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Abstract 19 

1. Conservation biologists have a daunting task of understanding the causes of species decline 20 

associated with anthropogenic factors and predicting the extinction risk of a growing number of 21 

endangered species. By stabilising estimates with information on closely related species, phylogenetic 22 

information among species can bridge gaps in information on species with small sample sizes when 23 

modelling large numbers of endangered species. However, modelling many species with the Gaussian 24 

process (GP), which underlies the evolutionary process of phylogenetic random effects, remains a 25 

challenge owing to the computational burden in estimating the large variance–covariance matrix. 26 

2. Here, we applied a phylogenetic generalised mixed model with random slopes and random 27 

intercepts to 1,010 endangered vascular plant taxa in Japan following phylogenetic GPs implemented 28 

by nearest neighbour GP (NNGP) approximation. NNGP enables flexibility in changing the proximity 29 

on the phylogenetic tree of species from which information is borrowed to stabilise parameter 30 

estimates with a realistic computational burden. We evaluated the effectiveness of phylogenetic 31 

models by comparing the predictive performance and descriptive power of phylogenetic and non-32 

phylogenetic models and identified the anthropogenic factors contributing to the decline of each of the 33 

studied endangered species. 34 

3. We found that the model with phylogenetic information had better prediction performance than the 35 

model without phylogenetic information. The results showed that across all explanatory variables, the 36 
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phylogenetic model could detect interspecific differences in response to environmental factors in a 37 

number of species more clearly. Combined with the phylogenetic signal results, we could also detect 38 

a phylogenetic bias in the species that could benefit from the positive effects of protected areas but 39 

reduce the extinction risk of 95% of all studied taxa. 40 

4. In conclusion, our model, considering phylogenetic information with NNGP, allows the elucidation 41 

of factors causing the decline of many endangered species. In future analyses, the estimation of 42 

extinction probability linked to environmental change using such modelling might be applied to future 43 

climate–land use scenarios, advancing the comprehensive assessment of biodiversity degradation and 44 

threats to species at multiple scales. 45 

 46 

Keywords: data poor, land use change, macroecology, protected area, threatened species, transition 47 

data 48 

 49 

Introduction 50 

Climate change and land cover change are major drivers of species extinction (Di Marco et al., 2019; 51 

Powers & Jetz, 2019). Current species extinction risks are already about 100–1,000 times higher than 52 

that in nature (Pimm et al., 2014), and the risk of biodiversity decline continues to increase (Butchart, 53 

2010). Conservation biologists are now faced with the challenging task of reducing the extinction risk 54 
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of the growing number of endangered species by elucidating the causes of species decline linked to 55 

environmental factors and predicting their future. However, Red List species often include species 56 

with extremely small population sizes and areas of occurrence (IUCN, 2001), which limits the 57 

identification of the factors underlying their decline and estimation of extinction risks linked to 58 

environmental change (Bachman et al., 2019; IUCN, 2001). 59 

The availability of species’ phylogenetic information has been increasing in recent years 60 

(Beck et al., 2012; Mouquet et al., 2012), and it has the potential to improve extinction risk estimation 61 

of rare species. This is because branching patterns on evolutionary phylogenetic trees may help explain 62 

and predict interspecific correlates in biological and ecological processes, which are thought to reflect 63 

phenotypic, genetic, and behavioural differences among evolutionary lineages (Beck et al., 2012; 64 

Hernández et al., 2013). Especially in the field of macroecology, phylogenetic random effect models 65 

that incorporate species-specific responses to intrinsic and extrinsic factors correlated on a 66 

phylogenetic tree are considered powerful tools for multispecies systems because they can describe 67 

the likelihood of phylogenetically related species responding to an environmental driver in similar 68 

ways (Ives & Helmus, 2011; Li et al., 2020). However, modelling of evolutionary processes by 69 

Gaussian processes (GP) such as Wiener processes (Brownian motion) and Ornstein–Uhlenbeck (OU) 70 

processes, which are the underlying evolutionary processes of phylogenetic random effects, has not 71 

been put to practical use because of the huge computational load required to estimate a large variance–72 
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covariance matrix when assuming multiple species (Ives, 2018). 73 

