

1

2

3

4

GDF15 is a Critical Renostat in the Defense Against Hypoglycemia

Zongyu Li¹, Xinyi Zhang¹, Wanling Zhu^{1,2}, Qian Xu³, Chuyue Yu³, Qiancheng Zhao³,

Stephan Siebel^{1,2,4}, Cuiling Zhang^{2,5}, Bruna Genisa Costa Lima⁶, Xiruo Li^{1,2}, Kavita Israni-

10 Winger^{2,5}, Ali R. Nasiri^{1,2}, Michael J. Caplan^{1,6}, Rui B. Chang^{1,3}, Andrew Wang^{2,5}, Renata Belfort

de Aguiar², Janice J. Hwang², and Rachel J. Perry^{1,2*}

12

Affiliations:

Departments of ¹Cellular & Molecular Physiology, ²Internal Medicine, ³Neuroscience,

⁴Pediatrics, ⁵Immunobiology, and ⁶Cell Biology

Yale School of Medicine, New Haven, CT USA

*Correspondence to: rachel.perry@yale.edu

18

19

20 **Summary**

21 Episodic hypoglycemia is one of the best honed, evolutionary conserved phenomena in biology,
22 because of the constant feast-fast cycles that have characterized most of history. The
23 counterregulatory response to hypoglycemia, mobilizing substrate stores to produce glucose, is
24 the primary adaptive mechanism to enable survival. Catecholamines and glucagon have long
25 been considered the key hypoglycemia counterregulatory hormones, but here we identify a new
26 hypoglycemia counterregulatory factor. We employed the insulin tolerance test (ITT) and
27 hyperinsulinemic-hypoglycemic clamp to mimic the two common settings in which hypoglycemia
28 can occur in patients: postprandial insulin overdose and elevated basal insulin administration,
29 respectively. We found that Growth Differentiation Factor 15 (GDF15) production is induced in
30 the S3 segment of the renal proximal tubules and its release increases hepatic gluconeogenesis
31 by increasing intrahepatic lipolysis in a beta-adrenergic receptor-2 (Adrb2)-dependent manner.
32 In addition, mice exposed to recurrent hypoglycemia and patients with T1D exhibit impaired
33 GDF15 production in the setting of hypoglycemia. These data demonstrate that GDF15 acts
34 acutely as a gluco-counterregulatory hormone and identify a critical role for kidney-derived
35 GDF15 in glucose homeostasis under physiological and pathophysiological conditions.

36

37 **Introduction**

38 The defense against severe hypoglycemia under fasting conditions is of indispensable
39 evolutionary importance. Therefore, it is logical that the mechanisms of hypoglycemia
40 counterregulation are redundant and require a coordinated response of several hormones,
41 including corticosteroids, catecholamines, glucagon, growth hormone – and perhaps others.

42

43 While insulin-treated diabetes has only existed for a century, and thus does not have the
44 evolutionary gravity of fasting, in recent years the occurrence of insulin-induced hypoglycemia

45 has gained clinical import. Since the 1970s, consistently improving glucose-monitoring
46 technology has made tight glycemic control possible, even in those with type 1 and advanced
47 type 2 diabetes requiring exogenous insulin. Aggressive insulin treatment is beneficial in
48 reducing the risk of lifespan- and healthspan-limiting diabetes complications, including
49 neuropathy, nephropathy, and cardiovascular disease ¹. However, strict diabetes control is not
50 without risks: in patients with T1D, therapeutic insulin may cause hypoglycemia: 35-42% of type
51 1 diabetes (T1D) patients suffer from severe hypoglycemia ² and the risk of hypoglycemia
52 increases with the duration of diabetes ³. The Action in Diabetes and Vascular Disease:
53 Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial demonstrated
54 a 2-3-fold increased risk of major vascular events and of cardiovascular events following a
55 single episode of severe hypoglycemia in patients pursuing aggressive glucose control for their
56 diabetes ⁴.

57
58 Except for the brain, the influx and efflux of glucose in tissues are precisely regulated by
59 hormones including insulin, glucagon, cortisol, epinephrine, and growth hormone. Conventional
60 wisdom holds that hypoglycemia first triggers the cessation of β -cell insulin secretion, followed
61 by secretion of glucagon, epinephrine, and cortisol. However, we determine in the current study
62 that this list is not exhaustive: here we identify GDF15 as a novel hypoglycemia
63 counterregulatory factor. GDF15, a member of the transforming growth factor-beta (TGF β)
64 superfamily, is induced by various forms of cellular stress, including mitochondrial stress ⁵, liver
65 injury ⁶, and ER stress ⁷, as well as with smoking, age, and exercise ⁸. Acutely, GDF15 can be
66 induced both by bacterial and viral inflammation ⁹ and by treatment with a subset of non-steroidal
67 anti-inflammatory agents ¹⁰. In this study, we found that GDF15 is also induced in the setting of
68 both insulin- and fasting-induced hypoglycemia.

69 To address the role of GDF15 in the setting of hypoglycemia, we applied state-of-the-art stable
70 isotope tracer methodology in multiple strains of knockout and reporter mice. We reveal here
71 that GDF15 increases rates of gluconeogenesis by activating intrahepatic lipolysis in response
72 to Adrb2. However, the counterregulatory effect of GDF15 is attenuated in mice and humans
73 with type 1 diabetes. Together, these data identify GDF15 as a new hypoglycemia
74 counterregulatory hormone and provide insight into additional mechanisms of regulation of
75 endogenous glucose production under physiologic and pathophysiologic conditions.

76

77 **Results**

78 **Hypoglycemia – and impaired intracellular glucose metabolism – can induce GDF15
79 production.** To generate hypoglycemia under clinically relevant conditions, we utilized two
80 rodent models: the hyperinsulinemic-hypoglycemic clamp, mimicking increased basal insulin
81 infusion; and the insulin tolerance test (ITT), mimicking excess prandial insulin dosing. As
82 compared to rats undergoing a hyperinsulinemic-euglycemic clamp, hypoglycemic rats exhibited
83 a 10-fold increase in plasma GDF15 concentrations (Fig. 1A-B). To validate this result in a
84 second species, we performed hyperinsulinemic-hypoglycemic clamps in mice and found a
85 similar induction of GDF15 by hypoglycemia (Fig. 1C-D). Next, to determine whether
86 hypoglycemia from a single insulin overdose can induce GDF15 production, we performed an
87 ITT in mice. Similar to the hypoglycemic clamp, ITT also induced an increase in plasma GDF15,
88 but with a relatively lower amplitude (Fig. 1E-F). Compared to the male mice, age-matched
89 female mice showed a lower basal GDF15 (Supplemental Fig. 1A-B) and similar peak GDF15
90 during ITT (Supplemental Fig. 1C), resulting in a greater degree of GDF15 induction
91 (Supplemental Fig. 1D). However, to avoid any confounding from estrus cycling, we studied
92 males in all of the subsequent preclinical studies in this manuscript, reasoning that because if
93 anything GDF15 induction was lower in males than females, studies focusing on males would

94 not overstate, but if anything would underestimate, the physiological role of GDF15 in hypoglycemia
95 counterregulation.

96

97 To interrogate if GDF15 production can be induced by insulin-independent hypoglycemia, we
98 fasted healthy mice for 72 hours. Consistent with a previous report, we found serum GDF15
99 remained unchanged after 24 hours of fasting ¹¹; however, GDF15 was robustly induced after
100 48 hours (Fig. 1H). To determine whether the induction of GDF15 during hypoglycemia required
101 reductions in circulating glucose *per se*, we treated mice with 2-deoxy-D-glucose (2DG) to
102 inhibit intracellular glucose metabolism without causing systemic hypoglycemia. After 2DG
103 treatment, blood glucose concentrations increased within 30 min, indicating a counterregulatory
104 response to the inhibition of intracellular glycolysis (Fig. 1I). As anticipated, we found that
105 plasma GDF15 concentrations also increased after treatment with 2DG (Fig. 1J). Those data
106 showed that GDF15 is an insulin-independent signal that is activated in the context of glucose
107 shortage.

108

109 **GDF15 is produced by the kidney during hypoglycemia.** Next, to confirm the source of
110 GDF15 during hypoglycemia, we assessed the *Gdf15* mRNA expression in various tissues. The
111 liver is a hub of glucose metabolism and is a source of GDF15 in a variety of situations including
112 following metformin treatment, caloric excess¹², amino acid deficiency¹¹, and exercise¹³, as well
113 as in non-alcoholic fatty liver disease^{14,15} and lipodystrophy ¹⁶. However, in our mice, liver *Gdf15*
114 mRNA expression was similar between mice treated with insulin and with phosphate-buffered
115 saline (PBS). In contrast, *Gdf15* mRNA significantly increased in the kidney, but not in any other
116 of the surveyed organs (Fig. 2A). In accordance with the transcript profile, GDF15 protein
117 concentrations increased in the kidney but not in the liver (Fig. 2B). To localize the site of
118 GDF15 production in the kidney, we utilized GDF15^{GFP-Cre; R26} tdTomato reporter mice.
119 Compared to the PBS-treated mice, more cells in the medulla of the kidney in the insulin-treated

120 mice showed the tdTomato signal (Fig. 2C). Next, to validate the source of GDF15, we
121 employed fluorescence-activated cell sorting (FACS) to collect the tdTomato positive cells
122 following treatment with insulin, and used bulk RNA sequencing to assess the transcriptome
123 signature of GDF15-producing cells. The CIBERSORTx¹⁷ analysis revealed that GDF15 was
124 primarily produced in the proximal tubule in hypoglycemic mice (Fig. 2D, Supplemental Fig. 2A-
125 B). To confirm the segment of the renal proximal tubule in which GDF15 is produced during
126 hypoglycemia, we assessed the colocalization of GDF15 with markers of segments of the
127 nephron. Aquaporin-2 (AQP2) which is expressed at the collecting duct, did not co-localize with
128 the tdTomato positive cells (Supplemental Fig. 2C). In addition, we did not observe co-
129 localization of the tdTomato signal and SGLT2 or GLUT1 (Supplemental Fig. 2B), indicating that
130 the early proximal tubule is not the source of GDF15. However, Megalin, a marker of the
131 proximal tubule which is expressed at higher levels in the distal segments of the proximal
132 tubule¹⁸, does co-localize with tdTomato staining (Fig. 2E). The expression pattern of the
133 sodium-potassium ATPase in GDF15-expressing cells strongly suggests that GDF15 is
134 produced in the S3 segment of the proximal tubule¹⁹ (Fig. 2F).

135
136 Thus, we hypothesize that in a healthy mouse, most of the glucose in the renal filtrate is
137 reabsorbed at the S1 and S2 segments of the proximal tubules, and the S3 segment reabsorbs
138 the rest. However, during severe hypoglycemia, the S1 and S2 segments of the proximal tubule
139 should reabsorb all of the glucose in the filtrate. The S3 segment then senses the absence of
140 glucose and produces GDF15. To test this hypothesis, we treated the mice with the SGLT2
141 inhibitor dapagliflozin to inhibit the glucose reabsorption by S1 and, to a lesser extent S2
142 segments, presenting more glucose to the S3 segment. We found that dapagliflozin inhibits the
143 production of GDF15 during an ITT (Fig. 2F).

