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Summary

Currently, the identification of patient-specific therapies in cancer is mainly informed by
personalized genomic analysis. In the setting of acute myeloid leukemia (AML), patient-drug
treatment matching fails in a subset of patients harboring atypical internal tandem duplications
(ITDs) in the tyrosine kinase domain of the FLT3 gene. To address this unmet medical need,
here we develop a systems-based strategy that integrates multiparametric analysis of crucial
signaling pathways, and patient-specific genomic and transcriptomic data with a prior-
knowledge signaling network using a Boolean-based formalism. By this approach, we derive
personalized predictive models describing the signaling landscape of AML FLT3-ITD positive
cell lines and patients. These models enable us to derive mechanistic insight into drug
resistance mechanisms and suggest novel opportunities for combinatorial treatments.
Interestingly, our analysis reveals that the JNK kinase pathway plays a crucial role in the
tyrosine kinase inhibitor response of FLT3-ITD cells through cell cycle regulation. Finally, our
work shows that patient-specific logic models have the potential to inform precision medicine

approaches.
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Introduction

In the era of precision medicine, comprehensive profiling of malignant tumor samples is
becoming increasingly time- and cost-effective in clinical ecosystems (De Maria Marchiano et
al., 2021; Tsimberidou et al., 2020). While a growing number of genotype-tailored treatments
have been approved for use in clinical practice (Krzyszczyk et al., 2018; Scheetz et al., 2019),
the success of targeted therapies is limited by frequent development of drug resistance
mechanisms that lead to therapy failure and portend a dismal patient prognosis (Mansoori et
al., 2017; Sabnis and Bivona, 2019; Vander Velde et al., 2020; Vasan et al., 2019). Drug
combinations are currently under investigation as a potential means of avoiding drug resistance
and achieving more effective and durable treatment responses.

As the number of possible combinations increases exponentially with the number of drugs
available, it is impractical to test for potential synergistic properties among all available drugs
using empirical experiments alone. Computational approaches that can predict drug synergy,
including Boolean logic models, are crucial in guiding experimental approaches for
discovering rational drug combinations. In the Boolean model, a biological process or pathway
of interest is modeled in the form of a signed and direct graphic with edges representing the
regulatory relationship (activating or inhibitory) between the nodes (proteins). Logical
operators (AND, OR, and NOT), are then employed to dynamically describe how the signal is
integrated and propagated in the system over time to reach a terminal state. These states can be
associated with cellular processes such as apoptosis and proliferation (Calzone et al., 2022).
Once optimized, these models offer the ability to test for the effect of perturbation of the nodes
on the resulting phenotype (e.g., in silico knockout), allowing us to generate novel hypotheses
and to predict the efficacy of novel drug combinations (Hemedan et al., 2022; Le Novere, 2015;
Montagud et al., 2022; Schwab et al., 2020; Wang et al., 2012).

Among the different computational methods available, in the present study, we utilized
CelINOptR (Terfve et al., 2012) to implement an integrated strategy that combines prior-
knowledge signaling networks (PKN) with multiparametric analysis and Boolean logic
modeling. We applied this approach to generate genotype-specific predictive models of AML
patients with differing sensitivities to drug treatments. Specifically, we focused on a subset of
AML patients with internal tandem duplication (ITDs) in the FLT3 receptor tyrosine kinase.
FLT3-ITD, one of the most common driver mutations in AML, occurs in exons 15 and 16,
which encode the juxtamembrane domain (JMD) and the first tyrosine-kinase (TKD1) domain,
and results in constitutive activation. We and others have demonstrated that the location

(insertion site) of the ITD is a crucial prognostic factor: treatment with the recently FDA-
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approved multi-kinase inhibitor Midostaurin and standard frontline chemotherapy has a
significant beneficial effect only in patients carrying the ITDs in the JIMD domain, whereas no
beneficial effect has been shown in patients carrying ITDs in the TKD region (Ricker et al.,
2022; Pugliese et al., 2023; Massacci et al., 2023). Moreover, our group and others have
demonstrated the differences underlying Tyrosine Kinase Inhibitor (TKI) sensitivity are related
to a genotype-specific rewiring of the involved signaling networks.

In the present study, we applied a newly developed integrated approach to construct predictive
logic models of cells expressing FLT3™-TKP and FLT3'TMP_ These models revealed that
JNK plays a crucial role in the TKI response of FLT3-1TD cells through a cell cycle-dependent
mechanism, in line with our previous findings (Massacci et al., 2023; Pugliese et al., 2023).
Additionally, we integrated patient-specific genomic and transcriptomic data with cell line-
derived logic models to obtain predictive personalized mathematical models with the aim of

proposing novel patient-individualized anti-cancer treatments.

Results

The experimental strategy

In the treatment of cancer, molecular-targeted therapies often have limited effectiveness, as
tumors can develop resistance over time. One potential solution to this problem is the use of
combination therapy, for which data-driven approaches are valuable in identifying optimal
drug combinations for individual patients. To identify novel genotype-specific combinatorial
anti-cancer treatments in AML patients with FLT3-1TD, we employed a multidisciplinary
strategy combining multiparametric analysis with literature-derived causal networks and
Boolean logic modeling. Our experimental model consisted of hematopoietic Ba/F3 cells stably
expressing the FLT3 gene with ITDs insertions in the JMD domain (aa 598) or in the TKD1
(aa 613) region (henceforth “FLT3'TPMDP> and <“FLT3TPTKD» cells, respectively). As
previously demonstrated, cells expressing FLT3TP-TKD (“resistant model”) have significantly
decreased sensitivity to TKIs, including the recently registered FLT3-TKI Midostaurin,
compared with FLT3'TPMD ce|ls (“sensitive model") (Massacci et al., 2023; Pugliese et al.,
2023). Our approach (schematized in Figure 1) is summarized as follows:

STEP 1: The first step in our strategy aimed at providing a detailed description of FLT3-1TD-
triggered resistance mechanisms. To this end, we carried out a curation effort and mined our
in-house resource, SIGNOR (Lo Surdo et al., 2023), to build a prior-knowledge network (PKN)

recapitulating known signaling pathways downstream of the FLT3 receptor. The PKN
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integrates information obtained in different cellular systems under distinct experimental
conditions (Fig. 1, panel A).

STEP 2: Using the PKN, we selected 14 crucial proteins, which we refer to as ‘sentinel
proteins’, whose protein activity was emblematic of the cell state downstream of FLT3. Thus,
by performing a multi-parametric analysis, we measured the activity status of the sentinel
proteins under 16 different perturbation conditions in TKIs sensitive and resistant cells to
generate the training dataset (Fig. 1, panel B).

STEP 3: We employed the CelINOptR tool to optimize the PKN using the training data. Two
genotype-specific predictive models were generated that best reproduced the training dataset
(Fig. 1, panel C).

STEP 4: Using the optimized model, we performed an in silico knock-out screen involving the
suppression of multiple crucial nodes. Novel combinatorial treatments were predicted
according to the induction of apoptosis in TKI-sensitive and TKI-resistant cells (Fig. 1, panel
D).

STEP 5: The predictive performance of the two models was validated in vitro, and in silico in
two independent publicly available datasets. The clinical impact of our models was assessed in
a cohort of 14 FLT3-ITD positive AML patients (Fig. 1, panel E).

Generation of FLT3-1TD prior-knowledge signaling network

The first step in the application of our pipeline consisted of the creation of the Prior Knowledge
Network (PKN), a static and genotype-agnostic map recapitulating the signaling pathways
deregulated over AML tumor development and progression (Fig. S1). To create the PKN, we
embarked on a curation effort aimed at describing the molecular mechanisms or causal
relationships connecting three crucial receptors responsible for sustaining the proliferative and
survival pathways in AML (FLT3, TNFR, and IGF1R), to downstream events (i.e., apoptosis
and proliferation). Gathered data were captured using our in-house developed resource,
SIGNOR, and made freely accessible to the community for reuse and interoperability, in
compliance with the FAIR principles (Wilkinson et al., 2016). Briefly, SIGNOR
(https://signor.uniroma2.it) is a public repository that captures more than 35K causal
interactions (up/down regulations) among biological entities and represents them in the form
of a direct and signed network (Lo Surdo et al., 2023). This representation format makes it
particularly suitable for the implementation of Boolean logic modeling approaches. The so-

obtained pre-PKN included 76 nodes and 193 edges, the nodes representing proteins, small
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molecules, stimuli, and phenotypes, and the edges depicting the directed interactions between
the nodes (Table S1).

