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One sentence summary: 
Using longitudinal macaque viral challenge studies, we identified shared and virus-specific responses to infection that 
replicate in human viral disease - thereby demonstrating the utility of macaque models of viral infection to understand 
antiviral biology and for pandemic preparedness.  
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ABSTRACT 
Viral pandemics and epidemics pose a significant global threat, with emerging and re-emerging viruses responsible for four 
pandemics in the 21st century alone. While macaques have been utilized as a model for understanding viral disease in a 
controlled setting, it remains unclear how conserved the antiviral responses to diverse viruses are between macaques and 
humans. To address this critical knowledge gap, we conducted a comprehensive cross-species analysis of transcriptomic 
data from over 6000 blood samples from macaques and humans infected with one of 31 viruses, including Lassa, Ebola, 
Marburg, Zika, and dengue. Our findings demonstrate that irrespective of primate or viral species, there are conserved 
antiviral responses which are consistent regardless of infection phase (acute, chronic, or latent) and viral genome type (DNA 
or RNA viruses). Moreover, by leveraging longitudinal data from experimental challenges, we identified virus-specific 
response dynamics such as host responses to Coronaviridae and Orthomyxoviridae infections peaking 1-3 days earlier than 
responses to Filoviridae and Arenaviridae viral infections. Additionally, through comparative analysis of immune responses 
across viruses, we identified a unique enrichment of lymphoid cellular response modules in macaque Flaviviridae infection 
that persists in human responses to dengue. Our results underscore macaque studies as a powerful tool for gaining new 
insights into viral pathogenesis and immune responses that translate to humans, which can inform viral therapeutic 
development and enable pandemic preparedness. 
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Introduction 
Current, emerging, and reemerging viruses constantly threaten human health, not only by causing disease and death, but 
also by driving wider societal and global consequences. Estimates suggest that RNA viruses make up to 44% of all emerging 
infectious diseases, with 2-3 novel virulent viruses discovered yearly and most of zoonotic origins.1,2 Particular RNA viral 
families, including Flaviviridae, Coronaviridae and Orthomyxoviridae, have led to multiple epidemics and pandemics 
within the 21st century3, demonstrating their pandemic potential. RNA viruses constantly evolve: mistake-prone RNA 
polymerases introduce genomic mutations and zoonotic reservoirs drive unique evolutionary pressures on viruses that lead 
to unpredictable emergence patterns and disease manifestations.4,5 While controlled human infection studies are ideal for 
developing translational solutions, such studies are generally difficult and unethical for lethal and emerging pathogens. 
Therefore, non-human primate (NHP) models, particularly the macaque model, continue to be critical for understanding 
disease pathogenesis, vaccine modalities, and therapeutic interventions.6  

Previously, we identified a conserved host response in human infection across multiple viruses that have led to epidemics 
and pandemics.7,8 However, multiple questions remain. For example, determining generalizability of host responses across 
infection by viruses such as Marburg and Lassa is needed; yet, the lack of available data on human infections caused by 
these and other viruses impedes the assessment of panviral responses. Additionally, understanding early antiviral responses 
remains important though complicated in human profiling studies due to the challenge of identifying time-of-infection and 
virus incubation periods. Furthermore, while it is necessary to compare the longitudinal dynamics of host response induction 
across viruses, ethical concerns exist regarding human viral challenge studies. Here, macaque studies are advantageous 
because they allow for the understanding of diverse and lethal viral pathogens in well-controlled challenge studies, whereby 
measurements can be taken across multiple timepoints pre- and post-infection. However, the extent to which macaque 
immune responses reflect human host responses or vice versa is unclear, particularly whether both humans and macaques 
evoke similar antiviral responses upon infection. By leveraging transcriptomic profiles from both macaque and human 
infection studies, we aim to determine the utility of macaque models for understanding and predicting human responses to 
emerging viruses and to map conserved and unique features of the immune response to different viruses.   

In this study, we performed the largest transcriptome analysis of viral disease in macaques and humans to (1) directly 
compare human and macaque antiviral responses and (2) define conserved and unique features of host responses across 
viruses of concern. We used blood transcriptome data from 21 bulk RNA-seq datasets comprising 743 samples from 198 
macaques from three species of macaques (rhesus, cynomolgus and pigtailed macaques) and infection by 13 viruses across 
five viral families. We utilized longitudinal data to analyze the dynamics of viral response induction across numerous 
viruses, some of which have been seldom studied in the context of human transcriptomic responses. Further, we applied our 
previously identified conserved human host response, Meta-Virus Signature (MVS), which distinguishes viral infection 
from healthy controls and predicts severity in humans, to show that macaques also induce antiviral responses similar to 
those of humans and that these response dynamics vary by viral family.7,8 We also demonstrate that conserved responses in 
NHP data robustly translate to human transcriptomic responses to heterogenous viral infections by leveraging 5345 human 
samples across 47 datasets. Additionally, comparative analysis across antiviral responses allows us to identify differentiating 
features of T cell responses in Flaviviridae infection of macaques that replicate in human studies. Together, this work 
demonstrates that macaque transcriptomic antiviral responses robustly recapitulate those in human viral disease and are 
conserved across diverse viruses - further supporting the use of macaque models to develop antiviral countermeasures, 
particularly in cases where human studies are not possible.  

Results 

Data collection, curation, and preprocessing 

We searched public repositories and publications for blood transcriptomic datasets from macaques with viral infection. We 
focused on acute RNA viruses from the World Health Organization (WHO) list of priority pathogens.9 We also included 
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Orthomyxoviridae due to its history of, and potential for, driving pandemics (Tables 1 and S1). We identified 21 datasets 
composed of 743 samples from 198 macaques infected with one of 13 viruses across five viral families (Tables 1 and S1). 
Together, these datasets represented a broad spectrum of biological and technical heterogeneity as they included data from 
three different macaque species infected with one of 13 viruses via different routes and doses, and profiled using different 
microarray platforms and by RNA sequencing. Because timepoints across datasets were not uniform, we grouped timepoints 
into six discrete categories, where T0 included uninfected samples prior to challenge, T1 spanned days 1-2 post-infection, 
T2 was days 3-5, T3 was days 6-8, T4 was days 9-13 and T5 was days 14+ (Figure 1A). While most datasets included 
animals from baseline through infection, one Arenaviridae challenge dataset did not have pre-infection timepoints, requiring 
unpaired analyses when this dataset was included. Before analyzing all the macaque species together, we confirmed that the 
macaque species were comparable at baseline by comparing pairwise correlation of the 2,083 shared genes across the 

different datasets. We found that there were no differences across datasets of different macaque species when compared to 
the variation seen across datasets within the same macaque species (Figure S1). 

Conserved immune response to viral infections in humans is also conserved in macaques to diverse RNA viruses 

We asked whether macaques are a representative model for studying human immune responses to viral infections. To answer 
this question, we used the MVS, the conserved immune response signature we have described and validated previously.7,8 
As described before,7 we calculated the MVS score for each macaque sample in each dataset and compared the MVS scores 
at peak infection timepoint to those at the baseline. We defined peak infection timepoint in a dataset as the timepoint 
category with the highest median MVS score. The MVS scores were significantly higher (padj<0.001) and accurately 
distinguished macaques at peak infection from uninfected timepoints (area under the receiver operating characteristic 
(AUROC) curve >= 0.8) across all viruses (Figures 1B, 1C and S2). We also examined other gene sets previously 
demonstrated to correlate with human viral infection. All viral infection datasets showed significant increase in interferon-
stimulated gene (ISG) expression (padj<0.001), whereas Arenaviridae, Coronaviridae, and Filoviridae infections 
demonstrated significant downregulation of HLA Class II genes (padj<0.05) and significant upregulation of MS1 signature 
genes (padj<0.01)10(Figures S3A, S3B and S3C). 

