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Abstract 

A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. 

Normative development of cortex-wide E/I ratio remains unknown. Here we non-invasively 

estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically-

plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our 

model generates realistic brain dynamics in the Human Connectome Project. Next, we show 

that the estimated E/I ratio marker is sensitive to the GABA-agonist benzodiazepine 

alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with 

positron emission tomography measurement of benzodiazepine receptor density. We then 

investigate the relationship between the E/I ratio marker and neurodevelopment. We find that 

the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with 

the greatest reduction occurring in sensorimotor systems relative to association systems. 

Importantly, among children with the same chronological age, a lower E/I ratio marker 

(especially in association cortex) is linked to better cognitive performance. This result is 

replicated across North American (8.2 to 23.0 years old) and Asian (7.2 to 7.9 years old) 

cohorts, suggesting that a more mature E/I ratio indexes improved cognition during 

normative development. Overall, our findings open the door to studying how disrupted E/I 

trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth. 

Significance 

Healthy brain function requires a delicate balance of neural excitation (E) and inhibition (I).  

In animals, this balance – the E/I ratio – is known to decrease with the maturation of 

inhibitory circuitry during healthy development. However, in humans, the normative 

development of cortex-wide E/I ratio remains unclear. Here, we use a biophysical model and 

non-invasive brain scans to estimate a marker of E/I ratio. Spatial changes in our E/I ratio 

marker are consistent with a drug that decreases E/I ratio. We also find that our cortex-wide 

E/I ratio marker decreases during development. Furthermore, North American and Asian 

children with lower E/I ratio, especially in higher-order cortex, have better cognitive 

performance. Overall, E/I ratio is a potential index of healthy neurocognitive development. 
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1. Introduction 

Healthy brain function requires a delicate balance between neural excitation (E) and 

inhibition (I) (1–4). This balance – the E/I ratio – is refined during critical developmental 

periods of heightened experience-dependent plasticity (5,6). E/I imbalances during critical 

developmental periods are thought to contribute to the etiology of many psychiatric disorders 

(7,8) and confer vulnerability to cognitive deficits (9,10). Here we capitalize on advances in 

biophysically plausible large-scale circuit models to chart the normative development of 

cortex-wide E/I ratio and uncover links to cognition. 

Human cortical development unfolds hierarchically – sensory systems mature earlier, 

while association systems follow a more protracted developmental course extending through 

adolescence (11,12). A potential mechanism driving this hierarchical development might be 

the temporal progression of critical plasticity periods along the sensorimotor-to-association 

axis (13–16). More specifically, the maturation of GABAergic inhibitory circuitry involving 

parvalbumin positive (PV) interneurons suppresses stimulus-irrelevant activity, yielding a 

higher signal-to-noise ratio (13). The maturation of PV interneurons also modulates long-

term potentiation by enforcing a narrower spike integration window (17). Overall, the 

maturation of the inhibitory circuitry facilitates the experience-dependent pruning of 

excitatory pyramidal neuronal connections via the Hebbian mechanism, triggering a critical 

plasticity period (18–20). Therefore, a hallmark feature of the critical period development is a 

reduction in the E/I ratio (21,22). While the hierarchical progression of inhibitory 

development is documented in animal models (14,23), it is unclear if the same mechanisms 

exist in humans, extend to the evolutionarily expanded association cortex and impact 

cognitive ability. 

Studying E/I ratio development in-vivo in humans is challenging due to limitations in 

non-invasive neuroimaging techniques. MR spectroscopy studies suggest changes in the 

balance of excitatory and inhibitory neurotransmitter levels in single brain regions during 

development (24,25). A recent study used a machine learning marker trained with 

pharmacological-fMRI data to provide evidence of E/I ratio reduction in the association 

cortex during development (26). However, these past studies were limited to partial portions 

of the cortex, so normative development of cortex-wide E/I ratio remains unclear. Indirect 

estimates of whole-cortex E/I ratio have provided insights into autism spectrum disorder in 

adults and Alzheimer’s Disease (27–29), but these approaches mostly lack a direct mapping 

to an underlying biophysically-plausible model of excitatory and inhibitory dynamics.  
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Biophysically-plausible large-scale circuit models of coupled brain regions have 

provided mechanistic insights into spontaneous brain dynamics (30–32). However, most 

large-scale circuit models assume that local synaptic properties are spatially uniform across 

brain regions (9,27,33), which lacks biological plausibility. Indeed, spatial heterogeneity in 

excitatory and inhibitory cell types (34–36) might be a driver of large-scale brain dynamics 

(37,38). Studies have shown that incorporating spatial heterogeneity across local synaptic 

parameters generates more realistic spontaneous brain dynamics (39,40). Our previous study 

(41) demonstrated that parameterizing local synaptic parameters with anatomical and 

functional gradients led to dramatically more realistic brain dynamics in adults. However, we 

utilized a large-scale circuit model (42) that did not differentiate among excitatory and 

inhibitory neural populations, so the E/I ratio could not be derived.  

Here we investigate the development of cortical E/I ratio over youth and its 

association with cognitive ability. We apply our previous approach (41) to the feedback 

inhibition control (FIC) model with coupled excitatory and inhibitory neuronal populations 

(33). The resulting parameteric FIC (pFIC) model is used to derive a potential marker of E/I 

ratio. We first confirm that the pFIC model yields realistic brain dynamics in healthy young 

adults from the Human Connectome Project (HCP; 43). Using a pharmacological fMRI 

dataset (44), we show that the E/I ratio marker is sensitive to E/I ratio reduction induced by 

the GABA-agonist alprazolam. Then, using the Philadelphia Neurodevelopmental Cohort 

(PNC; 45,46), we find that the E/I ratio declines across the cortex during youth. Furthermore, 

a lower E/I ratio indexes greater cognitive ability, with the strongest relationships observed in 

association cortex. We generalize the link between E/I ratio and cognitive ability in a younger 

GUSTO (Growing Up in Singapore with Healthy Outcomes) cohort (47). Overall, our study 

suggests that E/I ratio maturation might be a driver of healthy neurocognitive development 

during youth.   
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2. Results 

2.1 Overview 

We first evaluated the optimization of the spatially heterogeneous parametric 

feedback inhibition control (pFIC) model in the HCP dataset (Figure 1A). The biological 

plausibility of the estimated marker of excitation-inhibition (E/I) ratio was then evaluated 

using pharmacological fMRI involving GABAergic benzodiazepine alprazolam. Finally, we 

investigated developmental changes and cognitive effects of E/I ratio in the PNC dataset. 

Assocations with cognition were replicated in the GUSTO cohort.    

 

2.2 Optimization of the parametric feedback inhibition control (pFIC) model  

We randomly divided 1004 HCP participants (43,48) into 3 non-overlapping training 

(N = 335), validation (N = 335), and test (N = 334) sets. The Desikan–Killiany anatomical 

parcellation (49) with 68 cortical regions of interest (ROIs) was used to generate group-level 

structural connectivity (SC), static functional connectivity (FC), and functional connectivity 

dynamics (FCD) from the training, validation, and test sets separately. To compute FCD for 

each fMRI run, a 68 × 68 FC matrix was computed for each sliding window of length ~60 

seconds. The 68 × 68 FC matrices were then correlated across the 1118 windows, yielding a 

1118 × 1118 FCD matrix (41). The FCD matrix has been shown to reflect temporal 

fluctuations in resting-state FC that are not captured by static FC (50,51). See Supplementary 

Methods S2 for details.  

The FIC model (33) is a neural mass model obtained by mean field reduction of a 

spiking neuronal network model (52,53). The model comprises ordinary differential 

equations (ODEs) at each cortical region describing the dynamics of excitatory and inhibitory 

neuronal populations (Figure 1B top panel). The local dynamics are driven by recurrent 

connections within separate excitatory and inhibitory populations, as well as connections 

between excitatory and inhibitory populations. Greater excitatory-to-excitatory recurrent 

strength (wEE) and smaller inhibitory-to-excitatory connection strength (wIE) amplify synaptic 

currents of the excitatory population. Similarly, greater excitatory-to-inhibitory connection 

strength (wEI) and smaller inhibitory-to-inhibitory recurrent strength (wII) amplify synaptic 

currents of the inhibitory population. Neuronal noise in each cortical region is controlled by 

the noise amplitude 𝜎. Finally, the excitatory populations of the regional local models are 

connected via the SC matrix, scaled by a global constant G. 
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Figure 1. Workflow and schematic of the parametric feedback inhibition control (pFIC) 

model. (A) Young adults from the Human Connectome Project (HCP) were used to evaluate 

the optimization of the spatially heterogeneous pFIC model. Pharmacological fMRI with 

benzodiazepine alprazolam was then used to evaluate the biological plausibility of the 

estimated E/I ratio. Next, the pFIC model was used to investigate the development of cortex-

wide E/I ratio and its association with cognitive ability in the PNC dataset. Cognitive 

associations were replicated in a sample of seven-year-olds from the GUSTO cohort. HCP 

logo is used with permission from the HCP team. (B) The FIC model (33) is a neural mass 

model obtained by mean field reduction of spiking neuronal network models. The FIC model 

consists of differential equations at each cortical region governing the neural dynamics of 

excitatory and inhibitory neuronal populations (“E” and “I” respectively in the right panel). A 

red triangle indicates an excitatory connection. A blue circle indicates an inhibitory 

connection. “wxy” indicates the connection strength from neuronal population x to neuronal 

population y. For example, “wIE” indicates the connection strength from the inhibitory 

population to the excitatory population. The regional models are connected by excitatory 

connections parameterized by a structural connectivity (SC) matrix. For a given set of model 

parameters, time courses of excitatory (SE) and inhibitory (SI) synaptic gating variables 

(representing the fraction of open channels) can be simulated. The excitation-inhibition ratio 

(E/I ratio) was defined as the ratio between the temporal average of SE and SI. Local synaptic 

parameters were estimated using the same approach as our previous study (41). We refer to 

the resulting model as the pFIC model. 
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Following previous studies (33,39), wII was set to one and wIE was automatically set 

to maintain a uniform baseline excitatory firing rate of around 3Hz. Excitatory-to-excitatory 

recurrent strength (wEE), excitatory-to-inhibitory connection strength (wEI), regional noise 

amplitude (𝜎) and the SC scaling constant (G) were estimated using our previous approach 

(41). More specifically,  wEE, wEI and 𝜎 were parameterized as a linear combination of the 

principal resting-state FC gradient (54) and T1w/T2w myelin estimate (55), resulting in 9 

unknown linear coefficients and 1 unknown parameter G. We refer to the resulting model as 

the parametric FIC (pFIC) model. 

The 10 pFIC parameters were estimated using the covariance matrix adaptation 

evolution strategy (CMA-ES) (56) by minimizing the difference between simulated and 

empirical fMRI data. More specifically, agreement between empirical and simulated FC 

matrices was defined as the Pearson’s correlation (r) between the z-transformed upper 

triangular entries of the two matrices. Larger r indicates more similar static FC. However, 

Pearson’s correlation does not account for scale difference, so we also computed the absolute 

difference (d) between the means of the empirical and simulated FC matrices (39). A smaller 

d indicates more similar static FC. The inclusion of d was necessary to prevent overly 

synchronized fMRI signals (Figure S1). Finally, we do not expect the brain states of two 

participants to be the same at any given timepoint t during the resting-state, i.e., there is no 

temporal correspondence between participants in the resting-state. Because FCD was 

computed based on sliding window FC, there was similarly no temporal correspondence 

between simulated and empirical FCD matrices. Therefore, disagreement between the 

simulated and empirical FCD matrices was defined as the Kolmogorov–Smirnov (KS) 

distance, following previous studies (41,50). The KS distance was defined as the maximum 

distance between the cumulative distribution functions obtained by collapsing the upper 

triangular entries of simulated and empirical FCD matrices, so no temporal correspondence 

was assumed (more details in Supplementary Methods S10). The overall cost was defined as 

(1 – r) + d + KS. A smaller cost indicates better agreement between simulated and empirical 

fMRI.  
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Figure 2. The parametric feedback inhibition control (pFIC) model generates more 

realistic fMRI dynamics than the spatially homogeneous FIC model. (A) The CMA-ES 

algorithm (41,56) was applied to the HCP training set to generate 500 sets of model 

parameters. The top 10 parameter sets from the validation set were evaluated in the test set. 

(B) Agreement (Pearson’s correlation) between empirical and simulated static FC in the HCP 

test set. (C) Empirical FCD from an HCP test participant. (D) Simulated FCD from the pFIC 

model using the best model parameters (from the validation set) and SC from the test set. (E) 

Total test cost of the pFIC model compared with three control conditions: (1) local synaptic 

parameters parameterized by only principal resting-state FC gradient, (2) local synaptic 

parameters parametrized by only T1w/T2w ratio map and (3) local synaptic parameters 

constrained to be spatially uniform. The boxes show the inter-quartile range (IQR) and the 

median. Whiskers indicate 1.5 IQR. Black crosses represent outliers. * indicates that the pFIC 

model achieved statistically better (lower) test cost. 
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2.3 The pFIC model generates realistic fMRI dynamics 

We first demonstrate that the parametrization of the local synaptic parameters with 

T1w/T2w and FC gradient led to more realistic brain dynamics than spatially homogeneous 

parameters (Figure 2A). We applied CMA-ES to the HCP training set to generate 500 

candidate model parameter sets. The 500 parameter sets were evaluated in the HCP 

validation set. The top 10 parameter sets from the HCP validation set were used to simulate 

FC and FCD using SC from the HCP test set, which were then compared with empirical FC 

and FCD from the HCP test set. A strong agreement between simulated and empirical FC (as 

well as between simulated and empirical FCD) would suggest that the pFIC model was able 

to generate realistic brain dynamics.  

Figure 2B visualizes the correlation between empirical and simulated FC in the HCP 

test set (based on the best model parameters from the validation set). Across the 10 best 

parameter sets from the validation set, correlation between empirical and simulated static FC 

was 0.71 ± 0.005 (mean ± std) in the test set. As a reference, correlation between empirical 

FC and SC in the test set was 0.48. On the other hand, the absolute difference between the 

means of the empirical and simulated FC matrices was 0.11 ± 0.015 in the test set. This 

suggests that the pFIC model was able to generate realistic FC.  

