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Abstract 

Heterogeneity in brain activity gives rise to heterogeneity in behavior, which in turn comprises our 
distinctive characteristics as individuals. Studying the path from brain to behavior, however, often 
requires making assumptions about how similarity in behavior scales with similarity in brain 
activity. Here, we expand upon recent work which proposes a theoretical framework for testing 
the validity of such assumptions. Using intersubject representational similarity analysis in two 
independent movie-watching fMRI datasets, we probe how brain-behavior relationships vary as a 
function of behavioral domain and participant sample. We find evidence that, in some cases, the 
neural similarity of two individuals is not correlated with behavioral similarity. Rather, individuals 
with higher behavioral scores are more similar to other high scorers whereas individuals with 
lower behavioral scores are dissimilar from everyone else. Ultimately, our findings motivate a 
more extensive investigation of both the structure of brain-behavior relationships and the tacit 
assumption that people who behave similarly will demonstrate shared patterns of brain activity.  
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Introduction 

Individuals are amalgamations of their unique traits and abilities, and a key aim of cognitive 
neuroscience is uncovering how these personal characteristics arise from brain activity. But what 
is the nature of the relationship between individual differences in behavior and individual 
differences in brain activity? 

If this question seems too theoretical to inform the day-to-day aspects of research, it is worth 
considering that often we answer it implicitly. Specifically, in modeling behavior, we frequently 
assume that people who behave similarly, as measured by similar scores on a behavioral metric, 
will demonstrate some shared pattern of brain activity. For instance, we might examine brain 
activity of participants with depression, expecting that depressed participants will exhibit more or 
less activity (or functional connectivity) in a given region compared to controls (Greicius et al., 
2007; Siegle et al., 2002). Another popular method of relating patterns of brain activity to behavior 
is regression analysis. If we are interested in individual differences in sustained attention, we may 
opt to use regression to identify functional connectivity edges that are associated with better or 
worse attentional performance (Rosenberg et al., 2016; Yoo et al., 2022).  

The idea that people who are similar in some regard will share some aspect of brain function is 
intuitive. But is it accurate? Returning to the example of depression research, suppose the patient 
sample composed of two Diagnostic and Statistical Manual of Mental Disorders subtypes, for 
instance melancholic and anxious (Musil et al., 2017). It is possible the melancholic subtype is 
characterized by less activation in the region of interest while the anxious subtype is associated 
with greater activation (or vice versa). Collapsing across patients could cause this effect to sum to 
zero, possibly leading to an average activation close to controls. In this way, by assuming that 
patients will appear similar in terms of brain activity, we run the risk of concluding that there is no 
significant difference between patients and controls and missing the underlying relationship 
entirely.   

Indeed, several studies provide evidence that occasionally behavioral similarity (in this example, 
similar clinical symptoms) accompanies less similar brain activity. For instance, work shows that 
participants with autism spectrum disorder exhibit lower neural synchrony during movie-watching 
compared to controls (Hasson et al., 2009; Lyons et al., 2020; Salmi et al., 2013), as well as greater 
variability in inter-subject functional correlation states (Bolton et al., 2020). Intersubject correlation 
during movie-watching is also decreased among individuals with attention-deficit/hyperactivity 
disorder compared to controls (Salmi et al., 2020). Outside of intersubject correlation as a 
measure of variability, a study of individuals with autism spectrum disorder demonstrated greater 
inter-individual variability in fMRI activity (as measured by correlational distance between 
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vectorized beta values) during a spatial working memory task (Hawco et al., 2020). Similarly, other 
work has shown greater variability in fMRI activity in patients with schizophrenia (Gallucci et al., 
2022; Maïza et al., 2010).  

Similar behavior, therefore, does not always imply similar brain activity. When should we expect 
this to be the case? Recent work by Finn and colleagues proposes a paradigm that can help 
elucidate the complex relationship between brain and behavioral similarity by empirically testing 
different models of brain-behavior relationships (Finn et al., 2020). The first model, the Nearest 
Neighbors model, operationalizes the assumption that those who score similarly on some 
behavioral metric will appear similar in brain activity. Studies testing for a linear brain-behavior 
relationship assume the Nearest Neighbors model. Alternatively, the second model, the Anna 
Karenina (AnnaK) model is named after the opening line of the novel Anna Karenina, stating “Happy 
families are all alike; every unhappy family is unhappy in its own way.” The AnnaK model proposes 
that one end of a behavioral spectrum is associated with greater variability in brain activity. They 
found that a measure of working memory showed an AnnaK-style relationship, where high scorers 
displayed greater neural synchrony with each other, whereas low-scoring participants were 
dissimilar to both low and high scorers.  

Here we replicate and extend this finding in two independent fMRI datasets in which youth or 
adult participants watched movies during scanning. In doing so, we can determine to what extent 
the best model linking brain and behavioral similarity depends on the characteristics of the 
sample in question or on the specific behavior under investigation. Additionally, inclusion of a 
sample of children and adolescents specifically allows us to test if brain-behavior relationships 
look significantly different in development than they do in adulthood. Recent work found that a 
relationship between depression symptoms and intersubject correlation during movie watching 
emerges in adolescence, suggesting that brain-behavior relationships may vary as a function of 
age (Gruskin et al., 2020). Ultimately, across both the developmental and young adult sample, we 
find significant evidence for the AnnaK model. The AnnaK model fit our data across five measures: 
a cognitive function score, a language function score, two attention tasks and one working 
memory task. In contrast, the Nearest Neighbors only explains significant variance in neural 
similarity for a subset of measures where we find support for the AnnaK. As a whole, our findings 
illustrate that the neural similarity depends not only whether two individuals resemble each other 
behaviorally, but also on one’s position on a behavioral scale. 

