

1 **Title**

2 SCF^{FBXW11} complex targets interleukin-17 receptor A for ubiquitin-proteasome-mediated
3 degradation

4

5 **Author names and affiliations**

6 Ben Jin^{1,2}, Sayed Ala Moududee^{1,2}, Dongxia Ge³, Pengbo Zhou⁴, Alun R. Wang⁵, Yao-
7 Zhong Liu⁶, Zongbing You^{1,2,3,7,8,9*}

8

9 ¹Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA;

10 ²Department of Structural & Cellular Biology, Tulane University, New Orleans, Louisiana,

11 USA; ³Department of Orthopaedic Surgery, Tulane University, New Orleans, Louisiana,

12 USA; ⁴Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New

13 York, New York, USA; ⁵Department of Pathology and Laboratory Medicine, Tulane

14 University, New Orleans, Louisiana, USA; ⁶Department of Biostatistics and Data Science,

15 Tulane University, New Orleans, Louisiana, USA; ⁷Tulane Cancer Center and Louisiana

16 Cancer Research Consortium, Tulane University, New Orleans, Louisiana, USA; ⁸Tulane

17 Center for Stem Cell Research and Regenerative Medicine, Tulane University, New

18 Orleans, Louisiana, USA; ⁹Tulane Center for Aging, Tulane University, New Orleans,

19 Louisiana, USA

20 *Correspondence: Zongbing.You@va.gov; zyou@tulane.edu; Tel.: +1-504-507-2000 Ext.
21 67364; +1-504-988-0467

22

23 All authors have no conflict of interest to declare.

24

25 **Abstract**

26 Interleukin-17 (IL-17) is a pro-inflammatory cytokine, participating in innate and adaptive
27 immune responses, that plays an important role in host defense, autoimmune diseases,
28 tissue regeneration, metabolic regulation, and tumor progression. Post-translational
29 modifications (PTMs) are crucial for protein function, stability, cellular localization, cellular
30 transduction, and cell death. However, PTMs of IL-17 receptor A (IL-17RA) have not been
31 investigated. Here, we showed that human IL-17RA was targeted by F-box and WD
32 repeats domain containing 11 (FBXW11) for ubiquitination, followed by proteasome-
33 mediated degradation. We used bioinformatics tools and biochemical techniques to
34 determine that FBXW11 ubiquitinated IL-17RA through a lysine 27-linked polyubiquitin
35 chain, targeting IL-17RA for proteasomal degradation. Domain 665-804 of IL-17RA was
36 critical for interaction with FBXW11 and subsequent ubiquitination. Our study
37 demonstrates that FBXW11 regulates IL-17 signaling pathways at IL-17RA level.

38 Introduction

39 Cytokines of interleukin-17 (IL-17) family play various functions in innate and adaptive
40 immune responses [1]. The IL-17 family consists of 6 members: IL-17A, IL-17B, IL-17C,
41 IL-17D, IL-17E, and IL-17F. On the other hand, there are five canonical IL-17 receptors
42 (IL-17Rs) interacting with them, including IL-17RA, IL-17RB, IL-17RC, IL-17RD, and IL-
43 17RE [1]. Canonical IL-17Rs are unique because of their two conserved structural
44 features: two extracellular fibronectin II-like domains and one intracellular domain named
45 as similar expression to fibroblast growth factor genes and IL-17R (SEFIR) [2]. In addition
46 to the canonical IL-17Rs, an uncanonical receptor CD93 was reported to be specifically
47 expressed on the surface of group 3 innate lymphoid (ILC3) cells [3]. The ligand and
48 receptor association between IL-17 cytokines and IL-17Rs is complex due to various
49 binding forms. Among them, the most well-studied IL-17 cytokines are IL-17A and IL-17F,
50 which share the highest structural conservation among the IL-17 cytokines [1]. IL-17A
51 homodimer, IL-17F homodimer, and IL-17A/F heterodimer interact with IL-17RA/RC
52 heterodimer or IL-17RC homodimer, inducing expression of various downstream genes
53 [4]. IL-17RA heterodimerizes with IL-17RD, binding with IL-17A homodimer [5]. IL-
54 17RA/RB heterodimer binds with IL-17E homodimer [6, 7]. IL-17RA also associates with
55 IL-17RE to bind with IL-17C homodimer [8]. IL-17D was reported to bind CD93, regulating
56 colonic inflammation [3]. Although IL-17B was originally considered as the ligand for IL-
57 17RB, it is believed to be a competitor against IL-17E in binding to IL-17RB [9]. So far, IL-
58 17RA is best-known as the common dimerization partner with all other canonical IL-17Rs,
59 such as IL-17RC, IL-17RB, IL-17RD, and IL-17RE, indicating its unique functions in IL-17
60 signaling. Previous studies have delineated the special intracellular structures of IL-17RA
61 beyond the SEFIR domain that are different from other canonical IL-17Rs [10, 11].

62
63 Ubiquitylation is one of the post-translational modifications (PTMs) of proteins, achieving
64 quality control of cellular responses [12]. There are three main steps of ubiquitylation.
65 Ubiquitin is first activated by adenosine triphosphate (ATP) and E1 enzyme. Then, the
66 activated ubiquitin is conjugated to E2 enzyme. The last step is addition of a ubiquitin or
67 polyubiquitin chains to a substrate by a particular E3 ligase [13]. There are more than 600
68 E3 ligases encoded by human genome, and they usually form a functional complex with
69 other components [14]. Based on how ubiquitin is transferred to substrates and the core
70 domain of the complex components that facilitates this process, E3 ligases are further
71 classified into two major groups: homologous to E6-AP C terminus (HECT) domain-
72 containing E3 ligases [15] (accounting for around 5% of E3 ligases [16]) and really
73 interesting new genes (RING)-domain-containing E3 ligases [17] (accounting for around
74 95% of E3 ligases [16]). RING-domain-containing E3 ligases are further classified into
75 RING domain variants, individual E3 ligases, anaphase promoting complex or cyclosome
76 (APC/C) E3 ligases, and Cullin-Ring E3 ligases (CRL) which contain a scaffold protein
77 Cullin [18]. CRL E3 ligase family constitutes more than 200 documented members, which
78 is the largest class of E3 ligase family [19]. Based on different Cullins, CRL E3 ligase
79 complex is further classified into 5 subfamilies (Cullin1, Cullin2/5, Cullin3, Cullin4A/4B,
80 and Cullin7). Among them, the best known are the Skp1-Cullin1-F box protein (SCF) E3
81 ligases [16]. For CRL E3 ligases, before facilitating the transfer of ubiquitin to a substrate,
82 they need to be activated by neddylation where neural-precursor-cell-expressed,

83 developmentally down-regulated gene 8 (NEDD8) interacts with Cullin [20]. After
84 ubiquitylation, the outcome of the substrate is mostly dependent on which lysine is used
85 for ubiquitylation. For lysine 48-linked polyubiquitylation, the substrate is usually
86 subjected to proteasome-mediated degradation into small peptides. But for lysine 63-
87 linked polyubiquitylation, the substrate is often activated to regulate signaling transduction
88 and DNA repair [21]. The outcomes of the substrates varies when ubiquitin chains are
89 formed using other lysine residues (K6, K11, K27, K29, and K33) or the first methionine
90 residue (M1) [21].

91
92 The cascade of IL-17 signaling pathway initiates from the binding of IL-17A/IL-17F with
93 IL-17RA/IL-17RC. After dimerized IL-17RA and IL-17RC recruit NF- κ B activator 1 (Act1)
94 through the SEFIR domain, activated Act1 further recruits and ubiquitylates tumor
95 necrosis factor receptor associated factor 6 (TRAF6) by K63-linked polyubiquitin chain.
96 Polyubiquitylated TRAF6 then activates transforming growth factor-beta-activated kinase
97 1 (TAK1), leading to activation of nuclear factor κ B (NF- κ B) and mitogen-activated protein
98 kinase (MAPK) signaling pathways. Thereafter, IL-17-downstream target genes, such as
99 cytokines (tumor necrosis factor α , interleukin-1, and interleukin-6), chemokines (C-X-C
100 motif ligand 1, C-X-C motif ligand 2, and C-C motif ligand 20), matrix metalloproteinases
101 (MMP3, MMP7, and MMP9) start to be transcribed. On the other hand, to restrain IL-17
102 signaling, deubiquitinase A20 is upregulated upon IL-17 stimulation. Recruitment of A20
103 to IL-17RA through C/EBP β activation domain (CBAD) performs a negative feedback to
104 deubiquitylate TRAF6, restricting IL-17-dependent activation of NF- κ B and MAPK
105 signaling [22]. Besides, Act1 is ubiquitylated by beta-transducin repeat containing E3
106 ubiquitin protein ligase (bTrCP) through K48-linked polyubiquitin chain for proteasomal
107 degradation after prolonged stimulation of IL-17 [23]. Phosphorylation of Act1 by TANK
108 binding kinase 1 (TBK1) also suppresses IL-17-mediated activation of NF- κ B in a TRAF6-
109 dependent fashion [24].