 
Table 1: Sample distribution of macaque bulk RNA-seq datasets. 
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Importantly, we have shown that the MVS score is significantly correlated with severity of viral infection in humans.8 There 
were four datasets with known risk factors for severity in macaques. The MVS score was significantly associated with risk 

 
Figure 1. Conserved immune response to viral infection in humans is similarly present in macaque infection and driven by myeloid cells (A) Schematic of macaque sample 
overview and timepoint distribution. (B) Distribution of the Meta-Virus signature (MVS) scores comparing uninfected, healthy macaques to those at peak MVS score by 
viruses across five viral families. Each point represents a blood sample. Significance values were determined using an unpaired Wilcoxon ranked-sum test with Bonferroni 
correction for multiple hypothesis testing. (C) ROC curves for distinguishing macaques with viral infection at peak MVS timepoint category from uninfected macaques, 
colored by the viral family associated with infection (382 samples in 21 datasets). (D-G) Association of MVS scores with the known risk factors of disease severity (D) 
vaccination status, (E) virus strain, (F) age of host, and (G) live virus across four different datasets from macaques infected with Machupo, influenza or Ebola virus. P-value 
was determined by ANCOVA test accounting for MVS score at pre-infection timepoint and a risk factor of interest as a covariate of the MVS score post-infection. (G-I) 
UMAP visualization of 56,929  immune cells from 17 animals colored by (H) cell type, (I) day post-infection, and (J) MVS score. (K) Heatmap representing the average 
MVS score of each cell type across pre-infection and each day post-infection. Asterisk values across figure are represented as follows: *p-value < 0.05, **p-value < 0.01, 
***p-value < 0.001, and ****p-value < 0.0001. WB = Whole blood, PBMC = Peripheral blood mononuclear cells, MACV = Machupo virus, EBOV = Ebola virus, IFV = 
influenza virus.  
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factors (p<0.04) including: Machupo virus infection of unvaccinated (more severe disease) versus vaccinated macaques11 
(Figure 1D), infection by Mayinga (more severe disease) versus Makona Ebola strains12,13 (Figure 1E), influenza infection 
of old (more severe disease) versus young macaques14 (Figure 1F), and infection by live (more severe disease) versus 
inactivated influenza infection15 (Figure 1G). These results demonstrate that conserved transcriptional signatures to viral 
infections in humans are also conserved in macaques and associated with known risk factors for severe outcome.  
 
Furthermore, we have previously found that the MVS is driven by myeloid cells in humans with COVID-19.8 Therefore, 
we analyzed a single-cell RNA-seq (scRNA-seq) dataset of whole blood samples from macaques infected with Ebola virus 
(56,929 cells from 17 macaques)16 to investigate whether the conserved immune response in macaques is driven by the same 
immune cells (Figures 1H and 1I). We found that, similar to humans with COVID-19, the MVS genes were preferentially 
expressed in myeloid cells8 (Figures 1J and 1K). These results further suggest that myeloid cells are also a major driver of 
the MVS for multiple viruses in macaques. To further characterize infection-driven changes in myeloid cells, we examined 
longitudinal gene expression profiles from pre-infection to 8 days post-infection when macques developed severe and fatal 
disease. We observed an increase in ISG expression (r=0.93, p<1e-4; Figure S3D), MS1 signature genes (r=0.71, p<1e-4; 
Figure S3E), and downregulation of HLA Class II genes (r=-0.61, p<6e-4; Figure S3F); these changes were also observed 
in myeloid cells in the setting of severe COVID-19.10  
 
Additionally, upregulation of MS1 genes and downregulation of HLA Class II is consistent with the acquisition of a myeloid 
derived suppressor cell (MDSC)-like phenotype, which in turn suppresses T cell activation. Therefore, we evaluated changes 
in T cell activation across infection. We observed significant downregulation of T cell activation genes in both CD4 and 
CD8 T cell subsets (r <-0.5, p<0.007; Figures S3G and S3F) from pre-infection to day 8 post-infection. Together, these 
results reveal that the dynamics described in human COVID-19 are also present in critical/fatal Ebola infection of rhesus 
macaques, further supporting our hypothesis that immune cell responses are consistent across viral and host species in RNA 
virus infections.  
 
Together, these data provide strong evidence that the conserved immune response to viral infections in humans is also 
conserved in macaques and primarily driven by myeloid cells, and further suggests that it may be correlated with severity 
of infection in macaques. 

Temporal patterns of the conserved antiviral responses differ by viral families in humans and macaques 

Because the peak infection timepoint differed for each virus, we investigated whether temporal patterns of the host response 
differed by virus in humans and macaques. First, we identified seven human challenge studies (GSE73072) where 
participants were inoculated with either influenza (IFV; family: Orthomyxoviridae), human rhinovirus (HRV; family: 
Picornaviridae), or respiratory syncytial virus (RSV; family: Pneumoviridae) and transcriptional data was collected from 
blood samples across pre- and post-infection. We excluded participants that were asymptomatic and did not shed virus (i.e., 
uninfected). We calculated the MVS score at all timepoints collected in symptomatic infected patients (Figures 2A and 
S4A) and assessed temporal changes in the MVS score with different viral infections (Figure 2B; Table S3). While IFV and 
HRV infections had highest MVS scores between days 1-5 post-infection, RSV infection showed peak MVS scores at later 
timepoints, between days 3-7 (Figures 2A, 2B and S5). A mixed-effects model with time as a continuous variable also 
showed that dynamics of the MVS in RSV-infected patients differed significantly (p<0.001) from those of patients with 
IFV or HRV infections (Table S3).  
 
Next, we investigated whether similar virus-dependent differences in the dynamics of the MVS were also present in 
macaques (Figures 2C and S6). Similar to IFV infection in humans, Orthomyxoviridae infection of macaques had early 
peak MVS responses at 1-3 days post infection (Figures 2C and 2D). We further comparatively assessed response dynamics 
via mixed-effects modeling using macaque infection by Orthomyxoviridae viruses as the comparator; however, we limited 
our analysis to pre-infection to day 7 post infection as Flaviviridae datasets had no timepoints past day 7 (Table 2). Dynamics 
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of the MVS response in macaque infection by Arenaviridae and 
Filoviridae viruses were significantly different from those by 
Orthomyxoviridae infection (p<0.01), whereas infection by 
Coronaviridae and Flaviviridae viruses was less significant but 
did differ from Orthomyxoviridae infection dynamics (p<0.05; 
Table 2). For example, while Orthomyxoviridae and 
Coronaviridae only showed significant differences in MVS 
Scores at T1 and T2 compared to baseline (p<0.05), Filoviridae 
and Arenaviridae infections showed the most significant 
differences in MVS score compared to baseline at T3 (p<0.001; 
Figure 2D). Interestingly, both Filoviridae and RSV fall into the 
viral order Mononegavirales, and here we see both virus 
infections driving delayed peak MVS response induction in 
humans and macaques respectively (Figure 2). Overall, these 
data highlight that MVS is robustly conserved in humans and 
macaques across viruses, though host response dynamics differ 
by virus type that may be important for understanding viral 
incubation and latency periods. 
 