Figure 2C shows the empirical FCD from a single run of a representative HCP test 

participant. Figure 2D shows the simulated FCD using the best model parameters (from the 

validation set) and SC from the test set. Off-diagonal red blocks in both empirical and 

simulated FCD indicated recurring FC patterns that were not simply due to temporal 

autocorrelation. Similarity in the amount of off-diagonal red blocks between empirical and 

simulated FCD suggests that the pFIC model was able to generate realistic FCD. Across the 

10 best candidate sets from the validation set, the Kolmogorov-Smirnov (KS) distance 

between empirical and simulated FCD was 0.18 ± 0.028 in the HCP test set. Disagreement 

between simulated and empirical fMRI appeared more pronounced in posterior regions, but 

the pattern of disagreement was not correlated with the RSFC gradient or the T1w/T2w ratio 

map (Figures S2 and S3).   

Overall, the pFIC model was able to generate realistic FC and FCD, yielding an 

overall cost of 0.58 ± 0.018 in the HCP test set (Figure 2E). Parameterizing model 

parameters with only the principal FC gradient or only T1w/T2w ratio map led to worse 

(higher) cost in the HCP test set (Figure 2E). Most large-scale circuit model studies assume 

spatially homogeneous parameters. When local synaptic parameters (wEE, wEI and 𝜎) were 

constrained to be uniform across brain regions (33,57) and optimized by CMA-ES, the cost 
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was poor in the test set (Figure 2E). These results emphasize the importance of 

parameterizing local synaptic parameters with spatial gradients that smoothly varied from 

sensory-motor to association cortex. Consistent with our previous study (41), the T1w/T2w 

and FC gradient were complementary in the sense that combining the two spatial maps led to 

more realistic fMRI dynamics. 

 

2.4 Estimated E/I ratio is sensitive to the effect of benzodiazepine alprazolam 

In the previous section, we showed that the pFIC model could be effectively 

optimized to generate realistic fMRI dynamics. Here, we evaluated the biological plausibility 

of the estimated E/I ratio in a pharmacological-fMRI dataset (44) comprising 45 participants, 

who completed a placebo-controlled double-blind fMRI study with benzodiazepine 

alprazolam. Alprazolam is a benzodiazepine that enhances GABAergic signaling at GABAA 

receptor sub-units, including 𝛼1,2,3,5 and 𝛾1−3  (58,59). Alprazolam enhances GABAergic 

inhibitory signaling via positive allosteric modulation, thus reducing E/I ratio (60). Therefore, 

we hypothesized that the E/I ratio estimated with the pFIC model would be lower during the 

alprazolam condition compared with the placebo condition.  

The 45 participants were equally divided into training, validation and test sets. Group-

level SC, first principal FC gradient, and T1w/T2w ratio maps from the HCP dataset were 

used in the following analysis. For each experimental condition (placebo or alprazolam), 250 

candidate parameter sets were generated from the condition’s training set. The top 10 

parameter sets from the validation set were evaluated in the test set. The costs of the 10 

parameter sets generalized well to the test set (Figure S4), suggesting that there was no 

overfitting in the validation set.  

One challenge in analyzing this dataset was that the fMRI data was acquired with a 

limited field of view (FOV). Therefore, 26 out of 68 Desikan-Killiany ROIs with less than 

50% coverage (Figure S5) were not considered during the estimation of the model 

parameters. The estimated model parameters were extrapolated to the entire cortex (see 

Supplementary Methods S11 for details) and used to simulate the excitatory (SE) and 

inhibitory (SI) time courses (Figure 1B). Motivated by rodent studies, the E/I ratio was 

defined as the ratio between the temporal average of SE and SI (61).  

An E/I ratio contrast was computed by subtracting the E/I ratio estimated during the 

drug (alprazolam) session from the E/I ratio estimated during the placebo session. Since 

alprazolam is expected to reduce E/I ratio, we hypothesized the E/I ratio would be lower 
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during the alprazolam condition, yielding a positive E/I ratio contrast. Consistent with our 

hypothesis, the E/I ratio contrasts of all regions were positive (Figure 3B). 67 out of 68 

regions exhibited E/I ratio contrasts statistically different from zero after correcting for 

multiple comparisons with a false discovery rate (FDR) of q < 0.05. We note that there was 

no motion difference between the drug and placebo fMRI sessions (p > 0.1). These results 

suggest that the E/I ratio estimated by the pFIC model was sensitive to the pharmacological 

enhancement of inhibitory activities.  

Since the distribution of benzodiazepine receptors (BZR) density is not spatially 

uniform (62), we hypothesized that the E/I ratio contrast would also not be spatially uniform, 

and would align with BZR density. Supporting this, we found that the E/I ratio contrast 

exhibited a spatial gradient with strongest effects in sensory-motor networks and weakest 

effects in control and default networks (Figure 3B). Figure 3C shows the spatial distribution 

of benzodiazepine receptors (BZR) density estimated from in-vivo positron emission 

tomography in a separate group of participants (62). Regions with greater BZR density 

exhibited greater reduction in E/I ratio during the drug session (r = 0.52; two-tail spin test p = 

0.016; Figure 3D). Therefore, the spatial distribution of E/I ratio contrast was biologically 

plausible.  

To evaluate robustness, we repeated the above analyses 5 times with different random 

splits of the 45 participants into training, validation and test sets. The results were similar 

across the 5 splits (Figures S6 and S7). Results from the most representative split were 

shown in Figure 3. Using this most representative split, we performed several additional 

sensitivity analyses. In the previous analyses, the acceptable excitatory firing rate was 

constrained to be between 2.7Hz and 3.3Hz. Relaxing the thresholds to between 2.5Hz and 

3.5Hz yielded similar results (Figure S8). Changing the ROI coverage threshold from 50% to 

60% also yielded similar results (Figure S9). We repeated the analysis using a 100-region 

homotopic functional parcellation (63), which also yielded similar results (Figure S10). 

Pairwise comparisons between the control analyses are found in Figure S11. Similar results 

were obtained with log-transformation or square root of BZR density (Figure S12). 
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Figure 3. E/I ratio estimate is sensitive to the effect of benzodiazepine alprazolam. (A) 

Seven resting-state networks (64). (B) Left: Regional E/I ratio contrast overlaid with the 

boundaries (black) of seven resting-state networks. 67 out of 68 regions showed significant 

E/I ratio difference between placebo and drug sessions after FDR correction (q < 0.05). E/I 

ratio difference was greater than zero for all regions, consistent with lower E/I ratio during 

the alprazolam session. Right: E/I ratio differences exhibited a spatial gradient with higher 

differences in sensory-motor regions compared with regions in the control and default 

networks. The boxes show the inter-quartile range (IQR) and the median. Whiskers indicate 
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1.5 IQR. Black crosses represent outliers. (C) Spatial distribution of BZR density (pmol/ml) 

from in-vivo positron emission tomography in a separate group of participants (62). (D) 

Higher regional BZR density was associated with larger E/I ratio changes during the drug 

session (r = 0.52, two-tail spin test p = 0.016).  

 

2.5 The E/I ratio declines with development in youth 

Having demonstrated that the E/I ratio estimates were sensitive to the alprazolam-

induced enhancement of inhibitory activities, we next explored how the E/I ratio changes 

during development in the Philadelphia Neurodevelopmental Cohort (PNC; 45,46). We 

hypothesized that the estimated E/I ratio would decline with age. 

After data preprocessing and quality control, we obtained a sample of 885 participants 

ages 8-23 years old (Figure 4A). Participants were sorted according to age and evenly 

divided into 29 age groups, so each group comprised 30 or 31 participants. Within each age 

group, 15 participants were randomly selected as the validation set, while the remaining 

participants were assigned to the training set. For each age group, 250 candidate model 

parameter sets were generated from the group’s training set using CMA-ES and evaluated in 

the group’s validation set; the parameter set with the lowest validation cost was used to 

estimate regional E/I ratio across the cortex.  

We performed linear regression between age and mean cortical E/I ratio (i.e., E/I ratio 

averaged across the whole cortex), as well as between age and regional E/I ratio. Mean 

cortical E/I ratio declined throughout child and adolescent development (r = -0.51, p = 0.004; 

Figure 4B). This E/I ratio reduction was statistically significant for all cortical regions (FDR 

q < 0.05; Figure 4C). Furthermore, the rate of E/I ratio decrease exhibited a spatial gradient 

with sensory-motor regions exhibiting greater rate of E/I ratio decrease (i.e., more negative 

slope) compared with association networks (Figure 4D). 

To evaluate the robustness of these effects, the PNC analyses were repeated 5 times 

with different splits of the participants (within each age group) into training and validation 

sets. The results were similar across the 5 random splits of the data (Figures S13 and S14). 

We conducted several additional sensitivity analyses using the most representitve split (which 

was shown in Figure 4). Relaxing the firing rate thresholds to between 2.5Hz and 3.5Hz 

yielded similar results (Figure S15), as did using a 100-region homotopic parcellation (63) 

(Figure S16). Pairwise comparisons between the control analyses are found in Figure S17. 

Finally, consistent with the literature, younger participants exhibited higher head motion 

during the fMRI scan. Therefore, as a control analysis, we regressed out mean framewise 
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displacement from the E/I ratio estimates of each age group, yielding similar results (Figure 

S18). 

 

 

Figure 4. E/I ratio continuously declines throughout child and adolescent development. 

(A) Age distribution of 885 PNC participants (mean = 15.66, std = 3.36, min = 8.17, max = 

23). (B) Participants in older age groups exhibited lower E/I ratio (r = -0.51, p = 0.004). 

Participants were divided into 29 non-overlapping age groups. There are 29 dots in the scatter 

plot, corresponding to the 29 age groups. The shaded area depicts 95% confidence interval of 

the linear relationship. (C) Spatial distribution of linear regression slope between regional E/I 

ratio and age. The values represent the rate of E/I ratio changes during development. All 

slopes were negative and significant (FDR q < 0.05). (D) The slopes exhibited a spatial 

gradient with sensory-motor networks showing the fastest E/I ratio reduction and association 

networks showing slower E/I ratio reduction. The boxes show the inter-quartile range (IQR) 

and the median. Whiskers indicate 1.5 IQR. Black crosses represent outliers. 

 

2.6 Lower E/I ratio is associated with better cognition within the same age group 

Having shown that older children exhibited lower E/I ratio (Figure 3B), we next 

evaluated the cognitive implications of such a decline in the E/I ratio as part of normative 

development. We hypothesize that a lower E/I ratio would be associated with better 
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cognition. To test this hypothesis, we compared the E/I ratio of PNC participants who were 

matched on age but differed in cognitive performance.   

Participants in the PNC completed the Penn Computerized Neurocognitive Battery 

(CNB), a 12-task battery that has been previously summarized using an overall (domain-

general) measure of accuracy as well as three domain-specific factor scores (65). Participants 

were divided into 14 high-performance groups and 14 low-performance groups based on the 

overall accuracy measure. Each high-performance group was age-matched to a low-

performance group (Figure 5A). Each low-performance or high-performance group 

comprised 31 or 32 participants. For each group, 15 participants were randomly assigned to 

the validation set, while the remaining participants were assigned to the training set. For each 

group, 250 candidate parameter sets were generated from the training set and the top 

parameter set from the validation set was used to estimate the E/I ratio; we compared the E/I 

ratio between the high and low performance groups. 

The high-performance group exhibited lower mean cortical E/I ratio than the low-

performance group (two-tailed t-test p = 1.2 x 10-3; Figure 5C). There was no motion 

difference between high-performance and low-performance groups (p > 0.2). To test for 

domain specificity, we also compared the E/I ratio for the three domain-specifc factor scores 

(complex reasoning, memory and social cognition), but observed no statistical difference 

after correcting for multiple comparisons (Figure S19). 

 Having found global differences in the E/I ratio between the high and low cognitive 

performance groups, we next evaluated regional effects (Figure 5D). We found that E/I ratio 

differences between low-performance and high-performance groups were larger in control 

and default networks, compared with sensory-motor regions (Figure 5E; all FDR q <0.05). 

Notably, the effect sizes of these regional differences in the E/I ratio aligned well with the 

sensorimotor-association (S-A) axis of cortical organization (66), such that effect sizes were 

lowest at the sensorimotor pole and largest at the association pole (Figure 5F). Spearman’s 

correlation between effect sizes and S-A axis ranks was r = 0.87 (two-tailed spin test p < 

0.001; Figure 5G). Overall, these results suggest that a more mature E/I ratio – especially in 

higher-order association cortex –  is linked to more mature cognition. 

To evaluate the robustness of these results, we repeated these analyses 5 times with 

different random training-validation splits of participants within each high-performance 

group and each low-performance group. The results were similar across the 5 splits (Figures 

S20 to S24; the most representative split is displayed in Figure 5). Within the most 
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representative split, we found that relaxing the thresholds to between 2.5Hz and 3.5Hz 

yielded similar results (Figure S25) as did use of a 100-region homotopic functional 

parcellation (63) (Figure S26). Pairwise comparisons between the control analyses are found 

in Figure S27. 
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Figure 5. Lower E/I ratio is associated with better cognitive performance within the 

same age group in the PNC cohort. (A) Boxplots of age, (B) ‘overall accuracy’ and (C) 

mean cortical E/I ratio of high-performance and low-performance (overall accuracy) groups. 

The mean cortical E/I ratio of the high-performance group was significantly lower than that 

of the low-performance group (FDR q < 0.05). (D) Spatial distribution of effect size of 

regional E/I ratio difference between high-performance and low-performance groups. All 

regions were significant after FDR correction with q < 0.05. (E) Effect size of E/I ratio 

differences in cognition is larger in control and default networks compared with sensory-

motor regions. The boxes show the inter-quartile range (IQR) and the median. Whiskers 

indicate 1.5 IQR. Black crosses represent outliers. (F) ROI rankings based on the 

sensorimotor-association (S-A) axis (66). Lower ranks were assigned to ROIs that were more 

towards the sensorimotor pole; higher ranks were assigned to ROIs that were more towards 

the association pole. (G) Agreement between effect size of E/I ratio difference and S-A axis 

rank. Spearman’s correlation r = 0.87, two-tailed spin test p < 0.001. 

