinations of neuronal- and glial-cell 

types and characterized their performance in deconvoluting cell proportions from 

computationally reconstructed or empirically-derived human cortex DNA methylation data. 

Our analyses demonstrate that these novel brain deconvolution models produce accurate 

estimates of cellular proportions from profiles generated on postnatal human cortex samples, 

they are not appropriate for the use in prenatal cortex or cerebellum tissue samples. 

Applying our models to an extensive collection of empirical datasets, we show that glial cells 

are twice as abundant as neuronal cells in the human cortex and identify significant 

associations between increased Alzheimer’s disease neuropathology and the proportion of 

specific cell types including a decrease in NeuNNeg/SOX10Neg nuclei and an increase of 

NeuNNeg/SOX10Pos nuclei. 

 

Conclusions 
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Our novel deconvolution models produce accurate estimates for cell proportions in the 

human cortex. These models are available as a resource to the community enabling the 

control of cellular heterogeneity in epigenetic studies of brain disorders performed on bulk 

cortex tissue. 
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Background 

Recent years have seen acute interest in the role of epigenetic variation in the pathogenesis 

of disease. Although a number of different epigenetic mechanisms are involved in 

transcriptional regulation, the field of epigenetic epidemiology has focused primarily on DNA 

methylation (DNAm). DNAm can be quantified genome-wide using a commercial 

microarray(1, 2), making it cost effective to profile the large sample numbers required to 

detect statistically robust associations(3).  Unlike genetic association studies, the choice of 

tissue for profiling epigenetic variation is a critical part of the study design for epigenome-

wide association studies (EWAS). As the epigenome orchestrates the gene expression 

changes  underpinning cellular differentiation, genome-wide patterns of DNAm are primarily 

defined by the tissue or cell type that the DNA sample originates from(4-7). Therefore, a 

major caveat of profiling DNAm in samples isolated from ‘bulk’ tissue, (e.g. whole blood or 

brain tissue) is that each is comprised of DNA from a heterogeneous mix of different cell 

types, with the resulting profile being an aggregate of each constituent cell type.  

 

To date, most epigenetic datasets have been generated on DNA samples isolated from bulk 

tissues(8). As the proportion of each cell type within a sample can vary across individuals, 

systematic differences in cellular proportions that correlate with the phenotype of interest 

(e.g. pathology-associated changes in the abundance of a specific cell type) may manifest 

as differences in the overall epigenetic profile(9). For example, Alzheimer’s disease is 

characterised by extensive neuronal loss(10, 11) in conjunction with glial cell activation and 

proliferation in the cortex(12, 13). Adjusting analyses with quantitative covariates that 

capture the cellular composition of each sample has been widely adopted as the solution to 

minimising false positives. As experimentally derived cell counts are often not available, 

computational solutions have been proposed as an alternative. Deconvolution algorithms 

calculate a series of continuous variables reflecting the underlying cellular heterogeneity of 

each sample from the bulk tissue profile. Deconvolution algorithms can be separated into 
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two classes - supervised methods (known as ‘reference based’ algorithms)(14-20) and 

unsupervised methods (known as ‘reference free’)(21-24) 

 

Reference based methods in particular have been successfully used to control for cellular 

heterogeneity in DNAm studies of whole blood(25). However, because this approach 

requires reference DNAm profiles for each constituent cell type of interest, they are not 

applicable to the study of all tissues. Similarly, although reference profiles exist for 

deconvoluting cellular proportions from DNAm data generated on bulk cortex tissue, these 

are currently limited to estimating the abundance of neuronal and non-neuronal cells(16) - 

and do not capture the full complexity or diversity of cell types present in the brain(26, 27). 

We and others have recently developed experimental protocols using Fluorescence-

Activated Nuclei Sorting (FANS) to purify populations of nuclei from multiple cell types in 

post-mortem human cortex tissue(28-30). These methods have enabled us to refine the non-

neuronal (predominantly glial) cell population and generate reference DNAm profiles for 

oligodendrocyte, microglia and astrocyte nuclei that can be used for the cellular 

deconvolution of DNAm data generated on bulk cortex.  

 

In this study, we profile the use of these novel cell reference datasets in conjunction with the 

widely used Houseman deconvolution algorithm(15) - a constrained projection methodology 

- for quantifying the cellular composition of the human cortex. First, we validate the use of 

these reference data with computationally simulated of ‘bulk’ cortex profiles, where the 

proportion of different cell-types is predetermined. Second, we apply these reference panels 

to empirical DNAm datasets generated from bulk cortex tissue samples to profile how 

deconvolution performance, as well as cellular composition, varies across brain regions and 

development. Finally, we demonstrate how the quantification of these refined brain cell types 

can be used as phenotypic variables for detecting known cellular changes associated with 
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neuropathology in Alzheimer’s disease. To enable the wider research community to 

incorporate our novel cellular composition estimates into their workflow, our enhanced 

reference panels are available via the R CETYGO package on GitHub 

(https://github.com/ds420/CETYGO). Beyond the estimation of cell-type proportions in the 

human cortex, our analyses provide broader insights into the methodology of cellular 

deconvolution that are applicable for studies involving other cell types and tissues.  

 

Results 

 

Further refinement of neural cell types confirmed with distinct genome-wide DNAm profiles  

We used a FANS protocol previously described by our group(31) to purify nuclei populations 

from prefrontal cortex tissue dissected from 43 adult donors. Our initial gating strategy used 

an antibody against NeuN (a robust marker of post-mitotic neurons (32)) to isolate neuronal 

nuclei in combination with an antibody against SOX10 (a transcription factor involved in the 

differentiation of oligodendrocytes(33)) to distinguish oligodendrocyte nuclei from other glial 

nuclei (Supplementary Figure 1A). Subsequently, in a second gating strategy we 

additionally included an antibody against IRF8 (a transcription factor that is upregulated in 

microglia(34)) to enrich microglia from the NeuNNeg/SOX10Neg fraction (Supplementary 

Figure 1B). Our third gating strategy used an antibody against SATB2 (a DNA binding 

protein involved in transcriptional regulation and chromatin remodelling which is expressed 

in excitatory neurons in the mature central nervous system(35)) in place of NeuN 

(Supplementary Figure 1C). We generated DNAm profiles using the Illumina EPIC array for 

NeuNPos (neuron-enriched; n = 28), NeuNNeg/SOX10Pos (oligodendrocyte-enriched; n = 

24), NeuNNeg/SOX10Neg (microglia- and astrocyte-enriched; n = 21), 

NeuNNeg/SOX10Neg/IRF8Pos (microglia-enriched; n = 17), 

NeuNNeg/SOX10Neg/IRF8Neg, (astrocyte-enriched; n = 7), SATB2Pos (excitatory neuron-

enriched; n = 9), and SATB2Neg (inhibitory neuron- and glial- enriched; n = 6) nuclei 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2023.06.23.545974doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.23.545974
http://creativecommons.org/licenses/by/4.0/


populations (Supplementary Tables 1 & 2). To confirm that cell type differences were the 

primary drivers of variation in DNAm across samples, principal component (PC) analysis 

was used (Supplementary Figure 2). The first PC, which explains 43.2% of the variance in 