144

145 **GDF15 defends against hypoglycemia by increasing gluconeogenesis.** Having observed
146 an increase in plasma GDF15 during both starvation and insulin-induced hypoglycemia in mice
147 and rats, we aimed to determine whether the role of GDF15 in this setting is to serve as a
148 hypoglycemia counterregulatory factor. Treatment with recombinant GDF15 (rGDF15) during an
149 ITT modestly increased blood glucose concentrations (Fig. 3A). Blocking GDF15 prior to a
150 hypoglycemic clamp increased the exogenous glucose required to maintain blood glucose
151 concentrations between 40 and 60 mg/dL, whereas rGDF15 reduced the glucose infusion rate
152 (Fig. 3C). The primary physiologic defense against hypoglycemia is an increase in endogenous
153 glucose production (i.e. hepatic gluconeogenesis and glycogenolysis, and renal
154 gluconeogenesis). We detected a reduction in endogenous glucose production in mice treated
155 with anti-GDF15, and an increase following rGDF15 (Fig. 3D). After an overnight fast in rodents,
156 glycogen is effectively depleted^{20,21} and gluconeogenesis is the sole contributor to endogenous
157 glucose production. Utilizing stable isotope tracer methodology²², we found that most
158 gluconeogenesis was fueled by phosphoenolpyruvate (PEP) in each group of mice. With a
159 similar insulin concentration (Supplemental Fig. 3), rates of gluconeogenesis from PEP
160 increased with rGDF15 and decreased with anti-GDF15 (Fig. 3E). In contrast, rGDF15 did not
161 alter hepatic glycogenolysis (Fig. 3F).

162
163 These data demonstrate that GDF15's primary hypoglycemia counterregulatory mechanism is
164 to stimulate gluconeogenesis. To determine the source(s) of these changes in gluconeogenesis,
165 we employed Renal Gluconeogenesis Analytical Leads (REGAL)^{23,24} to distinguish the
166 contributions of liver and kidney to whole-body glucose production. GDF15 upregulated, and
167 anti-GDF15 inhibited, gluconeogenesis from both liver and kidney (Fig. 3F). Because the liver
168 produced the majority of glucose during hypoglycemia, regardless of the GDF15 manipulations,
169 we elected to study the mechanism by which GDF15 promotes liver gluconeogenesis in the
170 following experiments.

171
172 **GDF15 increases gluconeogenesis by increasing intrahepatic lipolysis.** The primary
173 mechanism of acute regulation of gluconeogenesis – on a scale of minutes, as is required for
174 the immediate counterregulatory response to insulin-induced hypoglycemia – is allosteric.
175 Acetyl-CoA, the endproduct of β -oxidation, is an allosteric activator of pyruvate carboxylase
176 (PC)^{25–28}, a rate-limiting gluconeogenic enzyme. Concentrations of acetyl-CoA may be
177 increased by either increased white adipose tissue lipolysis²⁷ and/or increased intrahepatic
178 lipolysis²¹. Surprisingly, whole-body lipolysis as assessed by dilution of ¹³C palmitate tracer was
179 not regulated by GDF15 manipulation (Fig. 4A). However, concentrations of both intrahepatic
180 acetyl- and long-chain acyl-CoA were increased by GDF15 treatment and decreased by GDF15
181 blockade (Fig. 4B–C), which indicates that GDF15 is a regulator of intrahepatic lipolysis.
182 Therefore, like glucagon²¹, we hypothesized that GDF15 can regulate gluconeogenesis by
183 increasing intrahepatic lipolysis. To confirm if GDF15 stimulates gluconeogenesis via adipose
184 triglyceride lipase (ATGL) activation, we generated liver-specific ATGL knockout (Atgl^{f/f}; Alb-CreER)
185 mice and treated the mice with rGDF15. The Cre-positive mice showed a significantly lower
186 basal plasma glucose than did their Cre-negative littermates (Fig. 4D). During the hypoglycemic
187 clamp, rGDF15 can only increase the endogenous glucose production in the WT mice, but not
188 in ATGL-deficient mice (Fig. 4E).
189
190 **GDF15 increases endogenous glucose production by the β -2 Adrenergic pathway.** B-
191 adrenergic stimulation activates lipolysis in primary rat hepatocytes and human hepatoma
192 cells²⁹. The primary β -adrenergic receptors responsible for lipolysis and its consequent
193 glucoregulatory effects are Adrb2 and Adrb3, but because Adrb3 is not found in liver³⁰, we
194 chose to focus on Adrb2. Therefore, we hypothesized that GDF15 increases intrahepatic
195 lipolysis stimulating Adrb2 activity during hypoglycemia. To test this hypothesis, we performed

196 hypoglycemic clamps in liver-specific *Adrb2* knockout (*Adrb2*^{f/f}; Alb-CreERT2) mice. Compared to
197 their Cre- littermates, the Cre+ mice tend to have a lower endogenous glucose production (Fig.
198 4F), indicating an unsurprising defect in hypoglycemia counterregulation. To study whether the
199 function of GDF15 is dependent on *Adrb2* signaling, we treated the mice with rGDF15 prior to
200 the hypoglycemic clamp. The exogenous rGDF15 can upregulate gluconeogenesis in the Cre-
201 mice with a greater magnitude, as compared to Cre+ mice (Fig. 4F). These data show that
202 GDF15 can regulate hepatic endogenous glucose production in an *Adrb2*-dependent manner.

203

204 **Mice with T1D exhibit impaired GDF15 production and GDF15 resistance.** Next, we aimed
205 to determine whether the newly identified role for GDF15 as a hypoglycemia counterregulatory
206 hormone is relevant in type 1 diabetes (T1D). Most patients with tightly-controlled T1D exhibit
207 not one but repeated episodes of hypoglycemia; therefore, we firstly studied if recurrent
208 hypoglycemia *per se* affects the production of GDF15 upon subsequent hypoglycemia. We
209 treated healthy mice with insulin daily for 3 days and assessed their GDF15 production during
210 an ITT thereafter. The recurrent hypoglycemic mice showed similar glucose levels compared to
211 the control group (Fig. 5A); however, they were less able to produce GDF15 during the ITT (Fig.
212 5B). In accordance with ITT, recurrent hypoglycemic mice showed lower GDF15 production
213 during clamp (Fig. 5C). Similarly, the hypoglycemic clamp shows that the recurrent
214 hypoglycemic mice have lower endogenous glucose production (Fig. 5C-D) and
215 gluconeogenesis from PEP (Fig. 5F), reflecting an impaired hypoglycemia counterregulatory
216 response.

217

218 To study the impact of the pancreatic beta-cell loss on the GDF15 signal, we treated mice with
219 streptozotocin to acutely induce T1D. The T1D mice showed a higher basal plasma GDF15
220 concentration and a more pronounced induction of GDF15 during the ITT (Fig. 6A-B). These
221 data suggest that the T1D mice are resistant to the GDF15 signal. Consistent with this and

222 unlike the healthy mice, T1D animals were resistant to exogenous rGDF15 and failed to
223 increase blood glucose (Fig. 6C). In contrast, hypoglycemia in T1D mice can be rescued by the
224 Adrb2 agonist clenbuterol (Fig. 6D), which indicates that GDF15 resistance occurs upstream of
225 adrenergic outflow in mice with T1D.

226

227 Our T1D model differs from the clinical situation of most patients with T1D with regard to the
228 duration of diabetes. Whereas mice, if untreated, must be used within one week of β -cell
229 destruction with STZ, patients are maintained on insulin for years. To model the impact of
230 established, insulin-treated diabetes on GDF15 production, we implanted insulin-releasing
231 subcutaneous pellets in the T1D mice and compared the GDF15 produced during an ITT
232 between untreated diabetic mice and mice treated with insulin pumps for 3.5 weeks. Insulin-
233 treated diabetic mice produced significantly less GDF15 in terms of both absolute concentration
234 and relative amplitude (Fig. 6E).

235

236 **Recurrent hypoglycemia causes impaired GDF15 production and glucose counter-
237 regulation.** Finally, we aimed to determine whether our results in mice would translate to
238 humans. We performed hypoglycemic clamps in T1D patients and healthy controls who were
239 matched for all relevant demographics and clinical characteristics, including age, sex, ethnicity,
240 and body mass index (Table 1). As expected, patients with T1D exhibited lower fasting c-
241 peptide and higher hemoglobin A1c. GDF15 was robustly induced during the hypoglycemic
242 clamp in the control group, but not in T1D patients (Figure 7). These data confirm the
243 translational relevance of the findings in this manuscript: that GDF15 is induced as a
244 hypoglycemia counterregulatory factor in healthy individuals but not those with T1D.

245

246

247 **Discussion**

248 GDF15 has garnered a great deal of attention in metabolism studies in recent years, focusing
249 primarily on the chronic effects of GDF15. It has generally been considered a catabolic
250 hormone, as shown by its role in increasing heat production and oxygen consumption ³¹.
251 However, here we report an additional role for GDF15 as an anabolic hormone, increasing the
252 glucose output from liver and kidney during hypoglycemia. We found that GDF15 can be
253 produced by the S3 segment of the proximal tubule, consistent with other studies emphasizing
254 the ability of the kidney ³² and, specifically, proximal tubules³³ to produce GDF15 under very
255 different conditions (acute kidney injury and Cockayne syndrome). However, to our knowledge,
256 our data are the first to reveal GDF15's role as a hypoglycemia counterregulatory hormone.

257

258 By employing the ITT and hypoglycemic clamp, we studied two translationally relevant
259 scenarios of hypoglycemia. In both cases, GDF15 can effectively upregulate levels of plasma
260 glucose, indicating its counterregulatory role in glucose control in a liver adrenergic signal and
261 intrahepatic lipolysis-dependent manner. GDF15 was previously shown to stimulate the liver
262 triglyceride output during acute sepsis⁹. Combined with our findings, GDF15 seems to have an
263 effect to mobilize lipids in the liver by increasing both TG output and lipolysis.

264

265 We previously reported that glucagon can increase gluconeogenesis by increasing intrahepatic
266 lipolysis²¹, and here we demonstrate that GDF15 can regulate gluconeogenesis in a similar way.
267 The non-selective β adrenoceptor agonist clenbuterol can upregulate the rat hepatocyte lipolysis
268 by activating ATGL via the cAMP/PKA pathway²⁹. Thus, cAMP/PKA may be one of the signaling
269 pathways that coordinate the signal from Adrb2 and glucagon receptor to orchestrate
270 intrahepatic lipid metabolism.

271

272 Evolutionarily, fasting is one of the main challenges that animals must be prepared to withstand,
273 so animals with redundant mechanisms to handle energy shortages have improved fitness.
274 Glucagon and, to a lesser extent, epinephrine primarily stimulate glycogenolysis, so it is
275 beneficial to have a complementary hormone(s) that primarily stimulate gluconeogenesis. In
276 addition, our data demonstrate that it is the kidney that senses the glucose change, in response
277 to the absence of any glucose passing through the S3 segment of the proximal tubule, and the
278 kidney produces GDF15 in response. This novel mechanism serves as a “backup” means to
279 respond to hypoglycemia when the counterregulatory actions of the pancreas and adrenal gland
280 are insufficient.

281

282 In patients with type 1 diabetes (T1D), previous hypoglycemia can reduce the defense against
283 subsequent hypoglycemia³⁴⁻³⁶: even one episode of hypoglycemia can substantially impair the
284 counterregulatory response^{35,36}. However, the mechanism for this is incompletely understood.
285 Both hypoglycemia-induced glucagon and epinephrine secretion were attenuated in patients
286 with diabetes³⁷⁻³⁹. The attenuated humoral response can contribute to the compromised
287 defense against hypoglycemia in patients with diabetes. In this study, we showed that recurrent
288 hypoglycemia *per se* in WT mice, and longstanding diabetes in humans, can cause an impaired
289 GDF15 response to hypoglycemia. These data provide evidence for an additional causative link
290 between previous hypoglycemia and impaired glucose regulation. In both patients with T1D and
291 recurrently hypoglycemic mice, we find the GDF15 response to hypoglycemia is attenuated,
292 which may translate into the abnormal glucose counterregulation. The defect in GDF15
293 production is possibly the result of pathological glucose variation or a chronic “hyper-GDF15”
294 state. Studying how glucose counterregulation is achieved acutely and how it fails following
295 repeated hypoglycemia can help us understand how metabolic homeostasis is maintained and
296 will shed new light on potential therapies for acute hypoglycemia or impaired awareness of
297 hypoglycemia.

