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Abstract (150 words)

Single same cell RNAseq/ATACseq multiome data provide unparalleled potential to develop
high resolution maps of the cell-type specific transcriptional regulatory circuitry underlying gene
expression. We present CREMA , a framework that recovers the full cis-regulatory circuitry by
modeling gene expression and chromatin activity in individual cells without peak-calling or cell
type labeling constraints. We demonstrate that CREMA overcomes the limitations of existing
methods that fail to identify about half of functional regulatory elements which are outside the
called chromatin “peaks”. These circuit sites outside called peaks are shown to be important
cell type specific functional regulatory loci, sufficient to distinguish individual cell types. Analysis
of mouse pituitary data identifies a Gata2-circuit for the gonadotrope-enriched disease-
associated Pcskl gene, which is experimentally validated by reduced gonadotrope expression
in a gonadotrope conditional Gata2-knockout model. We present a web accessible human
immune cell regulatory circuit resource, and provide CREMA as an R package.
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Elucidating the mechanisms underlying the regulation of gene expression is fundamental for
understanding the molecular basis of cell type identity, biological processes and disease. Cis-
gene regulatory circuits, which consist of transcription factors (TFs) and their interactions with
specific cis-regulatory sites on chromatin, serve a major role in determining gene expression ! .
RNA-seq and ATAC-seq multiome technology, by profiling the regulatory circuit components
within each nucleus, 2 sets the stage for reconstructing cell type-specific gene control circuitry
at single cell resolution.

Analysis of single cell data typically initially reduces the search space by first calling chromatin
peaks in pseudo-bulk data 4. Studies of ChIP-seq data have shown that weak binding sites,
while functionally important, are often missed by genome-wide peak calling methods "-°. We
speculated that for single cell ATAC-seq data, the peak calling algorithms also may fail to
identify many open or partly open regulatory loci that do not reach the statistical significance
required for differential accessibility calling. Our evaluation of this possibility using functional
domain databases indicated that restricting the circuit search to functional peaks neglects about
half of known functional regulatory regions. Accordingly, a framework that does not require
peak calling is desirable to leverage the power of single cell multiome datasets for
understanding gene control mechanisms.

To address this bottleneck, we developed CREMA (Control of Regulation Extracted from
Multiomics Assays), a framework for the systematic survey of gene regulatory circuits from
single cell multiomics data. CREMA recovers circuitry by modeling gene expression and
chromatin accessibility directly over the entire cis-regulatory region, without being restricted by
either peak calling or cell type identification. We demonstrate the improvement of regulatory
circuit recovery by CREMA relative to the current state-of-the-art method and show the value of
CREMA for identifying new circuitry and accessibility site variation that defines individual cell
types. Applying CREMA to mouse pituitary data, we show how it can identify cell type specific
circuits and identify a gata2-circuit regulating a disease-associated target that is validated in a
conditional gata2 mouse knockout model. In addition to making CREMA available to the
research community (https://github.com/zidongzh/CREMA), we use CREMA to generate a web-
accessible research resource comprising the regulatory circuitry of human blood immune cells
(https://rstudio-connect.hpc.mssm.edu/crema-browser/).

Results

Motivation

Each gene regulatory circuit consists of a TF, a cis-regulatory domain that interacts with the TF,
and a target gene that has altered transcription resulting from this interaction. Multiple circuits
involving the same TF binding at different locations or multiple TFs interacting at the same or
different loci are the major cis-regulatory mechanisms regulating gene expression. Existing
gene control circuit analysis methods only identify the potential regulatory domains for these
circuits that are contained within called chromatin peaks in ATAC-seq data. In order to assess
the degree to which this restriction may limit identification of cis-regulatory domains and their
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76  associated circuits, we investigated the fraction of known regulatory loci in human blood that are
77  outside of called chromatin peaks. We determined the proportion of known functional domains
78 in two reference databases that were contained within called chromatin peaks using high

79  resolution reference single cell ATACseq data (see Online Methods). A majority of eQTLs in the
80 GTEX DAPG fine-mapped eQTL database 1° and of enhancers in the EnhancerAtlas

81 database are located outside of the peaks called using reference high resolution human

82  peripheral blood mononuclear cell (PBMC) chromatin accessibility data %2 (Fig. 1A). We

83  observed similar results in other fine-mapped eQTL and enhancer databases (Supplementary
84  Fig. 1). These results suggest that multiome circuit inference methods that rely on chromatin

85  peak calling will miss about half of the regulatory landscape and circuitry underlying gene

86  control. To address this gap, we developed CREMA to improve the reconstruction of gene

87  regulatory circuitry.