DNAm, separates the NeuNPos fractions (NeuNPos and SATB2Pos) from the other nuclei 

populations. The second PC, which explains 28.8% of the variance, separates the 

NeuNNeg/SOX10Neg/IRF8Pos samples from the NeuNNeg/SOX10Neg/IRF8Neg samples, 

with NeuNNeg/SOX10Neg samples, the parent fraction, in between these extremes. While 

the third PC, which explains, 3.7% of the variance, does highlight differences between nuclei 

fractions, this does not correlate with any of the antibodies we used to isolate specific cell 

types. It appears to capture a difference between the NeuNNeg/SOX10Neg and the 

NeuNNeg/SOX10Neg/IRF8Pos fractions with NeuNNeg/SOX10Neg/IRF8Neg sitting in the 

middle. This could indicate that there is another cell type, which we have not isolated, 

characterised as NeuNNeg/SOX10Neg/IRF8Neg that is lost during the IRF8 gating but 

retained in the NeuNNeg/SOX10Neg fraction. All subsequent PCs, which each explain <3% 

of the variance, do not correlate with a specific nuclei population and therefore likely reflect 

technical or biological sources of variation in DNAm between samples.   

 

In order to increase the specificity of brain cell types in our subsequent deconvolution 

analyses, we augmented our data with publicly available data from the EpiGABA(36) study 

in which the NeuNPos nuclei population is further refined using an antibody against 

SOX6(37) (Supplementary Figure 1D) using the Illumina 450K array to generate 

NeuNPos/SOX6Pos (GABAergic neuronal enriched; n = 4), NeuNPos/SOX6Neg 

(glutamatergic neuronal enriched; n = 3) and NeuNNeg (glial enriched; n = 4) nuclei 

populations isolated from occipital cortex tissue. PC analysis of this combined dataset (123 

samples from 47 donors; Figure 1) showed that PC1 (explaining 39.9% of the variance) still 

separates neuronal and non-neuronal nuclei, with the NeuNPos/SOX6Pos and 

NeuNPos/SOX6Neg clustering with the NeuNPos and SATB2Pos samples and the 

NeuNNeg clustering with the other glial fractions. PC2 (explaining 23.9% of the variance) still 
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separates NeuNNeg/SOX10Pos from NeuNNeg/SOX10Neg/IRF8Pos, with NeuNNeg 

samples located in-between these extremes reflecting the fact that this population contains 

nuclei from both of these subfractions. PC3 (explaining 11.7% of the variance) separates the 

two sets of data and likely reflects technical differences (e.g. different array types and other 

experimental batch effects). These results highlight that the major cell type differences in 

DNAm are highly reproducible across data generated in different laboratories and dominate 

over batch effects and inter-individual differences. We therefore decided that for the 

purposes of generating the most extensive set of cellular composition estimates we would 

merge our data with the EpiGABA DNAm data into a single dataset.   

 

Accuracy of cellular composition estimation depends on the combination of cell types 

included in the reference panel 

Given the large number of nuclei fractions included in our final DNAm reference dataset, 

some of which target overlapping cell populations due to the different FANS gating strategies 

used, we defined 8 different combinations of cell types to serve as reference panels for the 

deconvolution of cellular composition of cortical DNAm data (Table 1, Supplementary 

Figure 3). Six of these represent mostly complete, non-overlapping and increasingly refined 

combinations, whereby any given cell type should be contained within a single fraction. 

These enabled us to characterise how deconvolution performance was affected by 

increasing the specificity of cellular composition. Two of the panels (4 and 5), contain 

overlapping fractions (SATB2Pos and NeuNPos), that both capture excitatory neuronal 

nuclei. These panels were included to observe how the algorithm handles this direct conflict.  

 

To compare the performance of the different panels, we performed a series of simulations 

where we could contrast predicted composition against a known truth. Briefly for each panel, 

we held one sample of each nuclei fraction back, selected the sites for deconvolution using 

all other samples for that fraction. We then used the excluded sample to construct bulk brain 

DNAm profiles where we combined cell-specific profiles in a weighted linear sum of pre-
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specified proportions of each cell type (see Methods). As well as comparing 8 different 

combinations of cell types, for panels with > 2 fractions, we also compared two methods, 

ANOVA and IDOL (IDentifying Optimal Libraries) algorithm(19), for selecting cell-specific 

sites that are the basis of the algorithm. In total 15 different training models were considered 

in the Houseman constraint projection deconvolution methodology(15) using these learnt 

parameters to estimate the cellular composition of a bulk profile. Overall accuracy of the 

deconvolution was captured by two metrics, the CETYGO score(38), which quantifies the 

accuracy of cellular deconvolution where the true cellular composition is unknown, and root 

mean square error (RMSE), which requires the cellular composition to be known.  

 

In general, each reference panel combination yielded highly accurate estimates of cell 

proportions (average CETYGO < 0.10 using either ANOVA or IDOL) with performance being 

comparable across the different panels and site selection methods (Figure 2, 

Supplementary Figure 4, Supplementary Table 3). For each reference panel, we 

performed the deconvolutions with increasing numbers of cell-specific sites but found that 

this had little effect on the accuracy of the deconvolution (Supplementary Figure 5, 

Supplementary Figure 6). Marginally the best panel, measured by both the CETYGO score 

and RMSE was panel 6 (NeuNPos/SOX6Pos, NeuNPos/SOX6Neg, NeuNNeg). Of note, the 

separation of the NeuNNeg/SOX10Neg fraction into NeuNNeg/SOX10Neg/IRF8Pos and 

NeuNNeg/SOX10Neg/IRF8Neg (e.g. comparing panel 1 with panel 2) was associated with a 

slightly lower CETYGO score, indicative of a composition profile that captured more of the 

variation in the bulk tissue. This was generally also true of the separation of the NeuNPos 

fraction into NeuNPos/SOX6Pos and NeuNPos/SOX6Neg fractions (e.g. comparing panel 2 

with panel 8) although not ubiquitously the case. In contrast, more refined cellular 

deconvolution models (i.e. incorporating more cell types) were associated with a slightly 

higher RMSE (Supplementary Figure 4) indicating that although the inclusion of more cell 

types gives a better representation of the variation in a bulk tissue, the estimates of the 

individual fractions are associated with a higher degree of error. We also observed this 
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pattern when comparing the reference panels that consist of both SATB2Pos and NeuNPos 

(panels 4 and 5).  

 

Looking more specifically at the accuracy of estimating the proportion of particular nuclei 

fractions, we observe noticeable variation in the degree of accuracy (Figure 3, 

Supplementary Table 4, Supplementary Figures 7-14). Some cell types performed 

consistently accurately, regardless of which reference panel was used. Furthermore, we 

could group cell types based on their summary statistics. As described above, the accuracy 

of estimating the proportion of NeuNPos and SATB2Pos nuclei was dramatically reduced in 

the two reference panels (4 & 5) where they were both included and therefore all subsequent 

analyses focused on panels were either one or the other was used. The top performing cell 

fractions with near perfect estimates included NeuNPos, NeuNNeg, NeuNPos/SOX6Pos and 

NeuNPos/SOX6Neg (all r ≥ 0.99 and RMSE ≤ 0.02, Supplementary Table 4). 

