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One sentence summary:
Using longitudinal macaque viral challenge studies, we identified shared and virus-specific responses to infection that
replicate in human viral disease - thereby demonstrating the utility of macaque models of viral infection to understand

antiviral biology and for pandemic preparedness.

Keywords: Antiviral immunity, virus, transcriptomics, non-human primates


https://doi.org/10.1101/2023.06.22.546003
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.22.546003; this version posted June 25, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ABSTRACT

Viral pandemics and epidemics pose a significant global threat, with emerging and re-emerging viruses responsible for four
pandemics in the 21st century alone. While macaques have been utilized as a model for understanding viral disease in a
controlled setting, it remains unclear how conserved the antiviral responses to diverse viruses are between macaques and
humans. To address this critical knowledge gap, we conducted a comprehensive cross-species analysis of transcriptomic
data from over 6000 blood samples from macaques and humans infected with one of 31 viruses, including Lassa, Ebola,
Marburg, Zika, and dengue. Our findings demonstrate that irrespective of primate or viral species, there are conserved
antiviral responses which are consistent regardless of infection phase (acute, chronic, or latent) and viral genome type (DNA
or RNA viruses). Moreover, by leveraging longitudinal data from experimental challenges, we identified virus-specific
response dynamics such as host responses to Coronaviridae and Orthomyxoviridae infections peaking 1-3 days earlier than
responses to Filoviridae and Arenaviridae viral infections. Additionally, through comparative analysis of immune responses
across viruses, we identified a unique enrichment of lymphoid cellular response modules in macaque Flaviviridae infection
that persists in human responses to dengue. Our results underscore macaque studies as a powerful tool for gaining new
insights into viral pathogenesis and immune responses that translate to humans, which can inform viral therapeutic
development and enable pandemic preparedness.
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Introduction

Current, emerging, and reemerging viruses constantly threaten human health, not only by causing disease and death, but
also by driving wider societal and global consequences. Estimates suggest that RNA viruses make up to 44% of all emerging
infectious diseases, with 2-3 novel virulent viruses discovered yearly and most of zoonotic origins.'? Particular RNA viral
families, including Flaviviridae, Coronaviridae and Orthomyxoviridae, have led to multiple epidemics and pandemics
within the 21st century’, demonstrating their pandemic potential. RNA viruses constantly evolve: mistake-prone RNA
polymerases introduce genomic mutations and zoonotic reservoirs drive unique evolutionary pressures on viruses that lead
to unpredictable emergence patterns and disease manifestations.*> While controlled human infection studies are ideal for
developing translational solutions, such studies are generally difficult and unethical for lethal and emerging pathogens.
Therefore, non-human primate (NHP) models, particularly the macaque model, continue to be critical for understanding
disease pathogenesis, vaccine modalities, and therapeutic interventions.

Previously, we identified a conserved host response in human infection across multiple viruses that have led to epidemics
and pandemics.”* However, multiple questions remain. For example, determining generalizability of host responses across
infection by viruses such as Marburg and Lassa is needed; yet, the lack of available data on human infections caused by
these and other viruses impedes the assessment of panviral responses. Additionally, understanding early antiviral responses
remains important though complicated in human profiling studies due to the challenge of identifying time-of-infection and
virus incubation periods. Furthermore, while it is necessary to compare the longitudinal dynamics of host response induction
across viruses, ethical concerns exist regarding human viral challenge studies. Here, macaque studies are advantageous
because they allow for the understanding of diverse and lethal viral pathogens in well-controlled challenge studies, whereby
measurements can be taken across multiple timepoints pre- and post-infection. However, the extent to which macaque
immune responses reflect human host responses or vice versa is unclear, particularly whether both humans and macaques
evoke similar antiviral responses upon infection. By leveraging transcriptomic profiles from both macaque and human
infection studies, we aim to determine the utility of macaque models for understanding and predicting human responses to
emerging viruses and to map conserved and unique features of the immune response to different viruses.

In this study, we performed the largest transcriptome analysis of viral disease in macaques and humans to (1) directly
compare human and macaque antiviral responses and (2) define conserved and unique features of host responses across
viruses of concern. We used blood transcriptome data from 21 bulk RNA-seq datasets comprising 743 samples from 198
macaques from three species of macaques (rhesus, cynomolgus and pigtailed macaques) and infection by 13 viruses across
five viral families. We utilized longitudinal data to analyze the dynamics of viral response induction across numerous
viruses, some of which have been seldom studied in the context of human transcriptomic responses. Further, we applied our
previously identified conserved human host response, Meta-Virus Signature (MVS), which distinguishes viral infection
from healthy controls and predicts severity in humans, to show that macaques also induce antiviral responses similar to
those of humans and that these response dynamics vary by viral family.”* We also demonstrate that conserved responses in
NHP data robustly translate to human transcriptomic responses to heterogenous viral infections by leveraging 5345 human
samples across 47 datasets. Additionally, comparative analysis across antiviral responses allows us to identify differentiating
features of T cell responses in Flaviviridae infection of macaques that replicate in human studies. Together, this work
demonstrates that macaque transcriptomic antiviral responses robustly recapitulate those in human viral disease and are
conserved across diverse viruses - further supporting the use of macaque models to develop antiviral countermeasures,
particularly in cases where human studies are not possible.

Results

Data collection, curation, and preprocessing

We searched public repositories and publications for blood transcriptomic datasets from macaques with viral infection. We
focused on acute RNA viruses from the World Health Organization (WHO) list of priority pathogens.” We also included
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Orthomyxoviridae due to its history of, and potential for, driving pandemics (Tables 1 and S1). We identified 21 datasets
composed of 743 samples from 198 macaques infected with one of 13 viruses across five viral families (Tables 1 and S1).
Together, these datasets represented a broad spectrum of biological and technical heterogeneity as they included data from
three different macaque species infected with one of 13 viruses via different routes and doses, and profiled using different
microarray platforms and by RNA sequencing. Because timepoints across datasets were not uniform, we grouped timepoints
into six discrete categories, where T0 included uninfected samples prior to challenge, T1 spanned days 1-2 post-infection,
T2 was days 3-5, T3 was days 6-8, T4 was days 9-13 and TS5 was days 14+ (Figure 1A). While most datasets included
animals from baseline through infection, one Arenaviridae challenge dataset did not have pre-infection timepoints, requiring
unpaired analyses when this dataset was included. Before analyzing all the macaque species together, we confirmed that the
macaque species were comparable at baseline by comparing pairwise correlation of the 2,083 shared genes across the

Virus Family

Variables Arenaviridae Coronaviridae Filoviridae Flaviviridae  |Orthomyxoviridae Totals
Total samples (% of all samples) 131 (17.6%) 267 (35.9%) 201 (27.1%) 98 (13.2%) 46 (6.2%) 743 (100%)
Total unique animals (% of all animals) |40 (20.2%) 61 (30.8%) 59 (29.8%) 22 (11.1%) 16 (8.1%) 198 (100%)
‘ . (LASV,LUJV, (MERS, (EBOV, (ALKYV,
# Viral species 4 LCMV, 2 SARS) MARY) 4 DENV, 1 (FV) 13
MACV) KFDV, ZIKV)
# Datasets 4 5 6 4* 2 21
Totals (% of all
Variables (% of samples) samples)
Timepoint categories
TO (Day 0) 26 (19.8%) 61 (22.8%) 59  (29.4%) 22 (22.4%) 16 (34.8%) 184 (24.8%)
T1 (Days 1-2) 19 (14.5%) 40 (15%) 12 (6%) 22 (22.4%) 6 (13%) 99 (13.3%)
T2 (Days 3-5) 26 (19.8%) 68 (25.5%) 46 (22.9%) 16 (16.3%) 10 (21.7%) 166 (22.3%)
T3 (Days 6-8) 25 (19.1%) 39 (14.6%) 43 (21.4%) 22 (22.4%) 8 (17.4%) 137 (18.4%)
T4 (Days 9-13) 32 (24.4%) 17 (6.4%) 23 (11.4%) 72 (9.7%)
T5 (Days 14+) 3 (2.3%) 42 (15.7%) 18 (9%) 16 (16.3%) 6 (13%) 85 (11.4%)
Technology
Microarray 113 (86.3%) 21 (7.9%) 157 (78.1%) 68 (69.4%) 46 (100%) 405 (54.5%)
RNA-seq 18 (13.7%) 246 (92.1%) 44 (21.9%) 30 (30.6%) 338 (45.5%)
Totals (% of all
Variables (% of animals) animals)
Macaque species
cynomolgus (Macaca fascicularis) 29 (72.5%) 42 (71.2%) 4 (18.2%) 75 (37.9%)
pig-tailed (Macaca nemestrina) 8  (36.4%) 8 (4%)
rhesus (Macaca mulatta) 11 (27.5%) 61 (100%) 17 (28.8%) 10 (45.5%) 16 (100%) 115 (58.1%)

Table 1: Sample distribution of macaque bulk RNA-seq datasets.

different datasets. We found that there were no differences across datasets of different macaque species when compared to
the variation seen across datasets within the same macaque species (Figure S1).