298

299 It has been previously reported that the chronic GDF15 injection can cause anorexia and weight
300 loss in healthy, obese, and tumor-bearing mice^{40,41}. GDF15 was also found to be critical in
301 metformin-induced weight loss in a manner dependent on the transcription factors ATF4 and
302 CHOP⁴². This effect of GDF15 seems to be contradictory to our findings; however, it should be
303 noted that at high concentrations, the classic hypoglycemia counterregulatory hormone
304 glucagon can also cause nausea^{43,44}. Thus, the putative anorectic effect of GDF15 does not
305 disqualify it from consideration as a hypoglycemia counterregulatory hormone. The evolutionary
306 purpose of hypoglycemia-induced GDF15 is likely to boost gluconeogenesis during fasting,
307 when glucocorticoid concentrations are high. The effect of glucocorticoids to promote
308 hyperphagia likely trump the anorectic impact of GDF15 or glucagon. As a metabolic stress
309 hormone, the dual function of GDF may be beneficial evolutionarily: the animal may intake
310 pathogens and toxins from the environment, so when the overall energy balance is not life-
311 threatening, GDF15 can decrease food intake to prevent intake of further pathogens or toxins,
312 at the same time, GDF15 will increase the glucose output to provide enough substrate for
313 maintenance of homeostasis.

314

315 Taken together, this study identifies a new anabolic role for GDF15 as a hypoglycemia
316 counterregulatory hormone. In healthy humans and mice, GDF15 is secreted during
317 hypoglycemia and promotes gluconeogenesis in part by stimulation of Adrb2-dependent
318 intrahepatic lipolysis. These data deepen our understanding of GDF15 biology while identifying
319 a new renokine, and suggest that the evolutionary function of this hormone may relate to its role
320 as a hypoglycemia counterregulatory factor.

321

322

323 **Acknowledgments**

324 We thank members of the Perry and Wang labs for insightful discussions. We are grateful for
325 advice on kidney physiology from members of the Caplan lab and Dr. Tong Wang. Kind
326 assistance in the human hypoglycemic clamps was provided by Dr. Elizabeth Sanchez Rangel,
327 Mari-Lynet Knight, and Jelani Deajon Jackson. Recombinant GDF15 and anti-GDF15 antibody
328 were from NGM Biopharmaceuticals and as previously described^{9,10} This study was funded by
329 grants from the Juvenile Diabetes Research Foundation (R.J.P. and A.W.) and the U.S. Public
330 Health Service (R37CA258261A1 [R.J.P.], R01AI162645 (A.W.), R01AR080104 (A.W.),
331 RC2DK120534 (M.J.C.), R01DK072612 (M.J.C.), and R01DK020495 [J.J.H.]). Human samples
332 were analyzed by the Yale Diabetes Research Center Clinical Metabolism core (P30
333 DK045735).

334

335 **Author Contributions**

336 The study was conceived and designed by Z.L. and R.J.P. Experiments were performed and
337 data analyzed by Z.L., X.Z., Q.X., C.Y., Q.Z., S.S., B.G.C.L., X.L., K.I.-W., A.R.N., M.J.C.,
338 R.B.C., R.B.A., J.J.H., A.W., and R.J.P. Mouse surgeries were performed by W.Z., and
339 knockout mice generated and supplied by C.Z. and A.W.

340

341 **Declaration of Interests**

342 A.W. consults for NGM Biopharmaceuticals and Seranova Bio, and has received funding and
343 materials from NGM Biopharmaceuticals. The other authors declare no competing interests.

344

345

346 **Star Methods**

347 **RESOURCE AVAILABILITY**

348 Further information and requests for resources and reagents should be directed to and will be
349 fulfilled by the lead contact, Rachel Perry (rachel.perry@yale.edu). This study did not generate
350 new unique reagents. All data reported in this paper are shown in the dot plots and will be
351 shared by the lead contact upon request. Any additional information required to reanalyze the
352 data reported in this paper is also available from the lead contact upon request.

353

354 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

355 **Mice and Rats**

356 The Yale Institutional Animal Care and Use Committee approved all studies prior to
357 experimentation. Wild-type C57bl/6J mice were purchased from Jackson Laboratories (stock
358 number 000664). Liver-specific ATGL knockout mice were generated by crossing Atgl^{f/f} mice
359 (Jackson Labs #024278) with Alb-Cre animals (Jackson Labs #003574). Liver-specific Adrb2
360 knockout mice were generated by crossing Adrb2^{f/f} (donated by Gerard Karsenty from Columbia
361 University) with Alb-Cre animals (donated by Nikhil Joshi from Yale University). GDF15^{GFP-Cre; R26}
362 were donated by Andrew McMahon from the University of Southern California in which the
363 promoter of GDF15 can induce the expression of Cre recombinase to remove the stop codon
364 before the tdTomato gene. Genotyping was performed by PCR, using primers from IDT with
365 sequences shown in Table 3. Wild-type Sprague Dawley rats were purchased from Charles
366 River (strain code 400)

Primer	Sequence
Generic CRE F	GCA TTA CCG GTC GAT GCA ACG AGT GAT GAG
Generic CRE R	GAG TGA ACG AAC CTG GTC GAA ATC AGT GCG
oIMR0042	CTA GGC CAC AGA ATT GAA AGA TCT
oIMR0043	GTA GGT GGA AAT TCT AGC ATC ATC C
Beta2 flox F	CCAAAGTTGTTGCACGTCAC
Beta2 flox R	GCACACGCCAAGGAGATTAT

367

368 Male mice were studied between 7 and 12 weeks of age (body weight 19-25 grams), and rats at
369 10 weeks of age (body weight 280-320 grams). Mice were group housed prior to one week
370 before the terminal study, when they underwent surgery (as detailed below) and were
371 subsequently singly housed. In all pharmacologic studies, vehicle controls (as described in the
372 figures and figure legends) were used, studied simultaneously with experimental animals.
373 Specific measures to randomize animals to treatment were not undertaken; however, all studies
374 were performed in littermate controls, with mice from each home cage randomized to each
375 intervention group. In studies of genetically modified mice, wild-type littermates served as
376 controls. Sample sizes for *in vivo* studies were determined to provide 95% power to detect an
377 expected difference in endogenous glucose production (the primary outcome measure) of 30%
378 with 30% standard deviations. Animals were excluded from further analysis if they did not
379 immediately respond to intravenous pentobarbital, but otherwise no animals or data were
380 excluded from analysis. All analyses were performed by investigators who were blinded to
381 group allocation during the data analysis. It was not practically possible to blind investigators to
382 group allocation during the experiments (e.g. hypoglycemic clamps or insulin tolerance tests).

383

384 **Human Subjects**

385 The human hypoglycemic clamp study was approved by the Yale Institutional Review Board.
386 Adults over age 18 of both sexes (as shown in Table 1) were included. Informed consent was
387 obtained prior to any intervention.

388

389 **METHOD DETAILS**

390 **Rodent Clamps**

391 Rodents underwent surgery under isoflurane anesthesia to place silastic catheters in the right
392 jugular vein (mice), and in the right jugular vein and left carotid artery (rats). Catheters were
393 filled with saline containing heparin (10 U/mL), and were tunneled to the back of the head and

394 tied off with a suture so that they were inaccessible to the animal. After surgery, mice were
395 treated with carprofen (5 mg/kg) daily for three days. On day 7 after surgery, following an
396 overnight (14 hour) fast, the catheters were opened by saline flush. Catheters were connected
397 and animals were allowed to acclimate for two hours with free movement around their cage
398 (rats) or in a plastic restrainer, gently tethered by taping the tail to the restrainer (mice).

399

400 During the hypoglycemic clamps, Regular insulin was infused continuously (4 mU/kg/min in
401 mice, 2 mU/kg/min into the arterial catheter in rats). Artificial plasma⁴⁵ (115 mM NaCl, 5.9 mM
402 KCl, 1.2 mM MgCl₂, 1.2 mM HaH₂PO₄, 1.2 mM Na₂SO₄, 2.5 mM CaCl₂, 25 mM HaHCO₃, 4%
403 BSA, filtered through 0.22 um filtered and adjust to pH = 7.45) was used to dilute the tracers. In
404 rats, serum from the studied animals was used to bind the insulin. Blood was collected by tail
405 massage (mice) or through the venous catheter (rats) every 10-15 min, and 20% dextrose was
406 infused at a variable rate to maintain euglycemia (110-120 mg/dL) or hypoglycemia (~70 mg/dL
407 in rats, 40~60 mg/dL in mice). Concurrently, mice were infused with [3-¹³C] lactate (40
408 umol/kg/min) and [²H₇] glucose (0.4 mg/kg/min). After 120 min of the clamp, animals were
409 euthanized with intravenous Euthasol, and livers and kidneys freeze-clamped using tongs pre-
410 chilled in liquid nitrogen. Samples were stored at -80°C for further analysis.

411

412 **Other metabolic interventions in rodents**

413 For the insulin tolerance tests, overnight fasted mice were injected IP with insulin (1 U/kg in
414 healthy mice, 4 U/kg in T1D mice) Humulin (NDC 0002-8215-01) was diluted by 5% fatty-acid-
415 free BSA in saline. Blood was collected by tail massage every 15 min for 90-150 minutes. In the
416 fasting studies, mice were singly housed with food removed at 4:00 pm, and blood was
417 collected every 24 hours. To generate type 1 diabetes, mice were injected with 180 mg/kg
418 streptozotocin dissolved in the Citrate solution (pH = 4.5)⁴⁶. The streptozotocin solution was
419 freshly made for each experiment and used within 20 min after dissolving.

420 **LC/MS Samples Preparation**

421 30 ul 10% Methanol in Acetonitrile (w/w) buffer was added to 10 ul plasma to precipitate the
422 protein. The mixture was centrifuged for 15 min at 10000 RPM. Then, the supernatant liquid
423 was transferred to the filter{I will check} and centrifuged for 20 min at 10000 RPM. The flow-
424 through was analyzed by Liquid Chromatography-Mass Spectrometry.

425

426 **Flux analysis**

427 Plasma ^{13}C glucose enrichment was determined by gas chromatography/mass spectrometry²⁰,
428 and endogenous glucose turnover was calculated using the equation

429
$$\text{Endogenous glucose production} = [(\text{Tracer } ^{13}\text{C APE}/\text{Plasma } ^{13}\text{C APE})-1] * \text{Infusion rate}$$

430 where APE denotes the measured atom percent enrichment.

431 We utilized our previously published method²² to measure gluconeogenesis from PEP in both
432 liver and kidney, and applied our recently reported method to determinine hepatic versus renal
433 gluconeogenesis⁴⁷.

434

435 **Pharmacologic interventions**

436 In the hypoglycemic clamp, rGDF15 was administrated subcutaneously 1 hour before the start
437 of the clamp. Anti-GDF15 antibody was injected intraperitoneally 15 hours before the
438 experiment. 1 mg/kg Dapagliflozin was administrated by oral gavage 2 hours before the
439 experiment. 2-Deoxy- d-glucose was injected intraperitoneally with a dose of 1g/kg.

