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Abstract
The increasing availability of genomic resequencing datasets and high quality reference
genomes across the tree of life present exciting opportunities for comparative population
genomic studies. However, substantial challenges prevent the simple reuse of data across
different studies and species, arising from variability in variant calling pipelines, data quality, and
the need for computationally intensive reanalysis. Here, we present snpArcher, a flexible and
highly efficient workflow designed for the analysis of genomic resequencing data in non-model
organisms. snpArcher provides a standardized variant calling pipeline and includes modules for
variant quality control, data visualization, variant filtering, and other downstream analysis.
Implemented in Snakemake, snpArcher is user-friendly, reproducible, and designed to be
compatible with HPC clusters and cloud environments. To demonstrate the flexibility of this
pipeline, we applied snpArcher to 26 public resequencing datasets from non-mammalian
vertebrates. These variant datasets are hosted publicly to enable future comparative population
genomic analyses. With its extensibility and the availability of public datasets, snpArcher will
contribute to a broader understanding of genetic variation across species by facilitating rapid
use and reuse of large genomic datasets.

Introduction
In the past decade, rapidly declining sequencing costs have led to a dramatic expansion in the
availability of genomic resequencing datasets in diverse organisms, fueling a wide range of
novel insights, including the prevalence of adaptive introgression between species
(Huerta-Sánchez et al. 2014; Lamichhaney et al. 2015; Jones et al. 2018), the molecular basis
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of repeated local adaptation (Jones et al. 2012; Hill et al. 2019; Wooldridge et al. 2022), and the
complex demographic histories of humans (Nielsen et al. 2017; Fan et al. 2023) and animals of
conservation relevance (Robinson et al. 2018). In parallel, rapidly expanding efforts to generate
high quality reference genomes across the Tree of Life (Rhie et al. 2021); (Lewin et al. 2022)
are poised to empower population genetic inference across a wide diversity of organisms. The
massive accumulation of existing genomic datasets facilitated by these advances can enable
broad comparisons between diverse populations and uncover generalized principles that may
explain processes that generate diversity across life. These questions include the determinants
of molecular variation among species (Romiguier et al. 2014; Corbett-Detig et al. 2015; Buffalo
2021) and indirect estimates of the rates of loss of genetic variation among populations
(Exposito-Alonso et al. 2022).

However, despite the rapid increase in accessibility of public sequencing data from diverse
organisms, comparative population genetics and reuse of public data remains challenging for
several reasons. In the absence of standardized variant calling pipelines for non-human species
(Regier et al. 2018), computational batch effects introduced by differences in reference choice,
alignment, and variant calling algorithms complicate efforts to jointly analyze existing variant
calls across populations and species (Lek et al. 2016; Jia et al. 2020; Breton et al. 2021).
Considerations must also be given to data quality prior to data processing, particularly in cases
of low coverage (Lou et al. 2021), and workflows must be flexible to accommodate these
considerations. Because these computational and algorithmic choices can impact downstream
analysis (Kulkarni and Frommolt 2017), comparative projects often must reanalyze raw data to
produce comparable datasets, which can be computationally expensive.

Extensible, reproducible bioinformatic pipelines can help address these challenges, to facilitate
both primary analysis of complex tasks such as variant calling and also allow for consistent
reanalysis (Wratten et al. 2021). While reproducible workflows have had a major impact in
human population genetics (Chen et al. 2022), the need for significant expertise to adapt
pipelines optimized for human genetics to diverse species is a major technical hurdle for many
researchers. Additionally, resequencing datasets are increasingly rapidly in scale (Ellegren
2014), driving a need for workflows optimized for computational efficiency and flexibility to use
across a variety of compute resources, including cloud resources that eliminate the need for
costly on-site infrastructure (Mangul et al. 2019).

Due to the popularity and need for efficient and reproducible workflows, several solutions have
already been proposed for variant calling pipelines (Czech and Exposito-Alonso 2022; Cullen
and Friedenberg 2023). Here, we present snpArcher, a reproducible workflow for dataset
acquisition, variant calling, quality control, and downstream analysis that is optimized for
nonmodel organisms and comparisons across datasets, available at
https://github.com/harvardinformatics/snpArcher. snpArcher implements a combination of
several notable features not included in other existing solutions that address the challenges
presented by the expanding scale of comparative population genomics studies. First, our
workflow is optimized for non-model species, which often lack gene annotations, known variant
sites, and other genomic information typically required for human-optimized pipelines. Second,
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we take advantage of the huge compute power available through cloud resources and large
high-performance computer (HPC) clusters by highly parallelizing the workflow's variant calling
step and thus greatly reducing analysis time. Third, we present a framework for extensibility and
community development by defining downstream module contribution guidelines, including
exemplary modules offering variant quality control, visualization, and other analyses.

