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Abstract

Background

Due to inter-individual variation in the cellular composition of the human cortex, it is essential
that covariates that capture these differences are included in epigenome-wide association
studies using bulk tissue. As experimentally derived cell counts are often unavailable,
computational solutions have been adopted to estimate the proportion of different cell-types
using DNA methylation data. Here, we validate and profile the use of an expanded reference
DNA methylation dataset incorporating two neuronal- and three glial-cell subtypes for

guantifying the cellular composition of the human cortex.

Results

We tested eight reference panels containing different combinations of neuronal- and glial-cell
types and characterized their performance in deconvoluting cell proportions from
computationally reconstructed or empirically-derived human cortex DNA methylation data.
Our analyses demonstrate that these novel brain deconvolution models produce accurate
estimates of cellular proportions from profiles generated on postnatal human cortex samples,
they are not appropriate for the use in prenatal cortex or cerebellum tissue samples.
Applying our models to an extensive collection of empirical datasets, we show that glial cells
are twice as abundant as neuronal cells in the human cortex and identify significant
associations between increased Alzheimer’'s disease neuropathology and the proportion of
specific cell types including a decrease in NeuNNeg/SOX10Neg nuclei and an increase of

NeuNNeg/SOX10Pos nuclei.

Conclusions
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Our novel deconvolution models produce accurate estimates for cell proportions in the
human cortex. These models are available as a resource to the community enabling the
control of cellular heterogeneity in epigenetic studies of brain disorders performed on bulk

cortex tissue.
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Background

Recent years have seen acute interest in the role of epigenetic variation in the pathogenesis
of disease. Although a number of different epigenetic mechanisms are involved in
transcriptional regulation, the field of epigenetic epidemiology has focused primarily on DNA
methylation (DNAm). DNAm can be quantified genome-wide using a commercial
microarray(1, 2), making it cost effective to profile the large sample numbers required to
detect statistically robust associations(3). Unlike genetic association studies, the choice of
tissue for profiling epigenetic variation is a critical part of the study design for epigenome-
wide association studies (EWAS). As the epigenome orchestrates the gene expression
changes underpinning cellular differentiation, genome-wide patterns of DNAm are primarily
defined by the tissue or cell type that the DNA sample originates from(4-7). Therefore, a
major caveat of profiling DNAm in samples isolated from ‘bulk’ tissue, (e.g. whole blood or
brain tissue) is that each is comprised of DNA from a heterogeneous mix of different cell

types, with the resulting profile being an aggregate of each constituent cell type.

To date, most epigenetic datasets have been generated on DNA samples isolated from bulk
tissues(8). As the proportion of each cell type within a sample can vary across individuals,
systematic differences in cellular proportions that correlate with the phenotype of interest
(e.g. pathology-associated changes in the abundance of a specific cell type) may manifest
as differences in the overall epigenetic profile(9). For example, Alzheimer's disease is
characterised by extensive neuronal loss(10, 11) in conjunction with glial cell activation and
proliferation in the cortex(12, 13). Adjusting analyses with quantitative covariates that
capture the cellular composition of each sample has been widely adopted as the solution to
minimising false positives. As experimentally derived cell counts are often not available,
computational solutions have been proposed as an alternative. Deconvolution algorithms
calculate a series of continuous variables reflecting the underlying cellular heterogeneity of

each sample from the bulk tissue profile. Deconvolution algorithms can be separated into
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two classes - supervised methods (known as ‘reference based’ algorithms)(14-20) and

unsupervised methods (known as ‘reference free’)(21-24)

Reference based methods in particular have been successfully used to control for cellular
heterogeneity in DNAm studies of whole blood(25). However, because this approach
requires reference DNAm profiles for each constituent cell type of interest, they are not
applicable to the study of all tissues. Similarly, although reference profiles exist for
deconvoluting cellular proportions from DNAm data generated on bulk cortex tissue, these
are currently limited to estimating the abundance of neuronal and non-neuronal cells(16) -
and do not capture the full complexity or diversity of cell types present in the brain(26, 27).
We and others have recently developed experimental protocols using Fluorescence-
Activated Nuclei Sorting (FANS) to purify populations of nuclei from multiple cell types in
post-mortem human cortex tissue(28-30). These methods have enabled us to refine the non-
neuronal (predominantly glial) cell population and generate reference DNAm profiles for
oligodendrocyte, microglia and astrocyte nuclei that can be used for the cellular

deconvolution of DNAm data generated on bulk cortex.

In this study, we profile the use of these novel cell reference datasets in conjunction with the
widely used Houseman deconvolution algorithm(15) - a constrained projection methodology
- for quantifying the cellular composition of the human cortex. First, we validate the use of
these reference data with computationally simulated of ‘bulk’ cortex profiles, where the
proportion of different cell-types is predetermined. Second, we apply these reference panels
to empirical DNAmM datasets generated from bulk cortex tissue samples to profile how
deconvolution performance, as well as cellular composition, varies across brain regions and
development. Finally, we demonstrate how the quantification of these refined brain cell types

can be used as phenotypic variables for detecting known cellular changes associated with
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neuropathology in Alzheimer's disease. To enable the wider research community to
incorporate our novel cellular composition estimates into their workflow, our enhanced
reference panels are available via the R CETYGO package on GitHub
(https://github.com/ds420/CETYGO). Beyond the estimation of cell-type proportions in the
human cortex, our analyses provide broader insights into the methodology of cellular

deconvolution that are applicable for studies involving other cell types and tissues.

Results

Further refinement of neural cell types confirmed with distinct genome-wide DNAm profiles

We used a FANS protocol previously described by our group(31) to purify nuclei populations
from prefrontal cortex tissue dissected from 43 adult donors. Our initial gating strategy used
an antibody against NeuN (a robust marker of post-mitotic neurons (32)) to isolate neuronal
nuclei in combination with an antibody against SOX10 (a transcription factor involved in the
differentiation of oligodendrocytes(33)) to distinguish oligodendrocyte nuclei from other glial
nuclei (Supplementary Figure 1A). Subsequently, in a second gating strategy we
additionally included an antibody against IRF8 (a transcription factor that is upregulated in
microglia(34)) to enrich microglia from the NeuNNeg/SOX10Neg fraction (Supplementary
Figure 1B). Our third gating strategy used an antibody against SATB2 (a DNA binding
protein involved in transcriptional regulation and chromatin remodelling which is expressed
in excitatory neurons in the mature central nervous system(35)) in place of NeuN
(Supplementary Figure 1C). We generated DNAm profiles using the lllumina EPIC array for
NeuNPos (neuron-enriched; n = 28), NeuNNeg/SOX10Pos (oligodendrocyte-enriched; n =
24), NeuNNeg/SOX10Neg (microglia- and  astrocyte-enriched; n = 21),
NeuNNeg/SOX10Neg/IRF8Pos (microglia-enriched; n = 17),
NeuNNeg/SOX10Neg/IRF8Neg, (astrocyte-enriched; n = 7), SATB2Pos (excitatory neuron-

enriched; n = 9), and SATB2Neg (inhibitory neuron- and glial- enriched; n = 6) nuclei


https://doi.org/10.1101/2023.06.23.545974
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.23.545974; this version posted June 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