440

441 **Biochemical analysis**

442 Blood glucose concentrations were measured with the iPet PRO handheld glucometer. Plasma
443 GDF15 concentrations in mice and rats were measured by ELISA (R&D Systems). Glycogen
444 concentration was measured using the phenol-sulfuric acid method⁴⁸. Long-chain acyl⁴⁹- and

445 acetyl-CoA concentrations²⁷ were measured by liquid chromatography-mass spectrometry/mass
446 spectrometry.

447

448 **Imaging studies**

449 GDF15^{GFP-Cre; R26} tdTomato reporter mice were injected with 12.5 mg/kg tamoxifen at 5 pm 1
450 day prior to the experiment day and the second dose of tamoxifen was given at 10 am
451 of the experiment day. ITT was performed with those mice at 2 pm and food was provided at 5
452 pm. 48 hours later, the liver and kidney were collected and saved in 4% PFA at 4 °C for 18 to 24
453 hours. Fixed samples were transferred into 20% sucrose (PBS) solution until sinking to the
454 bottom. Then, samples were frozen in O.C.T. and cryo-sectioned into 10 um slices. Nephron
455 markers were stained and imaged with Leica SP8 confocal microscope.

456

457 **RNA sequencing**

458 Mice were kept in cages for 2 days after ITT with *ad lib* access to regular chow. Then mice were
459 sacrificed and the kidney was collected. The kidney was cut into small pieces and incubated in
460 the digestion buffer containing 25 ug/ml Liberase TM and 50 µg/ml DNase in RPMI media.
461 Samples were kept at 37°C for 45 min and passed through a 100-um cell strainer. Single cells
462 were isolated by FACS according to the tdTomato signaling and collected into the RLT buffer
463 containing BME. Total mRNA was extracted by Qiagen RNAeasy kit and sequenced by BGI.
464 Reads were aligned to mm39 and analyzed with CIBERSORTx¹⁷ in which single-cell
465 sequencing data from Kidney Cell Explorer¹⁸ was used as the reference.

466

467 **Human clamps**

468 Participants were recruited from the greater New Haven area, some as part of a prior study⁵⁰.
469 Inclusion criteria included age 18-50, non-smoking, BMI ≥18.5, and no alcohol or drug use

470 within 72 hours of the study, and exclusion criteria included illicit drug or recent steroid use,
471 active infection, malignancy, abnormal thyroid function, cerebrovascular or cardiovascular
472 disease, weight change in the last 3 months, and pregnancy or breastfeeding. Patients with type
473 1 diabetes with no history of neuropathy or proliferative retinopathy were recruited pursuant to
474 the above inclusion/exclusion criteria. Prior to the study, all participants completed a screening
475 visit in which they provided a brief medical history, and a venous blood sample was drawn to
476 measure hematocrit, creatinine, hemoglobin A1c, and C-peptide. On the day of the study,
477 following an overnight fast, antecubital catheters were placed bilaterally. One was used to
478 deliver insulin (2 mU/kg/min) and a variable infusion rate of dextrose, and the other to draw
479 blood. The basal blood draw was performed at time zero of the clamp and counterregulatory
480 hormone concentrations at time zero were compared to those measured in the final clamp
481 sample. Plasma GDF15 concentrations were measured by ELISA (R&D Systems), and insulin,
482 c-peptide, glucagon, epinephrine, norepinephrine, and cortisol by the Yale Diabetes Research
483 Center Clinical Metabolism core.

484

485 **QUANTIFICATION AND STATISTICAL ANALYSIS**

486 The 2-tailed Student's t-test (paired or unpaired) was used to compare two groups, and two-way
487 ANOVA with Tukey's multiple comparisons test to compare three or more groups. Statistical
488 analyses were performed using GraphPad Prism version 9.

489

490 **KEY RESOURCES TABLE**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
SGLT2 (Slc5a2) antibody	BiCell Scientific	20802
SGLT1 (Slc5a1) antibody	LS Bio	LS-C332376-20
GLUT1 (Slc2a1) antibody	BiCell Scientific	20701
Megalin	Yale University, Dr. Daniel Biemesderfer	
AQP2 Antibody (C-17)	Santa Cruz Biotechnology	sc-9882

Na/K ATPase	DSHB	AB_2166869
Chemicals, peptides, and recombinant proteins		
Recombinant mouse GDF15	NGM Biopharmaceuticals	
Mouse GDF15 neutralizing antibody	NGM Biopharmaceuticals	
Regular insulin	Yale Veterinary Clinical Services Pharmacy	
[3- ¹³ C] sodium lactate	Sigma	490040
[² H ₇] glucose	Cambridge Isotopes	DLM-2062
Critical commercial assays		
Mouse/rat GDF15 ELISA	R&D Systems	MGD150
Human GDF15 ELISA	R&D Systems	DGD150
Experimental models: Organisms/strains		
C57bl/6J mice	Jackson Labs	000664
Alb-cre mice	Jackson Labs	003574
Atgl ^{fl/fl} mice	Jackson Labs	024278
Adrb2 ^{fl/fl} mice	Columbia University and Yale University	
tdTomato reporter mice	University of Southern California	
Other		

491

492 References

493 1. Nathan, D.M., and Group, D.R. (2014). The Diabetes Control and Complications Trial/Epidemiology of
494 Diabetes Interventions and Complications Study at 30 Years: Overview. *Diabetes Care* 37, 9–16.
495 10.2337/dc13-2112.

496 2. Pedersen-Bjergaard, U., Pramming, S., Heller, S.R., Wallace, T.M., Rasmussen, A.K., Jørgensen,
497 H.V., Matthews, D.R., Hougaard, P., and Thorsteinsson, B. (2004). Severe hypoglycaemia in 1076 adult
498 patients with type 1 diabetes: influence of risk markers and selection. *Diabetes/metabolism research and*
499 *reviews* 20, 479–486. 10.1002/dmrr.482.

500 3. Group, U.H.S. (2007). Risk of hypoglycaemia in types 1 and 2 diabetes: effects of treatment modalities
501 and their duration. *Diabetologia* 50, 1140–1147. 10.1007/s00125-007-0599-y.

502 4. Zoungas, S., Patel, A., Chalmers, J., Galan, B.E. de, Li, Q., Billot, L., Woodward, M., Ninomiya, T.,
503 Neal, B., MacMahon, S., et al. (2010). Severe hypoglycemia and risks of vascular events and death. *The*
504 *New England journal of medicine* 363, 1410–1418. 10.1056/nejmoa1003795.

505 5. Chung, H.K., Ryu, D., Kim, K.S., Chang, J.Y., Kim, Y.K., Yi, H.-S., Kang, S.G., Choi, M.J., Lee, S.E.,
506 Jung, S.-B., et al. (2017). Growth differentiation factor 15 is a myomitokine governing systemic energy
507 homeostasis. *The Journal of Cell Biology* 216, 149–165. 10.1083/jcb.201607110.

508 6. Hsiao, E.C., Koniaris, L.G., Zimmers-Koniaris, T., Sebald, S.M., Huynh, T.V., and Lee, S.J. (2000).
509 Characterization of growth-differentiation factor 15, a transforming growth factor beta superfamily member
510 induced following liver injury. *Molecular and cellular biology* 20, 3742–3751. 10.1128/mcb.20.10.3742-
511 3751.2000.

512 7. Park, S.-H., Choi, H.J., Yang, H., Do, K.H., Kim, J., Kim, H.-H., Lee, H., Oh, C.G., Lee, D.W., and
513 Moon, Y. (2012). Two in-and-out modulation strategies for endoplasmic reticulum stress-linked gene
514 expression of pro-apoptotic macrophage-inhibitory cytokine 1. *The Journal of biological chemistry* 287,
515 19841–19855. 10.1074/jbc.m111.330639.

516 8. Corre, J., Hébraud, B., and Bourin, P. (2013). Concise review: growth differentiation factor 15 in
517 pathology: a clinical role? *Stem cells translational medicine* 2, 946–952. 10.5966/sctm.2013-0055.

518 9. Luan, H.H., Wang, A., Hilliard, B.K., Carvalho, F., Rosen, C.E., Ahasic, A.M., Herzog, E.L., Kang, I.,
519 Pisani, M.A., Yu, S., et al. (2019). GDF15 Is an Inflammation-Induced Central Mediator of Tissue
520 Tolerance. *Cell* 178, 1231–1244.e11. 10.1016/j.cell.2019.07.033.

521 10. Eisenstein, A., Hilliard, B.K., Pope, S.D., Zhang, C., Taskar, P., Waizman, D.A., Israni-Winger, K.,
522 Tian, H., Luan, H.H., and Wang, A. (2022). Activation of the transcription factor NRF2 mediates the anti-
523 inflammatory properties of a subset of over-the-counter and prescription NSAIDs. *Immunity*.
524 10.1016/j.jimmuni.2022.04.015.

525 11. Patel, S., Alvarez-Guaita, A., Melvin, A., Rimmington, D., Dattilo, A., Miedzybrodzka, E.L., Cimino, I.,
526 Maurin, A.-C., Roberts, G.P., Meek, C.L., et al. (2019). GDF15 Provides an Endocrine Signal of
527 Nutritional Stress in Mice and Humans. *Cell metabolism* 29, 707–718.e8. 10.1016/j.cmet.2018.12.016.

528 12. Dolo, P.R., Widjaja, J., Yao, L., Hong, J., Li, C., and Zhu, X. (2022). The effect of bariatric surgery on
529 the expression of Growth Differentiation Factor-15/Macrophage-Inhibitory Cytokine-1 (GDF-15/MIC-1) in
530 rat. *Surg Endosc* 36, 6205–6213. 10.1007/s00464-022-09036-w.

531 13. Townsend, L.K., Medak, K., Weber, A.J., Dibe, H., Shamshoum, H., and Wright, D.C. (2022). CHOP
532 is dispensable for exercise-induced increases in GDF15. *J Appl Physiol* 132, 413–422.
533 10.1152/japplphysiol.00698.2021.

534 14. Steffen, J., Ngo, J., Wang, S.-P., Williams, K., Kramer, H.F., Ho, G., Rodriguez, C., Yekkala, K.,
535 Amuzie, C., Bialecki, R., et al. (2022). The mitochondrial fission protein Drp1 in liver is required to mitigate
536 NASH and prevents the activation of the mitochondrial ISR. *Mol Metab* 64, 101566.
537 10.1016/j.molmet.2022.101566.

538 15. Galuppo, B., Agazzi, C., Pierpont, B., Chick, J., Li, Z., Caprio, S., and Santoro, N. (2022). Growth
539 differentiation factor 15 (GDF15) is associated with non-alcoholic fatty liver disease (NAFLD) in youth with
540 overweight or obesity. *Nutr Diabetes* 12, 9. 10.1038/s41387-022-00187-2.

541 16. Stürzebecher, P.E., Kralisch, S., Schubert, M.R., Filipova, V., Hoffmann, A., Oliveira, F., Sheikh, B.N.,
542 Blüher, M., Kogel, A., Scholz, M., et al. (2022). Leptin treatment has vaso-protective effects in
543 lipodystrophic mice. *Proc National Acad Sci* 119, e2110374119. 10.1073/pnas.2110374119.

544 17. Newman, A.M., Steen, C.B., Liu, C.L., Gentles, A.J., Chaudhuri, A.A., Scherer, F., Khodadoust, M.S.,
545 Esfahani, M.S., Luca, B.A., Steiner, D., et al. (2019). Determining cell-type abundance and expression
546 from bulk tissues with digital cytometry. *Nat Biotechnol* 37, 773–782. 10.1038/s41587-019-0114-2.