NeuNNeg/SOX10Neg, NeuNNeg/SOX10Neg/IRF8Pos, SATB2Pos, and SATB2Neg are 

associated with marginally larger errors but still perform well with r ≥ 0.92 and RMSE ≤ 0.06. 

Of note the NeuNNeg/SOX10Pos fraction showed the most variation across panels. When 

included in a panel where the NeuNNeg/SOX10Neg fraction was replaced with the 

NeuNNeg/SOX10Neg/IRF8Pos and NeuNNeg/SOX10Neg/IRF8Neg fractions, this had a 

dramatic effect on the accuracy of NeuNNeg/SOX10Pos estimates, with the correlation 

statistic (r) decreasing from ~ 0.95 to ~ 0.7 and the RMSE doubling from ~ 0.05 to > 0.1. The 

best statistics for predicting the NeuNNeg/SOX10Neg/IRF8Neg fraction come from panel 5 

(which interesting includes both SATB2Pos and NeuNPos) with r = 0.81 and RMSE = 0.09; 

of note this fraction provides the least accurate prediction metrics. Instead considering the 

(signed) error, we observed that some cell types were associated with a particular bias in 

their estimation; for example, both NeuNNeg/SOX10Neg (median error = 0 - 0.022) and 

NeuNNeg/SOX10Neg/IRF8Pos (median error = 0.007 – 0.025) were typically overestimated 

(Figure 3, Supplementary Table 4). These results highlight how the accuracy of prediction 

for a given cell type is influenced by which other cell types are included in the deconvolution 
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model, even when using a non-overlapping reference panel. Additionally, our results indicate 

that the accurate estimation of one cell type in a panel does not necessarily mean that the 

proportions of other cell types in that panel are also well estimated. A natural consequence 

of these conclusions is that to get the most precise estimates of a diverse set of cell types, 

different reference panels may need to be utilised in parallel. All these analyses were 

repeated using the IDOL method for selecting cell-specific sites for deconvolution, and there 

was no clear evidence that one method for selecting cell-specific prediction sites 

outperformed the other (Figure 3, Supplementary Figure 4).  

 

Technical variation influences the accuracy of cellular deconvolution 

Having demonstrated that our new reference panels for cellular deconvolution are capable of 

calculating accurate estimates of cellular composition in the cortex, we used them to 

calculate estimates in two large bulk DNAm datasets generated using adult prefrontal cortex 

tissue. The first dataset (the ‘Exeter’ dataset) incorporates a number of datasets generated 

by our group (http://www.epigenomicslab.com) (n = 377, age range = 19-108 years 

old)(39-43) and the second represents a publicly available dataset described by Jaffe et al. 

(n = 415, age range = 18-97 years old) (44). Profiling the accuracy of the deconvolution 

using the CETYGO score highlighted that all panels performed well (mean CETYGO < 0.10), 

with reference panel 6 (NeuNPos/SOX6Pos, NeuNPos/SOX6Neg, NeuNNeg) being 

associated with the lowest scores (Supplementary Figure 15) consistent with the simulation 

results. This was closely followed by panels 7 (NeuNPos/SOX6Pos, NeuNPos/SOX6Neg, 

NeuNNeg/SOX10Pos, NeuNNeg/SOX10Neg) and 8 (NeuNPos/SOX6Pos, 

NeuNPos/SOX6Neg, NeuNNeg/SOX10Pos, NeuNNeg/SOX10Neg/IRF8Pos, 

NeuNNeg/SOX10Neg/IRF8Neg), with the other 5 panels performing similarly. Of note, 

CETYGO scores were strongly correlated across panels (Supplementary Figure 16), 

suggesting that regardless of reference panel, there are other important influences on the 

accuracy of the estimates, such as data quality.  
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Subsequently, testing for biological or technical factors that influence the accuracy of cellular 

deconvolution we found that the CETYGO score was significantly associated with batch 

(Figure 4A) in both datasets, across all reference panels (Supplementary Table 5). There 

was a significant effect (P < 0.00333 corrected for 15 training models) of sex on the 

CETYGO score for 4 models in the Exeter dataset and 10 models in the Jaffe dataset 

(Supplementary Table 5). In all cases, females were associated with a slightly lower 

average error (Supplementary Figure 17) especially when the ANOVA method was used to 

select cell-specific sites (11/14 significant associations), despite more male samples being 

included. Of note, there was no association with age or age squared on prediction accuracy 

in either dataset (Supplementary Table 5). 

 

Neural cellular deconvolution panels derived from adult cortical samples do not effectively 

capture cellular heterogeneity in the cerebellum or fetal DNAm datasets 

While our reference profiles were generated from populations of nuclei isolated from 

prefrontal and occipital cortical tissue, they are potentially relevant for estimating the 

proportion of the same cell types in other brain regions, especially other regions of the 

cortex. We performed cellular deconvolution using DNAm profiles from an additional 851 

samples (age range = 19 -108 years old)(39-42, 45, 46) generated by our group from 9 other 

brain regions including additional cortical regions, the striatum, the hippocampus, and 

cerebellum (Supplementary Table 6). These analyses showed that the CETYGO scores in 

cerebellum samples are dramatically elevated, indicating that the cellular composition 

estimates for this tissue are unlikely to be accurate (Figure 4B, Supplementary Figure 18). 

It is known, for example, that the predominant neuronal subtype in the cerebellum (Purkinje 

cells) do not express NeuN(47). We also observe subtle differences in performance between 

the other 8 regions, although the distribution of CETYGO scores largely overlap with those 

observed in the prefrontal cortex (Supplementary Table 7). 
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We also wanted to confirm whether our reference panels were suitable for use in samples 

from donors at earlier stages of development. To this end we used 167 prenatal and 

childhood DNAm profiles generated from bulk cortex samples by our group (age range = 23 

days post conception – 17 years old)(39, 48). We found consistently elevated CETYGO 

scores in the prenatal samples regardless of the specific developmental stage, comparable 

with those seen in the cerebellum samples (Figure 4C, Supplementary Figure 19) 

suggesting that bespoke reference panels are required to estimate cellular proportions in 

prenatal cortex tissues. The distribution of postnatal childhood and adolescent samples 

CETYGO scores are comparable to adult scores. Of interest, reference panel 3 has the 

smallest difference between prenatal and postnatal CETYGO scores reflecting the fact that 

SATB2 is a more robust marker of neuronal cells than NeuN in the prenatal cortex(49). 