To enable rapid analysis of a growing set of variant calls created in a functionally equivalent
way, we apply this workflow to reanalyze public sequencing data and produce variant calls for
26 focal species of non-mammalian vertebrates, hosted for public use via Globus (accessible at
https://app.globus.org/file-manager?origin_id=a6580c44-09fd-11ee-be16-195c41bc0be4&path=
%2F or by a search for the “Comparative Population Genomics Data” public collection on
Globus). Furthermore, we provide examples of analysis and visualization modules, and we use
these to exemplify and enumerate a suite of criteria for future module contributions to this
project. This new and immediately available toolset will enable highly reproducible comparative
population genomic analyses for a broad range of taxa.

Results/Discussion

Overview of snpArcher
We developed snpArcher, a comprehensive workflow for the analysis of polymorphism data
sampled from non-model organism populations (Figure 1). This workflow accepts raw sequence
data and a reference genome as input, and ultimately produces a filtered, high quality VCF file
for downstream analysis. This workflow is implemented in Snakemake (Mölder et al. 2021) and
can be deployed on a HPC cluster or cloud environment to enhance scalability and accessibility.
snpArcher uses a straightforward configuration file to flexibly accommodate many possible ways
of running this pipeline. For example, it is possible to specify and download read data and
reference genomes from NCBI or to specify local files for one or both of these inputs. snpArcher
is designed to produce bioinformatics-standard data objects that can be used in a range of
downstream applications. Furthermore, a defined module contribution model ensures that the
workflow can be incorporated for use in a range of analyses and will grow through user
contributions. snpArcher therefore provides a backbone for future development as well as a
substrate for immediately comparable datasets.
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Figure 1: snpArcher overview. snpArcher is an automated pipeline implemented in Snakemake
(Mölder et al. 2021). It takes short read whole genome sequencing data (fastq) and a reference
genome as input and produces a multisample variant callset (VCF). With the modules presented
here, snpArcher performs basic Quality Control statistics and visualizations.

Datasets Processed and Public Database for Comparative Population Genomics
To thoroughly evaluate snpArcher and to provide a database of comparative population genomic
datasets, we ran the workflow on 26 public resequencing datasets (Table S1). This dataset
includes 13 birds, 12 fish, and 1 reptile. Datasets vary by number of individuals from 6 to 306, all
with a mean depth of coverage of at least 5. Of these datasets, 13 are multispecies samples
mapped to a common reference genome, 7 are primarily a single species but with one or two
outgroup samples, and 6 are purely a single species.

A crucial advantage of snpArcher is that datasets will be maximally comparable across species
because the bioinformatic processing is standardized. To ensure that future projects that use
this pipeline have an immediately available set of comparable data, the VCFs and gVCFs for
these datasets are hosted publicly on Globus (​​https://www.globus.org/)(Foster 2011; Allen et al.
2012) available at no cost to the user via the Comparative Population Genomics Data public
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collection. We expect that these datasets, in combination with the snpArcher pipeline, will spur
future comparative population genomic analyses.

Benchmarks
To evaluate the performance of snpArcher, we selected 10 individuals from a high quality
resequencing dataset of Zebra finch (Singhal et al. 2015) and reanalyzed them using a range of
approaches. First, we investigated the impacts of low sequencing depth by subsampling the
initially high-depth dataset (16.7x-50.2x coverage) to uniform reduced coverage datasets (4x,
10x, and 20x) . We ran each dataset using the “low coverage” and “high coverage”
configurations of the pipeline; the “low coverage” configuration alters certain GATK parameters
to improve single nucleotide polymorphism (SNP) calling in low coverage datasets. After filtering
for SNPs that passed all filters, we genotyped about 40, 55, and 50 million SNPs in the 4x, 10x,
and 20x datasets, respectively, with about 1 million more SNPs recovered from the low
coverage pipeline at 4x coverage compared to the high coverage version. There were negligible
differences for the two pipeline versions at 10x and 20x (Figure 2A). CPU time to run the low
coverage version of the pipeline was substantially higher compared to the high depth version,
and increased with sequencing depth (Figure 2B). The percentage of heterozygous sites per
individual was substantially reduced at 4x coverages, the lowest with the 4x high depth pipeline,
and slightly reduced at 10x coverage (Figure 2C). Individual fixation indices measuring expected
heterozygosity (F statistics) were correspondingly higher at lower sequencing depths and with
the high depth pipelines (Figure 2D), indicating less heterozygous dropout. While heterozygous
dropout is a substantial problem at low-coverage (Nevado et al. 2014; Benjelloun et al. 2019),
parameter tuning can partially mitigate its impact on genotype calls.
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Figure 2. Benchmarks for the 10 individual Zebra Finch coverage and pipeline testing. For each
coverage dataset (4x, 10x, 20x), we ran the low coverage (LC; purple) and high coverage (HC;
green) version of the pipeline, and calculated A) the overall number of SNPs following standard
SNP filtering, B) the hours of CPU time to run HaplotypeCaller for each individual, C) the
percentage of heterozygous sites for each individual, and D) the F-statistic calculated for each
individual.

