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19 Abstract

20 1. Conservation biologists have a daunting task of understanding the causes of species decline

21 associated with anthropogenic factors and predicting the extinction risk of a growing number of

22 endangered species. By stabilising estimates with information on closely related species, phylogenetic

23 information among species can bridge gaps in information on species with small sample sizes when

24 modelling large numbers of endangered species. However, modelling many species with the Gaussian

25 process (GP), which underlies the evolutionary process of phylogenetic random effects, remains a

26 challenge owing to the computational burden in estimating the large variance—covariance matrix.

27 2. Here, we applied a phylogenetic generalised mixed model with random slopes and random

28  intercepts to 1,010 endangered vascular plant taxa in Japan following phylogenetic GPs implemented

29 by nearest neighbour GP (NNGP) approximation. NNGP enables flexibility in changing the proximity

30  on the phylogenetic tree of species from which information is borrowed to stabilise parameter

31 estimates with a realistic computational burden. We evaluated the effectiveness of phylogenetic

32 models by comparing the predictive performance and descriptive power of phylogenetic and non-

33 phylogenetic models and identified the anthropogenic factors contributing to the decline of each of the

34 studied endangered species.

35 3. We found that the model with phylogenetic information had better prediction performance than the

36 model without phylogenetic information. The results showed that across all explanatory variables, the
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37  phylogenetic model could detect interspecific differences in response to environmental factors in a

38  number of species more clearly. Combined with the phylogenetic signal results, we could also detect

39  a phylogenetic bias in the species that could benefit from the positive effects of protected areas but

40 reduce the extinction risk of 95% of all studied taxa.

41  4.1In conclusion, our model, considering phylogenetic information with NNGP, allows the elucidation

42 of factors causing the decline of many endangered species. In future analyses, the estimation of

43 extinction probability linked to environmental change using such modelling might be applied to future

44 climate-land use scenarios, advancing the comprehensive assessment of biodiversity degradation and

45  threats to species at multiple scales.

46

47  Keywords: data poor, land use change, macroecology, protected area, threatened species, transition

48 data

49

50 Introduction

51 Climate change and land cover change are major drivers of species extinction (Di Marco et al., 2019;

52 Powers & Jetz, 2019). Current species extinction risks are already about 100—1,000 times higher than

53  thatin nature (Pimm et al., 2014), and the risk of biodiversity decline continues to increase (Butchart,

54 2010). Conservation biologists are now faced with the challenging task of reducing the extinction risk
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55 of the growing number of endangered species by elucidating the causes of species decline linked to

56  environmental factors and predicting their future. However, Red List species often include species

57  with extremely small population sizes and areas of occurrence (IUCN, 2001), which limits the

58  identification of the factors underlying their decline and estimation of extinction risks linked to

59  environmental change (Bachman et al., 2019; IUCN, 2001).

60 The availability of species’ phylogenetic information has been increasing in recent years

61 (Beck et al., 2012; Mouquet et al., 2012), and it has the potential to improve extinction risk estimation

62  ofrare species. This is because branching patterns on evolutionary phylogenetic trees may help explain

63  and predict interspecific correlates in biological and ecological processes, which are thought to reflect

64  phenotypic, genetic, and behavioural differences among evolutionary lineages (Beck et al., 2012;

65  Hernandez et al., 2013). Especially in the field of macroecology, phylogenetic random effect models

66  that incorporate species-specific responses to intrinsic and extrinsic factors correlated on a

67  phylogenetic tree are considered powerful tools for multispecies systems because they can describe

68  the likelihood of phylogenetically related species responding to an environmental driver in similar

69  ways (Ives & Helmus, 2011; Li et al., 2020). However, modelling of evolutionary processes by

70  Gaussian processes (GP) such as Wiener processes (Brownian motion) and Ornstein—Uhlenbeck (OU)

71 processes, which are the underlying evolutionary processes of phylogenetic random effects, has not

72 been put to practical use because of the huge computational load required to estimate a large variance—
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73 covariance matrix when assuming multiple species (Ives, 2018).

74 Nearest neighbour Gaussian process (NNGP) approximation is a scalable approach to GP

75  model approximation with sparse representation (Datta et al., 2016a; Tikhonov et al., 2020) that has

76  been developed in recent years in the field of spatial modelling. NNGP enables flexibility in the range

77  of genetic distance correlation and hence in the range of closely related species from which we can

78  borrow information to stabilise parameter estimates with a realistic computational burden. This is

79  because NNGP uses a sparse precision matrix based on the nearest neighbour relationships among

80  points to avoid the inverse computation of a huge variance—covariance matrix, which is a

81  computational bottleneck in GP models (Datta et al., 2016a).

