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Abstract  
Single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) has been 

increasingly used to study gene regulation. However, major analytical gaps limit its utility in 

studying gene regulatory programs in complex diseases. We developed MOCHA (Model-based 

single cell Open CHromatin Analysis) with major advances over existing analysis tools, including: 

1) improved identification of sample-specific open chromatin, 2) proper handling of technical 

drop-out with zero-inflated methods, 3) mitigation of false positives in single cell analysis, 4) 

identification of alternative transcription-starting-site regulation, and 5) transcription factor–

gene network construction from longitudinal scATAC-seq data. These advances provide a robust 

framework to study gene regulatory programs in human disease. We benchmarked MOCHA 

with four state-of-the-art tools to demonstrate its advances. We also constructed cross-

sectional and longitudinal gene regulatory networks, identifying potential mechanisms of 

COVID-19 response. MOCHA provides researchers with a robust analytical tool for functional 

genomic inference from scATAC-seq data. 
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COVID-19 

Immune responses  

Zero-inflated Modeling  

Introduction  

Single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq)
1–3

 

has become increasingly popular in recent years for studying biological and translational 

questions around gene regulation and cell identity and has revealed insights on diverse topics 

such as tumor-related T cell exhaustion
4
, trained immunity in monocytes in patients with 

COVID-19
5
, regulators of innate immunity in COVID-19

6
, and potentially causal variants for 

Alzheimer’s disease and Parkinson’s disease
7
. Many sophisticated software tools have been 

developed for analyzing scATAC-seq data
8
, covering functionalities such as dimensionality 

reduction and clustering
9–11

, semi-automated cell type annotation
10,11

, identification of open 

chromatin regions
12–16

, characterization of motif usage and enrichment
17–20

, and inference on 

gene regulatory networks
11,21,22

. Integrating these developments, recent end-to-end analysis 

pipelines streamline the analytical process from quality control and cell type annotation to 

accessibility and motif analysis
9–12,23

.  Together these tools have facilitated the extraction of 

biological insights from scATAC-seq data.  

Despite these advances, major analytical gaps in scATAC-seq data analysis limit the 

construction of robust and reproducible gene regulatory networks to study human disease. 

First, human disease studies require reliable evaluation of sample- and cell-type-specific open 

chromatin to capture human genetic heterogeneity and cell type-specific regulatory regions. 

However, visibility into these forms of heterogeneity is compromised by existing packages
10–

13,15
 , which usually mix cells across either samples or cell types to compensate for the low 

coverage of scATAC-seq. Second, scATAC-seq data is intrinsically sparse. Only 5–15% of open 

chromatin regions are detected in individual cells
9
. Both single-cell and pseudo-bulk ATAC-seq 

data can contain an excessively high number of regions without accessibility measurements. 

While zero-inflated (ZI) statistical methods are widely used in analyzing single-cell ribonucleic 

acid sequencing (scRNA-seq) data
24–27

, such methods are not implemented in popular tools for 

scATAC-seq data analysis, likely leading to many unreliable results. Third, previous studies have 

shown that pseudo-replication bias (cell-interdependence) generates many false results in 

scRNA-seq analysis, if left unaddressed
28,29

. Similarly, any scATAC-seq tools that do not address 

this issue may generate many false results as well. In longitudinal studies, this pseudo-

replication bias is exacerbated as subjects have multiple interdependent samples. To postulate 

robust gene regulatory networks in human disease, the research community needs a tool to 

address these challenges.   

To this end, we developed a suite of analytical modules for robust functional genomic 

inference in heterogeneous human disease cohorts, in an open R package called MOCHA 

(Model-based single cell Open CHromatin Analysis).  First, we developed a method for 

evaluating sample- and cell-type-specific chromatin accessibility in low coverage scATAC-seq. 

Second, we implemented ZI statistical methods
30–34

 for differential accessibility analysis, co-

accessibility analysis, and mixed effects modeling . Third, we aggregated scATAC-seq data per 
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cell type into normalized pseudo-bulk tile-sample accessibility matrices (TSAMs) to capture 

donor and cell type-centric accessibility. This TSAM directly addresses the issue of cell 

interdependence (pseudo-replication) and enables modeling cross-sectional and longitudinal 

gene regulatory landscapes of human disease in large cohorts. We benchmarked MOCHA 

against state-of-the-art methods in identifying regions of open chromatin, differential 

accessibility, and co-accessibility. More importantly, we demonstrate MOCHA’s ability to 

construct gene regulatory networks from both cross-sectional and longitudinal analyses of 

scATAC-seq data on CD16 monocytes from our COVID-19 cohort
35

. We also demonstrate how 

to integrate MOCHA with existing tools
11,17,30,36

, and adapt it for custom approaches. In all, we 

anticipate MOCHA will accelerate the analysis and interpretation of gene regulatory networks 

using scATAC-seq data.  

Results  

MOCHA overview. 

We developed MOCHA based on our COVID19 dataset (Methods), which was collected on n=91 

peripheral blood mononuclear cell (PBMC) samples of either COVID+ participants (n=18, 10 

females and 8 males, 3–5 samples per participant, a total of 69 samples) or uninfected COVID- 

participants (n=22, 10 females and 12 males, one sample per participant). We obtained high 

quality scATAC-seq data of 1,311,638 cells from the samples. Unless specified, we mainly used a 

cross-sectional subset of the COVID19 dataset (denoted as COVID19X, n=39) in the 

development, including data of the COVID- samples and the first samples of the COVID+ 

participants during early infection (<16 days post symptom onset (PSO), n=17, 9 females and 8 

males).  

We designed MOCHA to serve as an analytical framework for sample-centric scATAC-seq 

data analysis, after quality control assessments and cell type labeling. MOCHA identifies 

sample- and cell type-specific open chromatin and provides a range of analytical functions for 

complex scATAC-seq data analysis (Fig. 1, Supplementary Fig. 1):  

(i) Tiling: MOCHA divides the genome into pre-defined 500 base pair (bp) tiles, which 

allows head-to-head comparisons on chromatin accessibility across samples and cell types and 

avoids complex peak-merging procedure on non-aligned summits
9,11

.  

(ii) Normalization: Since sequencing depth may differ across samples in a large-scale 

scATAC-seq study (Supplementary Fig. 2a), it is essential to normalize scATAC-seq data prior to 

meaningful accessibility analysis. MOCHA counts the number of fragments that overlap with 

individual tiles in individual cells, collects the total and the maximum fragment counts for each 

tile from all cells of a targeted cell type per sample, and normalizes the fragment counts by the 

total number of fragments of the cell type per sample to reduce the effects of variations in 

sequencing depth and cell count (Methods). Compared with other normalization approaches, 

this approach resulted in the lowest coefficient of variation (CV) distribution on 2230 invariant 

CCCTC-binding factor (CTCF) sites on the COVID19 dataset (Supplementary Fig. 2b, n=91). As 

indicated by the low to moderate CV values, this approach also makes it possible to compare 

normalized accessibility across samples (Supplementary Fig. 2b) and cell types (Supplementary 

Fig. 2c). 
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(iii) Accessibility evaluation: MOCHA applies logistic regression models (LRMs) to 

evaluate whether a tile in a given cell type and sample is accessible based on three parameters 

(Methods): the normalized total fragment count ����, the normalized maximum fragment count 

����, and a study-specific prefactor � to account for differences in data quality between training 

and user datasets. Since ���� can only be evaluated on scATAC-seq data, its usage distinguishes 

MOCHA from peak-calling methods based on pseudo-bulk ATAC-seq data only. Using the full 

COVID19 dataset (n=91), we generated pseudo-bulk ATAC-seq data from scATAC-seq data of all 

cells of a targeted cell type, ran MACS2
37

 to identify all accessible regions, and used these labels 

as the imperfect “ground truth” to train and test the LRMs. More specifically, we used natural 

killer (NK) cells (n=179,836) for training, which had 750 million total fragments, or 15x the 

recommended coverage for MACS2. On this dataset, MACS2 identified 1.15 million tiles as 

accessible. Using these tiles as positives and other fragment-containing tiles as negatives, we 

developed cell count-specific LRMs with varying coefficients and thresholds to account for 

variations in cell count across samples (Supplementary Fig. 3a-b). MOCHA applies smoothing 

and interpolation to find the proper coefficients and thresholds for individual datasets. We 

validated the LRMs (Supplementary Fig. 3c-d) using data of CD14 monocytes (n=135,949), naive 

B cells (n = 60,595), CD16 monocytes (n=28,525), NK CD56 bright cells (n=14,692), and 

conventional dendritic cells (cDCs, n=9,915). We used sensitivity, specificity, area under the 

receiver operating characteristic (ROC) curve (AUC), and Youden's J statistic to quantify the 

performance. Overall MOCHA had a good performance even at low cell counts. For example, 

MOCHA achieved an AUC ranging from 0.693 (CD14 monocytes), 0.703 (CD16 monocytes), to 

0.741 (NK CD56 bright cells) with only 50 cells.    

(iv) Tile-sample accessibility matrix (TSAM): MOCHA first uses the LRMs to identify 

accessible tiles from cells of a targeted cell type in individual samples and then keeps only tiles 

that are common to at least a user-defined fraction threshold of samples. Afterwards, MOCHA 

generates a TSAM for the cell type with rows being the accessible tiles, columns the samples, 

and elements the corresponding ���� values. A total of 215,649 accessible tiles were identified 

on CD16 monocytes with a fraction threshold of 20% (Supplementary Fig. 2d) across either 

COVID+ or COVID- samples in the COVID19X dataset (n=39). About 25% elements in the 

obtained TSAM were zero (Supplementary Fig. 2e,f), reflecting the sparsity of scATAC-seq data 

even after pseudo-bulking and indicating the necessity of applying ZI statistical methods for 

downstream analysis.   

(v) Differential accessibility analysis (DAA): Similar to other methods, MOCHA first filters 

out noisy tiles. Tiles are excluded if either 1) the median ���2����� � 1
 value (across all 

samples) is lower than a user-defined threshold or 2) their difference (between two sample 

groups) in percentage of zeros is less than a user-defined threshold. Unlike other methods, 

MOCHA includes functions to heuristically define these thresholds. For the COVID19X dataset 

(n=39), we noticed that the ���2����� � 1
 values in the TSAM of CD16 monocytes followed a 

bi-modal model and thus chose a value of 12 near the higher mode as the median accessibility 

threshold (Supplementary Fig. 2g). Additionally, we observed a 25% difference in fragment 

counts between COVID+ and COVID- samples (Supplementary Fig. 2a), so we set a 50% 

threshold for the difference in the percentage of zeros to control for technical differences. 

MOCHA then applies a two-part Wilcoxon test 
31,32

 to identify differential accessibility tiles 
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(DATs) within the cell type between the two sample groups (Methods). DATs have either a large 

fold change (FC) in accessibility (Supplementary Fig. 2h) and/or large difference in percentage 

of zeros (Supplementary Fig. 2i). For comparison, ArchR
11

 uses the standard Wilcoxon test along 

with a post-test log2(FC) cutoff to identify differential regions on bias-matched cell populations, 

while Signac
10

 constructs LRMs and prioritizes differential regions based on FC.  

(vi) Co-accessibility analysis (CAA): MOCHA applies the ZI Spearman correlation
33

 to 

evaluate two types of co-accessibility between tiles in TSAMs (Methods). The inter-cell type co-

accessibility is evaluated across cell types where data from different samples are stacked. The 

inter-sample co-accessibility is evaluated within a targeted cell type but across different 

samples. Both types are important to infer potential gene regulatory networks, one for 

understanding differences between cell types and the other for understanding differences 

between sample groups.  

In addition, MOCHA has functions for dimensionality reduction, motif enrichment, 

analysis for alternative transcription starting site (TSS) regulation, and longitudinal modeling. 

TSAMs can also be passed to some existing scATAC-seq tools such as ArchR and chromVAR and 

other bioinformatics tools such as Monocle3 for further analysis. Furthermore, users can easily 

leverage information from TSAMs to conduct their own interrogations of scATAC-seq data. 

MOCHA reliably detects sample-specific chromatin accessibility. 

A crucial component of scATAC-seq data analysis is to reliably detect which chromatin regions 

are accessible. We benchmarked MOCHA against the popular tools MACS2
37

 and HOMER
38

. The 

former is also implemented in ArchR
11

, Signac
10

 and SnapATAC
9
. We compared these tools 

using three scATAC-seq datasets with different data quality and sequencing depth (Methods, 

Supplementary Fig. 4a): i) COVID19X (n=39, Fig. 2) or COVID19 (n=91, Supplementary Fig. 4); ii) 

HealthyDonor, a dataset of 18 PBMC samples of n=4 healthy donors 
39

; and iii) Hematopoiesis, 

an assembled dataset of hematopoietic cells from 49 samples of diverse data quality
11

, which 

was treated as a single sample sample in this study. Three representative cell types with 

moderate to high cell counts were selected from each of the three datasets for the comparison, 

with cell count per sample ranging from 227 to 743 (COVID19X, median), 163 to 784 

(HealthyDonor, median), and 1175 to 27463 (Hematopoiesis), respectively (Fig. 2a, 

Supplementary Fig. 4b).  

