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Abstract (150 words) 18 

 19 

Single same cell RNAseq/ATACseq multiome data provide unparalleled potential to develop 20 

high resolution maps of the cell-type specific transcriptional regulatory circuitry underlying gene 21 

expression. We present CREMA , a framework that recovers the full cis-regulatory circuitry by 22 

modeling gene expression and chromatin activity in individual cells without peak-calling or cell 23 

type labeling constraints. We demonstrate that CREMA overcomes the limitations of existing 24 

methods that fail to identify about half of functional regulatory elements which are outside the 25 

called chromatin “peaks”.  These circuit sites outside called peaks are shown to be important 26 

cell type specific functional regulatory loci, sufficient to distinguish individual cell types. Analysis 27 

of mouse pituitary data identifies a Gata2-circuit for the gonadotrope-enriched disease-28 

associated Pcsk1 gene, which is experimentally validated by reduced gonadotrope expression 29 

in a gonadotrope conditional Gata2-knockout model. We present a web accessible human 30 

immune cell regulatory circuit resource, and provide CREMA as an R package.   31 

 32 

   33 

  34 
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Elucidating the mechanisms underlying the regulation of gene expression is fundamental for 35 

understanding the molecular basis of cell type identity, biological processes and disease. Cis-36 

gene regulatory circuits, which consist of transcription factors (TFs) and their interactions with 37 

specific cis-regulatory sites on chromatin, serve a major role in determining  gene expression 1 . 38 

RNA-seq and ATAC-seq multiome technology, by profiling the regulatory circuit components 39 

within each nucleus, 2,3 sets the stage for reconstructing cell type-specific gene control circuitry 40 

at single cell resolution.  41 

 42 

Analysis of single cell data typically initially reduces the search space by first calling chromatin 43 

peaks in pseudo-bulk data 4–6. Studies of ChIP-seq data have shown that weak binding sites, 44 

while functionally important, are often missed by genome-wide peak calling methods 7–9. We 45 

speculated that for single cell ATAC-seq data, the peak calling algorithms also may fail to 46 

identify many open or partly open regulatory loci that do not reach the statistical significance 47 

required for differential accessibility calling. Our evaluation of this possibility using functional 48 

domain databases indicated that restricting the circuit search to functional peaks neglects about 49 

half of known functional regulatory regions.  Accordingly, a framework that does not require 50 

peak calling is desirable to leverage the power of single cell multiome datasets for 51 

understanding gene control mechanisms. 52 

 53 

To address this bottleneck, we developed CREMA (Control of Regulation Extracted from 54 

Multiomics Assays), a framework for the systematic survey of gene regulatory circuits from 55 

single cell multiomics data. CREMA recovers circuitry by modeling gene expression and 56 

chromatin accessibility directly over the entire cis-regulatory region, without being restricted by 57 

either peak calling or cell type identification. We demonstrate the improvement of regulatory 58 

circuit recovery by CREMA relative to the current state-of-the-art method and show the value of 59 

CREMA for identifying new circuitry and accessibility site variation that defines individual cell 60 

types. Applying CREMA to mouse pituitary data, we show how it can identify cell type specific 61 

circuits and identify a gata2-circuit regulating a disease-associated target that is validated in a 62 

conditional gata2 mouse knockout model. In addition to making CREMA available to the 63 

research community (https://github.com/zidongzh/CREMA), we use CREMA to generate a web-64 

accessible research resource comprising the regulatory circuitry of human blood immune cells 65 

(https://rstudio-connect.hpc.mssm.edu/crema-browser/). 66 

Results 67 

Motivation 68 

Each gene regulatory circuit consists of a TF, a cis-regulatory domain that interacts with the TF, 69 

and a target gene that has altered transcription resulting from this interaction. Multiple circuits 70 

involving the same TF binding at different locations or multiple TFs interacting at the same or 71 

different loci are the major cis-regulatory mechanisms regulating gene expression.  Existing 72 

gene control circuit analysis methods only identify the potential regulatory domains for these 73 

circuits that are contained within called chromatin peaks in ATAC-seq data. In order to assess 74 

the degree to which this restriction may limit identification of cis-regulatory domains and their 75 
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associated circuits, we investigated the fraction of known regulatory loci in human blood that are 76 

outside of called chromatin peaks. We determined the proportion of  known functional domains 77 

in two reference databases that were contained within called chromatin peaks using high 78 

resolution reference single cell ATACseq data (see Online Methods). A majority of eQTLs in the 79 