82 The objective of this study was to demonstrate the utility of applying a phylogenetic random

83  effects model based on NNGP approximation in improving the estimation of extinction probabilities

84  for endangered species, including many species with small sample sizes. The data used in the

85  evaluation were the results of a comprehensive survey of 1,010 endangered vascular plant taxa across

86  Japan, documenting changes in distribution over three time periods. By applying the phylogenetic

87  random effects model to such spatiotemporally enriched data, we illustrated the first example of the

88  strength of a model that utilises phylogenetic information to model a wide variety of endangered

89  species.

90
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91 Material and Methods

92  Data of threatened vascular plants in Japan

93  Data on threatened vascular plants were obtained from surveys conducted by the Japanese Society for

94  Plant Systematics and the Ministry of the Environment for the preparation of the Red Data Book of

95  Vascular Plants with the cooperation of volunteer surveyors from all over Japan. Surveys were

96  conducted in three periods: 1994—1995 (hereafter written as *95), 2003-2004 (°04), and 2010-2011

97  (’11). The survey covered the entire country of Japan and was compiled at a spatial resolution of 5’

98 latitude and 7' 30" longitude (approximately 10 km grid). These data contain records of population

99  sizes or events of extinction for each species classified as Near Threatened or higher. The population

100  size was recorded by expert opinion, not by actual measurement. Because the focus of this study was

101  to evaluate the effects of environmental factors on population viability over two time periods, we first

102 extracted presence or extinction information for each population of a species as a response variable.

103 In addition, population information from one period prior was extracted to account for the impact of

104  population information. Thus, paired records for two periods, *95—"04 and *04—"11, could be compiled,

105  with 1,010 taxa recorded from 2,113 taxa listed in the 2" to 4" Red Data Book of Vascular Plants

106 (1,010 in’95-"04 and 186 in *04—"11) and 9,623 pairs recorded (8,765 pairs in *95-’04, and 858 pairs

107 in’04-11). The 1,010 taxa contained 953 species, which further included 47 subspecies, 170 varieties,

108  and 2 forma in 133 families. The average number of pairs recorded per species was 8.55, with 160.0
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109 at maximum and 4.0 at median in *95—04 and 4.60 and 52 at maximum and 2.0 at median in *04-"11,

110  indicating that the data cover a wide variety of taxa with small samples.

111

112 Phylogenetic data

113 Phylogenetic distance values for a pair of species were used for phylogenetic information on

114  endangered vascular plants. To obtain the phylogenetic distance values of endangered vascular plants,

115  their phylogenetic trees were generated using the phylo.maker function of the R package

116 V.PhyloMaker (set as tree = GBOTB.extended, nodes = nodes.info.1, scenarios = "S1"; Jin and Qian

117 2019). V.PhyloMaker used the updated and extended version of the dated megaphylogeny GBOTB

118  reported by Smith & Brown (2018) as the backbone to generate phylogeny. Based on the generated

119  phylogenetic trees, phylogenetic distances between species were calculated using the

120 cophenetic.phylo function of the R package ape (Paradis et al., 2004). Specifically, the lengths of the

121 branches of the phylogenetic tree were used to calculate the distance between pairs of phylogenetic

122 tree tips. For the following analysis, the genetic distance was scaled so that the maximum distance

123 equalsto 2.0.

124

125 Environmental data

126 We considered two climatic factors (mean annual temperature and annual precipitation) and seven
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127 land use factors (agricultural, urban, volcanic, wasteland, coastal, river/lake, and protected areas) as

128  environmental factors affecting the extinction risk of threatened vascular plants based on a previous

129 study (Watanabe et al., 2014). Average annual temperature and annual precipitation were calculated

130 from daily data (10 km grid) of the Agro-Meteorological Grid Square Data, NARO

131 (https://amu.rd.naro.go.jp/), for 2003 and 2010. For the percentages of agricultural land, urban areas,

132 wastelands, coasts, river/lake, and forest area, and land use data (approximately 1 km grid) from the

133 National Land Numerical Information were used to create each land use percentage on a 10 km grid

134 unit (https://nlftp.mlit.go.jp /ksj/gml/datalist/KsjTmplt-L03-a.html). However, since the year of data

135  release (1991, 1997, 2006, 2009, and 2014) did not match the year of the vascular plant survey, the

136 published land use data were interpolated to one-year increments, and we obtained the data in 1994

137  and 2003. Inverse time-weighted interpolation was applied to the time series data (see Fujita et al.