Nearest neighbour Gaussian process (NNGP) approximation is a scalable approach to GP 74 

model approximation with sparse representation (Datta et al., 2016a; Tikhonov et al., 2020) that has 75 

been developed in recent years in the field of spatial modelling. NNGP enables flexibility in the range 76 

of genetic distance correlation and hence in the range of closely related species from which we can 77 

borrow information to stabilise parameter estimates with a realistic computational burden. This is 78 

because NNGP uses a sparse precision matrix based on the nearest neighbour relationships among 79 

points to avoid the inverse computation of a huge variance–covariance matrix, which is a 80 

computational bottleneck in GP models (Datta et al., 2016a). 81 

The objective of this study was to demonstrate the utility of applying a phylogenetic random 82 

effects model based on NNGP approximation in improving the estimation of extinction probabilities 83 

for endangered species, including many species with small sample sizes. The data used in the 84 

evaluation were the results of a comprehensive survey of 1,010 endangered vascular plant taxa across 85 

Japan, documenting changes in distribution over three time periods. By applying the phylogenetic 86 

random effects model to such spatiotemporally enriched data, we illustrated the first example of the 87 

strength of a model that utilises phylogenetic information to model a wide variety of endangered 88 

species. 89 

 90 
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Material and Methods 91 

Data of threatened vascular plants in Japan 92 

Data on threatened vascular plants were obtained from surveys conducted by the Japanese Society for 93 

Plant Systematics and the Ministry of the Environment for the preparation of the Red Data Book of 94 

Vascular Plants with the cooperation of volunteer surveyors from all over Japan. Surveys were 95 

conducted in three periods: 1994–1995 (hereafter written as ’95), 2003–2004 (’04), and 2010–2011 96 

(’11). The survey covered the entire country of Japan and was compiled at a spatial resolution of 5′ 97 

latitude and 7′ 30″ longitude (approximately 10 km grid). These data contain records of population 98 

sizes or events of extinction for each species classified as Near Threatened or higher. The population 99 

size was recorded by expert opinion, not by actual measurement. Because the focus of this study was 100 

to evaluate the effects of environmental factors on population viability over two time periods, we first 101 

extracted presence or extinction information for each population of a species as a response variable. 102 

In addition, population information from one period prior was extracted to account for the impact of 103 

population information. Thus, paired records for two periods, ’95–’04 and ’04–’11, could be compiled, 104 

with 1,010 taxa recorded from 2,113 taxa listed in the 2nd to 4th Red Data Book of Vascular Plants 105 

(1,010 in ’95–’04 and 186 in ’04–’11) and 9,623 pairs recorded (8,765 pairs in ’95–’04, and 858 pairs 106 

in ’04–’11). The 1,010 taxa contained 953 species, which further included 47 subspecies, 170 varieties, 107 

and 2 forma in 133 families. The average number of pairs recorded per species was 8.55, with 160.0 108 
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at maximum and 4.0 at median in ’95–’04 and 4.60 and 52 at maximum and 2.0 at median in ’04–’11, 109 

indicating that the data cover a wide variety of taxa with small samples. 110 

 111 

Phylogenetic data 112 

Phylogenetic distance values for a pair of species were used for phylogenetic information on 113 

endangered vascular plants. To obtain the phylogenetic distance values of endangered vascular plants, 114 

their phylogenetic trees were generated using the phylo.maker function of the R package 115 

V.PhyloMaker (set as tree = GBOTB.extended, nodes = nodes.info.1, scenarios = "S1"; Jin and Qian 116 