Second, we assessed the effectiveness of our parallelization method for variant calling using
snpArcher on the 10x Zebra finch dataset. A performance comparison was conducted between
our scatter-by-Ns approach and the traditional scatter-by-chromosome approach. Given that
GATK HaplotypeCaller has limitations in efficiently utilizing multiple CPU cores, it is
recommended to parallelize this step using a scatter-gather technique, distributing the
computation across the reference genome's chromosomes (Heldenbrand et al. 2019). However,
as runtime scales with genomic interval size (Fig 3A), using this approach will still result in
potentially long execution times. To address this, we employ a strategy of partitioning
chromosomes at Ns (assembly gaps), creating additional genomic intervals that enable further
parallelization of the HaplotypeCaller step. This leads to increased compute utilization and
reduced runtime per sample (Fig 3B). Although the effectiveness of this approach is dependent
on available compute resources, the wide availability of high-performance computing (HPC)
clusters and affordable cloud compute resources renders this constraint generally acceptable.
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Figure 3. Wall clock and CPU time metrics from the HaplotypeCaller step of snpArcher. A) Wall
clock time required to run HaplotypeCaller on genomic intervals. B) CPU time and wall clock
time elapsed per individual to complete the HaplotypeCaller step using the scatter-by-chrom
approach (green), or scatter-by-Ns approach (purple).

Extensibility of snpArcher
A key goal in the design of the snpArcher pipeline is to allow seamless extensibility with
downstream processing. We implement this using Snakemake modules, which allow additional
rules to easily extend the main pipeline. To be added to snpArcher, a Snakemake workflow only
needs a way to indicate that it should be run, such as a flag in the config file or a column in the
sample sheet, and for output files from snpArcher to be linked to input files of the workflow. As
long as these constraints are met, any user-defined Snakemake workflow can be imported as a
module. We present several modular extensions of snpArcher here, but we hope also that
user-developed modules will grow the set of tools linked to snpArcher in order to facilitate
diverse analysis. We define a set of criteria for contributors to follow in the workflow
documentation when adding additional modules.

Quality Control and Data Visualization
An important component of any pipeline is quality control and data visualization outputs. We
have implemented a module in snpArcher, run by default, that produces an interactive
quality-control dashboard, which can be used to evaluate individual-level sequencing quality
(Fig 4). This dashboard generates ten figures that allow visualization of basic summary statistics
relating to population structure, batch effects, sequencing depth, genetic relatedness,
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geography, and admixture. For speed, most of these summaries are based on a random sample
of 100,000 SNPs from across the genome. Four panels at the top of the dashboard provide high
level summaries of the full variant dataset (i.e. without random downsampling to 100,000
SNPs).

The use case for these simple visualizations is to quickly evaluate potential biases relating to
individual-level sequencing variation. For example, in the principle component analysis (PCA)
shown in the upper left panel of Fig. 4, it is possible to identify outliers that may represent cryptic
genetic variation, batch effects, or otherwise problematic (or interesting) samples. By default, we
identify three clusters based on PC1 and PC2 with k-means clustering (modifiable in the config
file), and the remainder of the plots are colored according to these three clusters. Several
metrics allow for the user to identify potential sequencing artifacts, for example by looking for
associations between sequencing depth and PCA cluster (Fig. 4, upper right panel) or reference
bias (Fig. 4, lower middle panel). An interactive heatmap of relatedness facilitates a rapid
identification of close relatives in the dataset that may have otherwise been overlooked. Finally,
two maps project spatial data as an interactive plot and provide a first pass visualization of the
PCA clusters in space.