GTEX DAPG fine-mapped eQTL database 10 and of enhancers in the EnhancerAtlas 11 80 

database are located outside of the peaks called using reference high resolution human 81 

peripheral blood mononuclear cell (PBMC) chromatin accessibility data 12,13 (Fig. 1A). We 82 

observed similar results in other fine-mapped eQTL and enhancer databases (Supplementary 83 

Fig. 1). These results suggest that multiome circuit inference methods that rely on chromatin 84 

peak calling will miss about half of the regulatory landscape and circuitry underlying gene 85 

control. To address this gap, we developed CREMA to improve the reconstruction of gene 86 

regulatory circuitry.   87 

CREMA Framework 88 

CREMA was designed to identify transcriptional  regulatory circuits over the entire cis-regulatory 89 

region of each gene. CREMA finds circuits that are supported by the co-incidence of TF 90 

expression, target gene expression and binding site accessibility in individual cells. A schematic 91 

of the method is shown in Fig. 1B.  CREMA first selects the target genes to model that have 92 

detectable expression above a threshold in a minimum number of cells and proportion of all 93 

cells (See Methods).  For each of these target genes, CREMA uses motif analysis to select 94 

potential TF binding sites in a +/- 100kb window surrounding the transcription start site (TSS). 95 

Each site, together with the TF and gene constitute a potential regulatory circuit.  A linear model 96 

for each potential circuit is constructed where the expression of each gene in each cell is a 97 

function of the expression of the TF and the binarized accessibility in a 400 bp window centered 98 

on the site. Using all the cells in the dataset, the TF-site-gene circuits showing the best fits are 99 

selected (See Methods). 100 

Benchmarking 101 

Because CREMA does not rely on a predefined set of chromatin peaks called at the pseudo-102 

bulk level, it has the potential to recover many more regulatory domains compared to analyses 103 

relying on peak calling. We used CREMA to analyze single cell blood multiome data and found 104 

regulatory circuits both inside and outside of chromatin peaks. The number of circuits identified 105 

within peaks was comparable to that obtained using the currently available multiome regulatory 106 

circuit discovery method, which relies on peak calling 12.  CREMA also identified a large number 107 

of circuits that are outside of called peaks, which cannot be found with a peak-calling dependent 108 

method(Fig. 2A).   109 

 110 

The importance of the additional regulatory landscape recovered by CREMA was evaluated 111 

using gold standard functional domain databases.  CREMA greatly improved recovery of circuits 112 

acting at functional domains in both reference eQTL and enhancer databases (Fig. 2B, 113 

Supplementary Fig. 2). To further assess the importance of the extra-peak regulatory circuitry 114 

that CREMA recovers, we evaluated whether the regulatory circuit chromatin domains identified 115 

by CREMA that were outside of called chromatin peaks contributed to cell type specification. In 116 
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addition to the PBMC dataset analysis shown in Fig. 2A, we generated a mouse pituitary 117 

multiome dataset that was also analyzed using CREMA.  In both cases, we used only the 118 

chromatin regulatory sites discovered by CREMA that are outside of called peaks as features 119 

for UMAP projections. We found that in both tissues,  the major cell types were distinguishable 120 

(Fig. 2C). These results indicate that the comprehensive circuitry mapping achievable with 121 

CREMA is necessary to elucidate the gene control mechanisms underlying the differences 122 

among cell types.   123 

 124 

CREMA identified Gata2 circuit 125 

We next investigated the regulatory circuits identified by CREMA in pituitary involving the 126 

pioneer TF, Gata2 14. In pituitary, Gata2 is necessary for gonadotrope lineage specification and 127 

regulates the production of follicle-stimulating hormone. In mouse pituitary single cell multiome 128 

data, CREMA identified circuits regulating 323 target genes. Because Gata2 was highly 129 

expressed in both gonadotrope and somatrope cell types (Supplementary Fig. 3), we focused 130 

on the circuits in these two cell types for validation. Among the 323 target genes in Gata2 131 

circuits, 88 were highly expressed in the gonadotropes and 200 were highly expressed in the 132 

somatotropes (Fig. 3A). To validate these CREMA predicted circuits, we assessed the 133 