88 CREMA Framework

89 CREMA was designed to identify transcriptional regulatory circuits over the entire cis-regulatory

90 region of each gene. CREMA finds circuits that are supported by the co-incidence of TF

91  expression, target gene expression and binding site accessibility in individual cells. A schematic

92 of the method is shown in Fig. 1B. CREMA first selects the target genes to model that have

93 detectable expression above a threshold in a minimum number of cells and proportion of all

94  cells (See Methods). For each of these target genes, CREMA uses motif analysis to select

95  potential TF binding sites in a +/- 100kb window surrounding the transcription start site (TSS).

96 Each site, together with the TF and gene constitute a potential regulatory circuit. A linear model

97  for each potential circuit is constructed where the expression of each gene in each cell is a

98 function of the expression of the TF and the binarized accessibility in a 400 bp window centered

99 on the site. Using all the cells in the dataset, the TF-site-gene circuits showing the best fits are
100 selected (See Methods).

101  Benchmarking

102 Because CREMA does not rely on a predefined set of chromatin peaks called at the pseudo-
103 bulk level, it has the potential to recover many more regulatory domains compared to analyses
104  relying on peak calling. We used CREMA to analyze single cell blood multiome data and found
105 regulatory circuits both inside and outside of chromatin peaks. The number of circuits identified
106  within peaks was comparable to that obtained using the currently available multiome regulatory
107 circuit discovery method, which relies on peak calling 2. CREMA also identified a large number
108  of circuits that are outside of called peaks, which cannot be found with a peak-calling dependent
109 method(Fig. 2A).

110

111  The importance of the additional regulatory landscape recovered by CREMA was evaluated

112  using gold standard functional domain databases. CREMA greatly improved recovery of circuits
113 acting at functional domains in both reference eQTL and enhancer databases (Fig. 2B,

114  Supplementary Fig. 2). To further assess the importance of the extra-peak regulatory circuitry
115 that CREMA recovers, we evaluated whether the regulatory circuit chromatin domains identified
116 by CREMA that were outside of called chromatin peaks contributed to cell type specification. In
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117  addition to the PBMC dataset analysis shown in Fig. 2A, we generated a mouse pituitary

118 multiome dataset that was also analyzed using CREMA. In both cases, we used only the

119 chromatin regulatory sites discovered by CREMA that are outside of called peaks as features
120 for UMAP projections. We found that in both tissues, the major cell types were distinguishable
121  (Fig. 2C). These results indicate that the comprehensive circuitry mapping achievable with
122 CREMA is necessary to elucidate the gene control mechanisms underlying the differences
123  among cell types.

124

125 CREMA identified Gata2 circuit

126  We next investigated the regulatory circuits identified by CREMA in pituitary involving the

127  pioneer TF, Gata2 . In pituitary, Gata2 is necessary for gonadotrope lineage specification and
128 regulates the production of follicle-stimulating hormone. In mouse pituitary single cell multiome
129 data, CREMA identified circuits regulating 323 target genes. Because Gata2 was highly

130 expressed in both gonadotrope and somatrope cell types (Supplementary Fig. 3), we focused
131  on the circuits in these two cell types for validation. Among the 323 target genes in Gata2

132  circuits, 88 were highly expressed in the gonadotropes and 200 were highly expressed in the
133 somatotropes (Fig. 3A). To validate these CREMA predicted circuits, we assessed the

134  expression of the target genes for these circuits in single cell RNAseq data obtained from a
135 gonadotrope-specific conditional Gata2 knockout *°. In this knockout, Gata2 function was absent
136 in gonadotropes, and 10 of the predicted gonadotrope Gata2 target genes were significantly
137 down regulated. In contrast, Gata2 function was preserved in somatotropes and none of the
138 predicted Gata2 target genes showed significant down regulation (p = 3.5x10°¢, z-test of two
139 proportions, Fig. 3A). These results provide strong support for the recovery of the Gata2

140  circuitry by CREMA.

141

142  We next focused on the Gata2 circuit involved in the regulation of the Pcsk1 gene, which is
143  implicated in infertility, obesity and diabetes 148, CREMA identified a significant cis-regulatory
144  domain with a Gata2 binding motif at 61kb upstream of the Pcskl TSS. This domain was highly
145  accessible in cells with Pcskl expression but was not included within called peak regions and
146  could not have been identified by a peak-calling dependent method (Fig. 3A). Pcskl was

147  expressed in multiple cell types in the pituitary: gonadotropes, lactotropes, melanotropes and
148 somatotropes (Fig. 3B). However, the expression of Pcskl and the accessibility of this cis-

149  regulatory domain were down regulated only in the gonadotropes in the conditional knockout
150 data, where Gata2 activity was eliminated, while remaining unchanged in the other cell types
151  (Fig. 3C). These results demonstrate the usefulness of CREMA for leveraging single cell

152  multiome data to obtain insight into the regulatory circuitry controlling gene expression at cell
153  type resolution.