Conserved immune response to viral infections in humans is also conserved in macaques to diverse RNA viruses

We asked whether macaques are a representative model for studying human immune responses to viral infections. To answer
this question, we used the MVS, the conserved immune response signature we have described and validated previously.”®
As described before,” we calculated the MVS score for each macaque sample in each dataset and compared the MV'S scores
at peak infection timepoint to those at the baseline. We defined peak infection timepoint in a dataset as the timepoint
category with the highest median MVS score. The MVS scores were significantly higher (padj<0.001) and accurately
distinguished macaques at peak infection from uninfected timepoints (area under the receiver operating characteristic
(AUROC) curve >= 0.8) across all viruses (Figures 1B, 1C and S2). We also examined other gene sets previously
demonstrated to correlate with human viral infection. All viral infection datasets showed significant increase in interferon-
stimulated gene (ISG) expression (padj<0.001), whereas Arenaviridae, Coronaviridae, and Filoviridae infections
demonstrated significant downregulation of HLA Class II genes (padj<0.05) and significant upregulation of MS1 signature
genes (padj<0.01)'°(Figures S3A, S3B and S3C).
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Figure 1. Conserved immune response to viral infection in humans is similarly present in macaque infection and driven by myeloid cells (A) Schematic of macaque sample
overview and timepoint distribution. (B) Distribution of the Meta-Virus signature (MVS) scores comparing uninfected, healthy macaques to those at peak MVS score by
viruses across five viral families. Each point represents a blood sample. Significance values were determined using an unpaired Wilcoxon ranked-sum test with Bonferroni
correction for multiple hypothesis testing. (C) ROC curves for distinguishing macaques with viral infection at peak MVS timepoint category from uninfected macaques,
colored by the viral family associated with infection (382 samples in 21 datasets). (D-G) Association of MVS scores with the known risk factors of disease severity (D)
vaccination status, (E) virus strain, (F) age of host, and (G) live virus across four different datasets from macaques infected with Machupo, influenza or Ebola virus. P-value
was determined by ANCOVA test accounting for MVS score at pre-infection timepoint and a risk factor of interest as a covariate of the MVS score post-infection. (G-l)
UMAP visualization of 56,929 immune cells from 17 animals colored by (H) cell type, (I) day post-infection, and (J) MVS score. (K) Heatmap representing the average
MVS score of each cell type across pre-infection and each day post-infection. Asterisk values across figure are represented as follows: *p-value < 0.05, **p-value <0.01,
***p-value <0.001, and ****p-value < 0.0001. WB = Whole blood, PBMC = Peripheral blood mononuclear cells, MACV = Machupo virus, EBOV = Ebola virus, IFV =
influenza virus.

Importantly, we have shown that the MVS score is significantly correlated with severity of viral infection in humans.® There

were four datasets with known risk factors for severity in macaques. The MVS score was significantly associated with risk
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factors (p<0.04) including: Machupo virus infection of unvaccinated (more severe disease) versus vaccinated macaques'!
(Figure 1D), infection by Mayinga (more severe disease) versus Makona Ebola strains'*"® (Figure 1E), influenza infection
of old (more severe disease) versus young macaques'* (Figure 1F), and infection by live (more severe disease) versus
inactivated influenza infection' (Figure 1G). These results demonstrate that conserved transcriptional signatures to viral

infections in humans are also conserved in macaques and associated with known risk factors for severe outcome.

Furthermore, we have previously found that the MVS is driven by myeloid cells in humans with COVID-19.* Therefore,
we analyzed a single-cell RNA-seq (scRNA-seq) dataset of whole blood samples from macaques infected with Ebola virus
(56,929 cells from 17 macaques)'® to investigate whether the conserved immune response in macaques is driven by the same
immune cells (Figures 1H and 1I). We found that, similar to humans with COVID-19, the MVS genes were preferentially
expressed in myeloid cells® (Figures 1J and 1K). These results further suggest that myeloid cells are also a major driver of
the MVS for multiple viruses in macaques. To further characterize infection-driven changes in myeloid cells, we examined
longitudinal gene expression profiles from pre-infection to 8 days post-infection when macques developed severe and fatal
disease. We observed an increase in ISG expression (1=0.93, p<le-4; Figure S3D), MSI1 signature genes (1=0.71, p<le-4;
Figure S3E), and downregulation of HLA Class II genes (r=-0.61, p<6e-4; Figure S3F); these changes were also observed
in myeloid cells in the setting of severe COVID-19.'°

Additionally, upregulation of MS1 genes and downregulation of HLA Class 11 is consistent with the acquisition of a myeloid
derived suppressor cell (MDSC)-like phenotype, which in turn suppresses T cell activation. Therefore, we evaluated changes
in T cell activation across infection. We observed significant downregulation of T cell activation genes in both CD4 and
CDS8 T cell subsets (r <-0.5, p<0.007; Figures S3G and S3F) from pre-infection to day 8 post-infection. Together, these
results reveal that the dynamics described in human COVID-19 are also present in critical/fatal Ebola infection of rhesus
macaques, further supporting our hypothesis that immune cell responses are consistent across viral and host species in RNA
virus infections.

Together, these data provide strong evidence that the conserved immune response to viral infections in humans is also
conserved in macaques and primarily driven by myeloid cells, and further suggests that it may be correlated with severity
of infection in macaques.

Temporal patterns of the conserved antiviral responses differ by viral families in humans and macaques

Because the peak infection timepoint differed for each virus, we investigated whether temporal patterns of the host response
differed by virus in humans and macaques. First, we identified seven human challenge studies (GSE73072) where
participants were inoculated with either influenza (IFV; family: Orthomyxoviridae), human rhinovirus (HRV; family:
Picornaviridae), or respiratory syncytial virus (RSV; family: Pneumoviridae) and transcriptional data was collected from
blood samples across pre- and post-infection. We excluded participants that were asymptomatic and did not shed virus (i.e.,
uninfected). We calculated the MVS score at all timepoints collected in symptomatic infected patients (Figures 2A and
S4A) and assessed temporal changes in the MVS score with different viral infections (Figure 2B; Table S3). While I[FV and
HRYV infections had highest MV scores between days 1-5 post-infection, RSV infection showed peak MVS scores at later
timepoints, between days 3-7 (Figures 2A, 2B and S5). A mixed-effects model with time as a continuous variable also
showed that dynamics of the MVS in RSV-infected patients differed significantly (p<0.001) from those of patients with
IFV or HRV infections (Table S3).