expression of the target genes for these circuits in single cell RNAseq data obtained from a 134 

gonadotrope-specific conditional Gata2 knockout 15. In this knockout, Gata2 function was absent 135 

in gonadotropes, and 10 of the predicted gonadotrope Gata2 target genes were significantly 136 

down regulated. In contrast, Gata2 function was preserved in somatotropes and none of the 137 

predicted Gata2 target genes showed significant down regulation (p = 3.5x10 -6, z-test of two 138 

proportions, Fig. 3A). These results provide strong support for the recovery of the Gata2 139 

circuitry by CREMA. 140 

 141 

We next focused on the Gata2 circuit involved in the regulation of the Pcsk1 gene, which is 142 

implicated in infertility, obesity and diabetes 16–18. CREMA identified a significant cis-regulatory 143 

domain with a Gata2 binding motif at 61kb upstream of the Pcsk1 TSS. This domain was highly 144 

accessible in cells with Pcsk1 expression but was not included within called peak regions and 145 

could not have been identified by a peak-calling dependent method (Fig. 3A). Pcsk1 was 146 

expressed in multiple cell types in the pituitary: gonadotropes, lactotropes, melanotropes and 147 

somatotropes (Fig. 3B). However, the expression of Pcsk1 and the accessibility of this cis-148 

regulatory domain were down regulated only in the gonadotropes in the conditional knockout 149 

data, where Gata2 activity was eliminated, while remaining unchanged in the other cell types 150 

(Fig. 3C). These results demonstrate the usefulness of CREMA for leveraging single cell 151 

multiome data to obtain insight into the regulatory circuitry controlling gene expression at cell 152 

type resolution.   153 

Regulatory circuitry resource for human immune cells  154 

The orchestration of the immune response in health and disease depends on the modulation of 155 

gene expression in the different immune cell types. In order to provide a resource for the study 156 

of gene regulatory mechanisms in immune cells, we used CREMA to identify the regulatory 157 
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circuitry in blood using a single cell multiome dataset and provide this analysis as a community 158 

resource. Circuitry can be summarized both in a TF-centric and gene-centric manner.  We first 159 

summarized the CREMA regulatory circuits in a TF-centric perspective, defining a TF module as 160 

the collection of regulatory circuits sharing a common TF in each cell type (see Methods). 161 

Selected TF modules and their activities in the major immune cell types are presented in Figure 162 

4A.  163 

 164 

As an example, we focused on the TCF7 module, which is active mainly in the naive T cells and 165 

central memory T cells. Within the TCF7 module, there were circuits shared by the two cell 166 

types, such as the circuit regulating the target gene LTA which encodes a cytokine expressed 167 

by resting and activated T cells 19,20 (Fig. 4B). There were also TCF7 circuits specifically active 168 

in one of the cell types. For example, the TCF7-CD8A circuit was active only in the naive T cells 169 

and CD8A is involved in T cell activation. The TCF7-MAP3K4 circuit was active only in the 170 

central memory T cells and MAP3K4 is involved in the stress-response MAPK cascade (Fig. 4B, 171 

see Supplementary Table 1).  172 

 173 

A full picture of the gene control within each cell type is obtained by aggregating the multiple 174 

regulatory circuits involved in the control of specific genes.  In the immune cell resource, we 175 

provide access to the entire regulatory circuitry within each cell type.  The user can query a 176 

gene of interest to obtain a list of regulatory circuits targeting this gene, including the TF and the 177 

locations of the cis-regulatory domains interacting with these TFs. We show an example of a 178 

query gene LTA and the top five regulatory circuits identified by CREMA (Fig. 4C). This immune 179 

cell resource is designed to help the research community generate hypotheses about the gene 180 

control mechanisms specific to immune cell subtypes and may also help the selection of specific 181 

TFs to target for therapeutic immune modulation.  182 

 183 

Discussion 184 

CREMA leverages single cell multiome data to infer cis-regulatory circuitry covering the entire 185 

cis-regulatory region. CREMA identifies cis-regulatory domains by directly combining the local 186 

chromatin accessibility of potential TF binding sites and TF expression without relying on calling 187 