110
111 Our previous study reported that IL-17RA is constitutively phosphorylated by glycogen
112 synthase kinase 3 (GSK3) at threonine 780, leading to ubiquitylation and proteasomal
113 degradation [25]. However, the specific E3 ligase mediating this process is still elusive.
114 In the current study, we found that IL-17RA is ubiquitylated by SCF^{FBXW11} complex
115 through K27-linked polyubiquitin. An intracellular 665-804 domain of IL-17RA is critical
116 for ubiquitylation and degradation. Taking together with previous reports [23, 26],
117 SCF^{FBXW11} complex not only regulates IL-17 signaling pathway at IL-17RA level, but also
118 at Act1 and I κ B α levels.
119

120 Results

121 **Inhibition of proteasome and Cullin-Ring Ligase (CRL) complex increases IL-17RA**
122 **protein stability.** Our previous study reported that exogenous IL-17RA was degraded
123 through a ubiquitin-proteasome system (UPS) [25]. But a specific E3 ligase mediating this
124 process has not been identified. The CRL E3 ligase family contains the most diverse
125 subunits with more than 200 E3 ligase members [16]. One of the core subunits of CRL
126 E3 ligase complex is a scaffold protein Cullin. Neddylation of Cullin by interacting with
127 NEDD8 activates E3 ligase complex to ubiquitylate the substrates [27]. To verify if IL-

128 17RA is degraded through proteasome and particularly by the CRL complex, full-length
129 human IL-17RA was transiently overexpressed in HEK293T cells and then the cells were
130 treated with cycloheximide (CHX). When protein synthesis was inhibited by CHX, total IL-
131 17RA protein level decreased rapidly. A proteasome inhibitor MG132 and a neddylation
132 inhibitor MLN4924 delayed degradation of exogenous IL-17RA (Figure 1A). Using the
133 Human Protein Atlas (HPA) database, we examined mRNA levels of IL-17RA in different
134 human cell lines and found that IL-17RA was ubiquitously expressed in human cell lines
135 from different organs, although the expression levels were tremendously variable (Figure
136 1-figure supplement 1A). Because multiple commercially available anti-IL-17RA
137 antibodies did not work well to detect endogenous IL-17RA, we used small interference
138 RNA to knock down IL-17RA in HaCaT and 22Rv1 cell lines and probed with a G9 clone
139 of monoclonal antibody obtained from Santa Cruz Biotechnology (cat# sc-376374, Dallas,
140 TX). The results of Western blot analysis indicated that this G9 clone was able to
141 specifically recognize endogenous IL-17RA (Figure 1-figure supplement 1B and C).
142 Therefore, we used this antibody in our subsequent experiments to detect endogenous
143 and exogenous IL-17RA.

144
145 Endogenous IL-17RA levels in 22Rv1 cells decreased rapidly after CHX treatment, while
146 MG132 and MLN4924 inhibited this reduction (Figure 1B). This result was consistent with
147 that of exogenous IL-17RA in HEK293T cells (Figure 1A). Treatment with MG132 also
148 stabilized endogenous IL-17RA in HaCaT cells (Figure 1C). These findings indicate that
149 degradation of exogenous and endogenous IL-17RA was mediated by a ubiquitin-
150 proteasome system, particularly by the CRL complex as neddylation inhibitor delayed the
151 degradation. We conducted further studies into the impact of neddylation inhibitor on
152 endogenous IL-17RA levels in HaCaT, 22Rv1, and PC-3 cell lines using different dosages
153 of MLN4924 over different time periods. As shown in Figure 1D-F, treatment with
154 MLN4924 resulted in accumulation of endogenous IL-17RA and c-Myc, a well-known
155 substrate ubiquitylated by a CRL E3 ligase F-box and WD repeat domain containing 7
156 (FBXW7) [28].

157
158 Bortezomib is another proteasome inhibitor that has been approved by the U.S. Food and
159 Drug Administration (FDA) to treat multiple myeloma, mantle cell lymphoma, and acute
160 allograft rejection [29]. HaCaT, THP-1, 22Rv1 and PC-3 cells were treated with different
161 doses of bortezomib for 14 hours. The results showed that endogenous IL-17RA levels
162 were slightly accumulated (Figure 1-figure supplement 2A-D). Combined treatment of
163 CHX and bortezomib also showed that bortezomib slightly decreased degradation of
164 endogenous IL-17RA (Figure 1-figure supplement 2E and F). It has been reported that
165 bortezomib at a nano-molar concentration only inhibited ~70% activity of proteasome
166 while MG132 at a micromolar concentration inhibited ~95% activity of proteasome [30],
167 which explains why bortezomib only slightly prevented degradation of endogenous IL-
168 17RA while MG132 dramatically prevented IL-17RA degradation. Besides proteasome-
169 mediated degradation of damaged or misfolded proteins, autolysosomes also play a role
170 to break down proteins through lysosomal enzymes [31]. To test if IL-17RA is also
171 degraded through lysosomes, we treated HaCaT cells with different doses of lysosome
172 inhibitor imidazole for different time periods. The results showed that alteration of IL-17RA

173 levels was not obvious, indicating that degradation of IL-17RA was probably not mediated
174 through the lysosomes (Figure 1-figure supplement 2G and H).

175
176 **F-box and WD repeat domain containing (FBXW) proteins are predicted to**
177 **recognize IL-17RA.** Having shown that IL-17RA was degraded by the ubiquitin-
178 proteasome system, particularly through CRL complex, we investigated which E3 ligase
179 targets IL-17RA for ubiquitylation and degradation. To narrow down our targets from more
180 than 600 E3 ligases encoded by human genome [14], we first used bioinformatics tools
181 to predict the potential candidates. We previously found that GSK3 phosphorylates IL-
182 17RA at T780, leading to ubiquitylation and degradation of IL-17RA [25]. Therefore, we
183 speculated that IL-17RA might have some phosphodegrons (short motifs with specific
184 sequence pattern) that could be recognized by E3 ligases [32] for ubiquitylation and
185 degradation [16]. In the protein sequence of human IL-17RA, there are two candidate
186 phosphodegrons that can be recognized by FBXW7 and FBXW1A/FBXW11, which are
187 conserved across different species (Figure 2-figure supplement 1A). FBXW proteins
188 belong to CRL E3 ligases. Because Cullin1 and S-phase kinase associated protein 1
189 (Skp1) are required to form an E3 ligase complex, these CRL E3 ligases are called Skp1-
190 Cullin1-F-box (SCF) E3 ligases [33]. In total, there are 10 members in the FBXW family,
191 named from FBXW1A to FBXW12, except that FBXW3 is the pseudogene of FBXW4 and
192 FBXW6 is identical to FBXW8 [34]. F-box domain and WD repeat domain are conserved
193 across different FBXW E3 ligases (Figure 2-figure supplement 1B and C). Skp1 is an
194 adaptor bridging F-box domain of FBXW E3 ligase and Cullin1 to form a complex. WD
195 repeat domain is used to recognize a specific substrate for ubiquitylation [35]. Draberoval,
196 et al. applied mass spectrometry to analyze components in the precipitates pulled-down
197 by recombinant Strep-Flag-tagged mouse IL-17A (SF-IL-17A). In addition to the well-
198 known components of IL-17 signaling pathway that interact with IL-17, such as IL-17RA,
199 IL-17RC, Act1 and TRAF6, they also found Cullin1 and beta-TrCP1/2 (also known as
200 FBXW1A/11) [36], hinting at that FBXW1A and FBXW11 may physically bind to IL-17RA.
201

202 **Several SCF E3 ligases are associated with IL-17RA.** Because FBXW family members
203 utilize the conserved WD domain to recognize substrates, we used co-
204 immunoprecipitation (co-IP) assays to screen the FBXW proteins that might bind with IL-
205 17RA. In HEK293T cells, Flag-tagged IL-17RA was co-transfected with Myc-tagged
206 FBXW7 ΔF box, FBXW5, FBXW1A and Skp2. Our reciprocal co-IP results showed that
207 FBXW7 ΔF box and FBXW5 had a strong association with IL-17RA, while FBXW1A had
208 less binding with IL-17RA (Figure 2A). We also co-transfected Myc-His-tagged IL-17RA
209 together with Flag-tagged FBXW2, FBXW4, FBXW8, FBXW9, FBXW11 and FBXW12.
210 The co-IP results showed that the strongest binding partners of IL-17RA were FBXW9
211 and FBXW11 (Figure 2B). Because we used FBXW7 with truncation of F-box, we then
212 used HA-tagged full-length FBXW7 to exam physical association and the results showed
213 that FBXW7 weakly bound to IL-17RA (Figure 2-figure supplement 1D). Our co-IP data
214 indicated that there are several E3 ligase candidates for IL-17RA, including FBXW1A,
215 FBXW5, FBXW7, FBXW9 and FBXW11.

