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Abstract
A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function.
Normative development of cortex-wide E/I ratio remains unknown. Here we non-invasively
estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically-
plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our
model generates realistic brain dynamics in the Human Connectome Project. Next, we show
that the estimated E/I ratio marker is sensitive to the GABA-agonist benzodiazepine
alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with
positron emission tomography measurement of benzodiazepine receptor density. We then
investigate the relationship between the E/I ratio marker and neurodevelopment. We find that
the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with
the greatest reduction occurring in sensorimotor systems relative to association systems.
Importantly, among children with the same chronological age, a lower E/I ratio marker
(especially in association cortex) is linked to better cognitive performance. This result is
replicated across North American (8.2 to 23.0 years old) and Asian (7.2 to 7.9 years old)
cohorts, suggesting that a more mature E/I ratio indexes improved cognition during
normative development. Overall, our findings open the door to studying how disrupted E/I

trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.

Significance
Healthy brain function requires a delicate balance of neural excitation (E) and inhibition (I).
In animals, this balance — the E/I ratio — is known to decrease with the maturation of
inhibitory circuitry during healthy development. However, in humans, the normative
development of cortex-wide E/I ratio remains unclear. Here, we use a biophysical model and
non-invasive brain scans to estimate a marker of E/I ratio. Spatial changes in our E/I ratio
marker are consistent with a drug that decreases E/I ratio. We also find that our cortex-wide
E/I ratio marker decreases during development. Furthermore, North American and Asian
children with lower E/I ratio, especially in higher-order cortex, have better cognitive

performance. Overall, E/I ratio is a potential index of healthy neurocognitive development.
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1. Introduction

Healthy brain function requires a delicate balance between neural excitation (E) and
inhibition (1) (1-4). This balance — the E/I ratio — is refined during critical developmental
periods of heightened experience-dependent plasticity (5,6). E/I imbalances during critical
developmental periods are thought to contribute to the etiology of many psychiatric disorders
(7,8) and confer vulnerability to cognitive deficits (9,10). Here we capitalize on advances in
biophysically plausible large-scale circuit models to chart the normative development of
cortex-wide E/I ratio and uncover links to cognition.

Human cortical development unfolds hierarchically — sensory systems mature earlier,
while association systems follow a more protracted developmental course extending through
adolescence (11,12). A potential mechanism driving this hierarchical development might be
the temporal progression of critical plasticity periods along the sensorimotor-to-association
axis (13-16). More specifically, the maturation of GABAergic inhibitory circuitry involving
parvalbumin positive (PV) interneurons suppresses stimulus-irrelevant activity, yielding a
higher signal-to-noise ratio (13). The maturation of PV interneurons also modulates long-
term potentiation by enforcing a narrower spike integration window (17). Overall, the
maturation of the inhibitory circuitry facilitates the experience-dependent pruning of
excitatory pyramidal neuronal connections via the Hebbian mechanism, triggering a critical
plasticity period (18-20). Therefore, a hallmark feature of the critical period development is a
reduction in the E/I ratio (21,22). While the hierarchical progression of inhibitory
development is documented in animal models (14,23), it is unclear if the same mechanisms
exist in humans, extend to the evolutionarily expanded association cortex and impact
cognitive ability.

Studying E/I ratio development in-vivo in humans is challenging due to limitations in
non-invasive neuroimaging techniques. MR spectroscopy studies suggest changes in the
balance of excitatory and inhibitory neurotransmitter levels in single brain regions during
development (24,25). A recent study used a machine learning marker trained with
pharmacological-fMRI data to provide evidence of E/I ratio reduction in the association
cortex during development (26). However, these past studies were limited to partial portions
of the cortex, so normative development of cortex-wide E/I ratio remains unclear. Indirect
estimates of whole-cortex E/I ratio have provided insights into autism spectrum disorder in
adults and Alzheimer’s Disease (27—29), but these approaches mostly lack a direct mapping

to an underlying biophysically-plausible model of excitatory and inhibitory dynamics.
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Biophysically-plausible large-scale circuit models of coupled brain regions have
provided mechanistic insights into spontaneous brain dynamics (30—32). However, most
large-scale circuit models assume that local synaptic properties are spatially uniform across
brain regions (9,27,33), which lacks biological plausibility. Indeed, spatial heterogeneity in
excitatory and inhibitory cell types (34—36) might be a driver of large-scale brain dynamics
(37,38). Studies have shown that incorporating spatial heterogeneity across local synaptic
parameters generates more realistic spontaneous brain dynamics (39,40). Our previous study
(41) demonstrated that parameterizing local synaptic parameters with anatomical and
functional gradients led to dramatically more realistic brain dynamics in adults. However, we
utilized a large-scale circuit model (42) that did not differentiate among excitatory and
inhibitory neural populations, so the E/I ratio could not be derived.

Here we investigate the development of cortical E/I ratio over youth and its
association with cognitive ability. We apply our previous approach (41) to the feedback
inhibition control (FIC) model with coupled excitatory and inhibitory neuronal populations
(33). The resulting parameteric FIC (pFIC) model is used to derive a potential marker of E/I
ratio. We first confirm that the pFIC model yields realistic brain dynamics in healthy young
adults from the Human Connectome Project (HCP; 43). Using a pharmacological fMRI
dataset (44), we show that the E/I ratio marker is sensitive to E/I ratio reduction induced by
the GABA-agonist alprazolam. Then, using the Philadelphia Neurodevelopmental Cohort
(PNC; 45,46), we find that the E/I ratio declines across the cortex during youth. Furthermore,
a lower E/I ratio indexes greater cognitive ability, with the strongest relationships observed in
association cortex. We generalize the link between E/I ratio and cognitive ability in a younger
GUSTO (Growing Up in Singapore with Healthy Outcomes) cohort (47). Overall, our study
suggests that E/I ratio maturation might be a driver of healthy neurocognitive development

during youth.
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2. Results
2.1 Overview
We first evaluated the optimization of the spatially heterogeneous parametric
feedback inhibition control (pFIC) model in the HCP dataset (Figure 1A). The biological
plausibility of the estimated marker of excitation-inhibition (E/I) ratio was then evaluated
using pharmacological fMRI involving GABAergic benzodiazepine alprazolam. Finally, we
investigated developmental changes and cognitive effects of E/I ratio in the PNC dataset.

Assocations with cognition were replicated in the GUSTO cohort.

2.2 Optimization of the parametric feedback inhibition control (pFIC) model

We randomly divided 1004 HCP participants (43,48) into 3 non-overlapping training
(N = 335), validation (N = 335), and test (N = 334) sets. The Desikan—Killiany anatomical
parcellation (49) with 68 cortical regions of interest (ROIs) was used to generate group-level
structural connectivity (SC), static functional connectivity (FC), and functional connectivity
dynamics (FCD) from the training, validation, and test sets separately. To compute FCD for
each fMRI run, a 68 x 68 FC matrix was computed for each sliding window of length ~60
seconds. The 68 x 68 FC matrices were then correlated across the 1118 windows, yielding a
1118 x 1118 FCD matrix (41). The FCD matrix has been shown to reflect temporal
fluctuations in resting-state FC that are not captured by static FC (50,51). See Supplementary
Methods S2 for details.

The FIC model (33) is a neural mass model obtained by mean field reduction of a
spiking neuronal network model (52,53). The model comprises ordinary differential
equations (ODEs) at each cortical region describing the dynamics of excitatory and inhibitory
neuronal populations (Figure 1B top panel). The local dynamics are driven by recurrent
connections within separate excitatory and inhibitory populations, as well as connections
between excitatory and inhibitory populations. Greater excitatory-to-excitatory recurrent
strength (wee) and smaller inhibitory-to-excitatory connection strength (wig) amplify synaptic
currents of the excitatory population. Similarly, greater excitatory-to-inhibitory connection
strength (wei) and smaller inhibitory-to-inhibitory recurrent strength (wi) amplify synaptic
currents of the inhibitory population. Neuronal noise in each cortical region is controlled by
the noise amplitude o. Finally, the excitatory populations of the regional local models are

connected via the SC matrix, scaled by a global constant G.
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Figure 1. Workflow and schematic of the parametric feedback inhibition control (pFIC)
model. (A) Young adults from the Human Connectome Project (HCP) were used to evaluate
the optimization of the spatially heterogeneous pFIC model. Pharmacological fMRI with
benzodiazepine alprazolam was then used to evaluate the biological plausibility of the
estimated E/I ratio. Next, the pFIC model was used to investigate the development of cortex-
wide E/I ratio and its association with cognitive ability in the PNC dataset. Cognitive
associations were replicated in a sample of seven-year-olds from the GUSTO cohort. HCP
logo is used with permission from the HCP team. (B) The FIC model (33) is a neural mass
model obtained by mean field reduction of spiking neuronal network models. The FIC model
consists of differential equations at each cortical region governing the neural dynamics of
excitatory and inhibitory neuronal populations (“E” and “I” respectively in the right panel). A
red triangle indicates an excitatory connection. A blue circle indicates an inhibitory
connection. “wxy” indicates the connection strength from neuronal population x to neuronal
population y. For example, “wie” indicates the connection strength from the inhibitory
population to the excitatory population. The regional models are connected by excitatory
connections parameterized by a structural connectivity (SC) matrix. For a given set of model
parameters, time courses of excitatory (Se) and inhibitory (Si) synaptic gating variables
(representing the fraction of open channels) can be simulated. The excitation-inhibition ratio
(E/1 ratio) was defined as the ratio between the temporal average of Se and Si. Local synaptic
parameters were estimated using the same approach as our previous study (41). We refer to
the resulting model as the pFIC model.
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Following previous studies (33,39), wi was set to one and wie was automatically set
to maintain a uniform baseline excitatory firing rate of around 3Hz. Excitatory-to-excitatory
recurrent strength (wee), excitatory-to-inhibitory connection strength (wei), regional noise
amplitude (o) and the SC scaling constant (G) were estimated using our previous approach
(41). More specifically, wee, wel and o were parameterized as a linear combination of the
principal resting-state FC gradient (54) and T1w/T2w myelin estimate (55), resulting in 9
unknown linear coefficients and 1 unknown parameter G. We refer to the resulting model as
the parametric FIC (pFIC) model.