Figure 4. Preview of QC Dashboard for evaluating individual sequencing quality metrics. Shown
here, genomic PCA, correlations between PCs and sequencing depth, relationship between
missingness and SNP depth, percent mapped reads and SNP depth, and FI (inbreeding
coefficient) and PC1. A complete interactive example can be found at
[https://erikenbody.github.io/snpArcher/GCA_013435755.1_final_qc.html]
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Postprocessing
By default, snpArcher produces a raw variant call format (VCF) file with only basic filtering
annotated. However, after viewing the individual-level quality-control visualizations as part of the
QC module, users may wish to remove certain individuals from the analysis and apply additional
filters on called variants. Additional postprocessing steps are implemented in a module, which
runs if the user adds a column to the sample sheet header “SampleType.” The postprocessing
module will exclude from the filtered VCF any sample with “exclude” as the SampleType,
retaining all other individuals. Following this sample filtering, this module implements additional
user-configurable filters. By default, the postprocessing workflow removes sites that fall into
regions of low mappability, regions with excess coverage, and regions with insufficient coverage
(defined by the configuration file), and then removes sites with a minor allele frequency < 0.1 or
missingness > 75%. These thresholds can be configured by the user. Finally, two clean variant
files are produced for SNPs and indels separately.

MacDonald-Kreitman Tests
To demonstrate the potential to extend snpArcher to incorporate downstream analysis, we
developed a module to evaluate positive selection among a sample of individuals from a
population (the ingroup) as well as one or more diverged samples (the outgroup) by computing
MacDonald-Kreitman (MK) tests for each gene (McDonald and Kreitman 1991). This module is
triggered when samples are annotated as “ingroup” and “outgroup” using the SampleType
column in the sample sheet. Samples that do not have either designation will be excluded from
the MK tests.

To facilitate the development of this module, we wrote a stand-alone Python program,
degenotate (https://github.com/harvardinformatics/degenotate), that can retrieve coding
sequences from an annotated genome, compute degeneracy across the genome, and calculate
MK tables; degenotate can be installed via conda and run independently, but is also
incorporated into snpArcher’s MK module. Briefly, degenotate assesses whether SNPs in the
postprocessed VCF encode for polymorphic sites within the ingroup or fixed differences
between the ingroup and the outgroup. It further classifies whether each SNP, whether
polymorphic or fixed, is synonymous or non-synonymous. Note that certain assumptions,
detailed in the Methods, must be made about how to handle certain rare edge cases when
doing this.

Based on these outputs, the MK module (or standalone degenotate) creates tables that are
organized by gene and can be analyzed using the standard MacDonald-Kreitman test statistic,
using various extensions (Rand and Kann 1996) (Stoletzki and Eyre-Walker 2011), or in
aggregate to investigate genome wide signatures of natural selection (Messer and Petrov
2013). This module will enable rapid application of population-genomic tests of selection (Figure
5) and in combination with the database of processed population datasets, provides a
framework for comparing rates of adaptation to a range of species.
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Figure 5. Analysis of three fish datasets using snpArcher+degenotate, demonstrating the
possible applications of this module. (A) MK results for Takifugu rubripres, plotting the -log10
P-value of a Fisher’s exact test of the MK table on the Y axis, and the direction of selection on
the X axis (Stoletzki and Eyre-Walker 2011; positive for an excess of nonsynonymous
divergence, negative for an excess of nonsynomyous polymorphisms). Genes with nominal
P-values < 0.001 are shaded darked, and three collagen genes with potential roles in tooth and
spine development are highlighted. (B) Ratio of nonsynonymous to synonymous diversity
(calculated based on number of segregating sites in each category) for three fish species.
Boxplot show the median and interquartile range for protein coding genes in the genomes of
each species.

UCSC Genome Browser Track Data Hub Generation
To facilitate downstream data exploration and as an example of the module development
components of this work, we developed a module to generate UCSC Genome Browser track
files to explore population variation data (see Methods). Briefly, this module computes and
generates genome browser tracks for traditional population genomic summary statistics such as
windowed estimates of Tajima’s D, SNP density, Pi, Minor Allele Frequency, SNP depth. The
Genome Browser tracks allow for rapid analysis of common population genomic statistics along
with other available genomic feature tracks in an easy to access and shareable format (Fig 6).
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Figure 6. Example Genome Browser track hub created by the trackhub module. Tracks include:
Minor allele frequency, non-callable sites, nucleotide diversity (Pi) in 1kb bins, SNP depth, SNP
density in 1kb bins, Tajima’s D in 1kb bins, and a VCF track.