2019). V.PhyloMaker used the updated and extended version of the dated megaphylogeny GBOTB 117 

reported by Smith & Brown (2018) as the backbone to generate phylogeny. Based on the generated 118 

phylogenetic trees, phylogenetic distances between species were calculated using the 119 

cophenetic.phylo function of the R package ape (Paradis et al., 2004). Specifically, the lengths of the 120 

branches of the phylogenetic tree were used to calculate the distance between pairs of phylogenetic 121 

tree tips. For the following analysis, the genetic distance was scaled so that the maximum distance 122 

equals to 2.0. 123 

 124 

Environmental data 125 

We considered two climatic factors (mean annual temperature and annual precipitation) and seven 126 
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land use factors (agricultural, urban, volcanic, wasteland, coastal, river/lake, and protected areas) as 127 

environmental factors affecting the extinction risk of threatened vascular plants based on a previous 128 

study (Watanabe et al., 2014). Average annual temperature and annual precipitation were calculated 129 

from daily data (10 km grid) of the Agro-Meteorological Grid Square Data, NARO 130 

(https://amu.rd.naro.go.jp/), for 2003 and 2010. For the percentages of agricultural land, urban areas, 131 

wastelands, coasts, river/lake, and forest area, and land use data (approximately 1 km grid) from the 132 

National Land Numerical Information were used to create each land use percentage on a 10 km grid 133 

unit (https://nlftp.mlit.go.jp /ksj/gml/datalist/KsjTmplt-L03-a.html). However, since the year of data 134 

release (1991, 1997, 2006, 2009, and 2014) did not match the year of the vascular plant survey, the 135 

published land use data were interpolated to one-year increments, and we obtained the data in 1994 136 

and 2003. Inverse time-weighted interpolation was applied to the time series data (see Fujita et al. 137 

(2019) and Ohashi et al. (2019) for details on the calculation process). Among land uses, since the 138 

total area of agricultural land, artificial land, wasteland, coast, and river/lake together accounted for 139 

100% of the total area, forest area, which has a large proportion, was excluded to allow the extraction 140 

of the effects of other land uses. All land uses included in the model were used as percentage values. 141 

For the volcanic area ratio, the raster data from the 1/200,000 land classification map compiled by the 142 

Ministry of Land, Infrastructure, Transport and Tourism was used to obtain the ratio in units of a 10 143 

km grid. The survey was conducted from 1967 to 1978, and the topographic classifications such as 144 
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volcanic lands have not changed enough to affect the 10 km grid calculation to this day. As for 145 

protected areas, the years of establishment of national parks and quasi-national parks in the National 146 

Land Survey Data differ for each park; thus, we extracted parks established before 1994 and 2003, 147 

respectively, and compiled the data for the two periods. 148 

 149 

Statistical models 150 

In this study, we employed a phylogenetic generalised mixed model (PGLMM; Ives & Helmus, 2011) 151 

with random slopes and random intercepts following a scalable phylogenetic GP implemented by 152 

NNGP approximation (Datta et al., 2016a), which is a sparse and fast approximation for GP models. 153 

This approach can address situations wherein phylogenetically related species share common 154 

responses to an environmental factor. By considering phylogenetic correlation on the species-specific 155 

slopes and intercepts, it may be possible to estimate more robust species extinction probabilities with 156 

smaller estimation errors for many species, including species with small sample sizes, by utilising 157 

information of closely related species. 158 

To estimate population-level extinction risks of Red List species and the effects of environmental 159 

factors on them, the presence and extinction of each population conditional on the population size of 160 

one period prior, which is known to affect the population viability (Chaudhary & Oli, 2020), was 161 

modelled using binomial PGLMM. Let yijt denote survival (1) or extinction (0) of the population of 162 
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species i at site j in year t; the binomial PGLMM with logit link function is as follows: 163 

 yijt ~ Bernoulli(pijt) 164 

 logit(pijt) = βi⁎xjt 165 

where βi⁎ is a vector of regression coefficients for species i, and xjt is a design vector at site j in year 166 

t. The design vector consists of intercept, environmental factors (annual mean temperature, annual 167 

precipitation, agricultural land, urban area, volcanic land, wasteland, coast, river/lake, and protected 168 

areas), and population size class in the year of the previous survey (Matsuhashi et al., 2021). As the 169 

population size class is an ordered factor, we transformed it into a series of polynomial contrasts 170 

corresponding to linear, quadratic, and cubic trends (Chambers & Hastie, 2017). 171 