138 (2019) and Ohashi et al. (2019) for details on the calculation process). Among land uses, since the

139 total area of agricultural land, artificial land, wasteland, coast, and river/lake together accounted for

140 100% of the total area, forest area, which has a large proportion, was excluded to allow the extraction

141 of the effects of other land uses. All land uses included in the model were used as percentage values.

142 For the volcanic area ratio, the raster data from the 1/200,000 land classification map compiled by the

143 Ministry of Land, Infrastructure, Transport and Tourism was used to obtain the ratio in units of a 10

144 km grid. The survey was conducted from 1967 to 1978, and the topographic classifications such as
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volcanic lands have not changed enough to affect the 10 km grid calculation to this day. As for

protected areas, the years of establishment of national parks and quasi-national parks in the National

Land Survey Data differ for each park; thus, we extracted parks established before 1994 and 2003,

respectively, and compiled the data for the two periods.

Statistical models

In this study, we employed a phylogenetic generalised mixed model (PGLMM; Ives & Helmus, 2011)

with random slopes and random intercepts following a scalable phylogenetic GP implemented by

NNGP approximation (Datta et al., 2016a), which is a sparse and fast approximation for GP models.

This approach can address situations wherein phylogenetically related species share common

responses to an environmental factor. By considering phylogenetic correlation on the species-specific

slopes and intercepts, it may be possible to estimate more robust species extinction probabilities with

smaller estimation errors for many species, including species with small sample sizes, by utilising

information of closely related species.

To estimate population-level extinction risks of Red List species and the effects of environmental

factors on them, the presence and extinction of each population conditional on the population size of

one period prior, which is known to affect the population viability (Chaudhary & Oli, 2020), was

modelled using binomial PGLMM. Let y;; denote survival (1) or extinction (0) of the population of
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species i at site j in year ¢; the binomial PGLMM with logit link function is as follows:

vijr ~ Bernoulli(py)

logit(pi)) = PisXje
where ;. is a vector of regression coefficients for species 7, and X;, is a design vector at site j in year
t. The design vector consists of intercept, environmental factors (annual mean temperature, annual
precipitation, agricultural land, urban area, volcanic land, wasteland, coast, river/lake, and protected
areas), and population size class in the year of the previous survey (Matsuhashi et al., 2021). As the
population size class is an ordered factor, we transformed it into a series of polynomial contrasts
corresponding to linear, quadratic, and cubic trends (Chambers & Hastie, 2017).

The variation of regression coefficients among species are often partitioned into phylogenetically
correlated and non-correlated variation in PGLMM (Ives & Helmus, 2011). In this study, we applied
this two-part approach because it can accommodate a continuum between simple random variation
and a fully phylogenetic structure. Considering the regression coefficient m for all the species, B.. GP
is as follows:

Bam = tim + pm

pu~ N0, 721 + 6,2C(D39)))
where u,, is mean of the m™ regression coefficient, p,, is the species-specific deviation from
subject to GP, 7,2 is the overall variation of random effects, and o, is the conditional variance of

10
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phylogenetic components relative to structureless components. C(D, @) is the NNGP approximation

of the covariance matrix C(D, @), representing phylogenetic correlation depending on the matrix of
genetic distances D. In this study, we applied the exponential correlation function C(D, ¢) = exp(-
D), which corresponds to the OU process of trait evolution. To retain simplicity and model
identifiability, we let ¢ be shared among covariates. We defined an indicator of phylogenetic signal
as (conditional variance of phylogenetic component)/{(conditional variance of phylogenetic
component) + (conditional variance of non-structured component)} = ,,>/(1 + %) which ranges (0,
1).