Next, we investigated whether similar virus-dependent differences in the dynamics of the MVS were also present in
macaques (Figures 2C and S6). Similar to IFV infection in humans, Orthomyxoviridae infection of macaques had early
peak MVS responses at 1-3 days post infection (Figures 2C and 2D). We further comparatively assessed response dynamics
via mixed-effects modeling using macaque infection by Orthomyxoviridae viruses as the comparator; however, we limited
our analysis to pre-infection to day 7 post infection as Flaviviridae datasets had no timepoints past day 7 (Table 2). Dynamics
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Figure 2: Longitudinal dynamics of the conserved antiviral response differ between viruses. MVS scores across all datasets up to 10 days
post-infection across (A) 1158 human and (C) 734 NHP challenge samples with time category annotated below. Forrest plot tables of the summary
statistics generated for each viral infection in (B) human and (D) NHP challenge dataset by time category.

of the MVS response in macaque infection by Arenaviridae and
Filoviridae viruses were significantly different from those by
Orthomyxoviridae infection (p<0.01), whereas infection by
Coronaviridae and Flaviviridae viruses was less significant but
did differ from Orthomyxoviridae infection dynamics (p<0.05;
Table 2). For example, while Orthomyxoviridae and
Coronaviridae only showed significant differences in MVS
Scores at T1 and T2 compared to baseline (p<0.05), Filoviridae
and Arenaviridae infections showed the most significant
differences in MV'S score compared to baseline at T3 (p<0.001;
Figure 2D). Interestingly, both Filoviridae and RSV fall into the
viral order Mononegavirales, and here we see both virus
infections driving delayed peak MVS response induction in
humans and macaques respectively (Figure 2). Overall, these
data highlight that MVS is robustly conserved in humans and
macaques across viruses, though host response dynamics differ
by virus type that may be important for understanding viral
incubation and latency periods.

Table 2. Time Series Analysis of MVS Score by Viral Challenge in NHPs
Random effects: Variance s.t d'. Corr
Deviation
Animal:Dataset 0.054 0.232
Time 0.004 0.059 1.00
Residual 0.549 0.741
Fixed effects: B par'ameter Std. Error  t value Pr(>|t])
estimate
Intercept -0.372 0.190 -1.964 0.050
Time 0.912 0.209 4.361 1.55E-05 ***
Time x Time -0.145 0.038 -3.852 1.32E-04 ***
Virus Family
Arenaviridae -0.507 0.235 -2.160 0.031 *
Coronaviridae 0.077 0.211 0.365 0.715
Filoviridae -0.366 0.214 -1.712 0.088
Flaviviridae -0.132 0.247 -0.533 0.594
Virus Family x Time
Arenaviridae x Time -0.675 0.237 -2.852 0.005 **
Coronaviridae x Time -0.522 0.221 -2.368 0.018 *
Filoviridae x Time -0.754 0.228 -3.302 0.001 **
Flaviviridae x Time -0.516 0.245 -2.107 0.036 b
Virus Family x Time x Time
Arenaviridae x Time x Time  (0.145 0.041 3.536 4.42E-04 ***
Coronaviridae x Time x Time |0.096 0.039 2451 0.015 *
Filoviridae x Time x Time 0.158 0.041 3.880 1.18E-04 ***
Flaviviridae x Time x Time 0.105 0.042 2471 0.014 *
Number of observations: 575
Number of animals: 198
AIC 1502.37
Mixed effects model using R package ImerTest. Comparisons are to
Orthmyxoviridae viral challenge data. Data from all NHPs infected with acute RNA
virus. Timepoints included were from day 0 to day 7 post-virus challenge. Signif.
codes: 0 “***’0.001 ‘**' 0.01 ‘*’ 0.05
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Unbiased transcriptomic analysis of NHP demonstrates conserved antiviral responses to acute RNA viruses that
translate to humans

Transcriptomic data for certain viral diseases (e.g., Lassa virus, Machupo virus, Kyasanur Forest Disease virus) in humans
are not publicly available and other measurements at early stages of lethal and newly emerging viruses are likely lacking.
In these cases, macaque studies provide the only immediate transcriptomic data to learn primate immune responses.
Therefore, we investigated whether macaque antiviral responses were similarly conserved across viral infection and
translatable to human viral infections (Figure 3A). First, we determined differentially expressed genes (DEGs) across
datasets per viral family by timepoint category compared to the baseline TO to identify peak infection timepoints in an
unbiased way (Figure 3B). From here, we categorized peak infection timepoints per viral family as the time category with
the highest number of robustly changing genes, defined as genes with false discovery rate (FDR)<0.05 and abs(effect size
(ES))>0.1. Generally, peak DEG timepoint categories for each viral family corresponded with the peak MVS score
timepoints demonstrated in Figure 1 (Figure 3B and Table S1).

Next, we asked how conserved transcriptomic changes were across macaques between baseline and peak infection
timepoints by viral family. We started by identifying gene signatures using our previously described multi-cohort analysis
framework'""® to distinguish peak infection from the baseline TO timepoint. We grouped the macaque datasets either by
viral family — resulting in five signatures with one per viral family — or with all 21 datasets together to create the Viral
Response Signature (VRS; Table S5). We compared each of these six newly developed signatures and the original MVS by
gene with each other and by the blood transcription modules (BTM) that each gene set represented using the Jaccard index
(JI; Figure 3C). While there was limited overlap between the virus-specific signatures at a gene-level (ranging from 3 shared
genes between the Arenaviridae signature and Filoviridae signature to 32 overlapping genes between the Arenaviridae
signature and Flaviviridae signature), there was much greater overlap in represented modules. Although some of the
differences in genes may be due to variability in the statistical power, this result suggested that similar pathway networks
are affected, even if driven by different genes (Figure 3C). Next, we performed enrichment analysis using the BTMs on the
over- and under-expressed gene subsets from each signature separately (Table S6). We calculated a score for each BTM
within the datasets grouped by viral families where the BTM was significant (padj<0.1; Figure 3D, track 2). Links connect
BTMs across viral families where the BTM was enriched across the positive signature genes in both families. There were
no connecting links across viruses by significant BTMs enriched in the negative signature gene subsets. Across all the viral
families, there was a large number of upregulated pathways relating to myeloid and innate responses (Figure 3D). Similar
analysis was also performed across all the DEGs identified at peak timepoints from Figure 3B and demonstrated similar
results (Figure S7). We also assessed the generalizability of each virus-specific signature to other viral families. All virus-
specific signatures distinguished healthy control and infected animals with high accuracy (AUROC>= 0.75; Figure 3E). By
using this discovery/validation approach between viruses, this analysis demonstrates the robustly conserved innate
responses that are upregulated across both hemorrhagic and nonhemorrhagic viral diseases.

We further investigated whether the VRS, identified using the macaque data, is applicable in distinguishing uninfected and
infected human subjects. In 3183 human samples across 20 datasets of patients with one of 14 viral infections (Table S2),
we found that the macaque VRS robustly distinguished viral infection from healthy across all symptomatic infections
(Figures 3F and 3G). We separately looked at four human viral infections to demonstrate that the VRS signature robustly
distinguished uninfected individuals from those infected with SARS-CoV-2, Ebola or dengue virus (padj<0.0001). Notably,
the VRS was conserved upon infection by the Chikungunya virus (padj<0.0001), an RNA virus whose family was not
included in the VRS signature discovery data (Figure 3H). Although VRS and MVS only had an overlap of 23 genes (JI =
0.03), these scores were significantly positively correlated across macaque data (r >= 0.54, p<l.4e-8) and human data (r >=
0.42, p<l.le-8) across all timepoints collected, although they were noticeably lower for Flaviviridae viral infection in
macaques (Figures 31 and 3J). In BTM overrepresentation analysis of the macaque-derived VRS signature compared to the
human-derived MVS signature, upregulated genes in both signatures were enriched in innate response and antiviral modules,
whereas downregulated BTMs corresponded to adaptive responses - further demonstrating conserved viral responses that
transcend species and virus infections (Figure 3K and Table S7). Interestingly, while both signatures capture downregulation
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Figure 3: NHPs demonstrate conserved responses to acute RNA viruses that robustly translate to humans. (A) Schematic of experimental design for (B - K).
(B) Significant DEGs at each timepoint category by viral family (effect size (ES) FDR < 0.05 and abs(ES) >0 .1). (C) Jaccard similarity index of the signature genes
between each signature where annotation across the diagonal denoting same-score comparison is annotated with the number of genes present in the signature and all other
annotations are the calculated Jaccard index (left). Jaccard similarity index of the blood transcription modules (BTM) that contain one or more of the signature genes
between each signature where annotation across the diagonal denoting same-score comparison is annotated with the number of BTMs represented by the signature and
all other annotations are the calculated Jaccard index. (D) Circos plot of BTM enrichment analysis across positive signature genes by viral family. Each sector represents
a viral family, each point in all the tracks represents a BTM that was significant in at least one virus (padj <0.1). Track 2 is a barplot of the geometric mean of the
expression of the genes represented by the BTM and plotted where the BTM was significant (padj <0.1). Each color in Track 3 is a granular annotation for each BTM
pathway. The inner track connects the same BTM across viral families if they are both (left) positively or (right) negatively enriched. (E) Summary AUROC generated
from the specific score (x-axis) across the different viral family dataset subsets (y-axis) comparing peak infection time category determined by 3B from healthy control
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animals. (F) AUROC of human data using the NHP Viral Response Signature (VRS) (n =3183). (G) Violin plots of NHP VRS by viral severity of the samples from 3F.
(H) Violin plots of NHP VRS by virus and disease of the samples from 3G. (I) Pearson’s correlation between the calculated MVS Score and the generated NHP VRS.
Each dot is a single blood sample from an NHP across all timepoints collected (743 samples). (J) Pearson’s correlation between the calculated MVS (Human) score and
the generated VRS (NHP) score. Each dot is a single blood sample from various public human gene expression datasets (n = 638). (K) Comparison of signature-enriched
BTM pathways in the upregulated and downregulated genes in the MVS (Human) and VRS (NHP) pathways. Top 5 pathways (ordered by padj) chosen per signature’s