To benchmark performance on sample-specific accessibility, we compared the number 

of open regions detected in individual samples (Fig. 2b). On COVID19X, MOCHA detected a 

median of 129k–195k open tiles per sample, which was 19–64% higher (significantly with P < 

0.05 in ⅚ cases) than the corresponding numbers by MACS2 or HOMER. Similarly on 

HealthyDonor, MOCHA detected a median of 117k–216k open tiles per sample, a 35–59% 

increase (significantly with P < 0.05 in ⅚ cases) over the corresponding numbers by MACS2 or 

HOMER. On Hematopoiesis, MOCHA detected 370k open tiles in cDCs, 665k in naive CD4
+
 T 

cells, and 1.28m in CD14 monocytes, which were <7% lower, >43% higher, and >70% higher, 

respectively, than the corresponding numbers by MACS2 or HOMER. Thus MOCHA was more 

sensitive than MACS2 and HOMER in detecting open chromatin regions in individual samples in 

almost all cases.  

 To assess the consistency between open tiles detected by the three tools, we generated 

TSAMs with a fraction threshold of 20% based on tiles detected by each tool and compared the 
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corresponding tiles in TSAMs (Fig. 2c). Most tiles were detected by all three tools. As described 

above, MOCHA detected more tiles than MACS2 and HOMER in almost all cases. Among all tiles 

detected by MACS2 and/or HOMER, 95–97% were also detected by MOCHA in COVID19X, 92–

93% in HealthyDonor, and 84–97% in Hematopoiesis. Tiles detected only by MOCHA contained 

on average more fragments than tiles missed by MOCHA (Fig. 2c, inserts; P < 0.001). Thus 

MOCHA not only captured the majority of tiles detected by MACS2 and HOMER but also added 

extra tiles of better signals than those by MACS2 or HOMER.   

 To further elucidate differences among tiles detected by the three tools, we calculated 

the percentage of zeros among all samples for each tile in each TSAM and obtained the 

corresponding cumulant distributions (Fig. 2d). While all three tools agreed on open tiles 

common to most samples, MOCHA detected more sample-specific tiles than MACS2 and 

HOMER. To test whether these additional tiles potentially contained biological information, we 

generated the corresponding cumulative distributions on tiles mapped to CTCF sites or TSSs and 

observed similar patterns (Fig. 2e,f). This suggests that the extra tiles detected by MOCHA may 

carry important biological information. MOCHA also detected similar or more open CTCF sites 

and open TSSs in Hematopoiesis compared to MACS2 and HOMER (Fig. 2g).  

Calling peaks on pooled cells of interest is a common practice in scATAC-seq data 

analysis
9–11

. To compare MOCHA, MACS2 and HOMER on this approach, we pooled cells of the 

three cell types in the three datasets, randomly downsampled the cells to a series of 

predetermined cell counts, and applied the three tools to detect accessible tiles 

(Supplementary Fig. 4c). MOCHA consistently detected more tiles, more CTCF sites, and more 

TSSs than MACS2 and HOMER in almost all cases.  

Finally, we benchmarked the runtime for each tool on a cloud computing environment. 

MOCHA was consistently faster than HOMER in all tested cases and MACS2 in all practical cases 

(Fig. 2h). 

MOCHA implements zero-inflated differential accessibility and co-accessibility analyses. 

We evaluated MOCHA’s ZI modules against existing state-of-the-art tools for DAA and CAA. We 

first benchmarked MOCHA with ArchR and Signac on DAA. To ensure a head-to-head 

comparison, we applied each method to identify DATs between COVID+ (n=17) and COVID- 

(n=22) participants from the 215,649 tiles in the TSAM of CD16 monocytes in the COVID19X 

dataset (Methods). MOCHA identified 6211 DATs (false discovery rate (FDR) < 0.2, Fig. 3a, 

Supplementary Fig. 5a). In comparison, ArchR and Signac detected 6009 and 1266 DATs, 

respectively (Fig. 3b). While 28% of DATs by MOCHA were in gene promoter regions, the 

corresponding percentage was 17% for ArchR and 18% for Signac. As a result, MOCHA, ArchR, 

and Signac identified 1811, 1006, and 228 genes, respectively, with DATs in their promoter 

regions. These genes were enriched (adjusted P < 0.05) in 27, 1, and 1 Reactome pathways
40

 

(Fig. 3c), respectively, illustrating a striking distinction by MOCHA. The same trend was also 

observed for other pathway databases (Supplementary Fig. 5b). Among the 27 Reactome 

pathways revealed by MOCHA (Fig. 3d), toll-like receptors (TLRs), myeloid differentiation 

primary response 88 (MyD88), interleukins, and nuclear factor kappa B (NF-κB) pathways all 

play important roles in innate immune response to viral infection
41

, consistent with the 

expected functions of CD16 monocytes. Thus DATs by MOCHA revealed more biological insights 

than those by ArchR or Signac.  
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To quantify the DAT accuracy for each method, we evaluated its efficiency in separating 

COVID19+ and COVID19- samples. We randomly selected 50 DATs, performed k-mean (k=2) 

clustering, calculated the absolute value of the G index (|G|) of agreement 
42

, and repeated the 

process 1000 times. DATs by MOCHA were significantly better in separating COVID19+ and 

COVID19- samples than those by ArchR (P < 0.001) or Signac (P < 0.001, Fig. 3e). 

Biologically meaningful DATs should be robust against minor changes in the sample set. 

Starting with DATs from the full sample set (n=39), we iteratively removed one sample at a time 

and recalculated DATs from the reduced sample set (n=38). We repeated this process until each 

sample was removed once. From there, we collected the set of conserved (e.g., cumulative 

intersection) and inflated (e.g., cumulative additional) DATs across all iterations. Ultimately, 

3990 (64%) of the 6211 DATs by MOCHA were conserved (Fig. 3f), which was 1.8–3.4 times 

higher than the corresponding rate of ArchR (1136/6009, 20%) or Signac (458/1264, 36%). 

MOCHA had 5782 (93%) additional DATs, which was 2.7 times lower than the corresponding 

rate by ArchR (15310/6009, 255%) and 1.6 times higher than that by Signac (735/1264, 58%). 

MOCHA was more robust than ArchR and had a split performance in comparison with Signac in 

detecting DATs regardless of sample set. However, MOCHA had 3990 conserved DATs, 8.7 

times higher than those of Signac (458). MOCHA provided a better balance between sensitivity 

and robustness in detecting DATs compared to  ArchR and Signac.  

When benchmarking runtime, we observed that MOCHA and ArchR took 1.8 and 1.6 

minutes, respectively, to evaluate approximately 200,000 tiles, while Signac took 18.6 hours 

(Fig. 3g). MOCHA was 23–614x faster than Signac and 0.86–2.8x as fast as ArchR.  

Next, we compared the ZI and the standard Spearman correlations across cell types and 

samples in the COVID19X dataset based on ��������� � 1
 in TSAMs. For the inter-cell type co-

accessibility, we used known promoter-enhancer interactions in naive CD4
+
 and CD8

+
 T cells

43
 

to define possibly interacting tile pairs (1.21 million) while randomly selecting 100k tile pairs as 

a negative background for comparison (Methods). Both correlation approaches largely 

generated similar results (Supplementary Fig. 6a, Spearman correlation = 0.687, P < 2.2x10
-16

), 

but disagreements were also observed (Supplementary Fig. 6b). The ZI correlation better 

distinguished promoter-enhancer pairs from the random pairs than the standard correlation 

(Kolmogorov–Smirnov (KS) test statistic = 0.26 vs. 0.13), and identified 1000x more promoter-

enhancers pairs (15,988 vs. 149, FDR < 0.1, Supplementary Fig. 6c-d). For the inter-sample co-

accessibility, we first collected a subset of tiles in the TSAM of CD16 monocytes that roughly 

located in the first million bp of chromosome 4 (chr4:121500-1130999) and then used both correlation 

approaches to calculate the inter-sample correlations between all pairs (about 34.5k) of these tiles. While 

both correlation approaches generally agreed with each other with a rank correlation of 0.69 (P 

< 0.001, Supplementary Fig. 6e), 9550/34,596 (28%) of the tested correlations switched sign 

between the two approaches and 2087/34,596 (6%) of them differed in value by >0.25 

(Supplementary Fig. 6f). Thus properly accounting for zero-inflation is essential for reliable CAA 

in sparse scATAC-seq data.  

Networks of alternatively regulated genes in early SARS-CoV-2 infection. 

To demonstrate how improvements in MOCHA can be leveraged for constructing gene 

regulatory networks, we investigated possible alternative TSS regulation by CD16 monocytes 
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during early SARS-CoV-2 infection (Methods), using the COVID19X dataset. We observed two 

types of alternatively regulated genes (ARGs, Fig. 4a): A total of 278 genes had at least one TSS 

showing differential accessibility (FDR < 0.2) between COVID19+ and COVID19- samples, while 

other open TSSs had no change (Type I, Fig. 4b). Five genes (ATP1A1, UBAP2L, YWHAZ, CAPN1, 

and ARHGAP9) had at least two differential TSSs changing in the opposite directions (Type II, 

Fig. 4c). Interestingly, all Type II ARGs were previously associated with COVID-19 and two 

(ATP1A1 and CAPN1) have been proposed as therapeutic targets for COVID-19 (Supplementary 

Table 1). Pathway enrichment analysis
44

 on all Type I and Type II ARGs revealed that they were 

enriched in pathways of the innate immune response to infection, including MyD88 and TLR 

responses (Fig. 4d).  

To understand the upstream signaling mechanisms regulating ARGs, we first applied 

MOCHA to identify tiles that were co-accessible (inter-sample) with the corresponding DATs. 

Motif enrichment analysis on DATs of ARGs and their co-accessible tiles identified 13 enriched 

motifs, including activator protein-1 (AP-1) family motifs, PATZ1, and CEBPA (adjusted P < 0.05, 

Fig. 4e). Next, we carried out ligand-motif set enrichment analysis (LMSEA, Methods) based on 

a priori ligand-motif (transcription factor, TF) interactions in NicheNet
45

. We identified 122 

significantly enriched ligands (adjusted P < 0.05, Fig. 4f), many of which, including IL17, IL21 and 

PLAU, have already been implicated in COVID-19 (Source Data Fig. 4g). Finally, we constructed a 

network that linked ligands, TFs, and ARGs together (Methods). Notably, the subnetwork of 

CEBPA is particularly interesting (Fig. 4g): CEBPA was proposed as a COVID-19 therapeutic 

target
46

 and identified as a key regulator in CD14 monocytes of hospitalized COVID-19 patients 

from scATAC-seq data
6
. Furthermore, 29/30 of its upstream ligands were either therapeutic 

targets or altered during SARS-CoV-2 infection, and 20/27 of its downstream ARGs were 

associated to COVID-19 or viral infection
46–53

. Two ARGs, SOCS3/SOCS3-DT and CAPN1, were 

potential targets for COVID-19 treatment
54

. Using MOCHA’s differential accessibility and co-

accessibility modules, we constructed a putative upstream regulatory network that could be 

driving alternative TSS regulation in CD16 monocytes during early SARS-CoV-2 infection. Given 

that these results are largely aligned with the literature, we anticipate that this approach can be 

used more generally to identify potentially novel biological mechanisms. 

Longitudinal analysis of chromatin accessibility during COVID-19 recovery. 

To understand chromatin regulation during COVID-19 recovery, we analyzed scATAC-seq data 

of CD16 monocytes from our longitudinal COVID-19 study (Fig. 5a). The dataset, denoted as 

COVID19L, was collected on 69 longitudinal PBMC samples from 18 COVID+ participants (10 

females and 8 males) over a period of 1–121 days PSO (Methods). We integrated MOCHA with 

existing tools and developed customized approaches to analyze the data at both single-cell and 

pseudo-bulk levels. 

First, open tiles from the TSAM of CD16 monocytes were imported into ArchR as a 

peakset for dimensionality reduction. The resulting Uniform Manifold Approximation and 

Projection
55

 (UMAP) plot showed a clear shift in cellular population from initial infection to 30+ 

days post infection, at which time the cellular population appeared similar but not identical to 

that of the 22 COVID- participants (Fig. 5b). 

Second, days PSO were binned (Fig. 5b) and used to learn a Monocle3
56

 trajectory, 

which largely followed the cellular population shift across the UMAP space (Supplementary Fig. 
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7a). Using ArchR, we further identified genes with GeneScore changes or tiles from the TSAM 

with accessibility shifts along this trajectory (Supplementary Fig. 7b). The genes with promoter 

accessibility shifts in CD16 monocytes were enriched in 72 immune system pathways, including 

39 innate immune, 15 adaptive immune, and 18 cytokine signaling pathways (Supplementary 

Fig. 7c, right panel). In comparison, the corresponding pathway counts from the GeneScore 

analysis was only 10, 2, 4, and 4, respectively (Supplementary Fig. 7c, left panel). TSAM-based 

results were more informative and aligned better with the expected roles of CD16 monocytes 

than GeneScore-based ones. 