 
Figure 2: Longitudinal dynamics of the conserved antiviral response differ between viruses. MVS scores across all datasets up to 10 days 
post-infection across (A) 1158 human and (C) 734 NHP challenge samples with time category annotated below. Forrest plot tables of the summary 
statistics generated for each viral infection in (B) human and (D) NHP challenge dataset by time category. 
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Unbiased transcriptomic analysis of NHP demonstrates conserved antiviral responses to acute RNA viruses that 
translate to humans 

Transcriptomic data for certain viral diseases (e.g., Lassa virus, Machupo virus, Kyasanur Forest Disease virus) in humans 
are not publicly available and other measurements at early stages of lethal and newly emerging viruses are likely lacking. 
In these cases, macaque studies provide the only immediate transcriptomic data to learn primate immune responses. 
Therefore, we investigated whether macaque antiviral responses were similarly conserved across viral infection and 
translatable to human viral infections (Figure 3A). First, we determined differentially expressed genes (DEGs) across 
datasets per viral family by timepoint category compared to the baseline T0 to identify peak infection timepoints in an 
unbiased way (Figure 3B). From here, we categorized peak infection timepoints per viral family as the time category with 
the highest number of robustly changing genes, defined as genes with false discovery rate (FDR)<0.05 and abs(effect size 
(ES))>0.1. Generally, peak DEG timepoint categories for each viral family corresponded with the peak MVS score 
timepoints demonstrated in Figure 1 (Figure 3B and Table S1).  
 
Next, we asked how conserved transcriptomic changes were across macaques between baseline and peak infection 
timepoints by viral family. We started by identifying gene signatures using our previously described multi-cohort analysis 
framework17,18 to distinguish peak infection from the baseline T0 timepoint. We grouped the macaque datasets either by 
viral family – resulting in five signatures with one per viral family – or with all 21 datasets together to create the Viral 
Response Signature (VRS; Table S5). We compared each of these six newly developed signatures and the original MVS by 
gene with each other and by the blood transcription modules (BTM) that each gene set represented using the Jaccard index 
(JI; Figure 3C). While there was limited overlap between the virus-specific signatures at a gene-level (ranging from 3 shared 
genes between the Arenaviridae signature and Filoviridae signature to 32 overlapping genes between the Arenaviridae 
signature and Flaviviridae signature), there was much greater overlap in represented modules. Although some of the 
differences in genes may be due to variability in the statistical power, this result suggested that similar pathway networks 
are affected, even if driven by different genes (Figure 3C). Next, we performed enrichment analysis using the BTMs on the 
over- and under-expressed gene subsets from each signature separately (Table S6). We calculated a score for each BTM 
within the datasets grouped by viral families where the BTM was significant (padj<0.1; Figure 3D, track 2). Links connect 
BTMs across viral families where the BTM was enriched across the positive signature genes in both families. There were 
no connecting links across viruses by significant BTMs enriched in the negative signature gene subsets. Across all the viral 
families, there was a large number of upregulated pathways relating to myeloid and innate responses (Figure 3D). Similar 
analysis was also performed across all the DEGs identified at peak timepoints from Figure 3B and demonstrated similar 
results (Figure S7). We also assessed the generalizability of each virus-specific signature to other viral families. All virus-
specific signatures distinguished healthy control and infected animals with high accuracy (AUROC>= 0.75; Figure 3E). By 
using this discovery/validation approach between viruses, this analysis demonstrates the robustly conserved innate 
responses that are upregulated across both hemorrhagic and nonhemorrhagic viral diseases.  
 
We further investigated whether the VRS, identified using the macaque data, is applicable in distinguishing uninfected and 
infected human subjects. In 3183 human samples across 20 datasets of patients with one of 14 viral infections (Table S2), 
we found  that the macaque VRS robustly  distinguished viral infection from healthy across all symptomatic infections 
(Figures 3F and 3G). We separately looked at four human viral infections to demonstrate that the VRS signature robustly 
distinguished uninfected individuals from those infected with SARS-CoV-2, Ebola or dengue virus (padj<0.0001). Notably, 
the VRS was conserved upon infection by the Chikungunya virus (padj<0.0001), an RNA virus whose family was not 
included in the VRS signature discovery data (Figure 3H). Although VRS and MVS only had an overlap of 23 genes (JI = 
0.03), these scores were significantly positively correlated across macaque data (r >= 0.54, p<1.4e-8) and human data (r >= 
0.42, p<1.1e-8) across all timepoints collected, although they were noticeably lower for Flaviviridae viral infection in 
macaques (Figures 3I and 3J). In BTM overrepresentation analysis of the macaque-derived VRS signature compared to the 
human-derived MVS signature, upregulated genes in both signatures were enriched in innate response and antiviral modules, 
whereas downregulated BTMs corresponded to adaptive responses - further demonstrating conserved viral responses that 
transcend species and virus infections (Figure 3K and Table S7). Interestingly, while both signatures capture downregulation 
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Figure 3: NHPs demonstrate conserved responses to acute RNA viruses that robustly translate to humans. (A) Schematic of experimental design for (B - K). 
(B) Significant DEGs at each timepoint category by viral family (effect size (ES) FDR < 0.05 and abs(ES) >0 .1).  (C) Jaccard similarity index of the signature genes 
between each signature where annotation across the diagonal denoting same-score comparison is annotated with the number of genes present in the signature and all other 
annotations are the calculated Jaccard index (left).  Jaccard similarity index of the blood transcription modules (BTM) that contain one or more of the signature genes 
between each signature where annotation across the diagonal denoting same-score comparison is annotated with the number of BTMs represented by the signature and 
all other annotations are the calculated Jaccard index. (D) Circos plot of BTM enrichment analysis across positive signature genes by viral family. Each sector represents 
a viral family, each point in all the tracks represents a BTM that was significant in at least one virus (padj <0.1). Track 2 is a barplot of the geometric mean of the 
expression of the genes represented by the BTM and plotted where the BTM was significant (padj <0.1). Each color in Track 3 is a granular annotation for each BTM 
pathway. The inner track connects the same BTM across viral families if they are both (left) positively or (right) negatively enriched. (E) Summary AUROC generated 
from the specific score (x-axis) across the different viral family dataset subsets (y-axis) comparing peak infection time category determined by 3B from healthy control 
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animals. (F) AUROC of human data using the NHP Viral Response Signature (VRS) (n = 3183). (G) Violin plots of NHP VRS by viral severity of the samples from 3F. 
(H) Violin plots of NHP VRS by virus and disease of the samples from 3G. (I) Pearson’s correlation between the calculated MVS Score and the generated NHP VRS. 
Each dot is a single blood sample from an NHP across all timepoints collected (743 samples). (J) Pearson’s correlation between the calculated MVS (Human) score and 
the generated VRS (NHP) score. Each dot is a single blood sample from various public human gene expression datasets (n = 638). (K) Comparison of signature-enriched 
BTM pathways in the upregulated and downregulated genes in the MVS (Human) and VRS (NHP) pathways. Top 5 pathways (ordered by padj) chosen per signature’s 
up and down genes. 
 

of genes associated with lymphoid cellular response modules, the negative genes represented in the VRS also captured non-
lymphoid-specific responses such as signal transduction and translation initiation factor 3 (eIF3) pathways which may come 
from the inclusion of lethal, hemorrhagic viral diseases in macaque discovery datasets unlike MVS which was identified 
using respiratory viral infections. Together, these data validate macaques as robust models for studying human 
transcriptomic responses to viral infection. Here we demonstrate their potential for identifying both common antiviral 
responses as well as nuanced differences, such as those evident in Flaviviridae responses compared to other RNA viruses. 