154  Regulatory circuitry resource for human immune cells

155  The orchestration of the immune response in health and disease depends on the modulation of
156  gene expression in the different immune cell types. In order to provide a resource for the study
157  of gene regulatory mechanisms in immune cells, we used CREMA to identify the regulatory
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158 circuitry in blood using a single cell multiome dataset and provide this analysis as a community
159 resource. Circuitry can be summarized both in a TF-centric and gene-centric manner. We first
160 summarized the CREMA regulatory circuits in a TF-centric perspective, defining a TF module as
161 the collection of regulatory circuits sharing a common TF in each cell type (see Methods).

162  Selected TF modules and their activities in the major immune cell types are presented in Figure
163 4A.

164

165 As an example, we focused on the TCF7 module, which is active mainly in the naive T cells and
166  central memory T cells. Within the TCF7 module, there were circuits shared by the two cell

167 types, such as the circuit regulating the target gene LTA which encodes a cytokine expressed
168 by resting and activated T cells 1> (Fig. 4B). There were also TCF7 circuits specifically active
169 in one of the cell types. For example, the TCF7-CD8A circuit was active only in the naive T cells
170 and CD8Ais involved in T cell activation. The TCF7-MAP3K4 circuit was active only in the

171  central memory T cells and MAP3K4 is involved in the stress-response MAPK cascade (Fig. 4B,
172  see Supplementary Table 1).

173

174  Afull picture of the gene control within each cell type is obtained by aggregating the multiple
175 regulatory circuits involved in the control of specific genes. In the immune cell resource, we

176  provide access to the entire regulatory circuitry within each cell type. The user can query a

177  gene of interest to obtain a list of regulatory circuits targeting this gene, including the TF and the
178 locations of the cis-regulatory domains interacting with these TFs. We show an example of a
179 query gene LTA and the top five regulatory circuits identified by CREMA (Fig. 4C). This immune
180 cell resource is designed to help the research community generate hypotheses about the gene
181  control mechanisms specific to immune cell subtypes and may also help the selection of specific
182  TFs to target for therapeutic immune modulation.

183

184 Discussion

185 CREMA leverages single cell multiome data to infer cis-regulatory circuitry covering the entire
186  cis-regulatory region. CREMA identifies cis-regulatory domains by directly combining the local
187  chromatin accessibility of potential TF binding sites and TF expression without relying on calling
188 ATAC peaks. This expanded search space enables the identification of the large proportion of
189 regulatory circuitry outside of called peaks that contributes to gene control and to cell type

190 specification. The performance of CREMA has been validated using public functional domain
191 databases and a conditional knockout model and an immune cell gene circuitry analysis has
192 been developed as a public resource.

193

194  For circuits that are located within peaks, because CREMA models local chromatin accessibility
195 of the TF binding site in a small chromatin window relative to the peak region, CREMA provides
196 higher resolution of the chromatin domain for the circuit than peak-calling dependent

197 approaches. In addition to being chromatin peak-agnostic, the CREMA framework is cell type
198 agnostic. Cell type identification is utilized only after performing the CREMA analysis in order to
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199 evaluate the cell type specificity of the circuits identified. This gives CREMA the potential to
200 identify circuits in poorly represented or unlabeled cell types or unlabeled cell types.

201

202  We have developed a resource of the full regulatory circuitry of human immune cells to facilitate
203  hypothesis generation and experiment design for the immune research community

204  (https://rstudio-connect.hpc.mssm.edu/crema-browser/). CREMA, publicly available via an R
205 package (https://github.com/zidongzh/CREMA), can help realize the potential of multiome

206  datasets to resolve the circuitry underlying gene control in individual cells.
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224 Figure legends

225

226  Figure 1 Motivation and workflow of CREMA.

227  A: Percentage of eQTLs and enhancers from gold standard databases located inside and

228 outside of ATAC peaks called in a human PBMC single nucleus multiome data. Reference

229  blood eQTLs are obtained from the GTEx DAPG fine-mapped eQTLs database. Reference

230 blood enhancers are obtained from the enhancerAtlas database.

231  B: Schematic of the CREMA method. CREMA takes single nucleus multiome (RNAseq +

232  ATACseq within each cell) as input. It scans for potential cis-TF binding sites by motif analysis.
233 ltthen fits a linear model for gene expression as a function of chromatin accessibility and TF
234  expression to each cell in the dataset to select highly significant regulatory circuits. The circuits
235 identified are supported by the coincidence of TF expression, binding site accessibility and

236  target gene expression within individual cells.

237

238  Figure 2 CREMA performance and utility.

239  A: Number of regulatory circuits identified by TRIPOD *? and CREMA at FDR cutoff = 0.005.
240  The circuits from CREMA were categorized as “inside called peaks” or “outside called peaks”
241  depending on whether the binding site of the circuit overlapped with any chromatin peak.

242 Because the circuit inference from TRIPOD was restricted to the chromatin peaks, all the

243  circuits from TRIPOD are inside called peaks.