Here, we summarise the formulation of NNGP. NNGP is a scalable approach for large
geostatistical datasets that approximates GP with a sparse precision matrix C(D, ¢)! (Datta et al.,
2016a, 2016b; Zhang et al., 2019). NNGP is based on the conditional independence of random vector
P =(P1,... pn):

p(p) = p(p) Ii2 p(pilpy, - pi-1)-
This formulation considers a directed acyclic graph (DAG) among p;s, whose directions of nodes are
determined by an arbitrary ordering rule. In this study, we applied classic multidimensional scaling
(MDS; Gower 1966) to the phylogenetic distance matrix and ordered species by the values of the
first principal axis. Note that NNGP approximation is robust to the choice of ordering rule (Datta et
al. 2016a). Assuming that p follows multivariate Gaussian distribution, p(pip1,..., pi-1) can be written

11
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as a linear model. Then, we can write a multivariate Gaussian density of p as a vector linear model:
p=Ap+n

where A is n X n strictly lower-triangular matrix, and 1 is a vector of independent Gaussian random

variables with mean 0 and diagonal covariance matrix A. A and A have an obvious relationship with

the Cholesky decomposition of the covariance matrix C(D, ¢) = LAL’ where L = (I - A)".

A major obstacle in estimating a GP model on a large dataset is the calculation of the Cholesky
decomposition of the precision matrix for evaluating multivariate Gaussian density, which is O(n?)
computational order. NNGP approximates the Cholesky decomposition of a precision matrix by
replacing conditional probability p(pi|p1,..., pi-1) With p(pi|pvir)), Which is conditional on the k (<< n)
nearest neighbours of the i sample on the DAG, v(i,k). This approximation results in sparse A in
which only the nearest neighbours of i have a non-zero value in the i row. Non-zero values of A in
the i row, A[i, v(i,k)], are determined by kriging weights based on nearest neighbours (Zhang et al.,
2019):

A[i, v(i,k)] = C(D[i, v(i,k)], ) C(D[v(i,k), v(i,k)], ).
The diagonal element of A, A[j, i], is the kriging variance, which is variance conditional on the
nearest neighbours, var(pi| pwi.r), as follows:

Ali, i1 = C(D[i, )], ) — A[i, v(i.k)] C(D[V(i.k), i], ).
Then, precision matrix é(D, o)!' =0~ A)TA'I — A) is also sparse. In this study, we setk =5,

12
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217  which is as large as possible in terms of computational time.

218 We estimated parameters of the NNGP-PGLMM by Bayesian inference via MCMC sampling.

219  Prior setting is essential for successful prediction by the GP model, because hyperparameters of GP

220  are often unidentifiable and have non-regular geometry of the joint posterior (Zhang, 2004). Especially,

221  range parameters that are too small (i.e. inverse of @) often degenerate the covariance function to

222 Kronecker’s delta, resulting in the redundancy of the non-structured and structured components of

223  random effects. To avoid model redundancy, we applied a boundary-avoiding prior (Gelman et al.,

224 2014) on the range parameter. We reparametrised ¢ to a range parameter as = v8.0/¢ corresponding

225  to the scaled genetic distance that gives a correlation of 0.06 and set inverse gamma prior IG (10, 10)

226 on r whose 95% range is (0.585, 2.08). This density function is positive-valued and convex around 0,

227  which can penalise values of correlation range that are too small. Although posterior of

228  hyperparameters such as range of covariance function can be affected by the prior settings, it is known

229  that prediction by GP is quite robust (Chen & Wang, 2016; Zhang, 2004). We applied weakly

230  informative or vague prior for the other parameters: u, ~ N(0, 1), © ~ half-N(0, 1) and o, ~ half-

231 Cauchy(0, 1). The prior of o, implies no prior information about the phylogenetic signal because

232 6.2/(1 + 04) ~ Beta(0.5, 0.5), which is a symmetric U-shaped distribution.

233 We obtained posterior samples by No-U-Turn sampler using stan 2.29.2 (Stan Development Team

234 2022). We sampled by four MCMC chains with 10,000 iterations after discarding the first 3,000 as

13
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235  bumn-in. To reduce memory usage, we took one sample per 10 iterations and 4,000 posterior samples

236 for inference. We checked the mixing of multiple chains using Rhat (Gelman & Rubin 1992) and

237  visual inspection of trace plots. To see how much the prediction performance of the model was

238  improved by considering phylogenetic relationships, we compared the Watanabe—Akaike information

239  criterion (WAIC; Watanabe, 2010) and leave-one-out cross-validation (LOO; Vehtari et al. 2017) with

240  the null model of phylogenetic signals in which p,, ~ N(0, z,,°I). To evaluate the descriptive power of

241  the phylogenetic model, the area under curve (AUC; Swets, 1988) for training data was compared to

242 the null model of the phylogenetic model.