Host response signature derived from macaques demonstrates robustness across acute and chronic viral infection 
in humans  

Many patients have latent, chronic or acute viral infections that are not caused by single-strand RNA (ssRNA) viruses. 
However, the VRS and the MVS were identified using only acute infections caused by ssRNA viruses. Therefore, we 
investigated whether immune responses in macaques and humans were conserved across diverse viruses and disease 
manifestations. We used the macaque-derived VRS to further investigate the generalizability, and subsequently its 
translatability, to a variety of human viral infections.  
 
First, across acute infections, the VRS score was significantly higher (p<0.05) in patients with Adenovirus (a double-
stranded DNA (dsDNA) virus), Rotavirus (a double-stranded RNA (dsRNA) virus), Epstein-Barr virus (EBV; dsDNA virus) 
or human cytomegalovirus (HCMV; dsDNA virus) infections compared to healthy subjects (Figures 4A, 4B, 4C, and 4D). 
Second, we demonstrate that this response is robust in latent EBV (padj<0.01) but not in latent HCMV (padj=ns) infection 

 
Figure 4: Macaque-discovered antiviral response is consistent in human acute and chronic, but not latent viral infections. (A-G) VRS score in blood samples from healthy 
control subjects versus patients with (A) Adenovirus infection, (B) Rotavirus infection, (C) acute or latent EBV infection, (D) acute or latent HCMV infection, (E) HIV infection 
or HIV co-infection with a respiratory virus (RV), (F) chronic HBV infection, and (G) chronic HCV infection. (A-G) Significance values were determined using an unpaired, 
one-sided Wilcoxon ranked-sum test looking at whether healthy VRS scores are less than comparator group VRS scores. Bonferroni correction for multiple hypothesis 
testing was applied per-subfigure and significance values were assigned by asterisk. Asterisk values across figure are represented as follows: *p value < 0.05, **p value 
< 0.01, ***p value < 0.001, and ****p value < 0.0001.   
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(Figures 4C and 4D).  Third, the VRS was also significantly higher (p < 0.01) in patients with chronic HIV (RNA virus with 
reverse transcription (RT) step), Hepatitis B (dsDNA virus with RT step), and Hepatitis C (ssRNA virus) viral infection 
(Figures 4E, 4F and 4G). Across the viruses studied here, the VRS demonstrated a stronger generalizability across 
represented viral infections in comparison to the MVS, potentially due to its discovery across a greater diversity of viral 
infections (Figure S8).  

 
Figure 5: T cell responses differ between viruses in NHP and human viral infection. (A) Distribution of the Module 4 scores across macaques, comparing uninfected, healthy 
macaques to those at peak MVS score by viruses across 5 viral families. Each point represents a blood sample. Significance values were determined using an unpaired 
Wilcoxon ranked-sum test with Bonferroni correction for multiple hypothesis testing and assigned by asterisk. (B) Comparison of Module 4 scores to VRS scores across 
time in 4 viral families. (C) Comparison of Module 4 scores to VRS scores across the 4 viral species collected within the Flaviviridae family. (D) Module 4 score to VRS 
score in human data across 4 viral infections. (E) Module 4 scores by viral severity across CHIKV, EBOV, and SARS-CoV-2 viral infection. (F) Module 4 scores across 
disease timepoint and dengue disease type. (G) Expression of Module 4 scores by cell type in 2 scRNA-seq datasets. (H) Differential gene expression analysis of CD8 T 
cells across scRNA-seq data from COVID-19 and dengue patients between patients with severe disease compared to healthy controls. (I) BTM enrichment analysis of 
differentially expressed genes from each severe patient compared to the dataset’s healthy patients. 
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Consistently, the VRS distinguishes viral infection from a healthy state, and even detects chronic infection, regardless of 
viral genome strandedness or nucleic acid intermediates. This shows that a shared host response exists in both macaques 
and humans across various types of viral infections, highlighting the power of macaque models for understanding human 
antiviral responses. 

T cell responses differ across viral infections 

Compared to other RNA viruses in macaques, the correlation between the VRS and MVS was noticeably lower, albeit 
significant, in Flaviviridae (Figure 3I and 3J). Both VRS and MVS signatures also had lower accuracy in distinguishing 
healthy controls and macaques with Flaviviridae infection. Therefore, we investigated potential drivers of this difference by 
evaluating the expression of four modules we have previously demonstrated to correlate with either severe or mild infection 
and be driven by different cell types.8 When comparing the expression of these four modules across datasets and at peak 
MVS score timepoints with the animals’ baseline samples, Module 4, composed of genes preferentially expressed in 
lymphoid cells (NK, T and B cells), was lower for all viral families except Flaviviridae in macaques (Figure 5A). In 
macaques infected with non-Flaviviridae viruses, Module 4 expression was inversely associated with the VRS score over 
time (Figure 5B and 5C). Module 4 was also significantly inversely correlated with VRS expression in humans infected 
with CHIKV, DENV, EBOV or SARS-CoV-2 (p<1.3e-5), though the correlation was lower in EBOV (r=-0.32, p=1.3e-5) 
and DENV infection (r=-0.47, p=2.3e-10; Figure 5D). We further looked at the association of Module 4 expression with 
viral disease severity across these human datasets and identified that while it significantly negatively associated with 
increased disease severity in SARS-CoV-2 and CHIKV infection (p<= 3.7e-10), the association was weaker in EBOV 
infection (p = 0.012) and not significantly associated with DENV disease severity (p = 0.12) (Figure 5E and 5F). Together, 
these data suggest a potential difference in lymphoid responses across different viral infections. 
 
To understand what was driving a difference in lymphoid cellular responses, we identified two scRNA-seq datasets with 
healthy controls and patients presenting with severe disease from either SARS-CoV-2 or dengue viral infection (Figures 
S9A, S9B and S9C),.19,20 We first investigated the cell types which had higher expression of Module 4 genes in patients 
with severe disease, and further identified the T cell and NK cell populations as drivers of these genes (Figure 4G and 4H). 
DEG analysis of these cell types demonstrated differences in the CD8 T cell responses between severe COVID-19 and 
dengue disease (Figure 5H; Table S8). In particular, genes marking effector and cytotoxic CD8 T cell profiles (GZMB, 
NKG7, GZMH, PRF1, CCL5) were upregulated in severe dengue and downregulated in severe COVID-19 (Figure 5H). 
Further, BTM enrichment using DEGs that were identified at a per virus-infected patient level in comparison to healthy 
controls showed that generally severe dengue patients upregulated genes related to T cell activation and differentiation 
modules whereas severe COVID-19 patients downregulated these module genes (Figure 5I). A similar trend was present in 
CD4 T cell responses (Figures S9E and S9F; Table S8), however, there were no strong differences in NK cell responses 
between severe COVID-19 and dengue disease (Figures S9G and S9H). This scRNA-seq analysis suggests a divergence in 
lymphoid responses between COVID-19 and DENV that may be linked to CD8 T effector functions and be important to 
address in vaccination strategies towards these different diseases. 