The 10 pFIC parameters were estimated using the covariance matrix adaptation
evolution strategy (CMA-ES) (56) by minimizing the difference between simulated and
empirical fMRI data. More specifically, agreement between empirical and simulated FC
matrices was defined as the Pearson’s correlation (r) between the z-transformed upper
triangular entries of the two matrices. Larger r indicates more similar static FC. However,
Pearson’s correlation does not account for scale difference, so we also computed the absolute
difference (d) between the means of the empirical and simulated FC matrices (39). A smaller
d indicates more similar static FC. The inclusion of d was necessary to prevent overly
synchronized fMRI signals (Figure S1). Finally, we do not expect the brain states of two
participants to be the same at any given timepoint t during the resting-state, i.e., there is no
temporal correspondence between participants in the resting-state. Because FCD was
computed based on sliding window FC, there was similarly no temporal correspondence
between simulated and empirical FCD matrices. Therefore, disagreement between the
simulated and empirical FCD matrices was defined as the Kolmogorov—Smirnov (KS)
distance, following previous studies (41,50). The KS distance was defined as the maximum
distance between the cumulative distribution functions obtained by collapsing the upper
triangular entries of simulated and empirical FCD matrices, so no temporal correspondence
was assumed (more details in Supplementary Methods S10). The overall cost was defined as
(1—r) +d+ KS. A smaller cost indicates better agreement between simulated and empirical
fMRI.
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Figure 2. The parametric feedback inhibition control (pFIC) model generates more
realistic fMRI dynamics than the spatially homogeneous FIC model. (A) The CMA-ES
algorithm (41,56) was applied to the HCP training set to generate 500 sets of model
parameters. The top 10 parameter sets from the validation set were evaluated in the test set.
(B) Agreement (Pearson’s correlation) between empirical and simulated static FC in the HCP
test set. (C) Empirical FCD from an HCP test participant. (D) Simulated FCD from the pFIC
model using the best model parameters (from the validation set) and SC from the test set. (E)
Total test cost of the pFIC model compared with three control conditions: (1) local synaptic
parameters parameterized by only principal resting-state FC gradient, (2) local synaptic
parameters parametrized by only T1w/T2w ratio map and (3) local synaptic parameters
constrained to be spatially uniform. The boxes show the inter-quartile range (IQR) and the
median. Whiskers indicate 1.5 IQR. Black crosses represent outliers. * indicates that the pFIC
model achieved statistically better (lower) test cost.
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2.3 The pFIC model generates realistic fMRI dynamics

We first demonstrate that the parametrization of the local synaptic parameters with
T1w/T2w and FC gradient led to more realistic brain dynamics than spatially homogeneous
parameters (Figure 2A). We applied CMA-ES to the HCP training set to generate 500
candidate model parameter sets. The 500 parameter sets were evaluated in the HCP
validation set. The top 10 parameter sets from the HCP validation set were used to simulate
FC and FCD using SC from the HCP test set, which were then compared with empirical FC
and FCD from the HCP test set. A strong agreement between simulated and empirical FC (as
well as between simulated and empirical FCD) would suggest that the pFIC model was able
to generate realistic brain dynamics.

Figure 2B visualizes the correlation between empirical and simulated FC in the HCP
test set (based on the best model parameters from the validation set). Across the 10 best
parameter sets from the validation set, correlation between empirical and simulated static FC
was 0.71 £ 0.005 (mean + std) in the test set. As a reference, correlation between empirical
FC and SC in the test set was 0.48. On the other hand, the absolute difference between the
means of the empirical and simulated FC matrices was 0.11 £ 0.015 in the test set. This
suggests that the pFIC model was able to generate realistic FC.

Figure 2C shows the empirical FCD from a single run of a representative HCP test
participant. Figure 2D shows the simulated FCD using the best model parameters (from the
validation set) and SC from the test set. Off-diagonal red blocks in both empirical and
simulated FCD indicated recurring FC patterns that were not simply due to temporal
autocorrelation. Similarity in the amount of off-diagonal red blocks between empirical and
simulated FCD suggests that the pFIC model was able to generate realistic FCD. Across the
10 best candidate sets from the validation set, the Kolmogorov-Smirnov (KS) distance
between empirical and simulated FCD was 0.18 + 0.028 in the HCP test set. Disagreement
between simulated and empirical fMRI appeared more pronounced in posterior regions, but
the pattern of disagreement was not correlated with the RSFC gradient or the T1w/T2w ratio
map (Figures S2 and S3).

Overall, the pFIC model was able to generate realistic FC and FCD, yielding an
overall cost of 0.58 + 0.018 in the HCP test set (Figure 2E). Parameterizing model
parameters with only the principal FC gradient or only T1w/T2w ratio map led to worse
(higher) cost in the HCP test set (Figure 2E). Most large-scale circuit model studies assume
spatially homogeneous parameters. When local synaptic parameters (wee, wer and o) were

constrained to be uniform across brain regions (33,57) and optimized by CMA-ES, the cost
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was poor in the test set (Figure 2E). These results emphasize the importance of
parameterizing local synaptic parameters with spatial gradients that smoothly varied from
sensory-motor to association cortex. Consistent with our previous study (41), the T1w/T2w
and FC gradient were complementary in the sense that combining the two spatial maps led to

more realistic fMRI dynamics.

2.4 Estimated E/I ratio is sensitive to the effect of benzodiazepine alprazolam

In the previous section, we showed that the pFIC model could be effectively
optimized to generate realistic fMRI dynamics. Here, we evaluated the biological plausibility
of the estimated E/I ratio in a pharmacological-fMRI dataset (44) comprising 45 participants,
who completed a placebo-controlled double-blind fMRI study with benzodiazepine
alprazolam. Alprazolam is a benzodiazepine that enhances GABAergic signaling at GABAA
receptor sub-units, including a, , 3 5 and y;_3 (58,59). Alprazolam enhances GABAergic
inhibitory signaling via positive allosteric modulation, thus reducing E/I ratio (60). Therefore,
we hypothesized that the E/I ratio estimated with the pFIC model would be lower during the
alprazolam condition compared with the placebo condition.

The 45 participants were equally divided into training, validation and test sets. Group-
level SC, first principal FC gradient, and T1w/T2w ratio maps from the HCP dataset were
used in the following analysis. For each experimental condition (placebo or alprazolam), 250
candidate parameter sets were generated from the condition’s training set. The top 10
parameter sets from the validation set were evaluated in the test set. The costs of the 10
parameter sets generalized well to the test set (Figure S4), suggesting that there was no
overfitting in the validation set.

One challenge in analyzing this dataset was that the fMRI data was acquired with a
limited field of view (FOV). Therefore, 26 out of 68 Desikan-Killiany ROIs with less than
50% coverage (Figure S5) were not considered during the estimation of the model
parameters. The estimated model parameters were extrapolated to the entire cortex (see
Supplementary Methods S11 for details) and used to simulate the excitatory (Se) and
inhibitory (Si) time courses (Figure 1B). Motivated by rodent studies, the E/I ratio was
defined as the ratio between the temporal average of Se and Si (61).

An E/I ratio contrast was computed by subtracting the E/I ratio estimated during the
drug (alprazolam) session from the E/I ratio estimated during the placebo session. Since

alprazolam is expected to reduce E/I ratio, we hypothesized the E/I ratio would be lower
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during the alprazolam condition, yielding a positive E/I ratio contrast. Consistent with our
hypothesis, the E/I ratio contrasts of all regions were positive (Figure 3B). 67 out of 68
regions exhibited E/I ratio contrasts statistically different from zero after correcting for
multiple comparisons with a false discovery rate (FDR) of g < 0.05. We note that there was
no motion difference between the drug and placebo fMRI sessions (p > 0.1). These results
suggest that the E/I ratio estimated by the pFIC model was sensitive to the pharmacological
enhancement of inhibitory activities.

Since the distribution of benzodiazepine receptors (BZR) density is not spatially
uniform (62), we hypothesized that the E/I ratio contrast would also not be spatially uniform,
and would align with BZR density. Supporting this, we found that the E/I ratio contrast
exhibited a spatial gradient with strongest effects in sensory-motor networks and weakest
effects in control and default networks (Figure 3B). Figure 3C shows the spatial distribution
of benzodiazepine receptors (BZR) density estimated from in-vivo positron emission
tomography in a separate group of participants (62). Regions with greater BZR density
exhibited greater reduction in E/I ratio during the drug session (r = 0.52; two-tail spin test p =
0.016; Figure 3D). Therefore, the spatial distribution of E/I ratio contrast was biologically
plausible.

To evaluate robustness, we repeated the above analyses 5 times with different random
splits of the 45 participants into training, validation and test sets. The results were similar
across the 5 splits (Figures S6 and S7). Results from the most representative split were
shown in Figure 3. Using this most representative split, we performed several additional
sensitivity analyses. In the previous analyses, the acceptable excitatory firing rate was
constrained to be between 2.7Hz and 3.3Hz. Relaxing the thresholds to between 2.5Hz and
3.5Hz yielded similar results (Figure S8). Changing the ROI coverage threshold from 50% to
60% also yielded similar results (Figure S9). We repeated the analysis using a 100-region
homotopic functional parcellation (63), which also yielded similar results (Figure S10).
Pairwise comparisons between the control analyses are found in Figure S11. Similar results

were obtained with log-transformation or square root of BZR density (Figure S12).
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Figure 3. E/I ratio estimate is sensitive to the effect of benzodiazepine alprazolam. (A)
Seven resting-state networks (64). (B) Left: Regional E/I ratio contrast overlaid with the
boundaries (black) of seven resting-state networks. 67 out of 68 regions showed significant
E/l ratio difference between placebo and drug sessions after FDR correction (q < 0.05). E/I
ratio difference was greater than zero for all regions, consistent with lower E/I ratio during
the alprazolam session. Right: E/I ratio differences exhibited a spatial gradient with higher
differences in sensory-motor regions compared with regions in the control and default
networks. The boxes show the inter-quartile range (IQR) and the median. Whiskers indicate
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1.5 IQR. Black crosses represent outliers. (C) Spatial distribution of BZR density (pmol/ml)
from in-vivo positron emission tomography in a separate group of participants (62). (D)
Higher regional BZR density was associated with larger E/I ratio changes during the drug
session (r = 0.52, two-tail spin test p = 0.016).

2.5 The E/I ratio declines with development in youth

Having demonstrated that the E/I ratio estimates were sensitive to the alprazolam-
induced enhancement of inhibitory activities, we next explored how the E/I ratio changes
during development in the Philadelphia Neurodevelopmental Cohort (PNC; 45,46). We
hypothesized that the estimated E/I ratio would decline with age.

After data preprocessing and quality control, we obtained a sample of 885 participants
ages 8-23 years old (Figure 4A). Participants were sorted according to age and evenly
divided into 29 age groups, so each group comprised 30 or 31 participants. Within each age
group, 15 participants were randomly selected as the validation set, while the remaining
participants were assigned to the training set. For each age group, 250 candidate model
parameter sets were generated from the group’s training set using CMA-ES and evaluated in
the group’s validation set; the parameter set with the lowest validation cost was used to
estimate regional E/I ratio across the cortex.

We performed linear regression between age and mean cortical E/I ratio (i.e., E/I ratio
averaged across the whole cortex), as well as between age and regional E/I ratio. Mean
cortical E/I ratio declined throughout child and adolescent development (r = -0.51, p = 0.004;
Figure 4B). This E/I ratio reduction was statistically significant for all cortical regions (FDR
g < 0.05; Figure 4C). Furthermore, the rate of E/I ratio decrease exhibited a spatial gradient
with sensory-motor regions exhibiting greater rate of E/I ratio decrease (i.e., more negative
slope) compared with association networks (Figure 4D).