 

2.7 Results generalize to a younger Asian cohort 

As a final step, we evaluated whether the link between the E/I ratio and cognition 

generalized to a group of younger participants of different anscestry. This was motivated by 

recent concerns that relationships between resting-fMRI and behavior may not generalize 

well across ethnic groups (67). We utilized the Growing Up in Singapore with Healthy 

Outcomes (GUSTO) dataset (47), which included 154 participants (after quality control) with 

a mean age of 7.5 years. An overall cognitive performance score was obtained by a principal 

component analysis of five cognitive tests. Participants were then divided into groups with 

high and low cognitive performance. The ages were well-matched between the high and low-

performance groups (Figures 6A and 6B). There was no motion difference between the high 

and low-performance groups during the fMRI scans (p > 0.1). 

Replicating PNC results, we found that the high-performance group exhibited a lower 

E/I ratio in higher-order association cortex than the low-performance group (Figures 6C). 

Differences were largest in the default and control networks (Figure 6D). Statistical 

significance was evaluated using a permutation test, where the null distribution was 

constructed by randomly assigning participants into high or low-performance groups, and 

then re-estimating the E/I ratio. We note that only 29 (out of 68) regions were significant 

after FDR correction with q < 0.05. These 29 regions were all in association cortex. By 

contrast, differences in the E/I ratio between cognitive performance groups was largely not 

significant in sensory-motor networks. As in the PNC, we found the effect sizes of these 

cognitive differences aligned with the S-A axis (r = 0.56, two-tailed spin test p = 0.01; 

Figure 6E). These results in a younger Asian cohort emphasize the robustness and 

generalizability of our findings.  
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Figure 6. Lower E/I ratio is associated with better cognitive performance within the 

same age group in the GUSTO dataset. (A) Boxplots of age for high-performance and low-

performance groups. (B) Overall cognition of high-performance and low-performance 

groups. (C) Spatial distribution of effect size of E/I ratio difference between low-performance 

group and high-performance group. (D) Effect size of E/I ratio differences is larger in control 

and default networks compared with sensory-motor regions. The boxes show the inter-

quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses represent 

outliers. (E) Agreement between effect size of E/I ratio difference and S-A axis rank. 

Spearman’s correlation r = 0.56, two-tailed spin test p = 0.01. 
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3. Discussion 

We first established that the pFIC model could generate realistic fMRI dynamics in a 

large adult dataset. We then demonstrated that our E/I ratio marker was sensitive to increased 

inhibitory activity induced by benzodiazepine alprazolam. In a large developmental sample 

from North America, we found that the E/I ratio marker decreased with age. We also 

demonstrated that a lower E/I ratio marker – reflective of more mature cortex – was 

associated with better cognitive performance, particularly in transmodal association cortex. 

Critically, these findings generalized to a younger Asian cohort. Together, our findings 

provide evidence that refinements in the cortical E/I ratio persist into adolescence, suggesting 

that prolonged E/I-linked developmental plasticity in the association cortex supports 

continued neurocognitive development. We speculate that insufficient refinement of the E/I 

ratio during development may create a vulnerability to cognitive deficits, with potentially 

important implications for transdiagnostic psychopathology. 

The E/I ratio is challenging to be non-invasively investigated in humans. Post-mortem 

studies have established how the expressions of E/I relevant genes vary across the cortex 

(35,68,69). On the other hand, there is a lack of a direct mapping of in-vivo neuroimaging 

signals with excitatory and inhibitory neurobiology, as well as constrained spatial coverage 

and specificity of available E/I techniques (24–26). Here, we capitalized on recent 

developments in biologically interpretable computational modeling of cortical circuits to gain 

insight into the E/I ratio from fMRI data. We fitted a large-scale circuit model with 

interacting excitatory and inhibitory populations to resting-state fMRI and calculated the E/I 

ratio from the time courses of excitatory and inhibitory synaptic gating variables. Our E/I 

ratio marker captured reductions in the E/I ratio induced by alprazolam, a positive allosteric 

modulator that increases the effectiveness of GABAergic signaling (70). Furthermore, the 

spatial pattern of benzodiazepine-related E/I reductions described by the model was 

correlated with the distribution of benzodiazepine-sensitive GABA receptors from positron 

emission tomography (62). Interestingly, one of the pharmacological targets of 

benzodiazepines is GABAA 𝛼1 receptors (70). Increases in GABA signaling at GABAA 𝛼1 

receptors have been shown to trigger the onset of developmental critical periods in animal 

models (71), indicating that the pFIC model is well equipped to study development-linked 

changes in inhibitory signaling in the human brain.  

We found that the E/I ratio decreased across the cortex throughout child and 

adolescent development. E/I ratio declined with age across all cortical systems, but the 
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magnitude of decline varied along a unimodal-transmodal cortical hierarchy. Specifically, by 

age 22, the E/I ratio had declined the most in unimodal sensory territories, such as the visual 

and somatomotor systems, and the least in transmodal systems like the default and 

frontoparietal control systems. Differences in E/I development across these systems may be 

linked to differences in their maturational time courses. The development of cortical 

inhibitory circuitry is well-established as a central mechanism that controls the timing and 

progression of critical periods of development (21,72). Initially, the development of 

inhibitory circuitry lags behind that of excitatory pyramidal cells, leading to an early increase 

in the local E/I ratio (73). Later, experience and evoked activity stimulate the development of 

inhibitory circuitry (21) — particularly fast-spiking parvalbumin positive interneurons and 

GABAA 𝛼1 receptors — which begins to reduce the E/I ratio, facilitating experience-

dependent plasticity and triggering the opening of the critical period window (22,71,72). As 

the critical period progresses, excitatory synapses are pruned, further reducing the E/I ratio 

(74,75). Finally, as inhibitory circuitry reaches maturity, a new set of plasticity braking 

factors are triggered, including the formation of intracortical myelin and perineuronal nets, 

which stabilize cortical circuits and close the critical period window (6,76). Consequently, an 

initial decrease in the E/I ratio can signify that a critical period has been triggered and the 

cortex is in a relatively immature, plasticity-permissive state. As the E/I ratio reduces further, 

it may signify that the cortex has reached a mature, plasticity-restrictive state, with pruned 

excitatory synapses, fully-developed inhibitory circuitry, and mature plasticity brakes that 

have closed the critical period (6). As such, the greater reduction in the E/I ratio we observe 

in sensory systems relative to association systems may reflect that sensory systems have 

reached a higher degree of maturity by the end of the adolescent years while association 

systems remain in a more immature, plasticity-permissive state. To test this hypothesis, future 

work could use multimodal neuroimaging that combines our pFIC approach with other 

markers of critical period closure - such as intracortical myelination - to evaluate 

biologically-relevent signatures of when windows of critical period plasticity open and close 

during youth. 

Our findings align with a wealth of literature demonstrating differences in the 

development of sensorimotor and association cortices. Studies have shown that functional 

connectivity, functional topography, structure-function coupling, and intrinsic dynamics 

follow different developmental trajectories between sensory and associative cortical systems 

(16,77–79). For example, while the intrinsic fluctuation amplitude of sensory systems 

linearly decline with age, association systems follow curvilinear developmental trajectories 
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that peak over adolescence before declining into adulthood (80). Importantly, other recent 

work has shown that the development of intracortical myelin, which functions as a brake on 

plasticity, also varies along the sensory-to-association axis (11,81). Specifically, the period of 

peak growth in intracortical myelin occurs during childhood in sensorimotor cortex, yet not 

until adolescence in association cortex. Coupled with our current findings of a greater 

reduction in the E/I ratio of sensory systems (versus a weaker reduction in association 

systems), this work jointly indicates that sensorimotor systems are more mature by the onset 

of adolescence whereas association cortex may remain more plastic during the adolescent 

period. This interpretation aligns with a recent study showing that an fMRI marker of 

functional plasticity peaks during early adolescence in association cortex but continuously 

declines throughout childhood and adolescence in sensorimotor cortex (80).  

The protracted development of the E/I ratio throughout adolescence may facilitate 

healthy cognitive development. We found that better cognitive ability was associated with a 

lower E/I ratio across the cortex in groups of age-matched youth. Since the E/I ratio 

normatively decreased with age, this effect may indicate that more mature cognitive 

performance is associated with a more mature cortical E/I ratio. As such, the E/I ratio may 

capture aspects of development independent of chronological age. Importantly, the 

magnitude of the effect was not spatially uniform. The greatest effect sizes were observed in 

association cortex, while the weakest effect sizes were observed in sensory cortex. This 

pattern is consistent with prior work showing that functional properties of the association 

cortex are most strongly related to cognitive performance across development (79,82). Our 

findings also support theoretical predictions from a biophysically-based cortical circuit model 

of decision-making that a balanced E/I ratio supports optimal decision-making (9). Together, 

our results suggest that although E/I ratio continues to develop throughout the cortex during 

adolescence, the development of the E/I ratio in association cortex is particularly relevant to 

maturing cognition. Critically, we generalized associations between the E/I ratio and 

cognitive ability in an independent sample of youth collected from a different continent, 

demonstrating the robustness of these effects across both populations and recruitment sites.  

Our findings have important implications for understanding the emergence of 

psychopathology during adolescence. Though a prolonged period of developmental plasticity 

in the association cortex may be essential to healthy cognitive development, it may also 

represent a period of vulnerability to atypical developmental outcomes. A growing body of 

work has begun to implicate a disrupted E/I ratio in prefrontal cortex as a central mechanism 

in neuropsychiatric disorders such as depression and psychosis spectrum disorders (83–85). 
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These conditions are thought to involve an atypically high E/I ratio in prefrontal cortex (86–

89). Future studies can use our model to understand how atypical development of E/I ratio in 

association cortex may lead to transdiagnostic cognitive dysfunction in developmental 

psychopathology. 

 

Limitations and future work 

Parameterization of local circuit parameters with the T1w/T2w ratio map and the FC 

gradient yielded more realistic fMRI dynamics than either gradient alone or if local circuit 

parameters were constrained to be spatially uniform. Future studies can explore more generic 

parameterizations, such as geometric eigenmodes (90).  

The current study utilized parcellations with only 68 or 100 regions. Simulating the 

FIC model with a higher spatial resolution is computationally challenging because the 

number of inter-regional connections increases quadratically with the number of regions. 

Future work can explore more efficient algorithms. Furthermore, our analyses were limited to 

linear modeling of E/I ratio across a set of age bins. Future work in larger samples may 

facilitate the estimation of nonlinear developmental trajectories of E/I ratio.  

Finally, our approach can also be used to study E/I ratio changes during cognitive 

tasks or during a naturalistic paradigm. When applying the pFIC model to a new dataset, 

dataset-specific SC, T1w/T2w ratio map and FC gradient can be used, although that might 

not be necessary. For example, SC, T1w/T2w ratio map and whole-cortex FC gradient were 

not available in the alprazolam dataset, so we utilized SC, T1w/T2w and whole-cortex FC 

gradient from the HCP dataset.  

 

Conclusion 

Our results underscore the utility of large-scale circuit models to provide insights into 

the mechanisms driving neurocognitive development. We find that an essential aspect of 

healthy brain function—the cortical E/I ratio—is refined during childhood and adolescence. 

We also provide new evidence that this hallmark critical period mechanism is associated with 

improved cognitive ability. Our findings pave the way for future work to investigate how 

disrupted E/I balance may lead to cognitive dysfunction in psychopathology that emerges 

during youth and is characterized by atypical development of association cortex that 

undergoes protracted maturation.  
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4. Methods 

We utilized the HCP S1200 release (N = 1004; Figure 2), pharmacological 

(benzodiazepine alprazolam) fMRI dataset (N = 45; Figure 3), PNC dataset (N = 885; 

Figures 4 and 5) and the GUSTO cohort (N = 154; Figure 6). In the case of HCP, we used 

the publicly available ICA-FIX MSMAll resting-state fMRI data in fsLR surface space. For 

alprazolam and PNC datasets, we used preprocessed fMRI data from our previous study, 

which involved slice time correction, motion correction, field distortion correction and 

anatomical CompCor (26). In the case of the alprazolam dataset, no resting-state fMRI was 

available, so we used task-fMRI after regressing out the task regressors, following our 

previous study (26). To be consistent, the GUSTO dataset was also preprocessed in a similar 

fashion as the PNC dataset. More details can be found in the Supplementary Methods. 

After preprocessing, static FC was computed using Pearson’s correlation for all 

datasets. FCD was computed using sliding window length of ~60 seconds, corresponding to 

windows of length 83, 20, 20 and 23 for the HCP, alprazolam, PNC and GUSTO datasets 

respectively. The window length followed best practice recommendations from previous 

studies (51,91). SC was computed based on the number of streamlines generated with 

probabilistic tractography using MRtrix3 (92). More details can be found in the 

Supplementary Methods. 

The pFIC model (33) was fitted to the different datasets using the covariance matrix 

adaptation evolution strategy (CMA-ES) (56). The fitted pFIC model was used to simulate 

the synaptic gating variable time courses SE and SI of the excitatory and inhibitory 

populations respectively. The E/I ratio was defined as the ratio between the temporal average 

of SE and SI. More details can be found in the Supplementary Methods.  