547 18. Ransick, A., Lindström, N.O., Liu, J., Zhu, Q., Guo, J.-J., Alvarado, G.F., Kim, A.D., Black, H.G., Kim,
548 J., and McMahon, A.P. (2019). Single-Cell Profiling Reveals Sex, Lineage, and Regional Diversity in the
549 Mouse Kidney. *Dev Cell* 51, 399-413.e7. 10.1016/j.devcel.2019.10.005.

550 19. Breton, S., and Brown, D. (1998). Cold-induced microtubule disruption and relocalization of
551 membrane proteins in kidney epithelial cells. *J Am Soc Nephrol* 9, 155–166. 10.1681/asn.v92155.

552 20. Perry, R.J., Wang, Y., Cline, G.W., Rabin-Court, A., Song, J.D., Dufour, S., Zhang, X.-M., Petersen,
553 K.F., and Shulman, G.I. (2018). Leptin Mediates a Glucose-Fatty Acid Cycle to Maintain Glucose
554 Homeostasis in Starvation. *Cell* 172, 234-248.e17. 10.1016/j.cell.2017.12.001.

555 21. Perry, R.J., Zhang, D., Guerra, M.T., Brill, A.L., Goedeke, L., Nasiri, A.R., Rabin-Court, A., Wang, Y.,
556 Peng, L., Dufour, S., et al. (2020). Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic
557 lipolysis. *Nature Publishing Group* 579, 279–283. 10.1038/s41586-020-2074-6.

558 22. Perry, R.J., Peng, L., Cline, G.W., Butrico, G.M., Wang, Y., Zhang, X.-M., Rothman, D.L., Petersen,
559 K.F., and Shulman, G.I. (2017). Non-invasive assessment of hepatic mitochondrial metabolism by
560 positional isotopomer NMR tracer analysis (PINTA). *Nature communications* 8, 798. 10.1038/s41467-017-
561 01143-w.

562 23. Qing, H., Desrouleaux, R., Israni-Winger, K., Mineur, Y.S., Fogelman, N., Zhang, C., Rashed, S.,
563 Palm, N.W., Sinha, R., Picciotto, M.R., et al. (2020). Origin and Function of Stress-Induced IL-6 in Murine
564 Models. *Cell* 182, 1660. 10.1016/j.cell.2020.08.044.

565 24. Li, Z., Zhang, X., Zhu, W., Zhang, C., Sadak, K., Halberstam, A.A., Brown, J.R., Perry, C.J., Bunn, A.,
566 Braun, D.A., et al. (2023). FGF-21 Conducts a Liver-Brain-Kidney Axis to Promote Renal Cell Carcinoma.
567 10.1101/2023.04.12.536558.

568 25. Adina-Zada, A., Zeczycki, T.N., Maurice, M.S., Jitrapakdee, S., Cleland, W.W., and Attwood, P.V.
569 (2012). Allosteric regulation of the biotin-dependent enzyme pyruvate carboxylase by acetyl-CoA.
570 *Biochemical Society transactions* 40, 567–572. 10.1042/bst20120041.

571 26. KREBS, H.A., SPEAKE, R.N., and HEMS, R. (1965). ACCELERATION OF RENAL
572 GLUCONEOGENESIS BY KETONE BODIES AND FATTY ACIDS. *The Biochemical journal* 94, 712–720.
573 10.1042/bj0940712.

574 27. Perry, R.J., Camporez, J.-P.G., Kursawe, R., Titchenell, P.M., Zhang, D., Perry, C.J., Jurczak, M.J.,
575 Abudukadier, A., Han, M.S., Zhang, X.-M., et al. (2015). Hepatic acetyl CoA links adipose tissue
576 inflammation to hepatic insulin resistance and type 2 diabetes. *Cell* 160, 745–758.
577 10.1016/j.cell.2015.01.012.

578 28. UTTER, M.F., and KEECH, D.B. (1963). PYRUVATE CARBOXYLASE. I. NATURE OF THE
579 REACTION. *The Journal of biological chemistry* 238, 2603–2608.

580 29. Schott, M.B., Rasineni, K., Weller, S.G., Schulze, R.J., Sletten, A.C., Casey, C.A., and McNiven, M.A.
581 (2017). β -Adrenergic induction of lipolysis in hepatocytes is inhibited by ethanol exposure. *J Biol Chem*
582 292, 11815–11828. 10.1074/jbc.m117.777748.

583 30. Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å.,
584 Kampf, C., Sjöstedt, E., Asplund, A., et al. (2015). Tissue-based map of the human proteome. *Science*
585 347, 1260419. 10.1126/science.1260419.

586 31. Chrysovergis, K., Wang, X., Kosak, J., Lee, S.-H., Kim, J.S., Foley, J.F., Travlos, G., Singh, S., Baek,
587 S.J., and Eling, T.E. (2014). NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and
588 oxidative metabolism. *Int J Obesity* 38, 1555–1564. 10.1038/ijo.2014.27.

589 32. Liu, J., Kumar, S., Heinzel, A., Gao, M., Guo, J., Alvarado, G.F., Reindl-Schwaighofer, R.,
590 Krautzberger, A.M., Cippà, P.E., McMahon, J., et al. (2020). Renoprotective and Immunomodulatory
591 Effects of GDF15 following AKI Invoked by Ischemia-Reperfusion Injury. *J Am Soc Nephrol* 31, 701–715.
592 10.1681/asn.2019090876.

593 33. Mulderrig, L., Garaycochea, J.I., Tuong, Z.K., Millington, C.L., Dingler, F.A., Ferdinand, J.R., Gaul,
594 L., Tadross, J.A., Arends, M.J., O'Rahilly, S., et al. (2021). Aldehyde-driven transcriptional stress triggers
595 an anorexic DNA damage response. *Nature*, 1–6. 10.1038/s41586-021-04133-7.

596 34. Dagogo-Jack, S.E., Craft, S., and Cryer, P.E. (1993). Hypoglycemia-associated autonomic failure in
597 insulin-dependent diabetes mellitus. Recent antecedent hypoglycemia reduces autonomic responses to,
598 symptoms of, and defense against subsequent hypoglycemia. *The Journal of clinical investigation* 91,
599 819–828. 10.1172/jci116302.

600 35. Jacobson, L., Ansari, T., and McGuinness, O.P. (2006). Counterregulatory deficits occur within 24 h
601 of a single hypoglycemic episode in conscious, unrestrained, chronically cannulated mice. *American
602 journal of physiology. Endocrinology and metabolism* 290, E678-84. 10.1152/ajpendo.00383.2005.

603 36. Marin-Spiotta, A., Levin, B.E., and Tkacs, N.C. (2004). A single episode of central glucoprivation
604 reduces the adrenomedullary response to subsequent hypoglycemia in rats. *Neuroscience letters* 360,
605 81–84. 10.1016/j.neulet.2004.02.044.

606 37. Gerich, J.E., Langlois, M., Noacco, C., Karam, J.H., and Forsham, P.H. (1973). Lack of glucagon
607 response to hypoglycemia in diabetes: evidence for an intrinsic pancreatic alpha cell defect. *Science* 182,
608 171–173. 10.1126/science.182.4108.171.

609 38. Segel, S.A., Paramore, D.S., and Cryer, P.E. (2002). Hypoglycemia-associated autonomic failure in
610 advanced type 2 diabetes. *Diabetes* 51, 724–733. 10.2337/diabetes.51.3.724.

611 39. White, N.H., Skor, D.A., Cryer, P.E., Levandoski, L.A., Bier, D.M., and Santiago, J.V. (1983).
612 Identification of type I diabetic patients at increased risk for hypoglycemia during intensive therapy. The
613 New England journal of medicine 308, 485–491. 10.1056/nejm198303033080903.

614 40. Johnen, H., Lin, S., Kuffner, T., Brown, D.A., Tsai, V.W.-W., Bauskin, A.R., Wu, L., Pankhurst, G.,
615 Jiang, L., Junankar, S., et al. (2007). Tumor-induced anorexia and weight loss are mediated by the TGF-
616 beta superfamily cytokine MIC-1. Nature medicine 13, 1333–1340. 10.1038/nm1677.

617 41. Macia, L., Tsai, V.W.-W., Nguyen, A.D., Johnen, H., Kuffner, T., Shi, Y.-C., Lin, S., Herzog, H., Brown,
618 D.A., Breit, S.N., et al. (2012). Macrophage Inhibitory Cytokine 1 (MIC-1/GDF15) Decreases Food Intake,
619 Body Weight and Improves Glucose Tolerance in Mice on Normal & Obesogenic Diets. Plos One 7,
620 e34868. 10.1371/journal.pone.0034868.

621 42. Day, E.A., Ford, R.J., Smith, B.K., Mohammadi-Shemirani, P., Morrow, M.R., Gutgesell, R.M., Lu, R.,
622 Raphenya, A.R., Kabiri, M., McArthur, A.G., et al. (2019). Metformin-induced increases in GDF15 are
623 important for suppressing appetite and promoting weight loss. Nature Metabolism 1, 1–14.
624 10.1038/s42255-019-0146-4.

625 43. Petersen, K.M., Bøgevig, S., Riis, T., Andersson, N.W., Dalhoff, K.P., Holst, J.J., Knop, F.K., Faber,
626 J., Petersen, T.S., and Christensen, M.B. (2020). High-Dose Glucagon Has Hemodynamic Effects
627 Regardless of Cardiac Beta-Adrenoceptor Blockade: A Randomized Clinical Trial. J Am Heart Assoc 9,
628 e016828. 10.1161/jaha.120.016828.

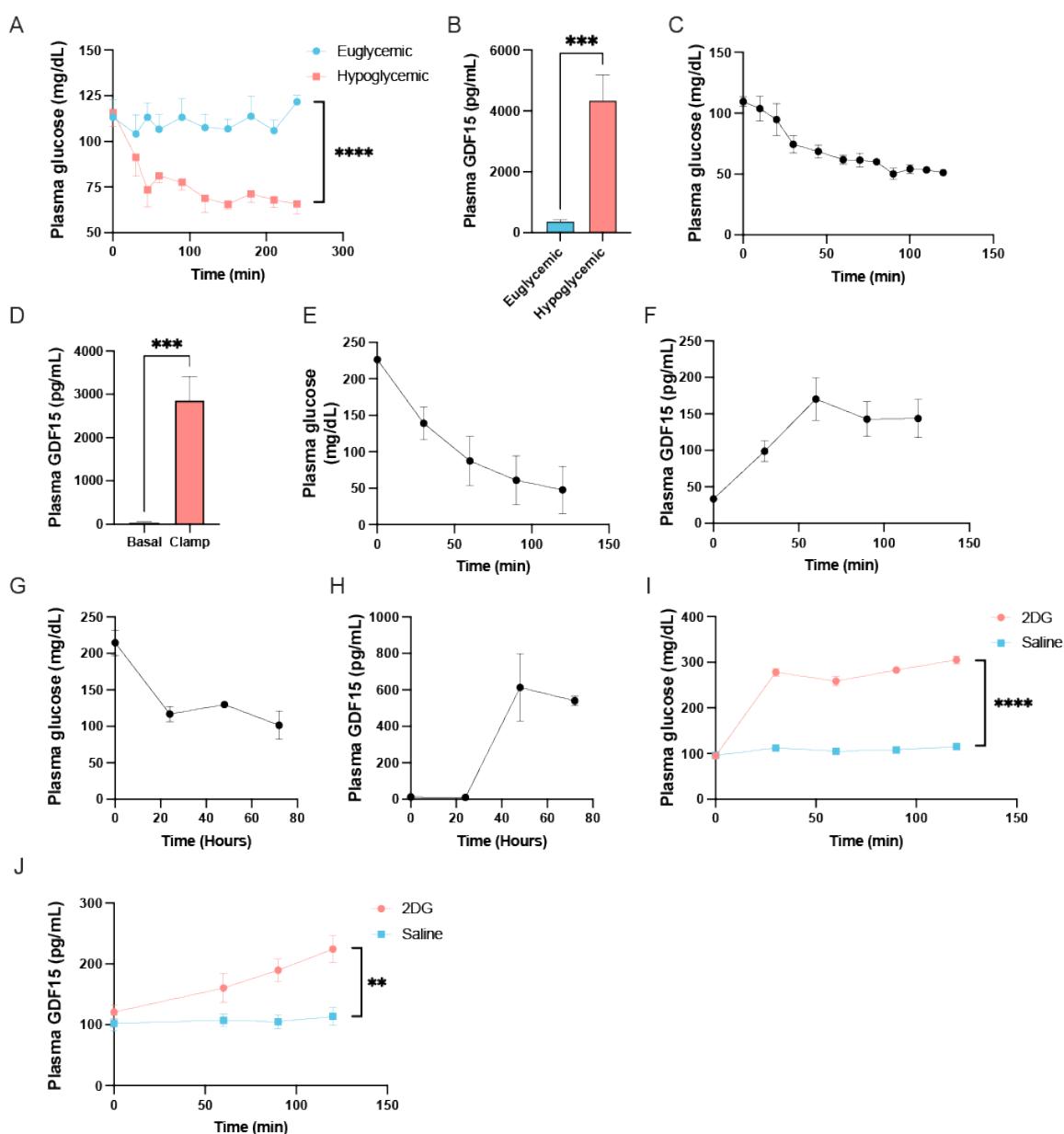
629 44. Ranganath, L., Schaper, F., Gama, R., and Morgan, L. (1999). Mechanism of glucagon-induced
630 nausea. Clin Endocrinol 51, 260–261. 10.1046/j.1365-2265.1999.00845.x.