As little is known about the specific signaling pathways downstream of the non-canonical
FLT3'™-TKD \we enriched the pre-PKN, deriving new edges from cell-specific experimental
data of both FLT3'™® TP and FLT3'TPMP expressing cell lines (see methods, Fig. 2A). This
refined PKN recaps the FLT-ITD downstream signaling and served as the basis for the model

optimization.

Multiparametric analysis of TKI-resistant and sensitive FLT3-1TD cells

To clarify the cooperative and antagonistic interactions among FLT3 inhibition and
complementary therapeutic strategies, we generated a cue—sentinel-response multiparametric
dataset (Table S2-4). Generally, MAPKSs, PI3K-AKT-mTOR, and STATs are the main
pathways downstream of FLT3, IGF1R, and TNFR; we selected 6 key kinases in the FLT3-
ITD PKN, and we perturbed their activity with small molecule inhibitors in presence or in
absence of the FLT3i Midostaurin. We added the cytokines as stimuli to fully activate the RTKSs
included in our network (Fig. 2B). Specifically, we treated sensitive and resistant cells with
either PI3Ki, mTORIi, MEKI, or GSKi +/- Midostaurin for 90 minutes and we added IGF1 for
the last 10 minutes. Parallely, we treated the cells with p38i or JNKi +/- Midostaurin for 90
minutes and added TNFa for the last 10 minutes (Fig. 2C). Overall, we subjected our cell lines
to 16 experimental conditions (listed in Methods, Table S2) and in each of them we measured
the signaling perturbations. As sentinels of the signaling activity response, we measured in
triplicate the activity states of 14 crucial proteins (Fig. 2B-C) based on their phosphorylation
status (MTOR, CREB1, IGF1R, PTEN, GSK3a, GSK3b, STAT3, STAT5, TSC2, p70S6K,
RPS6, JNK, p38, ERK1/2).

Briefly, the biological replicates displayed Pearson correlation coefficients ranging between
0.75-1 (Fig. S2A-B). Overall, the observed modulation of the readouts was consistent with the
experimental evidence reported in the literature (Fig. S2C, black squares in the heatmap). For
each sentinel protein, we employed combinations of inhibitors and stimuli to probe the full
spectrum of protein activity, ranging from the minimum (inhibitor treatment) to the maximum
(stimulus exposure). The data were normalized in the 0 to 1 range using a Hill function. In this
way, the fully active sentinel value was = 1, and the inhibited value = 0 (Fig. S3).

Principal component analysis (PCA) (Fig. 2D) and unsupervised hierarchical clustering (Fig.

S2D) showed that the activity level of sentinel proteins stratified cells according to both FLT3
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activation status (component 1. presence vs absence of FLT3i) and cytokine stimulation
(component 2: IGF1 vs TNFa). Of note, among all the KINi-treated conditions, only the JNKi
treatment groups with the FLT3i treated samples in both cell lines. On the contrary, the
activation profile of these 14 sentinel proteins was not able to distinguish cells according to the
distinct FLT3-1TD insertion sites (circles=FLT3'TP~MP and squares=FLT3'T™P-TKD) (Fig. 2D).
Interestingly, the unsupervised hierarchical clustering of the 14 analytes revealed different
groups according to the pathway proximity of the nodes (e.g., INK-p38; p70S6K-RPS6;
STAT3-STATDS) or according to their regulatory role (e.g., GSK3a/b, PTEN and TSC2, acting
as negative regulators, cluster together) (Fig. S2E). Together, these observations suggest that
the characterization of the genotype-dependent rewiring of signaling pathways cannot be
obtained by simply looking at single proteins in our multiparametric dataset, but rather requires

a modeling approach.

Generation of FLT-ITD optimized logic models

CelINOptR was used to derive biologically relevant information from our dataset and generate
FLT3-ITD-specific predictive models. Boolean logic models were optimized by maximizing
the concordance between the PKN and our cue-sentinel-response multiparametric training
dataset (Fig. 3A).

In the first step, CelINOptR preprocesses the PKN (Fig. S1) and translates it into logical
functions (scaffold model). As previously described (Sacco et al., 2012), the preprocessing
consists of three phases: i) compression, in which unmeasured and untargeted proteins, as well
as linear cascades of undesignated nodes, are removed; ii) expansion, in which the remaining
nodes are connected to the upstream regulators with every possible combination of OR/AND
Boolean operators; and iii) imputation, in which the software integrates the scaffold model with
regulations function inferred without bias from the training dataset.

Using this strategy, we obtained two FLT3-1TD specific PKNs, accounting for 206 and 208
nodes and 756 and 782 edges, for FLT3'TPMP and FLT3'T0-TKP respectively. The variation in
the node count between these two PKNs results from the inclusion of a different number of
AND Boolean operators during the expansion step, while the difference in edge numbers is
primarily due to different variations in the data, leading to distinct edge connections in the
imputation step.

In the second step, causal paths and Boolean operators from the scaffold models were filtered

to best fit the experimental context (see Methods). Briefly, for each cell line, we trained the
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software with our normalized cue-sentinel-response multiparametric dataset to generate a
family of 1000 optimized Boolean models, and we retained the top 100 performing models
(Fig. S4A).

To qualitatively assess the robustness and reliability of the selected models, we compared the
average activity modulation of the individual sentinel proteins with experimentally observed
readouts (Fig. 3A, panel 1-2).

Since the performance of the model strongly depends on the topology of the PKN, we
performed several rounds of PKN check and adjustment, and, in each round, the entire process
was iterated until the simulation provided the best fit of the available data (Fig. S4B-C). As
shown in Fig. 3A, panel 3, the fit between simulated and experimental data was generally
higher in the FLT3'™MP model, which has been more extensively characterized by the
scientific community than the FLT3'TP-TKP system. For each cell line, we selected the model
with the lowest error (see Methods) between experimental and simulated data in the two cell
lines (best model) (Fig. 3B-C). Interestingly, the two Boolean models display a different
structure, and most of the interactions are cell-specific (blue edges), with only a few edges
shared among the two networks (e.g., TNFR-FLT3, STAT3-STAT5A, p70S6K-p38, etc.). The
architectural differences between the models demonstrate a profound rewiring of the signal

downstream of FLT3 as a result of the different locations of the ITD.

Evaluating the predictive power of FLT3-1TD logic models

Thus, we first took advantage of the publicly available quantitative phosphoproteomics dataset
to independently validate our models. To this aim, we computed the steady state of the two
models in “untreated” and “FLT3i” conditions (Fig. S4D). Briefly, the untreated condition
represents the tumor state, here the pro-survival receptors (FLT3, IGF1R, and TNFR) are set
constitutively active and assigned a Boolean value of 1. In the FLT3i condition (Midostaurin
administration), the FLT3 receptor is inhibited and associated with a Boolean value of 0,
whereas IGF1R and TNFR remain constitutively active to reflect the environmental
background that sustains tumor growth and proliferation (Fig. 3D). Given these two initial
conditions (untreated vs FLT3i), we carried out a synchronous simulation (Schwab et al., 2020)
to compute the evolution of the two models. Next, we compared the steady state of our model
upon FLT3 inhibition with the phosphoproteomic data describing the modulation of 16,319
phosphosites in FLT3-ITD Ba/F3 cells (FLT3'™-TKP and FLT3'™-MD) ypon quizartinib
(AC220) treatment (Massacci et al., 2023). The activation status of the nodes in the two

generated models is highly comparable with the level of regulatory phosphorylations reported
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in the reference dataset, supporting our models (Fig. S5A). Next, we aimed to assess whether
the newly generated FLT3'T>MP and FLT3'™-TKP Boolean models could recapitulate in silico
the modulation of apoptosis and proliferation upon inhibition of FLT3 and other druggable
nodes of our models. First, to functionally interpret the results of the simulations, for each
network, we extracted key regulators of ‘apoptosis’ and ‘proliferation’ hallmarks from
SIGNOR. To this aim, we applied our recently developed ProxPath algorithm, a graph-based
method able to retrieve significant paths linking the nodes of our two optimized models to
proliferation and apoptosis phenotypes ((lannuccelli et al., 2023), see Methods) (Table S1, Fig.
3E, left panels, Fig. S4D). Then, integrating the signal of their key regulators (see Methods),
we were able to derive the ‘proliferation’ and ‘apoptosis inhibition’ levels upon each initial
condition.