The variation of regression coefficients among species are often partitioned into phylogenetically 172 

correlated and non-correlated variation in PGLMM (Ives & Helmus, 2011). In this study, we applied 173 

this two-part approach because it can accommodate a continuum between simple random variation 174 

and a fully phylogenetic structure. Considering the regression coefficient m for all the species, β⁎m GP 175 

is as follows: 176 

 β⁎m = μm + ρm  177 

 ρm ~ N(0, τm
2(I + σm

2C
~

(D;φ))) 178 

where μm is mean of the mth regression coefficient, ρm is the species-specific deviation from μm 179 

subject to GP, τm
2 is the overall variation of random effects, and σm

2 is the conditional variance of 180 
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phylogenetic components relative to structureless components. C
~

(D, φ) is the NNGP approximation 181 

of the covariance matrix C(D, φ), representing phylogenetic correlation depending on the matrix of 182 

genetic distances D. In this study, we applied the exponential correlation function C(D, φ) = exp(-183 

φD), which corresponds to the OU process of trait evolution. To retain simplicity and model 184 

identifiability, we let φ be shared among covariates. We defined an indicator of phylogenetic signal 185 

as (conditional variance of phylogenetic component)/{(conditional variance of phylogenetic 186 

component) + (conditional variance of non-structured component)} = σm
2/(1 + σm

2) which ranges (0, 187 

1). 188 

Here, we summarise the formulation of NNGP. NNGP is a scalable approach for large 189 

geostatistical datasets that approximates GP with a sparse precision matrix C
~

(D, φ)-1 (Datta et al., 190 

2016a, 2016b; Zhang et al., 2019). NNGP is based on the conditional independence of random vector 191 

ρ = (ρ1,... ρn): 192 

 𝑝(𝛒) = 𝑝(𝜌1)∏ 𝑝(𝜌𝑖|𝜌1, … 𝜌𝑖−1)
𝑛
𝑖=2 . 193 

This formulation considers a directed acyclic graph (DAG) among ρis, whose directions of nodes are 194 

determined by an arbitrary ordering rule. In this study, we applied classic multidimensional scaling 195 

(MDS; Gower 1966) to the phylogenetic distance matrix and ordered species by the values of the 196 

first principal axis. Note that NNGP approximation is robust to the choice of ordering rule (Datta et 197 

al. 2016a). Assuming that ρ follows multivariate Gaussian distribution, p(ρi|ρ1,..., ρi-1) can be written 198 
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as a linear model. Then, we can write a multivariate Gaussian density of ρ as a vector linear model: 199 

 ρ = Aρ + η 200 

where A is n × n strictly lower-triangular matrix, and η is a vector of independent Gaussian random 201 

variables with mean 0 and diagonal covariance matrix Λ. A and Λ have an obvious relationship with 202 

the Cholesky decomposition of the covariance matrix C(D, φ) = LΛL′ where L = (I – A)-1. 203 

A major obstacle in estimating a GP model on a large dataset is the calculation of the Cholesky 204 

decomposition of the precision matrix for evaluating multivariate Gaussian density, which is O(n3) 205 

computational order. NNGP approximates the Cholesky decomposition of a precision matrix by 206 

replacing conditional probability p(ρi|ρ1,..., ρi-1) with p(ρi|ρν(I,k)), which is conditional on the k (<< n) 207 

nearest neighbours of the ith sample on the DAG, ν(i,k). This approximation results in sparse A in 208 

which only the nearest neighbours of i have a non-zero value in the ith row. Non-zero values of A in 209 

the ith row, A[i, ν(i,k)], are determined by kriging weights based on nearest neighbours (Zhang et al., 210 

2019): 211 

A[i, ν(i,k)] = C(D[i, ν(i,k)], φ) C(D[ν(i,k), ν(i,k)], φ)-1. 212 

The diagonal element of Λ, Λ[i, i], is the kriging variance, which is variance conditional on the 213 

nearest neighbours, var(ρi| ρν(i,k)), as follows: 214 

 Λ[i, i] = C(D[i, i)], φ) − A[i, ν(i,k)] C(D[ν(i,k), i], φ). 215 

Then, precision matrix C
~

(D, φ)-1 = (I − A)TΛ-1(I − A) is also sparse. In this study, we set k = 5, 216 
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which is as large as possible in terms of computational time. 217 