  Third, we converted the TSAM of CD16 monocytes into a chromVAR object and 

calculated sample-specific z-scores for TF activity (Methods). This enabled us to apply 

generalized linear mixed models (GLMM) to identify TFs with dynamic activities in CD16 

monocytes during COVID-19 recovery. Among the 223 TFs whose activity changed significantly 

in time (FDR < 0.1, Fig. 5c-d), the AP-1 family (such as ATF1-7, JUN/B/D, MAF/F/G/K, FOS/B, and 

BACH1-2; Fig. 5c, insert) and the NF-κB family (such as REL/A and NFKB1-2) mostly had 

decreased activities, in consistency with their inflammatory, infection-responsive functions. On 

the contrary, the forkhead box (FOX) TF family (such as FOXP1/4, FOXG1, FOXO1, and FOXK2) 

had increased activities, which agrees with their known roles in immune homeostasis
57–59

. In 

comparison, we also identified 86 TFs with chromVAR z-score changes along the pseudotime 

trajectory described above, among which only 31 were unique (Supplementary Fig. 8). 

Longitudinal analysis based on real time identified more TFs with dynamic activities during 

COVID-19 recovery than the trajectory analysis based on pseudotime. 

Fourth, the TSAM of CD16 monocytes was used to examine how gene promoter 

accessibility shifted during COVID-19 recovery. Since the data had about 20% zeros, we applied 

ZI-GLMM to address this specific challenge (Methods). A total of 2,120 genes demonstrated 

promoter accessibility shifts over time (FDR < 0.1), including genes regulating immune 

inflammation such as NFKBIE and DOK3 (Fig. 5e, Supplementary Fig. 9a)
60–62

. This gene set was 

enriched for 71 Reactome pathways (FDR < 0.1; Fig. 5f). Interestingly, among the 23 immune 

system pathways, five involve signaling by interleukins and 18 are related to the innate immune 

system (such as TLR-, MyD88-, and IRAK1-related pathways), but none are specific to the 

adaptive immune system. Again, these results are consistent with the expected roles of CD16 

monocytes during viral infection. 

Finally, to discover possible TF-gene regulations in CD16 monocytes during COVID-19 

recovery, we applied ZI-GLMM to examine whether TFs with significant activity changes were 

associated with genes with significant promoter accessibility changes (Methods). For example, 

we found that JUNB chromVAR z-score was significantly associated (P < 0.05) with the promoter 

accessibility of 19 genes in the TLR4 cascade pathway (Fig. 5g, Supplementary Fig. 9b). As an 

illustration, we selected the top five TFs having the largest positive (PLAGL1, ELF5, ETV6, SPIB, 

and SPIC) or negative (JUN, FOSL1, SMARRC1, FOSL2 and JUNB) slopes, respectively, against 

time and examined their associations with gene promoters within the 18 innate immune 

pathways enriched during COVID-19 recovery (Fig. 5f). The five TFs having negative slopes were 

significantly associated (P < 0.05) with 14 pathways (Fig. 5h), consistent with the prominent 

roles of AP-1 TF family in innate immunity. Among the five TFs with positive slopes, PLAGL1 and 

ETV6 were significantly associated (p < 0.05) with five innate immune pathways, SPIB and SPIC 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2023. ; https://doi.org/10.1101/2023.06.23.544827doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.23.544827
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
  

10 

with 2, and ELF1 with 1, respectively. Four innate immune pathways did not show significant 

associations with any of these top 10 TFs. While wet-lab validation is needed, such TF-gene 

associations generate interesting biological hypotheses regarding gene expression regulation in 

CD16 monocytes during COVID-19 recovery. Together, these results demonstrate MOCHA is a 

valuable tool in studying chromatin dynamics and gene regulatory networks based on 

longitudinal scATAC-seq data.  

Discussion  

We developed MOCHA to robustly infer active gene regulatory programs in human disease 

cohorts based on scATAC-seq. First, we showed that our open chromatin model significantly 

agreed and was more sensitive in detecting sample-specific open chromatin regions than 

MACS2 and HOMER.  Second, we identified differential accessible regions that better 

distinguish between COVID+ and COVID- participants than those by ArchR and/or Signac and 

uniquely revealed pathways affected by SARS-CoV-2 infection. Third, we constructed ligand-TF-

gene networks on potential alternative TSS regulations during SARS-CoV-2 infection using only 

scATAC-seq data. Fourth, using zero-inflated mixed models, we identified motifs and promoters 

that were associated with COVID-19 recovery and constructed a TF-pathway network to infer 

which pathways were functionally important during COVID-19 recovery. MOCHA substantially 

increased the value of scATAC-seq in our COVID19 cohort by enabling robust modeling and 

visibility into the functional implications of chromatin accessibility. In addition, we illustrated 

how MOCHA can be integrated with existing tools such as ArchR, Monocle3, chromVAR, and 

NicheNet while enabling customized analysis using ZI-mixed effects models to gain unique 

insights from scATAC-seq data. Given its capabilities, we believe MOCHA is a valuable addition 

for analyzing scATAC-seq data, especially in biomedical research.  

 Constructing robust regulatory networks begins with reliable identification of patient- 

and cell type-specific open chromatin. We used peaks called by MACS2 on pseudo-bulk ATAC-

seq data as imperfect “ground truth” to train and validate MOCHA. The training data of NK cells 

(n=179,836, 750 million fragments) had enough sequencing depth for reliable MACS2 

performance and thus likely reliable MOCHA training. However, MACS2 might call every 

fragment as a peak for less abundant cell types, leading to many false positives. To mitigate 

such artifact, some pipelines artificially limit the number of peaks called by MACS2
11

. To provide 

a reasonable comparison, we focused our benchmarking on cell types with moderate to high 

cell counts. MOCHA outperformed MACS2 in calling sample-specific regions despite relying on 

MACS2 for training. In theory, MOCHA was not designed to call open tiles on datasets of mixed 

cells from multiple studies. For example, we used a global prefactor � to account for differences 

in data quality instead of, more properly, estimating an � for each of the many studies within 

the Hematopoiesis dataset. Nevertheless, MOCHA outperformed MACS2 and HOMER on all 

three datasets of varying data quality, although only slightly on the Hematopoiesis dataset. It is 

possible that the LRMs in MOCHA may need to be retrained if the difference in species, sample 

type, experimental protocol, sequencing depth, data quality, etc., becomes overwhelmingly 

large between our training data and user data. Due to a lack of access to GPU hardware
63

 and 

integration challenges
13

, we benchmarked MOCHA only with MACS2 and HOMER, which are the 
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most widely incorporated open source peak callers.  Given its strong performance against these 

standard algorithms, MOCHA’s robust open chromatin results provided a solid foundation for 

downstream analysis.  

Additionally, gene regulatory networks require clear identification of accessibility 

changes. However, the presence of drop-out leads to many unreliable results. The 

incorporation of ZI statistical methods to handle drop out is a major advantage of MOCHA over 

existing tools. ZI methods provide well-documented improvements over their counterparts on 

ZI data
64,65

. While ZI methods are applied to scRNA-seq data exclusively at single-cell level, the 

sparsity of scATAC-seq data makes it necessary to apply ZI methods even at pseudo-bulk level. 

We applied the two-part Wilcoxon model
31

 for DAA, ZI correlation
33

 for CAA, and ZI-GLMM
30

 for 

longitudinal modeling in MOCHA and demonstrated how MOCHA led to more informative 

results than existing tools.  

While single cell analysis provides granularity into cellular behavior, human cohort 

studies are usually interested in identifying patient-level behavior across cell populations. While 

current methods are centered at the single cell level, MOCHA aggregates scATAC-seq data into 

TSAMs to facilitate sample-centric analysis. To the best of our knowledge, this rather simple 

approach has not been reported to analyze scATAC-seq data. The approach provides several 

important advantages. First, the approach specifically addresses pseudo-replication bias in 

single-cell data and avoids computationally expensive single-cell mixed effect models, following 

recent advice for analyzing scRNA-seq data
28,29

. Second, the sample-centric approach makes it 

computationally feasible to analyze large, diverse human cohorts and explicitly models patient-

level heterogeneity.  Third, since the TSAM is constructed from standard Bioconductor data 

structures, its flexibility enables a broad range of scientific enquiries into gene and chromatin 

regulation and supports seamless integration with a variety of bioinformatics tools. For 

example, we applied ZI-GLMM and chromVAR to study COVID-19 recovery on our longitudinal 

scATAC-seq data. We believe TSAMs facilitate the extraction of genomic insights from large-

scale, heterogeneous scATAC-seq data. Nevertheless, the approach is underpowered for studies 

of small sample size and not appropriate for comparing a handful of samples. We plan to adapt 

MOCHA for small-scale studies in the future.   

We selected CD16 monocytes in our COVID19 dataset to showcase the utility of MOCHA 

in biomedical research. Our results reveal from multiple perspectives that the genomic regions 

associated with innate immune pathways (such as TLR, MyD88, and NF-κB) played essential 

roles in SARS-CoV-2 infection and patient recovery, aligning with the expected functions of 

CD16 monocytes during viral infection
66

. To the best of our knowledge, explicit longitudinal 

analysis on scATAC-seq data has not been reported, limiting the value of scATAC-seq in studying 

the regulatory landscapes of disease progression and recovery. Furthermore, despite the large 

number of publications on COVID-19, alternative TSS regulation during SARS-CoV-2 infection 

has not been reported. We consider MOCHA as a tool to generate interesting hypotheses from 

scATAC-seq data, which nevertheless need to be validated in follow-up studies. An in-depth, 

comprehensive analysis of our COVID19 cohort is beyond the scope of current work and will be 

presented in a follow-up paper.  
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In short, we present MOCHA as a tool to better infer gene regulation from scATAC-seq 

in biomedical and biological research. MOCHA is freely available as an R package in CRAN 

(https://cran.r-project.org/web/packages/MOCHA/index.html). 

Methods  

Longitudinal COVID-19 cohort  

We recruited in the greater Seattle area n=18 participants (10 females and 8 males, aged 22–79 

years) who tested positive (COVID+) for SARS-CoV-2 virus (Wuhan strain) and n=23 uninfected 

(COVID-) participants (10 females and 13 males, aged 29–77 years) for our longitudinal COVID-

19 study
35

, “Seattle COVID-19 Cohort Study to Evaluate Immune Responses in Persons at Risk 

and with SARS-CoV-2 Infection”. All COVID+ participants had mild to moderate symptoms. 

Peripheral blood mononuclear cell (PBMC) and serum samples were collected from the COVID- 

participants at a single time point and from the COVID+ participants at 3-5 time points over a 

period of 1–121 days post-symptom-onset (PSO, total samples n=70). Study data were collected 

and managed using REDCap electronic data capture tools hosted at Fred Hutchinson Cancer 

Research Center (FHCRC). The FHCRC Institutional Review Board (IRB) approved the studies and 

procedures. Informed consent was obtained from all participants at the Seattle Vaccine Trials 

Unit to participate in the study and to publish their corresponding research data. Two 

participants declined to publish their raw sequencing data.  

COVID19 Single-cell ATAC-seq 

PBMC isolation. Blood collected in acid citrate dextrose tubes was transferred to 

Leucosep tubes (Greiner Bio One). The tube was centrifuged at 800–1000 x g for 15 minutes 

and the PBMC layer recovered above the frit.  PBMCs were washed twice with Hanks Balanced 

Solution without Ca+ or Mg+ (Gibco) at 200–400 x g for 10 min, counted, and aliquoted in heat-

inactivated fetal bovine serum with 10% dimethylsulfoxide (DMSO, Sigma) for cryopreservation. 

PBMCs were cryopreserved at -80°C in Stratacooler (Nalgene) and transferred to liquid nitrogen 

for long-term storage. 

FACS neutrophil depletion. To remove dead cells, debris, and neutrophils prior to 

scATAC-seq, PBMC samples were sorted by fluorescence-activated cell sorting (FACS) prior to 

cell permeabilization as described previously
67

. Cells were incubated with Fixable Viability Stain 

510 (BD, 564406) for 15 minutes at room temperature and washed with AIM V medium (Gibco, 

12055091) plus 25 mM HEPES before incubating with TruStain FcX (BioLegend, 422302) for 5 

minutes on ice, followed by staining with mouse anti-human CD45 FITC (BioLegend, 304038) 

and mouse anti-human CD15 PE (BD, 562371) antibodies for 20 minutes on ice. Cells were 

washed with AIM V medium plus 25 mM HEPES and sorted on a BD FACSAria Fusion. A standard 

viable CD45+ cell gating scheme was employed: FSC-A x SSC-A (to exclude sub-cellular debris), 

two FSC-A doublet exclusion gates (FSC-W followed by FSC-H), dead cell exclusion gate (BV510 

LIVE/DEAD negative), followed by CD45+ inclusion gate. Neutrophils (defined as SSChigh, 
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CD15+) were then excluded in the final sort gate. An aliquot of each post-sort population was 

used to collect 50,000 events to assess post-sort purity. 