To evaluate the robustness of these effects, the PNC analyses were repeated 5 times
with different splits of the participants (within each age group) into training and validation
sets. The results were similar across the 5 random splits of the data (Figures S13 and S14).
We conducted several additional sensitivity analyses using the most representitve split (which
was shown in Figure 4). Relaxing the firing rate thresholds to between 2.5Hz and 3.5Hz
yielded similar results (Figure S15), as did using a 100-region homotopic parcellation (63)
(Figure S16). Pairwise comparisons between the control analyses are found in Figure S17.
Finally, consistent with the literature, younger participants exhibited higher head motion

during the fMRI scan. Therefore, as a control analysis, we regressed out mean framewise
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displacement from the E/I ratio estimates of each age group, yielding similar results (Figure
S18).
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Figure 4. E/I ratio continuously declines throughout child and adolescent development.
(A) Age distribution of 885 PNC participants (mean = 15.66, std = 3.36, min = 8.17, max =
23). (B) Participants in older age groups exhibited lower E/I ratio (r = -0.51, p = 0.004).
Participants were divided into 29 non-overlapping age groups. There are 29 dots in the scatter
plot, corresponding to the 29 age groups. The shaded area depicts 95% confidence interval of
the linear relationship. (C) Spatial distribution of linear regression slope between regional E/I
ratio and age. The values represent the rate of E/I ratio changes during development. All
slopes were negative and significant (FDR g < 0.05). (D) The slopes exhibited a spatial
gradient with sensory-motor networks showing the fastest E/I ratio reduction and association
networks showing slower E/I ratio reduction. The boxes show the inter-quartile range (IQR)
and the median. Whiskers indicate 1.5 IQR. Black crosses represent outliers.

2.6 Lower E/I ratio is associated with better cognition within the same age group
Having shown that older children exhibited lower E/I ratio (Figure 3B), we next
evaluated the cognitive implications of such a decline in the E/I ratio as part of normative

development. We hypothesize that a lower E/I ratio would be associated with better


https://doi.org/10.1101/2023.06.22.546023
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.22.546023; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

cognition. To test this hypothesis, we compared the E/I ratio of PNC participants who were
matched on age but differed in cognitive performance.

Participants in the PNC completed the Penn Computerized Neurocognitive Battery
(CNB), a 12-task battery that has been previously summarized using an overall (domain-
general) measure of accuracy as well as three domain-specific factor scores (65). Participants
were divided into 14 high-performance groups and 14 low-performance groups based on the
overall accuracy measure. Each high-performance group was age-matched to a low-
performance group (Figure 5A). Each low-performance or high-performance group
comprised 31 or 32 participants. For each group, 15 participants were randomly assigned to
the validation set, while the remaining participants were assigned to the training set. For each
group, 250 candidate parameter sets were generated from the training set and the top
parameter set from the validation set was used to estimate the E/I ratio; we compared the E/I
ratio between the high and low performance groups.

The high-performance group exhibited lower mean cortical E/I ratio than the low-
performance group (two-tailed t-test p = 1.2 x 103; Figure 5C). There was no motion
difference between high-performance and low-performance groups (p > 0.2). To test for
domain specificity, we also compared the E/I ratio for the three domain-specifc factor scores
(complex reasoning, memory and social cognition), but observed no statistical difference
after correcting for multiple comparisons (Figure S19).

Having found global differences in the E/I ratio between the high and low cognitive
performance groups, we next evaluated regional effects (Figure 5D). We found that E/I ratio
differences between low-performance and high-performance groups were larger in control
and default networks, compared with sensory-motor regions (Figure 5E; all FDR q <0.05).
Notably, the effect sizes of these regional differences in the E/I ratio aligned well with the
sensorimotor-association (S-A) axis of cortical organization (66), such that effect sizes were
lowest at the sensorimotor pole and largest at the association pole (Figure 5F). Spearman’s
correlation between effect sizes and S-A axis ranks was r = 0.87 (two-tailed spin test p <
0.001; Figure 5G). Overall, these results suggest that a more mature E/I ratio — especially in
higher-order association cortex — is linked to more mature cognition.

To evaluate the robustness of these results, we repeated these analyses 5 times with
different random training-validation splits of participants within each high-performance
group and each low-performance group. The results were similar across the 5 splits (Figures

S20 to S24; the most representative split is displayed in Figure 5). Within the most
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representative split, we found that relaxing the thresholds to between 2.5Hz and 3.5Hz
yielded similar results (Figure S25) as did use of a 100-region homotopic functional
parcellation (63) (Figure S26). Pairwise comparisons between the control analyses are found
in Figure S27.

@ p=0.11 ®) ©
| |
22- - 1.5 028
] = E
— © =
@ 5 ul
8 T 11— § o §
> 161 S0 £ 94
() = .
o) © - 8
@ T q>J \ \\ c
(] ©
()]
\ g
104 | -1.51 8 2.0
D high-performance I:I low-performance
(D) Effect size of E/l ratio difference (E)

Cohen's d

<DI

SHEET 1.3

Cohgn's d
o
(6)]

-~ -+
* H
- +
+
+ z
+
* +*
+*

0.751

DN

@ |
<
< |
(2]
O]
>
3
—
3
Q)
o-
=)

E

©
1.35]

S-A axis rank

Cohgn's d
o
9

rSpearman =0.87
o Pspin < 0.001
1 34 68
Sensorimotor «— > Association
S-A axis rank

0.751

I 1
|
.oo


https://doi.org/10.1101/2023.06.22.546023
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.22.546023; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Figure 5. Lower E/I ratio is associated with better cognitive performance within the
same age group in the PNC cohort. (A) Boxplots of age, (B) ‘overall accuracy’ and (C)
mean cortical E/I ratio of high-performance and low-performance (overall accuracy) groups.
The mean cortical E/I ratio of the high-performance group was significantly lower than that
of the low-performance group (FDR g < 0.05). (D) Spatial distribution of effect size of
regional E/I ratio difference between high-performance and low-performance groups. All
regions were significant after FDR correction with g < 0.05. (E) Effect size of E/I ratio
differences in cognition is larger in control and default networks compared with sensory-
motor regions. The boxes show the inter-quartile range (IQR) and the median. Whiskers
indicate 1.5 IQR. Black crosses represent outliers. (F) ROI rankings based on the
sensorimotor-association (S-A) axis (66). Lower ranks were assigned to ROIs that were more
towards the sensorimotor pole; higher ranks were assigned to ROIs that were more towards
the association pole. (G) Agreement between effect size of E/I ratio difference and S-A axis
rank. Spearman’s correlation r = 0.87, two-tailed spin test p < 0.001.

2.7 Results generalize to a younger Asian cohort

As a final step, we evaluated whether the link between the E/I ratio and cognition
generalized to a group of younger participants of different anscestry. This was motivated by
recent concerns that relationships between resting-fMRI and behavior may not generalize
well across ethnic groups (67). We utilized the Growing Up in Singapore with Healthy
Outcomes (GUSTO) dataset (47), which included 154 participants (after quality control) with
a mean age of 7.5 years. An overall cognitive performance score was obtained by a principal
component analysis of five cognitive tests. Participants were then divided into groups with
high and low cognitive performance. The ages were well-matched between the high and low-
performance groups (Figures 6A and 6B). There was no motion difference between the high
and low-performance groups during the fMRI scans (p > 0.1).

Replicating PNC results, we found that the high-performance group exhibited a lower
E/l ratio in higher-order association cortex than the low-performance group (Figures 6C).
Differences were largest in the default and control networks (Figure 6D). Statistical
significance was evaluated using a permutation test, where the null distribution was
constructed by randomly assigning participants into high or low-performance groups, and
then re-estimating the E/I ratio. We note that only 29 (out of 68) regions were significant
after FDR correction with g < 0.05. These 29 regions were all in association cortex. By
contrast, differences in the E/I ratio between cognitive performance groups was largely not
significant in sensory-motor networks. As in the PNC, we found the effect sizes of these
cognitive differences aligned with the S-A axis (r = 0.56, two-tailed spin test p = 0.01;
Figure 6E). These results in a younger Asian cohort emphasize the robustness and

generalizability of our findings.
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Figure 6. Lower E/I ratio is associated with better cognitive performance within the
same age group in the GUSTO dataset. (A) Boxplots of age for high-performance and low-
performance groups. (B) Overall cognition of high-performance and low-performance
groups. (C) Spatial distribution of effect size of E/I ratio difference between low-performance
group and high-performance group. (D) Effect size of E/I ratio differences is larger in control
and default networks compared with sensory-motor regions. The boxes show the inter-
quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses represent
outliers. (E) Agreement between effect size of E/I ratio difference and S-A axis rank.
Spearman’s correlation r = 0.56, two-tailed spin test p = 0.01.
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3. Discussion

We first established that the pFIC model could generate realistic fMRI dynamics in a
large adult dataset. We then demonstrated that our E/I ratio marker was sensitive to increased
inhibitory activity induced by benzodiazepine alprazolam. In a large developmental sample
from North America, we found that the E/I ratio marker decreased with age. We also
demonstrated that a lower E/I ratio marker — reflective of more mature cortex — was
associated with better cognitive performance, particularly in transmodal association cortex.
Critically, these findings generalized to a younger Asian cohort. Together, our findings
provide evidence that refinements in the cortical E/I ratio persist into adolescence, suggesting
that prolonged E/I-linked developmental plasticity in the association cortex supports
continued neurocognitive development. We speculate that insufficient refinement of the E/I
ratio during development may create a vulnerability to cognitive deficits, with potentially
important implications for transdiagnostic psychopathology.

The E/I ratio is challenging to be non-invasively investigated in humans. Post-mortem
studies have established how the expressions of E/I relevant genes vary across the cortex
(35,68,69). On the other hand, there is a lack of a direct mapping of in-vivo neuroimaging
signals with excitatory and inhibitory neurobiology, as well as constrained spatial coverage
and specificity of available E/I techniques (24-26). Here, we capitalized on recent
developments in biologically interpretable computational modeling of cortical circuits to gain
insight into the E/I ratio from fMRI data. We fitted a large-scale circuit model with
interacting excitatory and inhibitory populations to resting-state fMRI and calculated the E/I
ratio from the time courses of excitatory and inhibitory synaptic gating variables. Our E/I
ratio marker captured reductions in the E/I ratio induced by alprazolam, a positive allosteric
modulator that increases the effectiveness of GABAergic signaling (70). Furthermore, the
spatial pattern of benzodiazepine-related E/I reductions described by the model was
correlated with the distribution of benzodiazepine-sensitive GABA receptors from positron
emission tomography (62). Interestingly, one of the pharmacological targets of
benzodiazepines is GABAA a; receptors (70). Increases in GABA signaling at GABAAa a;
receptors have been shown to trigger the onset of developmental critical periods in animal
models (71), indicating that the pFIC model is well equipped to study development-linked
changes in inhibitory signaling in the human brain.