216
217 **FBXW11 ubiquitylates IL-17RA via K27-linked polyubiquitin in a dose-dependent**
218 **way.** To determine which E3 ligase candidate has the highest activity to ubiquitylate IL-

219 17RA, Flag-tagged IL-17RA, HA-tagged wild-type (WT) ubiquitin and candidate E3
220 ligases were co-transfected into HEK293T cells and MG132 was used to treat the cells
221 before extracting whole cell lysates. Anti-HA antibody was used to pull-down ubiquitylated
222 substrates and anti-Flag and anti-IL-17RA antibodies were used to probe ubiquitylated
223 IL-17RA. The ubiquitylation assays showed that FBXW11 had the highest activity to
224 ubiquitylate IL-17RA, while FBXW9 and FBXW1A had much less activities than FBXW11
225 (Figure 3A). We also used Ni-NTA beads to pull down His-tagged ubiquitin and confirmed
226 that FBXW11 had the highest activity to ubiquitylate IL-17RA (Figure 3-figure supplement
227 1A). Ubiquitylation of endogenous IL-17RA by FBXW11 in THP-1 and HCT116 cell lines
228 was dose-dependent (Figure 3B and C). Engineered ubiquitin variants can selectively
229 bind to ubiquitin-binding domains and block recognition of natural ubiquitylation
230 substrates, thus they can be used to inhibit specific E3 ligase activity [37]. Ubv.Fw11.2 is
231 such a ubiquitin variant selectively preventing formation of SCFF^{FBXW11} complex [38]. We
232 applied Ubv.Fw11.2 in our ubiquitylation assays and found that Ubv.Fw11.2 slightly
233 inhibited ubiquitylation of endogenous IL-17RA in THP-1 cells but not in HCT116 cells
234 (Figure 3B and C). A possible reason for this difference may be due to the low basal level
235 of ubiquitylation present in these two cell lines.

236 It is known that seven lysine (K) residues and the first methionine (M) residue in the
237 ubiquitin participate in forming ubiquitin chains. Of note, K11, K27 and K48 are involved
238 in the proteasomal degradation of substrates [21]. In THP-1 and HCT116 cells, we co-
239 transfected Flag-HA-FBXW11 along with His-tagged WT ubiquitin and a series of ubiquitin
240 mutants with a single lysine-to-arginine substitution. The ubiquitylation assay results
241 revealed that mutation of K27 into arginine (K27R) remarkably decreased ubiquitylation
242 levels of IL-17RA in both cell lines, although mutation of other lysine residues also showed
243 various degrees of reduction in ubiquitylation (Figure 3D and E). Besides, we also found
244 that mutations of K48 and K63 slightly decreased ubiquitylation of IL-17RA in HCT116
245 cells (Figure 3E), which agreed with our previous report [25].
246

247 **Overexpression of FBXW11 accelerates degradation of IL-17RA while knock-out of**
248 **FBXW11 increases protein stability of IL-17RA.** Having determined that FBXW11 is
249 the E3 ligase involved in ubiquitylation of IL-17RA, we assessed the effects of FBXW11
250 on IL-17RA protein stability. Our lab previously established a HEK293 cell line named
251 HEK293-IL-17RA that stably overexpresses Flag-IL-17RA [25]. We transfected Flag-
252 FBXW4, Myc-FBXW5, Flag-HA-FBXW9, Myc-FBXW1A, or Flag-HA-FBXW11 into
253 HEK293-IL-17RA cells and used CHX to inhibit protein synthesis. Western blot analysis
254 showed that FBXW9 and FBXW11 dramatically accelerated degradation of Flag-IL-17RA
255 (Figure 4A) compared to vector control and other E3 ligases. In THP-1 cells, ectopic
256 overexpression of Myc-FBXW1A, Flag-HA-FBXW11, and Flag-HA-FBXW9 enhanced
257 degradation of endogenous IL-17RA. In Ishikawa cell line, only FBXW11 remarkably
258 accelerated degradation of endogenous IL-17RA (Figure 4B). These findings suggest that
259 overexpression of FBXW11 decreased protein stability of IL-17RA. Next, we examined
260 the effects of FBXW11 knock-out (KO) on IL-17RA protein stability. A549 FBXW11 KO cell
261 line was generated using a clustered regularly interspaced short palindromic repeats
262 (CRISPR)/CRISPR-associated protein 9 (Cas9) technique [39]. FBXW11 knock-out
263 increased the basal levels of IL-17RA protein compared to the parental A549 FBXW11
264 WT cells. CHX treatment led to a rapid decrease of IL-17RA in FBXW11 WT cells but not

265 in FBXW11 KO cells (Figure 4C, left panel). It has been known that there is functional
266 redundancy between FBXW1A and FBXW11 [40]. FBXW1A siRNA was transiently
267 delivered into both A549 FBXW11 WT and KO cells before treatment with CHX. It showed
268 that knock-down of FBXW1A slightly stabilized endogenous IL-17RA compared to control
269 siRNA group. To further verify our findings, we used CRISPR/Cas9 technique to knock
270 out FBXW11 in Ishikawa cell line. Although basal level of endogenous IL-17RA protein
271 was dramatically increased in Ishikawa FBXW11 KO cells compared to the parental WT
272 cells, knock-down of FBXW1A didn't show any obvious effects on protein stability of
273 endogenous IL-17RA (Figure 4C, right panel). These findings suggest that FBXW11 KO
274 increases the protein stability of endogenous IL-17RA, while the effects of FBXW1A
275 knock-down are dependent on the cellular context as shown in previous reports
276 (comprehensively reviewed in [41]).
277

278 **Expression levels of FBXW11 and IL-17RA are inversely correlated.** Due to lack of
279 good antibodies to detect endogenous FBXW11 (of note, we tested five different
280 commercial antibodies, but none of them worked), we used real-time qPCR analysis to
281 measure FBXW11 mRNA levels and Western blot analysis to quantify IL-17RA protein
282 levels in 12 human cell lines (Figure 5A and B). Our results showed an inverse relationship
283 between FBXW11 mRNA levels and IL-17RA protein levels, such that high FBXW11
284 mRNA levels were associated with low IL-17RA protein levels, and vice versa (Figure 5C).
285 Pearson's correlation analysis showed that FBXW11 mRNA levels and IL-17RA protein
286 levels were significantly inversely correlated (Figure 5D). We further explored a public
287 protein database Clinical Proteomic Tumor Analysis Consortium (CPTAC) through the
288 UALCAN platform (<https://ualcan.path.uab.edu/analysis-prot.html>) to analyze FBXW11
289 and IL-17RA protein levels across multiple cancer types. Our analysis showed that IL-
290 17RA protein levels were significantly higher in brain tumors and uterine tumors than the
291 corresponding normal control tissues. On the other hand, FBXW11 protein levels were
292 significantly lower in brain tumors and uterine tumors than the corresponding normal
293 control tissues (Figure 5E). Pearson's correlation analysis also revealed a significant
294 inverse correlation between the protein levels of FBXW11 and IL-17RA in both the brain
295 tissues (Figure 5F) and the uterine tissues (Figure 5G). Phosphorylation abundance of
296 IL-17RA was analyzed using the LinkedOmicsKB platform (<https://kb.linkedomics.org/>)
297 and found that the levels of IL-17RA phosphorylation at S629 and S708 in the uterine
298 tumor samples were significantly lower than the corresponding normal controls (Figure 5-
299 figure supplement 1A and B). The levels of IL-17RA phosphorylation at S801 in the uterine
300 tumor samples were also lower than the corresponding normal controls, but there was no
301 statistically significant difference likely due to the smaller sample size (Figure 5-figure
302 supplement 1C). These findings are consistent with our hypothesis that phosphorylation
303 accelerates IL-17RA degradation [25].
304

305 **665-804 domain of IL-17RA determines its protein stability and ubiquitylation
306 mediated by FBXW11.** A previous report has shown that expression of IL-17RA Δ 665
307 mutant was more robust than that of the full-length IL-17RA. Furthermore, treatment with
308 TNF- α and IL-17A resulted in higher levels of IL-6 secretion in IL-17RA $^{-/-}$ fibroblasts
309 expressing the IL-17RA Δ 665 mutant compared to the cells expressing the full-length IL-
310 17RA [10]. We generated two truncation mutants of human IL-17RA, including Flag-IL-

311 17RA Δ 665-804 and Flag-IL-17RA Δ 729-773 [25]. Not only are the putative candidate
312 phosphodegrons located within the truncated 665-804 domain, but also there are multiple
313 potential phosphorylation sites present within the domain (Figure 6A). Our co-IP assays
314 revealed that deletion of amino acids 665-804 resulted in a remarkably lower binding
315 association between truncated IL-17RA and FBXW1A or FBXW11, compared to the full-
316 length IL-17RA. However, deletion of 729-773 didn't affect the physical binding compared
317 to the full-length IL-17RA protein (Figure 6B). Our ubiquitylation assay results also
318 showed that deletion of 665-804 domain dramatically decreased ubiquitylation of IL-17RA,
319 compared to the full-length IL-17RA (Figure 6C). Ectopic overexpression of full-length IL-
320 17RA and IL-17RA Δ 665-804 in HEK293T cells revealed that protein levels of full-length
321 IL-17RA dramatically decreased following treatment with CHX, whereas protein levels of
322 IL-17RA Δ 665-804 did not exhibit this trend (Figure 6D and E). Furthermore, treatment
323 with MG132 significantly stabilized full-length IL-17RA protein but not IL-17RA Δ 665-804
324 protein (Figure 6D and F).