243 The model without considering phylogenetic relationships was derived by a coefficient § that did

244 not include the phylogenetic random effect p,,,, but only the random effect €, without structure, as

245 shown below. We sampled by four MCMC chains with 10,000 iterations after discarding the first 1,000

246 as burn-in.

247

248 Results

249  All chains converged adequately in all models (mean Rhat < 1.05). The results indicated that the model

250  with phylogenetic information had better prediction performance than the model without phylogenetic

251 information, since both WAIC and LOO values were smaller in the model with phylogenetic

252 information than in the model without phylogenetic information (phylogenetic model:non-

14
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253  phylogenetic model = 4227.8:4230.5 in WAIC, 4245.5:4247.7 in LOO). The phylogenetic signals

254  confirmed that phylogenetic effects were significant, especially for the coefficient of protected areas

255 (Fig. 3; phylogenetic signal = 0.54 + 0.28 for protected areas and 0.34 + 0.30 for the average of all

256  variables). The AUC values were comparable between the two models (phylogenetic model:non-

257  phylogenetic model = 0.911:0.913), indicating that the descriptive power of the present phylogenetic

258  model is comparable.

259 Among the 10 fixed factors in the model, the 95% confidence interval (CI) of coefficients

260  of four environmental factors (protected areas, proportion of wasteland, artificial land, and agricultural

261 land) and the population size class from one period prior did not overlap zero (Fig. 1; Appendix B).

262 The 95% CI of coefficients of the other factors tested (mean annual temperature, annual precipitation,

263  volcanic land, proportion of coastal area, and river/lake) overlapped with zero. The four influencing

264  environmental variables were revealed to have a positive contribution from the proportion of

265  wasteland and protected areas, and a negative influence from the proportion of urban area and

266  agricultural land (Fig. 1). Furthermore, the number of species affected was 960 (95% of the total

267  number of taxa analysed) in protected areas, 960 in the proportion of wasteland, 963 in the proportion

268  ofagricultural land, and 866 in the proportion of artificial land.

269 The results of the comparison of ¥ values for each species showed that for many species, we could

270  detect interspecific differences in response to environmental factors more clearly in the phylogenetic

15
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271  model throughout all explanatory variables (Fig. 2). Even species that showed values near zero in the

272 model without phylogenetic information were shown to have much larger values (e.g. Protected areas;

273  Fig. 2) when phylogenetic information was considered. Among species for which the clear effect of

274  environments was detected because 95% CI did not overlap with zero, fewer species had reversed

275  positive or negative signs of the estimates between phylogenetic and non-phylogenetic models (the

276  maximum and minimum percentage of species that had reversed numbers were 20.6% for temperature

277  and 0% for the proportion of artificial land, agricultural land, wasteland, and seashore).

278 Figure 4 shows the extent to which the coefficients of the explanatory variables varied

279  phylogenetically. The results showed that the explanatory variables reducing extinction risk of

280  endangered vascular plants had a phylogenetic cluster structure, as well as positive and negative

281 differences in their estimates. This indicates that the effects of environmental factors are

282 phylogenetically dependent. The phylogenetic half-life (the amount of time expected for a trait to

283  move halfway to the mean value; Hansen 1997) was 0.266 for posterior distributions and 0.271 for

284  prior distributions (Appendix A).

285

286 Discussion

287  We demonstrated that application of the NNGP approximation to 1,010 endangered vascular plant

288  species, taking into account species phylogenetic information, improved the detection of species-

16


https://doi.org/10.1101/2023.06.21.545976
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.21.545976; this version posted June 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

289  specific responses to the environment without compromising prediction accuracy. In particular, the

290  present data contained a large number of species (238 species, 24%) with a small sample size of fewer

291  than 10 pairs of records. Previous studies on estimating the extinction risk of endangered species have

292 found it difficult to address such small samples (Bachman et al., 2019; Walker et al., 2020), often

293  excluding many species with limited data and analysing a single species or a few species with abundant

294 data (Bachman et al., 2019; IUCN, 2001; Walker et al., 2020). In this study, we demonstrated that such

295  a challenge can be resolved by using an approximation of the GP model, based on an evolutionary

296  model of the OU process, to achieve a comprehensive analysis of multiple species with a wide range

297  of sample sizes. Although this study focused on endangered species as a representative example of a

298  problem with a small sample size, data obtained in ecosystems that include species and fields that are

299  difficult to survey (e.g. deep sea ecosystem) could also benefit from the application of this model, and

300  itis expected that practical use will expand beyond endangered species in the future.