Sample preparation. Permeabilized-cell scATAC-seq was performed as described 

previously
67

. A 5% w/v digitonin stock was prepared by diluting powdered digitonin (MP 

Biomedicals, 0215948082) in DMSO (Fisher Scientific, D12345), which was stored in 20 μL 

aliquots at −20°C until use. To permeabilize, 1×106 cells were added to a 1.5 mL low binding 

tube (Eppendorf, 022431021) and centrifuged (400 × g for 5 minutes at 4°C) using a swinging 

bucket rotor (Beckman Coulter Avanti J-15RIVD with JS4.750 swinging bucket, B99516). Cells 

were resuspended in 100 μL cold isotonic Permeabilization Buffer (20 mM Tris-HCl pH 7.4, 150 

mM NaCl, 3 mM MgCl2, 0.01% digitonin) by pipette-mixing 10 times, then incubated on ice for 

5 minutes, after which they were diluted with 1 mL of isotonic Wash Buffer (20 mM Tris-HCl pH 

7.4, 150 mM NaCl, 3 mM MgCl2) by pipette-mixing five times. Cells were centrifuged (400 × g 

for 5 minutes at 4°C) using a swinging bucket rotor, and the supernatant was slowly removed 

using a vacuum aspirator pipette. Cells were resuspended in chilled TD1 buffer (Illumina, 

15027866) by pipette-mixing to a target concentration of 2,300-10,000 cells per μL. Cells were 

filtered through 35 μm Falcon Cell Strainers (Corning, 352235) before counting on a Cellometer 

Spectrum Cell Counter (Nexcelom) using ViaStain acridine orange/propidium iodide solution 

(Nexcelom, C52-0106-5). 

Tagmentation and fragment capture. scATAC-seq libraries were prepared according to 

the Chromium Single Cell ATAC v1.1 Reagent Kits User Guide (CG000209 Rev B) with several 

modifications. 15,000 cells were loaded into each tagmentation reaction. Permeabilized cells 

were brought to a volume of 9 μl in TD1 buffer (Illumina, 15027866) and mixed with 6 μl of 

Illumina TDE1 Tn5 transposase (Illumina, 15027916). Transposition was performed by 

incubating the prepared reactions on a C1000 Touch thermal cycler with 96– Deep Well 

Reaction Module (Bio-Rad, 1851197) at 37°C for 60 minutes, followed by a brief hold at 4°C. A 

Chromium NextGEM Chip H (10x Genomics, 2000180) was placed in a Chromium Next GEM 

Secondary Holder (10x Genomics, 3000332) and 50% Glycerol (Teknova, G1798) was dispensed 

into all unused wells. A master mix composed of Barcoding Reagent B (10x Genomics, 

2000194), Reducing Agent B (10x Genomics, 2000087), and Barcoding Enzyme (10x Genomics, 

2000125) was then added to each sample well, pipette-mixed, and loaded into row 1 of the 

chip. Chromium Single Cell ATAC Gel Beads v1.1 (10x Genomics, 2000210) were vortexed for 30 

seconds and loaded into row 2 of the chip, along with Partitioning Oil (10x Genomics, 2000190) 

in row 3. A 10x Gasket (10x Genomics, 370017) was placed over the chip and attached to the 

Secondary Holder. The chip was loaded into a Chromium Single Cell Controller instrument (10x 

Genomics, 120270) for GEM generation. At the completion of the run, GEMs were collected and 

linear amplification was performed on a C1000 Touch thermal cycler with 96–Deep Well 

Reaction Module: 72°C for 5 min, 98°C for 30 sec, 12 cycles of: 98°C for 10 sec, 59°C for 30 sec 

and 72°C for 1 min. 

Sequencing library preparation. GEMs were separated into a biphasic mixture through 

addition of Recovery Agent (10x Genomics, 220016); the aqueous phase was retained and 

removed of barcoding reagents using Dynabead MyOne SILANE (10x Genomics, 2000048) and 

SPRIselect reagent (Beckman Coulter, B23318) bead clean-ups. Sequencing libraries were 

constructed by amplifying the barcoded ATAC fragments in a sample indexing PCR consisting of 
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SI-PCR Primer B (10x Genomics, 2000128), Amp Mix (10x Genomics, 2000047) and Chromium i7 

Sample Index Plate N, Set A (10x Genomics, 3000262) as described in the 10x scATAC User 

Guide. Amplification was performed in a C1000 Touch thermal cycler with 96–Deep Well 

Reaction Module: 98°C for 45 sec, for 9 to 11 cycles of: 98°C for 20 sec, 67°C for 30 sec, 72°C for 

20 sec, with a final extension of 72°C for 1 min. Final libraries were prepared using a dual-sided 

SPRIselect size-selection cleanup. SPRIselect beads were mixed with completed PCR reactions at 

a ratio of 0.4x bead:sample and incubated at room temperature to bind large DNA fragments. 

Reactions were incubated on a magnet, and the supernatant was then transferred and mixed 

with additional SPRIselect reagent to a final ratio of 1.2x bead:sample (ratio includes first SPRI 

addition) and incubated at room temperature to bind ATAC fragments. Reactions were 

incubated on a magnet, the supernatant containing unbound PCR primers and reagents was 

discarded, and DNA bound SPRI beads were washed twice with 80% v/v ethanol. SPRI beads 

were resuspended in Buffer EB (Qiagen, 1014609), incubated on a magnet, and the supernatant 

was transferred resulting in final, sequencing-ready libraries. 

Quantification and sequencing. Final libraries were quantified using a Quant-iT 

PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific, P7589) on a SpectraMax iD3 (Molecular 

Devices). Library quality and average fragment size were assessed using a Bioanalyzer (Agilent, 

G2939A) High Sensitivity DNA chip (Agilent, 5067-4626). Libraries were sequenced on the 

Illumina NovaSeq platform with the following read lengths: 51nt read 1, 8nt i7 index, 16nt i5 

index, 51nt read 2. 

Data preprocessing. scATAC-seq libraries were processed as described previously
67

. In 

brief, cellranger-atac mkfastq (10x Genomics v1.1.0) was used to demultiplex BCL files to 

FASTQ. FASTQ files were aligned to the human genome (10x Genomics refdata-cellranger-atac-

GRCh38-1.1.0) using cellranger-atac count (10x Genomics v1.1.0) with default settings. 

Fragment positions were used to quantify reads overlapping a reference peak set 

(GSE123577_pbmc_peaks.bed.gz from GEO accession GSE123577
68

), which was converted from 

hg19 to hg38 using the liftOver package for R
69

, ENCODE reference accessible regions (ENCODE 

file ID ENCFF503GCK
70

), and TSS regions (TSS ±2kb from Ensembl v93
71

 for each cell barcode 

using a bedtools (v2.29.1 
72

) analytical pipeline.  

Quality control. Custom R scripts were used to remove cells with less than 1,000 

uniquely aligned fragments, less than 20% of fragments overlapping reference peak regions, 

less than 20% of fragments overlapping ENCODE TSS regions, and less than 50% of peaks 

overlapping ENCODE reference regions. The ArchR package
11

 was used to assess doublets in 

scATAC data. Doublets were identified using the ScoreDoublets function using a filter ratio of 8, 

and cells with a Doublet Enrichment score exceeding 1.3 as determined by ArchR’s doublet 

detection algorithm
11

 were not considered for downstream analysis. 

Dimensionality reduction and cell type labeling. We used the ArchR package to 

generate a count matrix for a PBMC reference peak set
68

. Dimensionality reduction was 

performed using the ArchR addIterativeLSI function (parameters varFeatures = 10,000, 

iterations = 2), and the addClusters function was used to identify clusters in latent semantic 

indexing (LSI) dimensions using the Louvain community detection algorithm. For visualization, 

Uniform Manifold Approximation and Projection
55

 (UMAP) was performed using ArchR's 

addUMAP function at the default settings. The ArchR addGeneIntegrationMatrix function 
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(parameters transferParams = list(dims = 1:10, k.weight = 20)) was used to label scATAC cells 

using the Seurat level 1 cell types from the Seurat v4.0 PBMC reference dataset
73

. To generate 

clusters that more closely matched label transfer results, we performed K-means clustering on 

the UMAP coordinates using 3 to 50 cluster centers and identified a set of clusters that each 

had > 80% of cells sharing a single cell type identity. Almost all such clusters contained >= 98% 

cells from a single major cell type (T cells, B cells, NK cells, or monocytes/DCs/other), with the 

exception of a single cluster with 88% purity. We used clusters of the same major cell type to 

subset the data into T cells, B cells, NK cells, or monocytes/DCs/other for downstream analyses. 

For each major cell type, we repeated the same dimensionality reduction (LSI/UMAP) process 

on the scATAC-seq data with the same settings. We then performed a second round of label 

transfer, using the ArchR addGeneIntegrationMatrix function (same parameters as described 

above for level 1), to reach level 2 and 3 cell labelings of the Seurat PBMC reference dataset. 

These labels were consolidated into 25 cell types for most analysis, except for the co-

accessibility analysis where 17 cell types were used to match the published promoter-capture 

HiC resource
43

. The median cell labeling score across all cells that passed quality control was 

0.74.  

Three scATAC-seq datasets for MOCHA development and benchmarking 

COVID19 dataset. Two samples (1 COVID- sample, male; 1 COVID+ sample, female, 

collected on day 12 PSO) from our longitudinal COVID-19 cohort were lost due to low sample 

volume. The scATAC-seq data of the remaining samples was denoted as the COVID19 dataset 

(n=91) in this study. After removing doublets and cells of poor quality, high quality data of 

1,311,638 cells were obtained. The data was split into two overlapping subsets for some 

analyses: 1) A cross-sectional dataset (denoted as COVID19X, n=39) included data of COVID- 

samples (n=22, 10 females and 12 males) and the first samples of COVID+ participants (n=17, 9 

females and 8 males) during early infection (<16 days PSO). 2) A longitudinal dataset (denoted 

as COVID19L, n=69) included all data for the 18 COVID+ participants (10 females and 8 males). 

The overlap between COVID19X and COVID19L was 17, which were the first samples of COVID+ 

participants. The full dataset (COVID19) can be accessed at GEO under accession number 

GSE173590. (Note to reviewers: data will be released to the public prior to the first publication 

of our manuscripts.) 

HealthyDonor dataset. This longitudinal scATAC-seq dataset
39

 was collected on 18 

PBMC samples of 4 healthy donors (aged 29–39 years) over 6 weeks (1 female and 1 male, 

weeks 2–7; 2 males, weeks 2, 4, and 7). The donors had no diagnosis of active or chronic 

disease during the study. The data is publicly available at GEO under accession number 

GSE190992. We used the dataset as is, except we removed cells with doublet enrichment score 

exceeding 1.3, based on ArchR’s doublet detection algorithm
11

. High quality data of 145,711 

cells were obtained. From this dataset, we consolidated existing annotations into 25 cell types 

with a published median cell labeling score of 0.78.  

Hematopoiesis dataset. This dataset was downloaded from 

(https://www.dropbox.com/s/sijf2votfej629t/Save-Large-Heme-ArchRProject.tar.gz). It consists 

of ~220,000 hematopoietic cells from the hematopoiesis dataset in ArchR
11

. As described in 

their Supplementary Table 1, the dataset was assembled from 49 samples in four data sources, 

of different sample types (mixed, sorted, and unsorted cells; PBMCs; and bone marrow 
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mononuclear cells), and generated using different sample processing protocols and on different 

technical platforms. We used ArchR to generate doublet scores and removed clusters with both 

high doublet scores and a mixture of disparate cell types. This doublet removal only applied to 

sequencing wells that were not sorted, purified cells. In the end, data of 95,599 cells were 

obtained. Because many of the cell types were sorted populations run on an individual well, 

many cell types were not available across samples.  As a result, we treated all cell types as 

coming from a single sample for benchmarking purposes. We used previously published cell 

annotations, with a median labeling score of 0.70.  

Assessing Dataset Noise using the Altius Peakset 

To assess ‘noise’ within a dataset (i.e., fragments from closed regions known as 

heterochromatin), we used the Altius consensus peakset 
70

 of over 3.6 million DNase I 

hypersensitive sites within the human genome as an approximation of all potentially accessible 

sites. We calculated the overlap rate between fragments and the Altius consensus peakset for  

each cell type and dataset, in order to assess the quality of the data. The COVID19 dataset had 

an median Altius peakset overlap rate of 88.9%, while the corresponding rates for the Healthy 

Control dataset and the Hematopoiesis dataset were 75.5% and 82%, respectively.  

MOCHA overview 

MOCHA is implemented as an open-source R package under the GPLv3 license in CRAN 

(https://CRAN.R-project.org/package=MOCHA). All code and development versions of MOCHA 

are available at https://github.com/aifimmunology/MOCHA.  