Importantly, our strategy demonstrated that FLT3'TP-MD and FLT3TP-TKD Boolean models
were able to recapitulate the different TKI sensitivity of FLT3-ITD cells (Fig. 3E, right
panels) (Massacci et al., 2023; Pugliese et al., 2023).

Moreover, by taking advantage of the Beat AML program, which provides ex vivo drug
sensitivity screening data of 134 FLT3'TP-MP AML patients, we validated the prediction power
of our models by comparing our in silico results with the in vitro IC50 values measured upon
RTKSs inhibition (Fig. S5B-C). We observed some discrepancies between model’s prediction
and patients’ data for PI3K inhibition (probably due to missing connections in our cell-specific
model) while FLT3, mTOR, JNK and p38 treatments outcomes in patients were successfully

predicted by our models.

Identification of novel combinatorial treatments reverting TKI resistance

As per their intrinsic nature, the two optimized Boolean logic models have predictive power
and can be used to simulate in silico novel combinatorial treatments reverting drug resistance
of FLT3'T™D-TKD cells (Fig. 4A).

Thus, we performed a targeted in silico approach in FLT3'T™P-TKD and FLT3'™P-MD cells, by
simulating the levels of apoptosis and proliferation, upon combinatorial knockout of FLT3 and
one of the following key druggable kinases: ERK1/2, MEK1/2, GSK3A/B, IGF1R, JNK,
KRAS, MEK1/2, mTOR, PDPK1, PI3K, p38. Interestingly, in the FLT3'T™®-TKD model, the
combined inhibition of JNK and FLT3, exclusively, in silico restores the TKI sensitivity, as
revealed by the evaluation of the apoptosis and proliferation levels (Fig. 4B-C).

We thus tested in vitro whether the pharmacological suppression of JNK using a highly

selective inhibitor could increase the sensitivity of FLT3'TP-TKD cells to TKI treatment. Our
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data indicate that JNK plays a crucial role in cell survival of FLT3-ITD cells, since its
pharmacological inhibition (SP600125) alone or in combination with Midostaurin (PKC412)
significantly increased the percentage of apoptotic FLT3'™-TKD cells (Fig. 4D). Remarkably,
the apoptosis of FLT3'T™P-TKD patients-derived blasts is increased upon pharmacological
inhibition of JNK (Fig, 4F). Consistently, in these experimental conditions, we observed a
significant reduction of proliferating FLT3'™ TP cells versus cells treated with Midostaurin
alone (Fig. 4E). Additionally, in agreement with the models’ predictions, we demonstrated that
pharmacological suppression of ERK1/2 or p38 kinases have no impact on the TKI sensitivity
of FLT3'™-TKD cells (Fig. S6A-B).

We next sought to characterize the functional role of JNK in this response. Recently, we
revealed that the cell cycle controls the FLT3'T™P-TKD TK] resistance via the WEE1-CDK1 axis
(Massacci et al., 2023). Interestingly, JNK has already been shown to play a role in cell cycle
regulation through the inactivation of CDC25C, a phosphatase and positive regulator of CDK1
(Gutierrez et al., 2010). Thus, we investigated whether pharmacological inhibition of INK may
differently impact CDK1 activity in FLT3'™®MP and FLT3'T™P-TKP cells. In line with our
previous findings (Massacci et al., 2023; Pugliese et al., 2023), in FLT3'TPMD celfs,
Midostaurin treatment increases the dephosphorylated, cytosolic, and monomeric pool of
CDK1 and inactivates CDK2 (Fig. 4G), leading to cell accumulation in the G1 phase (Fig.
4H). Combined treatment of SP600125 and Midostaurin increases CDK1 and CDK2
phosphorylation and Cyclin B1 levels, increasing the percentage of G2-M and S-phases cells,
compared with Midostaurin treatment alone (Fig. 4G-H).

As expected, in cells expressing FLT3'™- TP Midostaurin treatment triggers the formation of
the inactive stockpiled pre-M-phase Promoting Factor (MPF) (Massacci et al., 2023),
constituted by the CDK1-CyclinB1 complex (Fig. 4G, I). This complex is associated with a
significant accumulation of proliferating FLT3'™-TXP cells in the G2-M phase as compared to
Midostaurin-treated FLT3'TP~MP cells. In line with these observations, CDK2 phosphorylation
on activating Thr160 was significantly increased (Fig. 4G, S6E). On the other hand, combined
treatment of SP600125 and Midostaurin induces dephosphorylation of CDKZ1 on the inhibitory
Tyr15 and a mild accumulation of FLT3'TP-TKP cells in G2-M phase (Fig. 4G, I, S6C-D, S6G).
These observations support the hypothesis that the combination of JNK inhibition with
Midostaurin treatment impacts the cell cycle progression in TKI-resistant FLT3'TP-TKD cels,
impairing their survival and reactivating the TKI-induced apoptosis.

Generation of AML patient-specific logic models
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Our genotype-specific Boolean models were built on in vitro signaling data and enabled us to
formulate reliable mechanistic hypotheses underlying TKI resistance in our AML cellular
models. As outlined in Figure 5A, to exploit their predictive power in a more clinical setting,
we implemented a computational strategy that combines the models’ topological structure with
patient-derived gene expression data.

As a pilot analysis, we analyzed the mutational and expression profiles of 262 genes (Table
S7), relevant to hematological malignancies in a cohort of 14 FLT3-ITD positive de novo AML
patients (Fig. 5A, panel a). Briefly, the classification of these 10 patients according to their
ITD localization (see Methods) was as follows: 8 patients with FLT3'T°MP 4 with FLT3'™-
IMD+TKD "and 2 with FLT3'TP-TXP (Fig. 5A, panel b). The specific insertion sites of the ITD in
the patient cohort are shown in Table S8. Follow-up clinical data were available for 10 out of
14 patients (Fig. 5B, Table S9).

Mutation profiling analysis of the patient cohort revealed a heterogeneity in the genetic
background among patients and a high number of co-occurring genetic alterations (Fig. S7TA-
B, Table S9). By computing the genes’ z-scores with respect to each patient's gene expression
distribution, we detected patient-specific up- or down-regulated transcripts (Fig. 5A, panel a,
Table S9).

Significantly, patients' unsupervised hierarchical clustering according to the mutational profile
or according to the z-score distribution of the gene expression and principal component analysis
(PCA) of the gene expression data was unable to stratify patients based on their FLT3-ITD
subtypes (Fig. 5C-D, Fig. S7C).

At this point, we tested whether we could exploit the cell-derived Boolean models to generate
personalized predictive models able to reproduce the clinical outcome of patients and then
identify novel personalized combinatorial treatments.

To these aims, each patient’s mutational profile (Fig. S7TA and D, Table S9) was first used to
match the suitable cell-derived FLT3-1TD model and then exploited to set the initial condition
and obtain 14 personalized Boolean models (Fig. 5A, panel c). Next, for each patient, we
performed a simulation of the following conditions in silico: i) untreated state; ii) FLT3i
condition (see Methods); and iii) combination of FLT3i and inhibition with previously tested
kinases. Importantly, our approach enabled us to obtain patient-specific predictive Boolean
models able to describe the drug-induced signaling rewiring (Fig. 5F and Fig. S8) and to
quantify ‘apoptosis inhibition’ and ‘proliferation’ levels (Fig. 5A, panel d and e, Fig. 5E and
Fig. STE). The anti-proliferative and pro-apoptotic response to FLT3 inhibition (Fig. 5E) of
JMD1, IMD2, IMD3, JMD7, and JIMD6 models was confirmed by follow-up clinical data that
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displayed a favorable outcome upon treatment (Fig. 5B). In fact, in JMD1 patient, the sole
FLT3 inhibition impairs the STAT3-STAT5 and INK-MTOR axes and leads to an anti-tumoral
phenotype (Fig. 5F). Conversely, simulations of IMD5, IMD_TKD2, IMD_TKD3 and TKD1
models showed an opposite outcome with respect to real-life clinical observations (Fig. 5B).
For example, in our in silico model, the clinically responder TKD1 patient (Fig. 5B) was
resistant to all the tested combinatorial treatments, with a weak effect of PI3Ki on the pro-
proliferative axis (Fig. 5E and Fig. STE). One possible explanation is that the more complex
mutational landscape of the TKD1 patient cannot be recapitulated by our scaffold model (Fig.
S7D). Interestingly and in line with our previous cell-line-based findings, JNK inhibition
appeared to be a promising approach to alleviate the resistant phenotype of the clinically-not-
responder TKD2 (Fig. 5B), as revealed by the diminished levels of ‘apoptosis inhibition” and
‘proliferation” (Fig. 5E-F). Our model suggests that the effect of combinatorial FLT3i and
JNK:i treatment increases AML cell death through the STAT3/STASA axis (Fig. 5F). Overall,
this analysis showcases the two trained Boolean logic models have predictive power and can
contribute to identifying potential therapeutic strategies improving clinical outcome of
FLT3'T>-TKD patients.