 

Variable abundance of neuronal and glial cells in the adult prefrontal cortex 

While there has been a fair degree of interest in profiling the cellular heterogeneity of the 

brain, variation in study design and methodologies have made it challenging to harmonise 

existing fields into a single estimate for the cortex(50). Confident that we can derive accurate 

estimates of cellular proportions in the adult cortex, we used our novel reference panels to 

characterise the cellular composition of the adult cortex using both datasets. In order to 

make inferences about the relative proportions of different subtypes of neurons and glial 

cells, we limited these comparisons to the estimates derived from reference panel 8, which 

contained the most specific combination of cell fractions using the IDOL method to select 

cell-specific sites. Plotting the distribution of cellular composition, we observe high levels of 

inter-individual variation (Figure 5, Table 2) across the samples. Glial cells were more 

abundant than neuronal cells (Exeter: mean neuronal proportion 0.336 (SD = 0.0627) vs 

mean glial proportion 0.683 (SD = 0.0723), Jaffe: mean neuronal proportion 0.309 (SD = 

0.0582) vs mean glial proportion 0.711 (SD = 0.0692)). Within the neuronal cells, 

NeuNPos/SOX6Neg were more abundant on average (Exeter: mean = 0.306 (SD = 0.0557), 
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Jaffe: mean = 0.295 (SD = 0.0555)) than NeuNPos/SOX6Pos cells (Exeter: mean = 0.0303 

(SD = 0.0155), Jaffe: mean = 0.0132 (SD = 0.00989)). Within the glial cells, the 

NeuNNeg/SOX10Pos were most abundant on average (Exeter: mean proportion = 0.273 

(SD = 0.153), Jaffe: mean proportion = 0.305 (SD = 0.133)) followed by the 

NeuNNeg/SOX10Neg/IRF8Neg (Exeter: mean proportion = 0.241 (SD = 0.0928), Jaffe: 

mean proportion = 0.232 (SD = 0.0807)). NeuNNeg/SOX10Neg/IRF8Pos was the least 

abundant predicted fraction ((Exeter: mean proportion = 0.169 (SD = 0.0388), Jaffe: mean 

proportion = 0.175 (SD = 0.0289)). The broad consistency across datasets in these relative 

abundance estimates supports the notion of an average pre-determined ratio of brain cells to 

underpin brain function but that this is highly variable across individuals. It is therefore, 

important to quantify cellular composition accurately for the purposes of controlling for 

potential confounding and may indeed be an interesting phenotype themselves in the study 

of brain development and brain disease. 

 

Exploring this further, were interested if there were any biological factors associated with the 

variation in cellular composition we observed. To streamline these analyses, we selected the 

optimal reference models for estimating the composition of each cell fraction 

(Supplementary Table 8), noting that correlations between fractions across panels were 

very high (Supplementary Figure 20). Testing the proportion of each cell type against age 

and sex, the only association that survived multiple testing in both datasets (P < 0.005, 

corrected for 10 cell types), was a higher proportion of NeuNPos/SOX6Pos cells in males 

(Exeter mean difference in males = 0.00229, P = 5.84x10-5; Jaffe mean difference in males = 

0.00653, P = 6.97x10-5)(Supplementary Table 9; Supplementary Figures 21-24).  

 

The degree of Alzheimer’s disease neuropathology is associated with DNAm derived 

estimates of neuronal and glial composition 

Finally, we were interested in whether the added specificity of our cellular composition 

estimates could enhance our understanding of the neuropathology of Alzheimer’s disease 
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using data from recent analyses of DNAm differences associated with tau and amyloid 

pathology using bulk cortex(30). We estimated cellular proportions for each of the 10 

fractions across three datasets where DNAm had been profiled in bulk prefrontal cortex 

tissue samples (total N = 864; Supplementary Table 10)(30, 42, 43).  To ensure our 

subsequent analysis of cellular proportions were not biased, we first tested whether 

increasing tau pathology (quantified by Braak stage) influences the accuracy of cellular 

deconvolution. Although all models showed the same trend of decreasing CETYGO scores 

associated with increasing neurofibrillary tau tangles (Supplementary Table 11), only the 

CETYGO scores from reference panel 3 (mean change per Braak stage = -9.14x10-4,P = 

8.24x10-5) were significantly related to pathology (P < 0.00333, corrected for 15 models). We 

found a significant association (P < 0.005, corrected for 10 cell types) for the prevalence of 

two estimated cell fractions with increasing levels of AD pathology (Figure 6, 

Supplementary Table 12). These data detected a decrease in the proportion of 

NeuNNeg/SOX10Neg nuclei (mean change per Braak stage = -0.00459, P = 0.00172), and 

an increase in the proportion of NeuNNeg/SOX10Pos nuclei (mean change per Braak stage 

0.0744, P = 0.000555) with increasing tau pathology. There were also trends for significant 

negative correlations between the proportions of NeuNPos nuclei (mean change per Braak 

stage = -0.00282, P = 0.00993), SATB2Pos nuclei (mean change per Braak stage = -

0.00365, P = 0.00574) and NeuNPos/SOX6Pos (mean change per Braak stage = -0.00106, 

P = 0.00755) and a trend for a positive correlation with NeuNNeg (mean change per Braak 

stage = 0.0036, P = 0.006543).  

 

Discussion 

We have generated genome-wide DNAm profiles for different cell types isolated from human 

cortex tissue, including novel profiles for several glial subtypes. We have demonstrated that 

these are applicable for use with established deconvolution algorithms and can be used to 

estimate cellular proportions in the cortex and other regions of the human brain from bulk 

DNAm data. Our proposed reference panel for deconvolution is the most extensive available 
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for the human cortex and enables the prediction of neurons and glia, in addition to the 

prediction of two neuronal sub types (excitatory and inhibitory) and three glial subtypes 

(oligodendrocytes, microglia and astrocytes). We demonstrate that this approach produces 

accurate and informative estimates of cellular proportions from DNAm profiles generated 

using adult bulk human cortex samples but is not appropriate for the use in prenatal or 

cerebellum samples for which bespoke reference panels will be required. 

 

Previous efforts to characterise the cellular composition of the human brain has produced a 

wide range of estimates, especially where the ratio of different cell types is concerned. This 

is in part due to the use of different methodologies, but perhaps more critically, due to the 

study of different brain regions and variation in whether the assay was limited to just the grey 

matter, white matter, or both(50). Our data could prove valuable in synthesising the existing 

research into a coherent conclusion. We observed approximately twice as many glial cells 

relative to neuronal cells, in line with the previously reported glial to neuronal ratio for cortical 

tissue consisting of both white and grey matter(50). Of neuronal cells we found that the 

proportion of GABAergic (inhibitory) neurons in the order of 5-10%, a bit lower compared to 

published literature stating this is between 10 and 20%(51). Within non-neuronal cells, we 

found that oligodendrocytes were the most frequent glial subtype, representing ~40% of glial 

cells, followed by astrocytes (~35%) and then microglia (~25%). The rank ordering of 

abundance of glial subtypes is broadly consistent with the existing literature, although the 

estimated proportions differ, with a lower than expected proportion of oligodendrocytes and 

higher than expected proportion of microglia. We should caveat that our analysis of 

computationally constructed bulk profiles highlighted that the estimation of microglia 

proportion is better than the estimation of oligodendrocyte proportion and the estimation of 

astrocyte proportion is worst. Critically, our data highlight large variation in the composition 

of different cell types across samples, consistent with previous deconvolution studies of 

brain(16) and studies of cellular heterogeneity using other methods(50), reinforcing the 

importance of including these variables as covariates in association analyses(9).  
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As well as being potential confounders, there is interest in using these variables as 

phenotypes in epidemiological studies to identify the sources of the variation. We tested for 

effects of age and sex, and only found nominal associations between sex and one cell type, 

inhibitory neurons.  To establish the biological validity of these cellular composition variables 

we tested them against semi-quantitative measures of Alzheimer’s disease neuropathology 

in existing datasets generated by our group(30, 42, 45). Our data was consistent with the 

known neuropathological effects of neuronal loss observed with the progression of 

Alzheimer’s disease(10, 11, 52), highlighting a decrease in the proportion of neurons 

observed in both inhibitory and excitatory neurons. We also detected changes in the 

composition of glial cells with the proportion of oligodendrocytes increasing and the 

proportions of microglia and astrocytes decreasing as tau tangles accumulate in the brain. 