We estimated parameters of the NNGP-PGLMM by Bayesian inference via MCMC sampling. 218 

Prior setting is essential for successful prediction by the GP model, because hyperparameters of GP 219 

are often unidentifiable and have non-regular geometry of the joint posterior (Zhang, 2004). Especially, 220 

range parameters that are too small (i.e. inverse of φ) often degenerate the covariance function to 221 

Kronecker’s delta, resulting in the redundancy of the non-structured and structured components of 222 

random effects. To avoid model redundancy, we applied a boundary-avoiding prior (Gelman et al., 223 

2014) on the range parameter. We reparametrised φ to a range parameter as 𝑟 = √8.0/𝜑 corresponding 224 

to the scaled genetic distance that gives a correlation of 0.06 and set inverse gamma prior IG (10, 10) 225 

on r whose 95% range is (0.585, 2.08). This density function is positive-valued and convex around 0, 226 

which can penalise values of correlation range that are too small. Although posterior of 227 

hyperparameters such as range of covariance function can be affected by the prior settings, it is known 228 

that prediction by GP is quite robust (Chen & Wang, 2016; Zhang, 2004). We applied weakly 229 

informative or vague prior for the other parameters: μm ~ N(0, 1), τm ~ half-N(0, 1) and σm ~ half-230 

Cauchy(0, 1). The prior of σm implies no prior information about the phylogenetic signal because 231 

σm
2/(1 + σm

2) ~ Beta(0.5, 0.5), which is a symmetric U-shaped distribution. 232 

We obtained posterior samples by No-U-Turn sampler using stan 2.29.2 (Stan Development Team 233 

2022). We sampled by four MCMC chains with 10,000 iterations after discarding the first 3,000 as 234 
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burn-in. To reduce memory usage, we took one sample per 10 iterations and 4,000 posterior samples 235 

for inference. We checked the mixing of multiple chains using Rhat (Gelman & Rubin 1992) and 236 

visual inspection of trace plots. To see how much the prediction performance of the model was 237 

improved by considering phylogenetic relationships, we compared the Watanabe–Akaike information 238 

criterion (WAIC; Watanabe, 2010) and leave-one-out cross-validation (LOO; Vehtari et al. 2017) with 239 

the null model of phylogenetic signals in which ρm ~ N(0, τm
2I). To evaluate the descriptive power of 240 

the phylogenetic model, the area under curve (AUC; Swets, 1988) for training data was compared to 241 

the null model of the phylogenetic model. 242 

The model without considering phylogenetic relationships was derived by a coefficient 𝛃 that did 243 

not include the phylogenetic random effect 𝛒𝑚, but only the random effect 𝛆𝑚 without structure, as 244 

shown below. We sampled by four MCMC chains with 10,000 iterations after discarding the first 1,000 245 

as burn-in. 246 

  247 

Results 248 

All chains converged adequately in all models (mean Rhat < 1.05). The results indicated that the model 249 

with phylogenetic information had better prediction performance than the model without phylogenetic 250 

information, since both WAIC and LOO values were smaller in the model with phylogenetic 251 

information than in the model without phylogenetic information (phylogenetic model:non-252 
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phylogenetic model = 4227.8:4230.5 in WAIC, 4245.5:4247.7 in LOO). The phylogenetic signals 253 

confirmed that phylogenetic effects were significant, especially for the coefficient of protected areas 254 

(Fig. 3; phylogenetic signal = 0.54 ± 0.28 for protected areas and 0.34 ± 0.30 for the average of all 255 

variables). The AUC values were comparable between the two models (phylogenetic model:non-256 

phylogenetic model = 0.911:0.913), indicating that the descriptive power of the present phylogenetic 257 

model is comparable. 258 

Among the 10 fixed factors in the model, the 95% confidence interval (CI) of coefficients 259 

of four environmental factors (protected areas, proportion of wasteland, artificial land, and agricultural 260 

land) and the population size class from one period prior did not overlap zero (Fig. 1; Appendix B). 261 