325

326 **Knock-out of FBXW11 suppresses expression of IL-17-downstream genes through**
327 **inhibiting nuclear entry of NF- κ B p65.** Next, we investigated the functional effects of
328 FBXW11 KO on IL-17 signaling pathways, including Akt, MAPK, and NF- κ B. Our previous
329 results showed that knock-out of FBXW11 led to a dramatic stabilization of IL-17RA
330 protein in A549 cells and Ishikawa cells (Figure 4C). We treated A549 FBXW11 WT, A549
331 FBXW11 KO, Ishikawa FBXW11 WT, and Ishikawa FBXW11 KO cells with 20 ng/ml rhIL-
332 17A for 10 and 30 minutes and examined the components of IL-17 signaling pathways
333 using Western blot analysis. We found that rhIL-17A treatment dramatically increased the
334 levels of phosphorylated p38 MAPK (p-p38 MAPK) in FBXW11 KO cells but not in
335 FBXW11 WT cells (Figure 7A, Figure 7-figure supplement 1A). The levels of
336 phosphorylated ERK1/2 (p-ERK1/2) were higher in FBXW11 KO cells than those in
337 FBXW11 WT cells after rhIL-17A treatment (Figure 7B, Figure 7-figure supplement 1B).
338 Treatment with rhIL-17A did not increase levels of phosphorylated Akt (p-AKT) in either
339 A549 or Ishikawa cell lines. Phosphorylated JNK (p-JNK) was obviously induced after 30-
340 minutes treatment in Ishikawa cells but not in A549 cells (Figure 7B, Figure 7-figure
341 supplement 1B). The basal levels of phosphorylated I κ B α (p-I κ B α) in FBXW11 KO cells
342 were higher than those in FBXW11 WT cells, and treatment with rhIL-17A for 10 and 30
343 minutes also induced more p-I κ B α in FBXW11 KO cells compared to FBXW11 WT cells.
344 Correspondingly, a decrease of I κ B α levels was observed in both FBXW11 WT and KO
345 cell lines, but the levels of I κ B α in FBXW11 KO cells were not less than those in FBXW11
346 WT cells after rhIL-17A treatment (Figure 7C, Figure 7-figure supplement 1C). Moreover,
347 in our cell fractionation experiments, we observed that the nuclear protein levels of NF- κ B
348 p65 in FBXW11 KO cells were obviously lower than those in FBXW11 WT cells, both
349 at the basal levels and after rhIL-17A treatment. However, the cytoplasmic NF- κ B p65
350 levels in both WT and KO cell lines were almost equal, regardless of rhIL-17A treatment
351 (Figure 7D). These results suggest that knock-out of FBXW11 prevents nuclear entry of
352 NF- κ B p65. It is well-known that E3 ligases FBXW1A/FBXW11 mediate ubiquitylation and
353 degradation of p-I κ B α [26]. In our A549 FBXW11 KO cells, knock-out of FBXW11

354 increased the basal levels of I κ B α (Figure 7C) as ubiquitylation of I κ B α was reduced due
355 to lack of FBXW11. Therefore, I κ B α continued to bind to and keep NF- κ B p65/p50 in the
356 cytoplasm. Even after rhIL-17A treatment, nuclear entry of NF- κ B p65 in A549 FBXW11
357 KO cells was much less than that in A549 FBXW11 WT cells (Figure 7D), resulting in
358 reduced transcriptional activities of NF- κ B. Since NF- κ B is the main transcription factor
359 that initiates expression of IL-17-downstream genes, we predicted that IL-17 cytokines
360 might fail to induce expression of IL-17-downstream genes in FBXW11 KO cells. To verify
361 our prediction, we applied real-time qPCR assays to analyze expression of IL-17-
362 downstream genes. Since IL-17RA is a common subunit dimerizing with other IL-17Rs to
363 interact with different IL-17 cytokines (IL-17A, IL-17B, IL-17C, IL-17E, and IL-17F), we
364 treated A549 FBXW11 WT and A549 FBXW11 KO cells with 20 ng/ml rhIL-17A, rhIL-17B,
365 rhIL-17C, rhIL-17E, and rhIL-17F for 2 hours, individually. Treatment with rhIL-17A
366 significantly increased expression levels of CXCL1 (Figure 7E), CXCL2 (Figure 7F),
367 CXCL8 (Figure 7G), and IL-6 (Figure 7I) in A549 FBXW11 WT cells, while other IL-17
368 cytokines only significantly increased the levels of IL-6 expression (Figure 7I). As
369 predicted, we observed that knock-out of FBXW11 significantly decreased the expression
370 levels of IL-17-downstream genes upon treatment with IL-17 cytokines (Figure 7E-I).
371 Real-time qPCR analysis of the same IL-17-downstream genes in Ishikawa FBXW11 WT
372 and FBXW KO cell lines showed similar results (Figure 7-figure supplement 1D-H).

373

374 **Discussion**

375 IL-17-mediated inflammation is critical for innate and adaptive immune responses.
376 Various interaction forms between IL-17 cytokines and receptors have attracted
377 researchers to deepen their understanding of expression patterns, localization, and roles
378 of each single IL-17 cytokine and receptor under different conditions [1, 9, 42]. In addition,
379 most of the research activities have been focused on modulation of downstream signaling
380 pathways of IL-17 receptor and their roles in physiological and pathological situations [43-
381 46]. PTMs of proteins, such as phosphorylation and ubiquitylation, play significant roles
382 in protein quality control, protein activity, gene expression, inter-/intra-cellular
383 communications, and cellular activities [12, 47-49]. However, seldom studies have
384 investigated PTMs of IL-17 receptors. To our best knowledge, our group first reported that
385 IL-17RA was constitutively phosphorylated by GSK3 at threonine 780 (T780), leading to
386 ubiquitylation and degradation, and IL-17RA phosphorylation was reduced in prostate
387 cancer tissues compared to normal control tissues [25]. However, the specific E3 ligase
388 mediating ubiquitylation of IL-17RA has not been identified. Another group reported that
389 ubiquitylation of IL-17RA by TRAF6 upon IL-17F stimulation is required for downstream
390 signaling [50]. In the current study, we determined that SCF^{FBXW11} complex mediated
391 ubiquitylation of IL-17RA through recognizing 665-804 domain of IL-17RA.

392

393 We first used MG132 and MLN4924 treatment to verify that degradation of exogenous
394 and endogenous IL-17RA was mediated by the proteasome, particularly by Cullin-Ring
395 E3 ligase (CRL) complex (Figure 1A-F). In addition, we used an FDA-approved
396 proteasome inhibitor bortezomib to further confirm that degradation of endogenous IL-

397 17RA was mediated by the proteasome (Figure 1-figure supplement 2A-F). Lysosome
398 inhibitor imidazole was used to exclude the possibility of lysosome-mediated degradation
399 of IL-17RA (Figure 1-figure supplement 2G and H).

400
401 More than 600 E3 ligases are encoded by human genome and more than 200 of them
402 belong to the CRL E3 ligase family [16]. To narrow down the numbers of E3 ligase
403 candidates targeting IL-17RA for ubiquitylation, we carried out phosphodegron
404 predictions. Phosphodegron is a short linear motif that can be recognized by E3 ligases
405 after phosphorylation. FBXW7 mediates ubiquitylation and degradation of multiple
406 oncogenes, such as c-Myc and c-Jun [28, 51, 52]. In our prediction, a short linear motif
407 (780-TPYEEE-785) of human IL-17RA matched with a phosphodegron TPxxE, which is
408 recognized by FBXW7 (Figure 2-figure supplement 1A) [53]. On the other hand, another
409 short linear motif (725-DSPLGSST-732) of human IL-17RA also matched with a
410 phosphodegron DSGxxST, which is recognized by FBXW1A/FBXW11 (Figure 2-figure
411 supplement 1A) [40]. The roles of FBXW1A/FBXW11 are context dependent, and
412 FBXW1A and FBXW11 are believed to be functionally redundant [54]. When IL-17-binding
413 proteins were precipitated by IL-17A cytokine, E3 ligases FBXW1A/FBXW11 and scaffold
414 protein Cullin1 were among the components of IL-17-binding proteins [36, 55]. In addition,
415 IL-17RA was listed among thousands of candidate substrates that might bind with
416 FBXW11 using a parallel adaptor capture proteomics (PAC) approach (see Table S1 of
417 [56]), but IL-17RA was not ranked high enough to be considered as an FBXW11 substrate
418 by the investigators. Based on our phosphodegron predictions and the published hints,
419 we hypothesized that FBXW7, FBXW1A, and FBXW11 might be the candidate E3 ligases.
420 These three E3 ligases belong to FBXW family with 10 members that interact with
421 phosphodegrons of a specific substrate through the WD repeat domain [33]. To determine
422 which specific FBXW family member binds to IL-17RA, we performed co-IP assays and
423 showed that FBXW1A, FBXW5, FBXW7, FBXW9, and FBXW11 had the highest binding
424 association towards IL-17RA (Figure 2A and B). Since the WD repeat domain is a
425 conserved domain and percent identity analysis showed that FBXW1A, FBXW7, and
426 FBXW11 bear the greatest sequence similarities (Figure 2-figure supplement 1B and C),
427 it is reasonable that multiple FBXW family members showed various degrees of binding
428 to IL-17RA. Another possible reason could be that our co-IP assays were conducted in
429 an overexpressed system and non-specific binding could not be completely avoided.
430 Since the functions of SCF E3 ligases are to ubiquitylate the substrates, we performed
431 ubiquitylation assays using two different approaches and both consistently demonstrated
432 that FBXW11 had the highest E3 ligase activity among the candidates (Figure 3A, Figure
433 3-figure supplement 1A). Furthermore, we confirmed that FBXW11-mediated
434 ubiquitylation of IL-17RA was dose-dependent (Figure 3B and C), implying that the
435 ubiquitylation activity of FBXW11 towards IL-17RA is specific. Further, engineered
436 ubiquitin variant Ubv.Fw11.2 slightly decreased basal ubiquitylation levels of endogenous
437 IL-17RA by FBXW11 in THP-1 cells (Figure 3B). Taken together, our findings suggest that
438 FBXW11 is the specific E3 ligase that ubiquitylates IL-17RA.