Discussion

Cancer is primarily a signaling disease in which gene mutations and epigenetic alterations
drastically impact crucial tumor pathways, leading to aberrant survival and cell proliferation.
Indeed, nearly all molecularly targeted therapeutic drugs are directed against signaling
molecules (Min and Lee, 2022). However, the success of targeted therapies is often limited,
and drug resistance mechanisms arise, leading to therapy failure and dismal patient prognosis.
To address this issue, a comprehensive, patient-specific characterization of signaling network
rewiring can offer an unprecedented opportunity to identify novel promising, personalized
combinatorial treatments.

Logic-based models have already been proven to successfully meet this challenge, thanks to
their ability to condense the signaling features of a system and to infer the response triggered
by genetic and chemical perturbations to the system in silico (Lee et al., 2012, 2012; Montagud
etal., 2022).

In the present study, we optimized a methodology to investigate drug sensitivity using

genotype-specific Boolean models. Our approach involved building a model representing the
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patient-specific cell state or disease status and inferring novel combinatorial anti-cancer
treatments that may overcome drug resistance.

Here, we specifically applied this methodology to acute myeloid leukemia (AML) patients
carrying the internal tandem duplication (ITD) in the FLT3 receptor tyrosine kinase. Our group
recently showed, by integrating unbiased mass spectrometry-based phosphoproteomics with
literature-derived signaling networks, that the location of the ITD insertion affects the
sensitivity to TKIs therapy through a WEE1-CDK1 dependent mechanism. Our work enabled
us to obtain a nearly complete, though static, picture of how FLT3-ITD mutations rewire
signaling networks.

The main goal of the present study was the generation of clinically relevant, predictive models
of the FLT3-ITD-dependent cell state. We aim to use these models to predict in silico the TKI
sensitivity upon multiple simultaneous perturbations (i); to generate personalized models by
combining patient-specific genomic and transcriptomic datasets (ii) and to propose novel,
effective, patient-specific anti-cancer treatments (iii).

By taking advantage of the previously developed Cell Network Optimizer software (Terfve et
al., 2012), we employed a multi-step strategy that trains a prior-knowledge signaling network
(PKN) with a large-scale multiparametric dataset by using a Boolean logic modeling
formalism.

First, we generated a literature-derived FLT3-ITD-centered signaling network encompassing
relevant pathways in AML, including the regulation of key phenotypes, such as apoptosis and
proliferation. Manually-curated data were made publicly available and can be freely explored
by using tools offered by the SIGNOR resource website or downloaded for local analysis, in
compliance with the FAIR principles (Wilkinson et al., 2016).

Second, we used the XMAP technology to interrogate signaling in FLT3-1TD cells treated with
a panel of nine different perturbations. Analysis of this large multiplex signaling dataset,
consisting of 16 distinct experimental conditions, revealed a clear separation between TKI-
treated and untreated cells as well as IGF1 and TNFa-stimulated cells. Surprisingly, there was
no clear separation between FLT3'™MDP and FLT3'TP-TKD cells, upon clustering based on
signaling parameters. This may be caused by the targeted nature of our measurements, in line
with our recent demonstration that unbiased phosphoproteome profiles discriminate FLT3-1TD
cells according to the ITD location (JMD region vs TKD region). We also speculate that the
different ITD insertion site has a less pronounced effect on cell signaling as compared to the

pharmacological inhibition of key kinases (e.g., FLT3) or stimulation with cytokines. This
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observation highlights the necessity of a systems-based approach allowing the generation of
predictive, genotype-specific models describing how signaling rewiring may affect TKI
sensitivity.

Third, we optimized two genotype-specific Boolean models to delineate the signaling networks
downstream of FLT3'™MP and FLT3'™-TKP, The topology of the two Boolean models was
different and most of the interactions cell-specific, suggesting a deep rewiring of the signal
downstream of FLT3 due to the different locations of the ITD. Remarkably, when we simulated
the pharmacological suppression of FLT3 in silico, our models were able to recapitulate the
well-documented differential sensitivity to TKI treatment of cells expressing FLT3'TP-MD
versus FLT3'T™0-TKD_ Additionally, by taking advantage of two independent publicly available
datasets, including phosphoproteomic and drug sensitivity screening datasets, we validated the
predictions of our models.

Simulation of several simultaneous perturbations of these models in silico highlighted the role
of JNK in the regulation of TKI sensitivity. Remarkably, we discovered that JNK impacts the
cell cycle architecture of FLT3TP-TKDP cells, by acting as a mediator of the CDK1 activity. This
is in line with our previously described model, showing that hitting cell cycle regulators triggers
apoptosis of FLT3TP-TKP cells (Massacci et al., 2023).

In the present study, we also investigated the clinical relevance of our optimized Boolean
models, in a pilot cohort of patients. By integrating the mutation and transcriptome profiling
of 14 FLT3-ITD AML patients with our cell-derived logic models, we were able to derive
patient-specific signaling features and enable the identification of potential tailored treatments
restoring TKI resistance. To note, in our pilot analysis, we could observe that while our
predictions were confirmed by follow-up clinical data for some patients (JMD1, IMD2, JMD3,
JMDG6, JMD7, IMD_TK2, JIMD_TKD3, TKD?2), the high genetic complexity of other FLT3-
ITD positive patients was not completely addressed by our cell line-derived scaffold model
(JMD5, TKD1). This could be due to a number of factors: i) the size of the FLT3-ITD patient
subgroups may have been too small to derive significant biological conclusions (e.g., only two
patients with FLT3'T2-TKD)- ji) the panel of molecular readouts in our training dataset might be
too limited to capture the pleiotropic impact of the FLT3-ITD mutations; and iii) a more
heterogeneous experimental data might be needed to train a predictive model able to
recapitulate the genetic background of a real cohort of patients.

In conclusion, the integration of a cell-based multiparametric dataset with a prior knowledge

network in the framework of the Boolean formalism enabled us to generate optimized
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mechanistic models of FLT3-1TD resistance in AML. This is the proof of concept that our
personalized informatics approach described here is clinically valid and will enable us to
propose novel patient-centered targeted drug solutions. In principle, the generalization of our
strategy will enable us to obtain a systemic perspective of signaling rewiring in different cancer

types, driving novel personalized approaches.

Abbreviations

FLT3 Fms Related Receptor Tyrosine Kinase 3
CDK1 Cyclin-dependent kinase 1

CDK2 Cyclin-dependent kinase 2

TKI tyrosine kinase inhibitor

ITD internal tandem duplication

JMD juxtamembrane domain

TKD tyrosine kinase domain

PKN prior knowledge network

KINi Kinase inhibitors
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Materials and Methods

Cell culture

Murine Ba/F3 cells stabling expressing ITD-JMD and ITD-TKD constructs were kindly
provided by Prof. T. Fischer. Cells were cultured in RPMI 1640 medium (Hyclone, Thermo
Scientific, Waltham, MA) supplemented with 10% heat-inactivated fetal bovine serum
(ECS0090D Euroclone, Italy, MI), 100 U/ml penicillin and 100 mg/ml streptomycin (Gibco
15140122), 1 mM sodium pyruvate (Sigma-Aldrich, St. Louis, Missouri, United States, S8636)
and 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (Sigma H0887).
These cells were chosen as an experimental system as previously described (Massacci et al.,
2023).

Multiparametric experiment of signaling perturbation.