ATAC peaks. This  expanded search space enables the identification of the large proportion of 188 

regulatory circuitry outside of called peaks that contributes to gene control and to cell type 189 

specification. The performance of CREMA has been validated using public functional domain 190 

databases and a conditional knockout model and an immune cell gene circuitry analysis has 191 

been developed as a public resource. 192 

 193 

For circuits that are located within peaks, because CREMA models local chromatin accessibility 194 

of the TF binding site in a small chromatin window relative to the peak region, CREMA provides 195 

higher resolution of the chromatin domain for the circuit than peak-calling dependent 196 

approaches. In addition to being chromatin peak-agnostic, the CREMA framework is cell type 197 

agnostic. Cell type identification is utilized only after performing the CREMA analysis in order to 198 
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evaluate the cell type specificity of the circuits identified. This gives CREMA the potential to 199 

identify circuits in poorly represented or unlabeled cell types or unlabeled cell types.     200 

 201 

We have developed a resource of the full regulatory circuitry of human immune cells to facilitate 202 

hypothesis generation and experiment design for the immune research community 203 

(https://rstudio-connect.hpc.mssm.edu/crema-browser/). CREMA, publicly available via an R 204 

package (https://github.com/zidongzh/CREMA), can help realize the potential of multiome 205 

datasets to resolve the circuitry underlying gene control in individual cells.   206 

 207 
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Figure legends 224 

 225 

Figure 1 Motivation and workflow of CREMA. 226 

A: Percentage of eQTLs and enhancers from gold standard databases located inside and 227 

outside of ATAC peaks called in a human PBMC single nucleus multiome data. Reference 228 

blood eQTLs are obtained from the GTEx DAPG fine-mapped eQTLs database. Reference 229 

blood enhancers are obtained from the enhancerAtlas database.  230 

B: Schematic of the CREMA method. CREMA takes single nucleus multiome (RNAseq + 231 

ATACseq within each cell) as input. It scans for potential cis-TF binding sites by motif analysis. 232 

It then fits a linear model for gene expression as a function of chromatin accessibility and TF 233 

expression to each cell in the dataset to select highly significant regulatory circuits. The circuits 234 

identified  are supported by the coincidence of TF expression, binding site accessibility and 235 

target gene expression within individual cells. 236 

 237 

Figure 2 CREMA performance and utility. 238 

A: Number of regulatory circuits identified by TRIPOD 12 and CREMA at FDR cutoff = 0.005. 239 

The circuits from CREMA were categorized as “inside called peaks” or “outside called peaks” 240 

depending on whether the binding site of the circuit overlapped with any chromatin peak. 241 

Because the circuit inference from TRIPOD was restricted to the chromatin peaks, all the 242 

circuits from TRIPOD are inside called peaks. 243 

B: Percentage of true regulatory regions recovered by TRIPOD and CREMA when controlling 244 

for the precision in the peak regions. Predictions from the two methods were selected at 245 

different FDR cutoffs to calculate the precision of regulatory peak prediction and recovery of true 246 

regulatory regions from the reference gold standards (see methods). Reference blood eQTLs 247 

are obtained from the GTEx DAPG fine-mapped eQTLs database. Reference blood enhancers 248 

are obtained from the enhancerAtlas database. 249 

C: Cis-regulatory domains outside of called peaks resolve major cell types in human PBMC and 250 

mouse pituitary. UMAP dimension reductions were calculated by using only the accessibilities of 251 

CREMA identified cis-regulatory domains outside of ATAC peaks as features. Cell type 252 

annotations were from independent analysis using the expression of known marker genes (see 253 

methods). 254 

 255 

Figure 3 Gata2 - Pcsk1 circuit in the pituitary gonadotrope cells. 256 

A: Schematic showing the analysis of Gata2 circuits by CREMA in the mouse pituitary and 257 

validation by differentially expressed genes in the conditional Gata2 knockout data. (p = 3.5x10 -258 
6, Z = 4.5, df = 1, one-sided z-test of two proportions) 259 

B: Detailed view of a CREMA identified Gata2-Pcsk1 circuit where Gata2 interacts with a cis-260 

regulatory domain located ~61kb upstream of the TSS of Pcsk1. Normalized accessibilities 261 

were plotted separately for cells with and without Pcsk1 expression. Zoomed in plot showing the 262 

detailed chromatin accessibility pattern around the Gata2 binding site (red arrow). 263 