We found that the E/I ratio decreased across the cortex throughout child and

adolescent development. E/I ratio declined with age across all cortical systems, but the


https://doi.org/10.1101/2023.06.22.546023
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.22.546023; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

magnitude of decline varied along a unimodal-transmodal cortical hierarchy. Specifically, by
age 22, the E/I ratio had declined the most in unimodal sensory territories, such as the visual
and somatomotor systems, and the least in transmodal systems like the default and
frontoparietal control systems. Differences in E/lI development across these systems may be
linked to differences in their maturational time courses. The development of cortical
inhibitory circuitry is well-established as a central mechanism that controls the timing and
progression of critical periods of development (21,72). Initially, the development of
inhibitory circuitry lags behind that of excitatory pyramidal cells, leading to an early increase
in the local E/I ratio (73). Later, experience and evoked activity stimulate the development of
inhibitory circuitry (21) — particularly fast-spiking parvalbumin positive interneurons and
GABAA a; receptors — which begins to reduce the E/I ratio, facilitating experience-
dependent plasticity and triggering the opening of the critical period window (22,71,72). As
the critical period progresses, excitatory synapses are pruned, further reducing the E/I ratio
(74,75). Finally, as inhibitory circuitry reaches maturity, a new set of plasticity braking
factors are triggered, including the formation of intracortical myelin and perineuronal nets,
which stabilize cortical circuits and close the critical period window (6,76). Consequently, an
initial decrease in the E/I ratio can signify that a critical period has been triggered and the
cortex is in a relatively immature, plasticity-permissive state. As the E/I ratio reduces further,
it may signify that the cortex has reached a mature, plasticity-restrictive state, with pruned
excitatory synapses, fully-developed inhibitory circuitry, and mature plasticity brakes that
have closed the critical period (6). As such, the greater reduction in the E/I ratio we observe
in sensory systems relative to association systems may reflect that sensory systems have
reached a higher degree of maturity by the end of the adolescent years while association
systems remain in a more immature, plasticity-permissive state. To test this hypothesis, future
work could use multimodal neuroimaging that combines our pFIC approach with other
markers of critical period closure - such as intracortical myelination - to evaluate
biologically-relevent signatures of when windows of critical period plasticity open and close
during youth.

Our findings align with a wealth of literature demonstrating differences in the
development of sensorimotor and association cortices. Studies have shown that functional
connectivity, functional topography, structure-function coupling, and intrinsic dynamics
follow different developmental trajectories between sensory and associative cortical systems
(16,77-79). For example, while the intrinsic fluctuation amplitude of sensory systems

linearly decline with age, association systems follow curvilinear developmental trajectories
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that peak over adolescence before declining into adulthood (80). Importantly, other recent
work has shown that the development of intracortical myelin, which functions as a brake on
plasticity, also varies along the sensory-to-association axis (11,81). Specifically, the period of
peak growth in intracortical myelin occurs during childhood in sensorimotor cortex, yet not
until adolescence in association cortex. Coupled with our current findings of a greater
reduction in the E/I ratio of sensory systems (versus a weaker reduction in association
systems), this work jointly indicates that sensorimotor systems are more mature by the onset
of adolescence whereas association cortex may remain more plastic during the adolescent
period. This interpretation aligns with a recent study showing that an fMRI marker of
functional plasticity peaks during early adolescence in association cortex but continuously
declines throughout childhood and adolescence in sensorimotor cortex (80).

The protracted development of the E/I ratio throughout adolescence may facilitate
healthy cognitive development. We found that better cognitive ability was associated with a
lower E/I ratio across the cortex in groups of age-matched youth. Since the E/I ratio
normatively decreased with age, this effect may indicate that more mature cognitive
performance is associated with a more mature cortical E/I ratio. As such, the E/I ratio may
capture aspects of development independent of chronological age. Importantly, the
magnitude of the effect was not spatially uniform. The greatest effect sizes were observed in
association cortex, while the weakest effect sizes were observed in sensory cortex. This
pattern is consistent with prior work showing that functional properties of the association
cortex are most strongly related to cognitive performance across development (79,82). Our
findings also support theoretical predictions from a biophysically-based cortical circuit model
of decision-making that a balanced E/I ratio supports optimal decision-making (9). Together,
our results suggest that although E/I ratio continues to develop throughout the cortex during
adolescence, the development of the E/I ratio in association cortex is particularly relevant to
maturing cognition. Critically, we generalized associations between the E/I ratio and
cognitive ability in an independent sample of youth collected from a different continent,
demonstrating the robustness of these effects across both populations and recruitment sites.

Our findings have important implications for understanding the emergence of
psychopathology during adolescence. Though a prolonged period of developmental plasticity
in the association cortex may be essential to healthy cognitive development, it may also
represent a period of vulnerability to atypical developmental outcomes. A growing body of
work has begun to implicate a disrupted E/I ratio in prefrontal cortex as a central mechanism

in neuropsychiatric disorders such as depression and psychosis spectrum disorders (83-85).
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These conditions are thought to involve an atypically high E/I ratio in prefrontal cortex (86—
89). Future studies can use our model to understand how atypical development of E/I ratio in
association cortex may lead to transdiagnostic cognitive dysfunction in developmental

psychopathology.

Limitations and future work

Parameterization of local circuit parameters with the T1w/T2w ratio map and the FC
gradient yielded more realistic fMRI dynamics than either gradient alone or if local circuit
parameters were constrained to be spatially uniform. Future studies can explore more generic
parameterizations, such as geometric eigenmodes (90).

The current study utilized parcellations with only 68 or 100 regions. Simulating the
FIC model with a higher spatial resolution is computationally challenging because the
number of inter-regional connections increases quadratically with the number of regions.
Future work can explore more efficient algorithms. Furthermore, our analyses were limited to
linear modeling of E/I ratio across a set of age bins. Future work in larger samples may
facilitate the estimation of nonlinear developmental trajectories of E/I ratio.

Finally, our approach can also be used to study E/I ratio changes during cognitive
tasks or during a naturalistic paradigm. When applying the pFIC model to a new dataset,
dataset-specific SC, T1w/T2w ratio map and FC gradient can be used, although that might
not be necessary. For example, SC, T1w/T2w ratio map and whole-cortex FC gradient were
not available in the alprazolam dataset, so we utilized SC, T1w/T2w and whole-cortex FC

gradient from the HCP dataset.

Conclusion

Our results underscore the utility of large-scale circuit models to provide insights into
the mechanisms driving neurocognitive development. We find that an essential aspect of
healthy brain function—the cortical E/I ratio—is refined during childhood and adolescence.
We also provide new evidence that this hallmark critical period mechanism is associated with
improved cognitive ability. Our findings pave the way for future work to investigate how
disrupted E/I balance may lead to cognitive dysfunction in psychopathology that emerges
during youth and is characterized by atypical development of association cortex that

undergoes protracted maturation.
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4. Methods

We utilized the HCP S1200 release (N = 1004; Figure 2), pharmacological
(benzodiazepine alprazolam) fMRI dataset (N = 45; Figure 3), PNC dataset (N = 885;
Figures 4 and 5) and the GUSTO cohort (N = 154; Figure 6). In the case of HCP, we used
the publicly available ICA-FIX MSMAII resting-state fMRI data in fsSLR surface space. For
alprazolam and PNC datasets, we used preprocessed fMRI data from our previous study,
which involved slice time correction, motion correction, field distortion correction and
anatomical CompCor (26). In the case of the alprazolam dataset, no resting-state fMRI was
available, so we used task-fMRI after regressing out the task regressors, following our
previous study (26). To be consistent, the GUSTO dataset was also preprocessed in a similar
fashion as the PNC dataset. More details can be found in the Supplementary Methods.

After preprocessing, static FC was computed using Pearson’s correlation for all
datasets. FCD was computed using sliding window length of ~60 seconds, corresponding to
windows of length 83, 20, 20 and 23 for the HCP, alprazolam, PNC and GUSTO datasets
respectively. The window length followed best practice recommendations from previous
studies (51,91). SC was computed based on the number of streamlines generated with
probabilistic tractography using MRtrix3 (92). More details can be found in the
Supplementary Methods.

The pFIC model (33) was fitted to the different datasets using the covariance matrix
adaptation evolution strategy (CMA-ES) (56). The fitted pFIC model was used to simulate
the synaptic gating variable time courses Se and Si of the excitatory and inhibitory
populations respectively. The E/I ratio was defined as the ratio between the temporal average
of Se and Si. More details can be found in the Supplementary Methods.

The HCP data is publicly available (https://www.humanconnectome.org/). The

GUSTO dataset can be obtained via a data transfer agreement (https://www.gusto.sg/). The

PNC dataset is publicly available in the Database of Genotypes and Phenotypes (dbGaP
accession phs000607.v3.p2). All pharmacological imaging data necessary to evaluate the
conclusions in the paper are available here

(https://github.com/YeoPrivateLab/CBIG private/tree/develop/stable projects/fMRI dynami

cs/Zhang2024 _pFIC/replication/Alprazolam). Code for this study can be found here
(https://github.com/ThomasYeoLab/CBIG/tree/master/stable projects/fMRI dynamics/Zhan

02024 _pFIC). Co-authors (TZ and LA) reviewed the code before merging into the GitHub

repository to reduce the chance of coding errors.
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In-vivo whole-cortex marker of excitation-inhibition ratio indexes
cortical maturation and cognitive ability in youth

Supplemental Material
This supplemental material consists of Supplemental Methods and Supplemental Results to
complement the Methods and Results sections in the main text.

Supplemental Methods

The HCP data collection was approved by a consortium of institutional review boards (IRBS)
in the United States and Europe, led by Washington University in St Louis and the University
of Minnesota (WU-Minn HCP Consortium). Data collection and study procedures for the
Alprazolam dataset were approved by the University of Pennsylvania IRB; data collection for
the PNC was approved by IRBs from both the University of Pennsylvania and the Children’s
Hospital of Philadelphia. The GUSTO data collection was approved by the National Healthcare
Group Domain Specific Review Board and the SingHealth Centralised Institutional Review
Board. All participants provided informed consent before data collection. The current study
was approved by the IRB of the National University of Singapore.

S1. Human Connectome Project (HCP) dataset

We considered 1004 participants from the Human Connectome Project (HCP) S1200
release (1). All participants were scanned on a customized Siemens 3T Skyra using a multi-
band sequence. Four resting-state fMRI (resting-fMRI) runs were collected for each
participant in two sessions on two different days. Each resting-fMRI run was acquired with a
repetition time (TR) of 0.72 s at 2 mm isotropic resolution and lasted for 14.4 min. The
diffusion imaging consisted of 6 runs, each lasting ~9 min and 50 s. Diffusion weighting
consisted of 3 shells of b = 1000, 2000, and 3000 s/mm? with an approximately equal number
of weighting directions on each shell. Details of the data collection can be found elsewhere
(1). The 1004 participants were randomly divided into training (N = 335), validation (N =
335) and test (N = 334) sets.

S2. HCP preprocessing

Details of the HCP preprocessing can be found in the HCP S1200 manual. We utilized
resting-fMRI data, which had already been projected to fsLR surface space, denoised with
ICA-FIX and smoothed by 2 mm. For each run of each participant, the fMRI data were
averaged within each Desikan—Killiany (2) region of interest (ROI) to generate a 68 x 1200
matrix. Each 68 x 1200 matrix was used to compute 68 x 68 FC matrix by correlating the time
courses among all pairs of time courses. The FC matrices were then averaged across runs of
participants within the training (or validation or test) set, resulting in a group-averaged training
(or validation or test) FC matrix.

