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Summary 

Currently, the identification of patient-specific therapies in cancer is mainly informed by 

personalized genomic analysis. In the setting of acute myeloid leukemia (AML), patient-drug 

treatment matching fails in a subset of patients harboring atypical internal tandem duplications 

(ITDs) in the tyrosine kinase domain of the FLT3 gene. To address this unmet medical need, 

here we develop a systems-based strategy that integrates multiparametric analysis of crucial 

signaling pathways, and patient-specific genomic and transcriptomic data with a prior-

knowledge signaling network using a Boolean-based formalism. By this approach, we derive 

personalized predictive models describing the signaling landscape of AML FLT3-ITD positive 

cell lines and patients. These models enable us to derive mechanistic insight into drug 

resistance mechanisms and suggest novel opportunities for combinatorial treatments. 

Interestingly, our analysis reveals that the JNK kinase pathway plays a crucial role in the 

tyrosine kinase inhibitor response of FLT3-ITD cells through cell cycle regulation. Finally, our 

work shows that patient-specific logic models have the potential to inform precision medicine 

approaches. 
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Introduction 

In the era of precision medicine, comprehensive profiling of malignant tumor samples is 

becoming increasingly time- and cost-effective in clinical ecosystems (De Maria Marchiano et 

al., 2021; Tsimberidou et al., 2020). While a growing number of genotype-tailored treatments 

have been approved for use in clinical practice (Krzyszczyk et al., 2018; Scheetz et al., 2019), 

the success of targeted therapies is limited by frequent development of drug resistance 

mechanisms that lead to therapy failure and portend a dismal patient prognosis (Mansoori et 

al., 2017; Sabnis and Bivona, 2019; Vander Velde et al., 2020; Vasan et al., 2019). Drug 

combinations are currently under investigation as a potential means of avoiding drug resistance 

and achieving more effective and durable treatment responses. 

As the number of possible combinations increases exponentially with the number of drugs 

available, it is impractical to test for potential synergistic properties among all available drugs 

using empirical experiments alone. Computational approaches that can predict drug synergy, 

including Boolean logic models, are crucial in guiding experimental approaches for 

discovering rational drug combinations. In the Boolean model, a biological process or pathway 

of interest is modeled in the form of a signed and direct graphic with edges representing the 

regulatory relationship (activating or inhibitory) between the nodes (proteins).  Logical 

operators (AND, OR, and NOT), are then employed to dynamically describe how the signal is 

integrated and propagated in the system over time to reach a terminal state. These states can be 

associated with cellular processes such as apoptosis and proliferation (Calzone et al., 2022). 

Once optimized, these models offer the ability to test for the effect of perturbation of the nodes 

on the resulting phenotype (e.g., in silico knockout), allowing us to generate novel hypotheses 

and to predict the efficacy of novel drug combinations (Hemedan et al., 2022; Le Novère, 2015; 

Montagud et al., 2022; Schwab et al., 2020; Wang et al., 2012). 

Among the different computational methods available, in the present study, we utilized 

CellNOptR (Terfve et al., 2012) to implement an integrated strategy that combines prior-

knowledge signaling networks (PKN) with multiparametric analysis and Boolean logic 

modeling. We applied this approach to generate genotype-specific predictive models of AML 

patients with differing sensitivities to drug treatments. Specifically, we focused on a subset of 

AML patients with internal tandem duplication (ITDs) in the FLT3 receptor tyrosine kinase. 

FLT3-ITD, one of the most common driver mutations in AML, occurs in exons 15 and 16, 

which encode the juxtamembrane domain (JMD) and the first tyrosine-kinase (TKD1) domain, 

and results in constitutive activation. We and others have demonstrated that the location 

(insertion site) of the ITD is a crucial prognostic factor: treatment with the recently FDA-
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approved multi-kinase inhibitor Midostaurin and standard frontline chemotherapy has a 

significant beneficial effect only in patients carrying the ITDs in the JMD domain, whereas no 

beneficial effect has been shown in patients carrying ITDs in the TKD region (Rücker et al., 

2022; Pugliese et al., 2023; Massacci et al., 2023). Moreover, our group and others have 

demonstrated the differences underlying Tyrosine Kinase Inhibitor (TKI) sensitivity are related 

to a genotype-specific rewiring of the involved signaling networks. 

In the present study, we applied a newly developed integrated approach to construct predictive 

logic models of cells expressing FLT3ITD-TKD and FLT3ITD-JMD. These models revealed that 

JNK plays a crucial role in the TKI response of FLT3-ITD cells through a cell cycle-dependent 

mechanism, in line with our previous findings (Massacci et al., 2023; Pugliese et al., 2023). 

Additionally, we integrated patient-specific genomic and transcriptomic data with cell line-

derived logic models to obtain predictive personalized mathematical models with the aim of 

proposing novel patient-individualized anti-cancer treatments. 

 

Results 

The experimental strategy 

In the treatment of cancer, molecular-targeted therapies often have limited effectiveness, as 

tumors can develop resistance over time. One potential solution to this problem is the use of 

combination therapy, for which data-driven approaches are valuable in identifying optimal 

drug combinations for individual patients. To identify novel genotype-specific combinatorial 

anti-cancer treatments in AML patients with FLT3-ITD, we employed a multidisciplinary 

strategy combining multiparametric analysis with literature-derived causal networks and 

Boolean logic modeling. Our experimental model consisted of hematopoietic Ba/F3 cells stably 

expressing the FLT3 gene with ITDs insertions in the JMD domain (aa 598) or in the TKD1 

(aa 613) region (henceforth “FLT3ITD-JMD” and “FLT3ITD-TKD” cells, respectively). As 

previously demonstrated, cells expressing FLT3ITD-TKD (“resistant model”) have significantly 

decreased sensitivity to TKIs, including the recently registered FLT3-TKI Midostaurin, 

compared with FLT3ITD-JMD cells (“sensitive model") (Massacci et al., 2023; Pugliese et al., 

2023). Our approach (schematized in Figure 1) is summarized as follows: 

STEP 1: The first step in our strategy aimed at providing a detailed description of FLT3-ITD-

triggered resistance mechanisms. To this end, we carried out a curation effort and mined our 

in-house resource, SIGNOR (Lo Surdo et al., 2023), to build a prior-knowledge network (PKN) 

recapitulating known signaling pathways downstream of the FLT3 receptor. The PKN 
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integrates information obtained in different cellular systems under distinct experimental 

conditions (Fig. 1, panel A). 

STEP 2: Using the PKN, we selected 14 crucial proteins, which we refer to as ‘sentinel 

proteins’, whose protein activity was emblematic of the cell state downstream of FLT3. Thus, 

by performing a multi-parametric analysis, we measured the activity status of the sentinel 

proteins under 16 different perturbation conditions in TKIs sensitive and resistant cells to 

generate the training dataset (Fig. 1, panel B). 

 STEP 3: We employed the CellNOptR tool to optimize the PKN using the training data. Two 

genotype-specific predictive models were generated that best reproduced the training dataset 

(Fig. 1, panel C).  

STEP 4: Using the optimized model, we performed an in silico knock-out screen involving the 

suppression of multiple crucial nodes. Novel combinatorial treatments were predicted 

according to the induction of apoptosis in TKI-sensitive and TKI-resistant cells (Fig. 1, panel 

D). 

STEP 5: The predictive performance of the two models was validated in vitro, and in silico in 

two independent publicly available datasets. The clinical impact of our models was assessed in 

a cohort of 14 FLT3-ITD positive AML patients (Fig. 1, panel E). 

 

Generation of FLT3-ITD prior-knowledge signaling network 

The first step in the application of our pipeline consisted of the creation of the Prior Knowledge 

Network (PKN), a static and genotype-agnostic map recapitulating the signaling pathways 

deregulated over AML tumor development and progression (Fig. S1). To create the PKN, we 

embarked on a curation effort aimed at describing the molecular mechanisms or causal 

relationships connecting three crucial receptors responsible for sustaining the proliferative and 

survival pathways in AML (FLT3, TNFR, and IGF1R), to downstream events (i.e., apoptosis 

and proliferation). Gathered data were captured using our in-house developed resource, 

SIGNOR, and made freely accessible to the community for reuse and interoperability, in 

compliance with the FAIR principles (Wilkinson et al., 2016). Briefly, SIGNOR 

(https://signor.uniroma2.it) is a public repository that captures more than 35K causal 

interactions (up/down regulations) among biological entities and represents them in the form 

of a direct and signed network (Lo Surdo et al., 2023). This representation format makes it 

particularly suitable for the implementation of Boolean logic modeling approaches. The so-

obtained pre-PKN included 76 nodes and 193 edges, the nodes representing proteins, small 
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molecules, stimuli, and phenotypes, and the edges depicting the directed interactions between 

the nodes (Table S1).  