C: UMAPs showing the expression of Pcsk1 in the pituitary cells and the cell type annotations. 264 
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D: Box plot and point plot showing the pseudobulk RNA of Pcsk1 and pseudobulk ATAC of the 265 

Gata2 site in each cell type of the wild type mouse pituitary samples (n = 3) and gonadotrope-266 

conditional Gata2 knockout samples (n = 3). 267 

 268 

Figure 4 Regulatory circuitry of human immune cells. 269 

A: Selected CREMA identified TF modules and their activities in immune cell types. 270 

B: Selected CREMA identified regulatory circuits in the TCF7 module that are shared between 271 

naive T cells and central memory T cells, and circuits in the TCF7 module that are specific to 272 

one of the two cell types. GO terms annotated to these target genes are labeled below. 273 

C: Example of a queried gene LTA and the list of CREMA identified regulatory circuits targeting 274 

this gene. 275 

 276 

  277 
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Online Methods 278 

 279 

CREMA framework 280 

 281 

Gene filtering We focused on modeling genes and TFs above a certain level of expression in 282 

the dataset. Specifically, we applied 2 filters on the genes: 1) the gene counts must be non-zero 283 

in at least 0.1% of the cells or 3 cells, whichever was larger, and 2) the gene total count in all 284 

cells should be larger than (0.2% x total cell number).  285 

 286 

Candidate regulatory domain selection For each target gene, we analyzed the entire +/- 287 

100kb window around the transcription start site (TSS) without reference to ATAC-seq peak 288 

calling. We scanned for potential TF binding sites in this region by motif analysis. Specifically we 289 

used the human TF position weight matrices from the JASPAR database and mouse TF 290 

position weight matrices from the CIS-BP database. For the motif analysis we used the function 291 

matchMotifs from the r package motifmatchr having p<5e-5.  292 

 293 

Model building To select regulatory circuits supported by the co-incidence of TF expression, 294 

target gene expression and binding site accessibility, we used a linear regression framework 295 

where the level of TF is weighted by the accessibility of that TF's binding site. Specifically, for 296 

each TF and each binding site found in the candidate regulatory domains, we counted the 297 

number of ATACseq cut sites overlapping with a 400bp window centered around the binding 298 

site in each single cell, and binarized the results as open (counts >= 1) or closed (counts = 0). 299 

Then the level of TF RNA and the accessibility of TF binding sites were combined in a linear 300 

regression: 301 

𝑧 =  𝑦𝑖𝑗 ⋅ 𝑥𝑖 302 

Where z is the RNA level of the target gene, 𝑥𝑖 is the RNA level of the 𝑖th TF, and 𝑦𝑖𝑗 is the 303 

binarized chromatin openness of the 𝑗th binding site of the 𝑖th TF in the candidate regulatory 304 

regions. The RNA levels used in the model are normalized RNA levels with SCTranscform. The 305 

rationale was that TFs with a closed binding site would not be selected as significant regulators 306 

in this framework. Because many TFs had more than one binding site, there was high 307 

collinearity among the regressors. Therefore we evaluated the significance of each TF-site 308 

combination by linear regression individually and reported all significant TF-site combinations, 309 

instead of using a multi-regression framework. 310 

 311 

Data and preprocessing 312 

 313 

Human PBMC data from 10X Genomics The single nucleus multi-omics dataset of human 314 

PBMC was provided by 10X Genomics as a reference dataset. Specifically, the dataset 315 

"pbmc_granulocyte_sorted_10k" processed using CellRanger v1.0.0 was downloaded from 10X 316 

Genomics, and it was processed following the vignette "Joint RNA and ATAC analysis: 10x 317 

multiomic" from the r package Signac v1.5.0.  318 

 319 
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Single nucleus multiome (RNA+ATAC) of male mouse pituitary The pituitary used in this 320 

study was collected from a male C57BL/6 mice aged 10 weeks. Animals were on a 12-hour on, 321 

12-hour off light cycle (lights on at 7 AM; off at 7 PM). Once collected, the pituitary was 322 

immediately snap-frozen following dissection, and stored at -80C until the assay was started.  323 

 324 

Nuclei isolation was performed as described in 21,22. Briefly, the snap-frozen pituitary was 325 

thawed on ice. RNAse inhibitor (NEB MO314L) was added to the homogenization buffer (0.32 M 326 

sucrose, 1 mM EDTA, 10 mM Tris-HCl, pH 7.4, 5mM CaCl2, 3mM Mg(Ac)2, 0.1% IGEPAL CA-327 