Ba/F3 FLT3'T™-MP and FLT3TP-TKP cells were cultured in complemented RPMI w/o FBS for
16 hours. Afterward, cells were treated with a panel of small molecule inhibitors for 90
minutes: Midostaurin 100nM (Selleck chemical, S8064), SB203580 10uM (Selleck chemical,
S1076), SP600125 10uM (Selleck chemical, S1460), Wortmannin 35nM (Selleck chemical,
S2758), Rapamycin 100nM (Sigma-Aldrich, R8781), UO126 15uM (Sigma-Aldrich, 662005),
LY2090314 20nM (Selleck chemical, S7063). Cells were stimulated with IGF1 100ng/ml
(Sigma-Aldrich, 18779), and TNFa 10ng/ml (Miltenyi Biotec, 130-101-687). The table below
summarizes the treatments used, inhibitors and stimuli, their specific targets, the readout
sentinels, and the concentrations and the treatment time chosen. We selected the inhibitors for
their specificity towards key kinases in the FLT3-ITD downstream signaling. We tested their
efficacy in our model cell line to set the optimal concentration and time to inhibit the kinase
activity to phosphorylate its downstream targets (i.e. the UO126 at 15uM for 90 minutes
inhibits MEK and we observed de-phosphorylated ERK).

We selected IGF1 and TNFa as stimuli to fully activate the receptors and their downstream
kinases in order to perturb and measure more efficiently the signaling. Each treatment and
perturbed kinase were paired with a sentinel analyte to monitor the responses to perturbations

of all main signal transduction pathways of our cell lines included in the PKN.
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inhibitors target | usage time stimuli | usage time
Midostaurin FLT3 100nM 90 minutes IGF1 100ng/ml | 10 minutes
SB203580 p38 10puM 90 minutes TNFa 10ng/ml 10 minutes
SP600125 JNK 20uM 90 minutes

Wortmannin PI3K 50nM 90 minutes
Rapamycin mTOR 100nM 90 minutes
U0126 MEK1/2 | 15uM 90 minutes
LY2090314 GSK3 20nM 90 minutes

Table 2. Small molecule inhibitors and stimuli for the multiparametric analysis

We combined the treatments listed in Table 2 to finally obtain 16 different experimental
conditions in both FLT3'TPMP and FLT3'™P-TKD cell lines. The experimental conditions are

summarized in Table S2 and listed below:

1. FLT3i

2. FLT3i+IGF1

3. FLT3i+TNFa

4. FLT3i+p38i+ TNFa
5. FLT3i+JNKi+ TNFa
6. FLT3i+PI3Ki+IGF1
7. FLT3i+mTORIi+IGF1
8. FLT3i+MEKi+IGF1
9. IGF1

10. TNFa

11. p38i+ TNFa
12. JNKi+ TNFa
13. PI3Ki+IGF1
14. mTORI+IGF1
15. MEKi+IGF1
16. GSK3i+IGF1

We combined the inhibition of a specific target with the stimulation of corresponding pathways
with either IGF1 (AKT-MAPK pathway) or TNFa (p38-JNK pathway), in the presence or
absence of FLT3 inhibitor Midostaurin. Combinatorial treatments aimed at perturbing the cell
signaling and at measuring amplified signaling changes in our system. We therefore measured
the phosphorylation levels of 14 sentinel proteins listed in Table 3 through the X-Map Luminex
technology. To each residue measure, we mapped the functional role associated, activatory =1,

inhibitory =-1 depending on the annotated function on PhosphoSitePlus.

analytes cat.no. phosphosite measured | activity annotation
CREB1 42-680MAG Serl33 1
ERK1/2 42-680MAG Thrl85/Tyr187 1
JNK 42-680MAG Thrl83/Tyr 185 1
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p38 42-680MAG Thrl80/Tyr182 1
STAT3 42-680MAG | Ser727 1
STATS 42-680MAG | Tyr694/699 1
p70S6K 42-611MAG Thr412 1
RPS6 42-611MAG | Ser235/236 1
MTOR 42-611MAG Ser2448 1
IGF1R 42-611MAG Tyr1135/Tyr1136 1
PTEN 42-611MAG Ser380 -1
TSC2 42-611MAG Ser939 -1
GSK3A 42-611MAG Ser21 -1
GSK3B 42-611MAG Ser9 -1
B-Tubulin | 46-413MAG total protein loading control

Table 3. XMAP analytes

Cells were collected, lysed, and stained following the manufacturer’s instructions. Briefly, in
96 well plates, cell lysates were marked with the mix of specific antibodies covalently bound
to magnetic beads, and the signal was amplified with a biotin-streptavidin system. The plates
were read through the Magpix instrument: for each sample, the instrument measured the
intensity of the fluorescent signal pairing it with the identity of the beads given by their location
on the magnetic field. As the final output, we obtained the median fluorescence intensity (MFI)
for all the sentinels in each experimental condition, paired with the number of detected beads.
For each sentinel, the fluorescent threshold should be associated with a count of more than 50
beads to be technically reliable. We then, excluded from the dataset the measures with less than
50 beads detected as shown in the “filter on n. beads” sheet of Table 3,4. Then, we normalized
the MFI of each analyte on the values of B-Tubulin as loading control and we calculated the

median and SD of the three biological replicates (Table S3,4).

Data normalization
The phosphorylation measure of the 14 sentinel signaling proteins was scaled between 0 and
1, using customized Hill functions for each analyte. By applying the formula:

le

YT K+am

We derived n and K parameters of customized Hill functions from the distribution of each

analyte in our experimental data. Briefly, given the asymptotic behavior of the Hill function,
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we set the experimental maximum (maxS) of the analyte to be 0.999 (theoretical maximum,
maxT) and the experimental minimum (minS) to be 0.001 (theoretical minimum, minT). We

then computed the b parameter as:

maxS

~ ‘minS
Next, we calculated n and K for each analyte Hill function:

_ (1 —minT) maxT

n= (1 — maxT) minT

1 — maxT
=— maxS"
maxT

Principal Component Analysis and Hierarchical Clustering

Principal component analysis was performed using the stats R package (v. 4.1.2).

Perseus software was employed to perform unsupervised hierarchical clustering. Specifically,
the Pearson correlation between phosphorylation profiles of sentinel proteins across different
experimental conditions was calculated and used to generate the three. Similar experimental

conditions are in the same branches.

FLT3 ITD-specific Boolean model construction with CellNetOptimizer

We exploited the CellNetOptimizer pipeline which integrates (i) a prior knowledge network
(PKN) and (ii) multi-parametric, normalized experimental data to obtain two FLT3 TP~ MP and
"TKD dynamic and predictive Boolean models. An extended and detailed step-by-step
description of the whole modeling strategy is available in Supplementary Material and the code
to reproduce the analysis is available at https://github.com/SaccoPerfettoLab/FLT3-
ITD_driven_AML_Boolean_models.

Prior Knowledge Network manual curation

We built a FLT3-ITD specific prior knowledge network (PKN) combining (i) a manual
curation and (ii) a data-driven approach. Starting from the SIGNOR database, through a
curation effort, we assembled a causal network describing the FLT3-1TD signaling, comprising
all the direct and indirect interactions implied in the receptor signaling and leukemogenesis.
The PKN is publicly available on SIGNOR
(https://signor.uniromaz2.it/pathway_browser.php?organism=&pathway_list=SIGNOR-Sara).

We downloaded the interaction table, and we manually simplified the network, we compressed
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some articulated and redundant paths (Table S1). We converted the network into a .sif file
made of three columns, entity A, entity B, and interaction type described with 1 if activatory
or -1 if inhibitory. Importantly, during the optimization process, the PKN was adjusted until
we reached an optimal performance of the model. The final version of the PKN displayed 76
nodes and 193 edges. Next, we used CelINOptR v.1.40.0, to preprocess the PKN and to convert
the causal network into logical functions (scaffold model), describing the regulatory relations
among gene products using OR/AND Boolean operators. Briefly, we first compressed and
expanded the PKN (Terfve et al., 2012) to obtain a network of 204 nodes (30 proteins and
176/178 AND Boolean operators) and 612 edges. We, next, exploited CNORfeeder v.1.34.0 to
impute missing links derived directly from the experimental data, using the FEED method,
developed specifically to infer signaling networks from perturbation experiments. Finally, we
integrated the two networks obtaining a scaffold model of 756 edges for FLT3'TP~MP (144 data-
driven) and 782 edges for '"°-TKD (170 data-driven).