Methods 

Dataset 1: Healthy Brain Network 
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Participants 

To investigate how similarity in brain activity relates to behavioral similarity in development, we 
analyzed data from the Healthy Brain Network Biobank (Alexander et al., 2017). This project is 
collecting data from children and adolescents aged 5-21 years with a diversity of clinical concerns 
(the majority of the sample having one or more clinical diagnosis). The Healthy Brain Network 
project was approved by the Chesapeake Institutional Review Board. Secondary data analysis was 
approved by the University of Chicago Institutional Review Board. Of interest to our current 
analysis, the dataset includes one functional MRI (fMRI) run collected while participants watch an 
emotionally evocative video, specifically a 10-minute clip from the movie Despicable Me. In addition 
to fMRI data, this sample also contains a large assortment behavioral and phenotypic measures, 
including psychiatric and learning assessments, and questionnaires pertaining to environmental 
and lifestyle factors. We analyze a subset of these measures in the present study (see Behavioral 
data for details). 

To determine our final study sample, we first downloaded all behavioral data available as of March 
8, 2022 and all available neuroimaging data collected at sites Rutgers and Citibank Biomedical 
Imaging Center from Healthy Brain Network releases 1-8. Of the participants with downloaded 
data (n=2131), we subset the sample to those who had complete Despicable Me fMRI data and 
acceptable motion during this scan (defined as maximum head displacement <3 mm and mean 
framewise displacement <.15 mm) (n= 529). Of participants with a usable Despicable Me scan, we 
retained only participants who had behavioral data and whose anatomical scan passed visual 
quality control inspection (n=480).  

From this point, behavioral measures available in 90% of the sample were retained. Of the 
remaining variables, two raters from our lab selected measures pertaining to five domains of 
interest (Cognitive, Attention, Social, Emotional, and Language) and grouped these measures by 
domain. Finally, participants missing any measure from any of the five domains were excluded 
resulting in a final sample of n=363 participants (142 F, 221 M; mean age = 12.25± 3.4 years, 
range = 6–21 years). 

Behavioral data 

To assess relationships between behavioral similarity and neural synchrony, we took advantage of 
the large variety of phenotypic and behavioral data provided by the Healthy Brain Network. The 
final measures comprising our five domains of interest (Cognitive, Attention, Social, Emotional, 
and Language) included self-report questionnaires, parent-completed questionnaires, and 
cognitive assessments such as the NIH toolbox (Hodes et al., 2013). For a complete list of 
measures included, please see Figure 2. Rather than analyze each measure of interest 
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independently, we ran principal component analyses (PCA) separately on the measures from each 
domain. PCA was performed on behavioral data from n=1537 training subjects (those without 
useable fMRI data but with no missing behavioral data). This transformation was then applied to 
the set of n=363 participants who had usable fMRI data, creating a PC score in each of the five 
domains for each participant.  

fMRI data acquisition 

Data analyzed were collected at one of two sites: Rutgers University Brain Imaging Center, or the 
Citibank Biomedical Imaging Center. Rutgers data were collected on a Siemens 3T Tim Trio 
magnet. Citibank Biomedical Imaging Center data were collected on a Siemens 3T Prisma. Both 
sites used the following parameters for the functional Despicable Me scan: TR=800ms, TE=30ms, # 
slices=60, flip angle=31 ̊, # volumes=750, voxel size=2.4mm3, multiband 6. For more information 
regarding Healthy Brain Network scan parameters, please see (Alexander et al., 2017) and 
http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network. 

fMRI Preprocessing 

AFNI was used to preprocess fMRI data. First, three volumes were removed from each run, 
followed by despiking and head motion correction. Then, functional images were aligned to the 
skull-stripped anatomical image with a linear transformation and then to the MNI atlas via 
nonlinear warping. Covariates of no interest were regressed from the data, including a 24-
parameter head motion model (6 motion parameters, 6 temporal derivatives, and their squares) 
and mean signal from subject-specific eroded white matter and ventricle masks and the whole 
brain. Finally, images were band-pass filtered from .01 to .1 Hz. 

Dataset 2: Yale Attention 

Participants  

To compare our findings in development with that of an independent adult sample, we analyzed a 
dataset of healthy young adults who participated in a two-session neuroimaging experiment 
(Rosenberg et al., 2020; Yoo et al., 2022). Sessions were separated by 17.31 days on average (s.d. = 
20.21 days, median = 12 days; Yoo et al., 2022). This project was approved by the Yale University 
Human Subjects Committee. Relevant to the present analysis, the participants in this study 
completed a fMRI run during each session in which they watched the short film Inscapes 
(Vanderwal et al., 2015). This film consists of dynamic visuals with no discernable narrative, 
making for an interesting comparison to the plot-driven clip shown in the Healthy Brain Network 
dataset. Prior to our access of the data, 33 participants were excluded due to unacceptable head 
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motion (>3 mm maximum head displacement and > .15 mm mean framewise displacement), task 
performances falling 2.5 standard deviations above or below the mean, or because of low-quality 
imaging data. After downloading the data, an additional 9 scans were dropped due to having 
greater than 50% of frames censored for motion. This yielded a final sample of n=71 participants 
(47 F, 24 M; mean age = 22.86 ± 4.28 years, range = 18–36 years). 

Behavioral data 

Whereas the Healthy Brain Network behavioral data consists primarily of questionnaires, the Yale 
Attention dataset includes performance measures from three validated cognitive tasks. 
Consequently, we were able to determine if brain-behavior relationships differed across these 
different ways of assessing behavior. In this study, participants completed two sessions of the 
following three tasks designed to assess working memory and attentional performance: Gradual-
onset continuous performance task (gradCPT), visual short-term memory task (VSTM), multiple 
object tracking task (MOT). For detailed descriptions of timing and other parameters for all tasks, 
see (Yoo et al., 2022). 

The gradCPT (Esterman et al., 2013) assesses participants’ sustained attention and inhibitory 
control function. In this task, city and mountain photographs are displayed and participants were 
instructed to press a button in response to city scenes (appearing on 90% of trials) and withhold 
responses when mountain scenes appear (10% of trials). Images gradually transition from one to 
the next at a rate of 800 ms/trial. Performance was assessed by mean sensitivity (d'). 

The VSTM task is a change detection task measuring visual working memory. During this task, 
participants viewed an array of 2, 3, 4, 6, or 8 colored circles, which were randomly positioned on 
the screen. After 100 ms, the circles were replaced by a fixation square for 900 ms before 
reappearing. In half of the trials, the colors of the circles remained unchanged, and on half the 
circles reappeared in a different color. Participants had to press one button if they detected a 
color change and a different button if there had been no change. Performance on this task was 
measured with Pashler’s K (Pashler, 1988).  