The 95% CI of coefficients of the other factors tested (mean annual temperature, annual precipitation, 262 

volcanic land, proportion of coastal area, and river/lake) overlapped with zero. The four influencing 263 

environmental variables were revealed to have a positive contribution from the proportion of 264 

wasteland and protected areas, and a negative influence from the proportion of urban area and 265 

agricultural land (Fig. 1). Furthermore, the number of species affected was 960 (95% of the total 266 

number of taxa analysed) in protected areas, 960 in the proportion of wasteland, 963 in the proportion 267 

of agricultural land, and 866 in the proportion of artificial land. 268 

The results of the comparison of χ2 values for each species showed that for many species, we could 269 

detect interspecific differences in response to environmental factors more clearly in the phylogenetic 270 
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model throughout all explanatory variables (Fig. 2). Even species that showed values near zero in the 271 

model without phylogenetic information were shown to have much larger values (e.g. Protected areas; 272 

Fig. 2) when phylogenetic information was considered. Among species for which the clear effect of 273 

environments was detected because 95% CI did not overlap with zero, fewer species had reversed 274 

positive or negative signs of the estimates between phylogenetic and non-phylogenetic models (the 275 

maximum and minimum percentage of species that had reversed numbers were 20.6% for temperature 276 

and 0% for the proportion of artificial land, agricultural land, wasteland, and seashore). 277 

Figure 4 shows the extent to which the coefficients of the explanatory variables varied 278 

phylogenetically. The results showed that the explanatory variables reducing extinction risk of 279 

endangered vascular plants had a phylogenetic cluster structure, as well as positive and negative 280 

differences in their estimates. This indicates that the effects of environmental factors are 281 

phylogenetically dependent. The phylogenetic half-life (the amount of time expected for a trait to 282 

move halfway to the mean value; Hansen 1997) was 0.266 for posterior distributions and 0.271 for 283 

prior distributions (Appendix A). 284 

 285 

Discussion 286 

We demonstrated that application of the NNGP approximation to 1,010 endangered vascular plant 287 

species, taking into account species phylogenetic information, improved the detection of species-288 
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specific responses to the environment without compromising prediction accuracy. In particular, the 289 

present data contained a large number of species (238 species, 24%) with a small sample size of fewer 290 

than 10 pairs of records. Previous studies on estimating the extinction risk of endangered species have 291 

found it difficult to address such small samples (Bachman et al., 2019; Walker et al., 2020), often 292 

excluding many species with limited data and analysing a single species or a few species with abundant 293 

data (Bachman et al., 2019; IUCN, 2001; Walker et al., 2020). In this study, we demonstrated that such 294 

a challenge can be resolved by using an approximation of the GP model, based on an evolutionary 295 

model of the OU process, to achieve a comprehensive analysis of multiple species with a wide range 296 

of sample sizes. Although this study focused on endangered species as a representative example of a 297 

problem with a small sample size, data obtained in ecosystems that include species and fields that are 298 

difficult to survey (e.g. deep sea ecosystem) could also benefit from the application of this model, and 299 

it is expected that practical use will expand beyond endangered species in the future. 300 

When modelling multiple species concurrently, the incorporation of the evolutionary background 301 

is thought to have advantages, such as stabilising estimates by borrowing information from closely 302 

related species (Cooper et al., 2016; Münkemüller et al., 2015), although whether niche evolutionary 303 

processes can be inferred from species occurrence patterns has been controversial. Although the 304 

calculated phylogenetic signal is conditional on model structure and prior distribution, and thus may 305 

not be expected to provide accurate inferences about evolutionary processes, our results indicate that 306 
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phylogenetic structure is a useful measure in assessing extinction risk. Again, our approach highlights 307 

the practical benefits of considering phylogeny in multispecies extinction risk assessments. It is known 308 

that the GP model used in this study has high prediction accuracy in spatial statistics (Golding & Purse, 309 

2016), but the large computational load poses a problem (Ives, 2018). The present approach overcomes 310 

this limitation by utilising the recently developed NNGP model approximation (Datta et al., 2016a; 311 