This finding does not contradict reports that astrocytes and microglia exhibit enhanced 

activity in Alzheimer’s disease(12, 13, 53). Cellular deconvolution harnesses sites in the 

genome where there are cell-specific DNAm signatures that define cell identity (i.e. 

ubiquitous across all cells of that type) and likely does not capture changes in activation 

state (which potentially varies across a population of cells). One of the limitations of the 

methodology is it only allows us to determine cellular proportions rather than abundances. 

Given that the proportion of one cell type is influenced by the abundance of all cell types, 

significant associations with the proportion of an individual cell type might not be due to 

changes in the abundance of that cell type but changes in the overall composition. For this 

reason, caution needs to be applied when interpreting significant associations with these 

variables. 

  

Given the use of four different FANS gating strategies to obtain different populations of 

nuclei, we had reference data for 10 different fractions of brain cell types, where some of 

these fractions targeted overlapping sets of nuclei. For this reason, we were able to propose 

8 different ways to combine these data into reference panels for cellular deconvolution, with 
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6 of these reference panels consisting of non-overlapping fractions of nuclei. This is 

therefore, the most comprehensive study to date investigating how the composition of 

different reference panels affects the estimation of cellular heterogeneity. While our novel 

reference panel is primarily of interest to those studying variable DNAm in brain disorders, 

our analyses provide broader insights into the methodology of cellular deconvolution that are 

application for studies involving any bulk tissue.  

 

It is reasonable to assume that the optimal reference panel would have the most diverse and 

specific set of cell types available, and our data demonstrate subtle improvements in 

accuracy when using models that contain a more specific set of subtypes. In addition to 

comparing different reference panels we also compared two methods for selecting cell 

specific sites (i.e. how the deconvolution model itself is trained) using an ANOVA or the 

IDOL algorithm(19), although this did not introduce much variation in performance. We found 

larger differences in performance between cell types and between reference panels than 

between training methodologies. We conjecture that this is due to variation in the quality of 

the reference data for each cell type, which is affected by both the signal-to-noise ratio of the 

DNAm array data and the efficiency of the isolation of those cell types. We were able to 

classify the different fractions into three performance tiers. The top tier with near perfect 

performance in our simulations included NeuNPos (neuronal enriched), NeuNPos/SOX6Pos 

(GABAergic neuronal enriched), NeuNPos/SOX6Neg (glutamatergic neuronal enriched) and 

NeuNNeg (glial enriched). The next tier, also associated with high accuracy statistics, 

included NeuNNeg/SOX10Neg (microglial & astrocyte enriched), 

NeuNNeg/SOX10Neg/IRF8Pos (microglial enriched), SATB2Pos (excitatory neuronal 

enriched), and SATB2Neg (inhibitory neuronal and glial enriched). The third tier included 

NeuNNeg/SOX10Pos (oligodendrocyte enriched) and NeuNNeg/SOX10Neg/IRF8Neg 

(astrocyte enriched) which were associated with a noticeable drop in performance metrics. 

While they likely still function as valuable proxies for variation in composition associated with 

these cell types, they are potentially affected by more noise, which will negatively affect the 
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power to detect between-sample differences with these cell types. We expected that 

positively selected fractions (i.e. where an antibody is used to isolate a subset of nuclei) 

would be associated with higher degree of accuracy than negatively selected fractions (i.e. 

the population of unstained nuclei) due to increased levels of heterogeneity. This was not 

always the case, with the NeuNNeg/SOX10Neg fraction predicted more accurately than 

NeuNNeg/SOX10Pos fraction. Even within a purified population of nuclei, there is likely to be 

a heterogeneous mixture of different cellular subtypes and the extent of this heterogeneity 

will vary depending on the class of cell types and the activation state of any given cell. 

Another factor influencing the accuracy of the estimates of particular cell types is the 

availability of DNAm sites in the dataset that differentiate cell types. As has been shown for 

cell types in whole blood(54), our data confirmed that the magnitude of differences between 

brain cells is largely a function of their lineage. In other words, the major source of variation 

in these data was captured differences between the two major classes of brain cells, 

neurons and glial. The subsequent lower order sources of variation then captured the 

differences within these classes (e.g. astrocytes from oligodendrocytes). Interestingly, 

microglia, which arise from an entirely different lineage compared to the other brain cell 

types, sit within the glial cluster. There are fewer (and smaller) differences between more 

developmentally-related cell types to harness for deconvolution, making the analysis more 

difficult. This highlights a potential limitation of using microarray technology; having 

genuinely genome-wide DNAm data would likely be an advantage for or even essential for 

further resolving the cellular heterogeneity of the brain further into more specialised cell 

types.  

 

When characterising the performance of estimates of cellular composition there are two 

statistical properties to consider. First is the absolute accuracy, which is important if the 

objective is to make inferences about the cellular profile of the brain. Second is the ability to 

capture a gradient of variation, i.e. the correlation. This is important if the aim is to test for 

associations with other phenotypes or use as covariates in analyses. When deciding which 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2023.06.23.545974doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.23.545974
http://creativecommons.org/licenses/by/4.0/


set of cellular composition variables to use, it is worth considering what they are going to be 

used for. If the objective is to test for associations between each cell type and an outcome 

(or adjusting for this variation) then it would be logical to select the most accurate estimate 

for each cell type, even if this means using different models for different cell types. The 

consequence of this approach is that the sum across all the cell types will not total 1.  

 

When comparing the performance of different reference panels we have demonstrated how 

our accuracy metric for cellular deconvolution, CETYGO(55), can be applied. Our results 

reinforce the conclusions from the original work, that the parameters of the distribution of the 

CETYGO score are reference panel and technology specific. The association in the 

analyses between batch and accuracy highlight that data quality are important not only for 

increasing power to detect significant effects with an outcome, but also to effectively capture 

cellular heterogeneity. We therefore, recommend that not only do future studies take 

advantage of our expanded set of brain cell type composition variables, but that they also 

include the CETYGO score as part of their quality control to identify outlier samples.  

 

Conclusions 

In summary, we have generated an expanded set of reference data for the purpose of 

estimating the cellular heterogeneity of DNAm profiles generated from bulk human cortex 

tissue. These variables will be critical covariates to include in future epigenetic studies of 

brain disorders to minimise the risk of false positive associations and improve our 

understanding of the changes in the brain that underpin the development of psychiatric 

disorders and neurodegenerative diseases.   