Finally, the MOT assesses attentional selection and tracking (Luck & Vogel, 1997) and was adapted 
from code from Liverence & Scholl (2012). On each trial, 12 white circles appeared. Three or five of 
the circles (the targets) blinked green briefly before all circles began to move around the screen. 
Participants had to track the locations of the targets until the display stopped moving. When it 
stopped, one circle flashed, and participants pressed a button to indicate if that circle had been a 
target. Performance was assessed by mean accuracy across all trials.  

fMRI data acquisition 
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Data were collected at the Yale Magnetic Resonance Research Center and Brain Imaging Center on 
a 3T Siemens Prisma with a 64-channel head coil. The following parameters were used for the 
functional scan analyzed here (Inscapes movie-watching): TR=1,000ms, TE=30ms, # slices=52, flip 
angle=62°, # volumes=600, voxel size=2.5mm3, multiband 4. For more information regarding the 
scan parameters of this data set, please see (Yoo et al., 2022). 

fMRI Preprocessing 

AFNI was used to preprocess fMRI data. First, three volumes were removed from each run. Then 
censoring was performed, removing volumes in which greater than 10% of voxels were outliers, or 
for which the Euclidean norm of the head motion parameter derivatives was greater than .2 mm. 
Despiking, slice-time correction, motion correction, and regression of mean signal from the CSF, 
white matter, and whole brain was performed. Additionally, 24 motion parameters (6 motion 
parameters, 6 temporal derivatives, and their squares) were regressed from the data. Functional 
images were aligned to the skull-stripped anatomical image with a linear transformation, and to 
the MNI atlas via nonlinear warping.  
 
Pairwise Intersubject Time-course Correlation  

For every individual in each dataset, preprocessed BOLD signal time-courses were averaged 
across voxels within regions of interest using a 268-node whole-brain parcellation (Shen et al., 
2013). For every node, each participant’s BOLD signal time-course was z-scored within-subject and 
Pearson correlated with that of every other individual in the cohort. This yields a participant-by-
participant “brain-similarity” matrix for each node, with each cell representing the synchronization 
of activation in that node for two individuals. We repeated this process in the Healthy Brain 
Network sample and the Yale Attention sample.  

Intersubject Representational Similarity Analysis 

After creating intersubject correlation matrices for each node and dataset cohort, we 
implemented intersubject representational similarity analysis (IS-RSA) to test two models of brain-
behavior relationships: 1) a Nearest Neighbors model hypothesizing that individuals with similar 
behavioral PC scores will show greater brain similarity and 2) an Anna Karenina (AnnaK) model 
stating that individuals with high behavioral scores will show greater brain similarity whereas low 
scorers will show lower brain similarity (or vice versa) (Chen et al., 2020; Finn et al., 2020; van Baar 
et al., 2019). The goal of this approach is to determine which of the models, if either, explain the 
observed relationship between brain similarity and behavioral similarity. 
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To do this we computed three participant-by-participant matrices: one for brain similarity 
(pairwise intersubject correlation), and two for behavioral similarity (see Figure 1). For the Nearest 
Neighbors model, behavioral similarity is defined as the absolute value of the difference in 
behavioral scores. For the AnnaK model, behavioral similarity is the mean of the behavioral scores.  

To test how well our models capture brain-behavior relationships, we apply Spearman partial 
correlation to relate the vectorized lower triangles of the symmetric brain and behavioral similarity 
matrices, controlling for participant age and sex. To control for participant age and sex, we created 
three additional matrices: 1) a sex matrix (where a cell contains a one if participant i and j have the 
same sex, zero otherwise), 2) an AnnaK age matrix (where a cell contains the average of participant 
i and participant j’s ages), and 3) a Nearest Neighbors age matrix (where a cell contains the absolute 
value of the difference of participant i and participant j’s ages). These control matrices were 
regressed out of the brain and behavioral similarity matrices, and the subsequent analysis was 
performed on the residuals.  Ultimately, the primary measure of interest is the Spearman 
correlation between the residualized brain and behavioral similarity matrices (calculated using a 
Python implementation of the Mantel test https://github.com/jwcarr/mantel). This correlation 
indicates how well the AnnaK and Nearest Neighbors models, respectively, fit the observed brain 
data. This correlation is performed in each of the 268 nodes in our parcellation for the IS-RSA of 
intersubject correlation. 

To determine significance of model fit for each node, we performed permutation testing (10,000 
permutations). For each permutation, the subject labels of the behavioral matrix were randomly 
shuffled, and the correlation between brain and behavioral matrices is re-calculated, generating a 
null distribution of 10,000 Spearman rho-values for each node. After using the null distribution to 
calculate a two-tailed p-value for every node, the Holm-Bonferroni method was used to correct for 
multiple comparisons. In order to assess the consistency of each model’s effects, we repeated the 
stated analyses in a split-half fashion. Participants were randomly divided into two cohorts, and 
intersubject RSA was performed separately on each cohort. This analysis allows us to determine 
how similar the rho-values for a given node are across the two cohorts.   

To test whether there is greater evidence across the whole brain than would be expected by 
chance, we used an approach akin to the familywise error control method described in Finn et al., 
2020. We randomly generated p-values for each of our 268 nodes, calculated the number of nodes 
which survive a p-threshold of .05, and repeated this 10,000 forming a null distribution. We 
compare the observed number of significant nodes to this null distribution to obtain a whole-brain 
p-value. 
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Finally, we directly compare AnnaK and Nearest Neighbors, testing if we find greater evidence for 
either model when averaging effects across the whole brain. To do so, we first took the difference 
in the Fisher-Z transformed rho-values for each node (subtracting the Nearest Neighbors Fisher-Z 
value from the AnnaK Fisher-Z value). Next, we averaged this difference across all 268 nodes to get 
a single difference value, at which point we applied the inverse Fisher-Z transform.  To assess 
significance, we repeated this process 10,000 times, each time shuffling the subject labels of the 
behavioral matrix, to create a null distribution. Using this null distribution, we calculate a two-
sided, non-parametric p-value for each behavioral task in each of our two datasets.  