populations (Supplementary Tables 1 & 2). To confirm that cell type differences were the
primary drivers of variation in DNAmM across samples, principal component (PC) analysis
was used (Supplementary Figure 2). The first PC, which explains 43.2% of the variance in
DNAm, separates the NeuNPos fractions (NeuNPos and SATB2Pos) from the other nuclei
populations. The second PC, which explains 28.8% of the variance, separates the
NeuNNeg/SOX10Neg/IRF8Pos samples from the NeuNNeg/SOX10Neg/IRF8Neg samples,
with NeuNNeg/SOX10Neg samples, the parent fraction, in between these extremes. While
the third PC, which explains, 3.7% of the variance, does highlight differences between nuclei
fractions, this does not correlate with any of the antibodies we used to isolate specific cell
types. It appears to capture a difference between the NeuNNeg/SOX10Neg and the
NeuNNeg/SOX10Neg/IRF8Pos fractions with NeuNNeg/SOX10Neg/IRF8Neg sitting in the
middle. This could indicate that there is another cell type, which we have not isolated,
characterised as NeuNNeg/SOX10Neg/IRF8Neg that is lost during the IRF8 gating but
retained in the NeuNNeg/SOX10Neg fraction. All subsequent PCs, which each explain <3%
of the variance, do not correlate with a specific nuclei population and therefore likely reflect

technical or biological sources of variation in DNAmM between samples.

In order to increase the specificity of brain cell types in our subsequent deconvolution
analyses, we augmented our data with publicly available data from the EpiGABA(36) study
in which the NeuNPos nuclei population is further refined using an antibody against
SOX6(37) (Supplementary Figure 1D) using the lllumina 450K array to generate
NeuNPos/SOX6Pos (GABAergic neuronal enriched; n = 4), NeuNPos/SOX6Neg
(glutamatergic neuronal enriched; n = 3) and NeuNNeg (glial enriched; n = 4) nuclei
populations isolated from occipital cortex tissue. PC analysis of this combined dataset (123
samples from 47 donors; Figure 1) showed that PC1 (explaining 39.9% of the variance) still
separates neuronal and non-neuronal nuclei, with the NeuNPos/SOX6Pos and
NeuNPos/SOX6Neg clustering with the NeuNPos and SATB2Pos samples and the

NeuNNeg clustering with the other glial fractions. PC2 (explaining 23.9% of the variance) still
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separates NeuNNeg/SOX10Pos from NeuNNeg/SOX10Neg/IRF8Pos, with NeuNNeg
samples located in-between these extremes reflecting the fact that this population contains
nuclei from both of these subfractions. PC3 (explaining 11.7% of the variance) separates the
two sets of data and likely reflects technical differences (e.g. different array types and other
experimental batch effects). These results highlight that the major cell type differences in
DNAm are highly reproducible across data generated in different laboratories and dominate
over batch effects and inter-individual differences. We therefore decided that for the
purposes of generating the most extensive set of cellular composition estimates we would

merge our data with the EpiGABA DNAmM data into a single dataset.

Accuracy of cellular composition estimation depends on the combination of cell types
included in the reference panel

Given the large number of nuclei fractions included in our final DNAmM reference dataset,
some of which target overlapping cell populations due to the different FANS gating strategies
used, we defined 8 different combinations of cell types to serve as reference panels for the
deconvolution of cellular composition of cortical DNAm data (Table 1, Supplementary
Figure 3). Six of these represent mostly complete, non-overlapping and increasingly refined
combinations, whereby any given cell type should be contained within a single fraction.
These enabled us to characterise how deconvolution performance was affected by
increasing the specificity of cellular composition. Two of the panels (4 and 5), contain
overlapping fractions (SATB2Pos and NeuNPos), that both capture excitatory neuronal

nuclei. These panels were included to observe how the algorithm handles this direct conflict.

To compare the performance of the different panels, we performed a series of simulations
where we could contrast predicted composition against a known truth. Briefly for each panel,
we held one sample of each nuclei fraction back, selected the sites for deconvolution using
all other samples for that fraction. We then used the excluded sample to construct bulk brain

DNAm profiles where we combined cell-specific profiles in a weighted linear sum of pre-
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specified proportions of each cell type (see Methods). As well as comparing 8 different
combinations of cell types, for panels with > 2 fractions, we also compared two methods,
ANOVA and IDOL (IDentifying Optimal Libraries) algorithm(19), for selecting cell-specific
sites that are the basis of the algorithm. In total 15 different training models were considered
in the Houseman constraint projection deconvolution methodology(15) using these learnt
parameters to estimate the cellular composition of a bulk profile. Overall accuracy of the
deconvolution was captured by two metrics, the CETYGO score(38), which quantifies the
accuracy of cellular deconvolution where the true cellular composition is unknown, and root

mean square error (RMSE), which requires the cellular composition to be known.

In general, each reference panel combination yielded highly accurate estimates of cell
proportions (average CETYGO < 0.10 using either ANOVA or IDOL) with performance being
comparable across the different panels and site selection methods (Figure 2,
Supplementary Figure 4, Supplementary Table 3). For each reference panel, we
performed the deconvolutions with increasing numbers of cell-specific sites but found that
this had little effect on the accuracy of the deconvolution (Supplementary Figure 5,
Supplementary Figure 6). Marginally the best panel, measured by both the CETYGO score
and RMSE was panel 6 (NeuNPos/SOX6Pos, NeuNPos/SOX6Neg, NeuNNeg). Of note, the
separation of the NeuNNeg/SOX10Neg fraction into NeuNNeg/SOX10Neg/IRF8Pos and
NeuNNeg/SOX10Neg/IRF8Neg (e.g. comparing panel 1 with panel 2) was associated with a
slightly lower CETYGO score, indicative of a composition profile that captured more of the
variation in the bulk tissue. This was generally also true of the separation of the NeuNPos
fraction into NeuNPos/SOX6Pos and NeuNPos/SOX6Neg fractions (e.g. comparing panel 2
with panel 8) although not ubiquitously the case. In contrast, more refined cellular
deconvolution models (i.e. incorporating more cell types) were associated with a slightly
higher RMSE (Supplementary Figure 4) indicating that although the inclusion of more cell
types gives a better representation of the variation in a bulk tissue, the estimates of the

individual fractions are associated with a higher degree of error. We also observed this
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pattern when comparing the reference panels that consist of both SATB2Pos and NeuNPos

(panels 4 and 5).