As little is known about the specific signaling pathways downstream of the non-canonical 

FLT3ITD-TKD, we enriched the pre-PKN, deriving new edges from cell-specific experimental 

data of both FLT3ITD-TKD and FLT3ITD-JMD expressing cell lines (see methods, Fig. 2A). This 

refined PKN recaps the FLT-ITD downstream signaling and served as the basis for the model 

optimization.  

 

Multiparametric analysis of TKI-resistant and sensitive FLT3-ITD cells 

To clarify the cooperative and antagonistic interactions among FLT3 inhibition and 

complementary therapeutic strategies, we generated a cue–sentinel–response multiparametric 

dataset (Table S2-4). Generally, MAPKs, PI3K-AKT-mTOR, and STATs are the main 

pathways downstream of FLT3, IGF1R, and TNFR; we selected 6 key kinases in the FLT3-

ITD PKN, and we perturbed their activity with small molecule inhibitors in presence or in 

absence of the FLT3i Midostaurin. We added the cytokines as stimuli to fully activate the RTKs 

included in our network (Fig. 2B). Specifically, we treated sensitive and resistant cells with 

either PI3Ki, mTORi, MEKi, or GSKi +/- Midostaurin for 90 minutes and we added IGF1 for 

the last 10 minutes. Parallely, we treated the cells with p38i or JNKi +/- Midostaurin for 90 

minutes and added TNFα for the last 10 minutes (Fig. 2C). Overall, we subjected our cell lines 

to 16 experimental conditions (listed in Methods, Table S2) and in each of them we measured 

the signaling perturbations. As sentinels of the signaling activity response, we measured in 

triplicate the activity states of 14 crucial proteins (Fig. 2B-C) based on their phosphorylation 

status (mTOR, CREB1, IGF1R, PTEN, GSK3a, GSK3b, STAT3, STAT5, TSC2, p70S6K, 

RPS6, JNK, p38, ERK1/2).  

Briefly, the biological replicates displayed Pearson correlation coefficients ranging between 

0.75-1 (Fig. S2A-B). Overall, the observed modulation of the readouts was consistent with the 

experimental evidence reported in the literature (Fig. S2C, black squares in the heatmap). For 

each sentinel protein, we employed combinations of inhibitors and stimuli to probe the full 

spectrum of protein activity, ranging from the minimum (inhibitor treatment) to the maximum 

(stimulus exposure). The data were normalized in the 0 to 1 range using a Hill function. In this 

way, the fully active sentinel value was = 1, and the inhibited value = 0 (Fig. S3). 

 Principal component analysis (PCA) (Fig. 2D) and unsupervised hierarchical clustering (Fig. 

S2D) showed that the activity level of sentinel proteins stratified cells according to both FLT3 
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activation status (component 1: presence vs absence of FLT3i) and cytokine stimulation 

(component 2: IGF1 vs TNFα). Of note, among all the KINi-treated conditions, only the JNKi 

treatment groups with the FLT3i treated samples in both cell lines. On the contrary, the 

activation profile of these 14 sentinel proteins was not able to distinguish cells according to the 

distinct FLT3-ITD insertion sites (circles=FLT3ITD-JMD and squares=FLT3ITD-TKD) (Fig. 2D).  

Interestingly, the unsupervised hierarchical clustering of the 14 analytes revealed different 

groups according to the pathway proximity of the nodes (e.g., JNK-p38; p70S6K-RPS6; 

STAT3-STAT5) or according to their regulatory role (e.g., GSK3a/b, PTEN and TSC2, acting 

as negative regulators, cluster together) (Fig. S2E). Together, these observations suggest that 

the characterization of the genotype-dependent rewiring of signaling pathways cannot be 

obtained by simply looking at single proteins in our multiparametric dataset, but rather requires 

a modeling approach. 

 

Generation of FLT-ITD optimized logic models 

CellNOptR was used to derive biologically relevant information from our dataset and generate 

FLT3-ITD-specific predictive models. Boolean logic models were optimized by maximizing 

the concordance between the PKN and our cue–sentinel–response multiparametric training 

dataset (Fig. 3A). 

In the first step, CellNOptR preprocesses the PKN (Fig. S1) and translates it into logical 

functions (scaffold model). As previously described (Sacco et al., 2012), the preprocessing 

consists of three phases: i) compression, in which unmeasured and untargeted proteins, as well 

as linear cascades of undesignated nodes, are removed; ii) expansion, in which the remaining 

nodes are connected to the upstream regulators with every possible combination of OR/AND 

Boolean operators; and iii) imputation, in which the software integrates the scaffold model with 

regulations function inferred without bias from the training dataset. 

Using this strategy, we obtained two FLT3-ITD specific PKNs, accounting for 206 and 208 

nodes and 756 and 782 edges, for FLT3ITD-JMD and FLT3ITD-TKD respectively. The variation in 

the node count between these two PKNs results from the inclusion of a different number of 

AND Boolean operators during the expansion step, while the difference in edge numbers is 

primarily due to different variations in the data, leading to distinct edge connections in the 

imputation step. 

In the second step, causal paths and Boolean operators from the scaffold models were filtered 

to best fit the experimental context (see Methods). Briefly, for each cell line, we trained the 
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software with our normalized cue–sentinel–response multiparametric dataset to generate a 

family of 1000 optimized Boolean models, and we retained the top 100 performing models 

(Fig. S4A).  

To qualitatively assess the robustness and reliability of the selected models, we compared the 

average activity modulation of the individual sentinel proteins with experimentally observed 

readouts (Fig. 3A, panel 1-2).  

Since the performance of the model strongly depends on the topology of the PKN, we 

performed several rounds of PKN check and adjustment, and, in each round, the entire process 

was iterated until the simulation provided the best fit of the available data (Fig. S4B-C). As 

shown in Fig. 3A, panel 3, the fit between simulated and experimental data was generally 

higher in the FLT3ITD-JMD model, which has been more extensively characterized by the 

scientific community than the FLT3ITD-TKD system. For each cell line, we selected the model 

with the lowest error (see Methods) between experimental and simulated data in the two cell 

lines (best model) (Fig. 3B-C). Interestingly, the two Boolean models display a different 

structure, and most of the interactions are cell-specific (blue edges), with only a few edges 

shared among the two networks (e.g., TNFR-FLT3, STAT3-STAT5A, p70S6K-p38, etc.). The 

architectural differences between the models demonstrate a profound rewiring of the signal 

downstream of FLT3 as a result of the different locations of the ITD.  

  

Evaluating the predictive power of FLT3-ITD logic models 

Thus, we first took advantage of the publicly available quantitative phosphoproteomics dataset 

to independently validate our models. To this aim, we computed the steady state of the two 

models in “untreated” and “FLT3i” conditions (Fig. S4D). Briefly, the untreated condition 

represents the tumor state, here the pro-survival receptors (FLT3, IGF1R, and TNFR) are set 

constitutively active and assigned a Boolean value of 1. In the FLT3i condition (Midostaurin 

administration), the FLT3 receptor is inhibited and associated with a Boolean value of 0, 

whereas IGF1R and TNFR remain constitutively active to reflect the environmental 

background that sustains tumor growth and proliferation (Fig. 3D). Given these two initial 

conditions (untreated vs FLT3i), we carried out a synchronous simulation (Schwab et al., 2020) 

to compute the evolution of the two models. Next, we compared the steady state of our model 

upon FLT3 inhibition with the phosphoproteomic data describing the modulation of 16,319 

phosphosites in FLT3-ITD Ba/F3  cells (FLT3ITD-TKD and FLT3ITD-JMD) upon quizartinib 

(AC220) treatment (Massacci et al., 2023). The activation status of the nodes in the two 

generated models is highly comparable with the level of regulatory phosphorylations reported 
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in the reference dataset, supporting our models (Fig. S5A). Next, we aimed to assess whether 

the newly generated FLT3ITD-JMD and FLT3ITD-TKD Boolean models could recapitulate in silico 

the modulation of apoptosis and proliferation upon inhibition of FLT3 and other druggable 

nodes of our models. First, to functionally interpret the results of the simulations, for each 

network, we extracted key regulators of ‘apoptosis’ and ‘proliferation’ hallmarks from 

SIGNOR. To this aim, we applied our recently developed ProxPath algorithm, a graph-based 

method able to retrieve significant paths linking the nodes of our two optimized models to 

proliferation and apoptosis phenotypes ((Iannuccelli et al., 2023), see Methods) (Table S1, Fig. 

3E, left panels, Fig. S4D). Then, integrating the signal of their key regulators (see Methods), 

we were able to derive the ‘proliferation’ and ‘apoptosis inhibition’ levels upon each initial 

condition.  