up and down genes.

of genes associated with lymphoid cellular response modules, the negative genes represented in the VRS also captured non-
lymphoid-specific responses such as signal transduction and translation initiation factor 3 (elF3) pathways which may come
from the inclusion of lethal, hemorrhagic viral diseases in macaque discovery datasets unlike MVS which was identified
using respiratory viral infections. Together, these data validate macaques as robust models for studying human
transcriptomic responses to viral infection. Here we demonstrate their potential for identifying both common antiviral
responses as well as nuanced differences, such as those evident in Flaviviridae responses compared to other RNA viruses.

Host response signature derived from macaques demonstrates robustness across acute and chronic viral infection

in humans

Many patients have latent, chronic or acute viral infections that are not caused by single-strand RNA (ssRNA) viruses.
However, the VRS and the MVS were identified using only acute infections caused by ssRNA viruses. Therefore, we
investigated whether immune responses in macaques and humans were conserved across diverse viruses and disease
manifestations. We used the macaque-derived VRS to further investigate the generalizability, and subsequently its

translatability, to a variety of human viral infections.

First, across acute infections, the VRS score was significantly higher (p<<0.05) in patients with Adenovirus (a double-
stranded DNA (dsDNA) virus), Rotavirus (a double-stranded RNA (dsRNA) virus), Epstein-Barr virus (EBV; dsDNA virus)
or human cytomegalovirus (HCMV; dsDNA virus) infections compared to healthy subjects (Figures 4A, 4B, 4C, and 4D).
Second, we demonstrate that this response is robust in latent EBV (padj<0.01) but not in latent HCMV (padj=ns) infection
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Figure 4: Macaque-discovered antiviral response is consistent in human acute and chronic, but not latent viral infections. (A-G) VRS score in blood samples from healthy
control subjects versus patients with (A) Adenovirus infection, (B) Rotavirus infection, (C) acute or latent EBV infection, (D) acute or latent HCMV infection, (E) HIV infection
or HIV co-infection with a respiratory virus (RV), (F) chronic HBV infection, and (G) chronic HCV infection. (A-G) Significance values were determined using an unpaired,
one-sided Wilcoxon ranked-sum test looking at whether healthy VRS scores are less than comparator group VRS scores. Bonferroni correction for multiple hypothesis
testing was applied per-subfigure and significance values were assigned by asterisk. Asterisk values across figure are represented as follows: *p value <0.05, **p value
<0.01, ***p value <0.001, and ****p value < 0.0001.
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(Figures 4C and 4D). Third, the VRS was also significantly higher (p < 0.01) in patients with chronic HIV (RNA virus with
reverse transcription (RT) step), Hepatitis B (dsDNA virus with RT step), and Hepatitis C (ssRNA virus) viral infection
(Figures 4E, 4F and 4G). Across the viruses studied here, the VRS demonstrated a stronger generalizability across
represented viral infections in comparison to the MVS, potentially due to its discovery across a greater diversity of viral
infections (Figure S8).

A wsv_1 i N Arenaviridae | Flaviviridae |l Orthomyxoviridae
Arenaviridae LCMV_1
MACV_1
MERS_1 I 7 2]
B SARS_1 Virus Family ) e e
Coronaviridae SARS_2 [ | B Arenaviridae S o \‘,\/ { I »
SARS_3 - I Coronaviridae %) . 3 .
Filoviridae ks . 4
SARS_4 M Flaviviridae f
wary_ | Y = =i o,
EBOV_1 Baseline-
esov_2 [l Subtracted Score Type — Module 4 = VRS Score
Filoviridae o v~ =3 0 5 100 5 100 5 10 0 5 100 5 10
- !2 Days Post-Infection
EBOV_4 C
EBoV 5 ! Orthomyxoviridas
akv_1 [l l-1 o A=-086.p<22616 | A=-061.p<220:16 | A=-03 p=4e:05 R=-0017,p=088 || A=-067, p=3.8e-06
Flaviviridae  <FPV-1 2 .
avIVInea®  zikv_1 S 1 ‘
DENV_1 o]
— o1 [
- IFV_1 <
. Py [
omompoiicse 11 | e 21 |
> g e @ @ @@ 8 ‘
EZ3 8 88 8 8 = 2. [
grgiiad |
888838¢%z2 -31
$ =32 = =
2 1 06 1 2 10 1 2 3 2 1 06 1 2 41 o0 1 2

-1 0 1 2
VRS Score
Human Infection (bulk RNA-seq)

D (3l Coronaviridae (SARS) | INNFISVIRGSSNEBOWINN| Toaviridae (cHikv) IS

51 R=-0.66,p=7.le-12 51 R=-0.32,p=1.3e-05 p(T test) = 3.7e-10 p(JT test) = 0.012 p(T test) = 7.5e-16 . p(T test) = 0.12
2 1
11 1 ‘ P
/1| AL A €W
01 \ 0 \ 44\ / %/\\ e P L
e 1 o |[(H) & ¢ >
o s \U/ / \ : \ g 0of NT,
521 2 @ \/ / \ g )
o 01 o 0 )
n < 11 1 <+ \(
- 10 i 2 3 2 1 0 1 2 @ 1) | M JAS
H 3 il h 3
3 -1
8, R=-047,p=23e10 |, R=-0.8,p<2.2e16 = [ §st
=

1 ]
Severity Dengue Disease

-2

§ [ ‘ I
0 2 )
. l
2]
- 3 ‘ 50
4 Health Mild Critical
3 1 v H

Fatal DENV Disease| | Healthy ~ D [-| ohr [] pss

2 o 0 t SeverltyE No symptoms - | Moderate|

3 2
VRS Score

Human Infection (scRNA-seq)