Functional connectivity dynamics (FCD) were computed as follows. We defined a
window with a length of 60s (equivalent to 83 time points or TRs) as recommended by previous
studies (3,4). The window was moved from the first frame to the 1118™ frame of BOLD time
series, resulting in 1118 sliding windows in total. For each run of each participant, FC was
computed within each of 1118 sliding windows. Each sliding window FC matrix was then
vectorized by only considering the upper triangular entries. The vectorized FCs were correlated


https://doi.org/10.1101/2023.06.22.546023
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.22.546023; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

with each other generating a 1118 x 1118 FCD matrix. Unlike static FC, we note that the FCD
matrices could not be directly averaged across participants because there was no temporal
correspondence between participants during the resting-state.

In the case of diffusion MRI, probabilistic tractography was run for each participant
using the fiber orientation distribution (iFOD2) algorithm provided by MRtrix3 (5). A
structural connectivity (SC) matrix was generated for each participant, where each entry
corresponded to the number of streamlines between two ROIs. To generate a group-level SC
matrix, a thresholding procedure was employed to remove false positives. More specifically,
if <50% of participants had a non-zero value in a particular entry in the SC matrix, then the
entry is set to zero in all individual-level SC matrices. For each SC entry, the number of
streamlines was averaged across participants with non-zero streamlines and then log-
transformed (6). The entries along the main diagonal were set to 0. Group-level SCs were
computed by averaging individual-level SCs within the training, validation and test sets
separately and normalizing the maximum value to 0.02.

S3. Pharmacological (benzodiazepine alprazolam) dataset

The alprazolam dataset has been previously described in detail (7). Briefly, 47 adults
participated in a double-blind, placebo-controlled study using the benzodiazepine alprazolam.
Each participant completed two identical experimental sessions approximately 1 week apart.
In one session, participants were given a 1-mg dose of alprazolam, and in the other, they were
given an identical appearing placebo. One milligram of alprazolam produces an increase in
GABAergic inhibition that is considered to be clinically effective (8). The order of
administration was counterbalanced across participants. Alprazolam or placebo was
administered 1 hour before the fMRI acquisition so that alprazolam levels and effects were
near their peak at the time of data collection (8). During both sessions, participants completed
an emotion identification task lasting 10.5 min, while fMRI was acquired. Task-related fMRI
results have been previously reported (7). Two participants were excluded because of missing
data in at least one session, yielding a final sample of 45 participants and 90 sessions in total
(ages 20.9 to 56.4; mean = 39.9, standard deviation = 12.71).

All data were collected on a Siemens Trio 3T. Blood oxygen level-dependent (BOLD)
fMRI data were acquired using the following parameters: TR = 3000 ms; TE = 32 ms; flip
angle = 90°; FOV = 240 mm; matrix = 128 x 128; slice thickness/gap = 2/0 mm; 30 slices;
effective voxel resolution = 1.875 x 1.875 x 2 mm?; 210 volumes. The field of view (FOV)
included temporal, inferior frontal, and visual cortices as well as subcortical structures, but
excluded dorsal portions of the cerebral cortex.

The 45 participants were randomly divided into training, validation, and test sets with
15 participants each. The training-validation-test split was the same for both drug and placebo
sessions.

S4. Philadelphia Neurodevelopment Cohort (PNC) dataset

Neuroimaging data were obtained from a community-based sample of 1601 youth (ages
8.1 t0 23.1; mean = 14.94; standard deviation = 3.69; male/ female = 764/837) that were part
of the Philadelphia Neurodevelopmental Cohort (PNC). Data collection procedures and sample
characteristics have been previously described in detail (9,10). One run of resting-fMRI data
was collected per participant. Following health exclusions and rigorous quality assurance, we
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retained 885 participants (ages 8.2 to 23.0 at first visit; mean = 15.66; standard deviation =
3.36).

All neuroimaging data were collected on the same Siemens Trio 3T scanner as was
used for the alprazolam dataset. The neuroimaging procedures and acquisition parameters have
been previously described in detail (9). Briefly, BOLD fMRI was acquired using similar
acquisition parameters to the alprazolam dataset: TR = 3000 ms; TE = 32 ms; flip angle = 90°;
FOV =192 x 192 mm?; matrix = 64 x 64; 46 slices; slice thickness/gap = 3/0 mm; effective
voxel resolution = 3.0 x 3.0 x 3.0 mm?3; 210 volumes. The key difference is that the field of
view in the PNC dataset covered the whole brain (unlike the alprazolam dataset).

S5. Alprazolam and PNC functional image processing

Details about the alprazolam and PNC datasets have been previously provided in
previous studies (11). The alprazolam dataset consisted of two BOLD acquisitions per
participant (drug and placebo session), which were preprocessed individually. BOLD runs
were slice time—corrected and then motion-corrected. Susceptibility distortion was estimated
and used to compute a corrected BOLD reference for more accurate co-registration with the
anatomical reference. The BOLD reference was co-registered to the T1w reference using
boundary-based registration (12). Co-registration was configured with nine degrees of freedom
to account for distortions remaining in the BOLD reference. Six head motion parameters
(corresponding rotation and translation parameters) were estimated before any spatiotemporal
filtering. The motion-correcting transformations, field distortion correcting warp, BOLD-to-
T1w transformation, and T1w-to-template (MNI) warp were concatenated and applied to the
BOLD time series in a single step using antsApplyTransforms (ANTs) with Lanczos
interpolation. Finally, the volumetric data was projected to fsaverage6 surface space (13).

Nuisance regression relied upon anatomical CompCor (aCompCor). aCompCor
principal components were estimated after high-pass filtering the preprocessed BOLD time
series (using a discrete cosine filter with 128-s cutoff). 5 CompCor components were extracted
from the cerebrospinal fluid (CSF) and white matter (WM) masks. To remove task effects in
the alprazolam dataset, all event conditions from the emotion identification task were modeled
as 5.5-s boxcars convolved with a canonical hemodynamic response function. Each of the five
emotions (fear, sad, angry, happy, and neutral) was modeled as a separate regressor. In sum,
22 regressors (6 head motion parameters and their respective temporal derivatives, top 5
aCompCor components, and 5 task regressors) were jointly regressed from the BOLD time
series. The same preprocessing was performed for the PNC dataset, except that no task
regressor was necessary. Overall, 17 regressors (6 head motion parameters and their respective
temporal derivatives and top 5 aCompCor components) were jointly regressed from the BOLD
time series.

FC and FCD of the alprazolam and PNC datasets were computed in the same manner
as the HCP dataset. However, the TR was longer in the alprazolam and PNC datasets than the
HCP dataset. Therefore, when computing the FCD matrices, the length of each sliding window
was set to be 20 timepoints (or TRs), so that the temporal length of the window was maintained
at 60s.

S6. GUSTO dataset
To generalize our findings on the association between cognition and E/I ratio, we
additionally utilized an Asian cohort, Growing Up in Singapore Towards Healthy Outcomes
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(GUSTO) dataset (14). We considered 389 7.5-year-old children with 1 run of resting-fMRI
data and relevant cognitive scores. Participants with one or more missing cognitive scores were
removed, yielding a final group of 154 participants (mean age = 7.43, std = 0.13, min age =
7.24, max age = 7.88).

All neuroimaging data were collected on a Siemens Prisma scanner. The structural data
were obtained with TIlw MPRAGE sequence using the following acquisition parameters: TR
= 2000 ms; TE = 2.08 ms; FOV = 192 x 192 mm?; matrix = 192 x 192; voxel resolution = 1.0
x 1.0 x 1.0 mm3. The resting-fMRI data were obtained with the following acquisition
parameters: TR = 2620 ms; TE = 27 ms; flip angle = 90°; FOV = 192 x 192 mm?; matrix = 64
x 64; 48 slices; voxel resolution = 3.0 x 3.0 x 3.0 mm?3; 120 volumes. The field of view of the
GUSTO dataset covered the whole brain.

S7. GUSTO preprocessing

For each resting-fMRI run, the following sequence of preprocessing steps were
performed. The first 4 frames of the run were removed. The run was then slice time-corrected
and then motion-corrected. Frames with FD > 0.5mm and DVARS > 80 were marked as motion
outliers. Next, the run was co-registered to the structural image with boundary-based
registration (12). Nuisance regression was performed with the inclusion of white matter and
CSF signals, 6 head motion parameters and their respective temporal derivates as well as the
top 5 aCompCor components (19 regressors in total were jointly applied). The motion outlier
frames were then censored and interpolated. Finally, the run was bandpass-filtered (0.009Hz <
f < 0.08Hz) and projected to Freesurfer fsaverage6 surface space.

FC and FCD of the GUSTO dataset were computed in the same manner as the HCP
dataset. However, the TR was longer in the GUSTO than the HCP dataset. Therefore, when
computing the FCD matrices, the length of each sliding window was set to be 23 timepoints
(or TRs), so that the temporal length of the window was maintained at around 60s.

S8. Feedback Inhibition Control (FIC) model

The derivation of the FIC model was thoroughly described in a previous study (15).
Here we provide some intuition for the FIC model. The neuronal activities of the j-th cortical
region follow the nonlinear differential equations shown below
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where S, r, and I represent synaptic gating variables, firing rate, and synaptic currents
respectively. The superscripts E and I denote the excitatory and inhibitory neuronal
populations respectively.

The input current Ij(E) of the excitatory population of the j-th cortical ROI is the sum of

four inputs (Equation 1). The first input is the external input current WyI,, which might include
subcortical delays. The second input is the intra-regional excitatory-to-excitatory current
governed by the excitatory-to-excitatory recurrent connection strength wyy scaled by the
synaptic coupling constant Jyypa. The third input is the inter-regional input, which is
controlled by the SC matrix (Cj is the connectivity between regions j and k) and scaled by the
global constant G. The fourth input is the intra-regional negative feedback from the inhibitory
population governed by the inhibitory-to-excitatory connection strength w;.

The input current Ijm of the inhibitory population of the j-th cortical ROl is the sum of

three inputs (Equation 2). The first input is the external input current W,1,. The second input
is the intra-regional positive feedback from the excitatory population governed by the
excitatory-to-inhibitory connection strength wei scaled by the synaptic coupling constant
Jnvmpa- The third input is the intra-regional inhibitory-to-inhibitory current governed by the
inhibitory-to-inhibitory recurrent connection strength wy;.

The excitatory input current Ij(E) and inhibitory input current

firing rates via the input-output functions specified in Equations 3 and 4. Following previous
studies (15), the parameters of the input-output function were set to be ay = 310n/C, a, =
615n/C, by = 125Hz, b; = 177Hz, d; = 0.16s and d; = 0.087s. Finally, the rate of change

of the synaptic gating variables Sj(E) and Sj(’) are computed via equations 5 and 6. Following

previous studies (15), the kinetic parameters for synaptic activities 7, 7, and y were set to
100ms, 10ms and 0.641 respectively. v;(t) corresponds to uncorrelated standard Gaussian

noise with the noise amplitude being controlled by o.

Following the original study (15), w;;, Wg, W, I, and Jyupa Were set to 1, 1, 0.7
0.382nA and 0.15nA respectively in the current study. The inhibitory-to-excitatory connection
strength w;zwas computed analytically to ensure that the excitatory firing rate is maintained to
be around 3Hz (16). We note that this analytical computation assumes a noiseless system, so
in practice, we imposed a constraint that the firing rate is between 2.7Hz to 3.3Hz. During the
estimation of the pFIC model (next section), parameters were rejected if firing rates fall outside
this range.