The HCP data is publicly available (https://www.humanconnectome.org/). The 

GUSTO dataset can be obtained via a data transfer agreement (https://www.gusto.sg/). The 

PNC dataset is publicly available in the Database of Genotypes and Phenotypes (dbGaP 

accession phs000607.v3.p2). All pharmacological imaging data necessary to evaluate the 

conclusions in the paper are available here 

(https://github.com/YeoPrivateLab/CBIG_private/tree/develop/stable_projects/fMRI_dynami

cs/Zhang2024_pFIC/replication/Alprazolam). Code for this study can be found here 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/fMRI_dynamics/Zhan

g2024_pFIC). Co-authors (TZ and LA) reviewed the code before merging into the GitHub 

repository to reduce the chance of coding errors. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 28, 2024. ; https://doi.org/10.1101/2023.06.22.546023doi: bioRxiv preprint 

https://www.humanconnectome.org/
https://www.gusto.sg/
https://github.com/YeoPrivateLab/CBIG_private/tree/develop/stable_projects/fMRI_dynamics/Zhang2024_pFIC/replication/Alprazolam
https://github.com/YeoPrivateLab/CBIG_private/tree/develop/stable_projects/fMRI_dynamics/Zhang2024_pFIC/replication/Alprazolam
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/fMRI_dynamics/Zhang2024_pFIC
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/fMRI_dynamics/Zhang2024_pFIC
https://doi.org/10.1101/2023.06.22.546023
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Acknowledgements 

Our research is supported by the NUS Yong Loo Lin School of Medicine 

(NUHSRO/2020/124/TMR/LOA), the Singapore National Medical Research Council 

(NMRC) LCG (OFLCG19May-0035), NMRC CTG-IIT (CTGIIT23jan-0001), NMRC STaR 

(STaR20nov-0003), Singapore Ministry of Health (MOH) Centre Grant (CG21APR1009), 

the Temasek Foundation (TF2223-IMH-01), and the United States National Institutes of 

Health (R01MH120080 & R01MH133334). Our computational work was partially performed 

on resources of the National Supercomputing Centre, Singapore (https://www.nscc.sg). Any 

opinions, findings and conclusions or recommendations expressed in this material are those 

of the authors and do not reflect the views of the Singapore NRF, NMRC, MOH or Temasek 

Foundation. In RIE2025, the GUSTO dataset was supported by funding from the NRF’s 

Human Health and Potential (HHP) Domain, under the Human Potential Programme. The 

alprazolam sample was funded by AstraZeneca Pharmaceuticals LP. DHW was also 

supported by NARSAD and the Sidney R. Baer, Jr. Foundation. BL was funded by NIH 

K99MH127293 and T32MH014654. VJS was supported by a National Science Foundation 

Graduate Research Fellowship (DGE-1845298). The PNC was funded via RC2 grants from 

the National Institute of Mental Health: MH089983 and MH089924. Additional support was 

provided by R01MH113550, R01MH120482, R01MH112847, R01EB022573, 

RF1MH116920, RF1MH121867, R37MH125829, T32MH019112, the AE Foundation, and 

the Penn-CHOP Lifespan Brain Institute. Data were in part provided by the Human 

Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and 

Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support 

the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems 

Neuroscience at Washington University. 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 28, 2024. ; https://doi.org/10.1101/2023.06.22.546023doi: bioRxiv preprint 

http://links.nscc.sg/wf/click?upn=Xr8ZzYUfdJqMgKQU8W-2BweYV2dcBYRgU4ykuTd3Py7Pg-3D_-2BPe06-2FbvfIwPZYvDYsJeB7r5FN5gqxZARjg-2BFiBtsgpfde-2BTJ2JzYIMRE6jaLBB34BX4ures0nBqF9SorM9tVN1PzibFORNP-2BLBtQ6pV0m129kB66IgzksWSOTrT-2FXMaFPFWYIH-2Fhqyb6qWsVC4kqdsXVbozeL95NE7i-2B5Csaf1Aq-2BQGtzzo4Mp7I2QptBAxmoseOZiNQF5IAhNBPLJNB3zq53-2FlXcvN6fQvk9At-2FPrtFhazuoNq1D1XnnbJc-2B7MpZerHWrplQOGn-2FEq3aDP-2BjgtrmGygV1LmP4CsWk5MOyz7ba3YLBW6SxKpmm-2FsBztYmxhfi2BUf3VEqjbJJMNYfr1GLsZoPCKmrMaZG0NOl1rnxWa0wyQVCG1hFoCyipm-2FHdO4Dx0tSc-2BTOnxSQTedw-3D-3D
https://doi.org/10.1101/2023.06.22.546023
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

References 

1. Nelson, S. Temporal interactions in the cat visual system. III. Pharmacological studies of 

cortical suppression suggest a presynaptic mechanism. J. Neurosci. 11, 369–380 (1991). 

2. Atallah, B. V. & Scanziani, M. Instantaneous Modulation of Gamma Oscillation 

Frequency by Balancing Excitation with Inhibition. Neuron 62, 566–577 (2009). 

3. Dorrn, A. L., Yuan, K., Barker, A. J., Schreiner, C. E. & Froemke, R. C. Developmental 

sensory experience balances cortical excitation and inhibition. Nature 465, 932–936 

(2010). 

4. Sun, Y. J. et al. Fine-tuning of pre-balanced excitation and inhibition during auditory 

cortical development. Nature 465, 927–931 (2010). 

5. Turrigiano, G. G. & Nelson, S. B. Homeostatic plasticity in the developing nervous 

system. Nat Rev Neurosci 5, 97–107 (2004). 

6. Takesian, A. E. & Hensch, T. K. Balancing Plasticity/Stability Across Brain 

Development. in Progress in Brain Research vol. 207 3–34 (Elsevier, 2013). 

7. Rubenstein, J. L. R. & Merzenich, M. M. Model of autism: increased ratio of 

excitation/inhibition in key neural systems. Genes, Brain and Behavior 2, 255–267 

(2003). 

8. Bruining, H. et al. Measurement of excitation-inhibition ratio in autism spectrum disorder 

using critical brain dynamics. Sci Rep 10, 9195 (2020). 

9. Lam, N. H. et al. Effects of Altered Excitation-Inhibition Balance on Decision Making in 

a Cortical Circuit Model. J. Neurosci. 42, 1035–1053 (2022). 

10. Manyukhina, V. O. et al. Globally elevated excitation–inhibition ratio in children with 

autism spectrum disorder and below-average intelligence. Molecular Autism 13, 20 

(2022). 

11. Paquola, C. et al. Shifts in myeloarchitecture characterise adolescent development of 

cortical gradients. eLife 8, e50482 (2019). 

12. Bethlehem, R. A. I. et al. Brain charts for the human lifespan. Nature 604, 525–533 

(2022). 

13. Larsen, B. & Luna, B. Adolescence as a neurobiological critical period for the 

development of higher-order cognition. Neuroscience & Biobehavioral Reviews 94, 179–

195 (2018). 

14. Reh, R. K. et al. Critical period regulation across multiple timescales. Proc. Natl. Acad. 

Sci. U.S.A. 117, 23242–23251 (2020). 

15. Larsen, B., Sydnor, V. J., Keller, A. S., Yeo, B. T. T. & Satterthwaite, T. D. A critical 

period plasticity framework for the sensorimotor–association axis of cortical 

neurodevelopment. Trends in Neurosciences 46, 847–862 (2023). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 28, 2024. ; https://doi.org/10.1101/2023.06.22.546023doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.22.546023
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16. Sydnor, V. J. & Satterthwaite, T. D. Neuroimaging of plasticity mechanisms in the 

human brain: from critical periods to psychiatric conditions. Neuropsychopharmacol. 48, 

219–220 (2023). 

17. Pouille, F. & Scanziani, M. Enforcement of Temporal Fidelity in Pyramidal Cells by 

Somatic Feed-Forward Inhibition. Science 293, 1159–1163 (2001). 

18. Iwai, Y., Fagiolini, M., Obata, K. & Hensch, T. K. Rapid Critical Period Induction by 

Tonic Inhibition in Visual Cortex. J. Neurosci. 23, 6695–6702 (2003). 

19. Gu, Y. et al. Neuregulin-Dependent Regulation of Fast-Spiking Interneuron Excitability 

Controls the Timing of the Critical Period. J. Neurosci. 36, 10285–10295 (2016). 

20. Wu, Y. K., Miehl, C. & Gjorgjieva, J. Regulation of circuit organization and function 

through inhibitory synaptic plasticity. Trends in Neurosciences 45, 884–898 (2022). 

21. Hensch, T. K. Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6, 

877–888 (2005). 

22. Hensch, T. K. & Fagiolini, M. Excitatory–inhibitory balance and critical period plasticity 

in developing visual cortex. in Progress in Brain Research vol. 147 115–124 (Elsevier, 

2005). 

23. Stern, E. A., Maravall, M. & Svoboda, K. Rapid Development and Plasticity of Layer 2/3 

Maps in Rat Barrel Cortex In Vivo. Neuron 31, 305–315 (2001). 

24. Silveri, M. M. et al. Frontal Lobe γ-Aminobutyric Acid Levels During Adolescence: 

Associations with Impulsivity and Response Inhibition. Biological Psychiatry 74, 296–

304 (2013). 

25. Ghisleni, C. et al. Subcortical Glutamate Mediates the Reduction of Short-Range 

Functional Connectivity with Age in a Developmental Cohort. Journal of Neuroscience 

35, 8433–8441 (2015). 

26. Larsen, B. et al. A developmental reduction of the excitation:inhibition ratio in 

association cortex during adolescence. Sci. Adv. 8, eabj8750 (2022). 

27. Trakoshis, S. et al. Intrinsic excitation-inhibition imbalance affects medial prefrontal 

cortex differently in autistic men versus women. eLife 9, e55684 (2020). 

28. Ranasinghe, K. G. et al. Altered excitatory and inhibitory neuronal subpopulation 

parameters are distinctly associated with tau and amyloid in Alzheimer’s disease. eLife 

11, e77850 (2022). 

29. Fortel, I. et al. Disrupted Excitation-Inhibition Balance in Cognitively Normal 

Individuals at Risk of Alzheimer’s Disease. JAD 95, 1449–1467 (2023). 

30. Honey, C. J., Kötter, R., Breakspear, M. & Sporns, O. Network structure of cerebral 

cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. 

U.S.A. 104, 10240–10245 (2007). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 28, 2024. ; https://doi.org/10.1101/2023.06.22.546023doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.22.546023
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

31. Ghosh, A., Rho, Y., McIntosh, A. R., Kötter, R. & Jirsa, V. K. Noise during Rest Enables 

the Exploration of the Brain’s Dynamic Repertoire. PLoS Comput Biol 4, e1000196 

(2008). 

32. Zalesky, A., Fornito, A., Cocchi, L., Gollo, L. L. & Breakspear, M. Time-resolved 

resting-state brain networks. Proc. Natl. Acad. Sci. U.S.A. 111, 10341–10346 (2014). 

33. Deco, G. et al. How Local Excitation-Inhibition Ratio Impacts the Whole Brain 

Dynamics. Journal of Neuroscience 34, 7886–7898 (2014). 

34. Kim, Y. et al. Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical 

Architecture and Subcortical Sexual Dimorphism. Cell 171, 456-469.e22 (2017). 

35. Burt, J. B. et al. Hierarchy of transcriptomic specialization across human cortex captured 

by structural neuroimaging topography. Nat Neurosci 21, 1251–1259 (2018). 

36. Anderson, K. M. et al. Convergent molecular, cellular, and cortical neuroimaging 

signatures of major depressive disorder. Proc. Natl. Acad. Sci. U.S.A. 117, 25138–25149 

(2020). 

37. Cardin, J. A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory 

responses. Nature 459, 663–667 (2009). 

38. Deco, G. et al. Dynamical consequences of regional heterogeneity in the brain’s 

transcriptional landscape. Sci. Adv. 7, eabf4752 (2021). 

39. Demirtaş, M. et al. Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale 

Neural Dynamics. Neuron 101, 1181-1194.e13 (2019). 

40. Wang, P. et al. Inversion of a large-scale circuit model reveals a cortical hierarchy in the 

dynamic resting human brain. Sci. Adv. 5, eaat7854 (2019). 

41. Kong, X. et al. Sensory-motor cortices shape functional connectivity dynamics in the 

human brain. Nat Commun 12, 6373 (2021). 

42. Deco, G. et al. Resting-State Functional Connectivity Emerges from Structurally and 

Dynamically Shaped Slow Linear Fluctuations. Journal of Neuroscience 33, 11239–

11252 (2013). 

43. Van Essen, D. C. et al. The WU-Minn Human Connectome Project: An overview. 

NeuroImage 80, 62–79 (2013). 

44. Wolf, D. H. et al. Amygdala abnormalities in first-degree relatives of individuals with 

schizophrenia unmasked by benzodiazepine challenge. Psychopharmacology 218, 503–

512 (2011). 

45. Satterthwaite, T. D. et al. Neuroimaging of the Philadelphia Neurodevelopmental Cohort. 

NeuroImage 86, 544–553 (2014). 

46. Calkins, M. E. et al. The Philadelphia Neurodevelopmental Cohort: constructing a deep 

phenotyping collaborative. J Child Psychol Psychiatr 56, 1356–1369 (2015). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 28, 2024. ; https://doi.org/10.1101/2023.06.22.546023doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.22.546023
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

47. Soh, S.-E. et al. Cohort Profile: Growing Up in Singapore Towards healthy Outcomes 

(GUSTO) birth cohort study. International Journal of Epidemiology 43, 1401–1409 

(2014). 

48. Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome 

Project. NeuroImage 80, 105–124 (2013). 

49. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral 

cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 

(2006). 

50. Hansen, E. C. A., Battaglia, D., Spiegler, A., Deco, G. & Jirsa, V. K. Functional 

connectivity dynamics: Modeling the switching behavior of the resting state. NeuroImage 

105, 525–535 (2015). 

51. Liégeois, R., Laumann, T. O., Snyder, A. Z., Zhou, J. & Yeo, B. T. T. Interpreting 

temporal fluctuations in resting-state functional connectivity MRI. NeuroImage 163, 

437–455 (2017). 

52. Brunel, N. & Wang, X.-J. Effects of neuromodulation in a cortical network model of 

object working memory dominated by recurrent inhibition. Journal of Computational 

Neuroscience 11, 63–85 (2001). 

53. Wong, K.-F. & Wang, X.-J. A Recurrent Network Mechanism of Time Integration in 

Perceptual Decisions. J. Neurosci. 26, 1314–1328 (2006). 

54. Margulies, D. S. et al. Situating the default-mode network along a principal gradient of 

macroscale cortical organization. Proc. Natl. Acad. Sci. U.S.A. 113, 12574–12579 (2016). 

55. Glasser, M. F. & Van Essen, D. C. Mapping Human Cortical Areas In Vivo Based on 

Myelin Content as Revealed by T1- and T2-Weighted MRI. J. Neurosci. 31, 11597–

11616 (2011). 

56. Hansen, N. The CMA Evolution Strategy: A Comparing Review. in Towards a New 

Evolutionary Computation (eds. Lozano, J. A., Larrañaga, P., Inza, I. & Bengoetxea, E.) 

vol. 192 75–102 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2006). 

57. Kringelbach, M. L. & Deco, G. Brain States and Transitions: Insights from 

Computational Neuroscience. Cell Reports 32, 108128 (2020). 

58. Sigel, E. Mapping of the Benzodiazepine Recognition Site on GABAA Receptors. CTMC 

2, 833–839 (2002). 

59. Olsen, R. W. & Sieghart, W. GABAA receptors: Subtypes provide diversity of function 

and pharmacology. Neuropharmacology 56, 141–148 (2009). 

60. Verster, J. C. & Volkerts, E. R. Clinical Pharmacology, Clinical Efficacy, and Behavioral 

Toxicity of Alprazolam: A Review of the Literature. CNS Drug Reviews 10, 45–76 

(2006). 