G H CD8T: 81 SARS DEGs; 332 DENV DEGs | CD8 T calls: Severe vs Healthy
T i — Patients
& SN (GzvB (FisTIFaC) [ e 1 ]
S ( [PRF1) = S ) S ,
r?é\ Ab“’/» 1.04 INKGT. PRELE oA enichedinTeels()M70) @) © ® @® O @® ©® ®© @
iS5 S& g Cc“;.z”'“ Tealatalonansgraingsn) ) © © © O ©® ©® O ®
i?@ X > ‘—. L], o Teslachaton W73 @ © © @ ® O ® ®
= g os cst7 O ® ® ® ® % Path is DEG
I < 02 ““’ ® 0O ® 0o
b GNLY ) @ ) ® 08
other T 23 00 [HLAB o © ® \’.% %\/ - M
wT [NFKBIA) [C N ® @ 0
cosT Mod4 =y T cell surface, activaon (M3) ® ® ®
Score o T cell signaling and costmulation (Mé4 ® ®
) H o = = - of 1ad; P val
coaT gmhish  § °° “ea Sanalng in el 1) (435 ® ® 0 0 0 ® =%
B S CD4 T cel surtace signature Th2-stimulated (S ® ® "
. mitotccell cyce n Simulated GDA T cells (M) ©®
B . a
- other 0 (zFm36) [Fos CD4 T cel suriace signature Thi-stimulated (55 ® o
- T celldiferentiation via ITK and PKC (M18) ® 10
- CD16 Mono low -To 05 0.0 05 10 T cell diflerentaton (M14) ® ® © ©
-- bc Log2FC in Severe COVID-19 T cell activation (Il (M7.4)
vs Healthy sgainginTeals ()50 ® ® ©® ©® ©® O ® ® ©® 0 ® O
Wy () o @

Figure 5: T cell responses differ between viruses in NHP and human viral infection. (A) Distribution of the Module 4 scores across macaques, comparing uninfected, healthy
macaques to those at peak MVS score by viruses across 5 viral families. Each point represents a blood sample. Significance values were determined using an unpaired
Wilcoxon ranked-sum test with Bonferroni correction for multiple hypothesis testing and assigned by asterisk. (B) Comparison of Module 4 scores to VRS scores across
time in 4 viral families. (C) Comparison of Module 4 scores to VRS scores across the 4 viral species collected within the Flaviviridae family. (D) Module 4 score to VRS
score in human data across 4 viral infections. (E) Module 4 scores by viral severity across CHIKV, EBOV, and SARS-CoV-2 viral infection. (F) Module 4 scores across
disease timepoint and dengue disease type. (G) Expression of Module 4 scores by cell type in 2 scRNA-seq datasets. (H) Differential gene expression analysis of CD8 T
cells across scRNA-seq data from COVID-19 and dengue patients between patients with severe disease compared to healthy controls. (I) BTM enrichment analysis of
differentially expressed genes from each severe patient compared to the dataset’s healthy patients.
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Consistently, the VRS distinguishes viral infection from a healthy state, and even detects chronic infection, regardless of
viral genome strandedness or nucleic acid intermediates. This shows that a shared host response exists in both macaques
and humans across various types of viral infections, highlighting the power of macaque models for understanding human
antiviral responses.

T cell responses differ across viral infections

Compared to other RNA viruses in macaques, the correlation between the VRS and MVS was noticeably lower, albeit
significant, in Flaviviridae (Figure 31 and 3J). Both VRS and MVS signatures also had lower accuracy in distinguishing
healthy controls and macaques with Flaviviridae infection. Therefore, we investigated potential drivers of this difference by
evaluating the expression of four modules we have previously demonstrated to correlate with either severe or mild infection
and be driven by different cell types.® When comparing the expression of these four modules across datasets and at peak
MVS score timepoints with the animals’ baseline samples, Module 4, composed of genes preferentially expressed in
lymphoid cells (NK, T and B cells), was lower for all viral families except Flaviviridae in macaques (Figure 5A). In
macaques infected with non-Flaviviridae viruses, Module 4 expression was inversely associated with the VRS score over
time (Figure 5B and 5C). Module 4 was also significantly inversely correlated with VRS expression in humans infected
with CHIKV, DENV, EBOV or SARS-CoV-2 (p<1.3e-5), though the correlation was lower in EBOV (r=-0.32, p=1.3¢-5)
and DENYV infection (r=-0.47, p=2.3¢-10; Figure 5D). We further looked at the association of Module 4 expression with
viral disease severity across these human datasets and identified that while it significantly negatively associated with
increased disease severity in SARS-CoV-2 and CHIKYV infection (p<= 3.7¢-10), the association was weaker in EBOV
infection (p = 0.012) and not significantly associated with DENV disease severity (p = 0.12) (Figure 5E and 5F). Together,
these data suggest a potential difference in lymphoid responses across different viral infections.

To understand what was driving a difference in lymphoid cellular responses, we identified two scRNA-seq datasets with
healthy controls and patients presenting with severe disease from either SARS-CoV-2 or dengue viral infection (Figures
S9A, S9B and S9C),."**° We first investigated the cell types which had higher expression of Module 4 genes in patients
with severe disease, and further identified the T cell and NK cell populations as drivers of these genes (Figure 4G and 4H).
DEG analysis of these cell types demonstrated differences in the CD8 T cell responses between severe COVID-19 and
dengue disease (Figure SH; Table S8). In particular, genes marking effector and cytotoxic CD8 T cell profiles (GZMB,
NKG7, GZMH, PRFI, CCL5) were upregulated in severe dengue and downregulated in severe COVID-19 (Figure 5H).
Further, BTM enrichment using DEGs that were identified at a per virus-infected patient level in comparison to healthy
controls showed that generally severe dengue patients upregulated genes related to T cell activation and differentiation
modules whereas severe COVID-19 patients downregulated these module genes (Figure 5I). A similar trend was present in
CD4 T cell responses (Figures SOE and S9F; Table S8), however, there were no strong differences in NK cell responses
between severe COVID-19 and dengue disease (Figures S9G and S9H). This scRNA-seq analysis suggests a divergence in
lymphoid responses between COVID-19 and DENV that may be linked to CD8 T effector functions and be important to
address in vaccination strategies towards these different diseases.

Discussion

Emerging and re-emerging viral diseases remain a constant global health threat mandating the development of new solutions
to combat future epidemics and pandemics. Identification of conserved features of infection will enable the development of
broad-spectrum antiviral solutions to fight constantly-evolving and emerging viruses. Multiple viruses of public health
concern are understudied in humans; however, macaques remain an established model for understanding human disease
with numerous independent virus studies published in these models providing a wealth of information on viral disease.
Here, we reported that macaques are a reliable model of human antiviral transcriptomic responses by identifying and
comparing conserved host responses across multiple viral families. We further extended the generalizability of conserved
antiviral responses to several acute RNA viral infections of WHO priority concern, which include highly lethal viruses for

which human data does not exist, and to viral infections by DNA viral infections and chronic viral diseases. Notably, we
11


https://doi.org/10.1101/2023.06.22.546003
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.22.546003; this version posted June 25, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

identified differences in longitudinal dynamics of antiviral responses and T cell functions depending on the infecting-virus.
Together, these data provide detailed insights into the conserved, dynamic immune landscape of viral diseases across species
that can provide potential targets for host-directed immunomodulatory antivirals.

We identified differences in the longitudinal dynamics of the conserved host response by virus across macaques and humans.
These differences generally correspond with reported differences in incubation periods of these viruses in natural human
disease: SARS-CoV-2, influenza, and HRV infection show shortened incubation periods relative to Ebola, Lassa and
RSV.2"% While different viral strains within the same viral species and other clinical variables have demonstrated effects
on incubation periods (e.g., age, disease severity), our data indicates viral family level patterns as well.***® Additionally,
even in longer-incubating viruses, our data demonstrated detectable induction of antiviral responses prior to peak infection
that could potentiate development of viral diagnostics to identify patients prior to symptom presentation and/or viral
shedding.