The excitatory-to-excitatory recurrent connection strength wgg , excitatory-to-
inhibitory connection strength wg;, noise amplitude o and global SC scaling constant G are
unknown parameters, which will be estimated by fitting to empirical fMRI data (next section).
Given a fixed set of model parameters, equations 1 to 6 can be used to simulate the time courses

of excitatory and inhibitory synaptic gating variables (Sj(E) and Sj(')) of each ROI. The regional

Ij(l ) are transformed into

E/I ratio was defined as the ratio between the temporal average of Sj(E) and Sj(l). The mean
cortical E/I ratio was the average of regional E/I ratios across all cortical ROIs. The simulated
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excitatory synaptic gating variables (Sj(E)) were also fed to the Balloon-Windkessel

hemodynamic model to simulate fMRI BOLD signals (15, 17,18). The simulated fMRI BOLD
signals were then used to generate simulated static FC and FCD.

S9. Parametric FIC (pFIC) model

Recall that the FIC model was instantiated using the Desikan-Killiany parcellation with
68 regions of interest. Given that we wanted the excitatory-to-excitatory recurrent connection
strength wee, excitatory-to-inhibitory connection strength wer and noise amplitude o to be
spatially heterogeneous (with G being a global constant), if we optimized each parameter
independently, there would be a total of 68 x 3 + 1 = 205 parameters, which is computationally
challenging.

In our previous study (19), we reduced the number of “free” parameters by
parameterizing the local synaptic parameters with a linear combination of the first principal FC
gradient and T1w/T2w ratio map. We note that in the previous study (19), we considered a
highly simplified parametric mean field model that does not differentiate between excitatory
and inhibitory neural populations. Here, we considered the same approach for the FIC model
by parameterizing Wee, Wei, and o as a linear combination of T1w/T2w myelin map and first
principal FC gradient.

Wwgg j = a + b X myelin; + ¢ X FC gradient; (7)
wgj = d + e X myelin; + f X FC gradient; (8)
0; = g + h X myelin; + i X FC gradient; 9

where j denotes the ROI index. By adopting this parameterization approach, the number of
“free” numbers was reduced to 3 x 3 + 1 = 10 parameters.

S10. Optimization of the parametric FIC (pFIC) model in the HCP dataset

The 10 unknown parameters of the pFIC model were optimized using a previously
published approach (19) by maximizing fit to empirical static FC and FCD. The agreement
between empirical and simulated FC matrices was defined as the Pearson’s correlation ()
between the z-transformed upper triangular entries of the two matrices. Larger r indicates more
similar static FC. However, Pearson’s correlation does not account for scale difference, so we
also computed the absolute difference (d) between the means of the empirical and simulated
FC matrices (16). A smaller d indicates more similar static FC.

We note that there is no temporal correspondence between simulated and empirical FCD
matrices, so we cannot simply use the Euclidean distance to measure dissimilarity. Instead, the
dissimilarity between simulated and empirical FCD matrices was quantified by using the
Kolmogorov-Smirnov (KS) distance. Here, the KS distance was defined as the maximum
distance between the cumulative distribution functions (CDFs) constructed by collapsing the
upper triangular entries of simulated and empirical FCD matrices (19,20). Hence, a small KS
distance indicated 2 similar CDFs, therefore 2 similar FCD matrices. Because the KS distance
was computed by collapsing the upper triangular entries of the FCD matrices, no temporal
correspondence was assumed.

The overall cost was defined as (1 —r) + d + KS. A smaller cost indicates better agreement
between simulated and empirical fMRI. Recall that the 1004 HCP participants were randomly
divided into training (N = 335), validation (N = 335) and test (N = 334) sets. Following our
previous study (19), we used the covariance matrix adaptation evolution strategy (CMA-ES)
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(21) to minimize the overall cost function during training. Due to the lack of temporal
correspondence between FCD matrices across runs and participants during rs-fMRI scans,
directly averaging FCD matrices will cancel out the temporal dynamics. Representing FCD
matrices using CDFs avoided such problem because averaging the CDFs across runs and
participants could still largely preserve the distribution of FCD matrix entries. We thus
averaged the FCD CDFs across participants and runs separately within the training, validation
and test sets.

In the HCP training set, the CMA-ES algorithm was iterated 100 times and repeated 5
times with different random initializations, yielding a total of 500 candidate parameter sets
(Figure 2A). The 500 candidate parameter sets were evaluated in the validation set to obtain
the top 10 candidate parameter sets. To ensure diversity among the parameter sets, the
procedure to select the top 10 parameter sets was as follows. First, the parameter set with the
lowest validation cost was selected. Then, the parameter set with the lowest validation cost and
whose parameter (weg, Wei, ) maps exhibited less than 0.98 correlation with the current
selected parameter set(s) was selected. This procedure was repeated until 10 parameter sets
were selected.

The top 10 candidate parameter sets from CMA-ES were then applied to the HCP test set
SC. For each parameter set, 1000 simulations were performed, yielding 1000 simulated static
FC and FCD matrices. Pearson correlation and the absolute difference were then computed
between each simulated FC and the empirical FC from the HCP test set and averaged. Similarly,
KS statistics was computed between each simulated FCD CDF and the empirical FCD CDF
from the HCP test set and averaged.

To speed up the computation, a step size of 6ms was used to integrate the ODESs in the
training set. However, to ensure more accurate integration, a step size of 0.5ms was used for
both validation and test sets. To ensure that this time step size was small enough, we repeated
the experiment using a step size of 6ms for the training set and a step size of 0.1ms for the
validation and test sets. The overall cost was highly similar across step size of 0.5ms and step
size of 0.1ms. In particular, for both 0.5ms and 0.1ms step sizes, an overall cost of 0.58 + 0.018
was achieved in the HCP test set across the top 10 parameter sets from the validation set.

Additionally, we observed that the correlations between wei and T1w/T2w ratio were
consistently negative, while the correlations between wei and RSFC gradient were consistently
positive across the top 10 parameter sets. Since the training sets for the alprazolam and PNC
datasets were substantially smaller than the HCP training set (~15 participants versus 335
participants), when optimizing the pFIC model in the alprazolam, PNC and GUSTO datasets,
we additionally imposed the constraints that wei and T1w/T2w ratio should be negative, while
the correlations between wei and FC gradient should be positive.

It is worth noting that when evaluating the top 10 model estimates (selected from the
HCP validation set) in the HCP test set, the correlation loss (1-r) ranged from 0.27 to 0.29,
absolute difference loss d ranged from 0.08 to 0.14, and the KS distance ranged from 0.14 to
0.23. In our previous study (19), our cost function was (1-r) + KS. Changing the relative
weights of (1-r) and KS did not substantially change the model estimate. Therefore, we kept
the weights unchanged in the current study. However, we observed that the simulated fMRI
time courses were overly synchronized, so we included the additional absolute difference (d)
metric in the current study. We observed that setting the relative weight of d to be the same as
the other 2 terms was sufficient to prevent the simulated fMRI time courses from becoming
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over-synchronized (Figure S1). Therefore, we did not consider changing the relative weights
further.

S11. Pharmacological E/I ratio analysis

Recall that the 45 participants of the alprazolam dataset were randomly divided into
training (N = 15), validation (N = 15) and test (N = 15) sets. Each participant had 2 runs of
fMRI data - one run for the drug session and one run for the placebo session. Because there
was no diffusion data in the alprazolam dataset, the SC matrices used for training, validation,
and testing were the same as HCP training, validation, and tests set respectively. The T1w/T2w
ratio map also had to be generated from HCP training set.

Due to the limited FOV of the alprazolam dataset, we only considered regions with
more than 50% ROI coverage, resulting in 42 ROIs (in the case of the Desikan-Killiany
parcellation). The remaining 26 ROIs were masked out for the group-level SC, static FC, FCD,
T1w/T2w ratio. Furthermore, given the limited FOV, the first principal FC gradient was
generated from HCP training set and the 26 ROIs were masked out similarly. For each
experimental condition (placebo or alprazolam), 250 candidate parameter sets were generated
from the condition’s training set. The top 10 parameter sets from the validation set were
evaluated in the test set.

Although the parameters were only estimated based on the 42 ROIs, the estimated linear
coefficients could be used to generate whole cortex estimates of wee, wei and o (based on
equations 7 to 9) given that the original T1w/T2w ratio and FC gradient (from the HCP training
set) covered the whole cortex. The simulated time courses Se and S| were then generated using
the 68-ROI SC and extrapolated model parameters. For a given set of parameters, 1000
simulations were performed to generate 1000 sets of E/I ratio. The final E/I ratio was the
average across 1000 sets of E/I ratio.

E/I ratio contrast was defined as the difference between E/I ratio of the placebo sessions
and E/I ratio of the drug sessions. To test that the E/I ratio contrast was significantly greater
than 0, we performed permutation test to generate a null distribution of E/I ratio contrasts. More
specifically, after dividing the participants into training, validation and test sets, the ‘drug’ and
‘placebo’ sessions were randomly permuted within each participant. The entire procedure
(above) was repeated, generating a null value for the E/I ratio contrast. The permutation
procedure was repeated 100 times, yielding a null distribution of regional E/I ratio contrasts.
A 2-tail p-value was computed based on this null distribution.

The regional E/I ratio contrast was also correlated with benzodiazepine receptor (BZR)
density. The statistical significance of this correspondence was computed using a spin test that
accounts for spatial autocorrelation (22).

S12. Association between age and E/I ratio in the PNC dataset

885 participants of the PNC dataset (9) were first sorted according to age in ascending
order and divided into 29 groups of 30 or 31 participants. For each age group, 15 participants
were randomly selected as the validation set, while the remaining participants were assigned
to the training set.

To be consistent with previous analyses, the SC matrices used for training and
validation were the same as HCP training and validation sets respectively. Both T1w/T2w ratio
and the first principal FC gradient maps were generated from HCP training set, consistent with
the alprazolam analyses. For each age group, 250 candidate model parameter sets were
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generated from the group’s training set using CMA-ES and evaluated in the group’s validation
set. For each age group, the parameter set with the lowest validation cost was used to estimate
regional E/I ratio across the cortex.

For each cortical ROI, we fitted a linear regression model between regional E/I ratio
and the mean age of each age group. The slope of the linear regression model (for each brain
region) was visualized on the cortical surface. All slopes were negative and all p-values
survived FDR correction (g < 0.05). For robustness, the split of the participants into training
and validation sets were repeated 5 times and the most representative split was shown in Figure
4,

S13. Association between cognition and E/I ratio in the PNC dataset

Each PNC participant had completed a set of 12 tasks from 4 cognitive domains,
including executive control, episodic memory, complex cognition, and social cognition. Three
types of scores, including an accuracy score, a speed score, and an efficiency score, were
obtained for each of the 12 tasks. Factor analyses of each type of scores were performed within
each cognitive domain and across all cognitive domains to generate three domain-specific
accuracy factor scores and one domain-general (overall) accuracy score (23).