 

Methods  

Isolation of neural nuclei from post-mortem brain tissue 

Post-mortem prefrontal cortex (PFC) samples were processed using our optimised FANS 

protocol(31). PFC post-mortem brain tissue from 43 adult donors (aged 55-95 years old) was 
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provided from 9 brain banks from the UK, Canada and US (Brains for Dementia Research 

Network of Brain Banks, King’s College London, Harvard, UCLA, Oxford, Miami, Douglas 

Bell, Pittsburgh and Mount Sinai Brain Banks). Human cortex tissue was collected under 

approved ethical regulation at each centre and transferred to our care through Materials 

Transfer Agreements.  

 

500 mg of frozen brain tissue was homogenised in lysis buffer (2mL) using a pre-chilled 

Dounce homogeniser. The homogenate was layered above 8mL of sucrose solution in 

ultracentrifuge tubes (Thermo Scientific, Cat N# 03699) (1mL per tube) and overlaid with a 

lysis buffer (2 mL per tube) for a final volume of 11 mL. Following the purification of nuclei by 

density gradient ultracentrifugation (model: Sorvall™ WX 80+; rotor: TH-641; speed: 

108670.8 x g, 45 min at 4°C) each nuclei pellet was resuspended in 1 mL staining buffer and 

incubated on ice for 10 min. Nuclei suspensions were then pelleted in 2mL Eppendorf tube 

(DNase, RNase free) by centrifugation at 1000xg, 5 min at 4°C. After carefully discarding the 

supernatant, nuclei pellets were resuspended in fresh staining buffer and pooled together. 

After adding 2 µL of DNA dye (Hoechst 33342, Abcam, Cat # ab228551) 150μL of nuclei 

solution (Hoechst only), was transferred in a new 2mL tube and volume made up to 1mL 

with fresh SB for use as the Unstained Control. For the “Stained” tube, the volume removed 

was replaced with fresh staining buffer and the suspension was then immune-stained with a 

combination of antibodies including, NeuN-Alexa488, anti-SOX10 NL577-conjugated and/or 

anti-IRF8 APC-conjugated antibodies. Details of the three different gating strategies we 

implemented can be seen in Supplementary Figure 1. Both stained and unstained tubes 

were incubated for 1.5 hours on a spinning rotor in the dark at 4 °C. Tubes were spun at 

1000 x g, for 5min at 4°C and the supernatant was carefully discarded from both tubes and 

remaining nuclei pellets were re-suspend in staining buffer (500µl unstained, 1 - 1.5mL 

stained tube - dependent on pellet density) using wide bore tips. Tubes were brought to the 

FACS Aria III cell sorter and kept on ice for the entire procedure of machine setup and 

sorting. Nuclei suspensions were assessed for the presence of debris by adjusting the gating 
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strategy appropriately before proceeding with nuclei capture. The 100 µM nozzle was used 

and the event rate during data acquisition and sample collection was kept ≤ 3000 

events/sec. On average, for each sorted population, 200,000 nuclei were collected for 

extraction of genomic DNA.  

 

DNA extraction  

Nuclei aliquots were defrosted on ice and 50 mL the volume of the aliquots made up to 1mL 

with Slagboom buffer (SB) (5mL 10x STE buffer, 5mL 5% SDS, 40mL RNase-free DNase-

free water) ). Nuclei were collected and stored in FACSFlow buffer, approximately 600µL per 

tube for 200,000 nuclei. 1μL of DNase free RNase-A (10 mg/ml) per 500μL of sample was 

added and the samples were incubated at 37°C for 45 min (heat block). 5μL of proteinase K 

(20 mg/ml) (Thermo Fisher Scientific, Waltham, MA, USA) was then added and the samples 

were inverted at least 10 times. The samples were then incubated at 60°C for 1 hour, and 

then cooled to room temperature (RT) for 5 min. 200μL of “Majik Mix” (a proprietary reagent 

made from 1:1 ratio yeast Reagent 3 (Autogen Bioclear, Caine, Wiltshire, UK) and 100% 

ethanol) was added and the samples were mixed by vigorous inversions before being 

centrifuged at 17,000xg for 10 minutes at RT. For each sample the supernatant was 

carefully recovered and transferred to a new labelled tube (50μL was left at the bottom of 

each tube). Another 200μL of Majiik Mix were added to each tube and samples were again 

mixed by vigorous inversion before being centrifuged at 17,000xg for 10 minutes at RT. The 

upper layer of each tube was carefully recovered (making sure to leave approximately 50μL 

to prevent carrying over any of the lower layer) and transferred to a new appropriately 

labelled tube. Where exceeding 1mL total volume, supernatant was equally distributed into 2 

new tubes. An equal volume of 100% Isopropanol (Sigma- Aldrich Corporation, St. Louis, 

MO, USA) was added to each sample (e.g. 1mL supernatant + 1mL 100% Isopropanol) and 

slowly mixed by inverting to precipitate the DNA. At this stage, 0.5-0.8μL GlycoBlue™ Co-

precipitant (Invitrogen Ltd, Inchinnan, UK) was added to each sample. When a typical 

acetate/alcohol precipitation is done, the GlycoBlue™ Coprecipitant will precipitate with the 
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nucleic acids, facilitating good DNA recovery while increasing the size and visibility of the 

pellet. The samples were then mixed by inverting the tubes ~10 times and centrifuged at 

17,000xg for 15 minutes at RT. For each tube the supernatant was carefully removed and 

discarded. 500µL of 80% ethanol were added to each tube, samples were then mixed gently 

and centrifuged at 17,000xg for 5 min. The supernatant was carefully removed and the 

pellets were left to air dry for 20 minutes or until dry. Each DNA pellet was resuspended in 

15µL of RNAse, DNase-free water and left at 4ºC overnight to fully dissolve before 

quantification. 

 

Methylomic profiling 

500ng of genomic DNA from each sample was treated with sodium BS using the Zymo EZ-

96 DNA Methylation-Gold™ Kit (Cambridge Bioscience, UK) according to the manufacturer’s 

standard protocol. All samples were then processed using the EPIC 850K array (Illumina Inc, 

CA, USA) according to the manufacturer’s instructions, with minor amendments and 

quantified using an Illumina HiScan System (Illumina, CA, USA). Individuals were 

randomised and sorted fractions from the same individual and FACs gating run were 

processed on the same BeadChip, where within a BeadChip the location of each fraction 

was randomised. In total 42 NeuNPos, 39 NeuNNeg/SOX10Pos, 33 NeuNNeg/SOX10Neg, 

12 SATB2Pos, 19 NeuNNeg/SOX10Neg/IRF8Neg, 34 NeuNNeg/SOX10Neg/IRF8Pos, and 

9 SATB2Neg samples were run on the DNAm arrays.  

 

DNAm data preprocessing 

DNA methylation data was loaded in R (version 3.6.3) from idat files using the package 

bigmelon(56). These data were processed through a standard quality control pipeline which 

included the following steps: 1) checking methylated and unmethylated signal intensities, 

excluding samples where this was < 500; 2) using the control probes to ensure the sodium 

bisulfite conversion was successful, excluding any samples with median < 80; 3) use of the 

59 SNP probes to confirm that samples from the sample individual were genetically identical; 
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4) pfilter function from wateRmelon package  to exclude samples with > 1% of probes with 

detection P-value > 0.05 and probes with > 1% of samples with detection P-value > 0.05 5) 

counting the number of missing values per sample and excluding samples with > 2% probes 

missing.  