 

Fig 1: Brain and behavioral similarity matrices. Here we show similarity matrices, where each row 
and each column represent a participant. Participants are ordered by behavioral score (ascending). On 
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the left are brain similarity matrices, defined as pairwise intersubject correlation for an example node 
(node 41) in the Shen parcellation for each dataset.  On the right are two different behavioral similarity 
matrices for the first cohort of each dataset. The first behavioral matrix is calculated according to the 
AnnaK model, while the second is calculated according to the Nearest Neighbors model. To assess the 
relationship between brain similarity and behavioral similarity, we run intersubject representational 
similarity analysis Spearman correlating the brain and behavioral matrices.  

Results 

Principal component analysis of behavioral measures in Healthy Brain Network data 

After dividing the behavioral measures into five broad behavioral domains (see Supplementary 
figure 2), we applied principal component analysis (PCA) to the measures in each behavioral 
domain in the Healthy Brain Network sample (for cognitive task-specific analyses, see 
Supplementary Figure 3). We examined the resulting components, finding that the first principal 
component explained 47%, 39%, 40%, 68%, and 47% of variance, for the Cognitive, Social, 
Emotional, Attention, and Language domains, respectively (Figure 2). Since the first principal 
component explains a large portion of the variance, we retained this component as a summary 
score for each domain and used these summary scores in the remainder of our analyses. 
Generally, the first principal component demonstrated a negative loading for the variables 
indicative of worse function (e.g., measures of depression symptoms in the Emotion domain) and 
a positive loading for variables indicative of better function. For the domains where the opposite 
was true (“negative” variables loaded positively, while “positive” variables loaded negatively), we 
multiplied the PC score by negative one. Consequently, in all domains a higher score indicates 
better function in that domain. Notably, the Cognitive and the Language components are the only 
domains that include behavioral task scores; social function, emotional function, attention contain 
only self-report or parent-report questionnaires. We did not apply PCA to the behavioral measures 
from the Yale Attention dataset as there were only three measures total, which assessed aspects 
of attention and working memory.  
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Fig 2: First principal component of five behavioral domains in the Healthy Brain Network 
sample. The contribution of each variable to the first principal component of each of the five domains of 
behavior analyzed in the Healthy Brain Network sample. In each plot, the x-axis shows the correlation 
between the original measure and the first principal component. In later analyses, Emotion, Attention, 
and Social scores are reverse coded for visualization, such that a greater value indicates better function 
in each respective domain.  
 
Pairwise Intersubject Time-course Correlation 

To ask if we can better understand individual differences in behavior by examining intersubject 
correlation (ISC), we first need to establish that the fMRI BOLD activity time courses of the movie 
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watching scans are correlated, as we would anticipate. To perform this “sanity check,” we averaged 
ISC values across all pairs of participants for each node in our 268 node parcellation 
(Supplemental Figure 1). Average ISC across the whole brain was positive in both datasets and no 
nodes exhibited negative average ISC (Healthy Brain Network: mean r=.062, range: r=[.008, .249]; 
Yale Attention: mean r=.038, range: r=[.014, .268]). Overall, we observe the highest levels of ISC in 
regions predicted to be the most synchronized during movie watching: areas associated with 
visual and auditory processing. For instance, in the Healthy Brain Network sample, which included 
an audiovisual movie stimulus, the nodes with the five highest ISC values were in one of three 
areas: extrastriate cortex (r=.11, .13), Wernicke’s area (r=.10, .18), and visual association cortex 
(r=.12). In the Yale Attention sample, which included a visual-only movie, the five nodes with the 
highest ISC were all within primary visual cortex (r= .19, .20, .22, .25, .27). 

Intersubject representational similarity analysis  

Intersubject RSA reveals significant representational similarity across behavioral domains 

Previous work analyzing a working memory task in young adults demonstrates greater evidence 
for an AnnaK model than the Nearest Neighbors model (Finn et al., 2020). In other words, 
participants who scored similarly did not always display greater neural synchrony during movie 
watching. Rather, high scorers on the working memory task appeared more synchronized with 
high scorers and while low scorers were less in-sync with all others. Here we first ask whether this 
result is idiosyncratic to either the particular sample studied or to the particular type of movie 
analyzed. For instance, is the AnnaK effect dependent on the video shown containing a narrative 
arc? One possibility is that participants who score highly on a behavioral measure may interpret 
the narrative similarly in a way that is reflected in their BOLD activity. If this is the case, we would 
not expect to find evidence for the AnnaK model in the Yale Attention dataset, which uses Inscapes, 
a film with no narrative or plot to interpret. We next ask which model best explains the 
relationship between brain similarity and similarity in different types of behaviors. One possibility 
is that the AnnaK model will generally outperform the Nearest Neighbors model across a variety of 
behavioral domains. Alternatively, it is possible this effect is specific to working memory function, 
the measure assessed in previous work using data from the Human Connectome Project (Finn et 
al., 2020). If the AnnaK model is primarily a good fit for working memory measures, we would 
expect find the AnnaK model to be a good fit for only two out of the eight behavioral measures 
analyzed presently (the Healthy Brain Network cognitive domain and Yale Attention VSTM). 
Furthermore, since prior work used an adult sample, it is also possible that the AnnaK model does 
not describe brain–behavior relationships in development. In this case we would not expect to 
find an AnnaK effect in the Healthy Brain Network cognitive domain. 
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To investigate, we analyzed brain-behavior relationships in eight behavioral measures using two 
separate movies viewed in scanner and two independent samples (see Figure 3). In the Healthy 
Brain Network sample, the AnnaK model captures brain-behavior relationships in more nodes 
than would be expected by chance for both the Cognitive and Language domains (familywise p < 
.0001). Of these, relationships in five nodes in the Cognitive domain and one node in the Language 
domain nodes survive Bonferroni correction for 268 comparisons. Conversely, the Nearest 
Neighbors model does not capture brain-behavior relationships in more nodes than expected by 
chance for any domain (familywise p > .95), and no nodes show a significant Nearest Neighbors 
relationship after multiple comparisons correction. For four out of five behavioral domains, we 
observe more significant nodes (uncorrected p<.05) under the AnnaK model than the Nearest 
Neighbors model (difference in # of significant nodes, AnnaK – Nearest Neighbors: Cognitive: 135, 
Emotional: -2, Social: 11, Language: 27, Attention: 5). Finally, examining the split-half consistency of 
the effects for each model, the AnnaK model exhibits greater replicability than the Nearest 
Neighbors model for all five domains (AnnaK rcohort 1, cohort 2 Cognitive: .56, Emotional: .07, Social: .24, 

Language: .29, Attention: .23, Nearest Neighbors rcohort 1, cohort 2:  Cognitive: 0, Emotional: -.1, Social: 

.01, Language: -.05, Attention: .01).  