Looking more specifically at the accuracy of estimating the proportion of particular nuclei
fractions, we observe noticeable variation in the degree of accuracy (Figure 3,
Supplementary Table 4, Supplementary Figures 7-14). Some cell types performed
consistently accurately, regardless of which reference panel was used. Furthermore, we
could group cell types based on their summary statistics. As described above, the accuracy
of estimating the proportion of NeuNPos and SATB2Pos nuclei was dramatically reduced in
the two reference panels (4 & 5) where they were both included and therefore all subsequent
analyses focused on panels were either one or the other was used. The top performing cell
fractions with near perfect estimates included NeuNPos, NeuNNeg, NeuNPos/SOX6Pos and
NeuNPos/SOX6Neg (all r =2 0.99 and RMSE < 0.02, Supplementary Table 4).
NeuNNeg/SOX10Neg, NeuNNeg/SOX10Neg/IRF8Pos, SATB2Pos, and SATB2Neg are
associated with marginally larger errors but still perform well with r 2 0.92 and RMSE < 0.06.
Of note the NeuNNeg/SOX10Pos fraction showed the most variation across panels. When
included in a panel where the NeuNNeg/SOX10Neg fraction was replaced with the
NeuNNeg/SOX10Neg/IRF8Pos and NeuNNeg/SOX10Neg/IRF8Neg fractions, this had a
dramatic effect on the accuracy of NeuNNeg/SOX10Pos estimates, with the correlation
statistic (r) decreasing from ~ 0.95 to ~ 0.7 and the RMSE doubling from ~ 0.05 to > 0.1. The
best statistics for predicting the NeuNNeg/SOX10Neg/IRF8Neg fraction come from panel 5
(which interesting includes both SATB2Pos and NeuNPos) with r = 0.81 and RMSE = 0.09;
of note this fraction provides the least accurate prediction metrics. Instead considering the
(signed) error, we observed that some cell types were associated with a particular bias in
their estimation; for example, both NeuNNeg/SOX10Neg (median error = 0 - 0.022) and
NeuNNeg/SOX10Neg/IRF8Pos (median error = 0.007 — 0.025) were typically overestimated
(Figure 3, Supplementary Table 4). These results highlight how the accuracy of prediction

for a given cell type is influenced by which other cell types are included in the deconvolution
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model, even when using a hon-overlapping reference panel. Additionally, our results indicate
that the accurate estimation of one cell type in a panel does not necessarily mean that the
proportions of other cell types in that panel are also well estimated. A natural consequence
of these conclusions is that to get the most precise estimates of a diverse set of cell types,
different reference panels may need to be utilised in parallel. All these analyses were
repeated using the IDOL method for selecting cell-specific sites for deconvolution, and there
was no clear evidence that one method for selecting cell-specific prediction sites

outperformed the other (Figure 3, Supplementary Figure 4).

Technical variation influences the accuracy of cellular deconvolution

Having demonstrated that our new reference panels for cellular deconvolution are capable of
calculating accurate estimates of cellular composition in the cortex, we used them to
calculate estimates in two large bulk DNAm datasets generated using adult prefrontal cortex
tissue. The first dataset (the ‘Exeter’ dataset) incorporates a number of datasets generated

by our group (http://www.epigenomicslab.com) (n = 377, age range = 19-108 years

0ld)(39-43) and the second represents a publicly available dataset described by Jaffe et al.
(n = 415, age range = 18-97 years old) (44). Profiling the accuracy of the deconvolution
using the CETYGO score highlighted that all panels performed well (mean CETYGO < 0.10),
with reference panel 6 (NeuNPos/SOX6Pos, NeuNPos/SOX6Neg, NeuNNeg) being
associated with the lowest scores (Supplementary Figure 15) consistent with the simulation
results. This was closely followed by panels 7 (NeuNPos/SOX6Pos, NeuNPos/SOX6Neg,
NeuNNeg/SOX10Pos, NeuNNeg/SOX10Neg) and 8 (NeuNPos/SOX6Pos,
NeuNPos/SOX6Neg, NeuNNeg/SOX10Pos, NeuNNeg/SOX10Neg/IRF8Paos,
NeuNNeg/SOX10Neg/IRF8Neg), with the other 5 panels performing similarly. Of note,
CETYGO scores were strongly correlated across panels (Supplementary Figure 16),
suggesting that regardless of reference panel, there are other important influences on the

accuracy of the estimates, such as data quality.
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Subsequently, testing for biological or technical factors that influence the accuracy of cellular
deconvolution we found that the CETYGO score was significantly associated with batch
(Figure 4A) in both datasets, across all reference panels (Supplementary Table 5). There
was a significant effect (P < 0.00333 corrected for 15 training models) of sex on the
CETYGO score for 4 models in the Exeter dataset and 10 models in the Jaffe dataset
(Supplementary Table 5). In all cases, females were associated with a slightly lower
average error (Supplementary Figure 17) especially when the ANOVA method was used to
select cell-specific sites (11/14 significant associations), despite more male samples being
included. Of note, there was no association with age or age squared on prediction accuracy

in either dataset (Supplementary Table 5).

Neural cellular deconvolution panels derived from adult cortical samples do not effectively

capture cellular heterogeneity in the cerebellum or fetal DNAm datasets

While our reference profiles were generated from populations of nuclei isolated from
prefrontal and occipital cortical tissue, they are potentially relevant for estimating the
proportion of the same cell types in other brain regions, especially other regions of the
cortex. We performed cellular deconvolution using DNAm profiles from an additional 851
samples (age range = 19 -108 years old)(39-42, 45, 46) generated by our group from 9 other
brain regions including additional cortical regions, the striatum, the hippocampus, and
cerebellum (Supplementary Table 6). These analyses showed that the CETYGO scores in
cerebellum samples are dramatically elevated, indicating that the cellular composition
estimates for this tissue are unlikely to be accurate (Figure 4B, Supplementary Figure 18).
It is known, for example, that the predominant neuronal subtype in the cerebellum (Purkinje
cells) do not express NeuN(47). We also observe subtle differences in performance between
the other 8 regions, although the distribution of CETYGO scores largely overlap with those

observed in the prefrontal cortex (Supplementary Table 7).
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We also wanted to confirm whether our reference panels were suitable for use in samples
from donors at earlier stages of development. To this end we used 167 prenatal and
childhood DNAm profiles generated from bulk cortex samples by our group (age range = 23
days post conception — 17 years old)(39, 48). We found consistently elevated CETYGO
scores in the prenatal samples regardless of the specific developmental stage, comparable
with those seen in the cerebellum samples (Figure 4C, Supplementary Figure 19)
suggesting that bespoke reference panels are required to estimate cellular proportions in
prenatal cortex tissues. The distribution of postnatal childhood and adolescent samples
CETYGO scores are comparable to adult scores. Of interest, reference panel 3 has the
smallest difference between prenatal and postnatal CETYGO scores reflecting the fact that

SATB2 is a more robust marker of neuronal cells than NeuN in the prenatal cortex(49).

Variable abundance of neuronal and glial cells in the adult prefrontal cortex
While there has been a fair degree of interest in profiling the cellular heterogeneity of the
brain, variation in study design and methodologies have made it challenging to harmonise
existing fields into a single estimate for the cortex(50). Confident that we can derive accurate
estimates of cellular proportions in the adult cortex, we used our novel reference panels to
characterise the cellular composition of the adult cortex using both datasets. In order to
make inferences about the relative proportions of different subtypes of neurons and glial
cells, we limited these comparisons to the estimates derived from reference panel 8, which
contained the most specific combination of cell fractions using the IDOL method to select
cell-specific sites. Plotting the distribution of cellular composition, we observe high levels of
inter-individual variation (Figure 5, Table 2) across the samples. Glial cells were more
abundant than neuronal cells (Exeter: mean neuronal proportion 0.336 (SD = 0.0627) vs
mean glial proportion 0.683 (SD = 0.0723), Jaffe: mean neuronal proportion 0.309 (SD =
0.0582) vs mean glial proportion 0.711 (SD = 0.0692)). Within the neuronal cells,

