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Abstract

Single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) has been
increasingly used to study gene regulation. However, major analytical gaps limit its utility in
studying gene regulatory programs in complex diseases. We developed MOCHA (Model-based
single cell Open CHromatin Analysis) with major advances over existing analysis tools, including:
1) improved identification of sample-specific open chromatin, 2) proper handling of technical
drop-out with zero-inflated methods, 3) mitigation of false positives in single cell analysis, 4)
identification of alternative transcription-starting-site regulation, and 5) transcription factor—
gene network construction from longitudinal scATAC-seq data. These advances provide a robust
framework to study gene regulatory programs in human disease. We benchmarked MOCHA
with four state-of-the-art tools to demonstrate its advances. We also constructed cross-
sectional and longitudinal gene regulatory networks, identifying potential mechanisms of
COVID-19 response. MOCHA provides researchers with a robust analytical tool for functional
genomic inference from scATAC-seq data.
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COVID-19
Immune responses
Zero-inflated Modeling

Introduction

Single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq)' ™
has become increasingly popular in recent years for studying biological and translational
questions around gene regulation and cell identity and has revealed insights on diverse topics
such as tumor-related T cell exhaustion®, trained immunity in monocytes in patients with
COVID-19°, regulators of innate immunity in COVID-19°, and potentially causal variants for
Alzheimer’s disease and Parkinson’s disease’. Many sophisticated software tools have been
developed for analyzing scATAC-seq data®, covering functionalities such as dimensionality
reduction and clustering”™, semi-automated cell type annotation'®*?, identification of open
chromatin regions™>*°, characterization of motif usage and enrichment'’*°, and inference on
gene regulatory networks'"*"%2, Integrating these developments, recent end-to-end analysis
pipelines streamline the analytical process from quality control and cell type annotation to
accessibility and motif analysis®™%?*. Together these tools have facilitated the extraction of
biological insights from scATAC-seq data.

Despite these advances, major analytical gaps in scATAC-seq data analysis limit the
construction of robust and reproducible gene regulatory networks to study human disease.
First, human disease studies require reliable evaluation of sample- and cell-type-specific open
chromatin to capture human genetic heterogeneity and cell type-specific regulatory regions.
However, visibility into these forms of heterogeneity is compromised by existing packages'®”
1315 “which usually mix cells across either samples or cell types to compensate for the low
coverage of scATAC-seq. Second, scATAC-seq data is intrinsically sparse. Only 5-15% of open
chromatin regions are detected in individual cells’. Both single-cell and pseudo-bulk ATAC-seq
data can contain an excessively high number of regions without accessibility measurements.
While zero-inflated (ZI) statistical methods are widely used in analyzing single-cell ribonucleic
acid sequencing (scRNA-seq) data’**’, such methods are not implemented in popular tools for
SsCATAC-seq data analysis, likely leading to many unreliable results. Third, previous studies have
shown that pseudo-replication bias (cell-interdependence) generates many false results in
scRNA-seq analysis, if left unaddressed®®*. Similarly, any scATAC-seq tools that do not address
this issue may generate many false results as well. In longitudinal studies, this pseudo-
replication bias is exacerbated as subjects have multiple interdependent samples. To postulate
robust gene regulatory networks in human disease, the research community needs a tool to
address these challenges.

To this end, we developed a suite of analytical modules for robust functional genomic
inference in heterogeneous human disease cohorts, in an open R package called MOCHA
(Model-based single cell Open CHromatin Analysis). First, we developed a method for
evaluating sample- and cell-type-specific chromatin accessibility in low coverage scATAC-seq.
Second, we implemented ZI statistical methods>** for differential accessibility analysis, co-
accessibility analysis, and mixed effects modeling . Third, we aggregated scATAC-seq data per
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cell type into normalized pseudo-bulk tile-sample accessibility matrices (TSAMs) to capture
donor and cell type-centric accessibility. This TSAM directly addresses the issue of cell
interdependence (pseudo-replication) and enables modeling cross-sectional and longitudinal
gene regulatory landscapes of human disease in large cohorts. We benchmarked MOCHA
against state-of-the-art methods in identifying regions of open chromatin, differential
accessibility, and co-accessibility. More importantly, we demonstrate MOCHA’s ability to
construct gene regulatory networks from both cross-sectional and longitudinal analyses of
SCATAC-seq data on CD16 monocytes from our COVID-19 cohort®™. We also demonstrate how
to integrate MOCHA with existing tools'™'”*%*® and adapt it for custom approaches. In all, we
anticipate MOCHA will accelerate the analysis and interpretation of gene regulatory networks
using scATAC-seq data.

Results

MOCHA overview.

We developed MOCHA based on our COVID19 dataset (Methods), which was collected on n=91
peripheral blood mononuclear cell (PBMC) samples of either COVID+ participants (n=18, 10
females and 8 males, 3-5 samples per participant, a total of 69 samples) or uninfected COVID-
participants (n=22, 10 females and 12 males, one sample per participant). We obtained high
quality scATAC-seq data of 1,311,638 cells from the samples. Unless specified, we mainly used a
cross-sectional subset of the COVID19 dataset (denoted as COVID19X, n=39) in the
development, including data of the COVID- samples and the first samples of the COVID+
participants during early infection (<16 days post symptom onset (PSO), n=17, 9 females and 8
males).

We designed MOCHA to serve as an analytical framework for sample-centric scATAC-seq
data analysis, after quality control assessments and cell type labeling. MOCHA identifies
sample- and cell type-specific open chromatin and provides a range of analytical functions for
complex scATAC-seq data analysis (Fig. 1, Supplementary Fig. 1):

(i) Tiling: MOCHA divides the genome into pre-defined 500 base pair (bp) tiles, which
allows head-to-head comparisons on chromatin accessibility across samples and cell types and
avoids complex peak-merging procedure on non-aligned summits™*.

(if) Normalization: Since sequencing depth may differ across samples in a large-scale
SCATAC-seq study (Supplementary Fig. 2a), it is essential to normalize scATAC-seq data prior to
meaningful accessibility analysis. MOCHA counts the number of fragments that overlap with
individual tiles in individual cells, collects the total and the maximum fragment counts for each
tile from all cells of a targeted cell type per sample, and normalizes the fragment counts by the
total number of fragments of the cell type per sample to reduce the effects of variations in
sequencing depth and cell count (Methods). Compared with other normalization approaches,
this approach resulted in the lowest coefficient of variation (CV) distribution on 2230 invariant
CCCTC-binding factor (CTCF) sites on the COVID19 dataset (Supplementary Fig. 2b, n=91). As
indicated by the low to moderate CV values, this approach also makes it possible to compare
normalized accessibility across samples (Supplementary Fig. 2b) and cell types (Supplementary
Fig. 2c).
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(iii) Accessibility evaluation: MOCHA applies logistic regression models (LRMs) to
evaluate whether a tile in a given cell type and sample is accessible based on three parameters
(Methods): the normalized total fragment count A9, the normalized maximum fragment count
A and a study-specific prefactor S to account for differences in data quality between training
and user datasets. Since A can only be evaluated on scATAC-seq data, its usage distinguishes
MOCHA from peak-calling methods based on pseudo-bulk ATAC-seq data only. Using the full
COVID19 dataset (n=91), we generated pseudo-bulk ATAC-seq data from scATAC-seq data of all
cells of a targeted cell type, ran MACS2* to identify all accessible regions, and used these labels
as the imperfect “ground truth” to train and test the LRMs. More specifically, we used natural
killer (NK) cells (n=179,836) for training, which had 750 million total fragments, or 15x the
recommended coverage for MACS2. On this dataset, MACS2 identified 1.15 million tiles as
accessible. Using these tiles as positives and other fragment-containing tiles as negatives, we
developed cell count-specific LRMs with varying coefficients and thresholds to account for
variations in cell count across samples (Supplementary Fig. 3a-b). MOCHA applies smoothing
and interpolation to find the proper coefficients and thresholds for individual datasets. We
validated the LRMs (Supplementary Fig. 3c-d) using data of CD14 monocytes (n=135,949), naive
B cells (n = 60,595), CD16 monocytes (n=28,525), NK CD56 bright cells (n=14,692), and
conventional dendritic cells (cDCs, n=9,915). We used sensitivity, specificity, area under the
receiver operating characteristic (ROC) curve (AUC), and Youden's J statistic to quantify the
performance. Overall MOCHA had a good performance even at low cell counts. For example,
MOCHA achieved an AUC ranging from 0.693 (CD14 monocytes), 0.703 (CD16 monocytes), to
0.741 (NK CD56 bright cells) with only 50 cells.

(iv) Tile-sample accessibility matrix (TSAM): MOCHA first uses the LRMs to identify
accessible tiles from cells of a targeted cell type in individual samples and then keeps only tiles
that are common to at least a user-defined fraction threshold of samples. Afterwards, MOCHA
generates a TSAM for the cell type with rows being the accessible tiles, columns the samples,
and elements the corresponding A values. A total of 215,649 accessible tiles were identified
on CD16 monocytes with a fraction threshold of 20% (Supplementary Fig. 2d) across either
COVID+ or COVID- samples in the COVID19X dataset (n=39). About 25% elements in the
obtained TSAM were zero (Supplementary Fig. 2¢,f), reflecting the sparsity of scATAC-seq data
even after pseudo-bulking and indicating the necessity of applying ZI statistical methods for
downstream analysis.

(v) Differential accessibility analysis (DAA): Similar to other methods, MOCHA first filters
out noisy tiles. Tiles are excluded if either 1) the median log2(A™" + 1) value (across all
samples) is lower than a user-defined threshold or 2) their difference (between two sample
groups) in percentage of zeros is less than a user-defined threshold. Unlike other methods,
MOCHA includes functions to heuristically define these thresholds. For the COVID19X dataset
(n=39), we noticed that the log2(A™ + 1) values in the TSAM of CD16 monocytes followed a
bi-modal model and thus chose a value of 12 near the higher mode as the median accessibility
threshold (Supplementary Fig. 2g). Additionally, we observed a 25% difference in fragment
counts between COVID+ and COVID- samples (Supplementary Fig. 2a), so we set a 50%
threshold for the difference in the percentage of zeros to control for technical differences.
MOCHA then applies a two-part Wilcoxon test **** to identify differential accessibility tiles
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(DATs) within the cell type between the two sample groups (Methods). DATs have either a large
fold change (FC) in accessibility (Supplementary Fig. 2h) and/or large difference in percentage
of zeros (Supplementary Fig. 2i). For comparison, ArchR™ uses the standard Wilcoxon test along
with a post-test log2(FC) cutoff to identify differential regions on bias-matched cell populations,
while Signac10 constructs LRMs and prioritizes differential regions based on FC.

(vi) Co-accessibility analysis (CAA): MOCHA applies the ZI Spearman correlation®> to
evaluate two types of co-accessibility between tiles in TSAMs (Methods). The inter-cell type co-
accessibility is evaluated across cell types where data from different samples are stacked. The
inter-sample co-accessibility is evaluated within a targeted cell type but across different
samples. Both types are important to infer potential gene regulatory networks, one for
understanding differences between cell types and the other for understanding differences
between sample groups.

In addition, MOCHA has functions for dimensionality reduction, motif enrichment,
analysis for alternative transcription starting site (TSS) regulation, and longitudinal modeling.
TSAMs can also be passed to some existing SCATAC-seq tools such as ArchR and chromVAR and
other bioinformatics tools such as Monocle3 for further analysis. Furthermore, users can easily
leverage information from TSAMs to conduct their own interrogations of scATAC-seq data.

MOCHA reliably detects sample-specific chromatin accessibility.
A crucial component of scATAC-seq data analysis is to reliably detect which chromatin regions
are accessible. We benchmarked MOCHA against the popular tools MACS2*” and HOMER?®. The
former is also implemented in ArchR", Signac'® and SnapATAC’. We compared these tools
using three scATAC-seq datasets with different data quality and sequencing depth (Methods,
Supplementary Fig. 4a): i) COVID19X (n=39, Fig. 2) or COVID19 (n=91, Supplementary Fig. 4); ii)
HealthyDonor, a dataset of 18 PBMC samples of n=4 healthy donors 3%. and iii) Hematopoiesis,
an assembled dataset of hematopoietic cells from 49 samples of diverse data quality™, which
was treated as a single sample sample in this study. Three representative cell types with
moderate to high cell counts were selected from each of the three datasets for the comparison,
with cell count per sample ranging from 227 to 743 (COVID19X, median), 163 to 784
(HealthyDonor, median), and 1175 to 27463 (Hematopoiesis), respectively (Fig. 2a,
Supplementary Fig. 4b).