In sum, we did not find support for Nearest Neighbors-style relationships in any domain. Across 
four out of five behavioral domains in the Healthy Brain Network sample, we found more support 
for the AnnaK model than the Nearest Neighbors model, and we found significant evidence for the 
AnnaK model in both the Cognitive and Language domains. This suggests that participants who 
score higher on assessments of cognitive function and language ability are more synchronized, in 
terms of brain activity, during movie watching while those who score lower are less synchronized.  

The AnnaK model captures brain-behavior relationships in more nodes than would be expected by 
chance for both the Cognitive and Language domains (familywise p < .0001). More research is 
needed to determine if the result can be attributed to the use of task data in the Cognitive and 
Language domains (instead of self-report questionnaire data), or if it is due to the nature of the 
behavioral processes underlying the two measures. For instance, prior research examining a non-
self-report social measure, number of social connections reported by one’s peers, found a robust 
AnnaK-effect in several brain regions (Baek et al., 2022).  

Turning to the results in the Yale Attention Dataset, the AnnaK model reflected brain-behavior 
relationships in all three tasks, as evidenced by more significant nodes than would be expected 
due to chance (familywise p < .0001, see Figure 3). The Nearest Neighbors model significantly 
reflected brain-behavior relationships for gradCPT and VSTM (familywise p < .0001), but not MOT 
(familywise p= .13), performance. For two out of three tasks, we observe more significant nodes 
(uncorrected p < .05) under the AnnaK model than the Nearest Neighbors model (difference in # of 
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significant nodes by domain, AnnaK - Nearest Neighbors: gradCPT: 4, MOT: 3, VSTM: -2). Of the two 
domains with nodes surviving comparisons for multiple corrections, both showed more significant 
nodes under the AnnaK model (difference in # of significant nodes by domain, AnnaK - Nearest 
Neighbors: gradCPT: 4, VSTM: 3). Finally, the effects of the AnnaK model demonstrated greater split-
half consistency for all three behavioral tasks (difference in consistency by domain, AnnaK rcohort 1, 

cohort 2 - Nearest Neighbors rcohort 1, cohort 2: gradCPT: .30, MOT: .29, VSTM: .07). As in the Healthy Brain 

Network sample, results in the Yale Attention sample demonstrate greater evidence for the AnnaK 
model overall, wherein high scorers show greater similarity compared to high scorers and low 
scorers look dissimilar from everyone else.  

Of all behaviors and models tested, the AnnaK model significantly reflects brain-behavior 
relationships for the most nodes in the Cognitive domain. There are more nodes demonstrating 
an AnnaK-effect for the Cognitive domain (143) than for any of the three cognition-related 
measures in the Yale Attention sample (gradCPT: 59, VSTM: 51, MOT: 31). One key difference 
between these measures is that the Cognitive measure incorporates data from several behavioral 
tasks (e.g., Flanker, List Sort) while the Yale Attention measures include data from just one 
behavioral task each. To ensure the robust AnnaK effect in the Cognitive measure cannot be 
attributed to summarizing across tasks, we took each variable comprising the Cognitive measure, 
and replicated the IS-RSA with these variables individually (Supplementary Figure 3). Out of the 
12 variables tested, eleven demonstrate a better fit with the AnnaK model judging by the number 
of significant nodes. Consequently, the AnnaK-effect in the Cognitive domain does not appear to 
be an artifact of the choice to collapse across tasks. 

As a final method of assessing the models, we computed a whole-brain summary score by 
averaging all nodes’ rho-values. Judging by the difference in this summary score, AnnaK model 
numerically outperformed the Nearest Neighbors model in every behavioral domain tested across 
both datasets. Comparing this difference score to a permuted null distribution of difference 
scores, the AnnaK model better captured the relationship between brain and behavioral similarity 
than the Nearest Neighbors model in the Cognitive domain in the Healthy Brain Network and in the 
gradCPT in the Yale Attention dataset (p=.002 and p=.022, respectively). Ultimately, relative to the 
AnnaK model, we found less compelling evidence for the Nearest Neighbors model, a model 
grounded in the intuitive hypothesis that people who are more similar on a behavioral scale will 
show more similar brain responses. Rather, on the whole, we found more evidence that brain-
phenotype relationships examined showed an AnnaK-style pattern, wherein high scorers were 
synchronized with other scorers, while low-scoring participants showed less synchrony across the 
board. Although more research is necessary to determine under what conditions the AnnaK model 
describes brain-behavior relationships, here we demonstrate that this effect is robust to sample 
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demographics (e.g., adults vs. adolescents), movie type (e.g., narrative vs. non-narrative), and the 
behavior itself (e.g., sustained attention vs. working memory).  
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Fig 3  Relating behavior and neural synchrony with intersubject RSA. In the glass brain, nodes are 
colored according to representational similarity for each model in our two datasets. Nodes with a black 
circle (filled in) at their centroid demonstrate significant representational similarity (p <. 05, after 
correction for 268 comparisons). Nodes with a gray circle (empty) are significant before multiple 
comparisons correction (p < .05). P-values above the glass brains correspond to the whole-brain 
familywise p-value (see Methods). Glass brains without p-values above all show familywise p > .1. The 
scatterplots to the right of the glass brains show the reliability of the effects as determined by a split-half 
analysis. The x-axis is determined by the representational similarity rho-value in cohort 1 of the split-
half analysis. The y-axis is determined by the representational similarity rho-value in cohort 2. The 
regression line and r-value labeled in the plot indicate the correlation of the effects across the two 
cohorts, providing insight into the consistency of the effects are across halves of the sample, with a 
higher correlation indicating greater consistency. Note: the rho-values in the scatterplot are separate 
from the Spearman’s rho node colors on the glass brain; the former represents effect consistency 
across all 268 nodes, while the latter denotes the fit of the model in that specific node.  