630), 50% OptiPrep (Stock is 60% Media from Sigma; cat# D1556), 35% OptiPrep and 30% 328 

OptiPrep right before isolation. The pituitary was homogenized in a dounce glass homogenizer 329 

(1ml, VWR cat# 71000-514), and the homogenate filtered through a 40 m cell strainer. An equal 330 

volume of 50% OptiPrep was added, and the gradient centrifuged (SW41 rotor at 9200rpm; 4C; 331 

25min). Nuclei were collected from the interphase, washed, resuspended in 1X nuclei dilution 332 

buffer (10X Genomics), and counted (Nexcelom K2 counter).  333 

 334 

Sn multiome was performed following the Chromium Single Cell Multiome ATAC and Gene 335 

Expression Reagent Kits V1 User Guide (10x Genomics, Pleasanton, CA) on a male mouse 336 

wild-type sample. Nuclei were counted as described above, transposition was performed in 10 l 337 

at 37C for 60min targeting 10,000 nuclei, before loading of the Chromium Chip J (PN-2000264) 338 

for GEM generation and barcoding. Following post-GEM cleanup, the library was pre-amplified 339 

by PCR, after which the sample was split into three parts: one part for generating the snRNAseq 340 

library, one part for the snATACseq library, and the rest was kept at -20C. SnATAC and snRNA 341 

libraries were indexed for multiplexing (Chromium i7 Sample Index N, Set A kit PN-3000262, 342 

and Chromium i7 Sample Index TT, Set A kit PN-3000431 respectively). The library was 343 

quantified by Qubit 3 fluorometer (Invitrogen) and quality was assessed by Bioanalyzer 344 

(Agilent). This library was sequenced first in a Miseq (Illumina) to assess the reads and balance 345 

the sequencing pool,  then it was sequenced in a Novaseq 6000 (Illumina) at the New York 346 

Genome Center (NYGC) following 10X Genomics recommendations.  347 

 348 

The sequencing data was preprocessed with cellranger-arc-2.0.0. The dataset was then 349 

processed as described by the vignette "Joint RNA and ATAC analysis: 10x multiomic" from the 350 

r package Signac v1.5.0. Cell types were identified by label transfer from a well annotated single 351 

nucleus RNAseq dataset21 using the r package Seurat v4.1.0 352 

 353 

Single nucleus RNAseq and ATACseq of WT and Gata2KO mice Processed single nucleus 354 

RNAseq and single nucleus ATACseq datasets of 3 wild type mice (WT) and 3 mice with Gata2 355 

conditionally knocked out in the gonadotrope cells of the pituitary were provided by Daniel 356 

Bernard's lab at McGill University15. Cell clusters corresponding to the gonadotropes were 357 

located using marker genes of gonadotropes as described before. 358 

 359 

Benchmarking 360 

 361 

Number of discoveries We ran both CREMA and TRIPOD on a human PBMC sn multiome 362 

dataset. We use the same FDR cutoff of 0.005 on both methods. For TRIPOD, we selected all 363 
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the TF-peak-gene combinations passing the FDR cutoff and each of these combinations was 364 

counted as one regulatory circuit. For CREMA, we selected all the TF-site-gene combinations 365 

passing the FDR cutoff, and overlaid the site location to chromatin peaks to determine where 366 

the regulatory circuit is within peak regions or outside of peak regions.  367 

 368 

Public databases of true regulatory regions EnhancerAtlas was downloaded from 369 

EnhancerAtlas 2.0 database and all the enhancer-gene interactions in blood cell types were 370 

combined. Fantom and 4D genome databases were downloaded from the processed datasets 371 

provided by the TRIPOD package. Fine-mapped eQTLs were downloaded from GTEx v8. See 372 

supplementary table 2 for the URLs of these databases. 373 

 374 

Recovery of true regulatory regions We applied CREMA and TRIPOD to the human PBMC 375 

sn multiome dataset to extract regulatory regions for the top 1000 variable genes. Specifically 376 

we ran TRIPOD with default settings and extracted all regulatory peaks with both level 1 and 377 

level 2 testings. Three enhancer databases and three fine-mapped eQTL databases described 378 

in the last section were used to evaluate the precision of regulatory region predictions and 379 

recovery of the true regulatory regions. To compare across the two methods, we evaluated the 380 

performance from the two methods by setting different FDR cutoffs in the range of 0.1 to 381 