301 When modelling multiple species concurrently, the incorporation of the evolutionary background

302  is thought to have advantages, such as stabilising estimates by borrowing information from closely

303  related species (Cooper et al., 2016; Miinkemiiller et al., 2015), although whether niche evolutionary

304  processes can be inferred from species occurrence patterns has been controversial. Although the

305  calculated phylogenetic signal is conditional on model structure and prior distribution, and thus may

306  not be expected to provide accurate inferences about evolutionary processes, our results indicate that
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307  phylogenetic structure is a useful measure in assessing extinction risk. Again, our approach highlights

308 the practical benefits of considering phylogeny in multispecies extinction risk assessments. It is known

309  that the GP model used in this study has high prediction accuracy in spatial statistics (Golding & Purse,

310  2016), but the large computational load poses a problem (Ives, 2018). The present approach overcomes

311  this limitation by utilising the recently developed NNGP model approximation (Datta et al., 2016a;

312 Tikhonov et al., 2020) in ecology, allowing more flexible phylogenetic models to be applied to a wide

313  wvariety of species. For the flexibility of the model, we used the covariance of the OU process, which

314  is a common exponential model In spatial statistics, and this process seemed to have the same

315  advantages in systematic modelling as spatial smoothing. The OU process is a generalisation of the

316  Brownian motion model, and it is possible to determine the extent to which information is borrowed

317  according to the posterior probability maximisation criteria. On the other hand, the problem of weak

318  identifiability of hyperparameters and the associated poor geometry of the posterior distribution needs

319  to be addressed (Zhang, 2004). In overcoming such obstacles, it is beneficial to introduce an

320  appropriate prior distribution in the Bayesian modelling framework.

321 The model results indicated that the establishment of protected areas and land use modifications

322 affect the presence and extinction of species. Combined with the results of the phylogenetic signal, we

323  showed that there was a phylogenetic bias in the species that could benefit from the positive effects of

324  protected areas (coefficient in phylogenetic model:non-phylogenetic model = 0.26 + 0.08:0.25 £ 0.09).
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325  This means that there is a phylogenetic correlation in the sensitivity to various decline pressures

326  (development, exploitation, etc.) that are mitigated by the establishment of protected areas and

327 conservation measures (Akasaka et al., 2017; Kadoya et al., 2014). On the other hand, we did not find

328  strong phylogenetic correlations for artificial land, agricultural land, and wastelands. This is consistent

329  with the point that urban expansion has long had a devastating impact on the extinction of various

330  species (Czech et al., 2000; McKinney, 2006). It is likely that no trend was observed in agricultural

331 lands because they are mosaic environments with a variety of species with different life history traits

332 (Bennett et al., 2006; Graham et al., 2019; Sugimoto et al., 2022). Similarly, wastelands contain

333  various types of secondary grassland and shoreline vegetation (Akasaka et al., 2014), which may have

334  affected various species in a phylogenetic manner.

335 In conclusion, the model presented in this study, which leverages phylogenetic information, has

336  made it possible to elucidate the factors causing the decline of a number of endangered species, which

337  was previously difficult to achieve. Coupling the model with climatic and land use factors will enable

338  the prediction of the future extinction risk or of the population size of endangered species. These

339  predictions can then be analysed in complementary analyses to provide powerful information for

340  selecting conservation priority areas (Pressey et al., 2007). Such an approach is likely to become even

341 more important today, when conservation resources are limited both economically and in terms of

342 human resources, warranting efficient conservation efforts (Butchart et al., 2015). We would also like
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343  to mention that explicit consideration of phylogenetic structure is a key advantage of this modelling

344  approach as it allows for the discussion of phylogenetic diversity and the decline in ecosystem function.

345  In future analyses, it is expected that the estimation of extinction probability linked to environmental

346  change enabled by this modelling will be applied to future climate—land use scenarios. This will

347  enhance the comprehensive assessment of biodiversity degradation at multiple scales—population,

348  species, community—encompassing endangered species.
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Fig. 4a Comparison of estimated coefficients of artificial land
between phylogenetic model and non-phylogenetic model.
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Fig. 4b Comparison of estimated coefficients of agricultural land

528 between phylogenetic model and non-phylogenetic model.
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between phylogenetic model and non-phylogenetic model.
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Appendix B The average values of posterior distributions with medians
and 95% CI intervals for each population size class from one period
prior in the model.
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