To benchmark performance on sample-specific accessibility, we compared the number
of open regions detected in individual samples (Fig. 2b). On COVID19X, MOCHA detected a
median of 129k-195k open tiles per sample, which was 19-64% higher (significantly with P <
0.05 in % cases) than the corresponding numbers by MACS2 or HOMER. Similarly on
HealthyDonor, MOCHA detected a median of 117k-216k open tiles per sample, a 35-59%
increase (significantly with P < 0.05 in % cases) over the corresponding numbers by MACS2 or
HOMER. On Hematopoiesis, MOCHA detected 370k open tiles in cDCs, 665k in naive CD4' T
cells, and 1.28m in CD14 monocytes, which were <7% lower, >43% higher, and >70% higher,
respectively, than the corresponding numbers by MACS2 or HOMER. Thus MOCHA was more
sensitive than MACS2 and HOMER in detecting open chromatin regions in individual samples in
almost all cases.

To assess the consistency between open tiles detected by the three tools, we generated
TSAMs with a fraction threshold of 20% based on tiles detected by each tool and compared the
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corresponding tiles in TSAMs (Fig. 2c). Most tiles were detected by all three tools. As described
above, MOCHA detected more tiles than MACS2 and HOMER in almost all cases. Among all tiles
detected by MACS2 and/or HOMER, 95-97% were also detected by MOCHA in COVID19X, 92—
93% in HealthyDonor, and 84-97% in Hematopoiesis. Tiles detected only by MOCHA contained
on average more fragments than tiles missed by MOCHA (Fig. 2c, inserts; P < 0.001). Thus
MOCHA not only captured the majority of tiles detected by MACS2 and HOMER but also added
extra tiles of better signals than those by MACS2 or HOMER.

To further elucidate differences among tiles detected by the three tools, we calculated
the percentage of zeros among all samples for each tile in each TSAM and obtained the
corresponding cumulant distributions (Fig. 2d). While all three tools agreed on open tiles
common to most samples, MOCHA detected more sample-specific tiles than MACS2 and
HOMER. To test whether these additional tiles potentially contained biological information, we
generated the corresponding cumulative distributions on tiles mapped to CTCF sites or TSSs and
observed similar patterns (Fig. 2e,f). This suggests that the extra tiles detected by MOCHA may
carry important biological information. MOCHA also detected similar or more open CTCF sites
and open TSSs in Hematopoiesis compared to MACS2 and HOMER (Fig. 2g).

Calling peaks on pooled cells of interest is a common practice in scATAC-seq data
analysis” ", To compare MOCHA, MACS2 and HOMER on this approach, we pooled cells of the
three cell types in the three datasets, randomly downsampled the cells to a series of
predetermined cell counts, and applied the three tools to detect accessible tiles
(Supplementary Fig. 4c). MOCHA consistently detected more tiles, more CTCF sites, and more
TSSs than MACS2 and HOMER in almost all cases.

Finally, we benchmarked the runtime for each tool on a cloud computing environment.
MOCHA was consistently faster than HOMER in all tested cases and MACS2 in all practical cases
(Fig. 2h).

MOCHA implements zero-inflated differential accessibility and co-accessibility analyses.

We evaluated MOCHA's ZI modules against existing state-of-the-art tools for DAA and CAA. We
first benchmarked MOCHA with ArchR and Signac on DAA. To ensure a head-to-head
comparison, we applied each method to identify DATs between COVID+ (n=17) and COVID-
(n=22) participants from the 215,649 tiles in the TSAM of CD16 monocytes in the COVID19X
dataset (Methods). MOCHA identified 6211 DATs (false discovery rate (FDR) < 0.2, Fig. 3a,
Supplementary Fig. 5a). In comparison, ArchR and Signac detected 6009 and 1266 DATSs,
respectively (Fig. 3b). While 28% of DATs by MOCHA were in gene promoter regions, the
corresponding percentage was 17% for ArchR and 18% for Signac. As a result, MOCHA, ArchR,
and Signac identified 1811, 1006, and 228 genes, respectively, with DATs in their promoter
regions. These genes were enriched (adjusted P < 0.05) in 27, 1, and 1 Reactome pathways40
(Fig. 3c), respectively, illustrating a striking distinction by MOCHA. The same trend was also
observed for other pathway databases (Supplementary Fig. 5b). Among the 27 Reactome
pathways revealed by MOCHA (Fig. 3d), toll-like receptors (TLRs), myeloid differentiation
primary response 88 (MyD88), interleukins, and nuclear factor kappa B (NF-kB) pathways all
play important roles in innate immune response to viral infection*, consistent with the
expected functions of CD16 monocytes. Thus DATs by MOCHA revealed more biological insights
than those by ArchR or Signac.
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To quantify the DAT accuracy for each method, we evaluated its efficiency in separating
COVID19+ and COVID19- samples. We randomly selected 50 DATs, performed k-mean (k=2)
clustering, calculated the absolute value of the G index (| G|) of agreement **, and repeated the
process 1000 times. DATs by MOCHA were significantly better in separating COVID19+ and
COVID19- samples than those by ArchR (P < 0.001) or Signac (P < 0.001, Fig. 3e).

Biologically meaningful DATs should be robust against minor changes in the sample set.
Starting with DATs from the full sample set (n=39), we iteratively removed one sample at a time
and recalculated DATs from the reduced sample set (n=38). We repeated this process until each
sample was removed once. From there, we collected the set of conserved (e.g., cumulative
intersection) and inflated (e.g., cumulative additional) DATSs across all iterations. Ultimately,
3990 (64%) of the 6211 DATs by MOCHA were conserved (Fig. 3f), which was 1.8-3.4 times
higher than the corresponding rate of ArchR (1136/6009, 20%) or Signac (458/1264, 36%).
MOCHA had 5782 (93%) additional DATs, which was 2.7 times lower than the corresponding
rate by ArchR (15310/6009, 255%) and 1.6 times higher than that by Signac (735/1264, 58%).
MOCHA was more robust than ArchR and had a split performance in comparison with Signac in
detecting DATSs regardless of sample set. However, MOCHA had 3990 conserved DATs, 8.7
times higher than those of Signac (458). MOCHA provided a better balance between sensitivity
and robustness in detecting DATs compared to ArchR and Signac.

When benchmarking runtime, we observed that MOCHA and ArchR took 1.8 and 1.6
minutes, respectively, to evaluate approximately 200,000 tiles, while Signac took 18.6 hours
(Fig. 3g). MOCHA was 23-614x faster than Signac and 0.86-2.8x as fast as ArchR.

Next, we compared the ZI and the standard Spearman correlations across cell types and
samples in the COVID19X dataset based on log, (A® + 1) in TSAMs. For the inter-cell type co-
accessibility, we used known promoter-enhancer interactions in naive CD4" and CD8" T cells*
to define possibly interacting tile pairs (1.21 million) while randomly selecting 100k tile pairs as
a negative background for comparison (Methods). Both correlation approaches largely
generated similar results (Supplementary Fig. 6a, Spearman correlation = 0.687, P < 2.2x10™°),
but disagreements were also observed (Supplementary Fig. 6b). The ZI correlation better
distinguished promoter-enhancer pairs from the random pairs than the standard correlation
(Kolmogorov—Smirnov (KS) test statistic = 0.26 vs. 0.13), and identified 1000x more promoter-
enhancers pairs (15,988 vs. 149, FDR < 0.1, Supplementary Fig. 6¢-d). For the inter-sample co-
accessibility, we first collected a subset of tiles in the TSAM of CD16 monocytes that roughly
located in the first million bp of chromosome 4 (chr4:121500-1130999) and then used both correlation
approaches to calculate the inter-sample correlations between all pairs (about 34.5k) of these tiles. While
both correlation approaches generally agreed with each other with a rank correlation of 0.69 (P
< 0.001, Supplementary Fig. 6e), 9550/34,596 (28%) of the tested correlations switched sign
between the two approaches and 2087/34,596 (6%) of them differed in value by >0.25
(Supplementary Fig. 6f). Thus properly accounting for zero-inflation is essential for reliable CAA
in sparse scATAC-seq data.

Networks of alternatively regulated genes in early SARS-CoV-2 infection.

To demonstrate how improvements in MOCHA can be leveraged for constructing gene
regulatory networks, we investigated possible alternative TSS regulation by CD16 monocytes
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during early SARS-CoV-2 infection (Methods), using the COVID19X dataset. We observed two
types of alternatively regulated genes (ARGs, Fig. 4a): A total of 278 genes had at least one TSS
showing differential accessibility (FDR < 0.2) between COVID19+ and COVID19- samples, while
other open TSSs had no change (Type |, Fig. 4b). Five genes (ATP1A1, UBAP2L, YWHAZ, CAPN1,
and ARHGAP9) had at least two differential TSSs changing in the opposite directions (Type I,
Fig. 4c). Interestingly, all Type Il ARGs were previously associated with COVID-19 and two
(ATP1A1 and CAPN1) have been proposed as therapeutic targets for COVID-19 (Supplementary
Table 1). Pathway enrichment analysis** on all Type | and Type 1l ARGs revealed that they were
enriched in pathways of the innate immune response to infection, including MyD88 and TLR
responses (Fig. 4d).

To understand the upstream signaling mechanisms regulating ARGs, we first applied
MOCHA to identify tiles that were co-accessible (inter-sample) with the corresponding DATSs.
Motif enrichment analysis on DATs of ARGs and their co-accessible tiles identified 13 enriched
motifs, including activator protein-1 (AP-1) family motifs, PATZ1, and CEBPA (adjusted P < 0.05,
Fig. 4e). Next, we carried out ligand-motif set enrichment analysis (LMSEA, Methods) based on
a priori ligand-motif (transcription factor, TF) interactions in NicheNet*. We identified 122
significantly enriched ligands (adjusted P < 0.05, Fig. 4f), many of which, including IL17, IL21 and
PLAU, have already been implicated in COVID-19 (Source Data Fig. 4g). Finally, we constructed a
network that linked ligands, TFs, and ARGs together (Methods). Notably, the subnetwork of
CEBPA is particularly interesting (Fig. 4g): CEBPA was proposed as a COVID-19 therapeutic
target* and identified as a key regulator in CD14 monocytes of hospitalized COVID-19 patients
from scATAC-seq data®. Furthermore, 29/30 of its upstream ligands were either therapeutic
targets or altered during SARS-CoV-2 infection, and 20/27 of its downstream ARGs were
associated to COVID-19 or viral infection®®>. Two ARGs, SOCS3/SOCS3-DT and CAPN1, were
potential targets for COVID-19 treatment>*. Using MOCHA’s differential accessibility and co-
accessibility modules, we constructed a putative upstream regulatory network that could be
driving alternative TSS regulation in CD16 monocytes during early SARS-CoV-2 infection. Given
that these results are largely aligned with the literature, we anticipate that this approach can be
used more generally to identify potentially novel biological mechanisms.

Longitudinal analysis of chromatin accessibility during COVID-19 recovery.

To understand chromatin regulation during COVID-19 recovery, we analyzed scATAC-seq data
of CD16 monocytes from our longitudinal COVID-19 study (Fig. 5a). The dataset, denoted as
COVID19L, was collected on 69 longitudinal PBMC samples from 18 COVID+ participants (10
females and 8 males) over a period of 1-121 days PSO (Methods). We integrated MOCHA with
existing tools and developed customized approaches to analyze the data at both single-cell and
pseudo-bulk levels.

First, open tiles from the TSAM of CD16 monocytes were imported into ArchR as a
peakset for dimensionality reduction. The resulting Uniform Manifold Approximation and
Projection55 (UMAP) plot showed a clear shift in cellular population from initial infection to 30+
days post infection, at which time the cellular population appeared similar but not identical to
that of the 22 COVID- participants (Fig. 5b).

Second, days PSO were binned (Fig. 5b) and used to learn a Monocle3*® trajectory,
which largely followed the cellular population shift across the UMAP space (Supplementary Fig.


https://doi.org/10.1101/2023.06.23.544827
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.23.544827; this version posted June 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

7a). Using ArchR, we further identified genes with GeneScore changes or tiles from the TSAM
with accessibility shifts along this trajectory (Supplementary Fig. 7b). The genes with promoter
accessibility shifts in CD16 monocytes were enriched in 72 immune system pathways, including
39 innate immune, 15 adaptive immune, and 18 cytokine signaling pathways (Supplementary
Fig. 7c, right panel). In comparison, the corresponding pathway counts from the GeneScore
analysis was only 10, 2, 4, and 4, respectively (Supplementary Fig. 7c, left panel). TSAM-based
results were more informative and aligned better with the expected roles of CD16 monocytes
than GeneScore-based ones.