NeuNPos/SOX6Neg were more abundant on average (Exeter: mean = 0.306 (SD = 0.0557),
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Jaffe: mean = 0.295 (SD = 0.0555)) than NeuNPos/SOX6Pos cells (Exeter: mean = 0.0303
(SD = 0.0155), Jaffe: mean = 0.0132 (SD = 0.00989)). Within the glial cells, the
NeuNNeg/SOX10Pos were most abundant on average (Exeter. mean proportion = 0.273
(SD = 0.153), Jaffe: mean proportion = 0.305 (SD = 0.133)) followed by the
NeuNNeg/SOX10Neg/IRF8Neg (Exeter: mean proportion = 0.241 (SD = 0.0928), Jaffe:
mean proportion = 0.232 (SD = 0.0807)). NeuNNeg/SOX10Neg/IRF8Pos was the least
abundant predicted fraction ((Exeter: mean proportion = 0.169 (SD = 0.0388), Jaffe: mean
proportion = 0.175 (SD = 0.0289)). The broad consistency across datasets in these relative
abundance estimates supports the notion of an average pre-determined ratio of brain cells to
underpin brain function but that this is highly variable across individuals. It is therefore,
important to quantify cellular composition accurately for the purposes of controlling for
potential confounding and may indeed be an interesting phenotype themselves in the study

of brain development and brain disease.

Exploring this further, were interested if there were any biological factors associated with the
variation in cellular composition we observed. To streamline these analyses, we selected the
optimal reference models for estimating the composition of each cell fraction
(Supplementary Table 8), noting that correlations between fractions across panels were
very high (Supplementary Figure 20). Testing the proportion of each cell type against age
and sex, the only association that survived multiple testing in both datasets (P < 0.005,
corrected for 10 cell types), was a higher proportion of NeuNPos/SOX6Pos cells in males
(Exeter mean difference in males = 0.00229, P = 5.84x10°*; Jaffe mean difference in males =

0.00653, P = 6.97x10°)(Supplementary Table 9; Supplementary Figures 21-24).

The degree of Alzheimer's disease neuropathology is associated with DNAm derived
estimates of neuronal and glial composition
Finally, we were interested in whether the added specificity of our cellular composition

estimates could enhance our understanding of the neuropathology of Alzheimer's disease
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using data from recent analyses of DNAm differences associated with tau and amyloid
pathology using bulk cortex(30). We estimated cellular proportions for each of the 10
fractions across three datasets where DNAm had been profiled in bulk prefrontal cortex
tissue samples (total N = 864; Supplementary Table 10)(30, 42, 43). To ensure our
subsequent analysis of cellular proportions were not biased, we first tested whether
increasing tau pathology (quantified by Braak stage) influences the accuracy of cellular
deconvolution. Although all models showed the same trend of decreasing CETYGO scores
associated with increasing neurofibrillary tau tangles (Supplementary Table 11), only the
CETYGO scores from reference panel 3 (mean change per Braak stage = -9.14x10™* P =
8.24x107°) were significantly related to pathology (P < 0.00333, corrected for 15 models). We
found a significant association (P < 0.005, corrected for 10 cell types) for the prevalence of
two estimated cell fractions with increasing levels of AD pathology (Figure 6,
Supplementary Table 12). These data detected a decrease in the proportion of
NeuNNeg/SOX10Neg nuclei (mean change per Braak stage = -0.00459, P = 0.00172), and
an increase in the proportion of NeuNNeg/SOX10Pos nuclei (mean change per Braak stage
0.0744, P = 0.000555) with increasing tau pathology. There were also trends for significant
negative correlations between the proportions of NeuNPos nuclei (mean change per Braak
stage = -0.00282, P = 0.00993), SATB2Pos nuclei (mean change per Braak stage = -
0.00365, P = 0.00574) and NeuNPos/SOX6Pos (mean change per Braak stage = -0.00106,
P = 0.00755) and a trend for a positive correlation with NeuNNeg (mean change per Braak

stage = 0.0036, P = 0.006543).

Discussion

We have generated genome-wide DNAm profiles for different cell types isolated from human
cortex tissue, including novel profiles for several glial subtypes. We have demonstrated that
these are applicable for use with established deconvolution algorithms and can be used to
estimate cellular proportions in the cortex and other regions of the human brain from bulk

DNAm data. Our proposed reference panel for deconvolution is the most extensive available
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for the human cortex and enables the prediction of neurons and glia, in addition to the
prediction of two neuronal sub types (excitatory and inhibitory) and three glial subtypes
(oligodendrocytes, microglia and astrocytes). We demonstrate that this approach produces
accurate and informative estimates of cellular proportions from DNAm profiles generated
using adult bulk human cortex samples but is not appropriate for the use in prenatal or

cerebellum samples for which bespoke reference panels will be required.

Previous efforts to characterise the cellular composition of the human brain has produced a
wide range of estimates, especially where the ratio of different cell types is concerned. This
is in part due to the use of different methodologies, but perhaps more critically, due to the
study of different brain regions and variation in whether the assay was limited to just the grey
matter, white matter, or both(50). Our data could prove valuable in synthesising the existing
research into a coherent conclusion. We observed approximately twice as many glial cells
relative to neuronal cells, in line with the previously reported glial to neuronal ratio for cortical
tissue consisting of both white and grey matter(50). Of neuronal cells we found that the
proportion of GABAergic (inhibitory) neurons in the order of 5-10%, a bit lower compared to
published literature stating this is between 10 and 20%(51). Within non-neuronal cells, we
found that oligodendrocytes were the most frequent glial subtype, representing ~40% of glial
cells, followed by astrocytes (~35%) and then microglia (~25%). The rank ordering of
abundance of glial subtypes is broadly consistent with the existing literature, although the
estimated proportions differ, with a lower than expected proportion of oligodendrocytes and
higher than expected proportion of microglia. We should caveat that our analysis of
computationally constructed bulk profiles highlighted that the estimation of microglia
proportion is better than the estimation of oligodendrocyte proportion and the estimation of
astrocyte proportion is worst. Critically, our data highlight large variation in the composition
of different cell types across samples, consistent with previous deconvolution studies of
brain(16) and studies of cellular heterogeneity using other methods(50), reinforcing the

importance of including these variables as covariates in association analyses(9).
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As well as being potential confounders, there is interest in using these variables as
phenotypes in epidemiological studies to identify the sources of the variation. We tested for
effects of age and sex, and only found nominal associations between sex and one cell type,
inhibitory neurons. To establish the biological validity of these cellular composition variables
we tested them against semi-quantitative measures of Alzheimer’s disease neuropathology
in existing datasets generated by our group(30, 42, 45). Our data was consistent with the
known neuropathological effects of neuronal loss observed with the progression of
Alzheimer's disease(10, 11, 52), highlighting a decrease in the proportion of neurons
observed in both inhibitory and excitatory neurons. We also detected changes in the
composition of glial cells with the proportion of oligodendrocytes increasing and the
proportions of microglia and astrocytes decreasing as tau tangles accumulate in the brain.
This finding does not contradict reports that astrocytes and microglia exhibit enhanced
activity in Alzheimer’s disease(12, 13, 53). Cellular deconvolution harnesses sites in the
genome where there are cell-specific DNAm signatures that define cell identity (i.e.
ubiquitous across all cells of that type) and likely does not capture changes in activation
state (which potentially varies across a population of cells). One of the limitations of the
methodology is it only allows us to determine cellular proportions rather than abundances.
Given that the proportion of one cell type is influenced by the abundance of all cell types,
significant associations with the proportion of an individual cell type might not be due to
changes in the abundance of that cell type but changes in the overall composition. For this
reason, caution needs to be applied when interpreting significant associations with these

variables.