 

To confirm the success of the FANS sorting we applied a bespoke classification algorithm 

based on principal components analysis across all autosomal DNA methylation sites. The 

general objective was to compare each sample to the average profile of the labelled sample 

type. We Studentized the values of the first two principal components and excluded those 

above a threshold of 1.5, to minimise the effects of outliers (which are likely to be due to 

either mislabelling or suboptimal FANS sorting) on the average profiles for each cell type. 

For each cell type, we then calculated the mean and SD of the first two principal components 

only including the non-outlier samples. These were then used to calculate sample level 

scores that captured the similarity of the observed sample and the expected profile for that 

cell type. This was defined as the value of the principal component for that sample minus the 

mean for the cell type divided by the standard deviation for the cell type. The value can be 

interpreted as the number of SD from the mean that sample is, where lower values are 

desirable. This was performed separately for the first two principal components and then 

combined into a single score by taking the maximum, referred to here as the maxSD score. 

Prior to confirming the labelling of individual samples, we first wanted to confirm at an 

individual level that we had successfully isolated distinct fractions of nuclei. For this we 

calculated individual level metrics that represents the efficiency of the FANS sort. These are 

defined as the median across all the maxSD scores for that individual. Where the FANS 

sorting worked well (i.e. all antibodies were stained and gated accurately), all the samples 

from that individual should be close to their relevant average profile and this score will be 

low. Where the FANS sorting for an individual did not successfully isolate the relevant cell 

types, these samples will still be heterogeneous mixtures of cells, and sit in the middle of the 

principal component space, far away from their average profile, all with large maxSD. By 
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taking the median, we ensure that we focus here on detecting FANS sorts, where the 

separation into specific cell types was not successful, rather than instances where just 

one/two samples are affected/mislabelled. Visual inspection of the best and worst performing 

individuals, informed us that a threshold of 5 was appropriate. It is also important to exclude 

these individuals prior to performing the cell type checking at a sample level as it enables us 

to ensure we have high signal to noise average profiles for the cell types. Having excluded 

all the samples associated with any individual deemed to have inefficient FANS sorting, we 

recalculated the Studentized values prior to recalculating the cell type means and SD for the 

first two principal components.  Samples were retained if their principal components values 

were within two standard deviations of the mean of their labelled cell type.  Samples that 

were more than two standard deviations away from the mean in either of the first two 

principal components were excluded from further analyses. Samples were then normalised 

using the dasen function(57), separately for each cell type.    

 

EPIGABA data 

DNA methylation data generated with Illumina 450K BeadChip array were downloaded from 

the Synapse portal (syn7072866) for 5 NeuNPos/SOX6Pos, 5 NeuNPos/SOX6Neg, and 5 

NeuNNeg samples. idat files for these samples were put through the same quality control 

pipeline described above, and the same classification algorithm was performed to confirm 

successful isolation and high quality reference data for the purpose of cellular deconvolution. 

 

Merging reference DNA methylation datasets 

Our Exeter reference dataset was joined to the EpiGABA reference dataset. Given the use 

of two different technologies, we filtered to sites common to both the EPICarray and 450K 

array. Prior to training any deconvolution models, these datasets were filtered to only include 

autosomal DNAm sites and remove cross-hybridising probes and SNP probes as defined in 

publicly available resources(58, 59). 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2023.06.23.545974doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.23.545974
http://creativecommons.org/licenses/by/4.0/


Generation of deconvolution models and selection of cell-specific sites 

Given the range of different cell types we have isolated, and the fact that these represent 

overlapping sets of nuclei, we defined 8 different combinations of cell types each of which 

represent a different reference panel (Supplementary Figure 3).  To test and compare the 

performance of these panels against a known truth we trained a series of Houseman 

constraint projection deconvolution models using our novel reference data. These were then 

tested against reconstructed brain tissue DNAm profiles where we combined cell-specific 

profiles in a weighted linear sum of pre-specified proportions of each cell type. For each 

simulation, one sample for each cell type was removed to generate the testing data, and the 

remaining samples formed the training data, such that the train and test data consisted of 

distinct sets of samples. It should be noted though, that they were from the same 

experimental batch, and plausibly share technical, batch-specific effects. In this framework, 

training the models essentially means selecting the cell-specific sites that form the basis of 

the deconvolution algorithm. We used two different methods to select these sites. First, an 

ANOVA is performed across all samples in the training data to identify sites that are 

significantly different (p value < 1x10-8) between the brain cell types, selecting 2N sites per 

cell type (N hypermethylated and N hypomethylated). This is the approach implemented by 

minfi (via the EstimateCellCounts function)(60). The second approach, is the IDOL 

method(19). This also starts with an ANOVA to identify a larger pool of possible cell-specific 

sites, in our case the default selection of 150 sites per cell type with smallest and largest t-

statistics. It then tests random subsets of sites to refine this list to a smaller set of size M 

probes such that the optimal performance is achieved. To determine whether a particular 

subset of sites is a better fit than the current best subset, it requires a separate set of 

reconstructed test profiles with known cellular composition. These were constructed as 

described below for our testing data but from a sample selected at random from the training 

samples. The effect of individual CpGs on the accuracy of the deconvolution is assessed by 

comparing the accuracy of estimated cellular composition with and without that CpG. CpGs 
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that confer a positive effect are then up weighted such that they are more likely to be 

selected in the next random subset. The selection of random subset of sites was performed 

a maximum of 300 times. This optimisation was performed using the IDOLoptimize() function 

provided in the IDOL R package. Note the IDOL method is only applicable to reference 

panels with > 2 cell types. Therefore from our 8 reference panels there were 15 trained 

models. For each of these models we trained the models multiple times to select between 20 

and 200 probes per cell type, increasing in units of 20 probes.  

 

Generation simulated bulk brain profiles 

To construct bulk brain profiles for testing, we combined the cell specific test profiles in fixed 

proportions that represented the full spectrum of possible combinations. Each reference 

panel was only tested against reconstructed profiles consisting of the same cell types. Cell 

type proportions were increased in 0.1 units, where each cell type represented at least 0.1, 

up to a maximum of 0.9 and such that the total of all cell type proportions equalled 1. As 

each reference panel consists of different numbers of cell types, the possible number of 

reconstructed profiles tested differs by virtue of the different number of combinations 

possible with that number of cell types. DNAm levels in the test data at these cell-specific 

sites are then computed into estimates of cellular proportions using a quadratic programming 

methodology as described by Houseman(15). This process was repeated for 10 different 

train-test splits of the reference data. This methodology was implemented using functions in 

the CETYGO package(55) which are adaptations of functions from the minfi package(60) 

that takes matrices of beta values as input for the training and testing data. 

 

Training deconvolution models for use with empirical bulk brain profiles 

To train the deconvolution algorithm for all 15 models for use with empirical bulk brain 

datasets, and for sharing with the wider research community, we used all available samples 

for each cell type (Supplementary Table 1). Cell-specific sites were selected in the same 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2023.06.23.545974doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.23.545974
http://creativecommons.org/licenses/by/4.0/


way as above with a total of 100 probes per cell type selected (i.e. for a two cell type 

reference panel up to 200 probes were selected).  