Third, we converted the TSAM of CD16 monocytes into a chromVAR object and
calculated sample-specific z-scores for TF activity (Methods). This enabled us to apply
generalized linear mixed models (GLMM) to identify TFs with dynamic activities in CD16
monocytes during COVID-19 recovery. Among the 223 TFs whose activity changed significantly
in time (FDR < 0.1, Fig. 5¢-d), the AP-1 family (such as ATF1-7, JUN/B/D, MAF/F/G/K, FOS/B, and
BACH1-2; Fig. 5¢, insert) and the NF-kB family (such as REL/A and NFKB1-2) mostly had
decreased activities, in consistency with their inflammatory, infection-responsive functions. On
the contrary, the forkhead box (FOX) TF family (such as FOXP1/4, FOXG1, FOXO1, and FOXK2)
had increased activities, which agrees with their known roles in immune homeostasis>’ >". In
comparison, we also identified 86 TFs with chromVAR z-score changes along the pseudotime
trajectory described above, among which only 31 were unique (Supplementary Fig. 8).
Longitudinal analysis based on real time identified more TFs with dynamic activities during
COVID-19 recovery than the trajectory analysis based on pseudotime.

Fourth, the TSAM of CD16 monocytes was used to examine how gene promoter
accessibility shifted during COVID-19 recovery. Since the data had about 20% zeros, we applied
ZI-GLMM to address this specific challenge (Methods). A total of 2,120 genes demonstrated
promoter accessibility shifts over time (FDR < 0.1), including genes regulating immune
inflammation such as NFKBIE and DOK3 (Fig. 5e, Supplementary Fig. 9a)°* . This gene set was
enriched for 71 Reactome pathways (FDR < 0.1; Fig. 5f). Interestingly, among the 23 immune
system pathways, five involve signaling by interleukins and 18 are related to the innate immune
system (such as TLR-, MyD88-, and IRAK1-related pathways), but none are specific to the
adaptive immune system. Again, these results are consistent with the expected roles of CD16
monocytes during viral infection.

Finally, to discover possible TF-gene regulations in CD16 monocytes during COVID-19
recovery, we applied ZI-GLMM to examine whether TFs with significant activity changes were
associated with genes with significant promoter accessibility changes (Methods). For example,
we found that JUNB chromVAR z-score was significantly associated (P < 0.05) with the promoter
accessibility of 19 genes in the TLR4 cascade pathway (Fig. 5g, Supplementary Fig. 9b). As an
illustration, we selected the top five TFs having the largest positive (PLAGL1, ELF5, ETV6, SPIB,
and SPIC) or negative (JUN, FOSL1, SMARRC1, FOSL2 and JUNB) slopes, respectively, against
time and examined their associations with gene promoters within the 18 innate immune
pathways enriched during COVID-19 recovery (Fig. 5f). The five TFs having negative slopes were
significantly associated (P < 0.05) with 14 pathways (Fig. 5h), consistent with the prominent
roles of AP-1 TF family in innate immunity. Among the five TFs with positive slopes, PLAGL1 and
ETV6 were significantly associated (p < 0.05) with five innate immune pathways, SPIB and SPIC
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with 2, and ELF1 with 1, respectively. Four innate immune pathways did not show significant
associations with any of these top 10 TFs. While wet-lab validation is needed, such TF-gene
associations generate interesting biological hypotheses regarding gene expression regulation in
CD16 monocytes during COVID-19 recovery. Together, these results demonstrate MOCHA is a
valuable tool in studying chromatin dynamics and gene regulatory networks based on
longitudinal sScCATAC-seq data.

Discussion

We developed MOCHA to robustly infer active gene regulatory programs in human disease
cohorts based on scATAC-seq. First, we showed that our open chromatin model significantly
agreed and was more sensitive in detecting sample-specific open chromatin regions than
MACS2 and HOMER. Second, we identified differential accessible regions that better
distinguish between COVID+ and COVID- participants than those by ArchR and/or Signac and
uniquely revealed pathways affected by SARS-CoV-2 infection. Third, we constructed ligand-TF-
gene networks on potential alternative TSS regulations during SARS-CoV-2 infection using only
ScATAC-seq data. Fourth, using zero-inflated mixed models, we identified motifs and promoters
that were associated with COVID-19 recovery and constructed a TF-pathway network to infer
which pathways were functionally important during COVID-19 recovery. MOCHA substantially
increased the value of scATAC-seq in our COVID19 cohort by enabling robust modeling and
visibility into the functional implications of chromatin accessibility. In addition, we illustrated
how MOCHA can be integrated with existing tools such as ArchR, Monocle3, chromVAR, and
NicheNet while enabling customized analysis using ZI-mixed effects models to gain unique
insights from scATAC-seq data. Given its capabilities, we believe MOCHA is a valuable addition
for analyzing scATAC-seq data, especially in biomedical research.

Constructing robust regulatory networks begins with reliable identification of patient-
and cell type-specific open chromatin. We used peaks called by MACS2 on pseudo-bulk ATAC-
seq data as imperfect “ground truth” to train and validate MOCHA. The training data of NK cells
(n=179,836, 750 million fragments) had enough sequencing depth for reliable MACS2
performance and thus likely reliable MOCHA training. However, MACS2 might call every
fragment as a peak for less abundant cell types, leading to many false positives. To mitigate
such artifact, some pipelines artificially limit the number of peaks called by MACS2™. To provide
a reasonable comparison, we focused our benchmarking on cell types with moderate to high
cell counts. MOCHA outperformed MACS?2 in calling sample-specific regions despite relying on
MACS2 for training. In theory, MOCHA was not designed to call open tiles on datasets of mixed
cells from multiple studies. For example, we used a global prefactor S to account for differences
in data quality instead of, more properly, estimating an S for each of the many studies within
the Hematopoiesis dataset. Nevertheless, MOCHA outperformed MACS2 and HOMER on all
three datasets of varying data quality, although only slightly on the Hematopoiesis dataset. It is
possible that the LRMs in MOCHA may need to be retrained if the difference in species, sample
type, experimental protocol, sequencing depth, data quality, etc., becomes overwhelmingly
large between our training data and user data. Due to a lack of access to GPU hardware®® and
integration chaIIengesla, we benchmarked MOCHA only with MACS2 and HOMER, which are the
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most widely incorporated open source peak callers. Given its strong performance against these
standard algorithms, MOCHA’s robust open chromatin results provided a solid foundation for
downstream analysis.

Additionally, gene regulatory networks require clear identification of accessibility
changes. However, the presence of drop-out leads to many unreliable results. The
incorporation of ZI statistical methods to handle drop out is a major advantage of MOCHA over
existing tools. ZI methods provide well-documented improvements over their counterparts on
ZI data®®. While ZI methods are applied to scRNA-seq data exclusively at single-cell level, the
sparsity of sSCATAC-seq data makes it necessary to apply ZI methods even at pseudo-bulk level.
We applied the two-part Wilcoxon model®! for DAA, ZI correlation® for CAA, and ZI-GLMM*® for
longitudinal modeling in MOCHA and demonstrated how MOCHA led to more informative
results than existing tools.

While single cell analysis provides granularity into cellular behavior, human cohort
studies are usually interested in identifying patient-level behavior across cell populations. While
current methods are centered at the single cell level, MOCHA aggregates scATAC-seq data into
TSAMs to facilitate sample-centric analysis. To the best of our knowledge, this rather simple
approach has not been reported to analyze scATAC-seq data. The approach provides several
important advantages. First, the approach specifically addresses pseudo-replication bias in
single-cell data and avoids computationally expensive single-cell mixed effect models, following
recent advice for analyzing scRNA-seq data’®”’. Second, the sample-centric approach makes it
computationally feasible to analyze large, diverse human cohorts and explicitly models patient-
level heterogeneity. Third, since the TSAM is constructed from standard Bioconductor data
structures, its flexibility enables a broad range of scientific enquiries into gene and chromatin
regulation and supports seamless integration with a variety of bioinformatics tools. For
example, we applied ZI-GLMM and chromVAR to study COVID-19 recovery on our longitudinal
SCATAC-seq data. We believe TSAMs facilitate the extraction of genomic insights from large-
scale, heterogeneous scATAC-seq data. Nevertheless, the approach is underpowered for studies
of small sample size and not appropriate for comparing a handful of samples. We plan to adapt
MOCHA for small-scale studies in the future.

We selected CD16 monocytes in our COVID19 dataset to showcase the utility of MOCHA
in biomedical research. Our results reveal from multiple perspectives that the genomic regions
associated with innate immune pathways (such as TLR, MyD88, and NF-kB) played essential
roles in SARS-CoV-2 infection and patient recovery, aligning with the expected functions of
CD16 monocytes during viral infection®®. To the best of our knowledge, explicit longitudinal
analysis on scATAC-seq data has not been reported, limiting the value of sScCATAC-seq in studying
the regulatory landscapes of disease progression and recovery. Furthermore, despite the large
number of publications on COVID-19, alternative TSS regulation during SARS-CoV-2 infection
has not been reported. We consider MOCHA as a tool to generate interesting hypotheses from
SCATAC-seq data, which nevertheless need to be validated in follow-up studies. An in-depth,
comprehensive analysis of our COVID19 cohort is beyond the scope of current work and will be
presented in a follow-up paper.
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In short, we present MOCHA as a tool to better infer gene regulation from scATAC-seq
in biomedical and biological research. MOCHA is freely available as an R package in CRAN
(https://cran.r-project.org/web/packages/MOCHA/index.html).

Methods

Longitudinal COVID-19 cohort

We recruited in the greater Seattle area n=18 participants (10 females and 8 males, aged 22-79
years) who tested positive (COVID+) for SARS-CoV-2 virus (Wuhan strain) and n=23 uninfected
(COVID-) participants (10 females and 13 males, aged 29-77 years) for our longitudinal COVID-
19 studyas, “Seattle COVID-19 Cohort Study to Evaluate Immune Responses in Persons at Risk
and with SARS-CoV-2 Infection”. All COVID+ participants had mild to moderate symptoms.
Peripheral blood mononuclear cell (PBMC) and serum samples were collected from the COVID-
participants at a single time point and from the COVID+ participants at 3-5 time points over a
period of 1-121 days post-symptom-onset (PSO, total samples n=70). Study data were collected
and managed using REDCap electronic data capture tools hosted at Fred Hutchinson Cancer
Research Center (FHCRC). The FHCRC Institutional Review Board (IRB) approved the studies and
procedures. Informed consent was obtained from all participants at the Seattle Vaccine Trials
Unit to participate in the study and to publish their corresponding research data. Two
participants declined to publish their raw sequencing data.

COVID19 Single-cell ATAC-seq

PBMC isolation. Blood collected in acid citrate dextrose tubes was transferred to
Leucosep tubes (Greiner Bio One). The tube was centrifuged at 800-1000 x g for 15 minutes
and the PBMC layer recovered above the frit. PBMCs were washed twice with Hanks Balanced
Solution without Ca+ or Mg+ (Gibco) at 200400 x g for 10 min, counted, and aliquoted in heat-
inactivated fetal bovine serum with 10% dimethylsulfoxide (DMSO, Sigma) for cryopreservation.
PBMCs were cryopreserved at -80°C in Stratacooler (Nalgene) and transferred to liquid nitrogen
for long-term storage.

FACS neutrophil depletion. To remove dead cells, debris, and neutrophils prior to
SCATAC-seq, PBMC samples were sorted by fluorescence-activated cell sorting (FACS) prior to
cell permeabilization as described previously67. Cells were incubated with Fixable Viability Stain
510 (BD, 564406) for 15 minutes at room temperature and washed with AIM V medium (Gibco,
12055091) plus 25 mM HEPES before incubating with TruStain FcX (BioLegend, 422302) for 5
minutes on ice, followed by staining with mouse anti-human CD45 FITC (BioLegend, 304038)
and mouse anti-human CD15 PE (BD, 562371) antibodies for 20 minutes on ice. Cells were
washed with AIM V medium plus 25 mM HEPES and sorted on a BD FACSAria Fusion. A standard
viable CD45+ cell gating scheme was employed: FSC-A x SSC-A (to exclude sub-cellular debris),
two FSC-A doublet exclusion gates (FSC-W followed by FSC-H), dead cell exclusion gate (BV510
LIVE/DEAD negative), followed by CD45+ inclusion gate. Neutrophils (defined as SSChigh,
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CD15+) were then excluded in the final sort gate. An aliquot of each post-sort population was
used to collect 50,000 events to assess post-sort purity.