631 45. McDermott, J.C., Hutber, A., Tan, M.H., and Bonen, A. (1989). The use of a cell-free perfusate in the
632 perfused rat hindquarter: methodological concerns. Can J Physiol Pharm 67, 1450–1454. 10.1139/y89-
633 233.

634 46. Deeds, M.C., Anderson, J.M., Armstrong, A.S., Gastineau, D.A., Hiddinga, H.J., Jahangir, A.,
635 Eberhardt, N.L., and Kudva, Y.C. (2010). Single dose streptozotocin-induced diabetes: considerations for
636 study design in islet transplantation models. Lab Anim 45, 131–140. 10.1258/la.2010.010090.

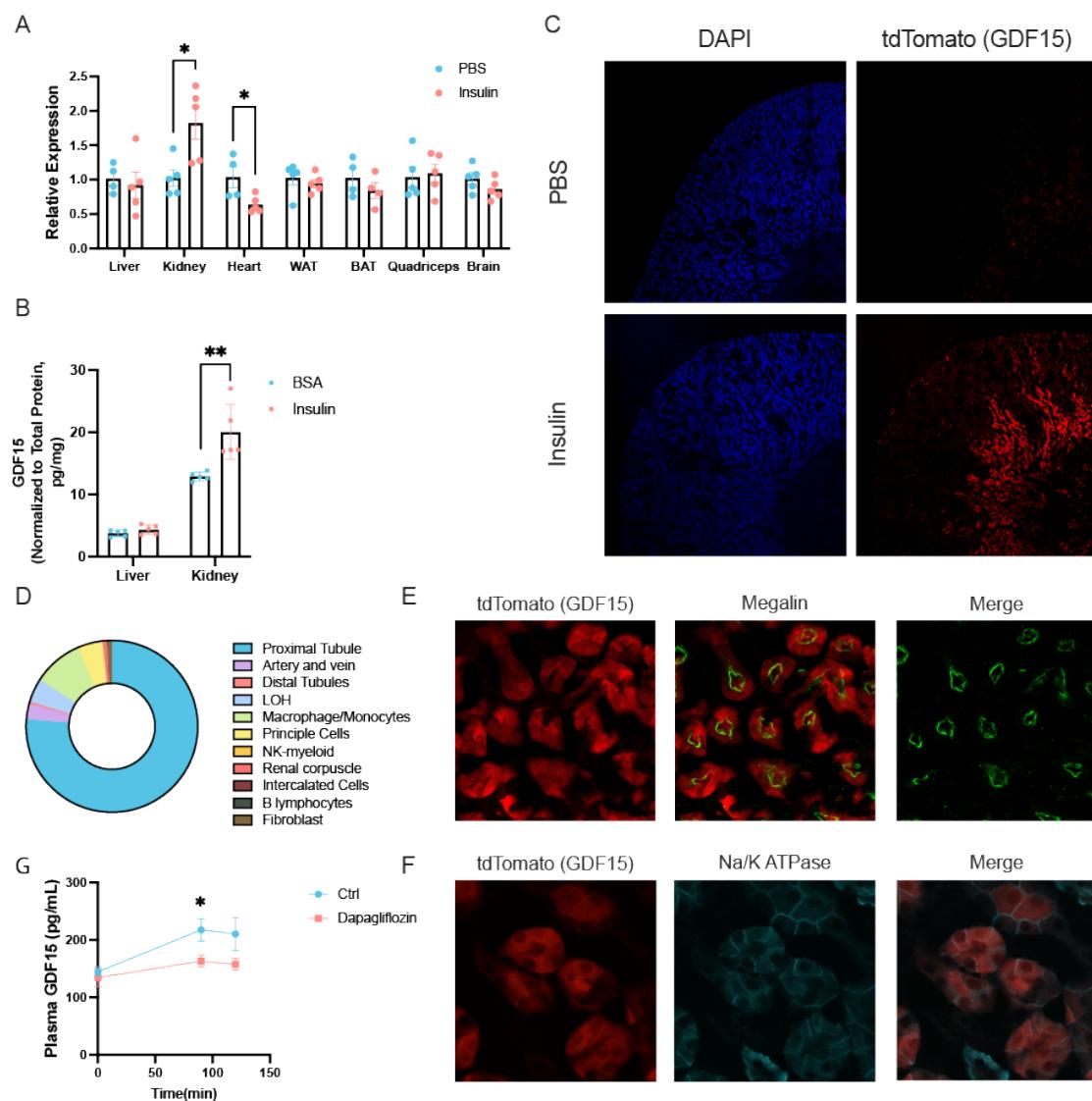
637 47. Qing, H., Desrouleaux, R., Israni-Winger, K., Mineur, Y.S., Fogelman, N., Zhang, C., Rashed, S.,
638 Palm, N.W., Sinha, R., Picciotto, M.R., et al. (2020). Origin and Function of Stress-Induced IL-6 in Murine
639 Models. Cell 182, 372–387.e14. 10.1016/j.cell.2020.05.054.

640 48. Schaubroeck, K.J., Leitner, B.P., and Perry, R.J. (2022). An optimized method for tissue glycogen
641 quantification. Physiological Reports 10, e15195. 10.14814/phy2.15195.


642 49. Yu, C., Chen, Y., Cline, G.W., Zhang, D., Zong, H., Wang, Y., Bergeron, R., Kim, J.K., Cushman,
643 S.W., Cooney, G.J., et al. (2002). Mechanism by Which Fatty Acids Inhibit Insulin Activation of Insulin
644 Receptor Substrate-1 (IRS-1)-associated Phosphatidylinositol 3-Kinase Activity in Muscle*. J Biol Chem
645 277, 50230–50236. 10.1074/jbc.m200958200.

646 50. Hwang, J.J., Parikh, L., Lacadie, C., Seo, D., Lam, W., Hamza, M., Schmidt, C., Dai, F., Sejling, A.-S.,
647 Belfort-DeAguiar, R., et al. (2018). Hypoglycemia unawareness in type 1 diabetes suppresses brain
648 responses to hypoglycemia. The Journal of clinical investigation 128, 1485–1495. 10.1172/jci97696.

649


650

651 **Figures**

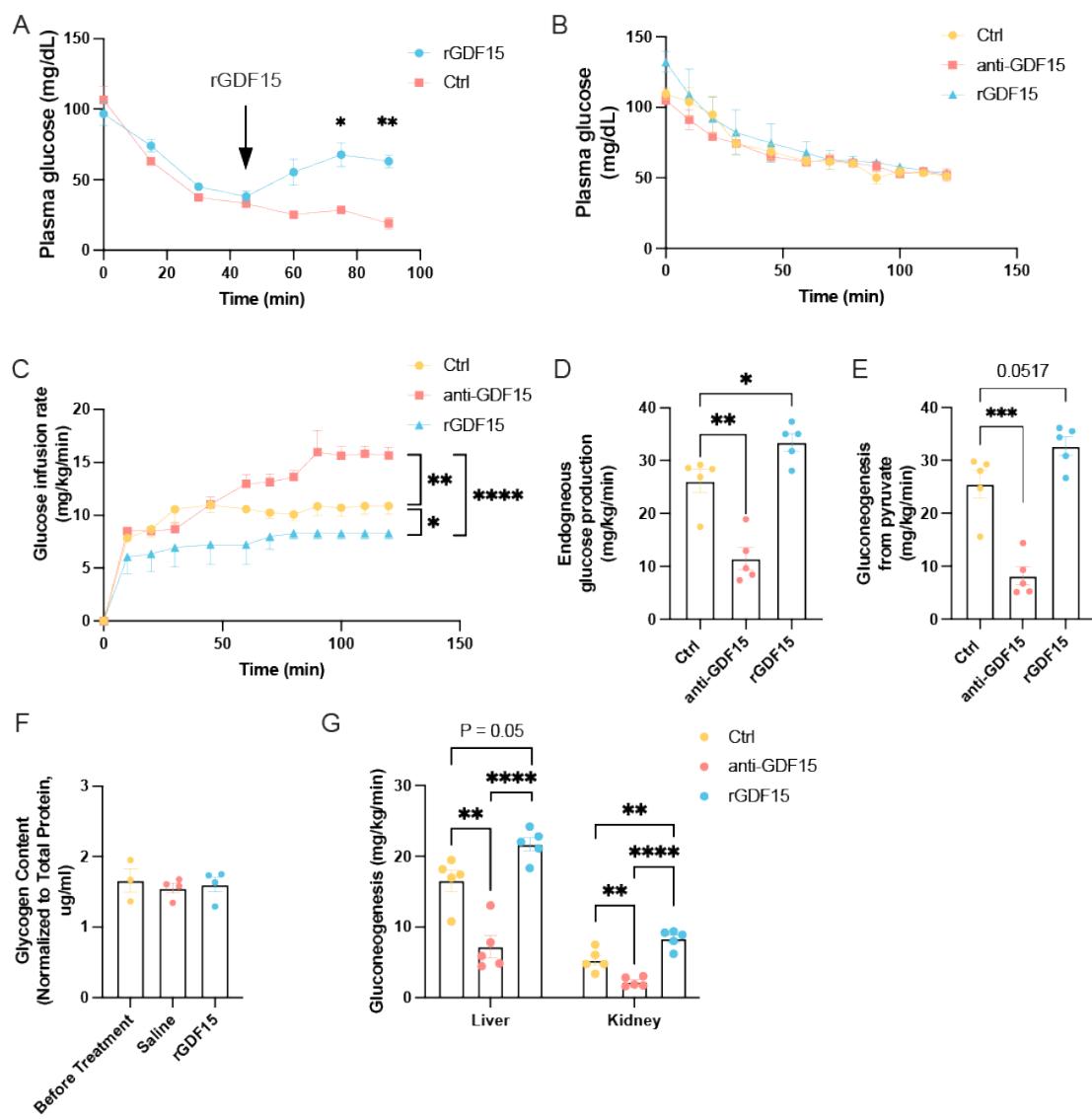

652
653
654
655
656
657
658
659
660
661

Figure 1. Hypoglycemia induces GDF15 production in mice and rats. (A) Plasma glucose and (B) GDF15 concentrations in rats undergoing hyperinsulinemic-euglycemic or -hypoglycemic clamps. (C) Plasma glucose and (D) GDF15 concentrations in mice during a hypoglycemic clamp. (E) Plasma glucose and (F) GDF15 concentrations in mice during an insulin tolerance test in mice. (G) Plasma glucose and (H) GDF15 concentrations in mice during a 72 hour fast in mice. (I) Plasma glucose and (J) GDF15 concentrations after treatment with 2-deoxyglucose (2DG). In all panels, **P<0.01, ***P<0.001, ****P<0.0001 by the 2-tailed unpaired Student's t-test.