Network model optimization

We performed 1000 runs of optimization using CelINOptR which creates context-specific
Boolean models (i) by filtering out interactions not relevant to the system and (ii) by selecting
the Boolean operators (i.e., AND/OR) that best integrate inputs acting on the same node.
CelINOptR exploits a genetic algorithm that minimizes the difference (mean squared error,
mse) between experimental data and the values simulated from the Boolean model.

We sorted the models according to mse in ascending order and selected the first 100 models
(family of best models). Then, we calculated the average state of each protein in the 100 best
models. This procedure enables quantitative prediction even using Boolean models, which are
discrete by nature. These averaged values were compared with the training data to evaluate the
goodness of fit. We used the model with the lowest mse of FLT3'™P~MPand TKD cell lines for
further analyses (best model). These final models accounted for 68 and 60 nodes (of which 38
and 30 are AND operators) and 161 and 133 edges for FLT3'™®-MD gnd FLT3TD-TKD,
respectively. To keep a measure of the whole optimization procedure in the best models, we
added as edges’ attribute the frequency of each edge in the family of 100 models and we
considered as ‘high confidence edges’ the ones having a frequency of 0.4 (edges present in the

final model of 40 stochastic optimization procedures out of 100).
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Boolean models’ validation using independent resources

Using the simulatorT1 function of CelINOptR, we computed the steady state of FLT3'TP-MDP
and 'TP-TKD Boplean models with and without the inhibition of FLT3 and other druggable nodes.
To independently validate the models, we used as a reference the phosphoproteomic data of
FLT3-ITD Ba/F3 cells (FLT3'™PMP and FLT3'™-™P) ypon quizartinib (AC220) treatment
(Massacci et al., 2023). We mapped XxMAP residues associated with protein complexes (e.g.
ERK1/2) to unique protein sequences (e.g., Mapkl and Mapk3) (Table S2). We estimated the
activity of sentinel proteins in the reference dataset using the modulation of their regulatory
phosphosites. Then, we compared the estimated activity with the sentinels’ states in the FLT3
inhibition simulation.

Moreover, to functionally interpret the results and assess the reliability of the model, we
computed the activity of ‘apoptosis’ and ‘proliferation” phenotypes upon FLT3 and other
druggable nodes inhibition after the annotation of model proteins as pro- and anti-apoptotic (or
proliferative). To obtain the table of protein annotations, with proximal phenotypes, we
exploited a recently in-house developed method, dubbed ProxPath, (lannuccelli et al., 2023)
which computes significantly ‘close’ paths linking SIGNOR proteins and phenotypes. The
distance table connecting the model nodes to the ‘Apoptosis’ and ‘Proliferation’ phenotypes is
available in Table S1. To compute the phenotypes' activation status, we integrated with the OR
logic (‘sum of scores’) the activation status of upstream nodes, which were also endpoint
proteins in high-confidence signaling axes (edge frequency 0.4) in the cell-specific models. As
such, if two regulators of the same phenotype were linked in the same axis, we considered only
the one at the end of the cascade.

The Beat AML program on a cohort of 672 tumor specimens collected from 562 patients has
been exploited for model validation. We focused on drug sensitivity screening on 134 patients
carrying the typical FLT3-ITD mutation in the JMD region. Drugs were annotated for their
targets using SIGNOR and ChEBI databases. Drugs inhibiting FLT3, PI3K, mTOR, JNK, and
p38 were selected and the average IC50 of FLT3'™MP patient-derived primary blasts was
calculated (Table S6).

Combinatory treatment inference
To identify promising cotreatments able to revert the resistant phenotype, we exploited the
predictive power of the generated Boolean models and performed an in silico knock-out of key

kinases present in the FLT3'T™P-TKDmodel (ERK1/2, MEK1/2, GSK3A/B, IGF1R, JNK, KRAS,
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MEK1/2, MTOR, PDPK1, PI3K, p38). Briefly, we computed the steady state of each cell line
best model before and after the co-inhibition of FLT3 and every key kinase (11 possible
combinations). Then we inferred the activity of ‘“apoptosis’ and ‘proliferation’ phenotypes. We
eventually selected co-treatments in the FLT3'T2-T“P model able to trigger activation levels of

the ‘apoptosis’ and ‘proliferation’ to the same level as the FLT3'™MP model.

Apoptosis assay

Ba/F3 cells were treated with Midostaurin 100nM and SP600125 10uM for 24 hours.

The concentration of SP600125 to use for this long-term treatment was chosen based on setup
experiment: we treated sensitive and resistant cells with increasing concentrations of SP600125
for 24 hours and evaluated the cell viability using the Cell Proliferation Kit I (MTT) (Roche,
Cat. 11465007001) and measuring the absorbance value at A=590nm. We then calculated the
IC50 with a nonlinear regression drug-response curve fit using Prism 7 (GraphPad). 1C50
values are approximately 1.5 puM in FLT3-ITD mutant cell lines (FLT3'™MP cells
IC50=1.54uM; FLT3™P-TKD cells 1C50=1.69uM). The SP600125 treatment affects cell
viability, reaching a plateau phase of cell death and at about 2 pM. | used 10pM SP600125 to
inhibit JINK phosphorylation. (Kim et al., 2010; Moon et al., 2009). The concentration of
Midostaurin for the apoptotic assay was chosen based on the previously published work
(Massacci et al., 2022) where we show that FLT3'TP-TKP cells treated with Midostaurin 200nM
show lower apoptotic rate and higher cell viability compared to FLT3'TP-MP cells, Apoptotic
cells were analyzed with the Ebioscience™ Annexin V Apoptosis Detection Kit APC
according to the kit instructions (Cat. 88-8007-74, Thermo Fisher Scientific. Samples were
read through the CytoFLEX S (Beckman Coulter) instrument using the APC laser to detect the
Annexin-V+ cells. Quality control of the cytometer was assessed weekly using CytoFLEX
Daily QC Fluorospheres (Beckman Coulter B53230). The fluorescence threshold was set for
the APC laser using a blank sample, without the fluorescent label. The results were analyzed
by the CytExpert software and represented in bar plots as the percentage of Annexin-V+ cells
fold change of treated conditions on controls.

MTT assays

Ba/F3 cells were treated with Midostaurin 100nM, SP600125 20uM, SB203580 10uM, and
UO126 15uM for 24 hours in 96-well plates. The concentration of SB203580 and UO126 to
use for this long-term treatment was chosen based on previous data available in the lab and set-

up experiments. We used the concentration in which we could observe a reduced activity of
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the target (lower phosphorylation of downstream proteins) without cell toxicity. Cell viability
was assessed using the Cell Proliferation Kit I (MTT) (Roche, Cat. 11465007001), following
the manufacturer’s instructions. The plates were read through a microplate reader (Bio-Rad) at
A=590 nm. The results were represented in bar plots as fold change of treated conditions on

controls.

Cell cycle analysis

Ba/F3 cells were treated with Midostaurin 100nM and SP600125 10uM for 24 hours, 106 cells
were collected, washed in ice-cold PBS 1X, and fixed in agitation with 70% cold ethanol. Fixed
samples were incubated at 4°C O/N, washed in PBS 1X, and resuspended in 1pg/ml DAPI
(Thermo Scientific, #62248) and 0.2 mg/ml RNase (Thermo Scientific, # 12091021) PBS
solution before analysis. Samples were read through the CytoFLEX S (Beckman Coulter)
instrument using the PB450 laser to detect the DAPI+ cells. Data were analyzed by CytExpert

(Beckman Coulter) software and represented in bar plots as a percentage of DAPI+ cells.