Sample preparation. Permeabilized-cell scATAC-seq was performed as described
previously®’. A 5% w/v digitonin stock was prepared by diluting powdered digitonin (MP
Biomedicals, 0215948082) in DMSO (Fisher Scientific, D12345), which was stored in 20 pL
aliquots at —20°C until use. To permeabilize, 1x106 cells were added to a 1.5 mL low binding
tube (Eppendorf, 022431021) and centrifuged (400 x g for 5 minutes at 4°C) using a swinging
bucket rotor (Beckman Coulter Avanti J-15RIVD with JS4.750 swinging bucket, B99516). Cells
were resuspended in 100 pL cold isotonic Permeabilization Buffer (20 mM Tris-HCI pH 7.4, 150
mM NaCl, 3 mM MgCl2, 0.01% digitonin) by pipette-mixing 10 times, then incubated on ice for
5 minutes, after which they were diluted with 1 mL of isotonic Wash Buffer (20 mM Tris-HCl pH
7.4, 150 mM NaCl, 3 mM MgClI2) by pipette-mixing five times. Cells were centrifuged (400 x g
for 5 minutes at 4°C) using a swinging bucket rotor, and the supernatant was slowly removed
using a vacuum aspirator pipette. Cells were resuspended in chilled TD1 buffer (Illumina,
15027866) by pipette-mixing to a target concentration of 2,300-10,000 cells per pL. Cells were
filtered through 35 um Falcon Cell Strainers (Corning, 352235) before counting on a Cellometer
Spectrum Cell Counter (Nexcelom) using ViaStain acridine orange/propidium iodide solution
(Nexcelom, C52-0106-5).

Tagmentation and fragment capture. scATAC-seq libraries were prepared according to
the Chromium Single Cell ATAC v1.1 Reagent Kits User Guide (CG000209 Rev B) with several
modifications. 15,000 cells were loaded into each tagmentation reaction. Permeabilized cells
were brought to a volume of 9 pl in TD1 buffer (Illumina, 15027866) and mixed with 6 pl of
[llumina TDE1 Tn5 transposase (lllumina, 15027916). Transposition was performed by
incubating the prepared reactions on a C1000 Touch thermal cycler with 96— Deep Well
Reaction Module (Bio-Rad, 1851197) at 37°C for 60 minutes, followed by a brief hold at 4°C. A
Chromium NextGEM Chip H (10x Genomics, 2000180) was placed in a Chromium Next GEM
Secondary Holder (10x Genomics, 3000332) and 50% Glycerol (Teknova, G1798) was dispensed
into all unused wells. A master mix composed of Barcoding Reagent B (10x Genomics,
2000194), Reducing Agent B (10x Genomics, 2000087), and Barcoding Enzyme (10x Genomics,
2000125) was then added to each sample well, pipette-mixed, and loaded into row 1 of the
chip. Chromium Single Cell ATAC Gel Beads v1.1 (10x Genomics, 2000210) were vortexed for 30
seconds and loaded into row 2 of the chip, along with Partitioning Oil (10x Genomics, 2000190)
in row 3. A 10x Gasket (10x Genomics, 370017) was placed over the chip and attached to the
Secondary Holder. The chip was loaded into a Chromium Single Cell Controller instrument (10x
Genomics, 120270) for GEM generation. At the completion of the run, GEMs were collected and
linear amplification was performed on a C1000 Touch thermal cycler with 96—Deep Well
Reaction Module: 72°C for 5 min, 98°C for 30 sec, 12 cycles of: 98°C for 10 sec, 59°C for 30 sec
and 72°C for 1 min.

Sequencing library preparation. GEMs were separated into a biphasic mixture through
addition of Recovery Agent (10x Genomics, 220016); the aqueous phase was retained and
removed of barcoding reagents using Dynabead MyOne SILANE (10x Genomics, 2000048) and
SPRIselect reagent (Beckman Coulter, B23318) bead clean-ups. Sequencing libraries were
constructed by amplifying the barcoded ATAC fragments in a sample indexing PCR consisting of
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SI-PCR Primer B (10x Genomics, 2000128), Amp Mix (10x Genomics, 2000047) and Chromium i7
Sample Index Plate N, Set A (10x Genomics, 3000262) as described in the 10x scATAC User
Guide. Amplification was performed in a C1000 Touch thermal cycler with 96—-Deep Well
Reaction Module: 98°C for 45 sec, for 9 to 11 cycles of: 98°C for 20 sec, 67°C for 30 sec, 72°C for
20 sec, with a final extension of 72°C for 1 min. Final libraries were prepared using a dual-sided
SPRIselect size-selection cleanup. SPRIselect beads were mixed with completed PCR reactions at
a ratio of 0.4x bead:sample and incubated at room temperature to bind large DNA fragments.
Reactions were incubated on a magnet, and the supernatant was then transferred and mixed
with additional SPRIselect reagent to a final ratio of 1.2x bead:sample (ratio includes first SPRI
addition) and incubated at room temperature to bind ATAC fragments. Reactions were
incubated on a magnet, the supernatant containing unbound PCR primers and reagents was
discarded, and DNA bound SPRI beads were washed twice with 80% v/v ethanol. SPRI beads
were resuspended in Buffer EB (Qiagen, 1014609), incubated on a magnet, and the supernatant
was transferred resulting in final, sequencing-ready libraries.

Quantification and sequencing. Final libraries were quantified using a Quant-iT
PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific, P7589) on a SpectraMax iD3 (Molecular
Devices). Library quality and average fragment size were assessed using a Bioanalyzer (Agilent,
G2939A) High Sensitivity DNA chip (Agilent, 5067-4626). Libraries were sequenced on the
Illumina NovaSeq platform with the following read lengths: 51nt read 1, 8nt i7 index, 16nt i5
index, 51nt read 2.

Data preprocessing. SCATAC-seq libraries were processed as described previously®’. In
brief, cellranger-atac mkfastq (10x Genomics v1.1.0) was used to demultiplex BCL files to
FASTQ. FASTQ files were aligned to the human genome (10x Genomics refdata-cellranger-atac-
GRCh38-1.1.0) using cellranger-atac count (10x Genomics v1.1.0) with default settings.
Fragment positions were used to quantify reads overlapping a reference peak set
(GSE123577_pbmc_peaks.bed.gz from GEO accession GSE123577%), which was converted from
hg19 to hg38 using the liftOver package for R*, ENCODE reference accessible regions (ENCODE
file ID ENCFF503GCK’®), and TSS regions (TSS +2kb from Ensembl v93”* for each cell barcode
using a bedtools (v2.29.1 %) analytical pipeline.

Quality control. Custom R scripts were used to remove cells with less than 1,000
uniquely aligned fragments, less than 20% of fragments overlapping reference peak regions,
less than 20% of fragments overlapping ENCODE TSS regions, and less than 50% of peaks
overlapping ENCODE reference regions. The ArchR package was used to assess doublets in
SCATAC data. Doublets were identified using the ScoreDoublets function using a filter ratio of 8,
and cells with a Doublet Enrichment score exceeding 1.3 as determined by ArchR’s doublet
detection algorithm'" were not considered for downstream analysis.

Dimensionality reduction and cell type labeling. We used the ArchR package to
generate a count matrix for a PBMC reference peak set®, Dimensionality reduction was
performed using the ArchR addlterativelSl function (parameters varFeatures = 10,000,
iterations = 2), and the addClusters function was used to identify clusters in latent semantic
indexing (LSI) dimensions using the Louvain community detection algorithm. For visualization,
Uniform Manifold Approximation and Projection® (UMAP) was performed using ArchR's
addUMAP function at the default settings. The ArchR addGenelntegrationMatrix function
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(parameters transferParams = list(dims = 1:10, k.weight = 20)) was used to label scATAC cells
using the Seurat level 1 cell types from the Seurat v4.0 PBMC reference dataset’’. To generate
clusters that more closely matched label transfer results, we performed K-means clustering on
the UMAP coordinates using 3 to 50 cluster centers and identified a set of clusters that each
had > 80% of cells sharing a single cell type identity. Almost all such clusters contained >= 98%
cells from a single major cell type (T cells, B cells, NK cells, or monocytes/DCs/other), with the
exception of a single cluster with 88% purity. We used clusters of the same major cell type to
subset the data into T cells, B cells, NK cells, or monocytes/DCs/other for downstream analyses.
For each major cell type, we repeated the same dimensionality reduction (LSI/UMAP) process
on the scATAC-seq data with the same settings. We then performed a second round of label
transfer, using the ArchR addGenelntegrationMatrix function (same parameters as described
above for level 1), to reach level 2 and 3 cell labelings of the Seurat PBMC reference dataset.
These labels were consolidated into 25 cell types for most analysis, except for the co-
accessibility analysis where 17 cell types were used to match the published promoter-capture
HiC resource®. The median cell labeling score across all cells that passed quality control was
0.74.

Three scATAC-seq datasets for MOCHA development and benchmarking

COVID19 dataset. Two samples (1 COVID- sample, male; 1 COVID+ sample, female,
collected on day 12 PSO) from our longitudinal COVID-19 cohort were lost due to low sample
volume. The scATAC-seq data of the remaining samples was denoted as the COVID19 dataset
(n=91) in this study. After removing doublets and cells of poor quality, high quality data of
1,311,638 cells were obtained. The data was split into two overlapping subsets for some
analyses: 1) A cross-sectional dataset (denoted as COVID19X, n=39) included data of COVID-
samples (n=22, 10 females and 12 males) and the first samples of COVID+ participants (n=17, 9
females and 8 males) during early infection (<16 days PSO). 2) A longitudinal dataset (denoted
as COVID19L, n=69) included all data for the 18 COVID+ participants (10 females and 8 males).
The overlap between COVID19X and COVID19L was 17, which were the first samples of COVID+
participants. The full dataset (COVID19) can be accessed at GEO under accession number
GSE173590. (Note to reviewers: data will be released to the public prior to the first publication
of our manuscripts.)

HealthyDonor dataset. This longitudinal SCATAC-seq dataset®® was collected on 18
PBMC samples of 4 healthy donors (aged 29-39 years) over 6 weeks (1 female and 1 male,
weeks 2-7; 2 males, weeks 2, 4, and 7). The donors had no diagnosis of active or chronic
disease during the study. The data is publicly available at GEO under accession number
GSE190992. We used the dataset as is, except we removed cells with doublet enrichment score
exceeding 1.3, based on ArchR’s doublet detection algorithmll. High quality data of 145,711
cells were obtained. From this dataset, we consolidated existing annotations into 25 cell types
with a published median cell labeling score of 0.78.

Hematopoiesis dataset. This dataset was downloaded from
(https://www.dropbox.com/s/sijf2votfej629t/Save-Large-Heme-ArchRProject.tar.gz). It consists
of ~220,000 hematopoietic cells from the hematopoiesis dataset in ArchR™. As described in
their Supplementary Table 1, the dataset was assembled from 49 samples in four data sources,
of different sample types (mixed, sorted, and unsorted cells; PBMCs; and bone marrow

15


https://doi.org/10.1101/2023.06.23.544827
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.23.544827; this version posted June 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

mononuclear cells), and generated using different sample processing protocols and on different
technical platforms. We used ArchR to generate doublet scores and removed clusters with both
high doublet scores and a mixture of disparate cell types. This doublet removal only applied to
sequencing wells that were not sorted, purified cells. In the end, data of 95,599 cells were
obtained. Because many of the cell types were sorted populations run on an individual well,
many cell types were not available across samples. As a result, we treated all cell types as
coming from a single sample for benchmarking purposes. We used previously published cell
annotations, with a median labeling score of 0.70.

Assessing Dataset Noise using the Altius Peakset

To assess ‘noise’ within a dataset (i.e., fragments from closed regions known as
heterochromatin), we used the Altius consensus peakset ’° of over 3.6 million DNase |
hypersensitive sites within the human genome as an approximation of all potentially accessible
sites. We calculated the overlap rate between fragments and the Altius consensus peakset for
each cell type and dataset, in order to assess the quality of the data. The COVID19 dataset had
an median Altius peakset overlap rate of 88.9%, while the corresponding rates for the Healthy
Control dataset and the Hematopoiesis dataset were 75.5% and 82%, respectively.