One of the reasons for differences in the longitudinal dynamics could be that viruses produce specific proteins to perturb
host immune responses to support their undisturbed replication. While many viruses carry genes to produce anti-host
proteins, differences in their cellular targets, number and efficacy may influence overall host antiviral dynamics. Another
reason for these viral family-level differences may be variation in the ways these viruses present to pathogen recognition
receptors (PRRs) (i.e., TLRs and RIG-I), which are important sensors for inducing antiviral immunity.?” Interestingly,
Arenaviridae, Filoviridae (Order: Mononegavirales), and RSV (Order: Mononegavirales) are negative-stranded RNA
viruses (-ssRNA) that replicate in the cytoplasm, differing from the nucleus-replicating -ssRNA influenza virus and positive-
stranded RNA viruses (+ssRNA) such as Coronaviridae and Flaviviridae viruses. This difference in genome strandness may
be important as studies have shown that during replication, unlike +ssRNA, dsRNA and DNA viruses, -ssRNA viruses tend
to produce low levels of dSRNA intermediates — robust triggers of antiviral responses capable of binding directly to RIG-1
and MDA-5 receptors for activation of IRFs and NF-kB for downstream interferon and pro-inflammatory responses.”® "
Additionally, -ssRNA viruses cannot be directly translated but need to generate +ssRNA to co-opt host translation
machinery to reproduce, which may delay their overall infection dynamics. While it has been posited that other proteins and
complexes produced by -ssSRNA can drive inflammatory responses,’' differences in timing of protein production based on
starting nucleic acid material within cells could also drive differences in overall timing of the induction of host antiviral
responses. Other factors related to the viral family-level differences could be the differences in route of infection, viral tissue
tropism, and viral latency. For example, influenza viral shedding (via nasal wash) is generally detectable via PCR one day
after viral challenge and before symptom onset, whereas EBOV is generally detected after symptom onset in the blood.****
While our study focuses on cells in the blood, there could be differences in the types of tissues infected and the magnitude
of cytokine and ISG production, resident cell activation, and immune cell recruitment detectable in peripheral blood. Further
studies on comparative viral immunology and disease are required to ascertain the drivers of these different dynamics.
However, as it stands this data suggest key post-infection timepoints for study design and sample collection based on the
infecting viral family, which could be useful to development of macaque models for new viruses.

Here we report that a conserved set of genes identified across viral infection of macaques is robust across infection of
different macaque species and heterogenous human populations by viruses across the Baltimore Virus Classification system.
While focused studies within viral families have compared transcriptional responses between different macaque species to
suggest conservation in transcriptional responses - ie SARS-CoV-2 infection between cynomolgus and rhesus macaques,
SARS-CoV-2 infection between green monkeys and rhesus macaques, and EBOV infection between rhesus and cynomolgus
macaques — this study is the first that we are aware of that directly translates NHP findings to humans.** This step is
important because NHP studies allow for easier design of randomized control trials and challenge studies testing various
interventions (therapeutics, vaccinations, infection strains, etc.) and this work suggests measuring a readout in the form of
changes to the VRS could translate to human-relevant interpretations. Additionally, here we are showing that these
responses are conserved in acute infection by pathogens across six out of seven Baltimore Classification groups (we could
not test any ssDNA viruses because of the lack of available public data). This further highlights that despite the diverse
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genetic backbones and intermediates prior to mRNA production, these viruses still are detectable by the host to drive similar
antiviral responses. This is not unexpected: recent work suggests that while DNA and RNA sensors rely on different
mechanisms across various cellular compartments, there is appreciable cross-talk between these different pathways.’” For
example, the cGAS-STING axis, established as a cytosolic DNA sensing pathway, has been shown to be involved in
responses to RNA viruses including dengue virus, vesicular stomatitis virus and influenza A virus with many mechanisms
hypothesized, including STING binding to RIG-I/MAVS (cytosolic RNA sensors) that carries out signaling downstream of
their activation.®®* These data further suggest that while virus-specific gene sets identified may not consist of precisely the
same genes, they are part of similar pathways, indicative of redundancy in the antiviral response that may be broadly
targetable.***°> These differences may also be driven by virus-specific host targets that could induce specific gene expression
changes within pathways.

While many macaque models of RNA viral infections demonstrate clinical presentation, viremia, and virus tissue tropism
that is similar to their respective human viral disease; there exist multiple viruses that show divergence in pathogenesis
between primate species.***® For example, rhesus macaques infected with COVID-19, dengue or Kyasanur Forest Disease
virus (KFDV) have viremia, yet do not recapitulate human disease phenotypes.***’** Even so, we show that both the MVS
and VRS can still detect macaque infection in cases of COVID-19 or dengue viral infection where macaques are lacking in
clinical symptoms (asymptomatic or mild disease). An important divergence between rhesus macaques and human
genotypes that may account for differences in responses may be driven by the amino acid composition of the STING protein,
which plays a role in antiviral responses through IRF3 activation and downstream ISG expression. Thus, while DENV can
cleave human STING to reduce type I IFN production and enhance viral replication, it cannot cleave rhesus macaque STING
and restrict antiviral pathways downstream of STING activation. This evidence aligns with the theory that rhesus macaques
form part of dengue virus' sylvatic cycle, asymptomatically maintaining the virus population in nature. Even across macaque
species, while rhesus, pigtail, and cynomolgus macaques are highly genetically similar with comparable susceptibility to
many of the same viral infections, there exist nuances in their genotypes that make some macaque species better models of
human viral disease than others. In particular, tripartite motif-containing protein 5 (TRIMS) is an interferon-induced (IFI)
antiviral protein that has multiple isoforms. While rhesus macaques express heterogencous TRIMS genotypes, pigtail
macaques only express one genotype for this protein. In infection by simian immunodeficiency virus (SIV), rhesus
macaques’ TRIMS can differentially restrict SIV unlike pigtail macaques’ TRIMS, thereby leaving pigtail macaques
susceptible to SIV infection, making them the preferred NHP model for studying HIV. TRIMS is also important for
restricting the NS2B/3 protein of KFDV and other tick-borne flaviviruses to limit their replication.’®! It has been
hypothesized that the specific TRIMS5 protein expressed by pigtail macaques reduces this macaque’s ability to inhibit KFDV
NS2B/3, thereby making pigtail macaques more susceptible to and clinically symptomatic upon KFDV infection as
compared to rhesus macaques which present with asymptomatic and mild Kyasanur Forest disease.’**! Differences in
pathogenicity between macaques and humans may suggest targets for antivirals, such as blocking DENV’s cleavage of
STING or introducing enzymes to optimally degrade flavivirus NS2B/3. Together, these data demonstrate that even with
genotype differences that may impact the translation of results from macaque to humans (i.e. where STING and TRIMS
pathways are involved), the MVS and VRS magnitudes may provide a proxy for disease detection and intervention
assessment even when clinical symptoms are not present.

While T cells are known to be crucial for mounting effective immune responses during viral infections, we found opposite
trends in T cell transcriptional responses between dengue and COVID-19 during severe disease manifestations. During
COVID-19, lymphopenia and exhausted T cells are found in patients with severe and fatal disease outcomes and may serve
as a potential prognostic for disease outcome.’>>* Lymphopenia has also been described in severe Ebola infections while
exhausted T cells have also been a marker of chronic viral infections such as HIV, Hepatitis B, and Hepatitis C.>*** In
contrast, the role of T cell responses in dengue has been highly disputed. The majority of symptomatic dengue disease is
driven by secondary dengue infections, yet it is unclear whether pre-existing dengue-specific T cells play a protective or
pathogenic role. Generally, studies consistently report an expansion of pre-existing T cell populations readily activated upon
secondary dengue infection®®, which is in line with our data. However, while some studies report no transcriptional
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738 others

differences in the quantity and quality of DENV-specific CD4 and CD8 T cell populations by disease severity,
suggest that the expansion of pre-existing cross-reactive T cells drives severity through ineffective viral control and aberrant
cytokine responses.” ' Though we cannot distinguish DENV specificity or pathologic versus protective functional
differences, we do see a general activation of the T cell compartment. Interestingly, all macaques had a primary flavivirus
infection and consistently demonstrated differing trends in the expression of MVS genes relating to B, T and NK cell
responses (Module 4) as compared to other viral infections. This result suggests Flaviviridae-specific differences in T cell
response induction independent of prior exposure. These data together are important because they highlight general T cell
activation and proliferation may not directly equate to protective viral responses, and suggest further work needed in

dissecting specific T cell subsets and their role across viral disease pathogenicity.