439
440 It has been well-documented that K48-linked polyubiquitin participates in proteasomal
441 degradation of proteins and K63-linked polyubiquitin is involved in activation of protein
442 and signaling transduction [57-59]. We found that single K27R mutation of the ubiquitin

443 remarkably decreased ubiquitylation levels of endogenous IL-17RA in both THP-1 and
444 HCT116 cell lines, although a single mutation of other lysine residues also showed various
445 degrees of reduced ubiquitylation (Figure 3D and E). These findings suggest that K27 is
446 critical for FBXW11-mediated ubiquitylation of IL-17RA. It is possible that other lysine
447 linked-polyubiquitin chains are secondary to K27-linked polyubiquitin. Since mixed-
448 ubiquitylation-dependent regulation of protein stability has been documented [58, 60, 61],
449 we cannot exclude the possibility that FBXW11 ubiquitylates IL-17RA through mixed-
450 polyubiquitin chains. Beyond K48- and K63-linked polyubiquitination, polyubiquitination
451 mediated by other lysine residues is termed as non-canonical ubiquitylation and they are
452 poorly understood so far [59]. K27-linked non-canonical ubiquitylation is indispensable in
453 immune response, cytokines signaling, T cell activation and differentiation [21]. IL-17RA
454 is a key receptor in the IL-17 signaling and Th17 inflammatory responses, therefore our
455 discovery further demonstrates the importance of K27-linked polyubiquitylation in the
456 immune systems.

457
458 We found that overexpression of FBXW11 accelerated degradation of IL-17RA (Figure 4A
459 and B) while knock-out of FBXW11 increased protein stability of IL-17RA (Figure 4C).
460 Although knock-out of FBXW11 didn't completely block the degradation of IL-17RA, which
461 was attributed to FBXW1A compensation in A549 cell line but not in Ishikawa cell line [62].
462 We demonstrated an inverse correlation between FBXW11 mRNA levels and IL-17RA
463 protein levels in 12 human cell lines, including immortalized normal cell lines and cancer
464 cell lines (Figure 5A-D). Further exploration of public proteomics database also showed
465 that FBXW11 protein levels were inversely correlated with IL-17RA protein levels in the
466 brain and uterine tissues (Figure 5E-G). These results suggest that FBXW11
467 downregulates IL-17RA protein levels in both human cell lines and human tissues.

468
469 Intracellular domain of IL-17RA beyond SEFIR domain has been shown to be critical for
470 IL-6 secretion after stimulating with IL-17 and TNF α and the protein levels of IL-17RA
471 Δ 665 truncation mutant was robustly higher than full-length IL-17RA [10]. We generated
472 two truncation mutants (IL-17RA Δ 729-773 and IL-17RA Δ 665-804) and demonstrated
473 that deletion of Δ 665-804 not only reduced binding with FBXW1A and FBXW11, but also
474 decreased ubiquitylation mediated by FBXW11 (Figure 6A-C). Further, IL-17RA Δ 665-804
475 truncation mutant was more stable than the full-length IL-17RA (Figure 6D-F). These
476 findings indicate that 665-804 domain is critical for ubiquitylation and degradation of IL-
477 17RA. However, we didn't examine which amino acid residue of IL-17RA is responsible
478 for phosphorylation and subsequent ubiquitylation in the present study, which remains to
479 be determined in future studies. Ubiquitylation is largely dependent on priming
480 phosphorylation of the substrates [28, 63] and we predicted a candidate phosphodegron
481 recognized by FBXW1A and FBXW11 together with multiple potential phosphorylation
482 sites in the 665-804 domain. We believe that phosphorylation-dependent ubiquitylation of
483 IL-17RA happens within this domain. The levels of IL-17RA phosphorylation at S708 and
484 S801 in the uterine tumor samples were significantly lower than the corresponding normal
485 controls (Figure 5-figure supplement 1A-C), while the levels of IL-17RA protein were
486 higher in the uterine tumors than the normal tissues, suggesting that reduced IL-17RA
487 phosphorylation is linked to more stable IL-17RA protein due to less ubiquitylation and
488 degradation. Further study is needed to illustrate the specific amino acids of IL-17RA that

489 are involved in phosphorylation and ubiquitylation, which could be explored as therapeutic
490 targets using proteolysis-targeting chimera (PROTAC) technique in the treatment of
491 autoimmunity and cancer [64].
492

493 Since knock-out of FBXW11 remarkably increased endogenous IL-17RA protein levels in
494 A549 and Ishikawa cell lines, we hypothesized that IL-17 cytokines that interact with IL-
495 17RA should activate IL-17 signaling pathways, inducing higher levels of expression of
496 downstream genes in FBXW11 KO cells, compared to the parental FBXW11 WT cells.
497 However, we found that nuclear levels of NF- κ B p65 in FBXW11 KO cells were much less
498 than FBXW11 WT cells after 30-minutes treatment with rhIL-17A (Figure 7D). This raised
499 a question why nuclear entry of NF- κ B p65 was decreased in FBXW11 KO cells. Normally,
500 IL-17 signaling is initiated by IL-17A binding to the receptors, leading to phosphorylation
501 of I κ B α . Phosphorylated I κ B α is ubiquitylated by FBXW1A/FBXW11, resulting in
502 proteasome-mediated degradation [26]. Degradation of I κ B α liberates NF- κ B p50/p65 to
503 enter the nucleus, thus starting transcription of downstream genes [1, 65]. Yet, FBXW11
504 knockout led to a failure in ubiquitylation and degradation of I κ B α , allowing I κ B α to
505 continue to trap NF- κ B p50/p65 in the cytoplasm and subsequently fail to initiate
506 expression of downstream genes. Furthermore, our real-time qPCR analysis confirmed
507 the lower levels of basal and induced expression of downstream genes in FBXW11 KO
508 cells compared to FBXW11WT cells (Figure 7E-I, Figure 7-figure supplement 1D-H). In
509 addition, as a core component of IL-17 signaling, Act1 has been shown to be ubiquitylated
510 by FBXW1A/FBXW11 and degraded by the proteasome [23]. Overall, IL-17 signaling is
511 finely regulated by FBXW1A/FBXW11 at different levels, including IL-17RA, Act1, and
512 I κ B α (Figure 8). The present study found that IL-17RA was ubiquitylated by FBXW11,
513 followed by proteasomal degradation. Knock-out of FBXW11 stabilizes IL-17RA and Act1,
514 which is supposed to enhance IL-17 signaling and induce more expression of
515 downstream genes. However, knock-out of FBXW11 decreases degradation of I κ B α .
516 Therefore, the end readouts of IL-17 signaling, that is, the expression levels of
517 downstream genes, are reduced in FBXW11 KO cells. Treatment with rIL-17A induced
518 more activation of MAPK signaling pathways in FBXW11 KO cells than WT cells, but the
519 MAPK signaling pathways might not be involved in the expression of the IL-17-
520 downstream genes examined. The biological significance of MAPK activation in this
521 setting remains unknown, which should be investigated in future studies.
522

523 In summary, the present study identified SCF^{FBXW11} as a critical E3 ligase that regulates
524 IL-17 signaling pathway at IL-17RA level. Future studies may be conducted to explore the
525 potential of targeting SCF^{FBXW11} for the treatment of IL-17-dependent inflammatory and
526 autoimmune conditions as well as cancers.
527