0.0001. For each FDR cutoff, we calculated: 1) the recovery of true regulatory regions, defined 382 

as the percentage of true regulatory regions from the databases that overlap with the regulatory 383 

regions predicted by TRIPOD and CREMA. 2) precision of predictions, defined as the 384 

percentage of predicted regions that overlap with true regulatory regions from the databases. 385 

Specifically, chromatin peaks predicted by TRIPOD are larger in sizes than the regulatory sites 386 

predicted by CREMA, and larger regions are more likely to overlap with a true regulatory region 387 

from the reference databases. So to make the calculation of the precision of prediction in the 388 

same space for TRIPOD and CREMA, we converted the regulatory sites predicted by CREMA 389 

to the chromatin peaks that overlapped with these sites for calculating the precision of 390 

predictions. If a chromatin peak overlapped with multiple sites from CREMA, we used the 391 

minimum p value among these sites as the p value for this peak.  392 

 393 

Recovery of cell types We applied CREMA on the human PBMC sn multiome dataset and the 394 

mouse pituitary sn multiome dataset. In both cases, we extracted regulatory circuits with an 395 

FDR cutoff of 0.0001 and selected cis-regulatory regions outside of the called chromatin peaks. 396 

We then calculated the chromatin accessibility in these regions and used them as features for 397 

LSI and UMAP dimension reduction on the datasets. In the UMAP visualization, the cells were 398 

colored by the original cell type annotations obtained by label transfer from reference datasets 399 

as described in the “Data and preprocessing” section.  400 

 401 

Gata2 regulatory circuits in the pituitary 402 

 403 

Extraction of Gata2 circuits in the pituitary cell types We applied CREMA to the sn 404 

multiome dataset of wildtype mouse pituitary. We extracted all the regulatory circuits with an 405 

FDR cutoff of 0.0001. We selected all the regulatory circuits where Gata2 was the TF. In this 406 

dataset, there were 866 gonadotrope cells and 7420 somatotrope cells. For gonadotropes, we 407 
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determined target genes of Gata2 as active in gonadotropes if they were detected in at least 408 

260 cells (30%) of the gonadotropes. We used the same cutoff of 260 cells to determine Gata2 409 

targets as active in the somatotropes. We chose to use the number of cells detected as the 410 

cutoff in order to accommodate possible higher heterogeneity within the somatotrope cells. The 411 

cell type specific target genes were analyzed for differential expression between the wild type 412 

and conditional knockout datasets. 413 

 414 

Differential analysis of the Gata2-Pcsk1 circuit We compared the expression of Pcsk1 and 415 

the accessibility of the Gata2 cis-regulatory site chr13:75028714-75028724 between the 3 wild 416 

type samples and 3 conditional knockout samples by pseudobulk analysis. The single cell 417 

expression and accessibilities were summed at cell type resolution and differential analysis 418 

were performed using DESeq2.  419 

 420 

Regulatory circuitry of the human immune cells 421 

 422 

Regulatory circuits in PBMC We applied CREMA to the sn multiome dataset of human PBMC. 423 

We selected regulatory circuits with a FDR cutoff of 0.0001.  424 

 425 

Circuit activities and TF module activities in cell types For visualizing the highly active TF 426 

modules in the major immune cell types, we calculated the circuit activities and TF modules 427 

activities in each cell type. The activity of each regulatory circuit in each cell was calculated by 428 

taking the product of the expression level of the TF, the expression level of the target gene and 429 

the binarized accessibility of the cis-regulatory site in the cell. To summarize the activities of 430 

regulatory circuits at cell type resolution, we used two methods: 1) a binary activity score where 431 

a regulatory circuit was defined as active in a cell type if it was active in more than 10% of the 432 

cells in that cell type and more than 50 cells of that cell type, 2) a continuous activity score 433 

where the activity of a regulatory circuit in a cell type was defined as the proportion of cells in 434 

that cell type where the regulatory circuit was active. To summarize the activities of regulatory 435 

circuits in a TF-centric view, we defined a TF module as the collection of all the regulatory 436 

circuits involving that TF. For each TF module and each cell type, we calculated 1) the number 437 

of active regulatory circuits in that cell type as measured by the binary activity score under that 438 