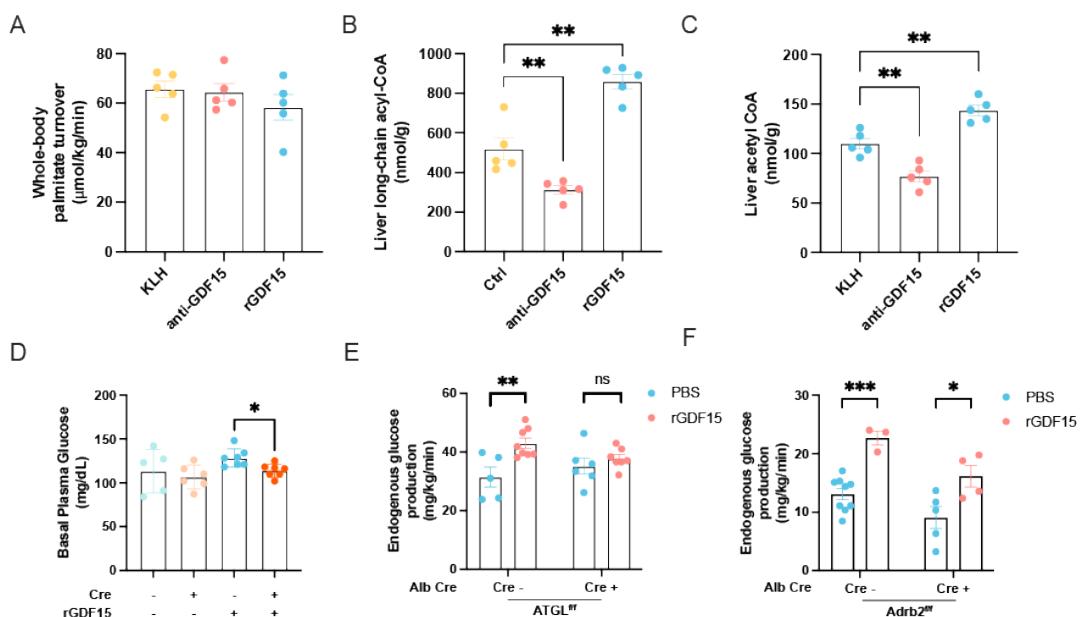

662
663
664
665
666
667
668
669
670
671
672
673
674

Figure 2. The S3 segment of the kidney produces GDF15 during hypoglycemia. (A) GDF15 mRNA expression in euglycemic (PBS-treated) or hypoglycemic (insulin-treated) mice. (B) GDF15 protein content in liver and kidney. (C) GDF15 tdTomato reporter mice demonstrate that GDF15 is produced in the kidney during hypoglycemia. (D) RNA sequencing data confirm that GDF15 is produced primarily in the renal proximal tubule during hypoglycemia in mice. (E) GDF15 is produced in the proximal tubule, as indicated by the colocalization of GDF15 tdTomato and megalin staining. (F) The S3 segment of the proximal tubule is the primary source of GDF15 during hypoglycemia, as indicated by the colocalization of sodium-potassium ATPase staining with GDF15 in tdTomato reporter mice. (G) Inhibiting glucose reabsorption in the proximal proximal tubule with dapagliflozin abrogates the secretion of GDF15 during an insulin tolerance test. In all panels, * $P<0.05$, ** $P<0.01$ by the 2-tailed unpaired Student's t-test.

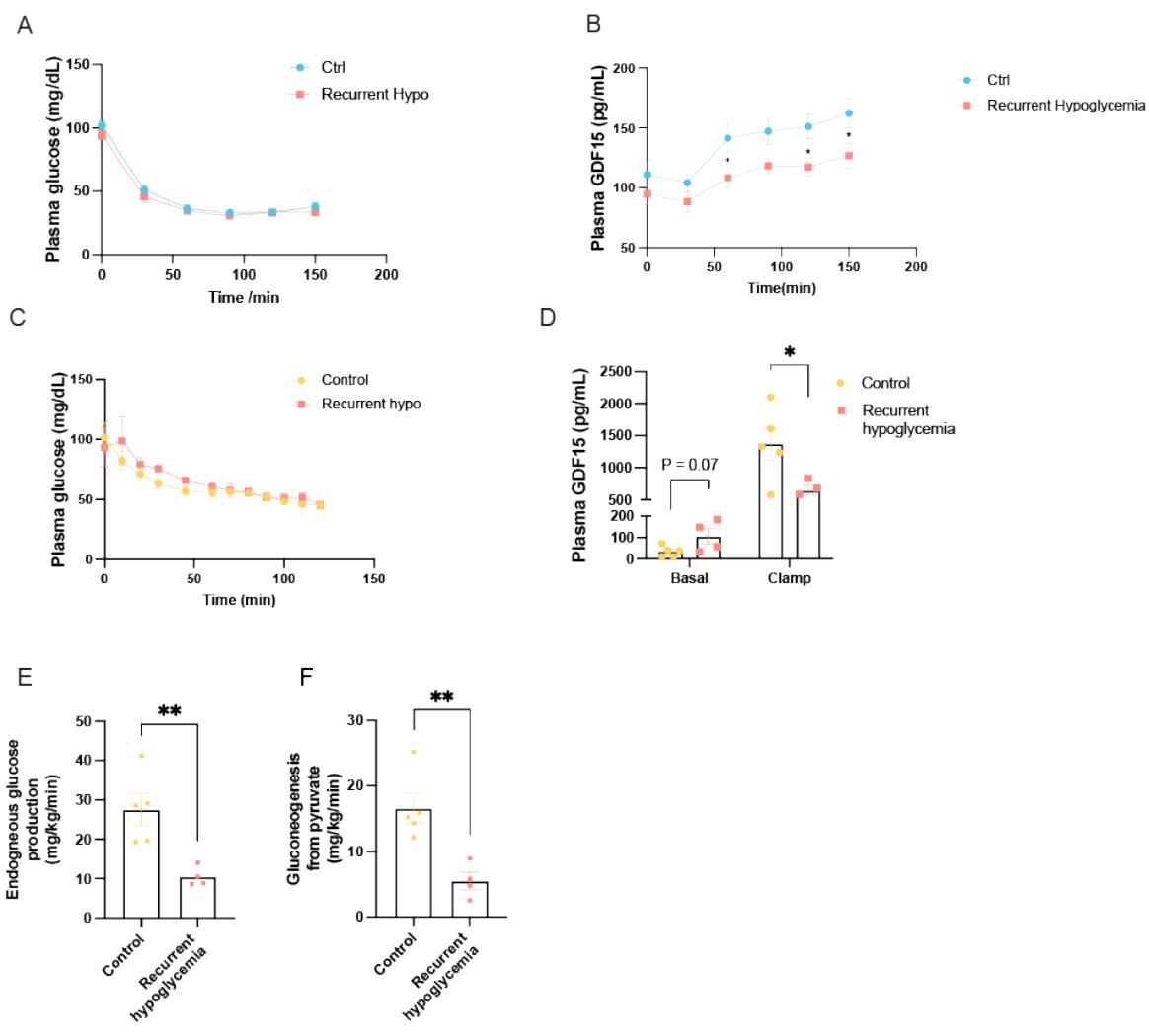

675
676
677
678
679
680
681
682
683
684
685
686

Figure 3. GDF15 defends against hypoglycemia by increasing gluconeogenesis from pyruvate. (A) Recombinant GDF15 administration increases plasma glucose concentrations during an insulin tolerance test. (B) Plasma glucose concentrations did not differ during a hypoglycemic clamp in mice treated with GDF15 neutralizing antibody or with recombinant GDF15, but (C) Recombinant GDF15 decreased, and anti-GDF15 antibody increased the glucose infusion rate during the hypoglycemic clamp. (D)-(E) Anti-GDF15 decreased, and recombinant GDF15 increased endogenous glucose production and gluconeogenesis from pyruvate. (F) GDF15 manipulations did not alter liver glycogen content. (G) GDF15 increased both hepatic and renal gluconeogenesis during a hypoglycemic clamp. In all panels, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 by ANOVA with Tukey's multiple comparisons test.

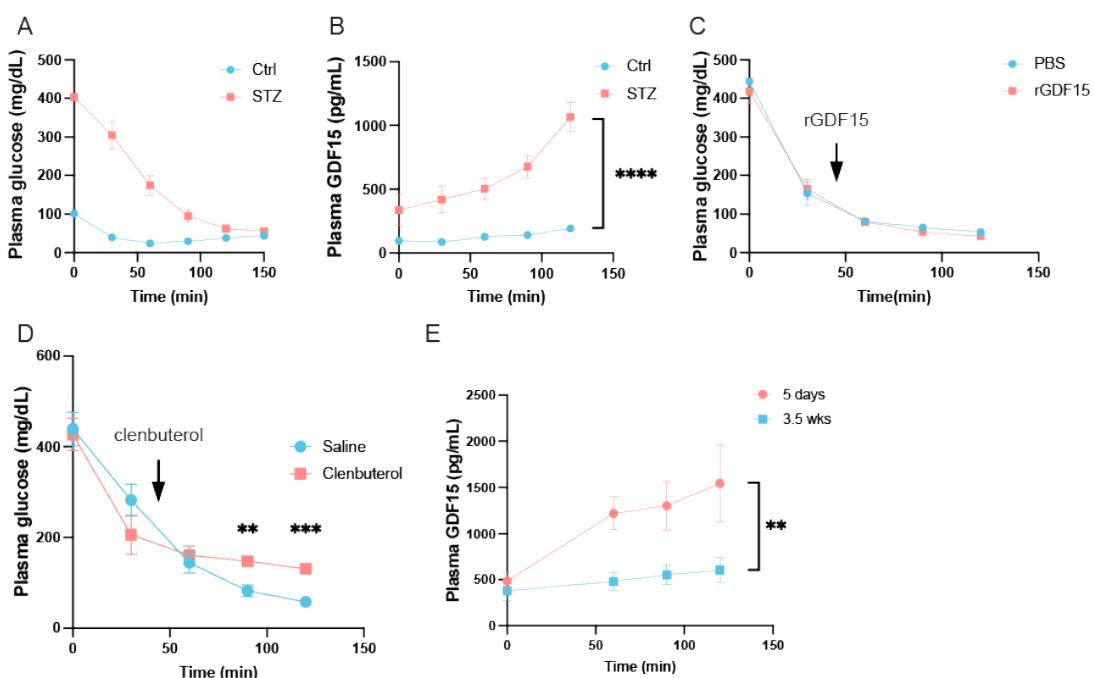
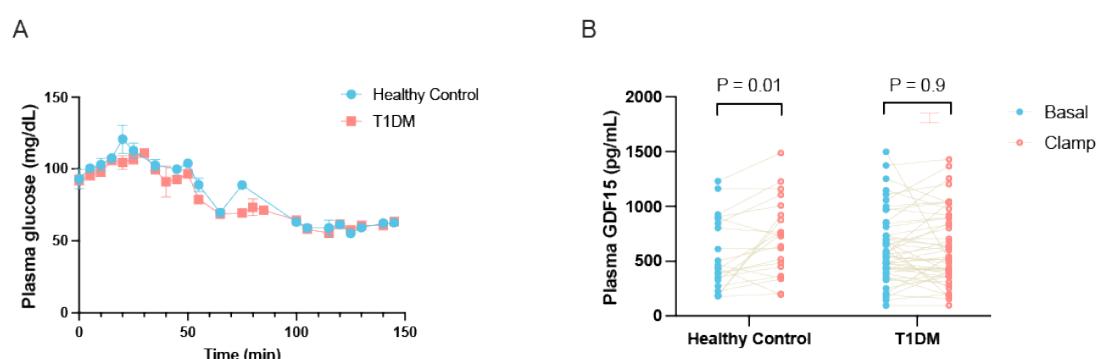