MOCHA overview

MOCHA is implemented as an open-source R package under the GPLv3 license in CRAN
(https://CRAN.R-project.org/package=MOCHA). All code and development versions of MOCHA
are available at https://github.com/aifimmunology/MOCHA.

MOCHA is designed to run in-memory and interoperate with common Bioconductor
methods and classes (e.g., RaggedExperiment, MultiAssayExperiment, and Summarized
Experiment). It takes as input four objects that are commonly generated from scATAC-seq after
cell labeling and the removal of doublets and cells of low quality data. These four objects are: 1)
a list of GRanges or GRangeslList containing per-sample ATAC fragments, 2) cell metadata with
cell labels, 3) a BSGenome annotation object for the organism, and 4) a GRanges containing
blacklisted regions. These inputs can be passed to MOCHA directly from an ArchR object.
Alternatively, results can be extracted from Signac, SnapATAC, or ArchR, and converted to
common Bioconductor data objects, which can then be imported into MOCHA. By operating on
well-supported Bioconductor objects, MOCHA’s inputs and outputs are compatible with the
broader R ecosystem for sequencing analyses, and are easily exportable to genomic file formats
such as BED and BAM.

MOCHA'’s core functionality runs as a pipeline from these inputs to perform sample-
specific open tile prediction and consensus analysis, resulting in a TSAM represented as a
Bioconductor RangedSummarizedExperiment. On systems with sufficient memory, MOCHA’s
functions can be parallelized over samples with the ‘numCores’ parameter to decrease runtime.
From the TSAM, MOCHA provides functions for zero-inflated (ZI) co-accessibility and ZI
differential accessibility analysis. The format of the TSAM output enables additional
downstream analyses with other R packages. For example, the TSAM
RangedSummarizedExperiment can be used directly as the counts matrix input for motif
deviations analysis with chromVAR
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(https://greenleaflab.github.io/chromVAR/articles/Articles/Counts.html). Additional details on
the workflow and functions on the MOCHA package are provided in Supplemental Fig. 1.

Tiling the Genome
MOCHA splits the genome into pre-defined, non-overlapping 500 base-pair tiles that remain
invariant across samples and cell types. MOCHA annotates each tile using a user-provided
transcript database (e.g., HG38 Transcript Database) as follows: Promoter regions are 2000 bp
upstream and 200 bp downstream from transcriptional start sites’”. Intragenic regions are tiles
that fall within a gene body, but not within the promoter regions. All other regions are classified
as distal.
From there, we only consider tiles that overlap with ATAC fragments. MOCHA counts
the number of fragments in a tile as follows
fijke = the number of fragments on sample i, of cell type j, in cell k,
overlapping with tile t (1)
F; ; =the total number of fragments on sample i, of cell type j (2)
If a fragment falls between two tiles, it is counted on both tiles.

Normalization

Normalization Techniques Using Invariant CTCF Sites. We examined three normalizing
approaches: dividing the number of fragments by 1) the total number of fragments for sample i,
cell type j (i.e., F;; ); 2) the total number of fragments for samplei (i.e., F; = X;F; ;), and 3) the
total number of cells in sample i, cell type j. We evaluated the above normalization methods
along with the raw data based on a list of 2230 cell-type invariant CCCTC-binding factor (CTCF)
sites from the ChIP Atlas database’. These loci were identified in at least 201/204 (99%) of
blood cell types present in the ChIP-seq Atlas database ’°. Using these CTCF sites, each
approach was assessed based on the corresponding distribution of coefficient of variation (CV)
in peak accessibility. MOCHA normalizes data using F; ; .

Sample- and cell type-specific Normalization. For each sample i, cell type j, and tile t,
MOCHA calculates the following normalized features:

A5 o= Crfijre )/ Fij % 10° = the total normalized fragments for sample i, cell type j, at
tile t (3)

AP, e = (max{f;rche / Fij) % 10° =the maximum number of normalized fragments
across single cells, for sample i, cell type j, tile t (4)

Since the NK population used for model training contained 750 million fragments, a
scaling factor of 10° is applied to make the raw and normalized counts on the same scale across
cellular abundances, and keep normalized values greater than 1 to minimize convergence
errors in downstream model training. Biologically, A(l)l-,j,t is designed to capture the total
number of fragments across all cells (e.g., pseudo-bulk), normalized by the sequencing depth
for that cell type and sample. Given the sparsity of sSCATAC-seq data and the assumption of
limited number of genomic copies (2x-4x) in a typical cell, A®, ; . is designed to capture the
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presence of multiple fragments in a tile from any cell, which can only be evaluated on single cell
data. This approach combines single cell and pseudo-bulk information for downstream
prediction. Normalizing by F; ; is used to normalize both sequencing depth and cell population
variability. This approach provides both a sample- and cell-type specific normalization scheme.

Evaluation of open chromatin accessibility

Training of logistic regression models (LRMs) for predicting tile accessibility. MOCHA
assumes a typical ploidy per cell (two to four copies of the genome). Its pseudocode and further
details are provided in Supplementary Fig. 2 in order to allow for modifications when the above
assumption does not hold.

We used scATAC-seq data of 179k NK cells in the COVID19 (n=91) dataset as the training
dataset. First, we normalized the scATAC-seq data and collapsed it into pseudobulk data.
Second, we applied MACS2 *’ ('-g hs -f BED --nolambda --shift -75 --extsize 150 --broad', '--
model -n") to identify accessible peaks in the pseudobulk data, using previously published
parameters for identifying peaks in scATAC-seq with the modification to call broad rather than
narrow peaks. The resulting peaks were then overlaid onto our pre-defined 500 bp tiles. We
trim the broad peaks by 75 base pairs at each end to remove the tail ends of peaks that may
extend onto tiles with no signal. MACS2 identified 1.15 million tiles as ‘accessible regions’. We
labeled all other fragment-containing regions as inaccessible, and used these ‘accessible’ and
‘inaccessible’ regions for training. Third, we randomly selected NK cells at cell counts ranging
from 170k to 5 at discrete intervals, generating 10 replicates for subsets < 50k cells, and 5
replicates for larger subsets. In each of the subsets, we calculated A9 ij¢ and A(Z)i,j,t at
individual tiles. Fourth, we trained a LRM for each selected subset of NK cells based on the tile
labeling just described. For each sample of i, cells, the LRM calculates a probability score to
assess the likelihood of a tile being accessible, using the formula

1
1+exp(—bgna) —bgna) #A(1) Ljt —bgna) +A(2) ijt )

Pra) QM Lt AD i) = (5)

Here b{" is the intercept, b"® and b{"® are coefficients for A, ;, and 2@, ; ,, respectively.
A tile is predicted as accessible if Pr(™a) > §(™a) or inaccessible if Pr(*a) < §(a) where §™a) js
the threshold value separating accessible and inaccessible tiles. We used Youden index’” to
calculate 8(a) in this study, using the cutpointR R package.

Fifth, we collected {b{"®}, {b"®3}, {b"®},{6 ")} from the 10 or 5 replicated runs on n

cells and then took the corresponding median coefficients, i.e., b(()n), bf"), bén), and 6™, to
construct the predictive model for a sample of n cells. Finally, we used the learned coefficients
and the learned thresholds to smoothen the model to interpolate the model across cellular
abundances that the model was not trained on. The final model is composed of a set of
smoothened coefficients {b{"™}, {b™}, {b{™}, and smoothened thresholds {6} from all
examined n.

Prediction of tile accessibility on new data. To predict accessibility in a new dataset,
MOCHA first accounts for differences in sequencing depth and cell count across datasets and
calculates the ratio, S, of the median (across samples) number of total fragments in the training
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data, and the corresponding median in the new dataset. MOCHA then scales both A(l)i,j’t and
A®; ;. in the new dataset by S and calculates the likelihood of a tile being accessible as

: 6
1+exp[—b(()n)—bgn)*(sl(l)ilj't) —bgn)*(SA(Z)LM ) (6)
where 11 is the number of cells of the targeted cell type in the targeted sample. As before, a tile
is predicted as accessible if Pr™ > 0™ or inaccessible if Pr™ < (™ where 8™ is the
threshold value separating accessible and inaccessible tiles.

Benchmarking Open Regions. To benchmark MACS2, HOMER, and MOCHA, we ran each
tool per sample and cell type to generate comparable accessibility measurements across three
cell types in three different datasets. For MACS2, we used the following parameters to call
broad peaks ('-g hs -f BED --nolambda --shift -75 --extsize 150 --broad'--nomodel -n'), in
accordance with previous published scATAC-seq settings''. For HOMER, we used the findPeaks
function with default parameters, and added ('-style histone') to call broad peaks. While
HOMER and MACS?2 are primarily designed around the properties of ChIP-seq and DNase-seq,
they are also recommended for use with bulk ATAC-seq’®.

To ensure head-to-head comparisons, we overlaid HOMER and MACS2’s peaks into
MOCHA'’s predefined 500 base-pair tiles to translate peak calls into open tile calls. Similar to
training, we trimmed 75 bp off each end, as MACS2’s shift/extsize parameters extends
fragments to improve peak calling under the -nomodel flag79. By trimming, we avoid counting
the tails of peaks that might extend into tiles with no actual fragments. This trimming approach
allows for a direct head-to-head comparison of open regions detected across methods.
Additionally, all three methods are provided the same normalized pseudo-bulk intensity
information to ensure comparable peak calling and prevent confounding peak calling and
normalization. After translating MACS2 and HOMER peaks into open tiles, we then compared
the number of open tiles per sample across all methods, cell types, and datasets.

Next, we generated a TSAM for each cell type across all three methods. The TSAM is a
matrix with an array-type structure, where each cell contains the normalized AV intensities for
a given sample i, at tile j. We kept open tiles that were called in at least 20% of samples (or all
tiles in Hematopoiesis). By generating a TSAM for each method, we compared reproducible,
population-level open tiles across all three methods. The 20% threshold was applied to filter
out noisy data.

CTCF and TSS Sites for benchmarking. CTCF sites were drawn from the ChipSet Atlas”.
In brief, we download a bed file containing CTCF peaks for all blood cell types, and then used
Plyranges’s reduce_ranges®® function to collapse duplicate peak calls into one non-redundant
and smaller file for detecting overlaps. This process was done for both Hg19 (n= 197,882) and
Hg38 (n=184,588). TSS sites were taken from Bioconductor database
TxDb.Hsapiens.UCSC.hg19.knownGene for the Hematopoiesis dataset (which was aligned to
Hg19), and TxDb.Hsapiens.UCSC.hg38.refGene for the other datasets by first extracting the
transcripts for all genes. The TSS were then extracted from the transcripts using the
promoters() command (Hg19, n =62,265, Hg38, n= 88,819). We then calculated the number of
tiles that overlapped with a CTCF and TSS site using the subsetByOverlaps function from the
GenomicRanges’ R package.

Prmw® Lt 1/1(2)i,j,t ,S) =
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Runtime Comparison on open chromatin analysis. Using the CD14 monocyte
population in our COVID19 dataset (n=91), we produced 13 subsamples ranging from 100,000
to 10 cells and measured 10 replicates of the time it takes to conduct open chromatin analysis.
Our runtime comparisons were conducted on N2 machines on the Google Cloud Platform, with
64 vCPUs and 512GB RAM. MOCHA version 0.2.0 was used. The R package “tictoc” was used to
record elapsed time.

Downsampling Comparison on open chromatin. Since pooling cells across samples
before calling open tiles is a common approach, we benchmarked all three methods on the
same randomly selected cell subsets ranging from 5 cells to the full set in the COVID19 dataset
(n=91). For this comparison, we utilized the same three cell types across the same three
datasets. For each cell type and dataset, we used the following procedures. For MOCHA:

1) Generate a coverage object using predefined 500 base-pair tiles on all pooled cells (e.g.,

CD16 monocytes).

2) Predict open tiles on the pooled cells.

3) Count the total number of open tiles, the number of open tiles overlapping with CTCF
sites, and the number of open tiles overlapping with TSSs.

4) Repeat (1-3) for all pre-specified downsampled cell counts.

For MACS2 and HOMER:
1) Generate a coverage file on all pooled cells (e.g., CD16 monocytes),
2) Call peaks on the pooled cells.
3) Convert the peak regions onto the pre-defined MOCHA tiles.
4) Count the total number of open tiles, the number of open tiles overlapping with CTCF
sites, and the number of open tiles overlapping with TSSs.
5) Repeated (1-4) for the pre-specified downsampled cell counts.