61. Xue, M., Atallah, B. V. & Scanziani, M. Equalizing excitation–inhibition ratios across 

visual cortical neurons. Nature 511, 596–600 (2014). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 28, 2024. ; https://doi.org/10.1101/2023.06.22.546023doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.22.546023
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

62. Nørgaard, M. et al. A high-resolution in vivo atlas of the human brain’s benzodiazepine 

binding site of GABAA receptors. NeuroImage 232, 117878 (2021). 

63. Yan, X. et al. Homotopic local-global parcellation of the human cerebral cortex from 

resting-state functional connectivity. NeuroImage 273, 120010 (2023). 

64. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic 

functional connectivity. Journal of Neurophysiology 106, 1125–1165 (2011). 

65. Moore, T. M., Reise, S. P., Gur, R. E., Hakonarson, H. & Gur, R. C. Psychometric 

properties of the Penn Computerized Neurocognitive Battery. Neuropsychology 29, 235–

246 (2015). 

66. Sydnor, V. J. et al. Neurodevelopment of the association cortices: Patterns, mechanisms, 

and implications for psychopathology. Neuron 109, 2820–2846 (2021). 

67. Li, J. et al. Cross-ethnicity/race generalization failure of behavioral prediction from 

resting-state functional connectivity. Sci. Adv. 8, eabj1812 (2022). 

68. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, 

schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018). 

69. Goulas, A. et al. The natural axis of transmitter receptor distribution in the human 

cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 118, e2020574118 (2021). 

70. Rudolph, U. & Knoflach, F. Beyond classical benzodiazepines: novel therapeutic 

potential of GABAA receptor subtypes. Nat Rev Drug Discov 10, 685–697 (2011). 

71. Katagiri, H., Fagiolini, M. & Hensch, T. K. Optimization of Somatic Inhibition at Critical 

Period Onset in Mouse Visual Cortex. Neuron 53, 805–812 (2007). 

72. Toyoizumi, T. et al. A Theory of the Transition to Critical Period Plasticity: Inhibition 

Selectively Suppresses Spontaneous Activity. Neuron 80, 51–63 (2013). 

73. Lodato, S. et al. Excitatory Projection Neuron Subtypes Control the Distribution of Local 

Inhibitory Interneurons in the Cerebral Cortex. Neuron 69, 763–779 (2011). 

74. Han, K.-S., Cooke, S. F. & Xu, W. Experience-Dependent Equilibration of AMPAR-

Mediated Synaptic Transmission during the Critical Period. Cell Reports 18, 892–904 

(2017). 

75. Xu, W., Löwel, S. & Schlüter, O. M. Silent Synapse-Based Mechanisms of Critical 

Period Plasticity. Front. Cell. Neurosci. 14, 213 (2020). 

76. Willis, A., Pratt, J. A. & Morris, B. J. Enzymatic Degradation of Cortical Perineuronal 

Nets Reverses GABAergic Interneuron Maturation. Mol Neurobiol 59, 2874–2893 

(2022). 

77. Baum, G. L. et al. Development of structure–function coupling in human brain networks 

during youth. Proc. Natl. Acad. Sci. U.S.A. 117, 771–778 (2020). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 28, 2024. ; https://doi.org/10.1101/2023.06.22.546023doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.22.546023
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

78. Dong, H.-M., Margulies, D. S., Zuo, X.-N. & Holmes, A. J. Shifting gradients of 

macroscale cortical organization mark the transition from childhood to adolescence. 

Proc. Natl. Acad. Sci. U.S.A. 118, e2024448118 (2021). 

79. Pines, A. R. et al. Dissociable multi-scale patterns of development in personalized brain 

networks. Nat Commun 13, 2647 (2022). 

80. Sydnor, V. J. et al. Intrinsic activity development unfolds along a sensorimotor–

association cortical axis in youth. Nat Neurosci 26, 638–649 (2023). 

81. Baum, G. L. et al. Graded Variation in T1w/T2w Ratio during Adolescence: 

Measurement, Caveats, and Implications for Development of Cortical Myelin. J. 

Neurosci. 42, 5681–5694 (2022). 

82. Keller, A. S. et al. Hierarchical functional system development supports executive 

function. Trends in Cognitive Sciences 27, 160–174 (2023). 

83. Anticevic, A. & Murray, J. D. Rebalancing Altered Computations: Considering the Role 

of Neural Excitation and Inhibition Balance Across the Psychiatric Spectrum. Biological 

Psychiatry 81, 816–817 (2017). 

84. Sohal, V. S. & Rubenstein, J. L. R. Excitation-inhibition balance as a framework for 

investigating mechanisms in neuropsychiatric disorders. Mol Psychiatry 24, 1248–1257 

(2019). 

85. Vinogradov, S., Chafee, M. V., Lee, E. & Morishita, H. Psychosis spectrum illnesses as 

disorders of prefrontal critical period plasticity. Neuropsychopharmacol. 48, 168–185 

(2023). 

86. Foss-Feig, J. H. et al. Searching for Cross-Diagnostic Convergence: Neural Mechanisms 

Governing Excitation and Inhibition Balance in Schizophrenia and Autism Spectrum 

Disorders. Biological Psychiatry 81, 848–861 (2017). 

87. Duman, R. S., Sanacora, G. & Krystal, J. H. Altered Connectivity in Depression: GABA 

and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron 

102, 75–90 (2019). 

88. Gao, W.-J., Yang, S.-S., Mack, N. R. & Chamberlin, L. A. Aberrant maturation and 

connectivity of prefrontal cortex in schizophrenia—contribution of NMDA receptor 

development and hypofunction. Mol Psychiatry 27, 731–743 (2022). 

89. Yao, H. K. et al. Reduced inhibition in depression impairs stimulus processing in human 

cortical microcircuits. Cell Reports 38, 110232 (2022). 

90. Pang, J. C. et al. Geometric constraints on human brain function. Nature (2023) 

doi:10.1038/s41586-023-06098-1. 

91. Leonardi, N. & Van De Ville, D. On spurious and real fluctuations of dynamic functional 

connectivity during rest. NeuroImage 104, 430–436 (2015). 

92. Tournier, J.-D. et al. MRtrix3: A fast, flexible and open software framework for medical 

image processing and visualisation. NeuroImage 202, 116137 (2019). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 28, 2024. ; https://doi.org/10.1101/2023.06.22.546023doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.22.546023
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

In-vivo whole-cortex marker of excitation-inhibition ratio indexes  

cortical maturation and cognitive ability in youth 

 

Supplemental Material 

This supplemental material consists of Supplemental Methods and Supplemental Results to 

complement the Methods and Results sections in the main text.  

 

Supplemental Methods 

The HCP data collection was approved by a consortium of institutional review boards (IRBs) 

in the United States and Europe, led by Washington University in St Louis and the University 

of Minnesota (WU-Minn HCP Consortium). Data collection and study procedures for the 

Alprazolam dataset were approved by the University of Pennsylvania IRB; data collection for 

the PNC was approved by IRBs from both the University of Pennsylvania and the Children’s 

Hospital of Philadelphia. The GUSTO data collection was approved by the National Healthcare 

Group Domain Specific Review Board and the SingHealth Centralised Institutional Review 

Board. All participants provided informed consent before data collection. The current study 

was approved by the IRB of the National University of Singapore. 

 

S1. Human Connectome Project (HCP) dataset 

We considered 1004 participants from the Human Connectome Project (HCP) S1200 

release (1). All participants were scanned on a customized Siemens 3T Skyra using a multi-

band sequence. Four resting-state fMRI (resting-fMRI) runs were collected for each 

participant in two sessions on two different days. Each resting-fMRI run was acquired with a 

repetition time (TR) of 0.72 s at 2 mm isotropic resolution and lasted for 14.4 min. The 

diffusion imaging consisted of 6 runs, each lasting ~9 min and 50 s. Diffusion weighting 

consisted of 3 shells of b = 1000, 2000, and 3000 s/mm2 with an approximately equal number 

of weighting directions on each shell. Details of the data collection can be found elsewhere 

(1). The 1004 participants were randomly divided into training (N = 335), validation (N = 

335) and test (N = 334) sets.  

 

S2. HCP preprocessing  

Details of the HCP preprocessing can be found in the HCP S1200 manual. We utilized 

resting-fMRI data, which had already been projected to fsLR surface space, denoised with 

ICA-FIX and smoothed by 2 mm. For each run of each participant, the fMRI data were 

averaged within each Desikan–Killiany (2) region of interest (ROI) to generate a 68 × 1200 

matrix. Each 68 × 1200 matrix was used to compute 68 × 68 FC matrix by correlating the time 

courses among all pairs of time courses. The FC matrices were then averaged across runs of 

participants within the training (or validation or test) set, resulting in a group-averaged training 

(or validation or test) FC matrix. 

Functional connectivity dynamics (FCD) were computed as follows. We defined a 

window with a length of 60s (equivalent to 83 time points or TRs) as recommended by previous 

studies (3,4). The window was moved from the first frame to the 1118th frame of BOLD time 

series, resulting in 1118 sliding windows in total. For each run of each participant, FC was 

computed within each of 1118 sliding windows. Each sliding window FC matrix was then 

vectorized by only considering the upper triangular entries. The vectorized FCs were correlated 
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with each other generating a 1118 × 1118 FCD matrix. Unlike static FC, we note that the FCD 

matrices could not be directly averaged across participants because there was no temporal 

correspondence between participants during the resting-state.  

In the case of diffusion MRI, probabilistic tractography was run for each participant 

using the fiber orientation distribution (iFOD2) algorithm provided by MRtrix3 (5). A 

structural connectivity (SC) matrix was generated for each participant, where each entry 

corresponded to the number of streamlines between two ROIs. To generate a group-level SC 

matrix, a thresholding procedure was employed to remove false positives. More specifically, 

if <50% of participants had a non-zero value in a particular entry in the SC matrix, then the 

entry is set to zero in all individual-level SC matrices. For each SC entry, the number of 

streamlines was averaged across participants with non-zero streamlines and then log-

transformed (6). The entries along the main diagonal were set to 0. Group-level SCs were 

computed by averaging individual-level SCs within the training, validation and test sets 

separately and normalizing the maximum value to 0.02. 

 

S3. Pharmacological (benzodiazepine alprazolam) dataset 

The alprazolam dataset has been previously described in detail (7). Briefly, 47 adults 

participated in a double-blind, placebo-controlled study using the benzodiazepine alprazolam. 

Each participant completed two identical experimental sessions approximately 1 week apart. 

In one session, participants were given a 1-mg dose of alprazolam, and in the other, they were 

given an identical appearing placebo. One milligram of alprazolam produces an increase in 

GABAergic inhibition that is considered to be clinically effective (8). The order of 

administration was counterbalanced across participants. Alprazolam or placebo was 

administered 1 hour before the fMRI acquisition so that alprazolam levels and effects were 

near their peak at the time of data collection (8). During both sessions, participants completed 

an emotion identification task lasting 10.5 min, while fMRI was acquired. Task-related fMRI 

results have been previously reported (7). Two participants were excluded because of missing 

data in at least one session, yielding a final sample of 45 participants and 90 sessions in total 

(ages 20.9 to 56.4; mean = 39.9, standard deviation = 12.71).  

All data were collected on a Siemens Trio 3T. Blood oxygen level–dependent (BOLD) 

fMRI data were acquired using the following parameters: TR = 3000 ms; TE = 32 ms; flip 

angle = 90°; FOV = 240 mm; matrix = 128 × 128; slice thickness/gap = 2/0 mm; 30 slices; 

effective voxel resolution = 1.875 × 1.875 × 2 mm3; 210 volumes. The field of view (FOV) 

included temporal, inferior frontal, and visual cortices as well as subcortical structures, but 

excluded dorsal portions of the cerebral cortex. 

The 45 participants were randomly divided into training, validation, and test sets with 

15 participants each. The training-validation-test split was the same for both drug and placebo 

sessions.  

 

S4. Philadelphia Neurodevelopment Cohort (PNC) dataset 

Neuroimaging data were obtained from a community-based sample of 1601 youth (ages 

8.1 to 23.1; mean = 14.94; standard deviation = 3.69; male/ female = 764/837) that were part 

of the Philadelphia Neurodevelopmental Cohort (PNC). Data collection procedures and sample 

characteristics have been previously described in detail (9,10). One run of resting-fMRI data 

was collected per participant. Following health exclusions and rigorous quality assurance, we 
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retained 885 participants (ages 8.2 to 23.0 at first visit; mean = 15.66; standard deviation = 

3.36).  

All neuroimaging data were collected on the same Siemens Trio 3T scanner as was 

used for the alprazolam dataset. The neuroimaging procedures and acquisition parameters have 

been previously described in detail (9). Briefly, BOLD fMRI was acquired using similar 

acquisition parameters to the alprazolam dataset: TR = 3000 ms; TE = 32 ms; flip angle = 90°; 

FOV = 192 × 192 mm2; matrix = 64 × 64; 46 slices; slice thickness/gap = 3/0 mm; effective 

voxel resolution = 3.0 × 3.0 × 3.0 mm3; 210 volumes. The key difference is that the field of 

view in the PNC dataset covered the whole brain (unlike the alprazolam dataset). 

 

S5. Alprazolam and PNC functional image processing 

Details about the alprazolam and PNC datasets have been previously provided in 

previous studies (11). The alprazolam dataset consisted of two BOLD acquisitions per 

participant (drug and placebo session), which were preprocessed individually. BOLD runs 

were slice time–corrected and then motion-corrected. Susceptibility distortion was estimated 

and used to compute a corrected BOLD reference for more accurate co-registration with the 

anatomical reference. The BOLD reference was co-registered to the T1w reference using 

boundary-based registration (12). Co-registration was configured with nine degrees of freedom 

to account for distortions remaining in the BOLD reference. Six head motion parameters 

(corresponding rotation and translation parameters) were estimated before any spatiotemporal 

filtering. The motion-correcting transformations, field distortion correcting warp, BOLD-to-

T1w transformation, and T1w-to-template (MNI) warp were concatenated and applied to the 

BOLD time series in a single step using antsApplyTransforms (ANTs) with Lanczos 

interpolation. Finally, the volumetric data was projected to fsaverage6 surface space (13). 