Challenges and Prospects for Re-Use of Public Data
Publically available datasets provide opportunities for comparative genomics, but also present
limitations inherent to data re-use. Metadata associated with genomic data is often fragmented
or missing, meaning crucial information for quality control of reusing data is not always available
(Gonçalves and Musen 2019); (Toczydlowski et al. 2021). A key function of the snpArcher
pipeline is to produce metrics to evaluate potential biases in the dataset for common population
genomic issues. For example, pedigree information is typically not available for wild populations
and likely to be missing from public datasets, but close relatives may bias many common
population genomic analyses (Hendricks et al. 2018). Our QC module reports relatedness
information, allowing rapid identification of related individuals. In the datasets we analyzed, 14%
of all datasets considered included identical individuals by genotype and 47% of datasets
included at least one first degree relative in it. At the population scale, undetected population
structure can bias population and quantitative genomic analysis, and the PCA and admixture
reports in the QC module will give a first pass assessment of known or unknown structuring.
Sequencing data on public databases can contain contamination, either from other individuals
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or other species. These can be identified using measures of inbreeding (i.e., low inbreeding
values may suggest excess heterozygosity and cross contamination) that are reported in the
QC module. Outliers in sequencing depth, missingness, and mapping rate are all quickly
identifiable using the interactive QC plots. Finally, data quality at short scale genomic intervals
can be visualized using the genome browser outputs, for example to evaluate sequencing depth
and genetic diversity around regions of interest.

Conclusion
The production of high-quality and accurate genomic variation datasets for non-model species
can be a challenging task, especially with the ever-increasing volume of genomic data that is
being produced. The massive scale of population-scale whole-genome sequencing datasets
presents significant hurdles in data management, processing, and analysis. In this manuscript,
we introduce snpArcher, a powerful and user-friendly Snakemake workflow that addresses
these challenges and enables the production of reliable and reproducible variation datasets.
Crucially, our pipeline is parallelized, efficient, and scales well even up to modern
population-scale datasets. snpArcher also provides an ideal tool for reanalyzing population-level
datasets that are available on public databases and provides a consistent framework for
comparative analyses across different datasets. By offering a reproducible and well-documented
analysis pipeline, snpArcher ensures the reliability and consistency of results, empowering
researchers to spend less time on complex data and workflow management, and more time on
analysis and discovery.

Methods

Workflow overview
The snpArcher pipeline is implemented in Python and utilizes the Snakemake workflow
management system (Mölder et al. 2021), which allows for efficient handling of external
dependencies, seamless execution on both cloud and cluster computing infrastructures, and
enables scalable and efficient analysis of large-scale genomic datasets. For each step in the
workflow, snpArcher by default implements tools that are generally regarded as field standard,
optimized based on our experience and evaluation of their performance on real-world datasets,
ensuring that the pipeline delivers accurate and reliable results. Moreover, snpArcher’s modular
and configurable design allows users to customize the analysis workflow to meet their specific
research requirements, and allows for future extensions to incorporate additional tools and
algorithms.

Configuration
Core workflow options in snpArcher are controlled by a YAML configuration file. This file controls
options such as module selection, output prefix for final files, and temporary storage location.
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In order to determine what outputs to create, snpArcher requires users to create a sample sheet
file. This comma separated file contains the required sample metadata about the user’s samples
in order to run the workflow. At a minimum, the snpArcher pipeline requires that each sample
have a unique sample name, a reference genome accession or a path to a fasta file, and a SRA
accession or path to two paired end fastq files (Table 1). We include with snpArcher a simple
script, written in Python, to facilitate the generation of sample sheets from local datasets, and
we include examples of how to create snpArcher sample sheets from SRA run tables in R.

BioSample refGenome Run

SAMEA3532857 GCF_003957565.2 ERR1013161

SAMEA3532860 GCF_003957565.2 ERR1013164

SAMEA3532862 GCF_003957565.2 ERR1013166

SAMEA3532864 GCF_003957565.2 ERR1013168

SAMEA3532865 GCF_003957565.2 ERR1013169

Table 1 An example of the minimum required sample metadata to run snpArcher

Computer resources and cloud configuration
Variant calling for large population-level sequencing datasets are computationally intensive and
require substantial computational resources to run. While it is possible to run snpArcher on a
laptop for small datasets, such as the test dataset included in the workflow or single samples,
we have optimized it to run on HPC clusters and cloud compute platforms. We have tested
snpArcher extensively on SLURM-based high-performance clusters and on the Google Cloud
Life Sciences platform, and following Snakemake best practices, we provide configurable
profiles that can be enabled depending on which computational resources you will use. The
SLURM profile and associated bash script provide the basic configuration for running on a
SLURM cluster, but the profile will need to be adjusted according to the configuration of the
user’s specific system.