MOCHA is designed to run in-memory and interoperate with common Bioconductor 

methods and classes (e.g., RaggedExperiment, MultiAssayExperiment, and Summarized 

Experiment). It takes as input four objects that are commonly generated from scATAC-seq after 

cell labeling and the removal of doublets and cells of low quality data. These four objects are: 1) 

a list of GRanges or GRangesList containing per-sample ATAC fragments, 2) cell metadata with 

cell labels, 3) a BSGenome annotation object for the organism, and 4) a GRanges containing 

blacklisted regions. These inputs can be passed to MOCHA directly from an ArchR object. 

Alternatively, results can be extracted from Signac, SnapATAC, or ArchR, and converted to 

common Bioconductor data objects, which can then be imported into MOCHA. By operating on 

well-supported Bioconductor objects, MOCHA’s inputs and outputs are compatible with the 

broader R ecosystem for sequencing analyses, and are easily exportable to genomic file formats 

such as BED and BAM.  

MOCHA’s core functionality runs as a pipeline from these inputs to perform sample-

specific open tile prediction and consensus analysis, resulting in a TSAM represented as a 

Bioconductor RangedSummarizedExperiment. On systems with sufficient memory, MOCHA’s 

functions can be parallelized over samples with the ‘numCores’ parameter to decrease runtime. 

From the TSAM, MOCHA provides functions for zero-inflated (ZI) co-accessibility and ZI 

differential accessibility analysis. The format of the TSAM output enables additional 

downstream analyses with other R packages. For example, the TSAM 

RangedSummarizedExperiment can be used directly as the counts matrix input for motif 

deviations analysis with chromVAR 
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(https://greenleaflab.github.io/chromVAR/articles/Articles/Counts.html). Additional details on 

the workflow and functions on the MOCHA package are provided in Supplemental Fig. 1.  

Tiling the Genome 

MOCHA splits the genome into pre-defined, non-overlapping 500 base-pair tiles that remain 

invariant across samples and cell types. MOCHA annotates each tile using a user-provided 

transcript database (e.g., HG38 Transcript Database) as follows: Promoter regions are 2000 bp 

upstream and 200 bp downstream from transcriptional start sites
74

. Intragenic regions are tiles 

that fall within a gene body, but not within the promoter regions. All other regions are classified 

as distal. 

From there, we only consider tiles that overlap with ATAC fragments. MOCHA counts 

the number of fragments in a tile as follows 

��,�,�,	  
 the number of fragments on sample i, of cell type j, in cell k, 

overlapping with tile t             (1) 

��,�  
 the total number of fragments on sample i, of cell type j             (2) 

If a fragment falls between two tiles, it is counted on both tiles.  

Normalization  

Normalization Techniques Using Invariant CTCF Sites. We examined three normalizing 

approaches: dividing the number of fragments by 1) the total number of fragments for sample i, 

cell type j (i.e., ��,�  ); 2) the total number of fragments for sample i (i.e.,   �� 
 ����,�), and 3) the 

total number of cells in sample i, cell type j. We evaluated the above normalization methods 

along with the raw data based on a list of 2230 cell-type invariant CCCTC-binding factor (CTCF) 

sites from the ChIP Atlas database
75

. These loci were identified in at least 201/204 (99%) of 

blood cell types present in the ChIP-seq Atlas database 
76

. Using these CTCF sites, each 

approach was assessed based on the corresponding distribution of coefficient of variation (CV) 

in peak accessibility. MOCHA normalizes data using ��,� .   

Sample- and cell type-specific Normalization. For each sample i, cell type j, and tile t, 

MOCHA calculates the following normalized features:  

    ����
�,�,	 = �����,�,�,	 ) / ��,�  � 10�  = the total normalized fragments for sample i, cell type j, at 

tile t            (3)  

    ����
�,�,	 = �������,�,�,	�� / ��,�
  � 10�   = the maximum number of normalized fragments 

across single cells, for sample i, cell type j, tile t       (4)  

 

Since the NK population used for model training contained 750 million fragments, a 

scaling factor of 10� is applied to make the raw and normalized counts on the same scale across 

cellular abundances, and keep normalized values greater than 1 to minimize convergence 

errors in downstream model training. Biologically, ����
�,�,	 is designed to capture the total 

number of fragments across all cells (e.g., pseudo-bulk), normalized by the sequencing depth 

for that cell type and sample. Given the sparsity of scATAC-seq data and the assumption of 

limited number of genomic copies (2x-4x) in a typical cell, ����
�,�,	 is designed to capture the 
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presence of multiple fragments in a tile from any cell, which can only be evaluated on single cell 

data. This approach combines single cell and pseudo-bulk information for downstream 

prediction. Normalizing by ��,� is used to normalize both sequencing depth and cell population 

variability. This approach provides both a sample- and cell-type specific normalization scheme.  

Evaluation of open chromatin accessibility 

Training of logistic regression models (LRMs) for predicting tile accessibility. MOCHA 

assumes a typical ploidy per cell (two to four copies of the genome). Its pseudocode and further 

details are provided in Supplementary Fig. 2 in order to allow for modifications when the above 

assumption does not hold.  

We used scATAC-seq data of 179k NK cells in the COVID19 (n=91) dataset as the training 

dataset. First, we normalized the scATAC-seq data and collapsed it into pseudobulk data. 

Second, we applied MACS2 
37

 ( '-g hs -f BED --nolambda --shift -75 --extsize 150 --broad', '--

model -n' ) to identify accessible peaks in the pseudobulk data, using previously published 

parameters for identifying peaks in scATAC-seq with the modification to call broad rather than 

narrow peaks. The resulting peaks were then overlaid onto our pre-defined 500 bp tiles. We 

trim the broad peaks by 75 base pairs at each end to remove the tail ends of peaks that may 

extend onto tiles with no signal. MACS2 identified 1.15 million tiles as ‘accessible regions’. We 

labeled all other fragment-containing regions as inaccessible, and used these ‘accessible’ and 

‘inaccessible’ regions for training. Third, we randomly selected NK cells at cell counts ranging 

from 170k to 5 at discrete intervals, generating 10 replicates for subsets < 50k cells, and 5 

replicates for larger subsets. In each of the subsets, we calculated ����
�,�,	  and ����

�,�,�   at 

individual tiles. Fourth, we trained a LRM for each selected subset of NK cells based on the tile 

labeling just described. For each sample of ��  cells, the LRM calculates a probability score to 

assess the likelihood of a tile being accessible, using the formula 

 

���
�������
�,�,	 , ����

�,�,	 
  
  �

���������
�������

���������
�,	,
 ���

���������
�,	,
 �

. (5) 

  

Here ��
�
��

 is the intercept, ��
�
��

 and ��
�
��

 are coefficients for ����
�,�,�   and �

���
�,�,� , respectively. 

A tile is predicted as accessible if ���
�� � ��
�� or inaccessible if ���
�� � ��
�� where ��
�� is 

the threshold value separating accessible and inaccessible tiles. We used Youden index
77

 to 

calculate ��
�� in this study, using the cutpointR R package.   

Fifth, we collected ���
�
���, ���

�
���, ���
�
���, ���
��� from the 10 or 5 replicated runs on n 

cells and then took the corresponding median coefficients, i.e., ��
�
�

, ��
�
�

, ��
�
�

, and ��
�, to 

construct the predictive model for a sample of n cells. Finally, we used the learned coefficients 

and the learned thresholds to smoothen the model to interpolate the model across cellular 

abundances that the model was not trained on. The final model is composed of a set of 

smoothened coefficients ���
�
��, ���

�
��, ���
�
��, and smoothened thresholds  ���
�� from all 

examined �.      

Prediction of tile accessibility on new data. To predict accessibility in a new dataset, 

MOCHA first accounts for differences in sequencing depth and cell count across datasets and 

calculates the ratio, S, of the median (across samples) number of total fragments in the training 
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data, and the corresponding median in the new dataset. MOCHA then scales both  ����
�,�,	 and  

����
�,�,	  in the new dataset by S and calculates the likelihood of a tile being accessible as  

 

���
������
�,�,	 , ����

�,�,	 , �
  
  �

���������
���

���
���

�������
�,	,
� ���

���
�������

�,	,
 ��
,  (6) 

where � is the number of cells of the targeted cell type in the targeted sample. As before, a tile 

is predicted as accessible if ���
� � ��
� or inaccessible if ���
� � ��
� where ��
� is the 

threshold value separating accessible and inaccessible tiles.   

Benchmarking Open Regions. To benchmark MACS2, HOMER, and MOCHA, we ran each 

tool per sample and cell type to generate comparable accessibility measurements across three 

cell types in three different datasets. For MACS2, we used the following parameters to call 

broad peaks ('-g hs -f BED --nolambda --shift -75 --extsize 150 --broad'--nomodel -n' ), in 

accordance with previous published scATAC-seq settings
11

. For HOMER, we used the findPeaks 

function with default parameters, and added ('-style histone') to call broad peaks. While 

HOMER and MACS2 are primarily designed around the properties of ChIP-seq and DNase-seq, 

they are also recommended for use with bulk ATAC-seq
78

.  

To ensure head-to-head comparisons, we overlaid HOMER and MACS2’s peaks into 

MOCHA’s predefined 500 base-pair tiles to translate peak calls into open tile calls. Similar to 

training, we trimmed 75 bp off each end, as MACS2’s shift/extsize parameters extends 

fragments to improve peak calling under the -nomodel flag
79

. By trimming, we avoid counting 

the tails of peaks that might extend into tiles with no actual fragments. This trimming approach 

allows for a direct head-to-head comparison of open regions detected across methods. 

Additionally, all three methods are provided the same normalized pseudo-bulk intensity 

information to ensure comparable peak calling and prevent confounding peak calling and 

normalization. After translating MACS2 and HOMER peaks into open tiles, we then compared 

the number of open tiles per sample across all methods, cell types, and datasets.  

Next, we generated a TSAM for each cell type across all three methods. The TSAM is a 

matrix with an array-type structure, where each cell contains the normalized  ���� intensities for 

a given sample i, at tile j. We kept open tiles that were called in at least 20% of samples (or all 

tiles in Hematopoiesis). By generating a TSAM for each method, we compared reproducible, 

population-level open tiles across all three methods. The 20% threshold was applied to filter 

out noisy data.  

CTCF and TSS Sites for benchmarking. CTCF sites were drawn from the ChipSet Atlas
75

. 

In brief, we download a bed file containing CTCF peaks for all blood cell types, and then used 

Plyranges’s reduce_ranges
80

 function to collapse duplicate peak calls into one non-redundant 

and smaller file for detecting overlaps. This process was done for both Hg19 (n= 197,882) and 

Hg38 (n=184,588). TSS sites were taken from Bioconductor database 

TxDb.Hsapiens.UCSC.hg19.knownGene for the Hematopoiesis dataset (which was aligned to 

Hg19), and TxDb.Hsapiens.UCSC.hg38.refGene for the other datasets by first extracting the 

transcripts for all genes. The TSS were then extracted from the transcripts using the 

promoters() command (Hg19, n =62,265, Hg38, n= 88,819). We then calculated the number of 

tiles that overlapped with a CTCF and TSS site using the subsetByOverlaps function from the 

GenomicRanges
74

 R package.  
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Runtime Comparison on open chromatin analysis. Using the CD14 monocyte 

population in our COVID19 dataset (n=91), we produced 13 subsamples ranging from 100,000 

to 10 cells and measured 10 replicates of the time it takes to conduct open chromatin analysis. 

Our runtime comparisons were conducted on N2 machines on the Google Cloud Platform, with 

64 vCPUs and 512GB RAM. MOCHA version 0.2.0 was used. The R package “tictoc” was used to 

record elapsed time.  

Downsampling Comparison on open chromatin. Since pooling cells across samples 

before calling open tiles is a common approach, we benchmarked all three methods on the 

same randomly selected cell subsets ranging from 5 cells to the full set in the COVID19 dataset 

(n=91). For this comparison, we utilized the same three cell types across the same three 

datasets. For each cell type and dataset, we used the following procedures. For MOCHA: 

1) Generate a coverage object using predefined 500 base-pair tiles on all pooled cells (e.g., 

CD16 monocytes). 

2) Predict open tiles on the pooled cells. 

3) Count the total number of open tiles, the number of open tiles overlapping with CTCF 

sites, and the number of open tiles overlapping with TSSs. 

4) Repeat (1–3) for all pre-specified downsampled cell counts.  

 

For MACS2 and HOMER: 

1) Generate a coverage file on all pooled cells (e.g., CD16 monocytes), 

2) Call peaks on the pooled cells. 

3) Convert the peak regions onto the pre-defined MOCHA tiles.  

4) Count the total number  of open tiles, the number of open tiles overlapping with CTCF 

sites, and the number of open tiles overlapping with TSSs. 

5) Repeated (1–4) for the pre-specified downsampled cell counts. 