Nuisance regression relied upon anatomical CompCor (aCompCor). aCompCor 

principal components were estimated after high-pass filtering the preprocessed BOLD time 

series (using a discrete cosine filter with 128-s cutoff). 5 CompCor components were extracted 

from the cerebrospinal fluid (CSF) and white matter (WM) masks. To remove task effects in 

the alprazolam dataset, all event conditions from the emotion identification task were modeled 

as 5.5-s boxcars convolved with a canonical hemodynamic response function. Each of the five 

emotions (fear, sad, angry, happy, and neutral) was modeled as a separate regressor. In sum, 

22 regressors (6 head motion parameters and their respective temporal derivatives, top 5 

aCompCor components, and 5 task regressors) were jointly regressed from the BOLD time 

series. The same preprocessing was performed for the PNC dataset, except that no task 

regressor was necessary. Overall, 17 regressors (6 head motion parameters and their respective 

temporal derivatives and top 5 aCompCor components) were jointly regressed from the BOLD 

time series. 

FC and FCD of the alprazolam and PNC datasets were computed in the same manner 

as the HCP dataset. However, the TR was longer in the alprazolam and PNC datasets than the 

HCP dataset. Therefore, when computing the FCD matrices, the length of each sliding window 

was set to be 20 timepoints (or TRs), so that the temporal length of the window was maintained 

at 60s. 

 

S6. GUSTO dataset 

To generalize our findings on the association between cognition and E/I ratio, we 

additionally utilized an Asian cohort, Growing Up in Singapore Towards Healthy Outcomes 
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(GUSTO) dataset (14). We considered 389 7.5-year-old children with 1 run of resting-fMRI 

data and relevant cognitive scores. Participants with one or more missing cognitive scores were 

removed, yielding a final group of 154 participants (mean age = 7.43, std = 0.13, min age = 

7.24, max age = 7.88). 

All neuroimaging data were collected on a Siemens Prisma scanner. The structural data 

were obtained with T1w MPRAGE sequence using the following acquisition parameters: TR 

= 2000 ms; TE = 2.08 ms; FOV = 192 × 192 mm2; matrix = 192 × 192; voxel resolution = 1.0 

× 1.0 × 1.0 mm3. The resting-fMRI data were obtained with the following acquisition 

parameters: TR = 2620 ms; TE = 27 ms; flip angle = 90°; FOV = 192 × 192 mm2; matrix = 64 

× 64; 48 slices; voxel resolution = 3.0 × 3.0 × 3.0 mm3; 120 volumes. The field of view of the 

GUSTO dataset covered the whole brain. 

 

S7. GUSTO preprocessing  

For each resting-fMRI run, the following sequence of preprocessing steps were 

performed. The first 4 frames of the run were removed. The run was then slice time-corrected 

and then motion-corrected. Frames with FD > 0.5mm and DVARS > 80 were marked as motion 

outliers. Next, the run was co-registered to the structural image with boundary-based 

registration (12). Nuisance regression was performed with the inclusion of white matter and 

CSF signals, 6 head motion parameters and their respective temporal derivates as well as the 

top 5 aCompCor components (19 regressors in total were jointly applied). The motion outlier 

frames were then censored and interpolated. Finally, the run was bandpass-filtered (0.009Hz < 

f < 0.08Hz) and projected to Freesurfer fsaverage6 surface space.  

FC and FCD of the GUSTO dataset were computed in the same manner as the HCP 

dataset. However, the TR was longer in the GUSTO than the HCP dataset. Therefore, when 

computing the FCD matrices, the length of each sliding window was set to be 23 timepoints 

(or TRs), so that the temporal length of the window was maintained at around 60s. 

 

S8. Feedback Inhibition Control (FIC) model 

The derivation of the FIC model was thoroughly described in a previous study (15). 

Here we provide some intuition for the FIC model. The neuronal activities of the 𝑗-th cortical 

region follow the nonlinear differential equations shown below 

 

𝐼𝑗
(𝐸)

= 𝑊𝐸𝐼0 + 𝑤𝐸𝐸𝐽𝑁𝑀𝐷𝐴𝑆𝑗
(𝐸)

+ 𝐺𝐽𝑁𝑀𝐷𝐴 ∑ 𝐶𝑗𝑘𝑆𝑘
(𝐸)

𝑘

− 𝑤𝐼𝐸𝑆𝑗
(𝐼)

           (1) 

𝐼𝑗
(𝐼)

= 𝑊𝐼𝐼0 + 𝑤𝐸𝐼𝐽𝑁𝑀𝐷𝐴𝑆𝑗
(𝐸)

− 𝑤𝐼𝐼𝑆𝑗
(𝐼)

                                                      (2) 

𝑟𝑗
(𝐸)

= 𝜙(𝐼𝑗
(𝐸)

) =
𝑎𝐸𝐼𝑗

(𝐸)
− 𝑏𝐸

1 − exp (−𝑑𝐸 (𝑎𝐸𝐼𝑗
(𝐸)

− 𝑏𝐸))
                                    (3) 

𝑟𝑗
(𝐼)

= 𝜙(𝐼𝑗
(𝐼)

) =
𝑎𝐼𝐼𝑗

(𝐼)
− 𝑏𝐼

1 − exp (−𝑑𝐼 (𝑎𝐼𝐼𝑗
(𝐼)

− 𝑏𝐼))
                                        (4) 

 

𝑑𝑆𝑗
(𝐸)

𝑑𝑡
= −

𝑆𝑗
(𝐸)

𝜏𝐸
+ (1 − 𝑆𝑗

(𝐸)
)𝛾𝑟𝑗

(𝐸)
+ 𝜎𝜈𝑗(𝑡)                                              (5) 
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𝑑𝑆𝑗
(𝐼)

𝑑𝑡
= −

𝑆𝑗
(𝐼)

𝜏𝐼
+ 𝑟𝑗

(𝐼)
+ 𝜎𝜈𝑗(𝑡)                                                                       (6) 

 

where 𝑆 , 𝑟 , and 𝐼  represent synaptic gating variables, firing rate, and synaptic currents 

respectively. The superscripts 𝐸  and 𝐼  denote the excitatory and inhibitory neuronal 

populations respectively. 

The input current 𝐼𝑗
(𝐸)

 of the excitatory population of the 𝑗-th cortical ROI is the sum of 

four inputs (Equation 1). The first input is the external input current 𝑊𝐸𝐼0, which might include 

subcortical delays. The second input is the intra-regional excitatory-to-excitatory current 

governed by the excitatory-to-excitatory recurrent connection strength 𝑤𝐸𝐸  scaled by the 

synaptic coupling constant 𝐽𝑁𝑀𝐷𝐴 . The third input is the inter-regional input, which is 

controlled by the SC matrix (𝐶𝑗𝑘 is the connectivity between regions 𝑗 and 𝑘) and scaled by the 

global constant 𝐺. The fourth input is the intra-regional negative feedback from the inhibitory 

population governed by the inhibitory-to-excitatory connection strength 𝑤𝐼𝐸 .  

The input current 𝐼𝑗
(𝐼)

 of the inhibitory population of the 𝑗-th cortical ROI is the sum of 

three inputs (Equation 2). The first input is the external input current 𝑊𝐼𝐼0. The second input 

is the intra-regional positive feedback from the excitatory population governed by the 

excitatory-to-inhibitory connection strength wEI scaled by the synaptic coupling constant 

𝐽𝑁𝑀𝐷𝐴. The third input is the intra-regional inhibitory-to-inhibitory current governed by the 

inhibitory-to-inhibitory recurrent connection strength 𝑤𝐼𝐼 . 

The excitatory input current 𝐼𝑗
(𝐸)

 and inhibitory input current 𝐼𝑗
(𝐼)

 are transformed into 

firing rates via the input-output functions specified in Equations 3 and 4. Following previous 

studies (15), the parameters of the input-output function were set to be 𝑎𝐸 = 310n/C, 𝑎𝐼 =

615n/C, 𝑏𝐸 = 125Hz, 𝑏𝐼 = 177Hz, 𝑑𝐸 = 0.16s and 𝑑𝐼 = 0.087s. Finally, the rate of change 

of the synaptic gating variables 𝑆𝑗
(𝐸)

 and 𝑆𝑗
(𝐼)

 are computed via equations 5 and 6. Following 

previous studies (15), the kinetic parameters for synaptic activities 𝜏𝐸 , 𝜏𝐼 and 𝛾 were set to 

100ms, 10ms and 0.641 respectively. 𝜈𝑗(𝑡) corresponds to uncorrelated standard Gaussian 

noise with the noise amplitude being controlled by 𝜎. 

Following the original study (15), 𝑤𝐼𝐼 , 𝑊𝐸 , 𝑊𝐼 , 𝐼0  and 𝐽𝑁𝑀𝐷𝐴  were set to 1, 1, 0.7 

0.382nA and 0.15nA respectively in the current study. The inhibitory-to-excitatory connection 

strength 𝑤𝐼𝐸was computed analytically to ensure that the excitatory firing rate is maintained to 

be around 3Hz (16). We note that this analytical computation assumes a noiseless system, so 

in practice, we imposed a constraint that the firing rate is between 2.7Hz to 3.3Hz. During the 

estimation of the pFIC model (next section), parameters were rejected if firing rates fall outside 

this range.  

The excitatory-to-excitatory recurrent connection strength 𝑤𝐸𝐸 , excitatory-to-

inhibitory connection strength 𝑤𝐸𝐼 , noise amplitude 𝜎 and global SC scaling constant 𝐺 are 

unknown parameters, which will be estimated by fitting to empirical fMRI data (next section).  

Given a fixed set of model parameters, equations 1 to 6 can be used to simulate the time courses 

of excitatory and inhibitory synaptic gating variables (𝑆𝑗
(𝐸)

 and 𝑆𝑗
(𝐼)

) of each ROI. The regional 

E/I ratio was defined as the ratio between the temporal average of 𝑆𝑗
(𝐸)

  and 𝑆𝑗
(𝐼)

. The mean 

cortical E/I ratio was the average of regional E/I ratios across all cortical ROIs. The simulated 
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excitatory synaptic gating variables ( 𝑆𝑗
(𝐸)

) were also fed to the Balloon-Windkessel 

hemodynamic model to simulate fMRI BOLD signals (15, 17,18). The simulated fMRI BOLD 

signals were then used to generate simulated static FC and FCD.  

   

S9. Parametric FIC (pFIC) model  

Recall that the FIC model was instantiated using the Desikan-Killiany parcellation with 

68 regions of interest. Given that we wanted the excitatory-to-excitatory recurrent connection 

strength wEE, excitatory-to-inhibitory connection strength wEI and noise amplitude 𝜎  to be 

spatially heterogeneous (with G being a global constant), if we optimized each parameter 

independently, there would be a total of 68 × 3 + 1 = 205 parameters, which is computationally 

challenging.  

In our previous study (19), we reduced the number of “free” parameters by 

parameterizing the local synaptic parameters with a linear combination of the first principal FC 

gradient and T1w/T2w ratio map. We note that in the previous study (19), we considered a 

highly simplified parametric mean field model that does not differentiate between excitatory 

and inhibitory neural populations. Here, we considered the same approach for the FIC model 

by parameterizing wEE, wEI, and 𝜎 as a linear combination of T1w/T2w myelin map and first 

principal FC gradient. 

𝑤𝐸𝐸,𝑗 = 𝑎 + 𝑏 × myelin𝑗 + 𝑐 × FC gradient𝑗                    (7) 

𝑤𝐸𝐼,𝑗 = 𝑑 + 𝑒 × myelin𝑗 + 𝑓 × FC gradient𝑗                    (8) 

𝜎𝑗 = 𝑔 + ℎ × myelin𝑗 + 𝑖 × FC gradient𝑗                     (9) 

where j denotes the ROI index. By adopting this parameterization approach, the number of 

“free” numbers was reduced to 3 × 3 + 1 = 10 parameters. 

 

S10. Optimization of the parametric FIC (pFIC) model in the HCP dataset 

The 10 unknown parameters of the pFIC model were optimized using a previously 

published approach (19) by maximizing fit to empirical static FC and FCD. The agreement 

between empirical and simulated FC matrices was defined as the Pearson’s correlation (r) 

between the z-transformed upper triangular entries of the two matrices. Larger r indicates more 

similar static FC. However, Pearson’s correlation does not account for scale difference, so we 

also computed the absolute difference (d) between the means of the empirical and simulated 

FC matrices (16). A smaller d indicates more similar static FC.  

We note that there is no temporal correspondence between simulated and empirical FCD 

matrices, so we cannot simply use the Euclidean distance to measure dissimilarity. Instead, the 

dissimilarity between simulated and empirical FCD matrices was quantified by using the 

Kolmogorov-Smirnov (KS) distance. Here, the KS distance was defined as the maximum 

distance between the cumulative distribution functions (CDFs) constructed by collapsing the 

upper triangular entries of simulated and empirical FCD matrices (19,20). Hence, a small KS 

distance indicated 2 similar CDFs, therefore 2 similar FCD matrices. Because the KS distance 

was computed by collapsing the upper triangular entries of the FCD matrices, no temporal 

correspondence was assumed.  

The overall cost was defined as (1 – r) + d + KS. A smaller cost indicates better agreement 

between simulated and empirical fMRI. Recall that the 1004 HCP participants were randomly 

divided into training (N = 335), validation (N = 335) and test (N = 334) sets. Following our 

previous study (19), we used the covariance matrix adaptation evolution strategy (CMA-ES) 
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(21) to minimize the overall cost function during training. Due to the lack of temporal 

correspondence between FCD matrices across runs and participants during rs-fMRI scans, 

directly averaging FCD matrices will cancel out the temporal dynamics. Representing FCD 

matrices using CDFs avoided such problem because averaging the CDFs across runs and 

participants could still largely preserve the distribution of FCD matrix entries. We thus 

averaged the FCD CDFs across participants and runs separately within the training, validation 

and test sets.  

In the HCP training set, the CMA-ES algorithm was iterated 100 times and repeated 5 

times with different random initializations, yielding a total of 500 candidate parameter sets 

(Figure 2A). The 500 candidate parameter sets were evaluated in the validation set to obtain 

the top 10 candidate parameter sets. To ensure diversity among the parameter sets, the 

procedure to select the top 10 parameter sets was as follows. First, the parameter set with the 

lowest validation cost was selected. Then, the parameter set with the lowest validation cost and 

whose parameter (wEE, wEI, 𝜎) maps exhibited less than 0.98 correlation with the current 

selected parameter set(s) was selected. This procedure was repeated until 10 parameter sets 

were selected.   