244  B: Percentage of true regulatory regions recovered by TRIPOD and CREMA when controlling
245  for the precision in the peak regions. Predictions from the two methods were selected at

246  different FDR cutoffs to calculate the precision of regulatory peak prediction and recovery of true
247  regulatory regions from the reference gold standards (see methods). Reference blood eQTLs
248  are obtained from the GTEx DAPG fine-mapped eQTLs database. Reference blood enhancers
249  are obtained from the enhancerAtlas database.

250 C: Cis-regulatory domains outside of called peaks resolve major cell types in human PBMC and
251 mouse pituitary. UMAP dimension reductions were calculated by using only the accessibilities of
252 CREMA identified cis-regulatory domains outside of ATAC peaks as features. Cell type

253 annotations were from independent analysis using the expression of known marker genes (see
254  methods).

255

256  Figure 3 Gata2 - Pcskl circuit in the pituitary gonadotrope cells.

257  A: Schematic showing the analysis of Gata2 circuits by CREMA in the mouse pituitary and

258 validation by differentially expressed genes in the conditional Gata2 knockout data. (p = 3.5x10"
259 6, 7Z=45,df =1, one-sided z-test of two proportions)

260 B: Detailed view of a CREMA identified Gata2-Pcsk1 circuit where Gata?2 interacts with a cis-
261  regulatory domain located ~61kb upstream of the TSS of Pcskl. Normalized accessibilities

262  were plotted separately for cells with and without Pcskl expression. Zoomed in plot showing the
263 detailed chromatin accessibility pattern around the Gata2 binding site (red arrow).

264  C: UMAPs showing the expression of Pcskl in the pituitary cells and the cell type annotations.
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D: Box plot and point plot showing the pseudobulk RNA of Pcskl and pseudobulk ATAC of the
Gataz2 site in each cell type of the wild type mouse pituitary samples (n = 3) and gonadotrope-
conditional Gata2 knockout samples (n = 3).

Figure 4 Regulatory circuitry of human immune cells.

A: Selected CREMA identified TF modules and their activities in immune cell types.

B: Selected CREMA identified regulatory circuits in the TCF7 module that are shared between
naive T cells and central memory T cells, and circuits in the TCF7 module that are specific to
one of the two cell types. GO terms annotated to these target genes are labeled below.

C: Example of a queried gene LTA and the list of CREMA identified regulatory circuits targeting
this gene.
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278 Online Methods

279

280 CREMA framework

281

282  Gene filtering We focused on modeling genes and TFs above a certain level of expression in
283 the dataset. Specifically, we applied 2 filters on the genes: 1) the gene counts must be non-zero
284  in atleast 0.1% of the cells or 3 cells, whichever was larger, and 2) the gene total count in all
285  cells should be larger than (0.2% x total cell number).

286

287 Candidate regulatory domain selection For each target gene, we analyzed the entire +/-

288  100kb window around the transcription start site (TSS) without reference to ATAC-seq peak
289 calling. We scanned for potential TF binding sites in this region by motif analysis. Specifically we
290 used the human TF position weight matrices from the JASPAR database and mouse TF

291  position weight matrices from the CIS-BP database. For the motif analysis we used the function
292  matchMotifs from the r package motifmatchr having p<5e-5.

293

294  Model building To select regulatory circuits supported by the co-incidence of TF expression,
295 target gene expression and binding site accessibility, we used a linear regression framework
296  where the level of TF is weighted by the accessibility of that TF's binding site. Specifically, for
297 each TF and each binding site found in the candidate regulatory domains, we counted the

298 number of ATACseq cut sites overlapping with a 400bp window centered around the binding
299 site in each single cell, and binarized the results as open (counts >= 1) or closed (counts = 0).
300 Then the level of TF RNA and the accessibility of TF binding sites were combined in a linear
301 regression:

302 Z = Yij X

303  Where z is the RNA level of the target gene, x; is the RNA level of the ith TF, and y;; is the
304  binarized chromatin openness of the jth binding site of the ith TF in the candidate regulatory
305 regions. The RNA levels used in the model are normalized RNA levels with SCTranscform. The
306 rationale was that TFs with a closed binding site would not be selected as significant regulators
307 in this framework. Because many TFs had more than one binding site, there was high

308 collinearity among the regressors. Therefore we evaluated the significance of each TF-site

309 combination by linear regression individually and reported all significant TF-site combinations,
310 instead of using a multi-regression framework.

311

312 Data and preprocessing

313

314 Human PBMC data from 10X Genomics The single nucleus multi-omics dataset of human
315 PBMC was provided by 10X Genomics as a reference dataset. Specifically, the dataset

316  "pbmc_granulocyte sorted_10k" processed using CellRanger v1.0.0 was downloaded from 10X
317 Genomics, and it was processed following the vignette "Joint RNA and ATAC analysis: 10x
318 multiomic" from the r package Signac v1.5.0.