Differential Accessibility Analysis (DAA) 

MOCHA’s zero-inflated method for DAA. MOCHA identifies differential accessibility tiles 

(DATs) in a targeted cell type between sample groups A and B in three steps:  

First, similar to others 
10,11

, MOCHA prioritizes tiles for testing using heuristic functions 

to calculate two data-driven thresholds. MOCHA transforms the total fragment count ������ in 

the corresponding TSAM to ���������� � 1
� and fits a mixture model of two normal 

distributions on all ��������� � 1
 values in the TSAM (Supplementary Fig. 2g). This bimodal 

model provides a heuristic threshold to prioritize high-signal tiles. From there, we used the 

TSAM metadata to identify any differences in sequencing depth by comparing the median 

number of fragments per sample between groups. This analysis informs the ZI threshold. Given 

our initial observations of a 25% difference in fragment counts, we set a 50% threshold (2X the 

observed sequencing depth difference) to control for technical artifacts. Tiles that do not pass 

either threshold are assigned a DAT P value of NA, and those passing thresholds are then tested 

for differential accessibility.  

Second, MOCHA tests for differential accessibility as follows. Denote the percentages of 

zeroes among samples of the two groups as  � and  � and the corresponding medians of non-
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zero ��������� � 1
 values as !� and !�. MOCHA then tests whether a tile is a DAT based on 

the following hypothesis testing: 

Null hypothesis ("�):  � 
  � and !� 
 !�, 

Alternative hypothesis ("�):  � #  � or !� # !�. 

MOCHA uses the two-part Wilcoxon (TP-W) test
32

 to combine results from the binomial test on 

 � and  � with results from the Wilcoxon rank-sum test on !� and !�. Since each test statistic 

can be transformed to follow a $�
� distribution (i.e., $�,�

�  and $�,�
� ), MOCHA combines them into 

a single test statistic, i.e., $�
�= $�,�

� + $�,�
� , and consequently evaluates from it a single P value

31
. 

In the absence of zeros, the TP-W test mathematically reduces to the standard Wilcoxon rank-

sum test.  

Finally, to control for multiple testing, MOCHA evaluates a false discovery rate (FDR)
81

 

for each tile and uses a default threshold of 0.2 to identify DATs. Since the P values are inflated 

near 1 (see Supplementary Fig. 5a), the background in the FDR calculation is estimated from P ≤ 

0.95 only.  

In addition, MOCHA uses the Hodges-Lehmann estimator
82

 to estimate Log2(fold 

change) on chromatin accessibility between the two sample groups. More specifically, MOCHA 

first calculates the difference between each sample pair (one sample each from group A or B) 

having non-zero ��������� � 1
 values and then takes the median from all paired differences as 

an estimate for Log2(fold change) between the two sample groups. 

Benchmarking MOCHA with ArchR and Signac on DAA. ArchR and Signac’s DA modules 

were each run on a single cell count matrix generated from the same tile set (215,649 tiles) as 

the COVID19X CD16 monocytes TSAM. For ArchR, default settings were used, except we 

modified maxCells to include all cells (n = 24744). For Signac, we lowered the minimum percent 

detection (pct = 0.001), and the log2FC threshold (logfc.threshold = 0.05) in order to test the 

full tileset, thus enabling a full head-to-head comparison. As a close analog of Signac’s tutorial, 

we also set latent.vars to ‘nFrags’ to adjust for sequencing depth.  

Assessing Discriminative Power Per Method. We randomly subsampled 50 DATs from 

the output of each method, ran K-means clustering (K=2), and generated the following 

confusion matrix to summarize the predictions.  

 

 COVID+ COVID-  

Cluster 1 a  b a+b 

Cluster 2 c d  c+d 

 a+c b+d a+b+c+d 

 

We then calculated Holley’s
42

 % 
  �����������

�������
 to assess how well the 50 randomly selected 

DATs in separating COVID+ and COVID- samples. We used |G| for the comparison since it is 
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irrelevant which cluster is enriched for COVID+ samples. We repeated this process 1,000 times 

to obtain a distribution for each method.  

DAA runtime comparison. To evaluate each method’s speed in DAA, we started by 

testing all 215,649 tiles in the CD16 monocytes TSAM, and gradually decreased the number of 

tested tiles. At each downsample, we tracked the run time required to identify DATs within 

those randomly selected tiles. The tictoc R package was used to calculate runtime. 

Co-Accessibility Analysis (CAA) 

MOCHA’s zero-inflated (ZI) method for CAA. MOCHA applies ZI Spearman 

correlation
33,34

 to evaluate the co-accessibility of two tiles (e.g., � and &) across either cell types 

or samples based on the corresponding ��������� � 1
 values. More specifically, the method 

first calculates the standard Spearman correlation on ��, &
 pairs of non-zero data (i.e., � '
0 and  & ' 0), denoted as  �,��, and then adjusts it in the presence of zeroes in either tile as 

follows: 

 �
� 
 (��(��(�� �,�� � 3�(��(�� * (��(��
,      (7) 

where  

(�� 
 �+, 
 0,  - 
 0., 

(�� 
 �+, ' 0,  - 
 0., 

(�� 
 �+, 
 0,  - ' 0., 

(�� 
 �+, ' 0,  - ' 0., 

(�� 
 (�� � (��, 

(�� 
 (�� � (��, 

which quantify how zeros are distributed among the two tiles across all data points with 

(�� � (�� � (�� � (�� 
 1. In the absence of zeros, the ZI-Spearman correlation reduces to the 

standard Spearman correlation, i.e.,  �
� 
  �,��. MOCHA makes  two modifications to an R 

implementation of the method
25

: 1) The Spearman correlation ( �,��) is calculated in C language 

for optimal computing time and 2) undefined ZI Spearman correlations (when  �,�� cannot be 

calculated) are assigned to NA rather than replacing them with the standard Spearman 

correlations with zeros treated as normal data. 

Benchmarking inter-cell-type co-accessibility. We used a previously published 

promoter-capture HiC (pcHiC) resource
43

 which identified promoter-enhancer regulatory links. 

From there, we used the liftOver R package, version 1.22.0, and the Hg19 to Hg38 conversion 

file (hg19ToHg38.over.chain, https://hgdownload.soe.ucsc.edu/gbdb/hg19/liftOver/) to convert 

promoter/enhancer loci from HG19 to HG38. Promoters and enhancers were then tiled into 

500 bp windows to generate all promoter-enhancer tile (PET) pairs. We kept only PET pairs 

when both tiles were identified as accessible by MOCHA in naive CD4+ and CD8+ T Cells and 

had pcHiC evidence supporting their interaction specifically in naive CD4+ and CD8+ T cells. The 

obtained 1.2 million PET pairs were then treated as ‘ground truth’ for benchmarking the 

standard and the ZI Spearman methods in evaluating inter-cell-type co-accessibility. For 

comparison, we randomly selected 100k non-PET tile pairs across the genome as a negative 

background.  

We applied both Spearman methods to calculate the inter-cell-type correlation values 

between both the PET and the random pairs, stacking data of different samples in the COVID19 
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dataset together (n=91). The inter-cell-type correlation was calculated across 17 cell types, 

including B intermediate, B memory, B naïve, CD14 Mono, CD16 Mono, CD4 Effector, CD4 

Naïve, CD8 Effector,  CD8 Naïve, DC, HSPC, MAIT, NK, NK Proliferating, NK_CD56bright, OtherT, 

and Treg. We used the Kolmogorov-Smirnov (KS) distance to quantify how well the two 

Spearman methods separated the PET pairs from the random pairs. To identify significant PET 

pairs by either Spearman method, we first treated the corresponding distribution of correlation 

values of the random pairs as a null distribution, calculated an empirical P value for each PET 

pair based on its correlation value, and then converted the obtained P values of all PET pairs 

into FDR values. A PET pair was considered as significant if FDR < 0.1.   

Pathway enrichment analysis 

Pathway enrichment analysis was mostly restricted to the Reactome pathway database. All 

genes within the database reference of TxDb.Hsapiens.UCSC.hg38.refGene from Bioconductor
83

 

were selected as the background. Over-representation analysis was performed using 

WebGestaltR
84

. We annotated enriched pathways at the highest level within the Reactome’s 

database hierarchy. Lower level annotations on immune system pathways were provided to 

discern adaptive, innate, and general signaling pathways. Using WebGestaltR, pathway 

enrichment analysis was performed once on Wikipathways, Gene Ontology (Biological 

Processes, Non-redundant), and KEGG for illustrative purposes.  

Identification of alternatively regulated transcription start sites (TSSs)  

We extracted all TSSs from the Transcript database TxDb.Hsapiens.UCSC.hg38.refGene found 

on BioConductor 
83

, and then expanded them upstream by 125 bp to account for TSSs falling 

very close to a tile boundary. We filtered out genes with only one TSS. If alternative TSSs of the 

same gene occurred within a user-defined neighborhood (default: 150 bp) of each other, we 

collapsed them into a single TSS. We then found the intersection between alternative TSSs and 

the 6211 DATs between COVID+ and COVID- samples in CD16 monocytes. TSSs that landed on a 

DAT were assigned with the FDR of the corresponding DATs. We categorized alternatively 

regulated genes (ARGs) as  

` Type I: A gene had a subset of TSSs showing differential accessibility (FDR < 0.2) in the 

same direction and another subset being open but not differential.  

` Type II: A gene had at least two TSSs showing differential accessibility (FDR < 0.2) but in 

opposite directions. 

Motif enrichment analysis 

Motif matching was done using the motifmatchr package and the CISBP motif database, as 

provided by the chromVARmotif package (https://github.com/GreenleafLab/chromVARmotifs). 

MOCHA uses a standard hypergeometric test to identify enriched motifs, with a user-provided 

foreground and background tile sets. For multi-testing corrections, the resulting p-values were 

converted into FDRs. To understand the upstream signaling mechanisms regulating ARGs, we 

first applied MOCHA to identify tiles that were within ±1M bp of and co-accessible (inter-

sample, ZI-Spearman correlation > 0.5) with the corresponding DATs. These DATs and their co-

accessible tiles were selected as the foreground tile set. For the background tile set, we chose 

all tiles with TSSs and their co-accessible tiles that did not overlap with the foreground set. 
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These foreground and background tile sets were used to calculate CISBP motif enrichment 

regulating ARGs. 

Ligand-motif set enrichment analysis (LMSEA) 

The NicheNet
45

 database has identified links between upstream ligands and downstream 

transcription factors (TFs) that regulate gene expression
45

. Using the same principle as pathway 

enrichment analysis, we designed a Ligand-Motif Set Enrichment Analysis (LMSEA) framework 

to capture potential drivers of our observed motifs (i.e., ligands regulate the TFs in our dataset). 

Specifically, LMSEA tests whether motifs linked to a ligand of interest are significantly (using 

hypergeometric test) over-represented in our observed motifs relative to the ligand’s motif set 

within NicheNet. The Benjamini and Hochberg (BH) procedure was used to adjust P values for 

multiple comparisons. An adjusted P value < 0.05 was considered significant. 

Construction of ligand-transcription factor-gene network  

We constructed ligand-TF-gene networks and visualized them using Cytoscape
85

. The nodes 

were ARGs, enriched motifs (TFs), and enriched ligands. Edges were drawn as follows: a motif-

gene link was created if an enriched TF was found within the TSS-containing DATs of an ARG or 

their co-accessible tiles, a ligand-motif link was drawn if a ligand was known to interact with a 

TF in NicheNet’s ligand-transcription matrix. 

Longitudinal analysis of COVID-19 response at single-cell level  

Grouping COVID+ samples by infection stage. COVID+ samples (n=69) in the COVID19 

dataset were grouped by the corresponding infection stage, including early infection (1–15 days 

PSO, n=21), late infection (16–30 days PSO, n=13), and recovery (>30 days PSO, n=35).  

Generation of density UMAP. We extracted sample-specific open tiles on CD16 

monocytes for all samples in the COVID19 dataset (n=91). From there, we generated a TSAM by 

aggregating all tiles that were called in at least 20% of samples at any infection stage or 

uninfected. We extracted the tiles from the resulting TSAM and added them to the original 

ArchR project via addPeakSet. We then generated a single-cell peak matrix from this tile set, 

using addPeakMatrix, and used it as input for ArchR's iterative LSI and UMAP functions. The LSI 

was run with default parameters, except for the number of iterations (5 instead of 2). The 

UMAP was run on standard ArchR settings
11

 on the resulting iterative LSI object. Based on the 

resulting single-cell UMAPs, we generated a density plot for each infection stage or uninfected.  

Pseudotime trajectory analysis. We used ArchR’s standard Monocle3 pipeline to 

conduct a trajectory analysis. We instructed Monocle to construct a trajectory from cells 

belonging to samples in the order of early infection, late infection, recovery, and uninfected. 