The top 10 candidate parameter sets from CMA-ES were then applied to the HCP test set 

SC. For each parameter set, 1000 simulations were performed, yielding 1000 simulated static 

FC and FCD matrices. Pearson correlation and the absolute difference were then computed 

between each simulated FC and the empirical FC from the HCP test set and averaged. Similarly, 

KS statistics was computed between each simulated FCD CDF and the empirical FCD CDF 

from the HCP test set and averaged.  

To speed up the computation, a step size of 6ms was used to integrate the ODEs in the 

training set. However, to ensure more accurate integration, a step size of 0.5ms was used for 

both validation and test sets. To ensure that this time step size was small enough, we repeated 

the experiment using a step size of 6ms for the training set and a step size of 0.1ms for the 

validation and test sets. The overall cost was highly similar across step size of 0.5ms and step 

size of 0.1ms. In particular, for both 0.5ms and 0.1ms step sizes, an overall cost of 0.58 ± 0.018 

was achieved in the HCP test set across the top 10 parameter sets from the validation set. 

Additionally, we observed that the correlations between wEI and T1w/T2w ratio were 

consistently negative, while the correlations between wEI and RSFC gradient were consistently 

positive across the top 10 parameter sets. Since the training sets for the alprazolam and PNC 

datasets were substantially smaller than the HCP training set (~15 participants versus 335 

participants), when optimizing the pFIC model in the alprazolam, PNC and GUSTO datasets, 

we additionally imposed the constraints that wEI and T1w/T2w ratio should be negative, while 

the correlations between wEI and FC gradient should be positive. 

It is worth noting that when evaluating the top 10 model estimates (selected from the 

HCP validation set) in the HCP test set, the correlation loss (1-r) ranged from 0.27 to 0.29, 

absolute difference loss d ranged from 0.08 to 0.14, and the KS distance ranged from 0.14 to 

0.23. In our previous study (19), our cost function was (1-r) + KS. Changing the relative 

weights of (1-r) and KS did not substantially change the model estimate. Therefore, we kept 

the weights unchanged in the current study. However, we observed that the simulated fMRI 

time courses were overly synchronized, so we included the additional absolute difference (d) 

metric in the current study. We observed that setting the relative weight of d to be the same as 

the other 2 terms was sufficient to prevent the simulated fMRI time courses from becoming 
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over-synchronized (Figure S1). Therefore, we did not consider changing the relative weights 

further. 

 

S11. Pharmacological E/I ratio analysis 

Recall that the 45 participants of the alprazolam dataset were randomly divided into 

training (N = 15), validation (N = 15) and test (N = 15) sets. Each participant had 2 runs of 

fMRI data - one run for the drug session and one run for the placebo session. Because there 

was no diffusion data in the alprazolam dataset, the SC matrices used for training, validation, 

and testing were the same as HCP training, validation, and tests set respectively. The T1w/T2w 

ratio map also had to be generated from HCP training set.   

Due to the limited FOV of the alprazolam dataset, we only considered regions with 

more than 50% ROI coverage, resulting in 42 ROIs (in the case of the Desikan-Killiany 

parcellation). The remaining 26 ROIs were masked out for the group-level SC, static FC, FCD, 

T1w/T2w ratio. Furthermore, given the limited FOV, the first principal FC gradient was 

generated from HCP training set and the 26 ROIs were masked out similarly. For each 

experimental condition (placebo or alprazolam), 250 candidate parameter sets were generated 

from the condition’s training set. The top 10 parameter sets from the validation set were 

evaluated in the test set. 

Although the parameters were only estimated based on the 42 ROIs, the estimated linear 

coefficients could be used to generate whole cortex estimates of wEE, wEI and 𝜎 (based on 

equations 7 to 9) given that the original T1w/T2w ratio and FC gradient (from the HCP training 

set) covered the whole cortex. The simulated time courses SE and SI were then generated using 

the 68-ROI SC and extrapolated model parameters. For a given set of parameters, 1000 

simulations were performed to generate 1000 sets of E/I ratio. The final E/I ratio was the 

average across 1000 sets of E/I ratio. 

E/I ratio contrast was defined as the difference between E/I ratio of the placebo sessions 

and E/I ratio of the drug sessions. To test that the E/I ratio contrast was significantly greater 

than 0, we performed permutation test to generate a null distribution of E/I ratio contrasts. More 

specifically, after dividing the participants into training, validation and test sets, the ‘drug’ and 

‘placebo’ sessions were randomly permuted within each participant. The entire procedure 

(above) was repeated, generating a null value for the E/I ratio contrast. The permutation 

procedure was repeated 100 times, yielding a null distribution of regional E/I ratio contrasts. 

A 2-tail p-value was computed based on this null distribution.  

The regional E/I ratio contrast was also correlated with benzodiazepine receptor (BZR) 

density. The statistical significance of this correspondence was computed using a spin test that 

accounts for spatial autocorrelation (22).  

 

S12. Association between age and E/I ratio in the PNC dataset 

885 participants of the PNC dataset (9) were first sorted according to age in ascending 

order and divided into 29 groups of 30 or 31 participants. For each age group, 15 participants 

were randomly selected as the validation set, while the remaining participants were assigned 

to the training set.  

To be consistent with previous analyses, the SC matrices used for training and 

validation were the same as HCP training and validation sets respectively. Both T1w/T2w ratio 

and the first principal FC gradient maps were generated from HCP training set, consistent with 

the alprazolam analyses. For each age group, 250 candidate model parameter sets were 
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generated from the group’s training set using CMA-ES and evaluated in the group’s validation 

set. For each age group, the parameter set with the lowest validation cost was used to estimate 

regional E/I ratio across the cortex. 

For each cortical ROI, we fitted a linear regression model between regional E/I ratio 

and the mean age of each age group. The slope of the linear regression model (for each brain 

region) was visualized on the cortical surface. All slopes were negative and all p-values 

survived FDR correction (q < 0.05). For robustness, the split of the participants into training 

and validation sets were repeated 5 times and the most representative split was shown in Figure 

4.  

 

S13. Association between cognition and E/I ratio in the PNC dataset 

Each PNC participant had completed a set of 12 tasks from 4 cognitive domains, 

including executive control, episodic memory, complex cognition, and social cognition. Three 

types of scores, including an accuracy score, a speed score, and an efficiency score, were 

obtained for each of the 12 tasks. Factor analyses of each type of scores were performed within 

each cognitive domain and across all cognitive domains to generate three domain-specific 

accuracy factor scores and one domain-general (overall) accuracy score (23). 

To control for age, 885 participants were sorted according to age in an ascending order. 

For each 12-month interval, participants whose age were within this interval were extracted to 

form one age group. For each age group, participants with domain-general (overall) accuracy 

scores above the median were assigned to a high-performance group, the rest are assigned to a 

low-performance group. In sum, 441 participants were assigned to the high-performance group 

(mean age = 15.68), 444 participants were assigned to the low-performance group (mean age 

= 15.64). Both high and low-performance groups were then divided into 14 subgroups of 31 

(or 32) participants, yielding 14 pairs of age-matched high-performance and low-performance 

groups (see Figure 5A and 5B).  

Participants of each subgroup were further randomly divided into a training set (N = 

16) and a validation set (N = 15 or 16). Similar to the previous analyses, SCs used for training 

and validation were from the HCP training and validation sets respectively. T1w/T2w ratio and 

FC gradient maps were from the HCP training set. The E/I ratios of the 14 pairs of high-

performance and low-performance groups were estimated separately and compared using a 2-

tail 1-sample t-test. To test for domain specificity, we also repeated the analyses for the 3 

domain-specific accuracy scores. FDR correction with q < 0.05 was used to correct for multiple 

comparisons.  

 

S14. Association between cognition and E/I ratio in the GUSTO dataset 

Our analyses were based on the fMRI and behavioral data of 154 participants from the 

GUSTO dataset. The fMRI data were acquired when the participants were around 7.5 years 

old. We selected 5 behavioral scores which assessed participants’ cognitive performances. All 

behavior tests were performed within 1.5 years of fMRI acquisition (i.e., age 6 to 8.5). The 5 

test scores were as follows: (1) Cambridge Neuropsychological Test Automated 

Battery (CANTAB) Spatial Working Memory (SWM) test (completed at age 6): sum of total 

errors for 4 and 6 boxes trails. (2) Delayed Matching to Sample (DMS) test (completed at age 

6): percentage of the total number of trials upon which a correct selection was made on the 

participant's first response. (3) Behavior Rating Inventory of Executive Function (BRIEF; 

completed at age 7): Cognition Regulation Index T-score. (4) Wechsler Abbreviated Scale of 
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Intelligence (WASI) test (completed at age 7): sum of Block Design and Matrix Reasoning T-

scores. (5) CANTAB SWM test (completed at age 8.5): sum of total errors for 4 and 8 boxes 

trails.  

Principal component analysis (PCA) was performed on these 5 scores across all 

participants to derive the first principal component (PC1) score. Higher PC1 score indicated 

better cognitive performance across the 5 behavioral scores (on average). Participants were 

sorted according to their PC1 scores in an ascending order. The first 77 participants were 

assigned to the low-performance group, while the rest of 77 participants were assigned to the 

high-performance group. Ages were well-matched between high and low-performance groups 

(Figure 6A).  

Participants of high and low-performance groups were further randomly divided into a 

training set (N = 39) and a validation set (N = 38). Similar to the previous analyses, SCs used 

for training and validation were from the HCP training and validation sets respectively. 

T1w/T2w ratio and FC gradient maps were from the HCP training set. For robustness, the 

analyses were repeated 5 times with different random training-validation splits of participants 

within high-performance group and each low-performance group. Results from the most 

representative split were shown in the results. 

To compute the statistical significance of E/I ratio differences between low and high-

performance groups, PC1 scores were randomly permuted across participants. The participants 

were again assigned to high or low-performance groups according to their permuted PC1 scores. 

Then the E/I ratio difference was re-estimated. This permutation process was repeated 100 

times to construct a null distribution of E/I ratio difference. A 2-tail p-value was computed 

based on this null distribution.  
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Supplemental Figures 

 

 
 

Figure S1. Importance of absolute difference (d) metric to prevent overly synchronized 

simulated fMRI time series. (A) Empirical FC from the HCP test set. (B) Simulated FC from 

the pFIC model using the best model parameters (from the validation set) and SC from the 

test set when the cost function contains all three terms: (1 – r) + d + KS. The cost function 

contained two terms related to static FC: disagreement between empirical and simulated FC 

in terms of Pearson’s correlation (1 – r) and absolute difference (d). (C) Simulated FC from 

the pFIC model using the best model parameters (from the validation set) and SC from the 

test set when the cost function contained only two terms: (1 – r) + KS. (D) Agreement 

(Pearson’s correlation) between empirical and simulated static FC when the when the cost 

function contained only two terms: (1 – r) + KS. Therefore, without the inclusion of the 

absolute difference (d) metric, we can obtain good correlation agreement between simulated 

and empirical FC. However, by comparing panels (B) and (C), we observe that the lack of the 

absolute difference (d) metric leads to overly synchronized fMRI signals, compared with the 

empirical FC in panel A. It is also worth noting that the over-synchronization phenomenon 

was also observed in our previous study (19), which used (1 – r) + KS as the cost function. 

Therefore, in this study, we added the absolute difference (d) cost to the cost function.  
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Figure S2. Regional evaluation of pFIC model for static FC. (A) Spatial distribution of 

region-level FC loss (dissimilarity) between simulated and empirical fMRI in the HCP test 

set. The regional FC correlation loss was defined as (1 - ri), where ri is the Pearson’s 

correlation between the i-th rows of empirical and simulated static FC matrices. (B) Regional 

FC correlation losses grouped by different large-scale networks. The boxes show the inter-

quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses represent 

outliers (C) There was no significant correlation between RSFC gradient and the regional FC 

correlation loss (r = 0.23, two-tail spin test p = 0.34).  (D) There was no significant 

correlation between T1w/T2w ratio and the regional FC correlation loss (r = -0.04, two-tail 

spin test p = 0.87). 
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Figure S3. Regional evaluation of pFIC model for FCD.  (A) Spatial distribution of region-

level FCD dissimilarity (KS distance) between empirical and simulated FCD in the HCP test 

set. To compute regional KS distance, recall that we have previously computed a 68 × 68 FC 

matrix for each sliding window (1118 sliding windows in total). For each region, the 

corresponding rows of the 68 × 68 FC matrices were then correlated across the 1118 

windows, yielding a 1118 × 1118 FCD matrix for each region. The KS distance can thus be 

computed for each region. (B) Regional KS distances grouped by different networks. The 

boxes show the inter-quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black 

crosses represent outliers. (C) There was no significant correlation between RSFC gradient 

and regional KS distance (r = -0.26, two-tail spin test p = 0.27).  (D) There was no significant 

correlation between T1w/T2w ratio and regional KS distance (r = 0.39, two-tail spin test p = 

0.14). 
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Figure S4. (A) Comparison of the total costs in the validation set and the test set of the 

alprazolam session. (B) Comparison of the total costs in the validation set and the test set of 

the placebo session. The total costs in the validation set correspond to the lowest 10 

validation costs, generated from the top 10 sets of parameters from the validation set. The 

total costs of the test set were computed using the same 10 sets of parameters and the 

structural connectivity of the test set. For both alprazolam and placebo sessions, total costs of 

the test set were significantly lower than those of the validation set, suggesting that the 

parameters generalized well from the validation set to the test set. The boxes show the inter-

quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses represent 

outliers. 
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Figure S5. Desikan parcellation with 50% ROI coverage threshold. Due to limited FOV of the 

alprazolam dataset, only ROIs with coverage higher than a pre-specified threshold were 

included. ROIs included (excluded) for analysis are colored in cyan (grey). 42 out of 68 ROIs 

are included. 
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Figure S6. (A to D) As a control analysis of the alprazolam E/I ratio contrast result, the same 

analysis was replicated with 4 additional training-validation-test participant splits. E/I ratio 

contrast was defined as the E/I ratio difference between the placebo session and the drug 
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session. 45 participants were randomly assigned to a different training, validation, and test 

set. (Left) Spatial distribution of E/I ratio contrast between placebo and drug session. (Right) 