Given the use of four different FANS gating strategies to obtain different populations of
nuclei, we had reference data for 10 different fractions of brain cell types, where some of
these fractions targeted overlapping sets of nuclei. For this reason, we were able to propose

8 different ways to combine these data into reference panels for cellular deconvolution, with
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6 of these reference panels consisting of non-overlapping fractions of nuclei. This is
therefore, the most comprehensive study to date investigating how the composition of
different reference panels affects the estimation of cellular heterogeneity. While our novel
reference panel is primarily of interest to those studying variable DNAm in brain disorders,
our analyses provide broader insights into the methodology of cellular deconvolution that are

application for studies involving any bulk tissue.

It is reasonable to assume that the optimal reference panel would have the most diverse and
specific set of cell types available, and our data demonstrate subtle improvements in
accuracy when using models that contain a more specific set of subtypes. In addition to
comparing different reference panels we also compared two methods for selecting cell
specific sites (i.e. how the deconvolution model itself is trained) using an ANOVA or the
IDOL algorithm(19), although this did not introduce much variation in performance. We found
larger differences in performance between cell types and between reference panels than
between training methodologies. We conjecture that this is due to variation in the quality of
the reference data for each cell type, which is affected by both the signal-to-noise ratio of the
DNAm array data and the efficiency of the isolation of those cell types. We were able to
classify the different fractions into three performance tiers. The top tier with near perfect
performance in our simulations included NeuNPos (neuronal enriched), NeuNPos/SOX6Pos
(GABAergic neuronal enriched), NeuNPos/SOX6Neg (glutamatergic neuronal enriched) and
NeuNNeg (glial enriched). The next tier, also associated with high accuracy statistics,
included NeuNNeg/SOX10Neg (microglial & astrocyte enriched),
NeuNNeg/SOX10Neg/IRF8Pos (microglial enriched), SATB2Pos (excitatory neuronal
enriched), and SATB2Neg (inhibitory neuronal and glial enriched). The third tier included
NeuNNeg/SOX10Pos (oligodendrocyte enriched) and NeuNNeg/SOX10Neg/IRF8Neg
(astrocyte enriched) which were associated with a noticeable drop in performance metrics.
While they likely still function as valuable proxies for variation in composition associated with

these cell types, they are potentially affected by more noise, which will negatively affect the
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power to detect between-sample differences with these cell types. We expected that
positively selected fractions (i.e. where an antibody is used to isolate a subset of nuclei)
would be associated with higher degree of accuracy than negatively selected fractions (i.e.
the population of unstained nuclei) due to increased levels of heterogeneity. This was not
always the case, with the NeuNNeg/SOX10Neg fraction predicted more accurately than
NeuNNeg/SOX10Pos fraction. Even within a purified population of nuclei, there is likely to be
a heterogeneous mixture of different cellular subtypes and the extent of this heterogeneity
will vary depending on the class of cell types and the activation state of any given cell.
Another factor influencing the accuracy of the estimates of particular cell types is the
availability of DNAm sites in the dataset that differentiate cell types. As has been shown for
cell types in whole blood(54), our data confirmed that the magnitude of differences between
brain cells is largely a function of their lineage. In other words, the major source of variation
in these data was captured differences between the two major classes of brain cells,
neurons and glial. The subsequent lower order sources of variation then captured the
differences within these classes (e.g. astrocytes from oligodendrocytes). Interestingly,
microglia, which arise from an entirely different lineage compared to the other brain cell
types, sit within the glial cluster. There are fewer (and smaller) differences between more
developmentally-related cell types to harness for deconvolution, making the analysis more
difficult. This highlights a potential limitation of using microarray technology; having
genuinely genome-wide DNAmM data would likely be an advantage for or even essential for

further resolving the cellular heterogeneity of the brain further into more specialised cell

types.

When characterising the performance of estimates of cellular composition there are two
statistical properties to consider. First is the absolute accuracy, which is important if the
objective is to make inferences about the cellular profile of the brain. Second is the ability to
capture a gradient of variation, i.e. the correlation. This is important if the aim is to test for

associations with other phenotypes or use as covariates in analyses. When deciding which
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set of cellular composition variables to use, it is worth considering what they are going to be
used for. If the objective is to test for associations between each cell type and an outcome
(or adjusting for this variation) then it would be logical to select the most accurate estimate
for each cell type, even if this means using different models for different cell types. The

consequence of this approach is that the sum across all the cell types will not total 1.

When comparing the performance of different reference panels we have demonstrated how
our accuracy metric for cellular deconvolution, CETYGO(55), can be applied. Our results
reinforce the conclusions from the original work, that the parameters of the distribution of the
CETYGO score are reference panel and technology specific. The association in the
analyses between batch and accuracy highlight that data quality are important not only for
increasing power to detect significant effects with an outcome, but also to effectively capture
cellular heterogeneity. We therefore, recommend that not only do future studies take
advantage of our expanded set of brain cell type composition variables, but that they also

include the CETYGO score as part of their quality control to identify outlier samples.

Conclusions

In summary, we have generated an expanded set of reference data for the purpose of
estimating the cellular heterogeneity of DNAm profiles generated from bulk human cortex
tissue. These variables will be critical covariates to include in future epigenetic studies of
brain disorders to minimise the risk of false positive associations and improve our
understanding of the changes in the brain that underpin the development of psychiatric

disorders and neurodegenerative diseases.

Methods
Isolation of neural nuclei from post-mortem brain tissue
Post-mortem prefrontal cortex (PFC) samples were processed using our optimised FANS

protocol(31). PFC post-mortem brain tissue from 43 adult donors (aged 55-95 years old) was
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provided from 9 brain banks from the UK, Canada and US (Brains for Dementia Research
Network of Brain Banks, King's College London, Harvard, UCLA, Oxford, Miami, Douglas
Bell, Pittsburgh and Mount Sinai Brain Banks). Human cortex tissue was collected under
approved ethical regulation at each centre and transferred to our care through Materials

Transfer Agreements.