To control for age, 885 participants were sorted according to age in an ascending order.
For each 12-month interval, participants whose age were within this interval were extracted to
form one age group. For each age group, participants with domain-general (overall) accuracy
scores above the median were assigned to a high-performance group, the rest are assigned to a
low-performance group. In sum, 441 participants were assigned to the high-performance group
(mean age = 15.68), 444 participants were assigned to the low-performance group (mean age
= 15.64). Both high and low-performance groups were then divided into 14 subgroups of 31
(or 32) participants, yielding 14 pairs of age-matched high-performance and low-performance
groups (see Figure 5A and 5B).

Participants of each subgroup were further randomly divided into a training set (N =
16) and a validation set (N = 15 or 16). Similar to the previous analyses, SCs used for training
and validation were from the HCP training and validation sets respectively. T1w/T2w ratio and
FC gradient maps were from the HCP training set. The E/I ratios of the 14 pairs of high-
performance and low-performance groups were estimated separately and compared using a 2-
tail 1-sample t-test. To test for domain specificity, we also repeated the analyses for the 3
domain-specific accuracy scores. FDR correction with g < 0.05 was used to correct for multiple
comparisons.

S14. Association between cognition and E/I ratio in the GUSTO dataset

Our analyses were based on the fMRI and behavioral data of 154 participants from the
GUSTO dataset. The fMRI data were acquired when the participants were around 7.5 years
old. We selected 5 behavioral scores which assessed participants’ cognitive performances. All
behavior tests were performed within 1.5 years of fMRI acquisition (i.e., age 6 to 8.5). The 5
test scores were as follows: (1) Cambridge Neuropsychological Test Automated
Battery (CANTAB) Spatial Working Memory (SWM) test (completed at age 6): sum of total
errors for 4 and 6 boxes trails. (2) Delayed Matching to Sample (DMS) test (completed at age
6): percentage of the total number of trials upon which a correct selection was made on the
participant's first response. (3) Behavior Rating Inventory of Executive Function (BRIEF;
completed at age 7): Cognition Regulation Index T-score. (4) Wechsler Abbreviated Scale of


https://doi.org/10.1101/2023.06.22.546023
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.22.546023; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Intelligence (WASI) test (completed at age 7): sum of Block Design and Matrix Reasoning T-
scores. (5) CANTAB SWM test (completed at age 8.5): sum of total errors for 4 and 8 boxes
trails.

Principal component analysis (PCA) was performed on these 5 scores across all
participants to derive the first principal component (PC1) score. Higher PC1 score indicated
better cognitive performance across the 5 behavioral scores (on average). Participants were
sorted according to their PC1 scores in an ascending order. The first 77 participants were
assigned to the low-performance group, while the rest of 77 participants were assigned to the
high-performance group. Ages were well-matched between high and low-performance groups
(Figure 6A).

Participants of high and low-performance groups were further randomly divided into a
training set (N = 39) and a validation set (N = 38). Similar to the previous analyses, SCs used
for training and validation were from the HCP training and validation sets respectively.
T1w/T2w ratio and FC gradient maps were from the HCP training set. For robustness, the
analyses were repeated 5 times with different random training-validation splits of participants
within high-performance group and each low-performance group. Results from the most
representative split were shown in the results.

To compute the statistical significance of E/I ratio differences between low and high-
performance groups, PC1 scores were randomly permuted across participants. The participants
were again assigned to high or low-performance groups according to their permuted PC1 scores.
Then the E/I ratio difference was re-estimated. This permutation process was repeated 100
times to construct a null distribution of E/I ratio difference. A 2-tail p-value was computed
based on this null distribution.
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Figure S1. Importance of absolute difference (d) metric to prevent overly synchronized
simulated fMRI time series. (A) Empirical FC from the HCP test set. (B) Simulated FC from
the pFIC model using the best model parameters (from the validation set) and SC from the
test set when the cost function contains all three terms: (1 —r) + d + KS. The cost function
contained two terms related to static FC: disagreement between empirical and simulated FC
in terms of Pearson’s correlation (1 — r) and absolute difference (d). (C) Simulated FC from
the pFIC model using the best model parameters (from the validation set) and SC from the
test set when the cost function contained only two terms: (1 —r) + KS. (D) Agreement
(Pearson’s correlation) between empirical and simulated static FC when the when the cost
function contained only two terms: (1 — r) + KS. Therefore, without the inclusion of the
absolute difference (d) metric, we can obtain good correlation agreement between simulated
and empirical FC. However, by comparing panels (B) and (C), we observe that the lack of the
absolute difference (d) metric leads to overly synchronized fMRI signals, compared with the
empirical FC in panel A. It is also worth noting that the over-synchronization phenomenon
was also observed in our previous study (19), which used (1 —r) + KS as the cost function.
Therefore, in this study, we added the absolute difference (d) cost to the cost function.
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Figure S2. Regional evaluation of pFIC model for static FC. (A) Spatial distribution of
region-level FC loss (dissimilarity) between simulated and empirical fMRI in the HCP test
set. The regional FC correlation loss was defined as (1 - ri), where ri is the Pearson’s
correlation between the i-th rows of empirical and simulated static FC matrices. (B) Regional
FC correlation losses grouped by different large-scale networks. The boxes show the inter-
quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses represent
outliers (C) There was no significant correlation between RSFC gradient and the regional FC
correlation loss (r = 0.23, two-tail spin test p = 0.34). (D) There was no significant
correlation between T1w/T2w ratio and the regional FC correlation loss (r = -0.04, two-tail
spin test p = 0.87).
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Figure S3. Regional evaluation of pFIC model for FCD. (A) Spatial distribution of region-
level FCD dissimilarity (KS distance) between empirical and simulated FCD in the HCP test
set. To compute regional KS distance, recall that we have previously computed a 68 x 68 FC
matrix for each sliding window (1118 sliding windows in total). For each region, the
corresponding rows of the 68 x 68 FC matrices were then correlated across the 1118
windows, yielding a 1118 x 1118 FCD matrix for each region. The KS distance can thus be
computed for each region. (B) Regional KS distances grouped by different networks. The
boxes show the inter-quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black
crosses represent outliers. (C) There was no significant correlation between RSFC gradient
and regional KS distance (r = -0.26, two-tail spin test p = 0.27). (D) There was no significant
correlation between T1w/T2w ratio and regional KS distance (r = 0.39, two-tail spin test p =
0.14).
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Figure S4. (A) Comparison of the total costs in the validation set and the test set of the
alprazolam session. (B) Comparison of the total costs in the validation set and the test set of
the placebo session. The total costs in the validation set correspond to the lowest 10
validation costs, generated from the top 10 sets of parameters from the validation set. The
total costs of the test set were computed using the same 10 sets of parameters and the
structural connectivity of the test set. For both alprazolam and placebo sessions, total costs of
the test set were significantly lower than those of the validation set, suggesting that the
parameters generalized well from the validation set to the test set. The boxes show the inter-
quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses represent

outliers.
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Desikan parcellation, ROl coverage > 50%

Figure S5. Desikan parcellation with 50% ROI coverage threshold. Due to limited FOV of the
alprazolam dataset, only ROIs with coverage higher than a pre-specified threshold were
included. ROIs included (excluded) for analysis are colored in cyan (grey). 42 out of 68 ROIs
are included.
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Figure S6. (A to D) As a control analysis of the alprazolam E/I ratio contrast result, the same
analysis was replicated with 4 additional training-validation-test participant splits. E/I ratio
contrast was defined as the E/I ratio difference between the placebo session and the drug
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session. 45 participants were randomly assigned to a different training, validation, and test
set. (Left) Spatial distribution of E/I ratio contrast between placebo and drug session. (Right)
The E/I ratio contrast decreases along a sensory-to-association axis. The boxes show the

inter-quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses
represent outliers.


https://doi.org/10.1101/2023.06.22.546023
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.22.546023; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

split#1 split#2 split#3 split#4  split#5

split #1 1 0.9936 | 0.9922 | 0.9948 | 0.9853
split #2 1 0.9800 | 0.9896 | 0.9949
split #3 1 0.9979 | 0.9802
split #4 1 0.9909
split #5 1

Figure S7. Pairwise correlation between the regional E/I ratio contrast across different training-
validation-test participant splits (split #1-5). The spatial distribution of region E/I ratio contrast
are highly similar across splits (r = 0.9899 + 0.0062, mean = std). Only the upper triangle of
the matrix is shown. We chose the split that had the highest median correlation of regional E/I
ratio contrast with the other 4 splits as the most representative split (i.e., split #1) and showed
as Figure 3 of the main text.
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Figure S8. As a control analysis of the alprazolam E/I ratio contrast result, the acceptable
excitatory firing rate range was set to be less strict. The range was changed from 2.7 — 3.3Hz
to 2.5 — 3.5 Hz. We repeated the same analysis, and the model parameters were retrained
using the same optimization approach. The boxes show the inter-quartile range (IQR) and the
median. Whiskers indicate 1.5 IQR. Black crosses represent outliers.
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(A) Deslkan parcellation, ROI coverage > 60%
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Figure S9. (A) Desikan parcellation with 60% ROI coverage threshold, 39 out of 68 ROIs are
left. (B) As a control analysis of the alprazolam E/I ratio contrast result, the ROI coverage
threshold was changed to be stricter. The threshold was raised from 50% to 60%. As a result,
3 more ROIs were removed from analysis. We repeated the same analysis, and the model
parameters were retrained using the same optimization approach. The boxes show the inter-
quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses represent

outliers.
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(B) E/l ratio contrast, Yan parcellation
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Figure S10. (A) Yan parcellation with 50% ROI coverage threshold, 51 out of 100 ROIs are
left. (B) As a control analysis of the alprazolam E/I ratio contrast result, we changed the
parcellation scheme to a higher-resolution 100-ROI parcellation. Yan parcellation has ROIs
that are symmetric for the left and right hemispheres. We repeated the same analysis, and the
model parameters were retrained using the same optimization approach. The boxes show the
inter-quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses represent

outliers.
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higher ROI
_ relaxed re coverage
split#1  range  threshold  Yan

split #1 1 0.9911 | 0.9941 | 0.8986
relaxed re 1 0.9758 | 0.8422
range ) )
higher ROI
coverage 1 0.9220
threshold
Yan 1