Importantly, our strategy demonstrated that FLT3ITD-JMD and FLT3ITD-TKD Boolean models 

were able to recapitulate the different TKI sensitivity of FLT3-ITD cells (Fig. 3E, right 

panels) (Massacci et al., 2023; Pugliese et al., 2023).  

Moreover, by taking advantage of the Beat AML program, which provides ex vivo drug 

sensitivity screening data of 134 FLT3ITD-JMD AML patients, we validated the prediction power 

of our models by comparing our in silico results with the in vitro IC50 values measured upon 

RTKs inhibition (Fig. S5B-C). We observed some discrepancies between model’s prediction 

and patients’ data for PI3K inhibition (probably due to missing connections in our cell-specific 

model) while FLT3, mTOR, JNK and p38 treatments outcomes in patients were successfully 

predicted by our models.  

 

Identification of novel combinatorial treatments reverting TKI resistance 

As per their intrinsic nature, the two optimized Boolean logic models have predictive power 

and can be used to simulate in silico novel combinatorial treatments reverting drug resistance 

of FLT3ITD-TKD cells (Fig. 4A).  

Thus, we performed a targeted in silico approach in FLT3ITD-TKD and FLT3ITD-JMD cells, by 

simulating the levels of apoptosis and proliferation, upon combinatorial knockout of FLT3 and 

one of the following key druggable kinases: ERK1/2, MEK1/2, GSK3A/B, IGF1R, JNK, 

KRAS, MEK1/2, mTOR, PDPK1, PI3K, p38. Interestingly, in the FLT3ITD-TKD model, the 

combined inhibition of JNK and FLT3, exclusively, in silico restores the TKI sensitivity, as 

revealed by the evaluation of the apoptosis and proliferation levels (Fig. 4B-C). 

We thus tested in vitro whether the pharmacological suppression of JNK using a highly 

selective inhibitor could increase the sensitivity of FLT3ITD-TKD cells to TKI treatment. Our 
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data indicate that JNK plays a crucial role in cell survival of FLT3-ITD cells, since its 

pharmacological inhibition (SP600125) alone or in combination with Midostaurin (PKC412) 

significantly increased the percentage of apoptotic FLT3ITD-TKD cells (Fig. 4D). Remarkably, 

the apoptosis of FLT3ITD-TKD patients-derived blasts is increased upon pharmacological 

inhibition of JNK (Fig, 4F). Consistently, in these experimental conditions, we observed a 

significant reduction of proliferating FLT3ITD-TKD cells versus cells treated with Midostaurin 

alone (Fig. 4E). Additionally, in agreement with the models’ predictions, we demonstrated that 

pharmacological suppression of ERK1/2 or p38 kinases have no impact on the TKI sensitivity 

of FLT3ITD-TKD cells (Fig. S6A-B). 

We next sought to characterize the functional role of JNK in this response. Recently, we 

revealed that the cell cycle controls the FLT3ITD-TKD TKI resistance via the WEE1-CDK1 axis 

(Massacci et al., 2023). Interestingly, JNK has already been shown to play a role in cell cycle 

regulation through the inactivation of CDC25C, a phosphatase and positive regulator of CDK1 

(Gutierrez et al., 2010). Thus, we investigated whether pharmacological inhibition of JNK may 

differently impact CDK1 activity in FLT3ITD-JMD and FLT3ITD-TKD cells. In line with our 

previous findings (Massacci et al., 2023; Pugliese et al., 2023), in FLT3ITD-JMD cells, 

Midostaurin treatment increases the dephosphorylated, cytosolic, and monomeric pool of 

CDK1 and inactivates CDK2 (Fig. 4G), leading to cell accumulation in the G1 phase (Fig. 

4H). Combined treatment of SP600125 and Midostaurin increases CDK1 and CDK2 

phosphorylation and Cyclin B1 levels, increasing the percentage of G2-M and S-phases cells, 

compared with Midostaurin treatment alone (Fig. 4G-H). 

As expected, in cells expressing FLT3ITD-TKD, Midostaurin treatment triggers the formation of 

the inactive stockpiled pre-M-phase Promoting Factor (MPF) (Massacci et al., 2023), 

constituted by the CDK1-CyclinB1 complex (Fig. 4G, I). This complex is associated with a 

significant accumulation of proliferating FLT3ITD-TKD cells in the G2-M phase as compared to 

Midostaurin-treated FLT3ITD-JMD cells. In line with these observations, CDK2 phosphorylation 

on activating Thr160 was significantly increased (Fig. 4G, S6E). On the other hand, combined 

treatment of SP600125 and Midostaurin induces dephosphorylation of CDK1 on the inhibitory 

Tyr15 and a mild accumulation of FLT3ITD-TKD cells in G2-M phase (Fig. 4G, I, S6C-D, S6G). 

These observations support the hypothesis that the combination of JNK inhibition with 

Midostaurin treatment impacts the cell cycle progression in TKI-resistant FLT3ITD-TKD cells, 

impairing their survival and reactivating the TKI-induced apoptosis.  

 

Generation of AML patient-specific logic models 
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Our genotype-specific Boolean models were built on in vitro signaling data and enabled us to 

formulate reliable mechanistic hypotheses underlying TKI resistance in our AML cellular 

models. As outlined in Figure 5A, to exploit their predictive power in a more clinical setting, 

we implemented a computational strategy that combines the models’ topological structure with 

patient-derived gene expression data.  

As a pilot analysis, we analyzed the mutational and expression profiles of 262 genes (Table 

S7), relevant to hematological malignancies in a cohort of 14 FLT3-ITD positive de novo AML 

patients (Fig. 5A, panel a). Briefly, the classification of these 10 patients according to their 

ITD localization (see Methods) was as follows: 8 patients with FLT3ITD-JMD, 4 with FLT3ITD-

JMD+TKD, and 2 with FLT3ITD-TKD (Fig. 5A, panel b). The specific insertion sites of the ITD in 

the patient cohort are shown in Table S8. Follow-up clinical data were available for 10 out of 

14 patients (Fig. 5B, Table S9).  

Mutation profiling analysis of the patient cohort revealed a heterogeneity in the genetic 

background among patients and a high number of co-occurring genetic alterations (Fig. S7A-

B, Table S9). By computing the genes’ z-scores with respect to each patient's gene expression 

distribution, we detected patient-specific up- or down-regulated transcripts (Fig. 5A, panel a, 

Table S9). 

Significantly, patients' unsupervised hierarchical clustering according to the mutational profile 

or according to the z-score distribution of the gene expression and principal component analysis 

(PCA) of the gene expression data was unable to stratify patients based on their FLT3-ITD 

subtypes (Fig. 5C-D, Fig. S7C).  

At this point, we tested whether we could exploit the cell-derived Boolean models to generate 

personalized predictive models able to reproduce the clinical outcome of patients and then 

identify novel personalized combinatorial treatments.  

To these aims, each patient’s mutational profile (Fig. S7A and D, Table S9) was first used to 

match the suitable cell-derived FLT3-ITD model and then exploited to set the initial condition 

and obtain 14 personalized Boolean models (Fig. 5A, panel c). Next, for each patient, we 

performed a simulation of the following conditions in silico: i) untreated state; ii) FLT3i 

condition (see Methods); and iii) combination of FLT3i and inhibition with previously tested 

kinases. Importantly, our approach enabled us to obtain patient-specific predictive Boolean 

models able to describe the drug-induced signaling rewiring (Fig. 5F and Fig. S8) and to 

quantify ‘apoptosis inhibition’ and ‘proliferation’ levels (Fig. 5A, panel d and e, Fig. 5E and 

Fig. S7E). The anti-proliferative and pro-apoptotic response to FLT3 inhibition (Fig. 5E) of 

JMD1, JMD2, JMD3, JMD7, and JMD6 models was confirmed by follow-up clinical data that 
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displayed a favorable outcome upon treatment (Fig. 5B). In fact, in JMD1 patient, the sole 

FLT3 inhibition impairs the STAT3-STAT5 and JNK-MTOR axes and leads to an anti-tumoral 

phenotype (Fig. 5F). Conversely, simulations of JMD5, JMD_TKD2, JMD_TKD3 and TKD1 

models showed an opposite outcome with respect to real-life clinical observations (Fig. 5B). 

For example, in our in silico model, the clinically responder TKD1 patient (Fig. 5B) was 

resistant to all the tested combinatorial treatments, with a weak effect of PI3Ki on the pro-

proliferative axis (Fig. 5E and Fig. S7E). One possible explanation is that the more complex 

mutational landscape of the TKD1 patient cannot be recapitulated by our scaffold model (Fig. 