319


https://doi.org/10.1101/2023.06.23.544355
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.23.544355; this version posted June 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

320 Single nucleus multiome (RNA+ATAC) of male mouse pituitary The pituitary used in this
321  study was collected from a male C57BL/6 mice aged 10 weeks. Animals were on a 12-hour on,
322  12-hour off light cycle (lights on at 7 AM; off at 7 PM). Once collected, the pituitary was

323 immediately snap-frozen following dissection, and stored at -80C until the assay was started.
324

325 Nuclei isolation was performed as described in 222, Briefly, the snap-frozen pituitary was

326 thawed on ice. RNAse inhibitor (NEB MO314L) was added to the homogenization buffer (0.32 M
327 sucrose, 1 mM EDTA, 10 mM Tris-HCI, pH 7.4, 5mM CacCl2, 3mM Mg(Ac)2, 0.1% IGEPAL CA-
328 630), 50% OptiPrep (Stock is 60% Media from Sigma; cat# D1556), 35% OptiPrep and 30%
329  OptiPrep right before isolation. The pituitary was homogenized in a dounce glass homogenizer
330 (1ml, VWR cat# 71000-514), and the homogenate filtered through a 40 m cell strainer. An equal
331  volume of 50% OptiPrep was added, and the gradient centrifuged (SW41 rotor at 9200rpm; 4C;
332  25min). Nuclei were collected from the interphase, washed, resuspended in 1X nuclei dilution
333  buffer (10X Genomics), and counted (Nexcelom K2 counter).

334

335  Sn multiome was performed following the Chromium Single Cell Multiome ATAC and Gene

336  Expression Reagent Kits V1 User Guide (10x Genomics, Pleasanton, CA) on a male mouse
337  wild-type sample. Nuclei were counted as described above, transposition was performed in 10 |
338 at 37C for 60min targeting 10,000 nuclei, before loading of the Chromium Chip J (PN-2000264)
339 for GEM generation and barcoding. Following post-GEM cleanup, the library was pre-amplified
340 by PCR, after which the sample was split into three parts: one part for generating the snRNAseq
341  library, one part for the snATACseq library, and the rest was kept at -20C. SnATAC and snRNA
342 libraries were indexed for multiplexing (Chromium i7 Sample Index N, Set A kit PN-3000262,
343  and Chromium i7 Sample Index TT, Set A kit PN-3000431 respectively). The library was

344  quantified by Qubit 3 fluorometer (Invitrogen) and quality was assessed by Bioanalyzer

345  (Agilent). This library was sequenced first in a Miseq (Illumina) to assess the reads and balance
346 the sequencing pool, then it was sequenced in a Novaseq 6000 (lllumina) at the New York

347  Genome Center (NYGC) following 10X Genomics recommendations.

348

349 The sequencing data was preprocessed with cellranger-arc-2.0.0. The dataset was then

350 processed as described by the vignette "Joint RNA and ATAC analysis: 10x multiomic" from the
351 r package Signac v1.5.0. Cell types were identified by label transfer from a well annotated single
352 nucleus RNAseq dataset? using the r package Seurat v4.1.0

353

354  Single nucleus RNAseq and ATACseq of WT and Gata2KO mice Processed single nucleus
355 RNAseq and single nucleus ATACseq datasets of 3 wild type mice (WT) and 3 mice with Gata2
356  conditionally knocked out in the gonadotrope cells of the pituitary were provided by Daniel

357 Bernard's lab at McGill University*®. Cell clusters corresponding to the gonadotropes were

358 located using marker genes of gonadotropes as described before.

359

360 Benchmarking

361

362 Number of discoveries We ran both CREMA and TRIPOD on a human PBMC sn multiome
363 dataset. We use the same FDR cutoff of 0.005 on both methods. For TRIPOD, we selected all
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364  the TF-peak-gene combinations passing the FDR cutoff and each of these combinations was
365 counted as one regulatory circuit. For CREMA, we selected all the TF-site-gene combinations
366  passing the FDR cutoff, and overlaid the site location to chromatin peaks to determine where
367 the regulatory circuit is within peak regions or outside of peak regions.

368

369 Public databases of true regulatory regions EnhancerAtlas was downloaded from

370 EnhancerAtlas 2.0 database and all the enhancer-gene interactions in blood cell types were
371 combined. Fantom and 4D genome databases were downloaded from the processed datasets
372  provided by the TRIPOD package. Fine-mapped eQTLs were downloaded from GTEx v8. See
373  supplementary table 2 for the URLSs of these databases.