Figure S11. Pairwise correlation between the regional E/I ratio contrast across different
control analyses based on split #1. Split #1 corresponds to the results shown in Figure 3 of
the main text. The spatial distribution of region E/I ratio contrast are highly similar across
different control analyses (r = 0.9373 £ 0.0606, mean + std). Only the upper triangle of the

matrix is shown.
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Figure S12. (A) Spatial correlation between regional E/I ratio contrast and log-transformed
benzodiazepine receptor (BZR) density (r = 0.44). (B) Spatial correlation between regional
E/l ratio contrast and the square root of BZR density (r = 0.48). Both correlations were
weaker than the main results (Figure 3D), although the correlations remained statistically

significant.
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Figure S13. (A to D) PNC developmental analysis results obtained from 4 additional training-
validation participants splits. (Left) The mean cortical E/I ratio decreases with increasing age.
(Middle) The spatial distribution of regional rate of E/I ratio reduction. (Right) The regional
rate of E/I ratio reduction followed a hierarchical sensorimotor-association (S-A) axis. To
generate a training-validation split, 885 PNC participants were sorted according to age in an
ascending order and divided into 29 age groups. Within each age groups, participants were


https://doi.org/10.1101/2023.06.22.546023
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.22.546023; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

randomly assigned to training and validation sets. The random participant splits and analyses
were repeated 5 times (One shown in Figure 4, the other four shown here). All 5 splits exhibited
the similar pattern of overall E/I ratio reduction and spatial distribution of the rate of reduction.
We chose the split that had the highest median correlation of regional rate of E/I ratio reduction
with the other 4 splits as the most representative split and showed in the main result section.
The shaded area depicts 95% confidence interval of the linear relationship. The boxes show
the inter-quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses
represent outliers.
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Figure S14. Pairwise correlation between the regional rate of E/I ratio reduction of 5 training-
validation participant splits. Split #1 corresponds to the results shown in Figure 4 of the main
text. The spatial distributions of the rate of E/I ratio reduction are highly similar across the 5
splits (r = 0.9426 = 0.0551, mean + std). The surface maps of different splits are shown in
Figure S13. Only the upper triangle of the matrix is shown.
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Figure S15. PNC developmental analysis results with relaxed excitatory firing rates
thresholds. This figure is similar to Figure 4 but with the acceptable excitatory firing rates
range was set to be less strict (2.5Hz to 3.5Hz). (Left) The scatter plot of overall E/I ratio
reduction during development. The mean cortical E/I ratio is the average E/I ratio across all
ROIls. (Middle) The spatial distribution of region E/I ratio reduction rate. (Right) Box plot of
the vertex-level E/I ratio grouped by 7 resting-state networks. The boxplots comprised values
obtained by “transferring” the parameter estimates from the 68 Desikan parcels to all vertices
(from the underlying cortical meshes) comprising each anatomical parcel. The vertex wise
parameter values were then segregated based on the seven resting-state networks. Therefore,
there were 3203, 2478, 1523, 1520, 1067, 1438 and 2886 values comprising the boxplots for
somatomotor, visual, dorsal attention, ventral attention, limbic, control and default networks
respectively. The shaded area depicts 95% confidence interval of the linear relationship. The
boxes show the inter-quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black
crosses represent outliers. The rate of E/I ratio reduction follows the sensorimotor-association
(S-A) axis. E/I ratio exhibits the fastest rate of reduction in sensory regions compared to
association regions.
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Figure S16. PNC developmental analysis results in Yan 100-ROI parcellation. This figure is
similar to Figure 4 but utilizes the Yan 100-ROI parcellation with symmetric left and right
hemisphere ROIs. (Left) The scatter plot of overall E/I ratio reduction during development.
The mean cortical E/I ratio is the average E/I ratio across all ROls. (Middle) The spatial
distribution of region E/I ratio reduction rate. (Right) Box plot of the vertex-level E/I ratio
grouped by 7 resting-state networks. The boxplots comprised values obtained by
“transferring” the parameter estimates from the 100 Yan parcels to all vertices (from the
underlying cortical meshes) comprising each anatomical parcel. The vertex wise parameter
values were then segregated based on the seven resting-state networks. Therefore, there were
3203, 2478, 1523, 1520, 1067, 1438 and 2886 values comprising the boxplots for
somatomotor, visual, dorsal attention, ventral attention, limbic, control and default networks
respectively. The shaded area depicts 95% confidence interval of the linear relationship. The
boxes show the inter-quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black
crosses represent outliers. The rate of E/I ratio reduction follows the sensorimotor-association
(S-A) axis. E/I ratio exhibits the fastest rate of reduction in sensory regions compared to
association regions.
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Figure S17. Pairwise correlation between the regional rate of E/I ratio reduction of different
control analyses based on split #1. Split #1 corresponds to the results shown in Figure 4 of
the main text. The spatial distributions of the rate of E/I ratio reduction are highly similar
across different control analyses (r = 0.8100 + 0.1603, mean = std). The surface maps of
different cases are shown in the supplementary Figure S15 and S16. Only the upper triangle
of the matrix is shown.
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Figure S18. (A) Mean framewise displacement (FD) decreased with age (r =-0.58, p = 9.1e-
4). (B) After regressing out mean FD from the estimated E/I ratio across all age groups, the
residuals still significantly decreased with age (r = -0.45, p = 0.013). (C) Spatial distribution of
linear regression slope between FD-regressed E/I ratio and age. All slopes were negative and
significant (FDR g < 0.05). (D) The slopes exhibited a spatial gradient with sensory-motor
networks showing the fastest reduction and association networks showing slower reduction. The
boxes show the inter-quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black
crosses represent outliers.
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Figure S19. Box plots of E/I ratio estimated from the three domain-specific accuracy scores
from Penn Computerized Neurocognitive Battery (CNB). For each 1-year interval,
participants whose age are within this interval are extracted to form one age group. For each
age group and cognitive score, participants with cognitive scores above the median are
assigned to a high-performance group, the rest are assigned to a low-performance group.
Both high- and low-performance groups are further divided into subgroups. Participants
within each subgroup are randomly assigned to training and validation sets. Each box plot
shows the E/I ratio of high- and low-performance group associated with each cognitive score.
We observed no significant difference between E/I ratio of high- and low-performance
groups for any of the three cognitive scores. The boxes show the inter-quartile range (IQR)
and the median. Whiskers indicate 1.5 IQR.
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Figure S20. PNC cognition analysis results obtained from 4 additional training-validation
participants splits (Figure. S20 to S23). To generate a training-validation split, 885 PNC
participants were sorted according to age in an ascending order. For each 1-year interval,
participants whose age are within this interval are extracted to form one age group. For each
age group, participants with cognitive scores above the median are assigned to a high-
performance group, the rest are assigned to a low-performance group. Both high- and low-
performance groups are further divided into 14 subgroups. Participants within each subgroup
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are randomly assigned to training and validation sets. The random participant splits and
analyses were repeated 5 times. (A) Boxplots of age, (B) ‘Overall accuracy’, and (C) Mean
cortical E/I ratio of high- and low-performance groups. (D) Spatial distribution of effect size
of regional E/I ratio difference between high-performance and low-performance groups. (E)
On a network level, the effect sizes of E/I ratio differences follow a hierarchical structure. We
chose the split that had the highest median correlation of regional Cohen’s d values with the
other 4 splits as the most representative split and showed in the main result section. The results
of the 4 splits are consistent with our main results. The boxes show the inter-quartile range
(IQR) and the median. Whiskers indicate 1.5 IQR. (F) ROI rankings along the sensorimotor-
association (S-A) axis. Lower ranks were assigned to ROIs that were more towards the
sensorimotor pole; higher ranks were assigned to ROIs that were more towards the association
pole. (G) Agreement between the effect size of E/I ratio difference and S-A axis rank.
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Figure S21. The 3rd training-validation participant split for PNC cognition analysis.
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Figure S22. The 4th training-validation participant split for PNC cognition analysis.
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Figure S23. The 5th training-validation participant split for PNC cognition analysis.
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Figure S24. Pairwise correlation of regional effect sizes (i.e., Cohen’s d) between E/I ratios
of high- and low-performance groups across 5 participant splits (split #1-5). For each split,
high- and low-performance groups were divided into 14 subgroups with training and
validation sets. The spatial distributions of the rate of E/I ratio reduction are highly similar
across the 5 splits (r = 0.7050 + 0.1911, mean = std). Split #1 corresponds to the results
shown in Figure 5 of the main text. The surface maps of different splits are shown in the main
result (Figure 5D) and supplementary information (Figure. S20 to S23). Only the upper
triangle of the matrix is shown.
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Figure S25. PNC cognition analysis results with relaxed excitatory firing rates thresholds.
This figure is similar to Figure 5 but with the acceptable excitatory firing rates range was set
to be less strict (2.5Hz to 3.5Hz). (A) Boxplots of age, (B) ‘Overall accuracy’, and (C) Mean
cortical E/I ratio of high- and low-performance groups. (D) Spatial distribution of effect size
of regional E/I ratio difference between high-performance and low-performance groups. (E)
Box plot of Cohen’s d of vertex-level E/I ratio differences grouped by 7 resting-state
networks. The boxplots comprised values obtained by “transferring” the parameter estimates
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from the 68 Desikan parcels to all vertices (from the underlying cortical meshes) comprising
each anatomical parcel. The vertex wise parameter values were then segregated based on the
seven resting-state networks. Therefore, there were 3203, 2478, 1523, 1520, 1067, 1438 and
2886 values comprising the boxplots for somatomotor, visual, dorsal attention, ventral
attention, limbic, control and default networks respectively. The boxes show the inter-quartile
range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses represent outliers. The
difference of E/I ratio between high- and low-performance groups follows a hierarchical
structure. Cohen’s d of E/I ratio differences in cognition is larger in association regions
compared to sensory regions. (F) ROI rankings along the sensorimotor-association (S-A)
axis. Lower ranks were assigned to ROIs that were more towards the sensorimotor pole;
higher ranks were assigned to ROIs that were more towards the association pole. (G)
Agreement between the effect size of E/I ratio difference and S-A axis rank.
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Figure S26. PNC cognition analysis results in Yan 100-ROI parcellation. This figure is
similar to Figure 5 but utilizes the Yan 100-ROI parcellation with symmetric left and right
hemisphere ROIs. (A) Boxplots of age, (B) ‘Overall accuracy’, and (C) Mean cortical E/I
ratio of high- and low-performance groups. (D) Spatial distribution of effect size of regional
E/l ratio difference between high-performance and low-performance groups. (E) Box plot of
Cohen’s d of vertex-level E/I ratio differences grouped by 7 resting-state networks. The
boxplots comprised values obtained by “transferring” the parameter estimates from the 100
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Yan parcels to all vertices (from the underlying cortical meshes) comprising each anatomical
parcel. The vertex wise parameter values were then segregated based on the seven resting-
state networks. Therefore, there were 3203, 2478, 1523, 1520, 1067, 1438 and 2886 values
comprising the boxplots for somatomotor, visual, dorsal attention, ventral attention, limbic,
control and default networks respectively. The boxes show the inter-quartile range (IQR) and
the median. Whiskers indicate 1.5 IQR. Black crosses represent outliers. The difference of
E/I ratio between high- and low-performance groups follows the sensory-to-association (SA)
axis. Cohen’s d of E/I ratio differences in cognition is larger in association regions compared
to sensory regions. (F) ROI rankings along the sensorimotor-association (S-A) axis. Lower
ranks were assigned to ROIs that were more towards the sensorimotor pole; higher ranks
were assigned to ROIs that were more towards the association pole. (G) Agreement between
the effect size of E/I ratio difference and S-A axis rank.
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Figure S27. Pairwise correlation of regional effect sizes (i.e., Cohen’s d) between E/I ratios
of high- and low-performance groups across different control analyses based on split #1. Split
#1 corresponds to the results shown in Figure 5 of the main text. The spatial distributions of
the rate of E/I ratio reduction are highly similar across different control analyses (r = 0.8328
+ 0.0817, mean = std). Only the upper triangle of the matrix is shown.
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