S7D). Interestingly and in line with our previous cell-line-based findings, JNK inhibition 

appeared to be a promising approach to alleviate the resistant phenotype of the clinically-not-

responder TKD2 (Fig. 5B), as revealed by the diminished levels of ‘apoptosis inhibition’ and 

‘proliferation’ (Fig. 5E-F). Our model suggests that the effect of combinatorial FLT3i and 

JNKi treatment increases AML cell death through the STAT3/STA5A axis (Fig. 5F). Overall, 

this analysis showcases the two trained Boolean logic models have predictive power and can 

contribute to identifying potential therapeutic strategies improving clinical outcome of 

FLT3ITD-TKD patients.  

 

 

Discussion 

Cancer is primarily a signaling disease in which gene mutations and epigenetic alterations 

drastically impact crucial tumor pathways, leading to aberrant survival and cell proliferation. 

Indeed, nearly all molecularly targeted therapeutic drugs are directed against signaling 

molecules (Min and Lee, 2022). However, the success of targeted therapies is often limited, 

and drug resistance mechanisms arise, leading to therapy failure and dismal patient prognosis. 

To address this issue, a comprehensive, patient-specific characterization of signaling network 

rewiring can offer an unprecedented opportunity to identify novel promising, personalized 

combinatorial treatments. 

Logic-based models have already been proven to successfully meet this challenge, thanks to 

their ability to condense the signaling features of a system and to infer the response triggered 

by genetic and chemical perturbations to the system in silico (Lee et al., 2012, 2012; Montagud 

et al., 2022). 

In the present study, we optimized a methodology to investigate drug sensitivity using 

genotype-specific Boolean models. Our approach involved building a model representing the 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 22, 2024. ; https://doi.org/10.1101/2023.06.22.546072doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.22.546072
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

patient-specific cell state or disease status and inferring novel combinatorial anti-cancer 

treatments that may overcome drug resistance.  

Here, we specifically applied this methodology to acute myeloid leukemia (AML) patients 

carrying the internal tandem duplication (ITD) in the FLT3 receptor tyrosine kinase. Our group 

recently showed, by integrating unbiased mass spectrometry-based phosphoproteomics with 

literature-derived signaling networks, that the location of the ITD insertion affects the 

sensitivity to TKIs therapy through a WEE1-CDK1 dependent mechanism. Our work enabled 

us to obtain a nearly complete, though static, picture of how FLT3-ITD mutations rewire 

signaling networks.  

The main goal of the present study was the generation of clinically relevant, predictive models 

of the FLT3-ITD-dependent cell state. We aim to use these models to predict in silico the TKI 

sensitivity upon multiple simultaneous perturbations (i); to generate personalized models by 

combining patient-specific genomic and transcriptomic datasets (ii) and to propose novel, 

effective, patient-specific anti-cancer treatments (iii). 

By taking advantage of the previously developed Cell Network Optimizer software (Terfve et 

al., 2012), we employed a multi-step strategy that trains a prior-knowledge signaling network 

(PKN) with a large-scale multiparametric dataset by using a Boolean logic modeling 

formalism. 

First, we generated a literature-derived FLT3-ITD-centered signaling network encompassing 

relevant pathways in AML, including the regulation of key phenotypes, such as apoptosis and 

proliferation. Manually-curated data were made publicly available and can be freely explored 

by using tools offered by the SIGNOR resource website or downloaded for local analysis, in 

compliance with the FAIR principles (Wilkinson et al., 2016). 

Second, we used the xMAP technology to interrogate signaling in FLT3-ITD cells treated with 

a panel of nine different perturbations. Analysis of this large multiplex signaling dataset, 

consisting of 16 distinct experimental conditions, revealed a clear separation between TKI-

treated and untreated cells as well as IGF1 and TNFα-stimulated cells. Surprisingly, there was 

no clear separation between FLT3ITD-JMD and FLT3ITD-TKD cells, upon clustering based on 

signaling parameters. This may be caused by the targeted nature of our measurements, in line 

with our recent demonstration that unbiased phosphoproteome profiles discriminate FLT3-ITD 

cells according to the ITD location (JMD region vs TKD region). We also speculate that the 

different ITD insertion site has a less pronounced effect on cell signaling as compared to the 

pharmacological inhibition of key kinases (e.g., FLT3) or stimulation with cytokines. This 
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observation highlights the necessity of a systems-based approach allowing the generation of 

predictive, genotype-specific models describing how signaling rewiring may affect TKI 

sensitivity. 

Third, we optimized two genotype-specific Boolean models to delineate the signaling networks 

downstream of FLT3ITD-JMD and FLT3ITD-TKD. The topology of the two Boolean models was 

different and most of the interactions cell-specific, suggesting a deep rewiring of the signal 

downstream of FLT3 due to the different locations of the ITD. Remarkably, when we simulated 

the pharmacological suppression of FLT3 in silico, our models were able to recapitulate the 

well-documented differential sensitivity to TKI treatment of cells expressing FLT3ITD-JMD 

versus FLT3ITD-TKD. Additionally, by taking advantage of two independent publicly available 

datasets, including phosphoproteomic and drug sensitivity screening datasets, we validated the 

predictions of our models.  

Simulation of several simultaneous perturbations of these models in silico highlighted the role 

of JNK in the regulation of TKI sensitivity. Remarkably, we discovered that JNK impacts the 

cell cycle architecture of FLT3ITD-TKD cells, by acting as a mediator of the CDK1 activity. This 

is in line with our previously described model, showing that hitting cell cycle regulators triggers 

apoptosis of FLT3ITD-TKD cells (Massacci et al., 2023). 

In the present study, we also investigated the clinical relevance of our optimized Boolean 

models, in a pilot cohort of patients. By integrating the mutation and transcriptome profiling 

of 14 FLT3-ITD AML patients with our cell-derived logic models, we were able to derive 

patient-specific signaling features and enable the identification of potential tailored treatments 

restoring TKI resistance. To note, in our pilot analysis, we could observe that while our 

predictions were confirmed by follow-up clinical data for some patients (JMD1, JMD2, JMD3, 

JMD6, JMD7, JMD_TK2, JMD_TKD3, TKD2), the high genetic complexity of other FLT3-

ITD positive patients was not completely addressed by our cell line-derived scaffold model 

(JMD5, TKD1). This could be due to a number of factors: i) the size of the FLT3-ITD patient 

subgroups may have been too small to derive significant biological conclusions (e.g., only two 

patients with FLT3ITD-TKD); ii) the panel of molecular readouts in our training dataset might be 

too limited to capture the pleiotropic impact of the FLT3-ITD mutations; and iii) a more 

heterogeneous experimental data might be needed to train a predictive model able to 

recapitulate the genetic background of a real cohort of patients. 

In conclusion, the integration of a cell-based multiparametric dataset with a prior knowledge 

network in the framework of the Boolean formalism enabled us to generate optimized 
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mechanistic models of FLT3-ITD resistance in AML. This is the proof of concept that our 

personalized informatics approach described here is clinically valid and will enable us to 

propose novel patient-centered targeted drug solutions. In principle, the generalization of our 

strategy will enable us to obtain a systemic perspective of signaling rewiring in different cancer 

types, driving novel personalized approaches. 

 

Abbreviations  

FLT3 Fms Related Receptor Tyrosine Kinase 3  

CDK1 Cyclin-dependent kinase 1 

CDK2 Cyclin-dependent kinase 2 

TKI tyrosine kinase inhibitor 

ITD internal tandem duplication 

JMD juxtamembrane domain 

TKD tyrosine kinase domain 

PKN prior knowledge network 

KINi Kinase inhibitors 
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Materials and Methods 

Cell culture  

Murine Ba/F3 cells stabling expressing ITD-JMD and ITD-TKD constructs were kindly 

provided by Prof. T. Fischer. Cells were cultured in RPMI 1640 medium (Hyclone, Thermo 

Scientific, Waltham, MA) supplemented with 10% heat-inactivated fetal bovine serum 

(ECS0090D Euroclone, Italy, MI), 100 U/ml penicillin and 100 mg/ml streptomycin (Gibco 

15140122), 1 mM sodium pyruvate (Sigma-Aldrich, St. Louis, Missouri, United States, S8636) 

and 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (Sigma H0887).  

These cells were chosen as an experimental system as previously described (Massacci et al., 

2023). 

 

Multiparametric experiment of signaling perturbation.  