374

375 Recovery of true regulatory regions We applied CREMA and TRIPOD to the human PBMC
376  sn multiome dataset to extract regulatory regions for the top 1000 variable genes. Specifically
377 we ran TRIPOD with default settings and extracted all regulatory peaks with both level 1 and
378 level 2 testings. Three enhancer databases and three fine-mapped eQTL databases described
379 inthe last section were used to evaluate the precision of regulatory region predictions and

380 recovery of the true regulatory regions. To compare across the two methods, we evaluated the
381  performance from the two methods by setting different FDR cutoffs in the range of 0.1 to

382  0.0001. For each FDR cutoff, we calculated: 1) the recovery of true regulatory regions, defined
383 asthe percentage of true regulatory regions from the databases that overlap with the regulatory
384  regions predicted by TRIPOD and CREMA. 2) precision of predictions, defined as the

385  percentage of predicted regions that overlap with true regulatory regions from the databases.
386  Specifically, chromatin peaks predicted by TRIPOD are larger in sizes than the regulatory sites
387  predicted by CREMA, and larger regions are more likely to overlap with a true regulatory region
388 from the reference databases. So to make the calculation of the precision of prediction in the
389 same space for TRIPOD and CREMA, we converted the regulatory sites predicted by CREMA
390 to the chromatin peaks that overlapped with these sites for calculating the precision of

391 predictions. If a chromatin peak overlapped with multiple sites from CREMA, we used the

392  minimum p value among these sites as the p value for this peak.

393

394  Recovery of cell types We applied CREMA on the human PBMC sn multiome dataset and the
395 mouse pituitary sn multiome dataset. In both cases, we extracted regulatory circuits with an
396  FDR cutoff of 0.0001 and selected cis-regulatory regions outside of the called chromatin peaks.
397  We then calculated the chromatin accessibility in these regions and used them as features for
398 LS| and UMAP dimension reduction on the datasets. In the UMAP visualization, the cells were
399 colored by the original cell type annotations obtained by label transfer from reference datasets
400 as described in the “Data and preprocessing” section.

401

402  Gata2 regulatory circuits in the pituitary

403

404  Extraction of Gata2 circuits in the pituitary cell types We applied CREMA to the sn

405 multiome dataset of wildtype mouse pituitary. We extracted all the regulatory circuits with an
406  FDR cutoff of 0.0001. We selected all the regulatory circuits where Gata2 was the TF. In this
407  dataset, there were 866 gonadotrope cells and 7420 somatotrope cells. For gonadotropes, we
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408 determined target genes of Gata2 as active in gonadotropes if they were detected in at least
409 260 cells (30%) of the gonadotropes. We used the same cutoff of 260 cells to determine Gata2
410 targets as active in the somatotropes. We chose to use the number of cells detected as the
411  cutoff in order to accommodate possible higher heterogeneity within the somatotrope cells. The
412  cell type specific target genes were analyzed for differential expression between the wild type
413  and conditional knockout datasets.

414

415 Differential analysis of the Gata2-Pcsk1 circuit We compared the expression of Pcskl and
416  the accessibility of the Gata2 cis-regulatory site chr13:75028714-75028724 between the 3 wild
417  type samples and 3 conditional knockout samples by pseudobulk analysis. The single cell

418  expression and accessibilities were summed at cell type resolution and differential analysis
419  were performed using DESeq2.

420

421  Regulatory circuitry of the human immune cells

422

423  Regulatory circuits in PBMC We applied CREMA to the sn multiome dataset of human PBMC.
424  We selected regulatory circuits with a FDR cutoff of 0.0001.

425

426  Circuit activities and TF module activities in cell types For visualizing the highly active TF
427  modules in the major immune cell types, we calculated the circuit activities and TF modules
428  activities in each cell type. The activity of each regulatory circuit in each cell was calculated by
429  taking the product of the expression level of the TF, the expression level of the target gene and
430 the binarized accessibility of the cis-regulatory site in the cell. To summarize the activities of
431  regulatory circuits at cell type resolution, we used two methods: 1) a binary activity score where
432  aregulatory circuit was defined as active in a cell type if it was active in more than 10% of the
433 cells in that cell type and more than 50 cells of that cell type, 2) a continuous activity score

434  where the activity of a regulatory circuit in a cell type was defined as the proportion of cells in
435 that cell type where the regulatory circuit was active. To summarize the activities of regulatory
436  circuits in a TF-centric view, we defined a TF module as the collection of all the regulatory

437  circuits involving that TF. For each TF module and each cell type, we calculated 1) the number
438  of active regulatory circuits in that cell type as measured by the binary activity score under that
439 TF module, 2) the specificity of the regulatory circuits of that TF module to that cell type,

440 measured by summing the continuous activity scores of the regulatory circuits and converting to
441 a z score.