In conclusion, we conducted a comprehensive analysis of host responses to a wide range of viruses, using transcriptomic
data from both human and macaque cohorts. Leveraging macaque data uniquely allowed us to gather pre-symptomatic,
post-inoculation timepoints from infection by pathogenic and lethal viruses that are otherwise very difficult, if not
impossible, to obtain from humans. Our integrated analysis across heterogeneous macaque and human cohorts allowed us
to identify highly generalizable antiviral responses conserved in acute and chronic viral disease. Moreover, our analyses
identified differences in the longitudinal dynamics of host response induction and resolution, which appear to be influenced
by viral family. These results further support the reliability of macaque models in studying human antiviral responses and
are useful for pandemic preparedness. Specifically, our work identifies several key areas for future research and
development of antiviral countermeasures, including the design of new intervention strategies such as diagnostics and
therapeutic timing, the optimization of macaque challenge study design for emerging and reemerging viruses, and the
development of broad-spectrum host-directed immunomodulatory therapies. These findings underscore the importance of
continued comparative research across transcriptomic responses to diverse viruses in macaques and humans, with the
ultimate goal of improving our ability to predict, prevent, and treat viral infections.

Limitations of Study

Our study has a few potential limitations. First, in a number of microarray datasets, not all genes in each gene set tested
were present, in which case we measured the subset of genes that were present in the particular dataset. Our previous work
has shown that many of the genes within the MVS score are highly correlated and only a subset is required to detect
conserved responses. Second, all macaque genes were converted to human homologues, ignoring the expression of macaque
genes that do not have a clear human homologue and/or may be important to overall antiviral response dynamics. Third, we
only analyzed transcriptome data from blood samples. However, differences in antiviral responses may occur at the tissue
level and site of infection that we may have missed. Fourth, some viral families we analyzed only had a small representation
of viral species and did not have different viral variants accounted for. While we use grouping at the viral family level to
identify conserved patterns, these may not be applicable to every virus within that viral family. For example, not all viruses
cause symptomatic disease in both macaques and humans, such as SIV in humans and HIV in macaques. While we included
all macaque viral datasets possible and a broad range of viruses with epidemic and pandemic concern, MVS and VRS
responses need to continually be tested in new viral infection datasets.

14


https://doi.org/10.1101/2023.06.22.546003
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.22.546003; this version posted June 25, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

STAR*xMethods

Key Resources Table

available under aCC-BY-NC-ND 4.0 International license.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data
Microarray dataset Fukuyama et al., 2020 accession# GSE152406
Microarray dataset Skinner et al., 2014 accession# GSE60009
Microarray dataset Malhotra et al., 2013 accession# GSE41752
Microarray dataset Rasmussen et al., 2014 accession# GSE49838
Microarray dataset Djavani et al., 2007 accession# GSE5790
Microarray dataset Connor et al., 2015 accession# GSE58287
RNA-seq dataset Speranza et al., 2018 accession# GSE103825
Microarray dataset Yenetal.,, 2010 accession# GSE24943
RNA-seq dataset Maroney et al., 2021 accession## PRINA718880
RNA-seq dataset Versteeg et al., 2017 accession# PRINA398558
RNA-seq dataset Speranza et al., 2017 accession# GSE99463
RNA-seq dataset Broeckel et al., 2021 accession# GSE185797
Microarray dataset Aidetal., 2017 accession# GSE90868
Microarray dataset Strouts et al., 2016 accession# GSE72430
Microarray dataset de Wit et al., 2013 accession# GSE44542
RNA-seq dataset Aid et al., 2020 accession# GSE156701
RNA-seq dataset Price et a., 2020 accession# GSE155363

RNA-seq dataset

Coleman et al., 2021

accession# GSE184949 GPL29319

Microarray dataset

Rubins et al., 2006

accession# GSE4013_GPL3093

Microarray dataset

Rubins et al., 2006

accession# GSE4013_GPL3346

Microarray dataset

Rubins et al., 2006

accession## GSE4013_GPL3347

RNA-seq dataset Reynard et al., 2023 accession# GSE158390
scRNA-seq dataset Kotliar et al., 2020 Zenodo# 7229439
RNA-seq dataset Liuetal., 2017 accession# PRINA352396
RNA-seq dataset Soares-Schanoski et al., 2019 accession# PRINA507472
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RNA-seq dataset Michlmayr et al., 2018 accession# PRINA390289
RNA-seq dataset Thair et al., 2020 accession# GSE152641
Microarray dataset de Steenhuijsen Piters et al., 2016 accession# GSE77087
Microarray dataset Liu etal., 2016 accession# GSE73072
Microarray dataset Zhai et al., 2015 accession# GSE68310
Microarray dataset Jaggi et al., 2018 accession# GSE68004
Microarray dataset Heinonen et al., 2016 accession# GSE67059
Microarray dataset Sweeney et al., 2015 accession# GSE66099
Microarray dataset Wong et al., 2007, Wong et al., 2008, |accession# GSE4607
Wong et al., 2012

Microarray dataset Ramilo et al., 2007 accession# GSE6269
Microarray dataset Hoang et al., 2014 accession# GSE61821
Microarray dataset Davenport et al., 2014 accession# GSE61754
Microarray dataset Parnell et al., 2012 accession# GSE40012
Microarray dataset Mejias et al., 2013 accession# GSE38900
Microarray dataset Wang et al., 2007 accession# GSE2729
Microarray dataset Berdal et al., 2011 accession# GSE27131
Microarray dataset Smith et al., 2014 accession# GSE25504
Microarray dataset Bermejo-Martin et al., 2010 accession# GSE21802
Microarray dataset Parnell et al., 2011 accession# GSE20346
Microarray dataset Zaas et al., 2009 accession# GSE17156
Microarray dataset Yuetal., 2019 accession# GSE117827
Microarray dataset Dunning et al., 2018 accession# GSE111368
Microarray dataset Rodriguez-Fernandez et al., 2017 accession# GSE103842
Microarray dataset Tang et al., 2019 accession# GSE101702
Microarray dataset Jong et al., 2016 accession# E-MTAB-5195
Microarray dataset Simmons CP et al. accession# GSE40628
Microarray dataset Long HT et al. accession# GSE13052
Microarray dataset Popper SJ et al. accession# GSE38246
Microarray dataset Kwissa M et al. accession# GSE51808
RNA-seq dataset Daberg et al. accession# GSE69529
RNA-seq dataset Sellers et al. accession# GSE155352
Microarray dataset N/A accession# GSE58208
Microarray dataset Dunmire et al. accession# GSE45924
Microarray dataset Riou et al. accession# GSE81246
Microarray dataset Bolen et al. accession# GSE40224

Software and Algorithms

R R Core Team (2022) https://www.r-project.org/

Metalntegrator Haynes et al. https://cran.r-

project.org/web/packages/Metalntegrat
or/index.html
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Seurat Satija et al., 2015 https://satijalab.org/seurat/

DESeq2 Love et al., 2014 https://bioconductor.org/packages/relea
se/bioc/html/DESeq2.html

ComplexHeatmap Gu, 2022 https://bioconductor.org/packages/relea
se/bioc/html/ComplexHeatmap.html

ImerTest Kuznetsova et al., 2017 https://cran.r-
project.org/web/packages/ImerTest/ind
ex.html

scanpy Wolfet al., 2018 https://scanpy.readthedocs.io/en/stable/

ggplot2 Wickham H, 2016 https://ggplot2.tidyverse.org/

UMAP Mclnnes et al., 2018 https://cran.r-
project.org/web/packages/umap/index.
html

Tximport Soneson and Robinson, 2018 https://bioconductor.org/packages/relea

se/bioc/html/tximport.html

Salmon Patro et al., 2017 https://combine-lab.github.io/salmon/

Resource Availability

Lead Contact
Further information and requests for resources, software, and data should be directed to and will be fulfilled by the Lead
Contacts, Catherine Blish (cblish@stanford.edu) and Purvesh Khatri (pkhatri@stanford.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability

This study did not generate any unique datasets or code. All datasets, software, and algorithms used in this study are publicly
available and listed in the Key Resource table. Code used to generate figures also available on Github:
https://github.com/Khatri-Lab/NHP_virus_challenge.

Method details
Methods for analyses performed are described below.