500 mg of frozen brain tissue was homogenised in lysis buffer (2mL) using a pre-chilled
Dounce homogeniser. The homogenate was layered above 8mL of sucrose solution in
ultracentrifuge tubes (Thermo Scientific, Cat N# 03699) (1mL per tube) and overlaid with a
lysis buffer (2 mL per tube) for a final volume of 11 mL. Following the purification of nuclei by
density gradient ultracentrifugation (model: Sorvall™ WX 80+; rotor: TH-641; speed:
108670.8 x g, 45 min at 4°C) each nuclei pellet was resuspended in 1 mL staining buffer and
incubated on ice for 10 min. Nuclei suspensions were then pelleted in 2mL Eppendorf tube
(DNase, RNase free) by centrifugation at 1000xg, 5 min at 4°C. After carefully discarding the
supernatant, nuclei pellets were resuspended in fresh staining buffer and pooled together.
After adding 2 pL of DNA dye (Hoechst 33342, Abcam, Cat # ab228551) 150uL of nuclei
solution (Hoechst only), was transferred in a new 2mL tube and volume made up to 1mL
with fresh SB for use as the Unstained Control. For the “Stained” tube, the volume removed
was replaced with fresh staining buffer and the suspension was then immune-stained with a
combination of antibodies including, NeuN-Alexa488, anti-SOX10 NL577-conjugated and/or
anti-IRF8 APC-conjugated antibodies. Details of the three different gating strategies we
implemented can be seen in Supplementary Figure 1. Both stained and unstained tubes
were incubated for 1.5 hours on a spinning rotor in the dark at 4 °C. Tubes were spun at
1000 x g, for 5min at 4°C and the supernatant was carefully discarded from both tubes and
remaining nuclei pellets were re-suspend in staining buffer (500ul unstained, 1 - 1.5mL
stained tube - dependent on pellet density) using wide bore tips. Tubes were brought to the
FACS Aria Ill cell sorter and kept on ice for the entire procedure of machine setup and

sorting. Nuclei suspensions were assessed for the presence of debris by adjusting the gating
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strategy appropriately before proceeding with nuclei capture. The 100 pM nozzle was used
and the event rate during data acquisition and sample collection was kept = 3000
events/sec. On average, for each sorted population, 200,000 nuclei were collected for

extraction of genomic DNA.

DNA extraction

Nuclei aliquots were defrosted on ice and 50 mL the volume of the aliquots made up to 1mL
with Slagboom buffer (SB) (5mL 10x STE buffer, 5mL 5% SDS, 40mL RNase-free DNase-
free water) ). Nuclei were collected and stored in FACSFlow buffer, approximately 600uL per
tube for 200,000 nuclei. 1uL of DNase free RNase-A (10 mg/ml) per 500uL of sample was
added and the samples were incubated at 37°C for 45 min (heat block). 5pL of proteinase K
(20 mg/ml) (Thermo Fisher Scientific, Waltham, MA, USA) was then added and the samples
were inverted at least 10 times. The samples were then incubated at 60°C for 1 hour, and
then cooled to room temperature (RT) for 5 min. 200uL of “Majik Mix” (a proprietary reagent
made from 1:1 ratio yeast Reagent 3 (Autogen Bioclear, Caine, Wiltshire, UK) and 100%
ethanol) was added and the samples were mixed by vigorous inversions before being
centrifuged at 17,000xg for 10 minutes at RT. For each sample the supernatant was
carefully recovered and transferred to a new labelled tube (50uL was left at the bottom of
each tube). Another 200uL of Majiik Mix were added to each tube and samples were again
mixed by vigorous inversion before being centrifuged at 17,000xg for 10 minutes at RT. The
upper layer of each tube was carefully recovered (making sure to leave approximately 50uL
to prevent carrying over any of the lower layer) and transferred to a new appropriately
labelled tube. Where exceeding 1mL total volume, supernatant was equally distributed into 2
new tubes. An equal volume of 100% Isopropanol (Sigma- Aldrich Corporation, St. Louis,
MO, USA) was added to each sample (e.g. 1mL supernatant + 1mL 100% Isopropanol) and
slowly mixed by inverting to precipitate the DNA. At this stage, 0.5-0.8uL GlycoBlue™ Co-
precipitant (Invitrogen Ltd, Inchinnan, UK) was added to each sample. When a typical

acetate/alcohol precipitation is done, the GlycoBlue™ Coprecipitant will precipitate with the
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nucleic acids, facilitating good DNA recovery while increasing the size and visibility of the
pellet. The samples were then mixed by inverting the tubes ~10 times and centrifuged at
17,000xg for 15 minutes at RT. For each tube the supernatant was carefully removed and
discarded. 500uL of 80% ethanol were added to each tube, samples were then mixed gently
and centrifuged at 17,000xg for 5 min. The supernatant was carefully removed and the
pellets were left to air dry for 20 minutes or until dry. Each DNA pellet was resuspended in
15uL of RNAse, DNase-free water and left at 4°C overnight to fully dissolve before

guantification.

Methylomic profiling

500ng of genomic DNA from each sample was treated with sodium BS using the Zymo EZ-
96 DNA Methylation-Gold™ Kit (Cambridge Bioscience, UK) according to the manufacturer’s
standard protocol. All samples were then processed using the EPIC 850K array (lllumina Inc,
CA, USA) according to the manufacturer's instructions, with minor amendments and
guantified using an Illumina HiScan System (lllumina, CA, USA). Individuals were
randomised and sorted fractions from the same individual and FACs gating run were
processed on the same BeadChip, where within a BeadChip the location of each fraction
was randomised. In total 42 NeuNPos, 39 NeuNNeg/SOX10Pos, 33 NeuNNeg/SOX10Neg,
12 SATB2Pos, 19 NeuNNeg/SOX10Neg/IRF8Neg, 34 NeuNNeg/SOX10Neg/IRF8Pos, and

9 SATB2Neg samples were run on the DNAmM arrays.

DNAm data preprocessing

DNA methylation data was loaded in R (version 3.6.3) from idat files using the package
bigmelon(56). These data were processed through a standard quality control pipeline which
included the following steps: 1) checking methylated and unmethylated signal intensities,
excluding samples where this was < 500; 2) using the control probes to ensure the sodium
bisulfite conversion was successful, excluding any samples with median < 80; 3) use of the

59 SNP probes to confirm that samples from the sample individual were genetically identical;
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4) pfilter function from wateRmelon package to exclude samples with > 1% of probes with
detection P-value > 0.05 and probes with > 1% of samples with detection P-value > 0.05 5)
counting the number of missing values per sample and excluding samples with > 2% probes

missing.

To confirm the success of the FANS sorting we applied a bespoke classification algorithm
based on principal components analysis across all autosomal DNA methylation sites. The
general objective was to compare each sample to the average profile of the labelled sample
type. We Studentized the values of the first two principal components and excluded those
above a threshold of 1.5, to minimise the effects of outliers (which are likely to be due to
either mislabelling or suboptimal FANS sorting) on the average profiles for each cell type.
For each cell type, we then calculated the mean and SD of the first two principal components
only including the non-outlier samples. These were then used to calculate sample level
scores that captured the similarity of the observed sample and the expected profile for that
cell type. This was defined as the value of the principal component for that sample minus the
mean for the cell type divided by the standard deviation for the cell type. The value can be
interpreted as the number of SD from the mean that sample is, where lower values are
desirable. This was performed separately for the first two principal components and then
combined into a single score by taking the maximum, referred to here as the maxSD score.
Prior to confirming the labelling of individual samples, we first wanted to confirm at an
individual level that we had successfully isolated distinct fractions of nuclei. For this we
calculated individual level metrics that represents the efficiency of the FANS sort. These are
defined as the median across all the maxSD scores for that individual. Where the FANS
sorting worked well (i.e. all antibodies were stained and gated accurately), all the samples
from that individual should be close to their relevant average profile and this score will be
low. Where the FANS sorting for an individual did not successfully isolate the relevant cell
types, these samples will still be heterogeneous mixtures of cells, and sit in the middle of the

principal component space, far away from their average profile, all with large maxSD. By
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taking the median, we ensure that we focus here on detecting FANS sorts, where the
separation into specific cell types was not successful, rather than instances where just
one/two samples are affected/mislabelled. Visual inspection of the best and worst performing
individuals, informed us that a threshold of 5 was appropriate. It is also important to exclude
these individuals prior to performing the cell type checking at a sample level as it enables us
to ensure we have high signal to noise average profiles for the cell types. Having excluded
all the samples associated with any individual deemed to have inefficient FANS sorting, we
recalculated the Studentized values prior to recalculating the cell type means and SD for the
first two principal components. Samples were retained if their principal components values
were within two standard deviations of the mean of their labelled cell type. Samples that
were more than two standard deviations away from the mean in either of the first two
principal components were excluded from further analyses. Samples were then normalised

using the dasen function(57), separately for each cell type.