The E/I ratio contrast decreases along a sensory-to-association axis. The boxes show the 

inter-quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses 

represent outliers. 
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Figure S7. Pairwise correlation between the regional E/I ratio contrast across different training-

validation-test participant splits (split #1-5). The spatial distribution of region E/I ratio contrast 

are highly similar across splits (r = 0.9899 ± 0.0062, mean ± std). Only the upper triangle of 

the matrix is shown. We chose the split that had the highest median correlation of regional E/I 

ratio contrast with the other 4 splits as the most representative split (i.e., split #1) and showed 

as Figure 3 of the main text.  
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Figure S8. As a control analysis of the alprazolam E/I ratio contrast result, the acceptable 

excitatory firing rate range was set to be less strict. The range was changed from 2.7 – 3.3Hz 

to 2.5 – 3.5 Hz. We repeated the same analysis, and the model parameters were retrained 

using the same optimization approach. The boxes show the inter-quartile range (IQR) and the 

median. Whiskers indicate 1.5 IQR. Black crosses represent outliers. 
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Figure S9. (A) Desikan parcellation with 60% ROI coverage threshold, 39 out of 68 ROIs are 

left. (B) As a control analysis of the alprazolam E/I ratio contrast result, the ROI coverage 

threshold was changed to be stricter. The threshold was raised from 50% to 60%. As a result, 

3 more ROIs were removed from analysis. We repeated the same analysis, and the model 

parameters were retrained using the same optimization approach. The boxes show the inter-

quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses represent 

outliers. 
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Figure S10. (A) Yan parcellation with 50% ROI coverage threshold, 51 out of 100 ROIs are 

left. (B) As a control analysis of the alprazolam E/I ratio contrast result, we changed the 

parcellation scheme to a higher-resolution 100-ROI parcellation. Yan parcellation has ROIs 

that are symmetric for the left and right hemispheres. We repeated the same analysis, and the 

model parameters were retrained using the same optimization approach. The boxes show the 

inter-quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses represent 

outliers. 
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Figure S11. Pairwise correlation between the regional E/I ratio contrast across different 

control analyses based on split #1. Split #1 corresponds to the results shown in Figure 3 of 

the main text. The spatial distribution of region E/I ratio contrast are highly similar across 

different control analyses (r = 0.9373 ± 0.0606, mean ± std). Only the upper triangle of the 

matrix is shown. 
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Figure S12. (A) Spatial correlation between regional E/I ratio contrast and log-transformed 

benzodiazepine receptor (BZR) density (r = 0.44). (B) Spatial correlation between regional 

E/I ratio contrast and the square root of BZR density (r = 0.48). Both correlations were 

weaker than the main results (Figure 3D), although the correlations remained statistically 

significant. 
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Figure S13. (A to D) PNC developmental analysis results obtained from 4 additional training-

validation participants splits. (Left) The mean cortical E/I ratio decreases with increasing age.  

(Middle) The spatial distribution of regional rate of E/I ratio reduction. (Right) The regional 

rate of E/I ratio reduction followed a hierarchical sensorimotor-association (S-A) axis. To 

generate a training-validation split, 885 PNC participants were sorted according to age in an 

ascending order and divided into 29 age groups. Within each age groups, participants were 
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randomly assigned to training and validation sets. The random participant splits and analyses 

were repeated 5 times (One shown in Figure 4, the other four shown here). All 5 splits exhibited 

the similar pattern of overall E/I ratio reduction and spatial distribution of the rate of reduction. 

We chose the split that had the highest median correlation of regional rate of E/I ratio reduction 

with the other 4 splits as the most representative split and showed in the main result section. 

The shaded area depicts 95% confidence interval of the linear relationship. The boxes show 

the inter-quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses 

represent outliers. 
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Figure S14. Pairwise correlation between the regional rate of E/I ratio reduction of 5 training-

validation participant splits. Split #1 corresponds to the results shown in Figure 4 of the main 

text. The spatial distributions of the rate of E/I ratio reduction are highly similar across the 5 

splits (r = 0.9426 ± 0.0551, mean ± std). The surface maps of different splits are shown in 

Figure S13. Only the upper triangle of the matrix is shown. 
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Figure S15. PNC developmental analysis results with relaxed excitatory firing rates 

thresholds. This figure is similar to Figure 4 but with the acceptable excitatory firing rates 

range was set to be less strict (2.5Hz to 3.5Hz). (Left) The scatter plot of overall E/I ratio 

reduction during development. The mean cortical E/I ratio is the average E/I ratio across all 

ROIs. (Middle) The spatial distribution of region E/I ratio reduction rate. (Right) Box plot of 

the vertex-level E/I ratio grouped by 7 resting-state networks. The boxplots comprised values 

obtained by “transferring” the parameter estimates from the 68 Desikan parcels to all vertices 

(from the underlying cortical meshes) comprising each anatomical parcel. The vertex wise 

parameter values were then segregated based on the seven resting-state networks. Therefore, 

there were 3203, 2478, 1523, 1520, 1067, 1438 and 2886 values comprising the boxplots for 

somatomotor, visual, dorsal attention, ventral attention, limbic, control and default networks 

respectively. The shaded area depicts 95% confidence interval of the linear relationship. The 

boxes show the inter-quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black 

crosses represent outliers. The rate of E/I ratio reduction follows the sensorimotor-association 

(S-A) axis. E/I ratio exhibits the fastest rate of reduction in sensory regions compared to 

association regions.  
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Figure S16. PNC developmental analysis results in Yan 100-ROI parcellation. This figure is 

similar to Figure 4 but utilizes the Yan 100-ROI parcellation with symmetric left and right 

hemisphere ROIs. (Left) The scatter plot of overall E/I ratio reduction during development. 

The mean cortical E/I ratio is the average E/I ratio across all ROIs. (Middle) The spatial 

distribution of region E/I ratio reduction rate. (Right) Box plot of the vertex-level E/I ratio 

grouped by 7 resting-state networks. The boxplots comprised values obtained by 

“transferring” the parameter estimates from the 100 Yan parcels to all vertices (from the 

underlying cortical meshes) comprising each anatomical parcel. The vertex wise parameter 

values were then segregated based on the seven resting-state networks. Therefore, there were 

3203, 2478, 1523, 1520, 1067, 1438 and 2886 values comprising the boxplots for 

somatomotor, visual, dorsal attention, ventral attention, limbic, control and default networks 

respectively. The shaded area depicts 95% confidence interval of the linear relationship. The 

boxes show the inter-quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black 

crosses represent outliers. The rate of E/I ratio reduction follows the sensorimotor-association 

(S-A) axis. E/I ratio exhibits the fastest rate of reduction in sensory regions compared to 

association regions. 
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Figure S17. Pairwise correlation between the regional rate of E/I ratio reduction of different 

control analyses based on split #1. Split #1 corresponds to the results shown in Figure 4 of 

the main text. The spatial distributions of the rate of E/I ratio reduction are highly similar 

across different control analyses (r = 0.8100 ± 0.1603, mean ± std). The surface maps of 

different cases are shown in the supplementary Figure S15 and S16. Only the upper triangle 

of the matrix is shown. 
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Figure S18. (A) Mean framewise displacement (FD) decreased with age (r = -0.58, p = 9.1e-

4). (B) After regressing out mean FD from the estimated E/I ratio across all age groups, the 

residuals still significantly decreased with age (r = -0.45, p = 0.013). (C) Spatial distribution of 

linear regression slope between FD-regressed E/I ratio and age. All slopes were negative and 

significant (FDR q < 0.05). (D) The slopes exhibited a spatial gradient with sensory-motor 

networks showing the fastest reduction and association networks showing slower reduction. The 

boxes show the inter-quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black 

crosses represent outliers. 
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Figure S19. Box plots of E/I ratio estimated from the three domain-specific accuracy scores 

from Penn Computerized Neurocognitive Battery (CNB). For each 1-year interval, 

participants whose age are within this interval are extracted to form one age group. For each 

age group and cognitive score, participants with cognitive scores above the median are 

assigned to a high-performance group, the rest are assigned to a low-performance group.  

Both high- and low-performance groups are further divided into subgroups. Participants 

within each subgroup are randomly assigned to training and validation sets. Each box plot 

shows the E/I ratio of high- and low-performance group associated with each cognitive score. 

We observed no significant difference between E/I ratio of high- and low-performance 

groups for any of the three cognitive scores. The boxes show the inter-quartile range (IQR) 

and the median. Whiskers indicate 1.5 IQR. 
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Figure S20. PNC cognition analysis results obtained from 4 additional training-validation 

participants splits (Figure. S20 to S23). To generate a training-validation split, 885 PNC 

participants were sorted according to age in an ascending order. For each 1-year interval, 

participants whose age are within this interval are extracted to form one age group. For each 

age group, participants with cognitive scores above the median are assigned to a high-

performance group, the rest are assigned to a low-performance group. Both high- and low-

performance groups are further divided into 14 subgroups. Participants within each subgroup 
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are randomly assigned to training and validation sets. The random participant splits and 

analyses were repeated 5 times. (A) Boxplots of age, (B) ‘Overall accuracy’, and (C) Mean 

cortical E/I ratio of high- and low-performance groups. (D) Spatial distribution of effect size 

of regional E/I ratio difference between high-performance and low-performance groups. (E) 

On a network level, the effect sizes of E/I ratio differences follow a hierarchical structure. We 

chose the split that had the highest median correlation of regional Cohen’s d values with the 

other 4 splits as the most representative split and showed in the main result section. The results 

of the 4 splits are consistent with our main results. The boxes show the inter-quartile range 

(IQR) and the median. Whiskers indicate 1.5 IQR. (F) ROI rankings along the sensorimotor-

association (S-A) axis. Lower ranks were assigned to ROIs that were more towards the 

sensorimotor pole; higher ranks were assigned to ROIs that were more towards the association 

pole. (G) Agreement between the effect size of E/I ratio difference and S-A axis rank.  
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Figure S21. The 3rd training-validation participant split for PNC cognition analysis. 
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Figure S22. The 4th training-validation participant split for PNC cognition analysis. 
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Figure S23. The 5th training-validation participant split for PNC cognition analysis. 
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Figure S24. Pairwise correlation of regional effect sizes (i.e., Cohen’s d) between E/I ratios 

of high- and low-performance groups across 5 participant splits (split #1-5). For each split, 

high- and low-performance groups were divided into 14 subgroups with training and 

validation sets. The spatial distributions of the rate of E/I ratio reduction are highly similar 

across the 5 splits (r = 0.7050 ± 0.1911, mean ± std). Split #1 corresponds to the results 

shown in Figure 5 of the main text. The surface maps of different splits are shown in the main 

result (Figure 5D) and supplementary information (Figure. S20 to S23). Only the upper 

triangle of the matrix is shown. 
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Figure S25. PNC cognition analysis results with relaxed excitatory firing rates thresholds. 

This figure is similar to Figure 5 but with the acceptable excitatory firing rates range was set 

to be less strict (2.5Hz to 3.5Hz). (A) Boxplots of age, (B) ‘Overall accuracy’, and (C) Mean 

cortical E/I ratio of high- and low-performance groups. (D) Spatial distribution of effect size 

of regional E/I ratio difference between high-performance and low-performance groups. (E) 

Box plot of Cohen’s d of vertex-level E/I ratio differences grouped by 7 resting-state 

networks. The boxplots comprised values obtained by “transferring” the parameter estimates 
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from the 68 Desikan parcels to all vertices (from the underlying cortical meshes) comprising 

each anatomical parcel. The vertex wise parameter values were then segregated based on the 

seven resting-state networks. Therefore, there were 3203, 2478, 1523, 1520, 1067, 1438 and 

2886 values comprising the boxplots for somatomotor, visual, dorsal attention, ventral 

attention, limbic, control and default networks respectively. The boxes show the inter-quartile 

range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses represent outliers. The 

difference of E/I ratio between high- and low-performance groups follows a hierarchical 

structure. Cohen’s d of E/I ratio differences in cognition is larger in association regions 

compared to sensory regions. (F) ROI rankings along the sensorimotor-association (S-A) 

axis. Lower ranks were assigned to ROIs that were more towards the sensorimotor pole; 

higher ranks were assigned to ROIs that were more towards the association pole. (G) 

Agreement between the effect size of E/I ratio difference and S-A axis rank. 
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Figure S26. PNC cognition analysis results in Yan 100-ROI parcellation. This figure is 

similar to Figure 5 but utilizes the Yan 100-ROI parcellation with symmetric left and right 

hemisphere ROIs. (A) Boxplots of age, (B) ‘Overall accuracy’, and (C) Mean cortical E/I 

ratio of high- and low-performance groups. (D) Spatial distribution of effect size of regional 

E/I ratio difference between high-performance and low-performance groups. (E) Box plot of 

Cohen’s d of vertex-level E/I ratio differences grouped by 7 resting-state networks. The 

boxplots comprised values obtained by “transferring” the parameter estimates from the 100 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 28, 2024. ; https://doi.org/10.1101/2023.06.22.546023doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.22.546023
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Yan parcels to all vertices (from the underlying cortical meshes) comprising each anatomical 

parcel. The vertex wise parameter values were then segregated based on the seven resting-

state networks. Therefore, there were 3203, 2478, 1523, 1520, 1067, 1438 and 2886 values 

comprising the boxplots for somatomotor, visual, dorsal attention, ventral attention, limbic, 

control and default networks respectively. The boxes show the inter-quartile range (IQR) and 

the median. Whiskers indicate 1.5 IQR. Black crosses represent outliers. The difference of 

E/I ratio between high- and low-performance groups follows the sensory-to-association (SA) 

axis. Cohen’s d of E/I ratio differences in cognition is larger in association regions compared 

to sensory regions. (F) ROI rankings along the sensorimotor-association (S-A) axis. Lower 

ranks were assigned to ROIs that were more towards the sensorimotor pole; higher ranks 

were assigned to ROIs that were more towards the association pole. (G) Agreement between 

the effect size of E/I ratio difference and S-A axis rank. 
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Figure S27. Pairwise correlation of regional effect sizes (i.e., Cohen’s d) between E/I ratios 

of high- and low-performance groups across different control analyses based on split #1. Split 

#1 corresponds to the results shown in Figure 5 of the main text. The spatial distributions of 

the rate of E/I ratio reduction are highly similar across different control analyses (r = 0.8328 

± 0.0817, mean ± std). Only the upper triangle of the matrix is shown. 
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