Immunoblot analysis

Ba/F3 cells were seeded at the concentration of 5x105cells/ml and treated with Midostaurin
100nM, SP600125 20uM, SB203580 10uM, UO126 15uM, for 24 hours, and TNFa 10ng/ml
for 10 minutes. Cells were lysed for 30 minutes in ice-cold lysis buffer (150 mM NaCl,50 mM
Tris-HCI pH 7.5, 1% Nonidet P-40 (NP-40), 1 mM EGTA,5 mM MgCI2, 0.1% SDS)
supplemented with 1 mM PMSF,1 mM orthovanadate, 1 mM NaF, protease inhibitor
mixturelX, inhibitor phosphatase mixture 11 1X, and inhibitor phosphatase mixture I11 1X. The
insoluble material was separated at 13,000 rpm for 30 minutes at 4 °C and total protein
concentration was measured on supernatants using Bradford reagent (Bio-Rad). Protein
extracts were denatured with NUPAGE®LDS (Invitrogen) and boiled at 95 °C for 10 minutes.
SDS-PAGE and transfer were performed on 4-15%Bio-Rad Mini/Midi PROTEAN®TGX™
and Trans-Blot® Turbo™ mini/midi nitrocellulose membranes using the Trans-Blot® Turbo™
Transfer System (Bio-Rad). Nonspecific binding sites were blocked using 5% non-fat dried
milk in TBS-0.1% Tween-20 (TBS-T) for 1 h at RT, shaking. Primary antibodies were diluted
according to the manufacturer’s instruction and incubated at 4 °C O/N, shaking. HRP-
conjugated secondary antibodies were diluted 1:3000 in 5% non-fat dried milk in TBS-T and
incubated for 1h at RT, shaking. Peroxidase chemiluminescence reaction was enhanced with
Clarity™Western ECL Blotting Substrates (Bio-Rad) and detected through the Chemidoc
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detection system (Bio-Rad). Densitometric quantitation of raw images was obtained with Fiji
software (Image J, NIH). The primary and secondary used antibodies are listed: CDK1 (sc-
53219); CDK?2 (sc-6248); phpspho-CDK1 Y15 (CS 9111); phospho-CDK1 T161(CS 9114);
phospho-CDK2 T160 (CS 2561); phospho-SAPK/JNK T183/Y185 (CS 9251); SAPK/INK
(CS 9252); Cyclin B1 (CS 4138); CyclinE2 (CS 4132); Vinculin (CS 13901).

Primary patient blast sensitivity

Peripheral blood (PB) samples were collected from patients with acute myeloid leukemia
(AML) in accordance with the Declaration of Helsinki (ethics committee approval number
115/08) and with the patients' informed consent. The FLT3-1TD mutation integration site was
determined as previously described (Massacci et al., 2023).

Mononuclear cells were isolated from PB using Ficoll-Paque (GE Healthcare, Chicago, IL).
Cryoconserved peripheral blood mononuclear cells (PBMCs) from seven patients were
cultured in RPMI-1640 medium (Sigma-Aldrich, St. Louis, MO) supplemented with 10% fetal
calf serum (FCS) (Bio&Sell GmbH, Germany), 2 mM L-glutamine (Sigma-Aldrich), and 40
U/mL penicillin-streptomycin (ThermoFisher Scientific) at a density of 5x105/mL. Cultures
were incubated for 48 hours in the absence or presence of 100 nM PKC412 and 10 uM
SP600125 (all Selleck Chemicals LLC, Houston, TX), or combinations of PKC412 with
SP600125. The viability of the patient's blast cells was assessed by flow cytometry, while the
specific cell death was calculated as described previously (Pugliese et al., 2023). Briefly,
samples were stained with fluorochrome-conjugated antibodies against CD45, CD33, CD34,
CD13, and CD117, followed by the addition of Annexin V and 7AAD. The samples were
recorded using a NorthernLight-3000 spectral flow cytometer (Cytek Biosciences, Freemont,
CA) and analyzed through FlowJo VV10.9 (BD Bioscience, Franklin Lakes, NJ).

Statistical analysis

Data are represented as the mean = SEM of at least three independent experimental samples
(n=3). Comparisons between three or more groups were performed using the ANOVA test.
Statistical significance between the two groups was estimated using Student’s t-test. Statistical
significance is defined as p value where *p< 0.05; **p<0.01; ***p< 0.001; ****p<0.0001. All
statistical analyses were performed using Prism 7 (GraphPad).
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RNAseq of patient samples

RNA was extracted from peripheral blasts of 14 treatment naive patients with de novo FLT3
ITD driven-AML diagnosis. Clinical characteristics were available for only 10 patients (Table
S9). Peripheral blood (PB) samples from 14 AML patients were obtained upon the patient’s
informed consent. The integration site of the FLT3-1TD mutation was determined as previously
described (Rucker et al., 2022). Briefly, RNA was prepared from PBMCs using the RNeasy
Mini Kit (Qiagen, Germany), retro-transcribed in cDNA, and quantified using the Qubit 4.0
fluorimetric Assay (Thermo Fisher Scientific) and sample integrity, based on the DIN (DNA
integrity number), was assessed using a Genomic DNA ScreenTape assay on TapeStation 4200
(Agilent Technologies).

High throughput sequencing was performed on the coding region of 262 genes involved in
hematologic malignancies. A comprehensive list of all genes is included in Table S7.
Genomic DNA Libraries were prepared from 100 ng of total DNA using the NEGEDIA Cancer
Haemo Exome sequencing service (Next Generation Diagnostic srl) which included library
preparation, target enrichment using Cancer Haemo probe set, quality assessment, and
sequencing on a NovaSeq 6000 sequencing system using a paired-end, 2x150 cycle strategy
(Mumina Inc.). Paired-end reads were produced with a 100x coverage, and a median of 40 M

reads per sample.

Bioinformatic analysis of transcriptome data of patient samples

The raw data were analyzed by Next Generation Diagnostics srl Cancer haemo Exome pipeline
(v1.0) which involves a cleaning step by UMI removal, quality filtering and trimming,
alignment to the reference genome, removal of duplicate reads and variant calling (FASTQC:
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, (Freed et al., 2017; McLaren et
al., 2016; Smith et al., 2017)).

[llumina NovaSeq 6000 base call (BCL) files were converted into fastq files through bcl2fastq
(2019) (version v2.20.0.422). UMI removal was carried out with UMI-tools 1.1.1. Data quality
control was performed with FastQC v.0.11.9 and reads were trimmed and cleaned using
Trimmomatic 0.38.

Alignment to human reference (hg38, GCA_000001405.15), deduplication, and variant calling
were performed with Sentieon 202011.01.

Variant calling output was converted into vcf and MAF format. The maf files were further

annotated with the OncoKB™ annotator (Chakravarty et al., 2016) to obtain the mutation effect
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on protein function and oncogenicity. We filtered out variants with MUTATION_EFFECT
equal to ‘Unknown’, ‘Inconclusive’, ‘Likely Neutral’, and ‘Switch-of-function’ (Table S9).
All downstream analyses were carried out using R v.4.1.2 and BioConductor v.3.13 ((Huber
et al., 2015); R Core Team, 2020)).

Gene counts tables were generated from bam files using Rsubread v. 2.8.2. Data were
normalized with the “trimmed mean of M values” (TMM) method of edgeR v3.36.0 (Robinson
et al., 2010) and converted to log2 (Table S9).

FLT3 ITD localization

Generic variant callers can’t identify medium-sized insertions, like FLT3 ITDs. As such, we
used the specialized algorithm getITD v.1.5.16 (Blatte et al., 2019) to localize ITDs in each
patient. Reads mapping on FLT3 genomic region between JMD and TKD domain (28033888
— 28034214) were extracted from bam files and converted in fastq format with samtools
v.1.16.1.

getITD was run with default parameters, but with a custom reference sequence without introns
(‘caatttaggtatgaaagccagctacagatggtacaggtgaccggctcctcagataatgagtacttctacgttgatttcagagaatatga
atatgatctcaaatgggagtttccaagagaaaatttagagtttgggaaggtactaggatcaggtgcttttggaaaagtgatgaacgcaac
agcttatggaattagcaaaacaggagtctcaatccaggttgccgtcaaaatgetgaaag’) that was annotated according
to getlTD annotation file. Patients carried multiples ITDs and we classified as follows: 8
patients as FLT3'™MP (JMD1-8), 4 patients as FLT3'TP-MP*TKD gMD TKD1-4), and 2 as
FLT3'T>-TKD(TKD1-2) (Table S8).

Patients’ simulation on cell-derived ITD-specific Boolean models

We decided to use the FLT3'T™PMP cell models for both FLT3'TP~MP gnd FLT3'TD-MD+TKD
given the dominant effect that the FLT3'T™°MP mytation displays over the FLT3'™> %P one
(Rucker et al., 2022).