Discussion 

Emerging and re-emerging viral diseases remain a constant global health threat mandating the development of new solutions 
to combat future epidemics and pandemics. Identification of conserved features of infection will enable the development of 
broad-spectrum antiviral solutions to fight constantly-evolving and emerging viruses. Multiple viruses of public health 
concern are understudied in humans; however, macaques remain an established model for understanding human disease 
with numerous independent virus studies published in these models providing a wealth of information on viral disease. 
Here, we reported that macaques are a reliable model of human antiviral transcriptomic responses by identifying and 
comparing conserved host responses across multiple viral families. We further extended the generalizability of conserved 
antiviral responses to several acute RNA viral infections of WHO priority concern, which include highly lethal viruses for 
which human data does not exist, and to viral infections by DNA viral infections and chronic viral diseases. Notably, we 
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identified differences in longitudinal dynamics of antiviral responses and T cell functions depending on the infecting-virus. 
Together, these data provide detailed insights into the conserved, dynamic immune landscape of viral diseases across species 
that can provide potential targets for host-directed immunomodulatory antivirals. 
 
We identified differences in the longitudinal dynamics of the conserved host response by virus across macaques and humans. 
These differences generally correspond with reported differences in incubation periods of these viruses in natural human 
disease: SARS-CoV-2, influenza, and HRV infection show shortened incubation periods relative to Ebola, Lassa and 
RSV.21–23 While different viral strains within the same viral species and other clinical variables have demonstrated effects 
on incubation periods (e.g., age, disease severity), our data indicates viral family level patterns as well.24–26 Additionally, 
even in longer-incubating viruses, our data demonstrated detectable induction of antiviral responses prior to peak infection 
that could potentiate development of viral diagnostics to identify patients prior to symptom presentation and/or viral 
shedding.  
 
One of the reasons for differences in the longitudinal dynamics could be that viruses produce specific proteins to perturb 
host immune responses to support their undisturbed replication. While many viruses carry genes to produce anti-host 
proteins, differences in their cellular targets, number and efficacy may influence overall host antiviral dynamics. Another 
reason for these viral family-level differences may be variation in the ways these viruses present to pathogen recognition 
receptors (PRRs) (i.e., TLRs and RIG-I), which are important sensors for inducing antiviral immunity.27 Interestingly, 
Arenaviridae, Filoviridae (Order: Mononegavirales), and RSV (Order: Mononegavirales) are negative-stranded RNA 
viruses (-ssRNA) that replicate in the cytoplasm, differing from the nucleus-replicating -ssRNA influenza virus and positive-
stranded RNA viruses (+ssRNA) such as Coronaviridae and Flaviviridae viruses. This difference in genome strandness may 
be important as studies have shown that during replication,  unlike +ssRNA, dsRNA and DNA viruses, -ssRNA viruses tend 
to produce low levels of dsRNA intermediates – robust triggers of antiviral responses capable of binding directly to RIG-1 
and MDA-5 receptors for activation of IRFs and NF-kB for downstream interferon and pro-inflammatory responses.28–30 
Additionally, -ssRNA viruses cannot be directly translated but need to generate +ssRNA to co-opt host translation 
machinery to reproduce, which may delay their overall infection dynamics. While it has been posited that other proteins and 
complexes produced by -ssRNA can drive inflammatory responses,31 differences in timing of protein production based on 
starting nucleic acid material within cells could also drive differences in overall timing of the induction of host antiviral 
responses. Other factors related to the viral family-level differences could be the differences in route of infection, viral tissue 
tropism, and viral latency. For example, influenza viral shedding (via nasal wash) is generally detectable via PCR one day 
after viral challenge and before symptom onset, whereas EBOV is generally detected after symptom onset in the blood.32,33 
While our study focuses on cells in the blood, there could be differences in the types of tissues infected and the magnitude 
of cytokine and ISG production, resident cell activation, and immune cell recruitment detectable in peripheral blood.  Further 
studies on comparative viral immunology and disease are required to ascertain the drivers of these different dynamics. 
However, as it stands this data suggest key post-infection timepoints for study design and sample collection based on the 
infecting viral family, which could be useful to development of macaque models for new viruses. 
 
Here we report that a conserved set of genes identified across viral infection of macaques is robust across infection of 
different macaque species and heterogenous human populations by viruses across the Baltimore Virus Classification system. 
While focused studies within viral families have compared transcriptional responses between different macaque species to 
suggest conservation in transcriptional responses - ie SARS-CoV-2 infection between cynomolgus and rhesus macaques, 
SARS-CoV-2 infection between green monkeys and rhesus macaques, and EBOV infection between rhesus and cynomolgus 
macaques – this study is the first that we are aware of that directly translates NHP findings to humans.34–36 This step is 
important because NHP studies allow for easier design of randomized control trials and challenge studies testing various 
interventions (therapeutics, vaccinations, infection strains, etc.) and this work suggests measuring a readout in the form of 
changes to the VRS could translate to human-relevant interpretations. Additionally, here we are showing that these 
responses are conserved in acute infection by pathogens across six out of seven Baltimore Classification groups (we could 
not test any ssDNA viruses because of the lack of available public data). This further highlights that despite the diverse 
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genetic backbones and intermediates prior to mRNA production, these viruses still are detectable by the host to drive similar 
antiviral responses. This is not unexpected: recent work suggests that while DNA and RNA sensors rely on different 
mechanisms across various cellular compartments, there is appreciable cross-talk between these different pathways.37 For 
example, the cGAS-STING axis, established as a cytosolic DNA sensing pathway, has been shown to be involved in 
responses to RNA viruses including dengue virus, vesicular stomatitis virus and influenza A virus with many mechanisms 
hypothesized, including STING binding to RIG-I/MAVS (cytosolic RNA sensors) that carries out signaling downstream of 
their activation.38–43 These data further suggest that while virus-specific gene sets identified may not consist of precisely the 
same genes, they are part of similar pathways, indicative of redundancy in the antiviral response that may be broadly 
targetable.44,45 These differences may also be driven by virus-specific host targets that could induce specific gene expression 
changes within pathways. 
 