528 **Materials and Methods**

529 **Mammalian cell culture.** Human prostate cancer cell lines 22Rv1, PC-3 and LNCaP,
530 human normal keratinocyte HaCaT, human embryonic kidney cell line HEK293T, human
531 cervical cancer cell line HeLa, human lung cancer cell line A549, and human monocytic
532 leukemia cell line THP-1 were purchased from the American Type Culture Collection
533 (ATCC, Manassas, VA, U.S.A.). Human skin squamous cell carcinoma cell line A-431

534 was kindly gifted by Dr. Shitao Li at Tulane University. Human endometrial cancer cell
535 line Ishikawa was kindly gifted by Dr. Matthew Burow at Tulane University. Human colon
536 cancer cell lines HCT116 and DLD1 were kindly gifted by Dr. Lin Zhang at the University
537 of Pittsburgh. Stable cell line HEK293-IL-17RA overexpressing exogenous Flag-IL-17RA
538 was established in Dr. You's lab [25]. A549 FBXW11 WT and FBXW11 KO cell lines were
539 kindly gifted by Dr. Friedemann Weber at Institute for Virology, FB10-Veterinary Medicine,
540 Justus-Liebig University, with the permission of Dr. Veit Hornung at Ludwig-Maximilians-
541 Universität Munich [39]. HaCaT, HEK293T, HeLa, A549, A-431, Ishikawa, HCT116,
542 DLD1, HEK293-IL17RA, A549 FBXW11 WT, and A549 FBXW11 KO cell lines were
543 maintained in high-glucose Dulbecco's Modified Eagle Medium (DMEM) Genesee
544 (Scientific, San Diego, CA, U.S.A., #25-500) supplied with 10% fetal bovine serum (FBS,
545 ATCC, Manassas, VA, U.S.A., #30-2022). THP-1, 22Rv1, and LNCaP cell lines were
546 maintained in RPMI-1640 (Genesee Scientific, San Diego, CA, U.S.A., #25-506)
547 medium supplied with 10% FBS. PC-3 cell line was maintained in Kaighn's Modification
548 of Ham's F-12 (F-12K) (ATCC, #30-2004) supplied with 10% FBS. All cell lines were
549 maintained in a humidified condition at 37 °C with 5% carbon dioxide. Where indicated,
550 cells were treated with cycloheximide (CHX, Millipore Sigma, #01810), MG132 (Millipore
551 Sigma, #M8699; Cayman chemical company, #10012628), bortezomib (Selleckchem,
552 #S1013), MLN4924 (Selleckchem, #S7109), and imidazole (Fisher scientific,
553 #A10221.36) dissolved in dimethyl sulfoxide (DMSO) (Fisher scientific, #BP231-100).

554

555 **Plasmids.** The following plasmids were purchased from Addgene: HA-Ubiquitin WT
556 (#17608), Myc-FBXW7 ΔF box (#16652), Myc-FBXW5 (#19905), Myc-FBXW1A
557 (#20718), and Myc-Skp2 (#19947). The following plasmids were kindly gifted by Dr.
558 Michael Pagano at New York University: Flag-FBXW2, Flag-FBXW4, Flag-HA-FBXW8,
559 Flag-HA-FBXW9, Flag-HA-FBXW11, and Flag-HA-FBXW12. The following plasmids
560 were kindly gifted by Dr. Hua Lu at Tulane University: His-ubiquitin WT, His-ubiquitin
561 K6R, His-ubiquitin K11R, His-ubiquitin K27R, His-ubiquitin K29R, His-ubiquitin K33R,
562 His-ubiquitin K48R, and His-ubiquitin K63R [66]. Plasmids of lentiCRISPRv2 (addgene,
563 #52961), pMD2.G (addgene, #12259) and psPAX2 (addgene, #12260) were also kindly
564 gifted by Dr. Hua Lu at Tulane University. Flag-IL-17RA full-length plasmid was obtained
565 from Dr. Xiaoxia Li [67] and it was used as a template to create Flag-IL-17RA Δ729-773
566 and Flag-IL-17RA Δ665-804 truncation mutants. Myc-His-IL-17RA plasmid was
567 generated as previously described [68].

568

569 **CRISPR/Cas9-mediated gene knock-out.** Targeting exon sequence (5'-
570 GTGGACGACACAACTTGCAGAGG-3') was selected by the CHOPCHOP online tool
571 (<http://chopchop.cbu.uib.no/>) and this target was validated by Dr. Friedemann Weber
572 and Dr. Veit Hornung [39]. Standard de-salted oligos (Oligo 1: 5'-
573 CACCGGTGGACGACACAAC **TTGCAG**-3', Oligo 2: 3'-
574 CCACCTGCTGTGTTAACGTCCAA-5') were synthesized by Eurofins Genomics
575 and were diluted to 100 μM in sterile water. GeCKO system was applied to generate
576 lentiviral CRISPR tool following well-established protocols from Dr. Feng Zhang's lab
577 [69, 70]. Oligo 1 and oligo 2 were annealed by T4 polynucleotide kinase (NEB,
578 #M0201S) at 37 °C for 30 min and 95 °C for 5 min, then the temperature ramped down

579 to 25 °C at 5 °C/min. The lentiCRISPRv2 was digested by BsmBI-v2 (NEB, #R0739S) at
580 55 °C for 15 min and heated to be inactivated at 80 °C for 20 min before chilling on ice.
581 Digested lentiCRISPRv2 and annealed oligos were ligated with T4 DNA ligase (NEB,
582 #M0202S) at 16 °C overnight and were heated to be inactivated at 65 °C for 10 min
583 before chilling on ice. 5 µl of ligation product was transformed into 50 µl of Stbl3
584 competent cells (Invitrogen, #C737303). Insertion of guide RNA into lentiviral CRISPR
585 plasmid was verified by Sanger sequencing under U6-forward primer (5'-
586 GACTATCATATGCTTACCGT-3') before packaging lentiviruses. HEK293T cells were
587 placed into a 10-cm dish 24 hours before transfection, supplied with 7 ml of Dulbecco's
588 Modified Eagle's Medium (Genesee, #25-500) containing 10% fetal bovine serum. When
589 the confluence reached 70-80%, jetPRIME (Polyplus, #101000046) was used to carry
590 out co-transfection according to manufacturer's instructions. The amount of each
591 plasmid was 5 µg recombinant lentiCRISPR, 2 µg pMD2.G, and 3 µg psPAX2. Plasmids
592 were incubated for 12 hours before replacing with 6 ml of fresh complete culture medium.
593 The supernatant containing lentiviruses was collected two times at 48 hours and 96
594 hours post-transfection. The supernatant containing lentiviruses was centrifuged at
595 1,000 rpm for 5 min at room temperature and aliquoted to be stored at -80 °C. 24 hours
596 before infecting with lentiviruses containing guide RNA targeting FBXW11 or empty
597 vector, Ishikawa cells were seeded into a well of 6-well plate. When the cell confluence
598 reached 30-50%, a mixture of 500 µl of fresh culture medium, 500 µl of virus medium,
599 and 8 µg/ml of polybrene was added into the cells. 24 hours post the first infection, the
600 infection was repeated once. 48 hours post the second infection, 1 µg/ml puromycin was
601 used to select cells with successful infection. 7 days later, the surviving cells were serially
602 diluted and placed into 96-well plates at a density of 0.5 cell per well. Puromycin
603 selection was maintained for another 3-4 weeks until colonies were visible by naked
604 eyes. Colonies were picked up to amplify before isolating genomic DNA using Quick-
605 DNA miniprep Plus kit (Zymo research, #D4068). Standard PCR with a forward primer
606 (5'-TATCGGTGGTATGCTGTTCTG-3') and a reverse primer (5'-TCTCGTAGGCCAC
607 TGATAATT-3') was applied to amplify the target DNA sequence. Sanger sequencing
608 was used to determine genotype of clones with the PCR primers. One clone (termed
609 C1) that contained a 4-base pair deletion at the target site (5'-GTGGACGACACAA----
610 CAGAGG-3') was selected as the FBXW11 knock-out cell line.

611

612 **Transfection of plasmids and small interference RNA (siRNA).** Human IL-17RA
613 siRNA (#sc-40037) and nontargeting control RNA (#sc-37007) were obtained from
614 Santa Cruz Biotechnology. Human FBXW1A siRNAs (#D-003463-01-0002, D-003463-
615 02-0002, D-003463-03-0002, and D-003463-04-0002) were purchased from
616 Dharmacon. AllStars Negative Control RNA (#SI03650318) was obtained from QIAGEN.
617 Cells were transfected with plasmids or siRNA when the confluence reached around 70-
618 80%. Transfection was performed using jetPRIME transfection reagent (Polyplus, #114-
619 15) according to manufacturer's instructions. After transfection, the cells were incubated
620 for 12-24 hours before replacing with fresh culture medium and subsequent treatments
621 were conducted appropriately.