To run snpArcher on the Google Cloud Platform, the user must have a Google account linked to
a billing account where charges for computational resources can be made. This Google
configuration is set up outside of snpArcher, on the command line, and on the Google Cloud
Console. Once this is set up in the local environment, snpArcher can be directed to run on
Google Cloud instances using the GCP profile provided with the workflow. The user can define
how many instances to create and also define the size of required resources in the
resources.yaml file included in the workflow. The GCP profile also is configured to exploit
preemptible instances, which are short-term compute instances that are offered at considerable
cost savings, but can only run for 24 hours and be bought out by other GCP users. The current
defaults have been optimized for datasets of genome size of ~2Gbp, 150 individuals, and 10x
sequencing depth with an estimated cost of $1/sample when a Sentieon license is available.
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Larger or smaller projects may need to tweak these resources to optimize cost/saving benefits
best and prevent the preemption of long-running datasets.

Data Acquisition and pre-processing
The first step of the workflow is acquisition and pre-processing for raw sequence data and
reference genomes. For each sample, two paired-end fastq files are required. The default
behavior is to retrieve sequencing data from NCBI based on an SRA run accession (Leinonen et
al. 2011) using prefetch. For various reasons, prefetch may fail. If this happens, ffq
(Gálvez-Merchán et al. 2022) is used to generate a FTP link for the accession that is
downloaded. Alternatively, users can supply paths to fastq files in the sample sheet, in which
case snpArcher will operate on those locally stored files. Next, sequencing adapters are
trimmed from the raw fastq files with fastp (Chen et al. 2018) and sequences with greater than
40% of bases with a phred score below Q15 removed. Reference genomes are retrieved using
the NCBI datasets tool (Sayers et al. 2021) if an NCBI accession is specified; otherwise, a path
to the reference fasta must be included in the sample sheet. Once available, the reference fasta
is processed using bwa index (Li and Durbin 2009), samtools faidx, and samtools dict (Li et al.
2009) to produce the indexes necessary for downstream processes.

Read mapping
After the raw data is retrieved and pre-processed, the workflow aligns sequencing reads to the
reference genome using bwa mem (Li 2013) to produce per sample BAM files. For each
sample, read groups are appended based on the sample sheet specification. We mark PCR
duplicates using sambamba markdup (Tarasov et al. 2015) to exclude these technical artifacts
from downstream analysis. Alignment statistics are calculated per sample using samtools
flagstat.

Mappability and coverage
Additionally, mappability statistics are computed on the reference genome using genmap
(Pockrandt et al. 2020). Per site coverage statistics are optionally computed and aggregated
using d4tools (Hou et al. 2021), mosDepth (Pedersen and Quinlan 2018), and bedtools (Quinlan
and Hall 2010). Mappability statistics for the reference genome, combined with per site
coverage statistics, can be used to generate a bed file delineating callable regions of the
genome based on user-configurable thresholds.

Variant calling
We use the Genome Analysis Toolkit (GATK) (McKenna et al. 2010) for variant calling and joint
genotyping. First, we employ GATK HaplotypeCaller to call SNPs and indels in each sample. If
the user has selected the low coverage configuration, we set the --min-pruning and
--min-dangling-branch-length options equal to 1 (Hui et al. 2020), otherwise defaults are used.
Next, individual variant calls are aggregated into an efficient data structure via GATK
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GenomicsDBImport. This step is necessary to enable large cohort joint genotyping. Then, we
use GATK GenotypeGVCFs to perform joint genotyping and produce a multisample VCF,
retaining only high confidence variants. This approach is broadly adapted by the field as the
standard for variant calling, as evidenced by nearly 20,000 citations of the flagship GATK paper
to date. Finally, we apply filter annotations to the VCF according to the GATK best practices
(Van der Auwera et al. 2013) using GATK VariantFiltration.