Anatomical distribution of intersubject RSA effects differs by dataset 

Aside from how well the AnnaK and Nearest Neighbors models describe the relationships between 
brain and behavior, we were also curious as to where in the brain these models fit the data well. 
One possibility is that we find more significant nodes in areas where ISC is high; this would mean 
auditory processing areas for the Healthy Brain Network dataset and visual processing areas for 
both datasets (the Yale Attention stimulus did not have audio). Alternatively, if ISC is too high, it 
may not provide enough variance to successfully relate to individual differences in behavior. The 
nature of the stimulus type may also modulate where each model of representational similarity 
fits. For instance, synchrony in higher-order regions may prove more important when the video 
stimulus contains more emotional or narrative content, such as the clip shown to the Healthy 
Brain Network participants. Finally, the distribution of nodes could depend on the model in 
question, with some regions exhibiting more AnnaK or Nearest Neighbors-style relationships 
respectively.  

To answer this question, we plot nodes demonstrating significant representational similarity 
(uncorrected p < .05) within a given model according to which network they belong to 
(Supplementary Figure 4). In the Cognitive domain, looking at the AnnaK model, the significant 
nodes are fairly evenly distributed across all networks. No one network contains more significant 
nodes than would be expected by chance, although the visual association network shows the 
greatest number of nodes. Alternatively, in the Yale Attention Sample, every behavior for both 
models shows the greatest number of nodes in early visual cortex. The number of significant 
nodes in primary visual cortex are greater than would be expected by chance for both the 
gradCPT and VSTM tasks across both models (all p < .001) and for the MOT task in the AnnaK 
model (p < .01). This pattern of results is consistent with the hypothesis that the narrative content 
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of a video modulates where in the brain neural synchrony relates to individual differences, with 
significant nodes clustered in early visual cortex for the non-narrative but not for the narrative 
stimulus. However, a number of alternative factors may drive this difference between datasets, 
and as a result, more research is needed to conclusively parse how video content affects 
intersubject RSA.   

Model fit highly is correlated with intersubject correlation 

To better understand how our power for detecting individual differences varies as a function of 
ISC, we also assessed to what extent the intersubject RSA model fit is correlated with average ISC 
(Supplementary Figure 5). If neural synchrony is associated with greater power for picking up on 
individual differences, we would expect a positive correlation between ISC and model fits. Indeed, 
this is what we observe. In every instance where the intersubject RSA was significant at the whole-
brain level, we see a strong positive correlation between node-wise ISC and node-wise IS-RSA rho 
(AnnaK: Cognitive: r=.77 Language: r=.37, gradCPT: r=.87, MOT: r=.77, VSTM: r=.87, Nearest 
Neighbors: gradCPT: r=.77, VSTM:  r=.80). In fact, in 13 out of 16 instances (2 models x 8 behavioral 
measures) we observe a positive correlation between ISC and IS-RSA effects. Here, perhaps 
counterintuitively, greater similarity across subjects’ brain activity appears to better allow us to 
understand behavioral differences. This is consistent with prior work showing that movie data is 
better than rest data for predictive modeling of individual differences in behavior (Finn & 
Bandettini, 2021). Movie watching may influence brain activity in a way that makes participants 
appear more similar, but it may also increase signal to noise. Future work remains to determine if 
there is an upper bound to this effect, such that too much neural synchrony results in a loss of 
power for modeling behavioral variability.  

Both AnnaK and Nearest Neighbors models significantly describe relationship between neural similarity 
and age in development 

The AnnaK model significantly captured brain-behavior relationships in the Healthy Brain Network 
Cognitive and Language domains and for all three Yale Attention sample tasks. The Nearest 
Neighbors model significantly fit the data for the Yale Attention gradCPT and VSTM task. We next 
wanted to ask about the relationship between a different type of phenotypic measure—age—and 
neural synchrony. Do participants more similar in age show higher ISC as predicted by the Nearest 
Neighbors model, or do older (or younger) participants show more similar ISC as predicted by the 
AnnaK model? One might predict similarity in participant age to exhibit a Nearest Neighbors-style 
relationship, particularly in the Healthy Brain Network sample, due to its inclusion of ages that 
span the course of adolescence (6-21). For instance, a 7-year-old and a 21-year-old are likely to 
have different interpretations of a narrative stimulus, and these interpretations may be reflected 
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in different fMRI time-courses during movie-watching. Unlike the developmental Healthy Brain 
Network sample, the Yale Attention dataset is a sample of young adults (aged 18-36). The brain 
undergoes significant changes during development, and shows relative stability during early 
adulthood (Bethlehem et al., 2022), and consequently we might anticipate less age-related 
variability in video processing in the Yale sample, potentially resulting in little age-related 
differences in neural synchrony. This in turn would result in a poor fit for both the AnnaK and 
Nearest Neighbors models. 

Examining the results of the age-specific intersubject RSA (Figure 4), we find significant evidence 
of the Nearest Neighbors model in the Healthy Brain Network sample (241 significant nodes, 139 
surviving multiple comparisons correction, familywise p < .0001). In line with our hypothesis, this 
implies that there is greater neural synchrony among participants that are closer in age. As for the 
AnnaK model, we observe, in contrast to our behavioral findings, primarily negative correlations 
between brain similarity and AnnaK-defined behavioral similarity (178 significant nodes, 17 
surviving multiple comparisons correction, familywise p < .0001). This negative correlation implies 
that the older participants get, the more dissimilar they appear from each other, in terms of brain 
synchrony. In the Yale Attention dataset, by contrast, neither the AnnaK nor the Nearest Neighbors 
models well-described the relationship between brain and age similarity (13 and 14 significant 
nodes respectively, 0 surviving multiple comparisons correction, familywise p-values > .47).  