Differential Accessibility Analysis (DAA)

MOCHA'’s zero-inflated method for DAA. MOCHA identifies differential accessibility tiles
(DATSs) in a targeted cell type between sample groups A and B in three steps:

First, similar to others '™, MOCHA prioritizes tiles for testing using heuristic functions
to calculate two data-driven thresholds. MOCHA transforms the total fragment count {A("} in
the corresponding TSAM to {log,(A™® + 1)} and fits a mixture model of two normal
distributions on all log, (A + 1) values in the TSAM (Supplementary Fig. 2g). This bimodal
model provides a heuristic threshold to prioritize high-signal tiles. From there, we used the
TSAM metadata to identify any differences in sequencing depth by comparing the median
number of fragments per sample between groups. This analysis informs the ZI threshold. Given
our initial observations of a 25% difference in fragment counts, we set a 50% threshold (2X the
observed sequencing depth difference) to control for technical artifacts. Tiles that do not pass
either threshold are assigned a DAT P value of NA, and those passing thresholds are then tested
for differential accessibility.

Second, MOCHA tests for differential accessibility as follows. Denote the percentages of
zeroes among samples of the two groups as p, and pg and the corresponding medians of non-
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zero log, (A + 1) values as u, and 5. MOCHA then tests whether a tile is a DAT based on
the following hypothesis testing:

Null hypothesis (H,): p4 = pg and u, = ug,

Alternative hypothesis (H,): p4 # pg Or Uy #* Ug.
MOCHA uses the two-part Wilcoxon (TP-W) test® to combine results from the binomial test on
p4 and pg with results from the Wilcoxon rank-sum test on p, and pg. Since each test statistic
can be transformed to follow a y{ distribution (i.e., ¥, and x ), MOCHA combines them into
a single test statistic, i.e., y3= x7,+ x%,, and consequently evaluates from it a single P value®".
In the absence of zeros, the TP-W test mathematically reduces to the standard Wilcoxon rank-
sum test.

Finally, to control for multiple testing, MOCHA evaluates a false discovery rate (FDR)**
for each tile and uses a default threshold of 0.2 to identify DATSs. Since the P values are inflated
near 1 (see Supplementary Fig. 5a), the background in the FDR calculation is estimated from P <
0.95 only.

In addition, MOCHA uses the Hodges-Lehmann estimator® to estimate Log2(fold
change) on chromatin accessibility between the two sample groups. More specifically, MOCHA
first calculates the difference between each sample pair (one sample each from group A or B)
having non-zero log, (A" + 1) values and then takes the median from all paired differences as
an estimate for Log2(fold change) between the two sample groups.

Benchmarking MOCHA with ArchR and Signac on DAA. ArchR and Signac’s DA modules
were each run on a single cell count matrix generated from the same tile set (215,649 tiles) as
the COVID19X CD16 monocytes TSAM. For ArchR, default settings were used, except we
modified maxCells to include all cells (n = 24744). For Signac, we lowered the minimum percent
detection (pct = 0.001), and the log2FC threshold (logfc.threshold = 0.05) in order to test the
full tileset, thus enabling a full head-to-head comparison. As a close analog of Signac’s tutorial,
we also set latent.vars to ‘nFrags’ to adjust for sequencing depth.

Assessing Discriminative Power Per Method. We randomly subsampled 50 DATs from
the output of each method, ran K-means clustering (K=2), and generated the following
confusion matrix to summarize the predictions.

COVID+ | COVID-
Cluster1 | a b a+b
Cluster2 | c d c+d
a+c b+d a+b+c+d

We then calculated Holley’s” ¢ = (&X=0*c)
a+b+c+d

DATs in separating COVID+ and COVID- samples. We used |G| for the comparison since it is

to assess how well the 50 randomly selected
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irrelevant which cluster is enriched for COVID+ samples. We repeated this process 1,000 times
to obtain a distribution for each method.

DAA runtime comparison. To evaluate each method’s speed in DAA, we started by
testing all 215,649 tiles in the CD16 monocytes TSAM, and gradually decreased the number of
tested tiles. At each downsample, we tracked the run time required to identify DATs within
those randomly selected tiles. The tictoc R package was used to calculate runtime.

Co-Accessibility Analysis (CAA)

MOCHA'’s zero-inflated (ZI) method for CAA. MOCHA applies ZI Spearman
correlation®** to evaluate the co-accessibility of two tiles (e.g., x and y) across either cell types
or samples based on the corresponding log, (A" + 1) values. More specifically, the method
first calculates the standard Spearman correlation on (x, y) pairs of non-zero data (i.e., x >
0 and y > 0), denoted as ps 11, and then adjusts it in the presence of zeroes in either tile as
follows:

Ps = P11P+1P1+Ps11 + 3(PooP11 — P1oPo1), (7)
where

Poo =P(X =0,Y =0),

po =P(X>0,Y =0),

por =P(X =0,Y>0),

pi1 =P(X>0,Y>0),

P+1 = Po1 t+ P11,

Pi+ = P1o T P11,
which quantify how zeros are distributed among the two tiles across all data points with

Poo + P10 + Po1 + P11 = 1. In the absence of zeros, the ZI-Spearman correlation reduces to the
standard Spearman correlation, i.e., ps = pg1,. MOCHA makes two modifications to an R
implementation of the method®: 1) The Spearman correlation (ps,11) is calculated in C language
for optimal computing time and 2) undefined ZI Spearman correlations (when pg ;; cannot be
calculated) are assigned to NA rather than replacing them with the standard Spearman
correlations with zeros treated as normal data.

Benchmarking inter-cell-type co-accessibility. We used a previously published
promoter-capture HiC (pcHiC) resource™ which identified promoter-enhancer regulatory links.
From there, we used the liftOver R package, version 1.22.0, and the Hg19 to Hg38 conversion
file (hg19ToHg38.0ver.chain, https://hgdownload.soe.ucsc.edu/ghdb/hg19/liftOver/) to convert
promoter/enhancer loci from HG19 to HG38. Promoters and enhancers were then tiled into
500 bp windows to generate all promoter-enhancer tile (PET) pairs. We kept only PET pairs
when both tiles were identified as accessible by MOCHA in naive CD4+ and CD8+ T Cells and
had pcHiC evidence supporting their interaction specifically in naive CD4+ and CD8+ T cells. The
obtained 1.2 million PET pairs were then treated as ‘ground truth’ for benchmarking the
standard and the ZI Spearman methods in evaluating inter-cell-type co-accessibility. For
comparison, we randomly selected 100k non-PET tile pairs across the genome as a negative
background.

We applied both Spearman methods to calculate the inter-cell-type correlation values
between both the PET and the random pairs, stacking data of different samples in the COVID19
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dataset together (n=91). The inter-cell-type correlation was calculated across 17 cell types,
including B intermediate, B memory, B naive, CD14 Mono, CD16 Mono, CD4 Effector, CD4
Naive, CD8 Effector, CD8 Naive, DC, HSPC, MAIT, NK, NK Proliferating, NK_CD56bright, OtherT,
and Treg. We used the Kolmogorov-Smirnov (KS) distance to quantify how well the two
Spearman methods separated the PET pairs from the random pairs. To identify significant PET
pairs by either Spearman method, we first treated the corresponding distribution of correlation
values of the random pairs as a null distribution, calculated an empirical P value for each PET
pair based on its correlation value, and then converted the obtained P values of all PET pairs
into FDR values. A PET pair was considered as significant if FDR < 0.1.

Pathway enrichment analysis

Pathway enrichment analysis was mostly restricted to the Reactome pathway database. All
genes within the database reference of TxDb.Hsapiens.UCSC.hg38.refGene from Bioconductor®
were selected as the background. Over-representation analysis was performed using
WebGestaltR®**. We annotated enriched pathways at the highest level within the Reactome’s
database hierarchy. Lower level annotations on immune system pathways were provided to
discern adaptive, innate, and general signaling pathways. Using WebGestaltR, pathway
enrichment analysis was performed once on Wikipathways, Gene Ontology (Biological
Processes, Non-redundant), and KEGG for illustrative purposes.

3

Identification of alternatively regulated transcription start sites (TSSs)

We extracted all TSSs from the Transcript database TxDb.Hsapiens.UCSC.hg38.refGene found
on BioConductor ®, and then expanded them upstream by 125 bp to account for TSSs falling
very close to a tile boundary. We filtered out genes with only one TSS. If alternative TSSs of the
same gene occurred within a user-defined neighborhood (default: 150 bp) of each other, we
collapsed them into a single TSS. We then found the intersection between alternative TSSs and
the 6211 DATSs between COVID+ and COVID- samples in CD16 monocytes. TSSs that landed on a
DAT were assigned with the FDR of the corresponding DATs. We categorized alternatively
regulated genes (ARGS) as
Type I: A gene had a subset of TSSs showing differential accessibility (FDR < 0.2) in the
same direction and another subset being open but not differential.
Type lI: A gene had at least two TSSs showing differential accessibility (FDR < 0.2) but in
opposite directions.

Motif enrichment analysis

Motif matching was done using the motifmatchr package and the CISBP motif database, as
provided by the chromVARmotif package (https://github.com/GreenleafLab/chromVARmotifs).
MOCHA uses a standard hypergeometric test to identify enriched motifs, with a user-provided
foreground and background tile sets. For multi-testing corrections, the resulting p-values were
converted into FDRs. To understand the upstream signaling mechanisms regulating ARGs, we
first applied MOCHA to identify tiles that were within £1M bp of and co-accessible (inter-
sample, ZI-Spearman correlation > 0.5) with the corresponding DATs. These DATSs and their co-
accessible tiles were selected as the foreground tile set. For the background tile set, we chose
all tiles with TSSs and their co-accessible tiles that did not overlap with the foreground set.
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These foreground and background tile sets were used to calculate CISBP motif enrichment
regulating ARGs.

Ligand-motif set enrichment analysis (LMSEA)

The NicheNet* database has identified links between upstream ligands and downstream
transcription factors (TFs) that regulate gene expression45. Using the same principle as pathway
enrichment analysis, we designed a Ligand-Motif Set Enrichment Analysis (LMSEA) framework
to capture potential drivers of our observed motifs (i.e., ligands regulate the TFs in our dataset).
Specifically, LMSEA tests whether motifs linked to a ligand of interest are significantly (using
hypergeometric test) over-represented in our observed motifs relative to the ligand’s motif set
within NicheNet. The Benjamini and Hochberg (BH) procedure was used to adjust P values for
multiple comparisons. An adjusted P value < 0.05 was considered significant.

Construction of ligand-transcription factor-gene network

We constructed ligand-TF-gene networks and visualized them using Cytoscape®. The nodes
were ARGs, enriched motifs (TFs), and enriched ligands. Edges were drawn as follows: a motif-
gene link was created if an enriched TF was found within the TSS-containing DATs of an ARG or
their co-accessible tiles, a ligand-motif link was drawn if a ligand was known to interact with a
TF in NicheNet’s ligand-transcription matrix.

Longitudinal analysis of COVID-19 response at single-cell level

Grouping COVID+ samples by infection stage. COVID+ samples (n=69) in the COVID19
dataset were grouped by the corresponding infection stage, including early infection (1-15 days
PSO, n=21), late infection (16-30 days PSO, n=13), and recovery (>30 days PSO, n=35).

Generation of density UMAP. We extracted sample-specific open tiles on CD16
monocytes for all samples in the COVID19 dataset (n=91). From there, we generated a TSAM by
aggregating all tiles that were called in at least 20% of samples at any infection stage or
uninfected. We extracted the tiles from the resulting TSAM and added them to the original
ArchR project via addPeakSet. We then generated a single-cell peak matrix from this tile set,
using addPeakMatrix, and used it as input for ArchR's iterative LS| and UMAP functions. The LSI
was run with default parameters, except for the number of iterations (5 instead of 2). The
UMAP was run on standard ArchR settings™ on the resulting iterative LSI object. Based on the
resulting single-cell UMAPs, we generated a density plot for each infection stage or uninfected.