The resulting trajectory was overlaid on the single-cell UMAP. Following the above trajectory, 

three distinct pseudotime heatmaps were generated using ArchR’s standard protocol and the 

following input single-cell matrices: log2-normalized GeneScores, peak (tile) accessibility, and 

ChromVAR z-scores. Using ArchR’s functions with default settings, we further extracted 

pseudotime-changing elements for each of the three matrices.  
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Longitudinal analysis of COVID-19 response at pseudo-bulk level  

Longitudinal analysis of motif usage. We modeled longitudinal motif usage using 

pseudobulk ChromVar motif z-scores. We converted the TSAM of CD16 monocytes from the 

COVID19L dataset (n=69) into a ChromVAR-compatible object, and then ran ChromVAR on the 

TSAM-derived object to generate sample-level motif z-scores. We then modeled motif usage 

with the following generalized linear mixed effect model (GLMM):  
 

 ��/��0 ~ 2�/ �  �/� � �� � ��
� � �1|�4�5/67
, 8�7� 
  �&8�7�
  (8) 

 

where ��  was the centered days PSO (i.e., days PSO of individual samples minus the mean days 

PSO of all samples)
86

 and �1|�4�5/67
 indicated that random intercepts were used for 

individual participants. The P values associated with the linear ��  terms were extracted using 

the lmerTest package. We converted the P values to FDRs to control multiple testing. Motifs 

with a FDR < 0.1 were considered as significantly changing in time.  

Transcription factor (TF) network. The activator protein-1 (AP-1) family network was 

obtained by subsetting the APID protein-protein interaction database
87

 down to just the 

significant AP1-family TFs. Edges between nodes were included if they were supported by at 

least four experiments. The nodes were color-coded using the signs of the corresponding 

coefficient of ��. The network was drawn using Cytoscape
85

.  

Longitudinal analysis of gene promoter accessibility. We collected promoter tiles from 

the TSAM of CD16 monocytes in the COVID19L dataset and modeled their accessibility using 

either GLMMs or ZI-GLMMs with the glmmTMB package
30

. More specifically, for promoters 

with zeroes, we applied the ZI-GLMM modeling as follows 

����9:;�<��_266 ~ 2�/ �  �/� �  9>�/ � �1|�4�5/67
, 
0> 
 ~ 0 �  ?/�� ?�4�7@, 

8�7� 
 �&8�7�, ���>�& 
  ��4@@>���
),   (9) 

where <��_266 was short for ��������� � 1
, 9>�/ was days PSO, �1|�4�5/67
 indicated that 

random intercepts were used for individual participants, and zero-inflation was modeled as a 

function of the total cell counts in individual samples with no intercept. For promoters without 

zeroes, we applied the GLMM modeling as follows 

����9:;�<��_266 ~ 2�/ �  �/� �  9>�/ � �1|�4�5/67
, 
0> 
 ~ 0, 8�7� 
 �&8�7�, ���>�& 
  ��4@@>���
),  (10) 

where the ZI component was omitted. The P values associated with 9>�/ were extracted and 

converted to FDRs to control multiple testing. Promoters with a FDR < 0.1 were considered as 

significantly changing in time. For promoters attributed to multiple genes, all genes were 

included for pathway enrichment and downstream analyses.  

Transcription Factor and Gene Promoter Associations 

Linking Transcription Factor to Gene Promoters. We evaluated whether motif z-scores 

were statistically associated with gene promoter accessibility via ZI-GLMMs as follows  

����9:;�<��_266 ~ 0, 0> 
 ~ 0, 8�7� 
 �&8�7�,  
   ���>�& 
  ��4@@>���
),       (11) 

where <��_266 was short for ��������� � 1
. All pairs of significantly changing TFs and 

significantly changing gene promoters were evaluated. We considered a TF and a gene 
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promoter to be associated if the continuous coefficient of 0 was statistically significant (P < 

0.05) without adjusting for multiple testing.   

Linking Transcription Factor to Innate Immune Pathways. Using the TF-gene promoter 

associations, we calculated the percentage of significant genes in an innate immune pathway 

were associated with a TF. For visualization purposes, the network only displayed an edge 

between a TF and a pathway if more than 33% of significant genes in that pathway were 

associated with the TF. 

Data Availability 

The HealthyDonor (GSE190992) and COVID19 (GSE173590) scATAC-seq datasets can be 

downloaded from the Gene Expression Omnibus (GEO) database under accession numbers 

GSE190992 and GSE173590, respectively. The corresponding raw data are available via 

authorized access at dbGaP under accession number phs003203.v1.p1 and phs002576.v1.p1, 

respectively. The Hematopoiesis dataset was downloaded from 

(https://www.dropbox.com/s/sijf2votfej629t/Save-Large-Heme-ArchRProject.tar.gz. (Note to 

Reviewers: The COVID19 dataset will be released to the public prior to the publication of our 

first manuscript.) 

Code Availability 

MOCHA is a freely available R package in CRAN that can be easily downloaded using R or 

RStudio (https://cran.rstudio.com/web/packages/MOCHA/index.html). All code used to 

generate figures in this manuscript are available in: 

https://github.com/aifimmunology/MOCHA_Manuscript(Note to Reviewers: We are currently 

including this code as a zip file and we will publish all analysis code in Zenodo or equivalent 

once the content of this manuscript is finalized.) 

Figure Legends  

Figure 1. General workflow of MOCHA.  

Schematic representation of the core functionalities in MOCHA, starting from scATAC input 

data (fragments, black list, cell type labels, and sample metadata). Using these data, MOCHA 

generates fragment counts for every 500 bp tiles (1), normalizes the count data (2), and 

leverages single-cell and pseudo-bulk information to identify open tiles in a cell type- and 

sample-specific manner (3). It then generates population-level open chromatin matrices for 

each cell type (4), which is the starting point for downstream analytical functions (5). MOCHA 

includes improvements to differential accessibility analysis, co-accessibility analysis, and 

longitudinal modeling. It also provides  functions for identifying alternatively regulated 

transcription starting sites, motif enrichment, and dimensionality reduction.  Figures were 

generated using  Adobe Illustrator and BioRender. 
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Figure 2. Benchmarking MOCHA with MACS2 and HOMER on open chromatin identification. 

a, Cell counts per sample in three representative cell types from each of three scATAC-seq 

datasets. The same three cell types in the three corresponding datasets (Methods) were used in 

this analysis, including COVID19X (n=39), HealthyDonor (n=18, middle panel), and 

Hematopoiesis (treated as n=1, right panel). b, The number of open tiles per sample as 

identified by MOCHA (light blue), MACS2 (green), or HOMER (red). The same colors are used in 

d-h. b,c, The Wilcoxon rank sum test was used to compare results by MOCHA with those by 

MACS2 and/or HOMER. Significantly higher MOCHA values are indicated with * (0.01 < P < 0.05) 

or *** (P < 0.001). c, UpSet plot showing overlaps between open tiles identified by MOCHA, 

MACS2, or HOMER. Only tiles common to at least 20% of samples were kept for the COVID19X 

and HealthyDonor datasets while all identified tiles were kept for the Hematopoiesis dataset. 

Insert: Violin plot of signals (i.e., log2(normalized fragment count+1)) of tiles missed by MOCHA 

(i.e., those identified by MACS2 and/or HOMER but not by MOCHA, left panel) and signals of 

tiles unique to MOCHA (i.e., those identified only by MOCHA, right panel). d-f, The cumulative 

number of detected tiles (d), tiles overlapping with CCCTC-binding factor (CTCF) sites (e), or tiles 

overlapping with transcription starting sites (TSSs, f) as a function of the maximum fraction of 

samples allowed to have no fragments in the COVID19X (left panel) or HealthyControl (right 

panel) datasets. g, The number of detected CTCF sites (top panel) or TSSs (bottom panel) in the 

Hematopoiesis dataset. h, The actual (top panel) and the relative (with respect to MOCHA, 

bottom panel) runtime required to identify open chromatin from single cell data as a function 

of the number of downsampled cells. The blue horizontal line at 1 in the bottom panel marks 

the MOCHA runtime. CD16 Mono: CD16 monocytes; B Naive: naive B cells; CD4 CTL TEM: CD4
+
 

cytotoxic T lymphocytes and CD4
+
 effector memory T cells; CD8 TEM: CD8

+
 effector memory T 

cells; cDC: conventional dendritic cells; CD4 Naive: naive CD4
+
 T cells; CD14 Mono: CD14 

monocytes. Source data are provided in Source Data Fig. 2-1 and 2-2.  Figures were generated  

using Adobe Illustrator.  

Figure 3. Benchmarking MOCHA with ArchR and Signac on differential accessibility analysis. 

a, MOCHA’s differential accessible tiles (DATs) in CD16 monocytes between COVID+ samples 

during early infection (n=17) and COVID- samples (n=22) in the COVID19X dataset. The volcano 

plot illustrates the log2(FC) on the x-axis against the -log10(P value) on the y-axis, where FC 

represents fold change in accessibility. The log2(FC) was estimated using the Hodges-Lehmann 

estimator
82

. The P value was calculated based on the two-part Wilcoxon test
32

. DATs with a 

false discovery rate (FDR) < 0.2 were considered as significant. b, Venn Diagram of MOCHA, 

Signac, and ArchR’s DATs. The percentage of 1) promoters, 2) intragenic tiles, and 3) distal tiles 

are shown for each method and each Venn diagram subset. c, The number of (top) genes with 

differential promoters and (bottom) enriched Reactome pathways for each method are 

depicted using barplots. d, Reactome Pathway enrichment results based genes with differential 

promoter tiles. Pathway categories are annotated using Reactome’s pathway hierarchy. e, 

Violin plot of Holley’s |G| from 1000 bootstrapped samples, each containing 50 randomly 

selected DATs from each category. Categories with <50 DATs were not tested. ***, P < 0.001 

(Wilcoxon rank sum test). f, Leave-one-sample perturbation analysis to test the robustness of 

each method in differential accessibility analysis. New sets of DATs were calculated iteratively 
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after removing each sample once. The robustness was assessed by the number of total (solid 

line) and conserved (dotted line) DATs detected across perturbations. g, Each method’s runtime 

(in seconds) as a function of the number of tested tiles. Source data are provided in Source Data 

Fig. 3-S5.  Figures were generated using Adobe Illustrator.  

Figure 4. Regulatory network construction on alternative transcription starting sites in CD16 

monocytes during early COVID-19 infection. 

a, Scatter plot of differential accessibility at potential alternative transcription starting sites 

(TSSs). False discovery rate (FDR) and fold change (FC) were evaluated on chromatin 

accessibility in CD16 monocytes between COVID+ samples during early infection (n=17) and 

COVID- samples (n=22) in the COVID19X dataset. All pairwise combinations of -

log10(FDR)*sign(log2(FC)) are shown. TSS pairs were categorized as type I if only one TSS was 

significantly differential (FDR < 0.2), or type II if both were significantly differential but in the 

opposite directions. Pairs of TSSs that were significantly differential in the same direction were 

not considered. b-c, Coverage tracks illustrating type I (b) or type II (c) alternative TSS 

regulation around exemplar genes (* denotes a significant differential accessibility tile (DAT), 

FDR < 0.2). d, Reactome pathway enrichment for genes with alternatively regulated TSSs (both 

type I and II). Pathway annotation was based on Reactome’s hierarchical database. e, Motif 

enrichment using DATs involved in alternatively regulated TSSs and their co-accessible tiles 

(within ±1M bp, zero-inflated correlation > 0.5). f, NicheNet-based ligand-motif set enrichment 

analysis (LMSEA) on motifs with FDR < 0.01. g, A network centered around CEBPA that was 

constructed using significant ligands, motifs, and genes with alternatively regulated TSS sites. 

Ligand-motif links represent NicheNet-based associations. Motif-gene links represent motif 

presence in either an alternative TSS tile, or tiles correlated to an alternative TSS. Source data 

are provided in Source Data Fig. 4.  Figures were generated using Adobe Illustrator.  

Figure 5. Integrative analyses to reveal longitudinal dynamics in CD16 monocytes during 

COVID-19 recovery. 

a, Longitudinal COVID19 cohort overview (n=18). Time points indicated by black dots illustrate 

sample availability for each COVID+ participant. b, Single-cell UMAP generated with tiles from 

the TSAM of CD16 monocytes in the COVID19 dataset (n=91 samples). Density plots were 

generated on COVID+ samples during early infection (1–15 days PSO, n=21), late infection (16–

30 days PSO, n=13), and recovery (>30 days PSO, n=35), and on COVID- samples (n=22). c, 

Volcano plot illustrating the -log10(FDR) vs. the slope of motif usage over time. Motif usage was 

generated by running ChromVAR on tiles in the TSAM and extracting the corresponding z-

scores. Insert: The network showing interacting TFs within the AP-1 family (APID database
87

) in 

which TFs were color-coded by the sign of their slope. d, Longitudinal motif usage over time for 

an exemplary set of TFs. Data of individual participants are shown in thin colored lines. The 

population trend is shown with a thick black line. e, Volcano plot illustrating the -log10(FDR) vs. 

the slope of gene promoter accessibility over time based on ZI-GLMM. A subset of the top 

promoters are labeled with their corresponding genes. f, Significant Reactome pathways (FDR < 

0.1) enriched with genes having significant promoter accessibility changes. The pathways were 

aggregated into upper-level pathway annotations using Reactome’s database hierarchy. The 

barplot shows the number of pathways in each category. The pie chart breaks down the 
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immune system pathways by Reactome’s next level categories. g, Three scatter plots illustrating 

examples of associations between gene promoter accessibility (y-axis) and JUNB’s ChromVar z-

score (x-axis). The thick black line shows the population trend from ZI-GLMM. h, Bipartite 

network illustrating associations between the top 5 motifs having the largest positive (+) or 

negative (-) slopes and 14 significant innate immune pathways. For a link to be shown, motif-

promoter associations must be found in at least 33% of significantly changing genes in the 

corresponding pathway. c-h, Based on data on CD16 monocytes in the COVID19L dataset 

(n=69). PSO: post symptom onset; UMAP: Uniform Manifold Approximation and Projection; 

TSAM: tile-sample accessibility matrix; FDR: false discovery rate; TF: transcription factor; AP-1: 

activator protein-1; ZI-GLMM: zero-inflated generalized linear mixed model. Source data are 

provided in Source Data Fig. 5. Figures were generated using Adobe Illustrator.  