Tikhonov et al., 2020) in ecology, allowing more flexible phylogenetic models to be applied to a wide 312 

variety of species. For the flexibility of the model, we used the covariance of the OU process, which 313 

is a common exponential model In spatial statistics, and this process seemed to have the same 314 

advantages in systematic modelling as spatial smoothing. The OU process is a generalisation of the 315 

Brownian motion model, and it is possible to determine the extent to which information is borrowed 316 

according to the posterior probability maximisation criteria. On the other hand, the problem of weak 317 

identifiability of hyperparameters and the associated poor geometry of the posterior distribution needs 318 

to be addressed (Zhang, 2004). In overcoming such obstacles, it is beneficial to introduce an 319 

appropriate prior distribution in the Bayesian modelling framework. 320 

The model results indicated that the establishment of protected areas and land use modifications 321 

affect the presence and extinction of species. Combined with the results of the phylogenetic signal, we 322 

showed that there was a phylogenetic bias in the species that could benefit from the positive effects of 323 

protected areas (coefficient in phylogenetic model:non-phylogenetic model = 0.26 ± 0.08:0.25 ± 0.09). 324 
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This means that there is a phylogenetic correlation in the sensitivity to various decline pressures 325 

(development, exploitation, etc.) that are mitigated by the establishment of protected areas and 326 

conservation measures (Akasaka et al., 2017; Kadoya et al., 2014). On the other hand, we did not find 327 

strong phylogenetic correlations for artificial land, agricultural land, and wastelands. This is consistent 328 

with the point that urban expansion has long had a devastating impact on the extinction of various 329 

species (Czech et al., 2000; McKinney, 2006). It is likely that no trend was observed in agricultural 330 

lands because they are mosaic environments with a variety of species with different life history traits 331 

(Bennett et al., 2006; Graham et al., 2019; Sugimoto et al., 2022). Similarly, wastelands contain 332 

various types of secondary grassland and shoreline vegetation (Akasaka et al., 2014), which may have 333 

affected various species in a phylogenetic manner.  334 

In conclusion, the model presented in this study, which leverages phylogenetic information, has 335 

made it possible to elucidate the factors causing the decline of a number of endangered species, which 336 

was previously difficult to achieve. Coupling the model with climatic and land use factors will enable 337 

the prediction of the future extinction risk or of the population size of endangered species. These 338 

predictions can then be analysed in complementary analyses to provide powerful information for 339 

selecting conservation priority areas (Pressey et al., 2007). Such an approach is likely to become even 340 

more important today, when conservation resources are limited both economically and in terms of 341 

human resources, warranting efficient conservation efforts (Butchart et al., 2015). We would also like 342 
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to mention that explicit consideration of phylogenetic structure is a key advantage of this modelling 343 

approach as it allows for the discussion of phylogenetic diversity and the decline in ecosystem function. 344 

In future analyses, it is expected that the estimation of extinction probability linked to environmental 345 

change enabled by this modelling will be applied to future climate–land use scenarios. This will 346 

enhance the comprehensive assessment of biodiversity degradation at multiple scales—population, 347 

species, community—encompassing endangered species. 348 
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Fig. 1 Average values of posterior distributions with medians and 95% CI 

intervals for each environmental variable in the model. 
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Fig. 2 Results of the comparison of χ2 values of each species for each environmental 

variable. 

Fig. 3 Results of phylogenetic signals of each environmental variable.  
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Fig. 4a Comparison of estimated coefficients of artificial land 

between phylogenetic model and non-phylogenetic model. 
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Fig. 4b Comparison of estimated coefficients of agricultural land 

between phylogenetic model and non-phylogenetic model. 
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Fig. 4c Comparison of estimated coefficients of wasteland 

between phylogenetic model and non-phylogenetic model.  
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Fig. 4d Comparison of estimated coefficients of protected areas 

between phylogenetic model and non-phylogenetic model.  

Appendix A Results of phylogenetic half-life for 

posterior and prior distributions. 
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Appendix B The average values of posterior distributions with medians 

and 95% CI intervals for each population size class from one period 

prior in the model. 
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