 

Profiling the performance of neural cell type deconvolution in empirical datasets 

We used four datasets of bulk brain DNAm profiles from two sources to further characterise 

the performance of the neural reference panels. The first source contains data generated by 

our group at the University of Exeter (www.epigenomicslab.com) across a range of projects 

and includes i) a dataset of 377 adult PFC samples (BA9)(40-43), ii) a dataset of 851 adult 

samples from 9 other brain regions including additional cortical regions, the striatum, the 

hippocampus, and cerebellum (Supplementary Table 6)(39-43, 46), and 167 prenatal and 

childhood samples(39, 48). The second source is the publicly available data provided by 

Jaffe et al(44) and includes 415 adult PFC samples. All datasets were processed by our 

group through a standard QC pipeline(30) and were normalised using the dasen function in 

the wateRmelon package(61). Cellular composition was estimated for all samples using all 

15 models and then selecting the estimates from the best performing models for each cell 

type (Supplementary Table 8). 

 

In the adult PFC datasets we used a linear regression model to test for batch effects (slide) 

and biological (age, age2 and sex) effects on the CETYGO score. P-values for the age, age2 

and sex covariates were taken from t-tests of the estimated regression coefficients. The P-

value for the batch effect was taken from an ANOVA comparing with full model to a nested 

model without the batch covariate. In the Exeter adult multi-tissue dataset we tested for brain 

region effects on the CETYGO scores using a linear regression model, where PFC(BA9) 

was set to the baseline, so that we estimated coefficients and p-values for all other brain 

regions relative to the PFC. In this analysis we controlled for age, age2, sex but not batch as 

data generated from different brain regions were run in different batches. To test for effects 
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on cellular composition we used the same linear regression models as described here for 

the estimated proportion of each cell type in turn.  

 

Testing the associations between cellular composition and Alzheimer’s disease 

neuropathology 

We additionally generated estimates of cellular composition in three in house Alzheimer’s 

disease DNA methylation datasets(30, 42, 43), where data had been generated from DNA 

extracted from the PFC (Supplementary Table 10). Cellular composition was estimated for 

all samples using all 15 models and then selecting the estimates from the best performing 

models (Supplementary Table 8). We used a linear regression model within each cohort to 

test for associations between Braak stage (modelled as a continuous variable) and either the 

CETYGO score or estimated proportion of each cell type, including covariates for age and 

sex. The estimated coefficients for Braak stage and the associated standard errors were 

then meta-analysed together using the R package meta(62). Given that we only included 

three studies, we present only the fixed effect results in the main text, but the random effect 

results are also available in the relevant Supplementary Tables.   
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Figure Legends 

 

Figure 1. Major axes of variation in DNA methylation data are driven by cell type. 

Scatterplot (a) of the first two principal components where each point represents a sample 

and the colour of the point indicates the nuclei fraction. Violin plots for the first 5 principal 

components (b-f) grouped by nuclei fraction. 

 

Figure 2. Accurate and increasingly refined estimation of cellular composition of the 

cortex from DNA methylation profiles.  Violin plots of the error, measured by CETYGO, 

associated with estimating the cellular proportions of reconstructed cortical brain profiles. 

Panels represent different combinations of nuclei populations, as defined in Table 1. For 

reference panels with more than two cell types, two methods were used to select the cell-

specific sites that serve as the basis for the algorithm represented by different violins. 

 

Figure 3. Accuracy and bias differs across cell types when estimating the cellular 

composition of the cortex. Violin plots of the error associated with estimating the cellular 

proportions of reconstructed cortical brain profiles, measured as the difference between 

predicted and actual abundance, where a positive value indicates an overestimation. Panels 

collate results for the same cell type, within each panel, values are grouped by reference 

panels, as defined in Table 1. 

 

Figure 4.  Performance of brain cellular deconvolution models not equitable across all 

brain datasets. Violin plots of the distribution of the error, measured by CETYGO, 

associated with estimating the cellular proportions from DNA methylation data generated 

from brain tissues. A) Adult prefrontal cortex samples grouped by experimental batch (n = 

377). B) Adult brain samples grouped by brain region (n = 851). C) Prenatal and childhood 

cortical samples grouped by developmental stage (n = 167). CETYGO scores taken from 

reference panel 1 with an ANOVA to select cell specific sites. 
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Figure 5. Cellular composition of adult prefrontal cortex. Violin plots of the distribution of 

proportion of brain cell types in the adult prefrontal cortex (n = 377), estimated using 

reference panel 8 and the IDOL algorithm for selecting cell-specific sites.  

 

Figure 6. Cellular composition of adult prefrontal cortex varies as a function of 

Alzheimer’s Disease neuropathology. Violin plots of the distribution of proportion of brain 

cell types estimated from DNA methylation data generated from the prefrontal cortex (n = 

864) grouped by Braak tangle stage. Each panel represents a different cell type, estimated 

using the optimal reference panel for that cell type (Supplementary Table 8). 
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Table 1. Summary of fractions included in the reference panels  

Panel Included Fractions 

1 NeuNPos 
NeuNNeg/SOX10Pos 
NeuNNeg/SOX10Neg 

2 NeuNPos 
NeuNNeg/SOX10Pos 
NeuNNeg/SOX10Neg/IRF8Pos 
NeuNNeg/SOX10Neg/IRF8Neg 

3 SATB2Pos 
SATB2Neg 

4 NeuNPos 
SATB2Pos 
NeuNNeg/SOX10Pos 
NeuNNeg/SOX10Neg 

5 NeuNPos 
SATB2Pos 
NeuNNeg/SOX10Pos 
NeuNNeg/SOX10Neg/IRF8Pos 
NeuNNeg/SOX10Neg/IRF8Neg 

6 NeuNPos/SOX6Pos 
NeuNPos/SOX6Neg 
NeuNNeg 

7 NeuNPos/SOX6Pos 
NeuNPos/SOX6Neg 
NeuNNeg/SOX10Pos 
NeuNNeg/SOX10Neg 

8 NeuNPos/SOX6Pos 
NeuNPos/SOX6Neg 
NeuNNeg/SOX10Pos 
NeuNNeg/SOX10Neg/IRF8Pos 
NeuNNeg/SOX10Neg/IRF8Neg 
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Table 2. Summary of proportions of cell types in the adult prefrontal cortex 

Cell types 
Exeter Jaffe 

Mean SD Mean SD 

Neuronal 

all 0.336 0.0628 0.309 0.0582 

NeuNPos/SOX6Neg Excitatory (glutamatergic) 
neuronal enriched 0.306 0.0557 0.295 0.0555 

NeuNPos/SOX6Pos Inhibatory (gabaergic) neuronal 
enriched 0.0303 0.0155 0.013 0.0099 

Glial 

all 0.683 0.0723 0.711 0.0692 
NeuNNeg/SOX10Neg/IRF8Pos microglia enriched 0.169 0.0388 0.175 0.0289 

NeuNNeg/SOX10Pos oligodendrocyte-enriched 0.274 0.153 0.305 0.133 
NeuNNeg/SOX10Neg/IRF8Neg astrocyte enriched 0.241 0.0928 0.232 0.0807 
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