EPIGABA data

DNA methylation data generated with lllumina 450K BeadChip array were downloaded from
the Synapse portal (syn7072866) for 5 NeuNPos/SOX6Pos, 5 NeuNPos/SOX6Neg, and 5
NeuNNeg samples. idat files for these samples were put through the same quality control
pipeline described above, and the same classification algorithm was performed to confirm

successful isolation and high quality reference data for the purpose of cellular deconvolution.

Merging reference DNA methylation datasets

Our Exeter reference dataset was joined to the EpiGABA reference dataset. Given the use
of two different technologies, we filtered to sites common to both the EPICarray and 450K
array. Prior to training any deconvolution models, these datasets were filtered to only include
autosomal DNAm sites and remove cross-hybridising probes and SNP probes as defined in

publicly available resources(58, 59).
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Generation of deconvolution models and selection of cell-specific sites

Given the range of different cell types we have isolated, and the fact that these represent
overlapping sets of nuclei, we defined 8 different combinations of cell types each of which
represent a different reference panel (Supplementary Figure 3). To test and compare the
performance of these panels against a known truth we trained a series of Houseman
constraint projection deconvolution models using our novel reference data. These were then
tested against reconstructed brain tissue DNAm profiles where we combined cell-specific
profiles in a weighted linear sum of pre-specified proportions of each cell type. For each
simulation, one sample for each cell type was removed to generate the testing data, and the
remaining samples formed the training data, such that the train and test data consisted of
distinct sets of samples. It should be noted though, that they were from the same
experimental batch, and plausibly share technical, batch-specific effects. In this framework,
training the models essentially means selecting the cell-specific sites that form the basis of
the deconvolution algorithm. We used two different methods to select these sites. First, an
ANOVA is performed across all samples in the training data to identify sites that are
significantly different (p value < 1x10®) between the brain cell types, selecting 2N sites per
cell type (N hypermethylated and N hypomethylated). This is the approach implemented by
minfi (via the EstimateCellCounts function)(60). The second approach, is the IDOL
method(19). This also starts with an ANOVA to identify a larger pool of possible cell-specific
sites, in our case the default selection of 150 sites per cell type with smallest and largest t-
statistics. It then tests random subsets of sites to refine this list to a smaller set of size M
probes such that the optimal performance is achieved. To determine whether a particular
subset of sites is a better fit than the current best subset, it requires a separate set of
reconstructed test profiles with known cellular composition. These were constructed as
described below for our testing data but from a sample selected at random from the training
samples. The effect of individual CpGs on the accuracy of the deconvolution is assessed by

comparing the accuracy of estimated cellular composition with and without that CpG. CpGs
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that confer a positive effect are then up weighted such that they are more likely to be
selected in the next random subset. The selection of random subset of sites was performed
a maximum of 300 times. This optimisation was performed using the IDOLoptimize() function
provided in the IDOL R package. Note the IDOL method is only applicable to reference
panels with > 2 cell types. Therefore from our 8 reference panels there were 15 trained
models. For each of these models we trained the models multiple times to select between 20

and 200 probes per cell type, increasing in units of 20 probes.

Generation simulated bulk brain profiles

To construct bulk brain profiles for testing, we combined the cell specific test profiles in fixed
proportions that represented the full spectrum of possible combinations. Each reference
panel was only tested against reconstructed profiles consisting of the same cell types. Cell
type proportions were increased in 0.1 units, where each cell type represented at least 0.1,
up to a maximum of 0.9 and such that the total of all cell type proportions equalled 1. As
each reference panel consists of different numbers of cell types, the possible number of
reconstructed profiles tested differs by virtue of the different number of combinations
possible with that number of cell types. DNAm levels in the test data at these cell-specific
sites are then computed into estimates of cellular proportions using a quadratic programming
methodology as described by Houseman(15). This process was repeated for 10 different
train-test splits of the reference data. This methodology was implemented using functions in
the CETYGO package(55) which are adaptations of functions from the minfi package(60)

that takes matrices of beta values as input for the training and testing data.

Training deconvolution models for use with empirical bulk brain profiles

To train the deconvolution algorithm for all 15 models for use with empirical bulk brain
datasets, and for sharing with the wider research community, we used all available samples

for each cell type (Supplementary Table 1). Cell-specific sites were selected in the same
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way as above with a total of 100 probes per cell type selected (i.e. for a two cell type

reference panel up to 200 probes were selected).

Profiling the performance of neural cell type deconvolution in empirical datasets

We used four datasets of bulk brain DNAm profiles from two sources to further characterise
the performance of the neural reference panels. The first source contains data generated by

our group at the University of Exeter (www.epigenomicslab.com) across a range of projects

and includes i) a dataset of 377 adult PFC samples (BA9)(40-43), ii) a dataset of 851 adult
samples from 9 other brain regions including additional cortical regions, the striatum, the
hippocampus, and cerebellum (Supplementary Table 6)(39-43, 46), and 167 prenatal and
childhood samples(39, 48). The second source is the publicly available data provided by
Jaffe et al(44) and includes 415 adult PFC samples. All datasets were processed by our
group through a standard QC pipeline(30) and were normalised using the dasen function in
the wateRmelon package(61). Cellular composition was estimated for all samples using all
15 models and then selecting the estimates from the best performing models for each cell

type (Supplementary Table 8).

In the adult PFC datasets we used a linear regression model to test for batch effects (slide)
and biological (age, age? and sex) effects on the CETYGO score. P-values for the age, age?
and sex covariates were taken from t-tests of the estimated regression coefficients. The P-
value for the batch effect was taken from an ANOVA comparing with full model to a nested
model without the batch covariate. In the Exeter adult multi-tissue dataset we tested for brain
region effects on the CETYGO scores using a linear regression model, where PFC(BA9)
was set to the baseline, so that we estimated coefficients and p-values for all other brain
regions relative to the PFC. In this analysis we controlled for age, age®, sex but not batch as

data generated from different brain regions were run in different batches. To test for effects
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on cellular composition we used the same linear regression models as described here for

the estimated proportion of each cell type in turn.