While many macaque models of RNA viral infections demonstrate clinical presentation, viremia, and virus tissue tropism 
that is similar to their respective human viral disease; there exist multiple viruses that show divergence in pathogenesis 
between primate species.46–48 For example, rhesus macaques infected with COVID-19, dengue or Kyasanur Forest Disease 
virus (KFDV) have viremia, yet do not recapitulate human disease phenotypes.46,47,49 Even so, we show that both the MVS 
and VRS can still detect macaque infection in cases of COVID-19 or dengue viral infection where macaques are lacking in 
clinical symptoms (asymptomatic or mild disease). An important divergence between rhesus macaques and human 
genotypes that may account for differences in responses may be driven by the amino acid composition of the STING protein, 
which plays a role in antiviral responses through IRF3 activation and downstream ISG expression. Thus, while DENV can 
cleave human STING to reduce type I IFN production and enhance viral replication, it cannot cleave rhesus macaque STING 
and restrict antiviral pathways downstream of STING activation. This evidence aligns with the theory that rhesus macaques 
form part of dengue virus' sylvatic cycle, asymptomatically maintaining the virus population in nature. Even across macaque 
species, while rhesus, pigtail, and cynomolgus macaques are highly genetically similar with comparable susceptibility to 
many of the same viral infections, there exist nuances in their genotypes that make some macaque species better models of 
human viral disease than others. In particular, tripartite motif-containing protein 5 (TRIM5) is an interferon-induced (IFI) 
antiviral protein that has multiple isoforms. While rhesus macaques express heterogeneous TRIM5 genotypes, pigtail 
macaques only express one genotype for this protein. In infection by simian immunodeficiency virus (SIV), rhesus 
macaques’ TRIM5 can differentially restrict SIV unlike pigtail macaques’ TRIM5, thereby leaving pigtail macaques 
susceptible to SIV infection, making them the preferred NHP model for studying HIV. TRIM5 is also important for 
restricting the NS2B/3 protein of KFDV and other tick-borne flaviviruses to limit their replication.50,51 It has been 
hypothesized that the specific TRIM5 protein expressed by pigtail macaques reduces this macaque’s ability to inhibit KFDV 
NS2B/3, thereby making pigtail macaques more susceptible to and clinically symptomatic upon KFDV infection as 
compared to rhesus macaques which present with asymptomatic and mild Kyasanur Forest disease.50,51 Differences in 
pathogenicity between macaques and humans may suggest targets for antivirals, such as blocking DENV’s cleavage of 
STING or introducing enzymes to optimally degrade flavivirus NS2B/3. Together, these data demonstrate that even with 
genotype differences that may impact the translation of results from macaque to humans (i.e. where STING and TRIM5 
pathways are involved), the MVS and VRS magnitudes may provide a proxy for disease detection and intervention 
assessment even when clinical symptoms are not present. 
 
While T cells are known to be crucial for mounting effective immune responses during viral infections, we found opposite 
trends in T cell transcriptional responses between dengue and COVID-19 during severe disease manifestations. During 
COVID-19, lymphopenia and exhausted T cells are found in patients with severe and fatal disease outcomes and may serve 
as a potential prognostic for disease outcome.52,53 Lymphopenia has also been described in severe Ebola infections while 
exhausted T cells have also been a marker of chronic viral infections such as HIV, Hepatitis B, and Hepatitis C.54,55 In 
contrast, the role of T cell responses in dengue has been highly disputed. The majority of symptomatic dengue disease is 
driven by secondary dengue infections, yet it is unclear whether pre-existing dengue-specific T cells play a protective or 
pathogenic role. Generally, studies consistently report an expansion of pre-existing T cell populations readily activated upon 
secondary dengue infection56, which is in line with our data. However, while some studies report no transcriptional 
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differences in the quantity and quality of DENV-specific CD4 and CD8 T cell populations by disease severity,57,58 others 
suggest that the expansion of pre-existing cross-reactive T cells drives severity through ineffective viral control and aberrant 
cytokine responses.59–61 Though we cannot distinguish DENV specificity or pathologic versus protective functional 
differences, we do see a general activation of the T cell compartment. Interestingly, all macaques had a primary flavivirus 
infection and consistently demonstrated differing trends in the expression of MVS genes relating to B, T and NK cell 
responses (Module 4) as compared to other viral infections. This result suggests Flaviviridae-specific differences in T cell 
response induction independent of prior exposure. These data together are important because they highlight general T cell 
activation and proliferation may not directly equate to protective viral responses, and suggest further work needed in 
dissecting specific T cell subsets and their role across viral disease pathogenicity. 
 
In conclusion, we conducted a comprehensive analysis of host responses to a wide range of viruses, using transcriptomic 
data from both human and macaque cohorts. Leveraging macaque data uniquely allowed us to gather pre-symptomatic, 
post-inoculation timepoints from infection by pathogenic and lethal viruses that are otherwise very difficult, if not 
impossible, to obtain from humans. Our integrated analysis across heterogeneous macaque and human cohorts allowed us 
to identify highly generalizable antiviral responses conserved in acute and chronic viral disease. Moreover, our analyses 
identified differences in the longitudinal dynamics of host response induction and resolution, which appear to be influenced 
by viral family. These results further support the reliability of macaque models in studying human antiviral responses and 
are useful for pandemic preparedness. Specifically, our work identifies several key areas for future research and 
development of antiviral countermeasures, including the design of new intervention strategies such as diagnostics and 
therapeutic timing, the optimization of macaque challenge study design for emerging and reemerging viruses, and the 
development of broad-spectrum host-directed immunomodulatory therapies. These findings underscore the importance of 
continued comparative research across transcriptomic responses to diverse viruses in macaques and humans, with the 
ultimate goal of improving our ability to predict, prevent, and treat viral infections. 

Limitations of Study 

Our study has a few potential limitations. First, in a number of microarray datasets, not all genes in each gene set tested 
were present, in which case we measured the subset of genes that were present in the particular dataset. Our previous work 
has shown that many of the genes within the MVS score are highly correlated and only a subset is required to detect 
conserved responses. Second, all macaque genes were converted to human homologues, ignoring the expression of macaque 
genes that do not have a clear human homologue and/or may be important to overall antiviral response dynamics. Third, we 
only analyzed transcriptome data from blood samples. However, differences in antiviral responses may occur at the tissue 
level and site of infection that we may have missed. Fourth, some viral families we analyzed only had a small representation 
of viral species and did not have different viral variants accounted for. While we use grouping at the viral family level to 
identify conserved patterns, these may not be applicable to every virus within that viral family. For example, not all viruses 
cause symptomatic disease in both macaques and humans, such as SIV in humans and HIV in macaques. While we included 
all macaque viral datasets possible and a broad range of viruses with epidemic and pandemic concern, MVS and VRS 
responses need to continually be tested in new viral infection datasets.    
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STAR★Methods 
 
Key Resources Table 
 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited data 

Microarray dataset Fukuyama et al., 2020 accession# GSE152406 

Microarray dataset Skinner et al., 2014 accession# GSE60009 

Microarray dataset Malhotra et al., 2013 accession# GSE41752 

Microarray dataset Rasmussen et al., 2014 accession# GSE49838 

Microarray dataset Djavani et al., 2007 accession# GSE5790 

Microarray dataset Connor et al., 2015 accession# GSE58287 

RNA-seq dataset Speranza et al., 2018 accession# GSE103825 

Microarray dataset Yen et al., 2010 accession# GSE24943 

RNA-seq dataset Maroney et al., 2021 accession# PRJNA718880 

RNA-seq dataset Versteeg et al., 2017 accession# PRJNA398558 

RNA-seq dataset Speranza et al., 2017 accession# GSE99463 

RNA-seq dataset Broeckel et al., 2021 accession# GSE185797 

Microarray dataset Aid et al., 2017 accession# GSE90868 

Microarray dataset Strouts et al., 2016 accession# GSE72430 

Microarray dataset de Wit et al., 2013 accession# GSE44542 

RNA-seq dataset Aid et al., 2020 accession# GSE156701 

RNA-seq dataset Price et a., 2020 accession# GSE155363 

RNA-seq dataset Coleman et al., 2021 accession# GSE184949_GPL29319 

Microarray dataset Rubins et al., 2006 accession# GSE4013_GPL3093 

Microarray dataset Rubins et al., 2006 accession# GSE4013_GPL3346 

Microarray dataset Rubins et al., 2006 accession# GSE4013_GPL3347 

RNA-seq dataset Reynard et al., 2023 accession# GSE158390 

scRNA-seq dataset Kotliar et al., 2020 Zenodo# 7229439 

RNA-seq dataset Liu et al., 2017 accession# PRJNA352396 

RNA-seq dataset Soares-Schanoski et al., 2019 accession# PRJNA507472 
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RNA-seq dataset Michlmayr et al., 2018 accession# PRJNA390289 