 

Ba/F3 FLT3ITD-JMD and FLT3ITD-TKD cells were cultured in complemented RPMI w/o FBS for 

16 hours. Afterward, cells were treated with a panel of small molecule inhibitors for 90 

minutes: Midostaurin 100nM (Selleck chemical, S8064), SB203580 10μM (Selleck chemical, 

S1076), SP600125 10μM (Selleck chemical, S1460), Wortmannin 35nM (Selleck chemical, 

S2758), Rapamycin 100nM (Sigma-Aldrich, R8781), UO126 15μM (Sigma-Aldrich, 662005), 

LY2090314 20nM (Selleck chemical, S7063). Cells were stimulated with IGF1 100ng/ml 

(Sigma-Aldrich, I8779), and TNFα 10ng/ml (Miltenyi Biotec, 130-101-687). The table below 

summarizes the treatments used, inhibitors and stimuli, their specific targets, the readout 

sentinels, and the concentrations and the treatment time chosen. We selected the inhibitors for 

their specificity towards key kinases in the FLT3-ITD downstream signaling. We tested their 

efficacy in our model cell line to set the optimal concentration and time to inhibit the kinase 

activity to phosphorylate its downstream targets (i.e. the UO126 at 15uM for 90 minutes 

inhibits MEK and we observed de-phosphorylated ERK).  

We selected IGF1 and TNFα as stimuli to fully activate the receptors and their downstream 

kinases in order to perturb and measure more efficiently the signaling. Each treatment and 

perturbed kinase were paired with a sentinel analyte to monitor the responses to perturbations 

of all main signal transduction pathways of our cell lines included in the PKN. 
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inhibitors target usage time stimuli usage time 
Midostaurin FLT3 100nM 90 minutes IGF1 100ng/ml 10 minutes 

SB203580 p38 10μM 90 minutes TNFα 10ng/ml 10 minutes 

SP600125 JNK 20μM 90 minutes    
Wortmannin PI3K 50nM 90 minutes    
Rapamycin mTOR 100nM 90 minutes    
UO126 MEK1/2 15μM 90 minutes    
LY2090314 GSK3 20nM 90 minutes    

 

Table 2. Small molecule inhibitors and stimuli for the multiparametric analysis  

 

We combined the treatments listed in Table 2 to finally obtain 16 different experimental 

conditions in both FLT3ITD-JMD and FLT3ITD-TKD cell lines. The experimental conditions are 

summarized in Table S2 and listed below: 

1. FLT3i  

2. FLT3i+IGF1  

3. FLT3i+TNFα  

4. FLT3i+p38i+ TNFα  

5. FLT3i+JNKi+ TNFα  

6. FLT3i+PI3Ki+IGF1  

7. FLT3i+mTORi+IGF1  

8. FLT3i+MEKi+IGF1  

9. IGF1  

10. TNFα  

11. p38i+ TNFα  

12. JNKi+ TNFα  

13. PI3Ki+IGF1  

14. mTORi+IGF1  

15. MEKi+IGF1  

16. GSK3i+IGF1 

 

We combined the inhibition of a specific target with the stimulation of corresponding pathways 

with either IGF1 (AKT-MAPK pathway) or TNFα (p38-JNK pathway), in the presence or 

absence of FLT3 inhibitor Midostaurin. Combinatorial treatments aimed at perturbing the cell 

signaling and at measuring amplified signaling changes in our system. We therefore measured 

the phosphorylation levels of 14 sentinel proteins listed in Table 3 through the X-Map Luminex 

technology. To each residue measure, we mapped the functional role associated, activatory =1, 

inhibitory =-1 depending on the annotated function on PhosphoSitePlus.  

 

 

analytes cat.no. phosphosite measured activity annotation 

CREB1 42-680MAG Ser133 1 

ERK1/2 42-680MAG Thr185/Tyr187 1 

JNK 42-680MAG Thr183/Tyr 185 1 
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p38 42-680MAG Thr180/Tyr182 1 

STAT3 42-680MAG Ser727 1 

STAT5 42-680MAG Tyr694/699 1 

p70S6K 42-611MAG Thr412 1 

RPS6 42-611MAG Ser235/236 1 

MTOR 42-611MAG Ser2448 1 

IGF1R 42-611MAG Tyr1135/Tyr1136 1 

PTEN 42-611MAG Ser380 -1 

TSC2 42-611MAG Ser939 -1 

GSK3A 42-611MAG Ser21 -1 

GSK3B 42-611MAG Ser9 -1 

B-Tubulin 46-413MAG total protein loading control 

 

Table 3. xMAP analytes 

 

Cells were collected, lysed, and stained following the manufacturer’s instructions. Briefly, in 

96 well plates, cell lysates were marked with the mix of specific antibodies covalently bound 

to magnetic beads, and the signal was amplified with a biotin-streptavidin system. The plates 

were read through the Magpix instrument: for each sample, the instrument measured the 

intensity of the fluorescent signal pairing it with the identity of the beads given by their location 

on the magnetic field. As the final output, we obtained the median fluorescence intensity (MFI) 

for all the sentinels in each experimental condition, paired with the number of detected beads. 

For each sentinel, the fluorescent threshold should be associated with a count of more than 50 

beads to be technically reliable. We then, excluded from the dataset the measures with less than 

50 beads detected as shown in the “filter on n. beads” sheet of Table 3,4. Then, we normalized 

the MFI of each analyte on the values of B-Tubulin as loading control and we calculated the 

median and SD of the three biological replicates (Table S3,4).  

 

 

Data normalization 

The phosphorylation measure of the 14 sentinel signaling proteins was scaled between 0 and 

1, using customized Hill functions for each analyte. By applying the formula: 

𝑦 =
𝑥𝑛

𝐾 + 𝑥𝑛
 

 

We derived n and K parameters of customized Hill functions from the distribution of each 

analyte in our experimental data. Briefly, given the asymptotic behavior of the Hill function, 
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we set the experimental maximum (maxS) of the analyte to be 0.999 (theoretical maximum, 

maxT) and the experimental minimum (minS) to be 0.001 (theoretical minimum, minT). We 

then computed the b parameter as: 

𝑏 =
𝑚𝑎𝑥𝑆

𝑚𝑖𝑛𝑆
 

Next, we calculated n and K for each analyte Hill function: 

𝑛 =
(1 − 𝑚𝑖𝑛𝑇) 𝑚𝑎𝑥𝑇

(1 − 𝑚𝑎𝑥𝑇) 𝑚𝑖𝑛𝑇
  

 

𝐾 =
1 − 𝑚𝑎𝑥𝑇

𝑚𝑎𝑥𝑇
 𝑚𝑎𝑥𝑆𝑛 

 

Principal Component Analysis and Hierarchical Clustering  

Principal component analysis was performed using the stats R package (v. 4.1.2). 

Perseus software was employed to perform unsupervised hierarchical clustering. Specifically, 

the Pearson correlation between phosphorylation profiles of sentinel proteins across different 

experimental conditions was calculated and used to generate the three. Similar experimental 

conditions are in the same branches. 

 

FLT3 ITD-specific Boolean model construction with CellNetOptimizer 

We exploited the CellNetOptimizer pipeline which integrates (i) a prior knowledge network 

(PKN) and (ii) multi-parametric, normalized experimental data to obtain two FLT3 TD-JMD and 

-TKD dynamic and predictive Boolean models. An extended and detailed step-by-step 

description of the whole modeling strategy is available in Supplementary Material and the code 

to reproduce the analysis is available at https://github.com/SaccoPerfettoLab/FLT3-

ITD_driven_AML_Boolean_models.  

 

Prior Knowledge Network manual curation 

We built a FLT3-ITD specific prior knowledge network (PKN) combining (i) a manual 

curation and (ii) a data-driven approach. Starting from the SIGNOR database, through a 

curation effort, we assembled a causal network describing the FLT3-ITD signaling, comprising 

all the direct and indirect interactions implied in the receptor signaling and leukemogenesis. 

The PKN is publicly available on SIGNOR 

(https://signor.uniroma2.it/pathway_browser.php?organism=&pathway_list=SIGNOR-Sara). 

We downloaded the interaction table, and we manually simplified the network, we compressed 
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some articulated and redundant paths (Table S1). We converted the network into a .sif file 

made of three columns, entity A, entity B, and interaction type described with 1 if activatory 

or -1 if inhibitory. Importantly, during the optimization process, the PKN was adjusted until 

we reached an optimal performance of the model. The final version of the PKN displayed 76 

nodes and 193 edges. Next, we used CellNOptR v.1.40.0, to preprocess the PKN and to convert 

the causal network into logical functions (scaffold model), describing the regulatory relations 

among gene products using OR/AND Boolean operators. Briefly, we first compressed and 

expanded the PKN (Terfve et al., 2012) to obtain a network of 204 nodes (30 proteins and 

176/178 AND Boolean operators) and 612 edges. We, next, exploited CNORfeeder v.1.34.0 to 

impute missing links derived directly from the experimental data, using the FEED method, 

developed specifically to infer signaling networks from perturbation experiments. Finally, we 

integrated the two networks obtaining a scaffold model of 756 edges for FLT3ITD-JMD (144 data-

driven) and 782 edges for ITD-TKD (170 data-driven).  