Testing the associations between cellular composition and Alzheimer's disease

neuropathology

We additionally generated estimates of cellular composition in three in house Alzheimer’s
disease DNA methylation datasets(30, 42, 43), where data had been generated from DNA
extracted from the PFC (Supplementary Table 10). Cellular composition was estimated for
all samples using all 15 models and then selecting the estimates from the best performing
models (Supplementary Table 8). We used a linear regression model within each cohort to
test for associations between Braak stage (modelled as a continuous variable) and either the
CETYGO score or estimated proportion of each cell type, including covariates for age and
sex. The estimated coefficients for Braak stage and the associated standard errors were
then meta-analysed together using the R package meta(62). Given that we only included
three studies, we present only the fixed effect results in the main text, but the random effect

results are also available in the relevant Supplementary Tables.
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Figure Legends

Figure 1. Major axes of variation in DNA methylation data are driven by cell type.
Scatterplot (a) of the first two principal components where each point represents a sample
and the colour of the point indicates the nuclei fraction. Violin plots for the first 5 principal

components (b-f) grouped by nuclei fraction.

Figure 2. Accurate and increasingly refined estimation of cellular composition of the
cortex from DNA methylation profiles. Violin plots of the error, measured by CETYGO,
associated with estimating the cellular proportions of reconstructed cortical brain profiles.
Panels represent different combinations of nuclei populations, as defined in Table 1. For
reference panels with more than two cell types, two methods were used to select the cell-

specific sites that serve as the basis for the algorithm represented by different violins.

Figure 3. Accuracy and bias differs across cell types when estimating the cellular
composition of the cortex. Violin plots of the error associated with estimating the cellular
proportions of reconstructed cortical brain profiles, measured as the difference between
predicted and actual abundance, where a positive value indicates an overestimation. Panels
collate results for the same cell type, within each panel, values are grouped by reference

panels, as defined in Table 1.

Figure 4. Performance of brain cellular deconvolution models not equitable across all
brain datasets. Violin plots of the distribution of the error, measured by CETYGO,
associated with estimating the cellular proportions from DNA methylation data generated
from brain tissues. A) Adult prefrontal cortex samples grouped by experimental batch (n =
377). B) Adult brain samples grouped by brain region (n = 851). C) Prenatal and childhood
cortical samples grouped by developmental stage (n = 167). CETYGO scores taken from

reference panel 1 with an ANOVA to select cell specific sites.
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Figure 5. Cellular composition of adult prefrontal cortex. Violin plots of the distribution of
proportion of brain cell types in the adult prefrontal cortex (n = 377), estimated using

reference panel 8 and the IDOL algorithm for selecting cell-specific sites.

Figure 6. Cellular composition of adult prefrontal cortex varies as a function of
Alzheimer’s Disease neuropathology. Violin plots of the distribution of proportion of brain
cell types estimated from DNA methylation data generated from the prefrontal cortex (n =
864) grouped by Braak tangle stage. Each panel represents a different cell type, estimated

using the optimal reference panel for that cell type (Supplementary Table 8).
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Table 1. Summary of fractions included in the reference panels

Panel Included Fractions

1 NeuNPos
NeuNNeg/SOX10Pos
NeuNNeg/SOX10Neg

2 NeuNPos
NeuNNeg/SOX10Pos

NeuNNeg/SOX10Neg/IRF8Pos
NeuNNeg/SOX10Neg/IRF8Neg
3 SATB2Pos

SATB2Neg

4 NeuNPos

SATB2Pos
NeuNNeg/SOX10Pos
NeuNNeg/SOX10Neg

5 NeuNPos

SATB2Pos
NeuNNeg/SOX10Pos
NeuNNeg/SOX10Neg/IRF8Pos
NeuNNeg/SOX10Neg/IRF8Neg
6 NeuNPos/SOX6Pos
NeuNPos/SOX6Neg

NeuNNeg

7 NeuNPos/SOX6Pos
NeuNPos/SOX6Neg
NeuNNeg/SOX10Pos
NeuNNeg/SOX10Neg

8 NeuNPos/SOX6Pos
NeuNPos/SOX6Neg
NeuNNeg/SOX10Pos
NeuNNeg/SOX10Neg/IRF8Pos
NeuNNeg/SOX10Neg/IRF8Neg
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Table 2. Summary of proportions of cell types in the adult prefrontal cortex

Cell tvpes Exeter Jaffe
yp Mean SD Mean SD
all 0.336 0.0628 0.309 0.0582
Excitatory (glutamatergic)
Neuronal NeuNPos/SOX6Neg neuronal enriched 0.306 0.0557 0.295 0.0555
NeuNPos/SOX6Pos Inhibatory (gﬁﬁiﬁgc) neuronal | 4 9303 0.0155 0.013 0.0099
all 0.683 0.0723 0.711 0.0692
Glial NeuNNeg/SOX10Neg/IRF8Pos microglia enriched 0.169 0.0388 0.175 0.0289
NeuNNeg/SOX10Pos oligodendrocyte-enriched 0.274 0.153 0.305 0.133
NeuNNeg/SOX10Neg/IRF8Neg astrocyte enriched 0.241 0.0928 0.232 0.0807
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. Panel 1 . Panel 3 . Panel 5 Panel 7
Panel
Panel 2 . Panel 4 . Panel 6 . Panel 8

DoubleNeg IRF8Pos NEUNNeg NeuNPos SATB2Neg
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06 -03 00 03 06 -06 -03 00 03 06 -06 -03 00 03 06 -06 -03 00 03 06 -06 -03 00 03 06
Predicted — Actual Predicted — Actual Predicted — Actual Predicted — Actual Predicted — Actual

SATB2Pos SOX6Neg SOX6Pos Sox10Pos TripleNeg

06 -03 00 03 06 -06 -03 00 03 06 -06 -03 00 03 06 -06 -03 00 03 06 -06 -03 00 03 06
Predicted — Actual Predicted — Actual Predicted — Actual Predicted — Actual Predicted — Actual



https://doi.org/10.1101/2023.06.23.545974
http://creativecommons.org/licenses/by/4.0/

"""""""""" Experimental Batth

C
0.25-

3 QOB

> -
— 0.15

L
O 0.10-



https://doi.org/10.1101/2023.06.23.545974
http://creativecommons.org/licenses/by/4.0/

Proportion

0.8-

0.6-

0.0-

IRF8Pos

*

SOXESNeg

SOXIG Pos
PredCT

Sox10Pos

TripIéNeg

PredCT

- IRF8Pos
- SOX6Neg

SOX6Pos
Sox10Pos

TripleNeg


https://doi.org/10.1101/2023.06.23.545974
http://creativecommons.org/licenses/by/4.0/

1.00-

1.00-

1.00-

1.00-

0.25-

BaNzglvs

BaNgdd| BaNOTX0S BaNNNeN

1 1
o) o
™~ ©
o o

sodg4yl BaNOTX0S BaNNnaN

1 1

© 2 2

o o o
SOdNNaN

75

BaNOTXOS BaNNNeN

1
o Te}
D N
o o

0

0.00-

3
Braak stage

Braak stage

3
Braak stage

3
Braak stage

3
Braak stage

1.00-

1.00-

1.00-

1.00-

1.00-

S0dOTXOS BaNNnaN

0.75-
10.50-

BAIN9XOS SOdNNaN

0.75-
10.50-

SO0d9XOS SOdNNSN

1
o
©

0.75-

o

BaNNNaN

1
o
©
o

S0dZdlvsS

0.75-

0.25-

0.00-

Braak stage

3
Braak stage

3
Braak stage

3
Braak stage

Braak stage


https://doi.org/10.1101/2023.06.23.545974
http://creativecommons.org/licenses/by/4.0/