RNA-seq dataset Thair et al., 2020 accession# GSE152641 

Microarray dataset de Steenhuijsen Piters et al., 2016 accession# GSE77087 

Microarray dataset Liu et al., 2016 accession# GSE73072 

Microarray dataset Zhai et al., 2015 accession# GSE68310 

Microarray dataset Jaggi et al., 2018 accession# GSE68004 

Microarray dataset Heinonen et al., 2016 accession# GSE67059 

Microarray dataset Sweeney et al., 2015 accession# GSE66099 

Microarray dataset Wong et al., 2007, Wong et al., 2008, 
Wong et al., 2012 

accession# GSE4607 

Microarray dataset Ramilo et al., 2007 accession# GSE6269 

Microarray dataset Hoang et al., 2014 accession# GSE61821 

Microarray dataset Davenport et al., 2014 accession# GSE61754 

Microarray dataset Parnell et al., 2012 accession# GSE40012 

Microarray dataset Mejias et al., 2013 accession# GSE38900 

Microarray dataset Wang et al., 2007 accession# GSE2729 

Microarray dataset Berdal et al., 2011 accession# GSE27131 

Microarray dataset Smith et al., 2014 accession# GSE25504 

Microarray dataset Bermejo-Martin et al., 2010 accession# GSE21802 

Microarray dataset Parnell et al., 2011 accession# GSE20346 

Microarray dataset Zaas et al., 2009 accession# GSE17156 

Microarray dataset Yu et al., 2019 accession# GSE117827 

Microarray dataset Dunning et al., 2018 accession# GSE111368 

Microarray dataset Rodriguez-Fernandez et al., 2017 accession# GSE103842 

Microarray dataset Tang et al., 2019 accession# GSE101702 

Microarray dataset Jong et al., 2016 accession# E-MTAB-5195 

Microarray dataset Simmons CP et al. accession# GSE40628 

Microarray dataset Long HT et al. accession# GSE13052 

Microarray dataset Popper SJ et al. accession# GSE38246 

Microarray dataset Kwissa M et al. accession# GSE51808 

RNA-seq dataset Daberg et al. accession# GSE69529 

RNA-seq dataset Sellers et al. accession# GSE155352 

Microarray dataset N/A accession# GSE58208 

Microarray dataset Dunmire et al. accession# GSE45924 

Microarray dataset Riou et al. accession# GSE81246 

Microarray dataset Bolen et al. accession# GSE40224 

Software and Algorithms 

R R Core Team (2022) https://www.r-project.org/  

MetaIntegrator Haynes et al. https://cran.r-
project.org/web/packages/MetaIntegrat
or/index.html  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2023. ; https://doi.org/10.1101/2023.06.22.546003doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.22.546003
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

Seurat Satija et al., 2015 https://satijalab.org/seurat/  

DESeq2 Love et al., 2014 https://bioconductor.org/packages/relea
se/bioc/html/DESeq2.html  

ComplexHeatmap Gu, 2022 https://bioconductor.org/packages/relea
se/bioc/html/ComplexHeatmap.html  

lmerTest Kuznetsova et al., 2017 https://cran.r-
project.org/web/packages/lmerTest/ind
ex.html  

scanpy Wolf et al., 2018 https://scanpy.readthedocs.io/en/stable/  

ggplot2 Wickham H, 2016 https://ggplot2.tidyverse.org/  

UMAP McInnes et al., 2018 https://cran.r-
project.org/web/packages/umap/index.
html  

Tximport Soneson and Robinson, 2018 https://bioconductor.org/packages/relea
se/bioc/html/tximport.html  

Salmon Patro et al., 2017 https://combine-lab.github.io/salmon/  

 
 
Resource Availability 
 
Lead Contact 
Further information and requests for resources, software, and data should be directed to and will be fulfilled by the Lead 
Contacts, Catherine Blish (cblish@stanford.edu) and Purvesh Khatri (pkhatri@stanford.edu). 
 
Materials Availability 
This study did not generate new unique reagents. 
 
Data and Code Availability 
This study did not generate any unique datasets or code. All datasets, software, and algorithms used in this study are publicly 
available and listed in the Key Resource table. Code used to generate figures also available on Github: 
https://github.com/Khatri-Lab/NHP_virus_challenge.  
 
Method details  
Methods for analyses performed are described below. 
 
Quantification and Statistical Analysis 
Non-human primate dataset collection and preprocessing  
We downloaded 21 gene expression datasets (either microarray or RNA-seq) from the National Center for Biotechnology 
Information (NCBI) Gene Expression Omnibus (GEO), Sequence Read Archive (SRA) or shared by collaborators, 
consisting of 743 samples derived from whole blood or peripheral blood mononuclear cells (PBMCs) (Table 1, Table S1). 
The counts dataset generated by Reynard et al.11 was downloaded from Zenodo. The samples in these datasets included all 
available macaque virus challenge studies with samples from uninfected and two or more infected timepoints. We 
incorporated technical heterogeneity in our analysis as these datasets were profiled using microarray and RNA sequencing 
(RNA-seq) from different manufacturers. Raw RNA-seq reads were trimmed of Illumina adaptors and reads that were too 
short after adaptor trimming (less than 20 nt) were removed using Trim Galore (v0.6.5). We then mapped the cleaned reads 
to the macaque transcriptome (Salmon v1.3.0, genome version Mmul_10 or Macaca_fascicularis_6.0).62 We used Tximport 
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(v1.26.1)63 to summarize to gene-level expression. Finally, we applied the variance stabilizing transformation from DESeq2 
(v1.38.2)64 to normalize gene expression for downstream analysis and visualization. Within a dataset, cohorts assayed with 
different microarray types or had different viruses with independent control animals were treated as independent.  
 
We mapped all genes generated through alignment to macaque genomes (rhesus: Mmul_10, cynomolgus: 
Macaca_fascicularis_6.0, pig-tailed: Mnem_1.0) to the corresponding human orthologs to facilitate integrated, comparative 
analyses. For the scRNA-seq data, Kotliar et al.16 generously shared their scRNA-seq object of GSE158390 that was 
processed and annotated for cell type.  
 
Human dataset collection and preprocessing 
We utilized human gene expression data collected and processed across our other studies 8,65,66. Briefly, 47 gene expression 
datasets from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO), Sequence 
Read Archive (SRA), ArrayExpress, and European Nucleotide Archive (ENA), consisting of 5345 samples derived from 
whole blood or peripheral blood mononuclear cells (PBMCs) (Table S2). Log2 transformation and quantile normalization 
was applied when necessary. For the combined discovery dataset from Zheng et al.8 (Table S2) and the human dengue 
datasets,67–70 Combat CONormalization Using conTrols (COCONUT) was used for between-dataset normalization.71 
Healthy samples from each cohort undergo ComBat co-normalization without covariates, and the ComBat estimated 
parameters are computed for the healthy samples in each dataset. By applying these parameters to the non-healthy samples, 
all datasets keep the same background distribution while retaining the same relative distance between healthy and disease 
samples, which preserves the biological variability between the two groups within a dataset.  
 