We used patients’ data to perform Boolean simulations on cell-derived ITD-specific Boolean
models. We used FLT3'TP~MD ce|| lines Boolean models for FLT3'TP~MP ang FLT3TP-MD+TKD
patients and FLT3'™°- TP models for FLT3'T™P-TKP patients. Each patient mutational profile was
binarized, setting “Loss-0f-function” or “Likely loss-of-function” equal to 0, and “Gain-of-
function” or “Likely gain-of-function” equal to 1. Using CelINOptR, for each patient we
computed the steady state of its correspondent cell-derived Boolean model in two conditions:

i) the input is the mutational profile (tumor simulation - “untreated”); ii) the input is the
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mutational profile + FLT3 inhibition (treatment with FLT3i simulation). Hence, we inferred
the ‘apoptosis’ and ‘proliferation’ phenotype scores, as stated above.

We also performed an in silico combined treatment of patients simulating their mutations with
the inhibition of FLT3 and a key signaling kinase (eleven different simulations).

Network visualization

To visualize the best model, we exported CelINOptR results using writeScaffold and
writeNetwork functions and imported the network in Cytoscape v.3.9.0. For nodes and edges’
color, we used the style of Cytocopter app v.3.9. We added as edges’ attribute the frequency
of each edge in the family of 100 models and we kept only the edges having a frequency > 0.4.

Statistical analyses and tools

The patient z-score was computed by subtracting the mean of patient-specific expression
distribution and dividing by its standard deviation. PCA and clustering graphs were generated
with stats v.4.1.2, ggfortify v.0.4.15, and ggdendrogram v.0.1.23 packages. Heatmaps were
created using pheatmap v.1.0.12. Phenotypes bar plots are created with ggplot2 v.3.4.0.

Data and code availability

Curated data have been submitted to SIGNOR for reuse and interoperability and can be
accessed at https://signor.uniroma2.it/downloads.php. Transcriptomic data of patients has been
submitted to GEO and can be accessed using the accession number: GSE247483. The code
developed for the study has been organized on a GitHub page and is available at
https://github.com/SaccoPerfettoLab/FLT3-ITD_driven_ AML_Boolean_models.
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Figure Legends

Figure 1. Summary of the experimental strategy. A) Manual curation of FLT3-ITD-specific
Prior Knowledge Network (PKN). B) Multiparametric analysis of signaling perturbations in
TKI sensitive and TKI resistant cells. C) Model generation through the CelINOptR tool. D)
Prediction of combinatorial treatments restoring TKI sensitivity. E) In vitro validation of novel
combinatorial treatments. F) In silico prediction of co-treatment outcome in AML patients.

Figure 2. Generation of the training dataset.

A) Schematic representation of the FLT3-1TD PKN manual curation, integration of data-driven
edges, and manual integration of RTKs pathways involved in AML.

B) Schematic representation of the experimental design: FLT3™MP and FLT3™>-TKP cells
were cultured in starvation medium (w/o FBS) overnight and treated with PI3Ki, MEKIi,
mTORI, and GSK3i, JNKi and p38i, in presence or absence of the FLT3i Midostaurin for 90
minutes. Then, the cells were stimulated either with IGF1 or TNFa for 10 minutes. Control
cells were starved and treated with Midostaurin for 90 minutes. After treatment, samples were
collected, and cell lysates were analyzed with an XMAP-based assay through the MagPix
instrument. Per each experimental condition, we measured the phosphorylation levels of 14
sentinels.

C) Network representation of a compressed PKN that shows the essential pathways monitored
through the perturbation experiment. The perturbed nodes are tagged with a drug icon, and the
measured nodes are colored green.

D) Principal Component Analysis (PCA) of FLT3'™MP and FLT3'TP-TKD cells in the

multiparametric analysis. Each point represents a different experimental condition.

Figure 3. Optimized Boolean models recapitulate the different sensitivity of FLT3!TP-JMD
and FLT3!TP-TKD cells to TKI.

A) Color-coded representations of the experimental activity modulation (T90 — TO0) of sentinel
proteins used to train the two Boolean models (upper panel) and the average prediction of
protein activities in the family of 100 best models (central panel). The protein activity
modulation ranges from -1 to 1 and is represented with a gradient from blue (inhibited) to red
(activated). The absolute value of the difference between experimental and simulated protein
activity modulation (lower panel) is reported as a gradient from light yellow (error < 0.5) to
red (1.85).
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B-C) FLT3'T™PMP (B) and FLT3'™T™P (C) high-confidence Boolean models. Perturbed
proteins in the experimental setup are marked in red or green if inhibited or stimulated,
respectively. Sentinel proteins are reported in blue. The edges' weight represents their
frequency in the family of 100 models and only the high-confidence ones (frequency > 0.4) are
reported. Orange edges are cell-specific links.

D) Cartoon of the in silico conditions simulated to analyze the different TKI sensitivity of the
FLT3'™-MD and FLT3'™-TKP Boolean models. Untreated condition: TNFa+IGF1; FLT3i:
TNFa+IGF1+FLT3 inhibition.

E) Heatmaps (left) report the activation level of positive and negative phenotype regulators
present in the two Boolean models. Bar plots (right) showing the proliferation activation and
apoptosis inhibition levels in untreated and FLT3i conditions in the steady states of FLT3'™®-
MD (plue) and FLT3'™-TKD (yellow) Boolean models.

Figure 4. In silico simulation of the FLT3'TP-TKD|ogic model allows the prediction of novel
combinatorial treatment reverting TKI resistance.

A) Cartoon of the in silico simulation conditions.

B-C) Bar plot showing the in silico simulation of proliferation activation (B) and apoptosis
inhibition (C) levels in untreated and FLT3i conditions in combination with knock-out of each
of 10 crucial kinases in FLT3'™MP (plue) and TP (yellow) cells.

D-E) In FLT3'T™PMP (blye) and -TKD (yellow) cells treated with 100nM Midostaurin and/or
10uM SP600125 (JNK inhibitor) for 24h, the percentage of Annexin V positive cells (D) and
the absorbance values at 595nm (E), normalized on control condition, are reported in bar plots.
F) Primary samples from AML patients with the FLT3'T™P-TKP mytation (n=2, yellow bars) or
the FLT3'TP-MPITKD mytation (n=3, blue bars) were exposed to Midostaurin (100nM, PKC412),
and JNK inhibitor (10uM, SP600125) for 48 hours, or combinations thereof. The specific cell
death of gated AML blasts was calculated to account for treatment-unrelated spontaneous cell
death. The bars on the graph represent the mean values with standard errors.

G) In FLT3'™MP (phlye) and FLT3'TP-TKD (yellow) cells treated with 100nM Midostaurin
and/or 10uM SP600125, followed by 10’ of TNFa 10ng/ml, the protein levels of phospho-JNK
(T183/Y185), JNK, phospho-CDK1 (Y15), phospho-CDK1 (T161), CDK1, phospho-CDK2
(T160), CDK2, CyclinB1, CycinE2, and Vinculin were evaluated by western blot analysis.
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H) Cytofluorimetric cell cycle analysis of DAPI stained FLT3'™°MP (plye) and FLT3'T>-TKP
(yellow) cells treated with 100nM Midostaurin and/or 10uM SP600125 (JNK inhibitor) for
24h.

I) Cartoon of the molecular mechanism proposed for FLT3'T2-MP and FLT3TP-TKD cells,

Figure 5. FLT3-1TD patient-specific Boolean models

A) Schematic representation of our computational approach to obtain personalized logic
models.

B) Hierarchical clustering of patients according to their clinical characteristics (response to
chemotherapy, vital status, and AML recurrence). Resistant, alive or deceased responders, and
deceased with general or FLT3-ITD AML recurrence patients are reported in purple, light or
dark green, and light or dark brown, respectively.

C-D) Hierarchical clustering of patients according to their mutational profile (C) and their
expression profile of 262 genes (D).

E) Heatmap representing patient-specific in silico apoptosis inhibition (left panel) and
proliferation levels (right panel) upon each simulation condition.

F) Patient-specific (JMD1 and TKD2) Boolean models. In the JIMD1 model (left panel), nodes’
activity has been simulated in control (bottom-left part) and FLT3 inhibition conditions (upper-
right part). In the TKD2 model (right panel), nodes’ activity has been simulated in FLT3
inhibition (bottom-left part) and FLT3 and JNK co-inhibition conditions (upper-right part).
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