Quantification and Statistical Analysis

Non-human primate dataset collection and preprocessing

We downloaded 21 gene expression datasets (either microarray or RNA-seq) from the National Center for Biotechnology
Information (NCBI) Gene Expression Omnibus (GEO), Sequence Read Archive (SRA) or shared by collaborators,
consisting of 743 samples derived from whole blood or peripheral blood mononuclear cells (PBMCs) (Table 1, Table S1).
The counts dataset generated by Reynard et al."' was downloaded from Zenodo. The samples in these datasets included all

available macaque virus challenge studies with samples from uninfected and two or more infected timepoints. We
incorporated technical heterogeneity in our analysis as these datasets were profiled using microarray and RNA sequencing
(RNA-seq) from different manufacturers. Raw RNA-seq reads were trimmed of Illumina adaptors and reads that were too
short after adaptor trimming (less than 20 nt) were removed using Trim Galore (v0.6.5). We then mapped the cleaned reads
to the macaque transcriptome (Salmon v1.3.0, genome version Mmul 10 or Macaca_fascicularis_6.0).°> We used Tximport
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v1.26.1 63 to summarize to gene-level expression. Finall , WE 4] lied the variance stabilizing transformation from DESeq2
g p Y pp g q
v1.38.2 b4 to normalize gene expression for downstream analysis and visualization. Within a dataset, cohorts assayed with
different microarray types or had different viruses with independent control animals were treated as independent.

We mapped all genes generated through alignment to macaque genomes (rhesus: Mmul 10, cynomolgus:
Macaca_fascicularis_6.0, pig-tailed: Mnem_1.0) to the corresponding human orthologs to facilitate integrated, comparative
analyses. For the scRNA-seq data, Kotliar et al.'® generously shared their scRNA-seq object of GSE158390 that was
processed and annotated for cell type.

Human dataset collection and preprocessing

We utilized human gene expression data collected and processed across our other studies >, Briefly, 47 gene expression
datasets from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO), Sequence
Read Archive (SRA), ArrayExpress, and European Nucleotide Archive (ENA), consisting of 5345 samples derived from
whole blood or peripheral blood mononuclear cells (PBMCs) (Table S2). Log2 transformation and quantile normalization
was applied when necessary. For the combined discovery dataset from Zheng et al.® (Table S2) and the human dengue
datasets,’” 7 Combat CONormalization Using conTrols (COCONUT) was used for between-dataset normalization.”!
Healthy samples from each cohort undergo ComBat co-normalization without covariates, and the ComBat estimated
parameters are computed for the healthy samples in each dataset. By applying these parameters to the non-healthy samples,
all datasets keep the same background distribution while retaining the same relative distance between healthy and disease
samples, which preserves the biological variability between the two groups within a dataset.

Gene signatures and scoring

We used a number of previously published gene signatures, including: MVS’, MS1 signature'®, T cell activation signature’,
and ISG signature”. We generated gene signatures across all macaque datasets, the RNA virus subset of the datasets, and
each viral family subset of the datasets using the Metalntegrator workflow. Briefly, score generation was done by applying
two meta-analysis methods previously described: (1) combining effect sizes and (2) combining p values. To generate robust,
comparable gene signatures per virus, we filtered signatures for effect size of 0.6 and false discovery rate (FDR) thresholds
between 0.05 to 0.0001 in order to find thresholds that captured around 200 genes for better comparison across gene
signatures. For the Viral Response Signature (VRS) that was generated across all macaque datasets, we removed one dataset
at a time and applied both meta-analysis methods at each iteration to avoid the influence of any datasets with large sample
sizes on the results.

We defined each score by the geometric mean of the normalized, log2-transformed expression of the overexpressed genes
minus the geometric mean of the normalized, log2-transformed expression of the underexpressed genes of each gene
signature. We scaled and centered (mean = 1, standard deviation = 1) all sample scores per dataset to allow for comparison
between datasets.

We measured the correlation between different scores using Spearman’s rank correlation coefficient. We used the Mann—
Whitney U test (Wilcoxon rank-sum test) to compare MVS scores between two groups.

Mixed-effects Model for Timepoint Data

We used multivariable linear mixed-effects models with random time-influenced subject-specific intercepts and slopes to
assess the changes in MVS scores from uninfected baseline timepoints (intercepts), and follow-up timepoints post-infection
(slopes). Separate models for were estimated using time, day-post-infection * day-post-infection, macaque species, dataset,
and infecting viruses that included various interactions between these covariates. Across these various models, the one we
chose was that with the lowest Akaike Information Criterion (AIC) value. The final reported model for both the macaque
and the human datasets was: lmer formula = MVS score ~ Time + Time’ + Virus + Time*Virus Family +
Time?*Virus_Family+(1+Time|Subject). Analyses were run in R version 4.2.2 using the “ImerTest” package.
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Gene Set Overrepresentation Enrichment Analysis

Overrepresentation analysis was performed on differentially expressed gene sets or signature sets identified from bulk RNA-
seq (padj < 0.05 and ES >=0.1) and/or scRNA-seq (padj < 0.05 and ES >= 0.6) analyses utilizing the Blood Transcriptional
Modules (BTM). BTMs for which there was higher level annotation from Hagan et al” were visualized in Circos plots and
single cell analysis. The p values were adjusted using Bonferroni correction. Data analysis was performed using R.

Analysis of single-cell RNA sequencing

Data from Kotliar et al.'® was generously shared as a processed object with cell types already assigned. We generated gene
scores per cell type utilizing the geometric mean of the genes in the signature. Processed data from Yoshida et al.?* was
downloaded from GEO. Data from Ghita et al."” was generously shared. Both datasets were processed via Seurat and scanpy
for QC, dimension reduction, clustering, and cell type classification. Seurat v4” was used for cell type annotation utilizing
the multimodal PBMC reference dataset from the associated publication, and cell type calls were compared to previous
manual annotation of datasets for confirmation. We generated MVS’ and Module 4® scores per celltype across both datasets
using the geometric mean of the genes in the subset. We utilized the FindMarkers function in Seurat to perform DEG
analysis on each viral infected individual compared with all healthy controls in each dataset by cell type. We then performed
BTM enrichment analyses per individual on the gene subset that was upregulated upon infection and the gene subset that
was downregulated upon infection separately (padj < 0.05 and ES >= 0.6). The pathway direction that had the highest
adjusted p- value was retained if it appeared in both the up and down regulated module list.

Figure Generation

Figures were generated in R using the “ggplot2 ” and ComplexHeatmap package. Colors for figures were generated using
the “NatParksPalettes “package. Statistical analyses were performed as described in figure and table legends and plotted
using the R “ggpubr’ package.
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SFig9: Overview of human scRNA-seq datasets. (A-C) UMAP visualization of immune cells from patients colored by (A)
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Table S3. Time Series Analysis of MVS Score by Viral Challenge in Humans

Random effects: Variance S,t d'_ Corr
Deviation
Participant 0.404 0.635
Time 0.014 0.118 -0.36
Residual 0.574 0.758
Fixed Effects: B par.ameter Std. Error tvalue Pr(>|t])
estimate
Intercept -0.537 0.137 -3.932 1.70E-04 ***
Time 0.904 0.059 15.443 <2e-16  ***
Time x Time -0.133 0.008 -16.214 <2e-16  ***
Virus
Picornaviridae (HRV) -0.326 0.211 -1.547 0.126
Pneumoviridae (RSV) 0.019 0.278 0.070 0.944
Virus xTime
Picornaviridae (HRV) x Time 0.145 0.112 1.288 0.198
Pneumoviridae (RSV) x Time -0.642 0.118 -5.465 6.45E-08 ***
Virus xTime xTime
Picornaviridae (HRV) x Time x Time |-0.032 0.019 -1.623 0.105
Pneumoviridae (RSV) x Time x Time |0.134 0.016 8.234 5.43E-16 ***
Number of observations: 1158
Number of participants: 64
AIC: 2918.891

Mixed effects model using R package ImerTest. Comparison are to Orthomyxoviridae (IFV)
challenge. Data from respiratory viral challenge of subjects with symptomatic disease.
Timepoints included were from day 0 to day 7 post-virus challenge.

Signif. codes: 0 “*** 0.001 “**' 0.01 “*’ 0.05
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