442

443  Data and code availability

444

445  The lab generated single nucleus multiome dataset of mouse pituitary is accessible at

446  GSE234943. CREMA is available as an R package at https://github.com/zidongzh/CREMA. The
447  web-accessible resource of the regulatory circuitry of human blood immune cells is available at
448  https://rstudio-connect.hpc.mssm.edu/crema-browser/. The source code for the analysis in this
449  manuscript is available at https://github.com/zidongzh/CREMA manuscript.



https://github.com/zidongzh/CREMA
https://rstudio-connect.hpc.mssm.edu/crema-browser/
https://github.com/zidongzh/CREMA_manuscript
https://doi.org/10.1101/2023.06.23.544355
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.23.544355; this version posted June 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

450 References

451
452 1. Kim, H. D., Shay, T., O’Shea, E. K. & Regeyv, A. Transcriptional Regulatory Circuits:

453 Predicting Numbers from Alphabets. Science 325, 429-432 (2009).

454 2. Ma, S. et al. Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and

455 Chromatin. Cell 183, 1103-1116.e20 (2020).

456 3. Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and

457 chromatin accessibility in the same cell. Nat. Biotechnol. 37, 1452-1457 (2019).

458 4. Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state
459 analysis with Signac. Nat. Methods 18, 1333-1341 (2021).

460 5. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. ChromVAR: Inferring transcription-
461 factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975-978
462 (2017).

463 6. Bravo Gonzalez-Blas, C. et al. cisTopic: cis-regulatory topic modeling on single-cell ATAC-
464 seq data. Nat. Methods 16, 397—-400 (2019).

465 7. Nakato, R. & Shirahige, K. Recent advances in ChIP-seq analysis: from quality management
466 to whole-genome annotation. Brief. Bioinform. bbw023 (2016) doi:10.1093/bib/bbw023.

467 8. Landt, S. G. et al. ChlP-seq guidelines and practices of the ENCODE and modENCODE
468 consortia. Genome Res. 22, 1813-1831 (2012).

469 9. Schmidt, D. et al. A CTCF-independent role for cohesin in tissue-specific transcription.

470 Genome Res. 20, 578-588 (2010).

471  10. Wen, X., Pique-Regi, R. & Luca, F. Integrating molecular QTL data into genome-wide

472 genetic association analysis: Probabilistic assessment of enrichment and colocalization.
473 PLOS Genet. 13, 1006646 (2017).
474  11. EnhancerAtlas 2.0: an updated resource with enhancer annotation in 586 tissue/cell

475 types across nine species | Nucleic Acids Research | Oxford Academic.


https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://doi.org/10.1101/2023.06.23.544355
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.23.544355; this version posted June 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

476 https://academic.oup.com/nar/article/48/D1/D58/5628925.

477  12. Jiang, Y. et al. Nonparametric single-cell multiomic characterization of trio relationships
478 between transcription factors, target genes, and cis-regulatory regions. Cell Syst. 13, 737-
479 751.e4 (2022).

480 13. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.e29
481 (2021).

482  14. Wu, D. et al. NAR Breakthrough Article: Three-tiered role of the pioneer factor GATAZ2 in
483 promoting androgen-dependent gene expression in prostate cancer. Nucleic Acids Res. 42,
484 3607 (2014).

485  15. Schang, G. et al. Transcription factor GATA2 may potentiate follicle-stimulating hormone
486 production in mice via induction of the BMP antagonist gremlin in gonadotrope cells. J. Biol.
487 Chem. 298, (2022).

488 16. Folon, L. et al. Contribution of heterozygous PCSK1 variants to obesity and implications
489 for precision medicine: a case-control study. Lancet Diabetes Endocrinol. 11, 182-190

490 (2023).

491  17. Severe obesity and diabetes insipidus in a patient with PCSK1 deficiency -

492 ScienceDirect.

493 https://www.sciencedirect.com/science/article/pii/S1096719213001145?via%3Dihub.

494  18. Genetic Variants in PCSK1 Gene Are Associated with the Risk of Coronary Artery

495 Disease in Type 2 Diabetes in a Chinese Han Population: A Case Control Study | PLOS

496 ONE. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0087168.

497  19. Ware, C. F., Crowe, P. D., Grayson, M. H., Androlewicz, M. J. & Browning, J. L.

498 Expression of surface lymphotoxin and tumor necrosis factor on activated T, B, and natural
499 killer cells. J. Immunol. Baltim. Md 1950 149, 3881-3888 (1992).

500 20. Ohshima, Y. et al. Naive human CD4+ T cells are a major source of lymphotoxin alpha.

501 J. Immunol. Baltim. Md 1950 162, 3790-3794 (1999).


https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://doi.org/10.1101/2023.06.23.544355
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.23.544355; this version posted June 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

502 21. Ruf-Zamojski, F. et al. Single nucleus multi-omics regulatory landscape of the murine
503 pituitary. Nat. Commun. 12, 2677 (2021).
504 22 Mendelev, N. et al. Multi-omics profiling of single nuclei from frozen archived

505 postmortem human pituitary tissue. STAR Protoc. 3, 101446 (2022).


https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://www.zotero.org/google-docs/?B7aoYf
https://doi.org/10.1101/2023.06.23.544355
http://creativecommons.org/licenses/by-nc-nd/4.0/

bIORXIV preprlnt doi: https //d0| org/lO 1101/2023 06. 23 544355 thls verS|on posted June 24, 2023. The copyright holder for this preprint
A S ed S S or/fun has ¢ b a license to display the preprint in perpetuity. It is made
avallable under aCC BY NC- ND 4 O InternaYonal license.