622

623 **Western blot analysis.** Cells were washed with phosphate buffered saline (PBS) and
624 lysed with radioimmunoprecipitation assay (RIPA) buffer (50 mM sodium fluoride, 0.5%
625 NP-40, 10 mM sodium phosphate monobasic, 150 mM sodium chloride, 25 mM Tris pH
626 8.0, 2 mM ethylenediaminetetraacetic (EDTA), and 0.2 mM sodium vanadate) with a fresh
627 supplement of 1× protease inhibitor cocktail (PIC, Millipore Sigma, #P8849). After
628 incubation on ice for 15 min, cell lysate was centrifuged at 13,000 $\times g$ for 15 min at 4 °C.
629 The supernatant of whole cell lysate was transferred into a new microcentrifuge tube and
630 boiled with 3x sample loading buffer (208.1 mM sodium dodecyl sulfate (SDS), 30%
631 glycerol, 187.5 mM Tris pH 6.8, 15% β -mercaptoethanol, 14.9 mM bromophenol blue) at
632 100 °C for 5-10 min. Around 60-120 μ g of total protein was subject to sodium dodecyl
633 sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transblotted to the
634 polyvinylidene fluoride membranes (PVDF, Genesee Scientific, #83-646R). The blots
635 were blocked with 2.5% bovine serum albumin (Millipore Sigma, #A3294) solution
636 containing 0.02% sodium azide (Millipore Sigma, #S2002). The blots were probed with
637 the following primary antibodies at room temperature for 1-2 hours or at 4 °C overnight:
638 anti-GAPDH (Millipore, #MAB374, 1:5,000 dilution), anti-Flag M2 (Sigma, #F3165,
639 1:20,000 dilution), anti-IL-17RA (Santa Cruz Biotechnology, #sc-376374, 1:500 dilution),
640 anti-c-Myc (Santa Cruz Biotechnology, #sc-40, 1:1,000 dilution), anti-c-Myc (Novus,
641 #NB600-335, 1:1,000 dilution), anti-HA (Santa Cruz Biotechnology, #sc-7392, 1:1,000
642 dilution), anti-FBXW7 (Bethyl Laboratories, #A301-720A, 1:15,000 dilution), anti-p-Akt
643 (Cell Signaling Technology, #9271, 1:500 dilution), anti-Akt (Santa Cruz Biotechnology,
644 #sc-81434, 1:100 dilution), anti-p-I κ B α (Cell Signaling Technology, #2859, 1:1,000
645 dilution), anti-I κ B α (Cell Signaling Technology, #4814, 1:1,000 dilution), anti-p-JNK (Cell
646 Signaling Technology, #9255, 1:500 dilution), anti-JNK (Cell Signaling Technology, #9252,
647 1:1,000 dilution), anti-p-ERK1/2 (Santa Cruz Biotechnology, #sc-7383, 1:500 dilution),
648 anti-ERK1/2 (Cell Signaling Technology, #4695, 1:1,000 dilution), anti-p-p38 MAPK
649 (Santa Cruz Biotechnology, #sc-166182, 1:500 dilution), anti-p38 MAPK (Cell Signaling
650 Technology, #8690, 1:1,000 dilution), anti-NF- κ B p65 (Cell Signaling Technology, #6956,
651 1:500 dilution), anti- β -tubulin (Cell Signaling Technology, #2128, 1:1,000 dilution), and
652 anti-Histone H3 (Cell Signaling Technology, #4499, 1:2,000 dilution). Li-Cor IRDye680-
653 and IRDye800-conjugated secondary antibodies were incubated at room temperature for
654 45 min at a dilution of 1: 10,000 and 1: 5,000, respectively. The blots were scanned with
655 a Li-COR Odyssey 9120 Digital Imaging system. When necessary, the blots were stripped
656 with a stripping buffer (62 mM Tris-HCl pH 6.7, 2% SDS, and 100 mM β -mercaptoethanol)
657 and re-scanned to confirm stripping efficiency before probing for another antigen of
658 interest. Adobe illustrator was utilized to organize images.
659

660 **Co-immunoprecipitation (co-IP).** HEK293T cells were seeded at a density of 1×10^6
661 cells per 6-cm dish or 4.5×10^6 cells per 10-cm dish, approximately 20 hours prior to
662 transfection. 3 ml and 7 ml of DMEM (with 10% FBS) were added to the 6-cm and 10-cm
663 dishes, respectively. Transient transfection of plasmids was conducted using jetPRIME
664 (Polyplus, #114) according to the manufacturer's instructions. 48 hours post transfection,
665 protein was extracted with an IP lysis buffer (50 mM Tris-HCl pH 7.5, 0.5% Nonidet P-40,
666 1 mM EDTA, and 150 mM NaCl). IP lysis buffer was freshly supplemented with 1x PIC
667 and 1 mM 1,4-dithiothreitol (DTT, Thermo Fisher, #R0861). A proper amount of lysis buffer
668 was added and vortexed vigorously for 10 sec, followed by incubation on ice for 30 min

669 and vortexing every 10 min. Cell debris was removed by centrifuging at 13,000 x g at 4
670 °C for 15 min. Supernatant was transferred into a new centrifuge tube and protein
671 concentration was quantified with Bradford assay [71]. Immunoprecipitation was carried
672 out by mixing 500-800 µg of whole cell lysate and 1-2 µg of anti-Flag M2 antibody (Sigma
673 Millipore, #F3165), 1-2 µg of anti-c-Myc antibody (Santa Cruz Biotechnology, #sc-40), or
674 12 µg of anti-FBXW7 antibody (Bethyl Laboratories, #A301-720A). 1-2 hours later, 20 µl
675 of 75% (v/v) rProtein A agarose resin beads (Genesee Scientific, #20-525) were added
676 into each sample and kept incubation with gentle rocking at 4°C overnight. The beads
677 were washed with 1 ml of pre-chilled IP lysis buffer (freshly supplemented with 1 mM DTT
678 and 1x PIC) 3 times. The precipitated proteins were eluted in 20 µl of 2x sample loading
679 buffer with boiling at 100 °C for 5 min. Samples were subject to Western blot analysis.
680

681 **Ubiquitylation assay.** 42 hours post-transfection, cells were treated with 20 µM MG132
682 for 6–8 hours. The cells were collected and washed with PBS once. When Ni-NTA resins
683 (Thermo Fisher, #88221) were used, the cell pellet was aliquoted into two parts: 25% of
684 the cells was lysed with RIPA buffer, freshly supplemented with 1 x PIC, on ice for 10 min
685 and 75% of cells was lysed with fresh Buffer B (8 M Urea, 0.1 M Na₂HPO₄/NaH₂PO₄, pH
686 8.0, 0.01 M Tris-Cl pH 8.0, 10 mM β-mecaptoethanol, and 25 mM imidazole) at room
687 temperature for 10 min. The supernatant was collected after centrifuge at 13,000 x g for
688 15 min at 4°C or room temperature, respectively. The whole cell lysate extracted with RIPA
689 buffer was subject to SDS-PAGE and the signal intensity of IL-17RA detected with
690 Western blot was used to adjust the amount of cell lysate of each sample applied to
691 subsequent pull-down assays, in order to keep equal amount of proteins used for each
692 pull-down reaction. 30 µl of 50% Ni-NTA resins was washed three times with Buffer B and
693 then resuspended in 100 µl of Buffer B. The resins were incubated with proper volume of
694 cell lysate extracted with Buffer B at room temperature for 4 hours. The Ni-NTA resins
695 were washed with 1 ml of Buffer B 3 times and 1 ml of fresh Buffer C (8 M Urea, 0.1 M
696 Na₂HPO₄/NaH₂PO₄, pH 6.3, 0.01 M Tris-Cl pH 6.3, and 10 mM β-mecaptoethanol) for 2
697 times. The samples were processed for elution with boiling twice in 1x sample loading
698 buffer containing 300 mM imidazole at 100 °C for 3 min each time. When rProtein A
699 agarose resins were used, the cell pellet was boiled in 120 µl of denaturing IP lysis buffer
700 (50 mM Tris-HCl pH 7.5, 0.5% Nonidet P-40, 1 mM EDTA, 150 mM NaCl, freshly
701 supplemented with 1x PIC, 1 mM DTT, and 1% SDS) at 100 °C for 10 min. After
702 centrifuging at 13,000 x g at room temperature for 15 min, 110 µl of supernatant was
703 collected. 20 µl of supernatant was aliquoted into a new tube as whole cell lysate sample
704 and boiled with 3x sample loading buffer for 5 min. The rest of 90 µl supernatant was
705 diluted with freshly prepared IP lysis buffer (without SDS) until the concentration of SDS
706 was less than 0.1%. Before immunoprecipitation, a direct Western blot analysis was
707 conducted to decide the proper amount of cell lysate needed. During immunoprecipitation,
708 3 µg anti-HA antibody (Santa Cruz Biotechnology, #sc-7392) was used to pull down
709 ubiquitin-conjugated IL-17RA, which was incubated at 4°C with gentle agitation for 1-2
710 hours. Then, 20 µl of 75%(v/v) rProtein A agarose resins were added into each sample.
711 Samples were incubated with gentle rocking at 4°C overnight. The resin beads were
712 washed with 1 ml pre-chilled IP lysis buffer (freshly supplemented with 1 mM DTT and 1
713 x PIC) for 3 times and boiled with 20 µl 2x loading buffer at 100°C to elute the precipitated

714 proteins, which was repeated once to achieve a thorough elution. Samples were
715 subjected to subsequent Western blot analysis.