Parallelization
Processing even moderately sized datasets can be exceptionally slow with GATK. One solution
is to parallelize each GATK step by splitting the reference genome into processing intervals for
both the individual and joint genotyping steps. Optimally, this interval creation step divides the
genome into shorter sub-chromosomal (or sub-scaffold) pieces so that each interval can finish in
a shorter amount of time. In order to optimize runtime, we use a two-step interval creation
process. We generate an initial set of calling intervals using the ScatterIntervalsByNs tool to
divide the reference genome at large blocks of Ns. This is important because SNP calling with
GATK Haplotype Caller is based on local reassembly, which can be adversely affected if, for
example, reads that map across an interval boundary are discarded. However, for many
reference genomes this can result in thousands of intervals, which leads to inefficient workflows
as the time to assess which jobs need to run becomes prohibitive. To create a balanced set of
interval lists, we use the GATK SplitIntervals tool using the option <-mode
BALANCING_WITHOUT_INTERVAL_SUBDIVISION>, which creates a set of interval lists (up to
a maximum user specified value) that all have approximately equal numbers of bases. For the
joint genotyping step, each site is treated independently, so we can gain efficiency by creating
additional intervals without the concern of splitting adjacent regions of the genome. Thus, for the
second set of intervals, we use the option <-mode INTERVAL_SUBDIVISION> to produce a
scalable number of intervals that can divide adjacent regions. These intervals are then used to
parallelize GATK GenomicsDBImport for efficient multi-sample calling.

Sentieon accelerated variant calling
In addition to the BWA/GATK mapping and variant calling pipeline, we include a Sentieon
(Kendig et al. 2019) workflow. This software package is proprietary and produces identical
results as GATK, but has been much more efficiently parallelized, resulting in substantially
reduced compute needs. The Sentieon workflow uses Sentieon’s drop-in replacement tools for
mapping, PCR duplicate removal, metrics, and variant calling. The use of this workflow is a
user-specified option in snpArcher and requires a software license from Sentieon that can be
specified in the config file.

Quality Control
snpArcher includes an optional QC module that aggregates various statistics from the workflow
and produces preliminary analyses and plots in an interactive HTML file. We estimate the
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per-individual variant metrics SNP-depth, individual missingness, heterozygosity, and
transition/transversions, using vcftools v0.1.16 (Danecek et al. 2011). We next generate a small
subset of variant data for calculating several preliminary population genomic statistics. In order
to generate this pruned dataset, we use bcftools v1.12 (Danecek et al. 2021) to first remove all
SNPs not passing the filters described above, remove indels, sites with minor allele frequency <
0.01, (i.e., sites present in only 1% of the population), sites with > 75% missing data, and any
sites mapping to a previously annotated mitochondrial genome. We next calculate how large of
a window to prune this filtered dataset to retain 100k variant sites (i.e. WindowSize = NSNPs /
100,000) and use bcftools to select one SNP at random per window. This pruned variant file of
100k SNPs is used for all downstream QC calculations, however, several basic summaries (total
number of SNPs, approximate theta, and number of individuals) are calculated from the full
variant file and presented in the header of QC HTML file.

We used Plink2 v2.00a2.3 (Chang et al. 2015; Shaun Purcell)(Galinsky et al. 2016) to perform
genome PCA and a KING relatedness matrix (Manichaikul et al. 2010). We also generate a
distance matrix using Plink v 1.90b6.21 (Purcell et al. 2007). If geographic coordinates are
provided, samples will be plotted on an interactive map. Lastly, we used admixture v1.3.0
(Alexander et al. 2009) to calculate admixture for k=2 and k=3 from the pruned variant file. The
output of these analyses, tabulations of variant files, and mapping statistics are all summarized
in a single interactive HTML dashboard. Briefly, we use R v4.1.3 (R Core Team 2022) and the
following packages for building this summary: tidyverse v1.3.1 (Wickham et al. 2019) for data
manipulation and ggplot2 v3.3.5 (Wickham 2016) for graphics, plotly v4.9.4.1 (Sievert 2020) for
interactive graphics, ape v5.5 (Paradis and Schliep 2019) and ggtree 3.2.0 (Yu et al. 2018) for
phylogenetic tree visualization, reshape2 v1.4.4 (Wickham 2007) for data management, and
ggmap v3.3.0 (Kahle and Wickham 2013) for terrain maps.

Postprocessing
In order to enable users to efficiently filter individuals from their VCF file after initially running
snpArcher, we include the postprocessing module. Users can trigger this module by marking
individuals for removal using the “SampleType'' column in their sample sheet. The
postprocessing module applies customizable filters, which by default remove sites in regions of
low mappability and excessive or insufficient coverage (as defined in the configuration file) using
bedtools, and sites with a minor allele frequency < 0.1 or missingness > 75% using bcftools
(after recalculating these metrics following sample removal). We also produce separate variant
files for SNPs and small indels called by GATK.