 

Network model optimization 

We performed 1000 runs of optimization using CellNOptR which creates context-specific 

Boolean models (i) by filtering out interactions not relevant to the system and (ii) by selecting 

the Boolean operators (i.e., AND/OR) that best integrate inputs acting on the same node.  

CellNOptR exploits a genetic algorithm that minimizes the difference (mean squared error, 

mse) between experimental data and the values simulated from the Boolean model.  

We sorted the models according to mse in ascending order and selected the first 100 models 

(family of best models). Then, we calculated the average state of each protein in the 100 best 

models. This procedure enables quantitative prediction even using Boolean models, which are 

discrete by nature. These averaged values were compared with the training data to evaluate the 

goodness of fit. We used the model with the lowest mse of FLT3ITD-JMD and TKD cell lines for 

further analyses (best model). These final models accounted for 68 and 60 nodes (of which 38 

and 30 are AND operators) and 161 and 133 edges for FLT3ITD-JMD and FLT3ITD-TKD, 

respectively. To keep a measure of the whole optimization procedure in the best models, we 

added as edges’ attribute the frequency of each edge in the family of 100 models and we 

considered as ‘high confidence edges’ the ones having a frequency of 0.4 (edges present in the 

final model of 40 stochastic optimization procedures out of 100).  
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Boolean models’ validation using independent resources 

Using the simulatorT1 function of CellNOptR, we computed the steady state of FLT3ITD-JMD 

and ITD-TKD Boolean models with and without the inhibition of FLT3 and other druggable nodes. 

To independently validate the models, we used as a reference the phosphoproteomic data of 

FLT3-ITD Ba/F3  cells (FLT3ITD-JMD and FLT3ITD-TKD) upon quizartinib (AC220) treatment 

(Massacci et al., 2023). We mapped xMAP residues associated with protein complexes (e.g. 

ERK1/2) to unique protein sequences (e.g., Mapk1 and Mapk3) (Table S2). We estimated the 

activity of sentinel proteins in the reference dataset using the modulation of their regulatory 

phosphosites. Then, we compared the estimated activity with the sentinels’ states in the FLT3 

inhibition simulation.  

Moreover, to functionally interpret the results and assess the reliability of the model, we 

computed the activity of ‘apoptosis’ and ‘proliferation’ phenotypes upon FLT3 and other 

druggable nodes inhibition after the annotation of model proteins as pro- and anti-apoptotic (or 

proliferative). To obtain the table of protein annotations, with proximal phenotypes, we 

exploited a recently in-house developed method, dubbed ProxPath, (Iannuccelli et al., 2023) 

which computes significantly ‘close’ paths linking SIGNOR proteins and phenotypes. The 

distance table connecting the model nodes to the ‘Apoptosis’ and ‘Proliferation’ phenotypes is 

available in Table S1. To compute the phenotypes' activation status, we integrated with the OR 

logic (‘sum of scores’) the activation status of upstream nodes, which were also endpoint 

proteins in high-confidence signaling axes (edge frequency 0.4) in the cell-specific models. As 

such, if two regulators of the same phenotype were linked in the same axis, we considered only 

the one at the end of the cascade.   

The Beat AML program on a cohort of 672 tumor specimens collected from 562 patients has 

been exploited for model validation. We focused on drug sensitivity screening on 134 patients 

carrying the typical FLT3-ITD mutation in the JMD region. Drugs were annotated for their 

targets using SIGNOR and ChEBI databases. Drugs inhibiting FLT3, PI3K, mTOR, JNK, and 

p38 were selected and the average IC50 of FLT3ITD-JMD patient-derived primary blasts was 

calculated (Table S6).  

 

 

Combinatory treatment inference 

To identify promising cotreatments able to revert the resistant phenotype, we exploited the 

predictive power of the generated Boolean models and performed an in silico knock-out of key 

kinases present in the FLT3ITD-TKD model (ERK1/2, MEK1/2, GSK3A/B, IGF1R, JNK, KRAS, 
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MEK1/2, MTOR, PDPK1, PI3K, p38). Briefly, we computed the steady state of each cell line 

best model before and after the co-inhibition of FLT3 and every key kinase (11 possible 

combinations). Then we inferred the activity of ‘apoptosis’ and ‘proliferation’ phenotypes. We 

eventually selected co-treatments in the FLT3ITD-TKD model able to trigger activation levels of 

the ‘apoptosis’ and ‘proliferation’ to the same level as the FLT3ITD-JMD model.  

 

Apoptosis assay  

Ba/F3 cells were treated with Midostaurin 100nM and SP600125 10μM for 24 hours.  

The concentration of SP600125 to use for this long-term treatment was chosen based on setup 

experiment: we treated sensitive and resistant cells with increasing concentrations of SP600125 

for 24 hours and evaluated the cell viability using the Cell Proliferation Kit I (MTT) (Roche, 

Cat. 11465007001) and measuring the absorbance value at λ=590nm. We then calculated the 

IC50 with a nonlinear regression drug-response curve fit using Prism 7 (GraphPad). IC50 

values are approximately 1.5 µM in FLT3-ITD mutant cell lines (FLT3ITD-JMD cells 

IC50=1.54μM; FLT3ITD-TKD cells IC50=1.69μM). The SP600125 treatment affects cell 

viability, reaching a plateau phase of cell death and at about 2 µM. I used 10µM SP600125 to 

inhibit JNK phosphorylation. (Kim et al., 2010; Moon et al., 2009). The concentration of 

Midostaurin for the apoptotic assay was chosen based on the previously published work 

(Massacci et al., 2022) where we show that FLT3ITD-TKD cells treated with Midostaurin 100nM 

show lower apoptotic rate and higher cell viability compared to FLT3ITD-JMD cells. Apoptotic 

cells were analyzed with the Ebioscience™ Annexin V Apoptosis Detection Kit APC 

according to the kit instructions (Cat. 88-8007-74, Thermo Fisher Scientific. Samples were 

read through the CytoFLEX S (Beckman Coulter) instrument using the APC laser to detect the 

Annexin-V+ cells. Quality control of the cytometer was assessed weekly using CytoFLEX 

Daily QC Fluorospheres (Beckman Coulter B53230). The fluorescence threshold was set for 

the APC laser using a blank sample, without the fluorescent label. The results were analyzed 

by the CytExpert software and represented in bar plots as the percentage of Annexin-V+ cells 

fold change of treated conditions on controls. 

 

MTT assays 

Ba/F3 cells were treated with Midostaurin 100nM, SP600125 20μM, SB203580 10μM, and 

UO126 15μM for 24 hours in 96-well plates. The concentration of SB203580 and UO126 to 

use for this long-term treatment was chosen based on previous data available in the lab and set-

up experiments. We used the concentration in which we could observe a reduced activity of 
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the target (lower phosphorylation of downstream proteins) without cell toxicity. Cell viability 

was assessed using the Cell Proliferation Kit I (MTT) (Roche, Cat. 11465007001), following 

the manufacturer’s instructions. The plates were read through a microplate reader (Bio-Rad) at 

λ=590 nm. The results were represented in bar plots as fold change of treated conditions on 

controls. 

 

Cell cycle analysis  

Ba/F3 cells were treated with Midostaurin 100nM and SP600125 10μM for 24 hours, 106 cells 

were collected, washed in ice-cold PBS 1X, and fixed in agitation with 70% cold ethanol. Fixed 

samples were incubated at 4°C O/N, washed in PBS 1X, and resuspended in 1μg/ml DAPI 

(Thermo Scientific, #62248) and 0.2 mg/ml RNase (Thermo Scientific, # 12091021) PBS 

solution before analysis. Samples were read through the CytoFLEX S (Beckman Coulter) 

instrument using the PB450 laser to detect the DAPI+ cells. Data were analyzed by CytExpert 

(Beckman Coulter) software and represented in bar plots as a percentage of DAPI+ cells.  

 

Immunoblot analysis 

Ba/F3 cells were seeded at the concentration of 5x105cells/ml and treated with Midostaurin 

100nM, SP600125 20μM, SB203580 10μM, UO126 15μM, for 24 hours, and TNFα 10ng/ml 

for 10 minutes. Cells were lysed for 30 minutes in ice-cold lysis buffer (150 mM NaCl,50 mM 

Tris-HCl pH 7.5, 1% Nonidet P-40 (NP-40), 1 mM EGTA,5 mM MgCl2, 0.1% SDS) 

supplemented with 1 mM PMSF,1 mM orthovanadate, 1 mM NaF, protease inhibitor 

mixture1X, inhibitor phosphatase mixture II 1X, and inhibitor phosphatase mixture III 1X. The 

insoluble material was separated at 13,000 rpm for 30 minutes at 4 °C and total protein 

concentration was measured on supernatants using Bradford reagent (Bio-Rad). Protein 

extracts were denatured with NuPAGE®LDS (Invitrogen) and boiled at 95 °C for 10 minutes. 