Pseudotime trajectory analysis. We used ArchR’s standard Monocle3 pipeline to
conduct a trajectory analysis. We instructed Monocle to construct a trajectory from cells
belonging to samples in the order of early infection, late infection, recovery, and uninfected.
The resulting trajectory was overlaid on the single-cell UMAP. Following the above trajectory,
three distinct pseudotime heatmaps were generated using ArchR’s standard protocol and the
following input single-cell matrices: log2-normalized GeneScores, peak (tile) accessibility, and
ChromVAR z-scores. Using ArchR’s functions with default settings, we further extracted
pseudotime-changing elements for each of the three matrices.
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Longitudinal analysis of COVID-19 response at pseudo-bulk level

Longitudinal analysis of motif usage. We modeled longitudinal motif usage using
pseudobulk ChromVar motif z-scores. We converted the TSAM of CD16 monocytes from the
COVID19L dataset (n=69) into a ChromVAR-compatible object, and then ran ChromVAR on the
TSAM-derived object to generate sample-level motif z-scores. We then modeled motif usage
with the following generalized linear mixed effect model (GLMM):

Imer(z ~ Age + Sex + x; + x;* + (1|Subject), data = mydata) (8)

where x; was the centered days PSO (i.e., days PSO of individual samples minus the mean days
PSO of all samples)® and (1|Subject) indicated that random intercepts were used for
individual participants. The P values associated with the linear x; terms were extracted using
the ImerTest package. We converted the P values to FDRs to control multiple testing. Motifs
with a FDR < 0.1 were considered as significantly changing in time.

Transcription factor (TF) network. The activator protein-1 (AP-1) family network was
obtained by subsetting the APID protein-protein interaction database®” down to just the
significant AP1-family TFs. Edges between nodes were included if they were supported by at
least four experiments. The nodes were color-coded using the signs of the corresponding
coefficient of x;. The network was drawn using Cytoscape®.

Longitudinal analysis of gene promoter accessibility. We collected promoter tiles from
the TSAM of CD16 monocytes in the COVID19L dataset and modeled their accessibility using
either GLMMs or ZI-GLMMs with the glimmTMB packageao. More specifically, for promoters
with zeroes, we applied the ZI-GLMM modeling as follows

glmmTMB(Log_Acc ~ Age + Sex + Time + (1|Subject),

zi = ~0 + Cell Counts,
data = mydata, family = gaussian()), 9)

where Log_Acc was short for log, (AY + 1), Time was days PSO, (1|Subject) indicated that
random intercepts were used for individual participants, and zero-inflation was modeled as a
function of the total cell counts in individual samples with no intercept. For promoters without
zeroes, we applied the GLMM modeling as follows

glmmTMB(Log_Acc ~ Age + Sex + Time + (1|Subject),

zi = ~ 0,data = mydata, family = gaussian()), (10)

where the ZI component was omitted. The P values associated with Time were extracted and
converted to FDRs to control multiple testing. Promoters with a FDR < 0.1 were considered as
significantly changing in time. For promoters attributed to multiple genes, all genes were
included for pathway enrichment and downstream analyses.

Transcription Factor and Gene Promoter Associations
Linking Transcription Factor to Gene Promoters. We evaluated whether motif z-scores
were statistically associated with gene promoter accessibility via ZI-GLMMs as follows
glmmTMB(Log_Acc ~ z, zi = ~ z,data = mydata,
family = gaussian()), (11)
where Log_Acc was short for log, (AY + 1). All pairs of significantly changing TFs and
significantly changing gene promoters were evaluated. We considered a TF and a gene
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promoter to be associated if the continuous coefficient of z was statistically significant (P <
0.05) without adjusting for multiple testing.

Linking Transcription Factor to Innate Immune Pathways. Using the TF-gene promoter
associations, we calculated the percentage of significant genes in an innate immune pathway
were associated with a TF. For visualization purposes, the network only displayed an edge
between a TF and a pathway if more than 33% of significant genes in that pathway were
associated with the TF.

Data Availability

The HealthyDonor (GSE190992) and COVID19 (GSE173590) scATAC-seq datasets can be
downloaded from the Gene Expression Omnibus (GEO) database under accession numbers
GSE190992 and GSE173590, respectively. The corresponding raw data are available via
authorized access at dbGaP under accession number phs003203.v1.pl and phs002576.v1.p1,
respectively. The Hematopoiesis dataset was downloaded from
(https://www.dropbox.com/s/sijf2votfej629t/Save-Large-Heme-ArchRProject.tar.gz. (Note to
Reviewers: The COVID19 dataset will be released to the public prior to the publication of our
first manuscript.)

Code Availability

MOCHA is a freely available R package in CRAN that can be easily downloaded using R or
RStudio (https://cran.rstudio.com/web/packages/MOCHA/index.html). All code used to
generate figures in this manuscript are available in:
https://github.com/aifimmunoclogy/MOCHA Manuscript(Note to Reviewers: We are currently
including this code as a zip file and we will publish all analysis code in Zenodo or equivalent
once the content of this manuscript is finalized.)

Figure Legends

Figure 1. General workflow of MOCHA.

Schematic representation of the core functionalities in MOCHA, starting from scATAC input
data (fragments, black list, cell type labels, and sample metadata). Using these data, MOCHA
generates fragment counts for every 500 bp tiles (1), normalizes the count data (2), and
leverages single-cell and pseudo-bulk information to identify open tiles in a cell type- and
sample-specific manner (3). It then generates population-level open chromatin matrices for
each cell type (4), which is the starting point for downstream analytical functions (5). MOCHA
includes improvements to differential accessibility analysis, co-accessibility analysis, and
longitudinal modeling. It also provides functions for identifying alternatively regulated
transcription starting sites, motif enrichment, and dimensionality reduction. Figures were
generated using Adobe lllustrator and BioRender.
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Figure 2. Benchmarking MOCHA with MACS2 and HOMER on open chromatin identification.

a, Cell counts per sample in three representative cell types from each of three scATAC-seq
datasets. The same three cell types in the three corresponding datasets (Methods) were used in
this analysis, including COVID19X (n=39), HealthyDonor (n=18, middle panel), and
Hematopoiesis (treated as n=1, right panel). b, The number of open tiles per sample as
identified by MOCHA (light blue), MACS2 (green), or HOMER (red). The same colors are used in
d-h. b,¢, The Wilcoxon rank sum test was used to compare results by MOCHA with those by
MACS2 and/or HOMER. Significantly higher MOCHA values are indicated with * (0.01 < P < 0.05)
or *** (P <0.001). ¢, UpSet plot showing overlaps between open tiles identified by MOCHA,
MACS2, or HOMER. Only tiles common to at least 20% of samples were kept for the COVID19X
and HealthyDonor datasets while all identified tiles were kept for the Hematopoiesis dataset.
Insert: Violin plot of signals (i.e., logz(normalized fragment count+1)) of tiles missed by MOCHA
(i.e., those identified by MACS2 and/or HOMER but not by MOCHA, left panel) and signals of
tiles unique to MOCHA (i.e., those identified only by MOCHA, right panel). d-f, The cumulative
number of detected tiles (d), tiles overlapping with CCCTC-binding factor (CTCF) sites (e), or tiles
overlapping with transcription starting sites (TSSs, f) as a function of the maximum fraction of
samples allowed to have no fragments in the COVID19X (left panel) or HealthyControl (right
panel) datasets. g, The number of detected CTCF sites (top panel) or TSSs (bottom panel) in the
Hematopoiesis dataset. h, The actual (top panel) and the relative (with respect to MOCHA,
bottom panel) runtime required to identify open chromatin from single cell data as a function
of the number of downsampled cells. The blue horizontal line at 1 in the bottom panel marks
the MOCHA runtime. CD16 Mono: CD16 monocytes; B Naive: naive B cells; CD4 CTL TEM: CD4*
cytotoxic T lymphocytes and CD4" effector memory T cells; CD8 TEM: CD8" effector memory T
cells; cDC: conventional dendritic cells; CD4 Naive: naive CD4" T cells; CD14 Mono: CD14
monocytes. Source data are provided in Source Data Fig. 2-1 and 2-2. Figures were generated
using Adobe lllustrator.

Figure 3. Benchmarking MOCHA with ArchR and Signac on differential accessibility analysis.
a, MOCHA'’s differential accessible tiles (DATs) in CD16 monocytes between COVID+ samples
during early infection (n=17) and COVID- samples (n=22) in the COVID19X dataset. The volcano
plot illustrates the log2(FC) on the x-axis against the -log10(P value) on the y-axis, where FC
represents fold change in accessibility. The log2(FC) was estimated using the Hodges-Lehmann
estimator®’. The P value was calculated based on the two-part Wilcoxon test’. DATs with a
false discovery rate (FDR) < 0.2 were considered as significant. b, Venn Diagram of MOCHA,
Signac, and ArchR’s DATs. The percentage of 1) promoters, 2) intragenic tiles, and 3) distal tiles
are shown for each method and each Venn diagram subset. ¢, The number of (top) genes with
differential promoters and (bottom) enriched Reactome pathways for each method are
depicted using barplots. d, Reactome Pathway enrichment results based genes with differential
promoter tiles. Pathway categories are annotated using Reactome’s pathway hierarchy. e,
Violin plot of Holley’s |G| from 1000 bootstrapped samples, each containing 50 randomly
selected DATs from each category. Categories with <50 DATs were not tested. ***, P <0.001
(Wilcoxon rank sum test). f, Leave-one-sample perturbation analysis to test the robustness of
each method in differential accessibility analysis. New sets of DATs were calculated iteratively
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after removing each sample once. The robustness was assessed by the number of total (solid
line) and conserved (dotted line) DATs detected across perturbations. g, Each method’s runtime
(in seconds) as a function of the number of tested tiles. Source data are provided in Source Data
Fig. 3-S5. Figures were generated using Adobe Illustrator.

Figure 4. Regulatory network construction on alternative transcription starting sites in CD16
monocytes during early COVID-19 infection.

a, Scatter plot of differential accessibility at potential alternative transcription starting sites
(TSSs). False discovery rate (FDR) and fold change (FC) were evaluated on chromatin
accessibility in CD16 monocytes between COVID+ samples during early infection (n=17) and
COVID- samples (n=22) in the COVID19X dataset. All pairwise combinations of -
log10(FDR)*sign(log2(FC)) are shown. TSS pairs were categorized as type | if only one TSS was
significantly differential (FDR < 0.2), or type Il if both were significantly differential but in the
opposite directions. Pairs of TSSs that were significantly differential in the same direction were
not considered. b-¢, Coverage tracks illustrating type | (b) or type Il (c) alternative TSS
regulation around exemplar genes (* denotes a significant differential accessibility tile (DAT),
FDR < 0.2). d, Reactome pathway enrichment for genes with alternatively regulated TSSs (both
type | and Il). Pathway annotation was based on Reactome’s hierarchical database. e, Motif
enrichment using DATSs involved in alternatively regulated TSSs and their co-accessible tiles
(within £1M bp, zero-inflated correlation > 0.5). f, NicheNet-based ligand-motif set enrichment
analysis (LMSEA) on motifs with FDR < 0.01. g, A network centered around CEBPA that was
constructed using significant ligands, motifs, and genes with alternatively regulated TSS sites.
Ligand-motif links represent NicheNet-based associations. Motif-gene links represent motif
presence in either an alternative TSS tile, or tiles correlated to an alternative TSS. Source data
are provided in Source Data Fig. 4. Figures were generated using Adobe lllustrator.

Figure 5. Integrative analyses to reveal longitudinal dynamics in CD16 monocytes during
COVID-19 recovery.

a, Longitudinal COVID19 cohort overview (n=18). Time points indicated by black dots illustrate
sample availability for each COVID+ participant. b, Single-cell UMAP generated with tiles from
the TSAM of CD16 monocytes in the COVID19 dataset (n=91 samples). Density plots were
generated on COVID+ samples during early infection (1-15 days PSO, n=21), late infection (16—
30 days PSO, n=13), and recovery (>30 days PSO, n=35), and on COVID- samples (n=22). c,
Volcano plot illustrating the -log10(FDR) vs. the slope of motif usage over time. Motif usage was
generated by running ChromVAR on tiles in the TSAM and extracting the corresponding z-
scores. Insert: The network showing interacting TFs within the AP-1 family (APID database®) in
which TFs were color-coded by the sign of their slope. d, Longitudinal motif usage over time for
an exemplary set of TFs. Data of individual participants are shown in thin colored lines. The
population trend is shown with a thick black line. e, Volcano plot illustrating the -log10(FDR) vs.
the slope of gene promoter accessibility over time based on ZI-GLMM. A subset of the top
promoters are labeled with their corresponding genes. f, Significant Reactome pathways (FDR <
0.1) enriched with genes having significant promoter accessibility changes. The pathways were
aggregated into upper-level pathway annotations using Reactome’s database hierarchy. The
barplot shows the number of pathways in each category. The pie chart breaks down the
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immune system pathways by Reactome’s next level categories. g, Three scatter plots illustrating
examples of associations between gene promoter accessibility (y-axis) and JUNB’s ChromVar z-
score (x-axis). The thick black line shows the population trend from ZI-GLMM. h, Bipartite
network illustrating associations between the top 5 motifs having the largest positive (+) or
negative (-) slopes and 14 significant innate immune pathways. For a link to be shown, motif-
promoter associations must be found in at least 33% of significantly changing genes in the
corresponding pathway. c-h, Based on data on CD16 monocytes in the COVID19L dataset
(n=69). PSO: post symptom onset; UMAP: Uniform Manifold Approximation and Projection;
TSAM: tile-sample accessibility matrix; FDR: false discovery rate; TF: transcription factor; AP-1:
activator protein-1; ZI-GLMM: zero-inflated generalized linear mixed model. Source data are
provided in Source Data Fig. 5. Figures were generated using Adobe lllustrator.