Trackhubs
To display population genomic statistics calculated from the VCF generated by snpArcher, we
include an optional module to generate a UCSC Genome Browser track data hub (Raney et al.
2014). At time of publication, this module calculates Tajima’s D (Tajima 1989), SNP density,
nucleotide diversity (Pi) and allele frequency. These statistics are calculated using VCFtools
v0.1.15 and converted to bigBed format using bedToBigBed (Kent et al. 2010).
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Annotating codon degeneracy and inferring synonymous and nonsynonymous variants
snpArcher also includes an optional module that annotates the degeneracy of all coding regions
in the reference genome and implements the classic MacDonald–Kreitman test for detecting
selection acting in coding regions within a population (McDonald and Kreitman 1991). Briefly,
this test compares the number of SNPs present within the population that either change
(non-synonymous) or do not change (synonymous) the amino acid encoded at that position.
This is compared to similar counts of fixed differences in a diverged outgroup sample to see if
and how the ratio of non-synonymous to synonymous changes differs between them. While
annotating degeneracy and computing tables for the MK test are common tasks in population
genetics, we are not aware of any tools that automate these analyses at a genome-wide scale.
To facilitate integration of this functionality into snpArcher, we developed a standalone tool
called degenotate (https://github.com/harvardinformatics/degenotate), which calculates MK
tables, performs degeneracy annotation, and allows users to extract coding sequences from a
genome by their degeneracy.

To implement the MK test across diverse organisms, we make some assumptions about how to
classify polymorphic and divergent sites. We consider a polymorphic site to be anywhere at
least one ingroup individual has a non-reference allele and fixed differences to be only those
sites where none of the outgroup alleles exist in the ingroup. Using these definitions it is
possible for a site to both be polymorphic and fixed if the outgroups alleles are different from the
alleles segregating within the population. For quantifying variants, we also make some
simplifying assumptions. First, if a codon has more than one variant segregating within a
population (either because multiple positions at the codon have segregating sites, or because
one position has a multi-allelic SNP), we treat each segregating variant as independent. For the
outgroup, if there are multiple fixed differences in a single codon in the outgroup, we compute all
possible mutational pathways between the ingroup codon and the outgroup codon, and take the
average number of nonsynonymous and synonymous changes across these paths, weighted
equally. This means we can have fractional numbers of synonymous and nonsynonymous
divergence. We also implement calculations of the Neutrality Index (Rand and Kann 1996) and
Direction of Selection (Stoletzki and Eyre-Walker 2011) based on the MK test results.

Empirical datasets
In order to test our pipeline and provide a robust set of consistently processed variant calls for
downstream applications, we ran snpArcher on a set of publicly available resequencing datasets
(Supplemental Table 1). We focus on non-mammalian vertebrates, as high quality reference
genomes are frequently available in this group, but genome sizes are manageable to limit the
computational demands needed to process many large population samples. We used SRA to
search for possible datasets for inclusion, limiting our search space to species with a) a
reference genome, and b) at least one BioProject which contains a minimum of 10 BioSamples
sequenced to at least 5x average coverage. The resulting list was then manually curated to
identify publications associated with each BioProject, excluding from further consideration
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datasets for which a publication could not be identified. We then manually assessed the
resulting plausible samples to identify a subset for further analysis. R notebooks are provided on
Github that contain the code for initial and final assessments
(https://github.com/sjswuitchik/compPopGen_ms).

Benchmarking
To investigate the impact of low sequencing depth on variant calling by, we subsampled the
original high-depth dataset Zebra finch dataset to 4x, 10x, and 20x coverage. We ran snpArcher
on these subsampled datasets and filtered the resulting VCF files by removing sites not passing
standard filters, and calculated heterozygosity statistics using VCFtools v0.1.15 (Danecek et al.
2011). Second, we assessed the effectiveness of our variant calling parallelization
(scatter-by-Ns) approach to the conventional (scatter-by-chromosome) approach using the 10x
dataset. We performed these benchmarking runs on Google Cloud compute instances, selecting
the instance types for each rule to balance cost and runtime (Table S2).

Data availability
The snpArcher source code is available at https://github.com/harvardinformatics/snpArcher. The
Comparative Population Genomics Data public collection is freely available on Globus
(https://www.globus.org/). The Zebra finch WGS data used to benchmark snpArcher is publicly
available via the SRA BioProject accession PRJEB10586. Scripts used to assess public
datasets for the Comparative Population Genomics Data public collection are available at
https://github.com/sjswuitchik/compPopGen_ms.
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