TF module, 2) the specificity of the regulatory circuits of that TF module to that cell type, 439 

measured by summing the continuous activity scores of the regulatory circuits and converting to 440 

a z score.  441 

 442 

Data and code availability 443 

 444 

The lab generated single nucleus multiome dataset of mouse pituitary is accessible at 445 

GSE234943. CREMA is available as an R package at https://github.com/zidongzh/CREMA. The 446 

web-accessible resource of the regulatory circuitry of human blood immune cells is available at 447 

https://rstudio-connect.hpc.mssm.edu/crema-browser/. The source code for the analysis in this 448 

manuscript is available at https://github.com/zidongzh/CREMA_manuscript.  449 
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Figure 1 Motivation and workflow of CREMA.
A: Percentage of eQTLs and enhancers from gold standard databases located inside and outside of ATAC peaks called in a 
human PBMC single nucleus multiome data. Reference blood eQTLs are obtained from the GTEx DAPG fine-mapped eQTLs 
database. Reference blood enhancers are obtained from the enhancerAtlas database. 
B: Schematic of the CREMA method. CREMA takes single nucleus multiome (RNAseq + ATACseq within each cell) as input. 
It scans for potential cis-TF binding sites by motif analysis. It then fits a linear model for gene expression as a function of 
chromatin accessibility and TF expression to each cell in the dataset to select highly significant regulatory circuits. The circuits 
identified  are supported by the coincidence of TF expression, binding site accessibility and target gene expression within 
individual cells.
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Figure 2 CREMA performance and utility.
A: Number of regulatory circuits identified by TRIPOD 12 and CREMA at FDR cutoff = 0.005. The circuits from CREMA were 
categorized as “inside called peaks” or “outside called peaks” depending on whether the binding site of the circuit overlapped 
with any chromatin peak. Because the circuit inference from TRIPOD was restricted to the chromatin peaks, all the circuits 
from TRIPOD are inside called peaks.
B: Percentage of true regulatory regions recovered by TRIPOD and CREMA when controlling for the precision in the peak 
regions. Predictions from the two methods were selected at different FDR cutoffs to calculate the precision of regulatory peak 
prediction and recovery of true regulatory regions from the reference gold standards (see methods). Reference blood eQTLs 
are obtained from the GTEx DAPG fine-mapped eQTLs database. Reference blood enhancers are obtained from the 
enhancerAtlas database.
C: Cis-regulatory domains outside of called peaks resolve major cell types in human PBMC and mouse pituitary. UMAP 
dimension reductions were calculated by using only the accessibilities of CREMA identified cis-regulatory domains outside of 
ATAC peaks as features. Cell type annotations were from independent analysis using the expression of known marker genes 
(see methods).
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A

Figure 3 Gata2 - Pcsk1 circuit in the pituitary gonadotrope cells.
A: Schematic showing the analysis of Gata2 circuits by CREMA in the mouse pituitary and validation by differentially 
expressed genes in the conditional Gata2 knockout data. (p = 3.5x10-6, Z = 4.5, df = 1, one-sided z-test of two proportions)
B: Detailed view of a CREMA identified Gata2-Pcsk1 circuit where Gata2 interacts with a cis-regulatory domain located ~61kb 
upstream of the TSS of Pcsk1. Normalized accessibilities were plotted separately for cells with and without Pcsk1 expression. 
Zoomed in plot showing the detailed chromatin accessibility pattern around the Gata2 binding site (red arrow).
C: UMAPs showing the expression of Pcsk1 in the pituitary cells and the cell type annotations.
D: Box plot and point plot showing the pseudobulk RNA of Pcsk1 and pseudobulk ATAC of the Gata2 site in each cell type of 
the wild type mouse pituitary samples (n = 3) and gonadotrope-conditional Gata2 knockout samples (n = 3).
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Figure 4 Regulatory circuitry of human immune cells.
A: Selected CREMA identified TF modules and their activities in immune cell types.
B: Selected CREMA identified regulatory circuits in the TCF7 module that are shared between naive T cells and central 
memory T cells, and circuits in the TCF7 module that are specific to one of the two cell types. GO terms annotated to these 
target genes are labeled below.
C: Example of a queried gene LTA and the list of CREMA identified regulatory circuits targeting this gene.
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