>
eQTLs from GTEx DAPG Enhancers from enhancerAtlas : Inside called pea ks
fine-mapped eQTL database database '5
lg
0, () o
46.8% 46.7% O Inside called peaks >
(®)
H Outside called peaks ®
S
oo
(I}
('S
J
B
> Data >> Candidate regulatory domain selection >> Model building >> Output >
Single nucleus Motif analysis - —> ; = f( Vi X ) Gene regulatory landscape
multiome AuAtar sTAACA AGAATex Gl @_ - l'j' i
Multiome data l l l l >
& 1F2) (7F3) (TFa l |
@) () =) G | _fen)
K e @A W ' P Target gene TF i
i A W L B B expression expression (TF1) (7r4)
K e: BE W a En B (scRNA) (SCRNA)
cis L W s B
ces [l ML A N A BN Accessibility of the jth
= scRNA-seq z:::: A = A binding site of TF i (scATAC)
== scATAC-seq cellg i‘ O i

Expression (scCRNA)  TF binding site (scATAC)
High == Low read present _Jll

Figure 1 Motivation and workflow of CREMA.

A: Percentage of eQTLs and enhancers from gold standard databases located inside and outside of ATAC peaks called in a
human PBMC single nucleus multiome data. Reference blood eQTLs are obtained from the GTEx DAPG fine-mapped eQTLs
database. Reference blood enhancers are obtained from the enhancerAtlas database.

B: Schematic of the CREMA method. CREMA takes single nucleus multiome (RNAseq + ATACseq within each cell) as input.
It scans for potential cis-TF binding sites by motif analysis. It then fits a linear model for gene expression as a function of
chromatin accessibility and TF expression to each cell in the dataset to select highly significant regulatory circuits. The circuits
identified are supported by the coincidence of TF expression, binding site accessibility and target gene expression within
individual cells.
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Figure 2 CREMA performance and utility.

A: Number of regulatory circuits identified by TRIPOD 12 and CREMA at FDR cutoff = 0.005. The circuits from CREMA were
categorized as “inside called peaks” or “outside called peaks” depending on whether the binding site of the circuit overlapped
with any chromatin peak. Because the circuit inference from TRIPOD was restricted to the chromatin peaks, all the circuits
from TRIPOD are inside called peaks.

B: Percentage of true regulatory regions recovered by TRIPOD and CREMA when controlling for the precision in the peak
regions. Predictions from the two methods were selected at different FDR cutoffs to calculate the precision of regulatory peak
prediction and recovery of true regulatory regions from the reference gold standards (see methods). Reference blood eQTLs
are obtained from the GTEx DAPG fine-mapped eQTLs database. Reference blood enhancers are obtained from the
enhancerAtlas database.

C: Cis-regulatory domains outside of called peaks resolve major cell types in human PBMC and mouse pituitary. UMAP
dimension reductions were calculated by using only the accessibilities of CREMA identified cis-regulatory domains outside of
ATAC peaks as features. Cell type annotations were from independent analysis using the expression of known marker genes
(see methods).
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Figure 3 Gata2 - Pcsk1 circuit in the pituitary gonadotrope cells.
A: Schematic showing the analysis of Gata2 circuits by CREMA in the mouse pituitary and validation by differentially
expressed genes in the conditional Gata2 knockout data. (p = 3.5x10-6, Z = 4.5, df = 1, one-sided z-test of two proportions)

B: Detailed view of a CREMA identified Gata2-Pcsk1 circuit where GataZ2 interacts with a cis-regulatory domain located ~61kb
upstream of the TSS of Pcsk1. Normalized accessibilities were plotted separately for cells with and without Pcsk1 expression.
Zoomed in plot showing the detailed chromatin accessibility pattern around the Gata2 binding site (red arrow).

C: UMAPs showing the expression of Pcsk1 in the pituitary cells and the cell type annotations.

D: Box plot and point plot showing the pseudobulk RNA of Pcsk1 and pseudobulk ATAC of the Gata2 site in each cell type of
the wild type mouse pituitary samples (n = 3) and gonadotrope-conditional Gata2 knockout samples (n = 3).
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Figure 4 Regulatory circuitry of human immune cells.

A: Selected CREMA identified TF modules and their activities in immune cell types.

B: Selected CREMA identified regulatory circuits in the TCF7 module that are shared between naive T cells and central
memory T cells, and circuits in the TCF7 module that are specific to one of the two cell types. GO terms annotated to these
target genes are labeled below.

C: Example of a queried gene LTA and the list of CREMA identified regulatory circuits targeting this gene.
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