Gene signatures and scoring 
We used a number of previously published gene signatures, including: MVS7, MS1 signature10, T cell activation signature72, 
and ISG signature73. We generated gene signatures across all macaque datasets, the RNA virus subset of  the datasets, and 
each viral family subset of the datasets using the MetaIntegrator workflow. Briefly, score generation was done by applying 
two meta-analysis methods previously described: (1) combining effect sizes and (2) combining p values. To generate robust, 
comparable gene signatures per virus, we filtered signatures for effect size of 0.6 and false discovery rate (FDR) thresholds 
between 0.05 to 0.0001 in order to find thresholds that captured around 200 genes for better comparison across gene 
signatures. For the Viral Response Signature (VRS) that was generated across all macaque datasets, we removed one dataset 
at a time and applied both meta-analysis methods at each iteration to avoid the influence of any datasets with large sample 
sizes on the results.  
 
We defined each score by the geometric mean of the normalized, log2-transformed expression of the overexpressed genes 
minus the geometric mean of the normalized, log2-transformed expression of the underexpressed genes of each gene 
signature. We scaled and centered (mean = 1, standard deviation = 1) all sample scores per dataset to allow for comparison 
between datasets.  
 
We measured the correlation between different scores using Spearman’s rank correlation coefficient. We used the Mann–
Whitney U test (Wilcoxon rank-sum test) to compare MVS scores between two groups.  
 
Mixed-effects Model for Timepoint Data 
We used multivariable linear mixed-effects models with random time-influenced subject-specific intercepts and slopes to 
assess the changes in MVS scores from uninfected baseline timepoints (intercepts), and follow-up timepoints post-infection 
(slopes).  Separate models for were estimated using time, day-post-infection * day-post-infection, macaque species, dataset, 
and infecting viruses that included various interactions between these covariates. Across these various models, the one we 
chose was that with the lowest Akaike Information Criterion (AIC) value. The final reported model for both the macaque 
and the human datasets was: lmer formula = MVS_score ~ Time + Time2 + Virus + Time*Virus_Family + 
Time2*Virus_Family+(1+Time|Subject). Analyses were run in R version 4.2.2 using the “lmerTest” package. 
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Gene Set Overrepresentation Enrichment Analysis 
Overrepresentation analysis was performed on differentially expressed gene sets or signature sets identified from bulk RNA-
seq (padj < 0.05 and ES >= 0.1) and/or scRNA-seq (padj < 0.05 and ES >= 0.6) analyses utilizing the Blood Transcriptional 
Modules (BTM). BTMs for which there was higher level annotation from Hagan et al74 were visualized in Circos plots and 
single cell analysis. The p values were adjusted using Bonferroni correction. Data analysis was performed using R. 
 
Analysis of single-cell RNA sequencing  
Data from Kotliar et al.16 was generously shared as a processed object with cell types already assigned. We generated gene 
scores per cell type utilizing the geometric mean of the genes in the signature.  Processed data from Yoshida et al.20 was 
downloaded from GEO. Data from Ghita et al.19 was generously shared. Both datasets were processed via Seurat and scanpy 
for QC, dimension reduction, clustering, and cell type classification. Seurat v475 was used for cell type annotation utilizing 
the multimodal PBMC reference dataset from the associated publication, and cell type calls were compared to previous 
manual annotation of datasets for confirmation. We generated MVS7 and Module 48 scores per celltype across both datasets 
using the geometric mean of the genes in the subset. We utilized the FindMarkers function in Seurat to perform DEG 
analysis on each viral infected individual compared with all healthy controls in each dataset by cell type. We then performed 
BTM enrichment analyses per individual on the gene subset that was upregulated upon infection and the gene subset that 
was downregulated upon infection separately (padj < 0.05 and ES >= 0.6). The pathway direction that had the highest 
adjusted p- value was retained if it appeared in both the up and down regulated module list.  
 
Figure Generation 
Figures were generated in R using the “ggplot2” and ComplexHeatmap package. Colors for figures were generated using 
the “NatParksPalettes”package. Statistical analyses were performed as described in figure and table legends and plotted 
using the R “ggpubr’ package. 
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SUPPLEMENTAL FIGURES/ TABLES  

 
SFig1: Gene pair correlation comparison across the macaques. (A-B) Correlation coefficients between the (A) mean and 
(B) median gene expression of healthy animals per dataset in comparison to other comparison datasets from the same or 
other macaque species.  
 

 
SFig2. AUROCs by dataset. (A-E) ROC curves for distinguishing macaques with viral infection at peak MVS timepoint 
category from uninfected macaques, across datasets by viral family and colored by individual dataset.  
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SFig3. Validation of independent inflammation and monocyte and T cell function scores in NHP data. (A-E) Gene score by 
sample taking the geometric mean of the genes present in the scaled (A) ISG score, (B) HLA Class II Score, (C) MS1 Score, 
(D-F) Correlation of ISG, HLA class II and MS1 scores with time post-infection, (G-H) T cell activation score and plotting 
the average by macaque and timepoint.  
 

 
SFig4. MVS score across all data timepoints. (A-B) MVS score calculated across (A) human longitudinal datasets and (B) 
all NHP longitudinal data. 
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SFig5. Meta-analysis of Human symptomatic challenge datasets by virus and time category. Meta-analysis of the MVS 
score across timepoints categories and viral infection in longitudinal human datasets.  
 
 
 

 
SFig6. Meta-analysis of NHP datasets by virus and time category. Meta-analysis of the MVS score across timepoints 
categories and viral infection in macaque datasets.  
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SFig7: BTM enrichment analysis across DEGs at peak timepoints per virus. (A-B) Circos plots of BTM enrichment analysis 
across (A) upregulated and (B) downregulated genes at peak infection timepoints in NHP datasets. Each sector represents a 
viral family, each point in all the tracks represents a BTM that was significant in at least one virus (padj <0.1). Track 2 is a 
barplot of the geometric mean of the expression of the genes represented by the BTM and plotted where the BTM was 
significant (padj <0.1). Each color in Track 3 is a granular annotation for each BTM pathway. The inner track connects the 
same BTM across viral families if they are both (left) positively or (right) negatively enriched. (C) The count of the number 
of significant modules corresponding to each granular pathway by positive versus negative enichment and by viral family - 
represented in the barplot.  
 
 
 

 
SFig8. MVS score across human DNA and chronic viruses. (A-G) MVS score in blood samples from healthy control 
subjects versus patients with (A) Adenovirus infection, (B) Rotavirus infection, (C) acute or latent EBV infection,  (D) acute 
or latent HCMV infection, (E) HIV infection or HIV co-infection with a respiratory virus RV), (F) chronic HBV infection, 
and (G) chronic HCV infection. (A-G) Significance values were determined using an unpaired Wilcoxon ranked-sum test 
comparing each condition to healthy samples.. Bonferroni correction for multiple hypothesis testing was applied per 
subfigure and significance values were assigned by asterisk. Asterisk values across figure are represented as follows: *p 
value < 0.05, **p value < 0.01, ***p value < 0.001, and ****p value < 0.0001.  RV = respiratory virus.  
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SFig9: Overview of human scRNA-seq datasets. (A-C) UMAP visualization of immune cells from patients colored by (A) 
cell type, (B) dataset, and (C) patient severity. (E and G) Differential gene expression analysis of (E) CD4 T cells and (G) 
NK cells across scRNA-seq data from COVID-19 and dengue patients between patients with severe disease compared to 
healthy controls. (F and H) BTM enrichment analysis of differentially expressed genes from (F) CD4 T cells and (H) NK 
cells from each severe patient compared to the dataset’s healthy patients.   
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