Supplementary Figure Legends

Supplementary Fig. 1. MOCHA'’s technical workflow schematic.

Schematic of the MOCHA R package workflow functions (in yellow) and objects (green). a,
MOCHA takes inputs from an ArchR project or collections of input files from ATAC-seq analysis
software. b, Core functions of MOCHA and result objects. ¢, Downstream analyses supported by
MOCHA with functions. d, MOCHA enables additional downstream analyses available in
external software.

Supplementary Fig. 2. Technical details for developing MOCHA’s analytical modules.

a, Large difference in sequencing depth per sample was observed in the COVID19 dataset
(n=91). The distribution of the number of fragments per sample in the CD16 monocytes are
shown separately for COVID+ (n=69) and COVID- samples (n=22). b-c, Distributions of
coefficients of variation (CVs) of the pseudo-bulk fragment counts at 2,230 cell-type invariant
CCCTC-binding factor (CTCF) sites in the COVID19 dataset (n=91) before (Raw) or after
normalization by the total number of fragments per cell type per sample (MOCHA), the total
number of cells per sample (By Total Cell #), or the total number of fragments per sample (By
Total Fragment #). Pseudo-bulk fragment counts were calculated for individual tiles per cell
type and sample. For each CTCF site, CV was calculated (b) within each cell type across all
samples (n=91) or (c) across cell types (n=25) within each sample. d-i, Based on data in the
COVID19X dataset (n=39). d, Number of tiles in CD16 monocytes that were commonly open to
at least a targeted fraction of samples. Data of COVID+ samples (n=17) and data of COVID-
samples (n=22) were analyzed separately. The smooth curves and the shaded bands are the
Loess fitting curves and the corresponding 95% confidence intervals. The vertical dashed line
indicates the fraction threshold (20%) used. e, Heatmap of pseudo-bulk accessibility in the tile-
sample accessibility matrix (TSAM) of CD16 monocytes with tiles in Chromosome 1 only. Tiles
were sorted by their percentage of zeros across samples. f, Histogram of percentage of zeros
across samples as a function of tile log2(accessibility) value. The bar represents the mean value
while the error bar represents the corresponding standard deviation. g, The distribution of
accessibilities of all tiles revealing a bimodal distribution. Accessibility threshold was set near
the higher mode in order to increase power and avoid testing highly noisy regions in differential

29


https://doi.org/10.1101/2023.06.23.544827
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.23.544827; this version posted June 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

accessibility analysis. h-i, Exemplar histograms showing differences in accessibility between
COVID+ and COVID- samples that arose from either difference in non-zero accessibilities
without significant difference in the proportion of zeros (h), or difference in the proportion of
zeros without significant difference in non-zero accessibilities (i). Source data are provided in
Source Data Supplementary Fig. 2.

Supplementary Fig. 3. Training and validation of open accessibility models.

a, Pseudo code for training logistic regression models (LRMs) for open tiles. b, Training results
on natural killer (NK) cells (n=179,836). Top: Coefficients of the LRMs and the corresponding
threshold as a function of sampled cell count. Bottom left: Specificity, sensitivity, area under
the receiver operating characteristic (ROC) curve (AUC), and Youden’s J index as a function of
sampled cell count. Bottom right: Histograms of the probability scores of open (blue) and
closed (red) tiles at cell count 500, 2000, 5000, 10000, and 25000. ¢, ROC curves on the
validation data of CD14 monocytes as cell count ranged from 20 to 115,000. Insert: The
corresponding AUC as a function of cell count. The Loess fitting curve is plotted in blue. d,
Validation performance on specificity, sensitivity, AUC, and Youden’s J index as a function of
sampled cell count for five representative cell types. cDCs: classical dendritic cells. Data in the
COVID19 dataset (n=91 samples) was used for the training and validation of the LRMs. Source
data are provided in Source Data Supplementary Fig. 3.

Supplementary Fig. 4. Dataset characteristics and benchmarking on open chromatin
identification during downsampling.

a, Quality control (QC) metrics across three datasets, as measured by the percentage of
fragments that overlap with the Altius peakset (left) and the number of fragments per
individual cell (right). The corresponding median values are indicated for each dataset. The
three datasets were significantly different on these two QC metrics (P = 2.6x10™ and P <
2.2x10™°, respectively; Kruskal-Wallis test). b, The number of cells per cell type across the three
datasets. Each boxplot displays the median (centerline), the first and third quartiles (the lower
and upper bound of the box), and the 1.5x interquartile range (whiskers) of the data. ¢, Head-
to-head comparison between MOCHA, MACS2, and HOMER on numbers of detected tiles (top),
tiles overlapping with CTCF sites (middle), and overlapping with TSSs (bottom) as functions of
sampled cell count in three representative cell types from each of the three datasets. The three
datasets are COVID19 (n=91, left), HealthyDonor (n=18, middle), and Hematopoiesis (treated as
n=1 sample, right). CTCF: CCCTC-binding factor; TSS: transcription starting site. Source data are
provided in Source Data Supplementary Fig. 4-1 and 4-2.

Supplementary Fig. 5. Additional information on differential accessibility analysis.

a, Histogram of P values evaluated by MOCHA on filtered open tiles. Only P <0.95 values were
used for estimating false discovery rate (FDR). b, Pathway enrichment analysis on genes having
differential accessibility tiles (DATSs) in their promoter regions using the Gene Ontology (left),
KEGG (middle), or Wikipathway (right) database. The DATs were identified by MOCHA, ArchR,
or Signac. Source data are provided in Source Data Fig. 3-S5.

30


https://doi.org/10.1101/2023.06.23.544827
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.23.544827; this version posted June 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplementary Fig. 6. Comparing standard Spearman and zero-inflated Spearman in
evaluating co-accessibility.

a, A direct comparison between standard Spearman (S) and zero-inflated Spearman (ZI-S) in
evaluating inter-cell type co-accessibility between tile pairs linked to promoter-enhancer
interactions in naive CD8 and CD4 T cells*’. Co-accessibilities between individual promoter-
enhancer tile (PET) pairs (n=1.2 million) were conducted across 17 cell types in the full COVID19
dataset (n=91 samples). b, Examples of divergence between the zero-inflated Spearman and
the standard Spearman co-accessibilities on two PET pairs. Each dot represents one cell type
and sample combination (n=1547 data points). ¢, Distributions of co-accessibilities between PET
pairs and randomly selected tile pairs (n=100k) as evaluated by ZI-Spearman (top) or Spearman
(bottom). The Kolmogorov-Smirnov (KS) distance was used to quantify the separation between
the distributions of PET pairs and random pairs. d, Histogram of empirical P values of PET pairs
that were calculated based on the percentile of random pairs, using either ZI-Spearman (top) or
Spearman (bottom). False discovery rate (FDR) estimation was conducted for each P value set.
The number of PET pairs with FDR < 0.1 is shown. e, Comparison of inter-sample co-accessibility
within CD16 monocytes in the COVID19X dataset (n=39 samples) as evaluated by standard
Spearman or ZI-Spearman. All possible pairs of tiles within the first million base pairs of
Chromosome 4 were evaluated for an illustrative purpose. f, Examples of spurious correlations
(top) and sign changes (bottom) generated by standard Spearman correlations on ZI data, as
compared to results from the ZI-Spearman. Source data are provided in Source Data
Supplementary Fig. 6-1 and 6-2.

Supplementary Fig. 7. Benchmarking pseudotime trajectory analysis between MOCHA’s tiles
and ArchR’s genescores.

a, Monaocle3 trajectory constructed from CD16 monocytes belonging to samples in the order of
early infection (1-15 days PSO, n=21), late infection (16-30 days PSO, n=13), recovery (>30 days
PSO, n=35), and uninfected (n=22) in the COVID19 dataset. The trajectory is overlaid on the
corresponding single-cell UMAP. b, Pseudotime heatmaps of ArchR’s genescores (left) and
MOCHA's accessible tiles (right) that were generated using ArchR standard settings. The top 50
genes or tiles, respectively, are labeled. c, Significant Reactome pathways (FDR < 0.05) enriched
with genes having highly variable genescores or promoter accessibility changes along the
pseudotime trajectory. The variability threshold was set using ArchR’s standard threshold
(varCutOff = 0.9). The pathways were aggregated into upper-level pathway annotations using
Reactome’s database hierarchy. The barplot shows the number of pathways in each category.
The pie chart breaks down the immune system pathways by Reactome’s next level categories.
PSO: post symptom onset; FDR: false discovery rate. Source data are provided in Source Data
Supplementary Fig. 7-8.

Supplementary Fig. 8. Benchmarking motif usage between single-cell level pseudotime
trajectory analysis and pseudo-bulk level real time longitudinal modeling.

a, Pseudotime heatmap of ChromVAR z-scores along the trajectory constructed on CD16
monocytes in the COVID19 dataset (n=91 samples). ChromVAR z-scores were evaluated based
on the CISBP database. The top 50 motifs are labeled. Uninfected samples were excluded from
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the analysis. b, Venn diagram comparing motifs showing significant ChromVAR z-score changes
either at single-cell level along the pseudotime trajectory (ArchR standard threshold) or at
pseudo-bulk level in real time (days PSO) as modeled by generalized linear mixed models (FDR <
0.1). Motif examples for each subsets are provided. FDR: false discovery rate. PSO: post
symptom onset. Source data are provided in Source Data Supplementary Fig. 7-8.

Supplementary Fig. 9. Examples illustrating longitudinal shifts in gene promoter accessibility
and motif-promoter associations during COVID-19 recovery.

a, The top 6 genes showing significant promoter accessibility changes (FDR < 0.1) based on ZI-
GLMM. Data of individual participants are shown in thin colored lines. b, Scatter plots
illustrating examples of significant associations (P < 0.05) between JUNB’s ChromVAR z-score
and significantly changing (FDR < 0.1) promoter accessibility of genes within the TLR4 Reactome
pathway. a-b, Based on the COVID19L dataset (n=69 samples). The thick black line shows the
population trend from ZI-GLMM. PSO: post symptom onset; FDR: false discovery rate; ZI-
GLMM: zero-inflated generalized linear mixed effects model; TLR4: toll-like receptor 4. Source
data are provided in Source Data Supplementary Fig. 9.

Supplementary Table Legends

Supplementary Table 1. Literature references for all Type Il alternatively regulated genes,
which are indicated as either altered in COVID-19 or identified as potential therapeutic
targets.

Source Data

Source Data Fig. 2-1
Source data for Fig. 2a,b,d-h.

Source Data Fig. 2-2
Source data for Fig. 2c (zipped BED files).

Source Data Fig. 3-S5
Source data for Fig. 3 and Supplementary Fig. 5.

Source Data Fig. 4
Source data for Fig. 4a,d-g.

Source Data Fig. 5
Source data for Fig. 5.

Source Data Supplementary Fig. 2
Source data for Supplementary Fig. 2.
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Source Data Supplementary Fig. 3
Source data for Supplementary Fig. 3b-d.

Source Data Supplementary Fig. 4-1
Source data for Supplementary Fig. 4a (left pane), b-c.

Source Data Supplementary Fig. 4-2
Source data for Supplementary Fig. 4a (right panel).

Source Data Supplementary Fig. 6-1
Source data for Supplementary Fig. 6a,c-d.

Source Data Supplementary Fig. 6-2
Source data for Supplementary Fig. 6b,e-f.

Source Data Supplementary Fig. 7-8
Source data for Supplementary Fig. 7b,c and Supplementary Fig. 8.

Source Data Supplementary Fig. 9
Source data for Supplementary Fig. 9.
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