SDS-PAGE and transfer were performed on 4–15%Bio-Rad Mini/Midi PROTEAN®TGX™ 

and Trans-Blot®Turbo™ mini/midi nitrocellulose membranes using the Trans-Blot®Turbo™ 

Transfer System (Bio-Rad). Nonspecific binding sites were blocked using 5% non-fat dried 

milk in TBS-0.1% Tween-20 (TBS-T) for 1 h at RT, shaking. Primary antibodies were diluted 

according to the manufacturer’s instruction and incubated at 4 °C O/N, shaking. HRP-

conjugated secondary antibodies were diluted 1:3000 in 5% non-fat dried milk in TBS-T and 

incubated for 1h at RT, shaking. Peroxidase chemiluminescence reaction was enhanced with 

Clarity™Western ECL Blotting Substrates (Bio-Rad) and detected through the Chemidoc 
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detection system (Bio-Rad). Densitometric quantitation of raw images was obtained with Fiji 

software (Image J, NIH). The primary and secondary used antibodies are listed: CDK1 (sc- 

53219); CDK2 (sc-6248); phpspho-CDK1 Y15 (CS 9111); phospho-CDK1 T161(CS 9114); 

phospho-CDK2 T160 (CS 2561); phospho-SAPK/JNK T183/Y185 (CS 9251); SAPK/JNK 

(CS 9252); Cyclin B1 (CS 4138); CyclinE2 (CS 4132); Vinculin (CS 13901). 

 

 

Primary patient blast sensitivity 

Peripheral blood (PB) samples were collected from patients with acute myeloid leukemia 

(AML) in accordance with the Declaration of Helsinki (ethics committee approval number 

115/08) and with the patients' informed consent. The FLT3-ITD mutation integration site was 

determined as previously described (Massacci et al., 2023). 

Mononuclear cells were isolated from PB using Ficoll-Paque (GE Healthcare, Chicago, IL). 

Cryoconserved peripheral blood mononuclear cells (PBMCs) from seven patients were 

cultured in RPMI-1640 medium (Sigma-Aldrich, St. Louis, MO) supplemented with 10% fetal 

calf serum (FCS) (Bio&Sell GmbH, Germany), 2 mM L-glutamine (Sigma-Aldrich), and 40 

U/mL penicillin-streptomycin (ThermoFisher Scientific) at a density of 5x105/mL. Cultures 

were incubated for 48 hours in the absence or presence of 100 nM PKC412 and 10 µM 

SP600125 (all Selleck Chemicals LLC, Houston, TX), or combinations of PKC412 with 

SP600125. The viability of the patient's blast cells was assessed by flow cytometry, while the 

specific cell death was calculated as described previously (Pugliese et al., 2023). Briefly, 

samples were stained with fluorochrome-conjugated antibodies against CD45, CD33, CD34, 

CD13, and CD117, followed by the addition of Annexin V and 7AAD. The samples were 

recorded using a NorthernLight-3000 spectral flow cytometer (Cytek Biosciences, Freemont, 

CA) and analyzed through FlowJo V10.9 (BD Bioscience, Franklin Lakes, NJ). 

 

Statistical analysis 

Data are represented as the mean ± SEM of at least three independent experimental samples 

(n=3). Comparisons between three or more groups were performed using the ANOVA test. 

Statistical significance between the two groups was estimated using Student’s t-test. Statistical 

significance is defined as p value where *p< 0.05; **p<0.01; ***p< 0.001; ****p<0.0001. All 

statistical analyses were performed using Prism 7 (GraphPad). 
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RNAseq of patient samples 

RNA was extracted from peripheral blasts of 14 treatment naïve patients with de novo FLT3 

ITD driven-AML diagnosis. Clinical characteristics were available for only 10 patients (Table 

S9). Peripheral blood (PB) samples from 14 AML patients were obtained upon the patient’s 

informed consent. The integration site of the FLT3-ITD mutation was determined as previously 

described (Rücker et al., 2022). Briefly, RNA was prepared from PBMCs using the RNeasy 

Mini Kit (Qiagen, Germany), retro-transcribed in cDNA, and quantified using the Qubit 4.0 

fluorimetric Assay (Thermo Fisher Scientific) and sample integrity, based on the DIN (DNA 

integrity number), was assessed using a Genomic DNA ScreenTape assay on TapeStation 4200 

(Agilent Technologies). 

High throughput sequencing was performed on the coding region of 262 genes involved in 

hematologic malignancies. A comprehensive list of all genes is included in Table S7.  

Genomic DNA Libraries were prepared from 100 ng of total DNA using the NEGEDIA Cancer 

Haemo Exome sequencing service (Next Generation Diagnostic srl) which included library 

preparation, target enrichment using Cancer Haemo probe set, quality assessment, and 

sequencing on a NovaSeq 6000 sequencing system using a paired-end, 2x150 cycle strategy 

(Illumina Inc.). Paired-end reads were produced with a 100x coverage, and a median of 40 M 

reads per sample. 

 

Bioinformatic analysis of transcriptome data of patient samples 

The raw data were analyzed by Next Generation Diagnostics srl Cancer haemo Exome pipeline 

(v1.0) which involves a cleaning step by UMI removal, quality filtering and trimming, 

alignment to the reference genome, removal of duplicate reads and variant calling (FASTQC: 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, (Freed et al., 2017; McLaren et 

al., 2016; Smith et al., 2017)). 

Illumina NovaSeq 6000 base call (BCL) files were converted into fastq files through bcl2fastq 

(2019) (version v2.20.0.422). UMI removal was carried out with UMI-tools 1.1.1. Data quality 

control was performed with FastQC v.0.11.9 and reads were trimmed and cleaned using 

Trimmomatic 0.38.  

Alignment to human reference (hg38, GCA_000001405.15), deduplication, and variant calling 

were performed with Sentieon 202011.01.  

Variant calling output was converted into vcf and MAF format. The maf files were further 

annotated with the OncoKB™ annotator (Chakravarty et al., 2016) to obtain the mutation effect 
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on protein function and oncogenicity. We filtered out variants with MUTATION_EFFECT 

equal to ‘Unknown’, ‘Inconclusive’, ‘Likely Neutral’, and ‘Switch-of-function’ (Table S9).  

All downstream analyses were carried out using R v.4.1.2 and BioConductor v.3.13  ((Huber 

et al., 2015); R Core Team, 2020)). 

Gene counts tables were generated from bam files using Rsubread v. 2.8.2. Data were 

normalized with the “trimmed mean of M values” (TMM) method of edgeR v3.36.0 (Robinson 

et al., 2010) and converted to log2 (Table S9). 

 

FLT3 ITD localization 

Generic variant callers can’t identify medium-sized insertions, like FLT3 ITDs. As such, we 

used the specialized algorithm getITD v.1.5.16 (Blätte et al., 2019) to localize ITDs in each 

patient. Reads mapping on FLT3 genomic region between JMD and TKD domain (28033888 

– 28034214) were extracted from bam files and converted in fastq format with samtools 

v.1.16.1.  

getITD was run with default parameters, but with a custom reference sequence without introns 

(‘caatttaggtatgaaagccagctacagatggtacaggtgaccggctcctcagataatgagtacttctacgttgatttcagagaatatga

atatgatctcaaatgggagtttccaagagaaaatttagagtttgggaaggtactaggatcaggtgcttttggaaaagtgatgaacgcaac

agcttatggaattagcaaaacaggagtctcaatccaggttgccgtcaaaatgctgaaag’) that was annotated according 

to getITD annotation file. Patients carried multiples ITDs and we classified as follows: 8 

patients as FLT3ITD-JMD (JMD1-8), 4 patients as FLT3ITD-JMD+TKD (JMD_TKD1-4), and 2 as 

FLT3ITD-TKD (TKD1-2) (Table S8).  

 

Patients’ simulation on cell-derived ITD-specific Boolean models 

We decided to use the FLT3ITD-JMD cell models for both FLT3ITD-JMD and FLT3ITD-JMD+TKD 

given the dominant effect that the FLT3ITD-JMD mutation displays over the FLT3ITD-TKD one 

(Rücker et al., 2022).  