687
688
689
690
691
692
693
694
695
696

Figure 4. GDF15 promotes endogenous glucose production by increasing intrarenal lipolysis in an Adrb2-dependent manner. (A) Whole-body palmitate turnover did not differ with recombinant GDF-15 or anti-GDF15 treatment; however, both (B) Long-chain acyl- and (C) Acetyl-CoA concentrations in the liver were increased with recombinant GDF15 and reduced with anti-GDF15 treatment. (D) Mice deficient in intrahepatic lipolysis failed to induce gluconeogenesis in response to GDF15 treatment, as reflected by a reduced glucose infusion rate and (5) Reduced endogenous glucose production during a hypoglycemic clamp. (F) rGDF15 tends to induce liver and kidney epinephrine and norepinephrine. (H) Mice deficient in the liver Adrb2 showed poor induction of glucose production by rGDF15.



697
698
699
700
701
702
703

Figure 5. Recurrent hypoglycemia impairs GDF15 production in subsequent hypoglycemia. (A)-(B) Mice that experienced recurrent hypoglycemia for three days prior to the study exhibited impaired GDF15 secretion despite unchanged blood glucose concentrations during an insulin tolerance test. (C) Plasma GDF15 concentrations during a hypoglycemic clamp. (D)-(E) Endogenous glucose production and gluconeogenesis from pyruvate during the clamp. In all panels, * $P<0.05$, ** $P<0.01$.

704
705 **Figure 6. Mice with type 1 diabetes exhibit GDF15 resistance.** (A) Streptozotocin-treated
706 T1D mice are, as expected, hyperglycemic at baseline; however, when treated with high-dose
707 insulin they achieve the same degree of hypoglycemia as healthy controls. (B) Plasma GDF15
708 is increased in T1D mice during the insulin tolerance test. (C) T1D mice fail to respond to
709 recombinant GDF15 by increasing blood glucose during the ITT; however, (D) They do exhibit
710 an increase in plasma glucose when treated with the Adrb2 antagonist clenbuterol,
711 demonstrating that the defect is upstream of Adrb2. (E) GDF15 concentrations during an ITT in
712 mice treated with STZ and either studied acutely, or maintained on subcutaneous insulin for 25
713 days.
714

715
716 **Figure 7. Patients with T1D exhibit impaired GDF15 secretion during a hypoglycemic**
717 **clamp.** (A) Plasma glucose concentrations throughout the clamp, which began at time zero).
718 (B) Plasma GDF15 concentrations. Within-group comparisons were performed using the 2-
719 tailed paired Student's t-test. 21 healthy control volunteers and 47 subjects with T1D were
720 studied.
721

	Healthy Controls	Patients with T1D
Number	21	47
Duration of diabetes (years)	N/A	18.4±1.6
Awareness (aware/unaware)	N/A	28/19
Gender (M/F)	10/11	21/26
Age (years)	32±2	35±2
Education (years)	16.7±2.4	16.8±0.5
BMI (kg/m ²)	24.3±2.9	25.8±0.7
HbA1c (%)	5.1±0.3	7.3±0.1****
Basal c-peptide (ng/mL)	1.71±1.00	0.21±0.03****
Basal insulin (μU/mL)	11.3±1.3	35.6±8.3
Basal glucose (mg/dL)	89±3	122±6**
Basal glucagon (pg/mL)	49.6±8.5	32.5±3.9*

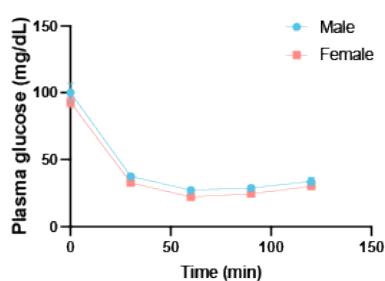
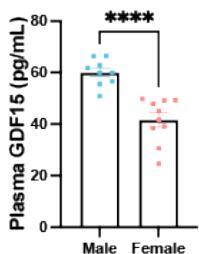
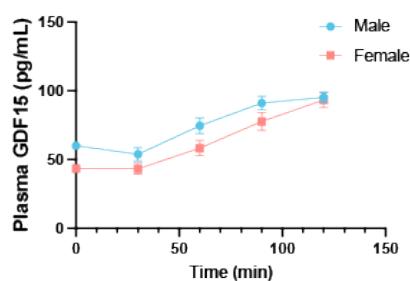
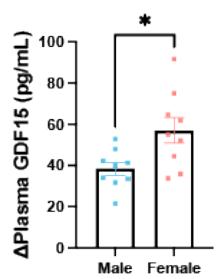

722
723
724
725

Table 1. Clinical characteristics of participants in the human hypoglycemic clamp study.


For continuous variables, the mean±S.E.M. is shown. * $P<0.05$, ** $P<0.01$, **** $P<0.0001$.

726 **Supplemental Data**

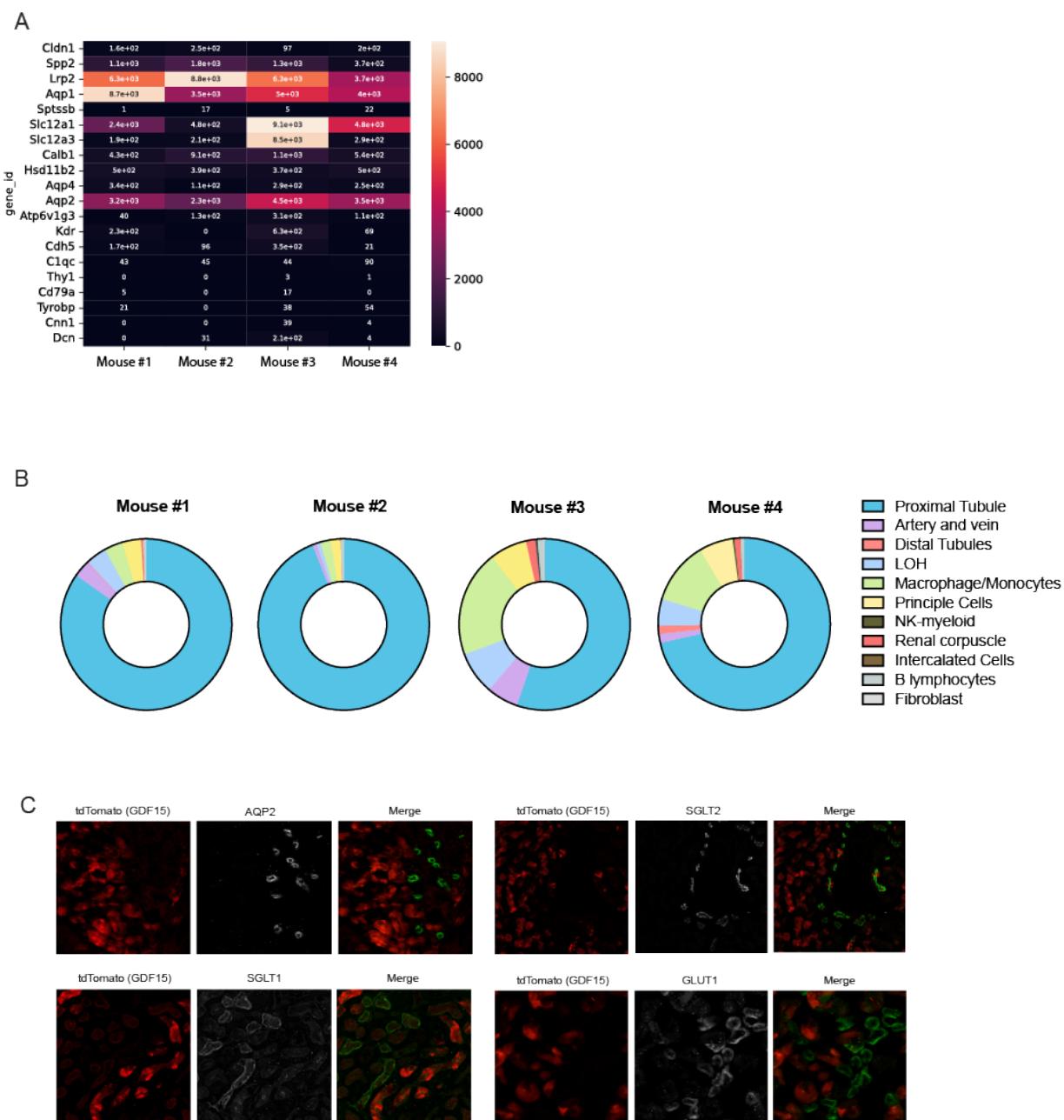

A


B

C

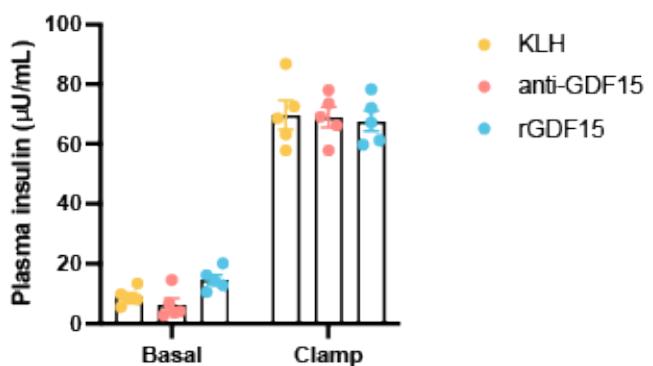
D

727


728

Supplemental Figure 1. Sex differences in GDF15 induction in response to hypoglycemia.

729 (A) Blood glucose during an ITT in male and female mice. (B) Basal plasma GDF15 and (C)


730 GDF15 throughout the ITT. (D) Change in GDF15 from time zero to 120 min of the ITT.

731 * $P<0.05$, **** $P<0.0001$.

732
733
734
735
736
737

Supplemental Figure 2. During hypoglycemia, GDF15 production is primarily induced in the renal proximal tubule. (A) Bulk RNA sequencing of the GDF15-expressing cells shows the signature of proximal tubules, confirmed by CIBERSORTx analysis. (B) CIBERSORTx analysis of the bulk RNA sequencing data from each individual mouse. (C) The proximal tubule identity was confirmed by the staining pattern of AQP2, SGLT1, SGLT2, and GLUT1.

738
739
740
741

Supplemental Figure 3. Plasma insulin concentrations did not differ in the basal or clamp settings between control (KLH-treated), anti-GDF15-treated, or recombinant GDF15-treated mice.