In sum, both the AnnaK model and the Nearest Neighbors model describe the relationship between 
age and intersubject correlation in the Healthy Brain Network sample. This raises the possibility, 
initially proposed by Finn and colleagues (Finn et al., 2020), that for some phenotypic measures, 
modeling phenotypic similarity as a combination of the AnnaK and Nearest Neighbors models might 
yield the best fit to brain similarity (for instance, by using the formula abs(i-j)* mean(i,j)). In the Yale 
Attention dataset, neither model was a good fit, although more research is necessary to 
determine if this is due to the constrained age range of this sample or some other factor.  
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Fig 4 Relating age and neural synchrony with intersubject RSA. In the glass brain, nodes are 
colored according to representational similarity for each model in each dataset. Nodes with a black 
circle (filled in) at their centroid demonstrate significant representational similarity (p < .05, after 
correction for 268 comparisons). Nodes with a gray circle (empty) are significant before multiple 
comparisons correction (p < .05). P-values above the glass brains correspond to the whole-brain 
familywise p-value (see Methods). Glass brains without p-values above all show familywise p > .1. The 
scatterplots to the right of the glass brains show the reliability of the effects as determined by a split-half 
analysis.  

Discussion 
Recent work hypothesizes that similarities in behavioral traits are reflected in similar BOLD 
responses to movies, but that this relationship does not always hold constant across the 
behavioral spectrum (Finn et al., 2020). Specifically, Finn and colleagues found that participants 
who scored highly on a test of working memory showed greater neural synchrony with other high 
scorers, while individuals who scored low appear less synchronized across the board. In this 
instance, neural similarity is indicative of behavioral similarity, but only in high-scoring 
participants. How does the relationship between neural similarity and behavior play out in other 
behavioral domains?   
 
In the present study, we investigate this question, examining brain-behavior relationships in eight 
behaviors across samples from two datasets: the Healthy Brain Network dataset (Cognitive, 
Attention, Social, Emotional, and Language) and the Yale Attention dataset (gradCPT, MOT, VSTM). 
Using intersubject-RSA, we tested two models of neural synchrony: 1. the Nearest Neighbors 
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model, stating that individuals will look similar to those nearby on some behavioral scale and 2. 
the AnnaK model, stating that high scorers will look like other high scorers while low scorers will 
show greater variability (or vice versa). Overall, our analyses revealed greater evidence for the 
AnnaK model of brain-behavior relationships, particularly for the Cognitive domain in the Healthy 
Brain Network Dataset and the sustained attention task in the Yale Attention dataset. Put another 
way, results here suggest that in tasks across datasets and behavioral domains, high scorers tend 
to resemble high scorers, whereas low scorers appear dissimilar from everyone else. While the 
Nearest Neighbors model also fit the data above chance for two of the eight behavioral domains 
tested (gradCPT and VSTM), in no behavioral domain did it clearly outperform the AnnaK model 
when examining number of significant nodes and family-wise p-values. This finding is striking 
considering that the Nearest Neighbors model is arguably a more common way of operationalizing 
the association between brain activity and cognitive performance. Our results here replicate 
previous observations of AnnaK-style ISC-behavior associations (Finn et al., 2020) and underscore 
the importance of considering the meta-relationship between brain and behavior to avoid missing 
the forest for the trees.  
 
Our findings here, as well as the results of Finn et al., 2020, provide substantial evidence of an 
AnnaK-style relationship in cognition-related domains. Intriguingly, however, the advantage of the 
AnnaK model is more apparent in the Healthy Brain Network and Human Connectome Project 
samples, and less clear in the Yale Attention sample. 
 
One factor that that may drive this difference across datasets is the relative granularity of the 
behavioral measure. Perhaps it is not surprising that a “coarse” measure of behavior, such as the 
Cognitive PC score defined here, shows greater variability among low scorers. Whereas the 
highest scorers may perform relatively well on all tasks, the low-scoring group could be made up 
of individuals who performed poorly on different tasks, such as spelling and working memory. In 
this case, the variability among low scorers could be attributed to difficulties with spelling and 
working memory, respectively. To control for this potential explanation, we conducted IS-RSA 
separately on each component variable of the Cognitive PC score. Even when examining tasks 
individually, however, we continue to find greater evidence for the AnnaK model (Supplementary 
Figure 2). An additional strike against a “granularity” account is the robust evidence for the AnnaK 
model in the Human Connectome Project, where a single task, the NIH List Sorting working 
memory task, was analyzed by Finn et al. (2020). Another possibility is that the difference across 
datasets arises from the use of movie data from two fMRI sessions in the Yale Attention analyses, 
compared to data from one session in all other analyses. To investigate this, we replicated our IS-
RSA analyses separately by session (Supplementary Figure 7). While effects are weaker in the 
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second session, possibly due to lower ISC, we see largely similar patterns across sessions, making 
it unlikely that the multisession analysis explains the cross-dataset differences. 
 
A third factor that may contribute to this discrepancy is the type of movie stimulus used. Human 
Connectome Project and Healthy Brain Network participants viewed video stimuli that included 
narratives, while the Yale Attention sample viewed an abstract film lacking narrative or 
representational content. Perhaps the variance in brain activity evidenced in those who scored 
lower on behavioral measures is heightened by the cognitive processes involved in processing 
narratives. Finally, one last factor that may influence differences in how the AnnaK model captures 
behavioral similarity across datasets is sample heterogeneity. In addition, both the Human 
Connectome Project and Healthy Brain Network include data from multiple scanning sites and, in 
the case of the Healthy Brain Network, intentionally focus recruitment on participants with 
symptoms of psychopathology. The Yale Attention dataset, alternatively, includes a smaller non-
clinical sample of adult participants. If sample heterogeneity proves to be an important factor to 
brain-behavior similarity, as fMRI datasets grow larger and span a more diverse range 
participants, it may become increasingly difficult to understand behavior through analyses which 
assume a one-to-one mapping between brain and behavioral similarity.  