Supplementary Figure Legends 

Supplementary Fig. 1. MOCHA’s technical workflow schematic. 

Schematic of the MOCHA R package workflow functions (in yellow) and objects (green). a, 

MOCHA takes inputs from an ArchR project or collections of input files from ATAC-seq analysis 

software. b, Core functions of MOCHA and result objects. c, Downstream analyses supported by 

MOCHA with functions. d, MOCHA enables additional downstream analyses available in 

external software. 

Supplementary Fig. 2. Technical details for developing MOCHA’s analytical modules. 

a, Large difference in sequencing depth per sample was observed in the COVID19 dataset 

(n=91). The distribution of the number of fragments per sample in the CD16 monocytes are 

shown separately for COVID+ (n=69) and COVID- samples (n=22). b-c, Distributions of 

coefficients of variation (CVs) of the pseudo-bulk fragment counts at 2,230 cell-type invariant 

CCCTC-binding factor (CTCF) sites in the COVID19 dataset (n=91) before (Raw) or after 

normalization by the total number of fragments per cell type per sample (MOCHA), the total 

number of cells per sample (By Total Cell #), or the total number of fragments per sample (By 

Total Fragment #). Pseudo-bulk fragment counts were calculated for individual tiles per cell 

type and sample. For each CTCF site, CV was calculated (b) within each cell type across all 

samples (n=91) or (c) across cell types (n=25) within each sample. d-i, Based on data in the 

COVID19X dataset (n=39). d, Number of tiles in CD16 monocytes that were commonly open to 

at least a targeted fraction of samples. Data of COVID+ samples (n=17) and data of COVID- 

samples (n=22) were analyzed separately. The smooth curves and the shaded bands are the 

Loess fitting curves and the corresponding 95% confidence intervals. The vertical dashed line 

indicates the fraction threshold (20%) used. e, Heatmap of pseudo-bulk accessibility in the tile-

sample accessibility matrix (TSAM) of CD16 monocytes with tiles in Chromosome 1 only. Tiles 

were sorted by their percentage of zeros across samples. f, Histogram of percentage of zeros 

across samples as a function of tile log2(accessibility) value. The bar represents the mean value 

while the error bar represents the corresponding standard deviation. g, The distribution of 

accessibilities of all tiles revealing a bimodal distribution. Accessibility threshold was set near 

the higher mode in order to increase power and avoid testing highly noisy regions in differential 
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accessibility analysis. h-i, Exemplar histograms showing differences in accessibility between 

COVID+ and COVID- samples that arose from either difference in non-zero accessibilities 

without significant difference in the proportion of zeros (h), or difference in the proportion of 

zeros without significant difference in non-zero accessibilities (i). Source data are provided in 

Source Data Supplementary Fig. 2.  

Supplementary Fig. 3. Training and validation of open accessibility models. 

a, Pseudo code for training logistic regression models (LRMs) for open tiles. b, Training results 

on natural killer (NK) cells (n=179,836). Top: Coefficients of the LRMs and the corresponding 

threshold as a function of sampled cell count. Bottom left: Specificity, sensitivity, area under 

the receiver operating characteristic (ROC) curve (AUC), and Youden’s J index as a function of 

sampled cell count. Bottom right: Histograms of the probability scores of open (blue) and 

closed (red) tiles at cell count 500, 2000, 5000, 10000, and 25000. c, ROC curves on the 

validation data of CD14 monocytes as cell count ranged from 20 to 115,000. Insert: The 

corresponding AUC as a function of cell count. The Loess fitting curve is plotted in blue. d, 

Validation performance on specificity, sensitivity, AUC, and Youden’s J index as a function of 

sampled cell count for five representative cell types. cDCs: classical dendritic cells. Data in the 

COVID19 dataset (n=91 samples) was used for the training and validation of the LRMs. Source 

data are provided in Source Data Supplementary Fig. 3. 

Supplementary Fig. 4. Dataset characteristics and benchmarking on open chromatin 

identification during downsampling. 

a, Quality control (QC) metrics across three datasets, as measured by the percentage of 

fragments that overlap with the Altius peakset (left) and the number of fragments per 

individual cell (right). The corresponding median values are indicated for each dataset. The 

three datasets were significantly different on these two QC metrics (P = 2.6x10
-13

 and P < 

2.2x10
-16

, respectively; Kruskal-Wallis test). b, The number of cells per cell type across the three 

datasets. Each boxplot displays the median (centerline), the first and third quartiles (the lower 

and upper bound of the box), and the 1.5x interquartile range (whiskers) of the data. c, Head-

to-head comparison between MOCHA, MACS2, and HOMER on numbers of detected tiles (top), 

tiles overlapping with CTCF sites (middle), and overlapping with TSSs (bottom) as functions of 

sampled cell count in three representative cell types from each of the three datasets. The three 

datasets are COVID19 (n=91, left), HealthyDonor (n=18, middle), and Hematopoiesis (treated as 

n=1 sample, right). CTCF: CCCTC-binding factor; TSS: transcription starting site. Source data are 

provided in Source Data Supplementary Fig. 4-1 and 4-2. 

Supplementary Fig. 5. Additional information on differential accessibility analysis.  

a, Histogram of P values evaluated by MOCHA on filtered open tiles. Only P ≤ 0.95 values were 

used for estimating false discovery rate (FDR). b, Pathway enrichment analysis on genes having 

differential accessibility tiles (DATs) in their promoter regions using the Gene Ontology (left), 

KEGG (middle), or Wikipathway (right) database. The DATs were identified by MOCHA, ArchR, 

or Signac. Source data are provided in Source Data Fig. 3-S5.   
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Supplementary Fig. 6. Comparing standard Spearman and zero-inflated Spearman in 

evaluating co-accessibility. 

a, A direct comparison between standard Spearman (S) and zero-inflated Spearman (ZI-S) in 

evaluating inter-cell type co-accessibility between tile pairs linked to promoter-enhancer 

interactions in naive CD8 and CD4 T cells
43

. Co-accessibilities between individual promoter-

enhancer tile (PET) pairs (n=1.2 million) were conducted across 17 cell types in the full COVID19 

dataset (n=91 samples). b, Examples of divergence between the zero-inflated Spearman and 

the standard Spearman co-accessibilities on two PET pairs. Each dot represents one cell type 

and sample combination (n=1547 data points). c, Distributions of co-accessibilities between PET 

pairs and randomly selected tile pairs (n=100k) as evaluated by ZI-Spearman (top) or Spearman 

(bottom). The Kolmogorov-Smirnov (KS) distance was used to quantify the separation between 

the distributions of PET pairs and random pairs. d, Histogram of empirical P values of PET pairs 

that were calculated based on the percentile of random pairs, using either ZI-Spearman (top) or 

Spearman (bottom). False discovery rate (FDR) estimation was conducted for each P value set. 

The number of PET pairs with FDR < 0.1 is shown. e, Comparison of inter-sample co-accessibility 

within CD16 monocytes in the COVID19X dataset (n=39 samples) as evaluated by standard 

Spearman or ZI-Spearman. All possible pairs of tiles within the first million base pairs of 

Chromosome 4 were evaluated for an illustrative purpose. f, Examples of spurious correlations 

(top) and sign changes (bottom) generated by standard Spearman correlations on ZI data, as 

compared to results from the ZI-Spearman. Source data are provided in Source Data 

Supplementary Fig. 6-1 and 6-2. 

Supplementary Fig. 7. Benchmarking pseudotime trajectory analysis between MOCHA’s tiles 

and ArchR’s genescores. 

a, Monocle3 trajectory constructed from CD16 monocytes belonging to samples in the order of 

early infection (1–15 days PSO, n=21), late infection (16–30 days PSO, n=13), recovery (>30 days 

PSO, n=35), and uninfected (n=22) in the COVID19 dataset. The trajectory is overlaid on the 

corresponding single-cell UMAP. b, Pseudotime heatmaps of ArchR’s genescores (left) and 

MOCHA’s accessible tiles (right) that were generated using ArchR standard settings. The top 50 

genes or tiles, respectively, are labeled. c, Significant Reactome pathways (FDR < 0.05) enriched 

with genes having highly variable genescores or promoter accessibility changes along the 

pseudotime trajectory. The variability threshold was set using ArchR’s standard threshold 

(varCutOff = 0.9). The pathways were aggregated into upper-level pathway annotations using 

Reactome’s database hierarchy. The barplot shows the number of pathways in each category. 

The pie chart breaks down the immune system pathways by Reactome’s next level categories. 

PSO: post symptom onset; FDR: false discovery rate. Source data are provided in Source Data 

Supplementary Fig. 7-8. 

Supplementary Fig. 8. Benchmarking motif usage between single-cell level pseudotime 

trajectory analysis and pseudo-bulk level real time longitudinal modeling.  

a, Pseudotime heatmap of ChromVAR z-scores along the trajectory constructed on CD16 

monocytes in the COVID19 dataset (n=91 samples). ChromVAR z-scores were evaluated based 

on the CISBP database. The top 50 motifs are labeled. Uninfected samples were excluded from 
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the analysis. b, Venn diagram comparing motifs showing significant ChromVAR z-score changes 

either at single-cell level along the pseudotime trajectory (ArchR standard threshold) or at 

pseudo-bulk level in real time (days PSO) as modeled by generalized linear mixed models (FDR < 

0.1). Motif examples for each subsets are provided. FDR: false discovery rate. PSO: post 

symptom onset. Source data are provided in Source Data Supplementary Fig. 7-8. 

Supplementary Fig. 9. Examples illustrating longitudinal shifts in gene promoter accessibility 

and motif-promoter associations during COVID-19 recovery.  

a, The top 6 genes showing significant promoter accessibility changes (FDR < 0.1) based on ZI-

GLMM. Data of individual participants are shown in thin colored lines. b, Scatter plots 

illustrating examples of significant associations (P < 0.05) between JUNB’s ChromVAR z-score 

and significantly changing (FDR < 0.1) promoter accessibility of genes within the TLR4 Reactome 

pathway. a-b, Based on the COVID19L dataset (n=69 samples). The thick black line shows the 

population trend from ZI-GLMM. PSO: post symptom onset; FDR: false discovery rate; ZI-

GLMM: zero-inflated generalized linear mixed effects model; TLR4: toll-like receptor 4. Source 

data are provided in Source Data Supplementary Fig. 9. 

Supplementary Table Legends 

Supplementary Table 1. Literature references for all Type II alternatively regulated genes, 

which are indicated as either altered in COVID-19 or identified as potential therapeutic 

targets. 

Source Data 

Source Data Fig. 2-1 

Source data for Fig. 2a,b,d-h. 

Source Data Fig. 2-2 

Source data for Fig. 2c (zipped BED files).  

Source Data Fig. 3-S5 

Source data for Fig. 3 and Supplementary Fig. 5.  

Source Data Fig. 4 

Source data for Fig. 4a,d-g.  

Source Data Fig. 5 

Source data for Fig. 5.  

Source Data Supplementary Fig. 2 

Source data for Supplementary Fig. 2.  
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Source Data Supplementary Fig. 3 

Source data for Supplementary Fig. 3b-d.  

Source Data Supplementary Fig. 4-1 

Source data for Supplementary Fig. 4a (left pane), b-c.  

Source Data Supplementary Fig. 4-2 

Source data for Supplementary Fig. 4a (right panel).  

Source Data Supplementary Fig. 6-1 

Source data for Supplementary Fig. 6a,c-d.  

Source Data Supplementary Fig. 6-2 

Source data for Supplementary Fig. 6b,e-f.  

Source Data Supplementary Fig. 7-8 

Source data for Supplementary Fig. 7b,c and Supplementary Fig. 8. 

Source Data Supplementary Fig. 9 

Source data for Supplementary Fig. 9.  
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Figure 2. Benchmarking MOCHA with MACS2 and HOMER on open chromatin identification.
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