We used patients’ data to perform Boolean simulations on cell-derived ITD-specific Boolean 

models. We used FLT3ITD-JMD cell lines Boolean models for FLT3ITD-JMD and FLT3ITD-JMD+TKD 

patients and FLT3ITD-TKD models for FLT3ITD-TKD patients. Each patient mutational profile was 

binarized, setting “Loss-of-function” or “Likely loss-of-function” equal to 0, and “Gain-of-

function” or “Likely gain-of-function” equal to 1. Using CellNOptR, for each patient we 

computed the steady state of its correspondent cell-derived Boolean model in two conditions: 

i) the input is the mutational profile (tumor simulation - “untreated”); ii) the input is the 
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mutational profile + FLT3 inhibition (treatment with FLT3i simulation). Hence, we inferred 

the ‘apoptosis’ and ‘proliferation’ phenotype scores, as stated above.  

We also performed an in silico combined treatment of patients simulating their mutations with 

the inhibition of FLT3 and a key signaling kinase (eleven different simulations).  

 

Network visualization 

To visualize the best model, we exported CellNOptR results using writeScaffold and 

writeNetwork functions and imported the network in Cytoscape v.3.9.0. For nodes and edges’ 

color, we used the style of Cytocopter app v.3.9. We added as edges’ attribute the frequency 

of each edge in the family of 100 models and we kept only the edges having a frequency > 0.4.  

 

Statistical analyses and tools 

The patient z-score was computed by subtracting the mean of patient-specific expression 

distribution and dividing by its standard deviation. PCA and clustering graphs were generated 

with stats v.4.1.2, ggfortify v.0.4.15, and ggdendrogram v.0.1.23 packages. Heatmaps were 

created using pheatmap v.1.0.12. Phenotypes bar plots are created with ggplot2 v.3.4.0.  

 

Data and code availability  

Curated data have been submitted to SIGNOR for reuse and interoperability and can be 

accessed at https://signor.uniroma2.it/downloads.php. Transcriptomic data of patients has been 

submitted to GEO and can be accessed using the accession number: GSE247483. The code 

developed for the study has been organized on a GitHub page and is available at 

https://github.com/SaccoPerfettoLab/FLT3-ITD_driven_AML_Boolean_models. 
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Figure Legends 

Figure 1. Summary of the experimental strategy. A) Manual curation of FLT3-ITD-specific 

Prior Knowledge Network (PKN). B) Multiparametric analysis of signaling perturbations in 

TKI sensitive and TKI resistant cells. C) Model generation through the CellNOptR tool. D) 

Prediction of combinatorial treatments restoring TKI sensitivity. E) In vitro validation of novel 

combinatorial treatments. F) In silico prediction of co-treatment outcome in AML patients. 

 

Figure 2. Generation of the training dataset. 

A) Schematic representation of the FLT3-ITD PKN manual curation, integration of data-driven 

edges, and manual integration of RTKs pathways involved in AML. 

B) Schematic representation of the experimental design: FLT3ITD-JMD and FLT3ITD-TKD cells 

were cultured in starvation medium (w/o FBS) overnight and treated with PI3Ki, MEKi, 

mTORi, and GSK3i, JNKi and p38i, in presence or absence of the FLT3i Midostaurin for 90 

minutes. Then, the cells were stimulated either with IGF1 or TNFα for 10 minutes. Control 

cells were starved and treated with Midostaurin for 90 minutes. After treatment, samples were 

collected, and cell lysates were analyzed with an xMAP-based assay through the MagPix 

instrument. Per each experimental condition, we measured the phosphorylation levels of 14 

sentinels.  

C) Network representation of a compressed PKN that shows the essential pathways monitored 

through the perturbation experiment. The perturbed nodes are tagged with a drug icon, and the 

measured nodes are colored green.  

D) Principal Component Analysis (PCA) of FLT3ITD-JMD and FLT3ITD-TKD cells in the 

multiparametric analysis. Each point represents a different experimental condition.  

 

Figure 3. Optimized Boolean models recapitulate the different sensitivity of FLT3ITD-JMD 

and FLT3ITD-TKD cells to TKI. 

A) Color-coded representations of the experimental activity modulation (T90 – T0) of sentinel 

proteins used to train the two Boolean models (upper panel) and the average prediction of 

protein activities in the family of 100 best models (central panel). The protein activity 

modulation ranges from -1 to 1 and is represented with a gradient from blue (inhibited) to red 

(activated). The absolute value of the difference between experimental and simulated protein 

activity modulation (lower panel) is reported as a gradient from light yellow (error < 0.5) to 

red (1.85). 
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B-C) FLT3ITD-JMD (B) and FLT3ITD-TKD (C) high-confidence Boolean models. Perturbed 

proteins in the experimental setup are marked in red or green if inhibited or stimulated, 

respectively. Sentinel proteins are reported in blue. The edges' weight represents their 

frequency in the family of 100 models and only the high-confidence ones (frequency > 0.4) are 

reported. Orange edges are cell-specific links. 

D) Cartoon of the in silico conditions simulated to analyze the different TKI sensitivity of the 

FLT3ITD-JMD and FLT3ITD-TKD Boolean models. Untreated condition: TNFα+IGF1; FLT3i: 

TNFα+IGF1+FLT3 inhibition. 

E) Heatmaps (left) report the activation level of positive and negative phenotype regulators 

present in the two Boolean models. Bar plots (right) showing the proliferation activation and 

apoptosis inhibition levels in untreated and FLT3i conditions in the steady states of FLT3ITD-

JMD (blue) and FLT3ITD-TKD (yellow) Boolean models.  

 

Figure 4. In silico simulation of the FLT3ITD-TKD logic model allows the prediction of novel 

combinatorial treatment reverting TKI resistance. 

A) Cartoon of the in silico simulation conditions. 

B-C) Bar plot showing the in silico simulation of proliferation activation (B) and apoptosis 

inhibition (C) levels in untreated and FLT3i conditions in combination with knock-out of each 

of 10 crucial kinases in FLT3ITD-JMD (blue) and -TKD (yellow) cells. 

D-E) In FLT3ITD-JMD (blue) and -TKD (yellow) cells treated with 100nM Midostaurin and/or 

10uM SP600125 (JNK inhibitor) for 24h, the percentage of Annexin V positive cells (D) and 

the absorbance values at 595nm (E), normalized on control condition, are reported in bar plots.  

F) Primary samples from AML patients with the FLT3ITD-TKD mutation (n=2, yellow bars) or 

the FLT3ITD-JMD/TKD mutation (n=3, blue bars) were exposed to Midostaurin (100nM, PKC412), 

and JNK inhibitor (10µM, SP600125) for 48 hours, or combinations thereof. The specific cell 

death of gated AML blasts was calculated to account for treatment-unrelated spontaneous cell 

death. The bars on the graph represent the mean values with standard errors. 

G) In FLT3ITD-JMD (blue) and FLT3ITD-TKD (yellow) cells treated with 100nM Midostaurin 

and/or 10uM SP600125, followed by 10’ of TNFα 10ng/ml, the protein levels of phospho-JNK 

(T183/Y185), JNK, phospho-CDK1 (Y15), phospho-CDK1 (T161), CDK1, phospho-CDK2 

(T160), CDK2, CyclinB1, CycinE2, and Vinculin were evaluated by western blot analysis. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 22, 2024. ; https://doi.org/10.1101/2023.06.22.546072doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.22.546072
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

H) Cytofluorimetric cell cycle analysis of DAPI stained FLT3ITD-JMD (blue) and FLT3ITD-TKD 

(yellow) cells treated with 100nM Midostaurin and/or 10uM SP600125 (JNK inhibitor) for 

24h. 

I) Cartoon of the molecular mechanism proposed for FLT3ITD-JMD and FLT3ITD-TKD cells.  

 

 

Figure 5. FLT3-ITD patient-specific Boolean models 

A) Schematic representation of our computational approach to obtain personalized logic 

models. 

B) Hierarchical clustering of patients according to their clinical characteristics (response to 

chemotherapy, vital status, and AML recurrence). Resistant, alive or deceased responders, and 

deceased with general or FLT3-ITD AML recurrence patients are reported in purple, light or 

dark green, and light or dark brown, respectively. 

C-D) Hierarchical clustering of patients according to their mutational profile (C) and their 

expression profile of 262 genes (D). 

E) Heatmap representing patient-specific in silico apoptosis inhibition (left panel) and 

proliferation levels (right panel) upon each simulation condition. 

F) Patient-specific (JMD1 and TKD2) Boolean models. In the JMD1 model (left panel), nodes’ 

activity has been simulated in control (bottom-left part) and FLT3 inhibition conditions (upper-

right part). In the TKD2 model (right panel), nodes’ activity has been simulated in FLT3 

inhibition (bottom-left part) and FLT3 and JNK co-inhibition conditions (upper-right part). 
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