When relating intersubject-RSA to age, we observed evidence for the Nearest Neighbors and AnnaK 
models in the Healthy Brain Network sample only. These results suggest that, in the Healthy Brain 
Network dataset, younger participants and participants closer in age show greater neural 
synchrony. While this result may seem curious when juxtaposed with our behavioral findings, it is 
in line with prior work demonstrating that ISC as measured with EEG decreases with age 
(participants aged 5-44) (Petroni et al., 2018) and ISC as measured with fMRI decreases with age 
(participants aged 18–88) (Campbell et al., 2015).  However, existing literature is somewhat mixed 
with regard to the association between neural synchrony and age, with some evidence suggesting 
that adults exhibit greater ISC compared to children, particularly in the default mode network 
(Moraczewski et al., 2020). Another study analyzing data from the Healthy Brain Network found, in 
line with our findings here, more areas of the brain where ISC was greater in younger participants 
than older participants (Cohen et al., 2022). Inconsistent with the current findings, however, the 
same study reports higher ISC among older participants in the auditory cortex (Cohen et al., 2022), 
and another which reports greater synchrony among older participants across the cortex more 
generally (Camacho et al., 2023). One factor that may contribute to this discrepancy is our use of a 
relatively conservative motion threshold (mean framewise displacement < .15 mm) in determining 
our sample. While this criterion should help safeguard against spurious motion-driven effects, we 
cannot rule out the possibility that motion in this sample is related to another variable affecting 
ISC (Power et al., 2012). Additionally, our analyses include all ages available in the Healthy Brain 
Network dataset (ages 6-21 years); when excluding participants 16 years and older (as in Camacho 
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et al., 2023), we observe a primarily positive relationship between age and intersubject correlation 
(see Supplementary Figure 8). Consequently, future work remains to elucidate how ISC changes 
across development.   
 
The AnnaK model may help us to characterize the nature of brain-behavior similarity, but future 
research is needed to determine the source of increased variance for one side of a behavioral 
scale. How can we understand features characteristic of the end of the spectrum marked by 
greater heterogeneity? One approach which may prove useful is the classification of behavioral 
performance. Among individuals with the same summary score on a behavioral task, there may be 
clusters of participants that can be differentiated based on their patterns of responses. For 
instance, perhaps some individuals take longer to recover after making errors. A separate group 
of participants may quickly regain focus after errors but show a marked deterioration in 
performance near the end of the task, as their concentration wanes. If neural similarity is higher 
within these clusters, but lower across them, this could help explain why there is more variation in 
brain activity among low-scoring individuals. However, there may be a limit to how well we can 
characterize this variability using individual differences approaches, if low-scoring individuals 
appear not only dissimilar to each other, but dissimilar to themselves. This may prove to be the 
case, considering recent work showing that intra-individual variability is associated with worse 
task performance, both in terms of session-to-session whole-brain functional connectivity 
(Corriveau et al., 2022) as well as trial-by-trial patterns of hippocampal activity (Poh et al., 2022). 

The present study aims to further elucidate the connection between similarity in brain activity and 
similarity in behavior. Using intersubject representational similarity analysis, we conceptually 
replicate prior work, and empirically assess assumptions in cognitive neuroscience research which 
may otherwise go untested. In continuing to map the space of neural and behavioral similarity, 
future work will reveal the structure governing how neural activity produces our idiosyncrasies as 
individuals. 
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Supplementary Information 
 

 

S1: Intersubject correlation. Here we show pairwise intersubject correlation, calculated 
separately in each node in our 268-node parcellation, and averaged across all participants. 
Intersubject correlation is defined as the Pearson correlation between the BOLD time series of two 
different participants for a given node.  
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S2 Associations between Healthy Brain Network behavioral scores. Scatterplots showing the 
relationship between z-scored behavioral scores in the Healthy Brain Network biobank. The r-
value is the Pearson correlation between the two behaviors. 
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S3 Intersubject RSA (Healthy Brain Network cognitive measures). IS-RSA results for each 
variable in the “cognitive domain” PCA. Plotting conventions are the same as figures in the main 
text (see Figure 3). 
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S4 Intersubject RSA results by network. For each behavioral task, for each model, we show the 
percent of nodes in a given network that show significant representational similarity. Stars 
indicate that the given network demonstrates a greater number of nodes than expected by 
chance, as determined by permutation testing (p<.05 corrected for 8 comparisons). 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2023. ; https://doi.org/10.1101/2023.06.22.546173doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.22.546173
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

H
ea

lth
y 

Br
ai

n 
N

et
w

or
k

MOT

VSTM

GRADCPT

Ya
le

 A
tte

nt
io

n

COGNITIVE

LANGUAGE

ATTENTION

SOCIAL

EMOTIONAL

AnnaKNearest Neighbors

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
S5 Correlation between IS-RSA Spearman R and ISC by node. Each point on each scatterplot is 
one of 268 nodes in the whole brain parcellation. The y-axis shows the r-value representing model 
fit in that node (brain similarity correlated with behavioral similarity for a given model). The x-axis 
shows the mean pairwise intersubject correlation in the node. 
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Each point on the scatterplots  is one of 268 nodes in the 
whole brain parcellation. The y-axis shows the r-value 
representing model fit in that node (brain similarity correlated 
with behavioral similarity for a given model). The x-axis 
shows the mean pairwise intersubject correlation in the node. 
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S6 Correlation between IS-RSA Spearman R and ISC by node. Each point on each scatterplot is 
one of 268 nodes in the whole brain parcellation. The y-axis shows the r-value representing model 
fit in that node (brain similarity correlated with behavioral similarity for a given model). The x-axis 
shows the mean pairwise intersubject correlation in the node. 

 
S7 Intersubject RSA (Yale Attention). IS-RSA results for each variable in Yale Attention dataset, 
separated by movie session (S1 is the first viewing of the film, and S2 is the second). Plotting 
conventions are the same as figures in the main text (see Figure 3). 
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S8 Age Intersubject RSA excluding ages 16 and above. IS-RSA results for age in the Healthy 
Brain Network sample, but excluding participants aged 16 years and older (the main text includes 
all available ages, 6-21). Plotting conventions are the same as figures in the main text (see Figure 
3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

H
ea

lth
y 

Br
ai

n 
N

et
w

or
k AGE

AnnaKNearest Neighbors

Spearman’s rho

-.25 .25 0 

p < .05 (corrected for 268 comparisons)
p < .05

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2023. ; https://doi.org/10.1101/2023.06.22.546173doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.22.546173
http://creativecommons.org/licenses/by-nc-nd/4.0/