716
717 **Nuclear and cytoplasmic protein extraction.** For both A549 and Ishikawa cell lines, 24
718 hours before treatment, 2.0×10^6 FBXW11 WT and 2.5×10^6 FBXW11 KO cells were
719 seeded into 10-cm dishes. 20 ng/ml recombinant human IL-17A (rhIL-17A, R&D Systems,
720 #7955-IL-025/CF) was used to treat the cells for 10 or 30 minutes. According to
721 manufacturer's instructions, cytoplasmic and nuclear proteins were extracted using NE-
722 PER nuclear and cytoplasmic extraction kit (Thermo Scientific, #78833). In brief, FBXW11
723 WT and FBXW11 KO cells were collected with trypsin-EDTA. After centrifuge at $500 \times g$
724 for 5 minutes at 4°C , the supernatant was discarded. 200 μl ice-cold cell extraction
725 reagent I was added and vortexed vigorously for 15 seconds to lyse cell membrane,
726 followed by incubation for 10 minutes and adding 11 μl ice-cold cell extraction reagent II.
727 The lysates were vortexed for 5 minutes and incubated on ice for 1 min. The supernatant
728 was transferred into a new tube after centrifuging at $13,000 \times g$ for 15 minutes. The
729 insoluble pellet was resuspended with 50-100 μl nuclear extraction reagent and vortexed
730 for 15 seconds, followed by incubation on ice for 40 minutes with vortexing every 10
731 minutes. The supernatant was collected after centrifuging at $13,000 \times g$ for 15 minutes.
732 The protein concentration was quantified with a Take3 microplate spectrometer (BioTeck,
733 Synergy H1).

734
735 **Quantitative real-time PCR (qPCR) analysis.** FBXW11 WT and FBXW11 KO cell lines
736 (A549 and Ishikawa) were treated with 20 ng/ml rhIL-17A (R&D Systems, #7955-IL-
737 025/CF), rhIL-17B (R&D Systems, #8129-IL-025/CF), rhIL-17C (R&D Systems, #9640-
738 IL-025/CF), rhIL-17E (R&D Systems, #8134-IL-025/CF), or rhIL-17F (R&D Systems,
739 #1335-INS-025/CF) for 2 hours. According to the manufacturer's instructions, total RNA
740 was isolated using the Trizol reagent (Ambio, #15596018) and quantified using a Take3
741 microplate spectrometer (BioTeck, Synergy H1). 1000 ng of RNA was used to synthesize
742 cDNA by reverse transcriptase (Takara, #RR037A). The cDNA was diluted with
743 DNase/RNase-free water 10-fold before performing qPCR. In each qPCR reaction, a
744 mixture in one well of 384-well plates consisted of 2 μl of PCR primer mix (with final
745 concentration of 1 μM and the primer sequences shown in Table 1), 4 μl of SYBR Green
746 Master mix (Applied Biosystems, #A25742), 0.8 μl diluted cDNA, and 1.2 μl
747 DNase/RNase-free water. The following default PCR program was conducted: stage 1 95°C 5 min;
748 stage 2 95°C 15 sec, 60°C 1 min, x 40 cycles; melt curve: 95°C 15 sec, 60°C 1
749 min, 95°C 15 sec. $^{\Delta\Delta}\text{Ct}$ method [72] was used to calculate fold change of gene expression.
750 GAPDH was used as loading control and WT-Control group was used for calibration. Fold
751 change relative to Control group of FBXW11 WT of each cell line was calculated as $2^{-\Delta\Delta\text{Ct}}$
752 [$(\Delta\Delta\text{Ct} = \text{sample } (\text{Ct}_{\text{target}} - \text{Ct}_{\text{GAPDH}}) - \text{calibrator } (\text{Ct}_{\text{target}} - \text{Ct}_{\text{GAPDH}})]$.
753

754 **Bioinformatics analysis.** Human Protein Atlas database was analyzed to figure out IL-
755 17RA mRNA levels across multiple human cell lines (<https://www.proteinatlas.org/>,
756 access time 10/27/2022) [73]. Putative phosphodegrons of IL-17RA were predicted by Dr.
757 Pengbo Zhou and eukaryotic linear motif (ELM) resource was explored to further validate
758 this prediction [74]. Multiple sequence alignment of tryptophan-aspartic acid (WD) repeat
759 domain of FBXW family members was conducted with CLUSTAL Omega O(1.2.4)

760 (<https://www.uniprot.org/align>) [75]. Proteomics data of glioblastoma multiforme and
761 uterus corpus endometrial carcinoma (UCEC) were downloaded from the Clinical
762 Proteomic Tumor Analysis Consortium (CPTAC) (<https://pdc.cancer.gov/pdc/>) [76, 77]
763 and UALCAN database (<https://ualcan.path.uab.edu/>) [78]. Z-values of IL-17RA and
764 FBXW11 protein levels in glioblastoma multiforme, UCEC, and corresponding normal
765 brain and endometrial (with or without enrichment)/myometrial tissues were provided by
766 Dr. Darshan Shimoga Chandrashekhar and Dr. Sooryanarayana Varambally at the
767 University of Alabama at Birmingham, which were used to carry out the Pearson's
768 correlation analysis. Phosphorylation abundance of human IL-17RA in UCEC was
769 analyzed using the LinkedOmicsKB platform (<https://kb.linkedomics.org/#>) [79].
770

771 **Statistical analysis.** All *in vitro* experiments were repeated at least 3 times unless
772 indicated in the figure legends. GraphPad Prism software (Version 9.5.1, 733) was
773 applied to carry out all statistical analysis. A two-way analysis of variance (ANOVA) was
774 conducted to determine the source of variation and its significance when the cells were
775 treated with cycloheximide. Simple linear regression was used to calculate half-life time
776 of proteins when the cells were treated with cycloheximide. One-way ANOVA or unpaired
777 Student's *t* test were applied to determine statistical significance for quantitative data. A
778 two-tailed P value < 0.05 was considered statistically significant.
779

780 Acknowledgements

781 The authors thank Dr. Hua Lu, Dr. Michele Pagano, and Dr. Sachdev Sidhu for gifting
782 plasmids for ubiquitylation assays. We thank Dr. Shelya Zeng and Dr. Jieqiong Wang for
783 guidance on co-immunoprecipitation, ubiquitylation assay, and CRISPR/Cas9-mediated
784 gene knock-out. We thank Dr. Friedemann Weber and Dr. Veit Hornung for kindly sharing
785 A549 FBXW11 WT and A549 FBXW11 KO cell lines. We thank Dr. Hong Liu, Dr. Brian G.
786 Rowan, Dr. Asim B. Abdel-Mageed, and Dr. Yan Dong for insightful discussion of this
787 project. This work was included in Dr. Ben Jin's dissertation in fulfillment of his Ph.D.
788 degree requirements (<https://digitallibrary.tulane.edu/islandora/object/tulane%3A139004>).
789 Illustration was created with BioRender.com.

790 This work was primarily funded by the Department of Veteran Affairs (Merit Review Award
791 I01BX004158 to Dr. Zongbing You, Research Physiologist at the Southeast Louisiana
792 Veterans Health Care System, awarded from the Department of Veterans Affairs,
793 Veterans Health Administration, Office of Research and Development, Biomedical
794 Laboratory Research & Development Service) and partially supported by Tulane Cancer
795 Center.
796

797 **References**

- 798 1. Monin, L. and S.L. Gaffen, *Interleukin 17 Family Cytokines: Signaling Mechanisms, 799 Biological Activities, and Therapeutic Implications*. Cold Spring Harb Perspect Biol, 2018. 800 **10**(4).
- 801 2. Gaffen, S.L., *Structure and signalling in the IL-17 receptor family*. Nat Rev Immunol, 802 2009. **9**(8): p. 556-67.
- 803 3. Huang, J., et al., *Interleukin-17D regulates group 3 innate lymphoid cell function through 804 its receptor CD93*. Immunity, 2021. **54**(4): p. 673-686.e4.
- 805 4. Wright, J.F., et al., *The human IL-17F/IL-17A heterodimeric cytokine signals through the 806 IL-17RA/IL-17RC receptor complex*. J Immunol, 2008. **181**(4): p. 2799-805.
- 807 5. Su, Y., et al., *Interleukin-17 receptor D constitutes an alternative receptor for interleukin- 808 17A important in psoriasis-like skin inflammation*. Sci Immunol, 2019. **4**(36).
- 809 6. Lee, J., et al., *IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL- 810 17Rh1*. J Biol Chem, 2001. **276**(2): p. 1660-4.
- 811 7. Wilson, S.C., et al., *Organizing structural principles of the IL-17 ligand-receptor axis*. 812 Nature, 2022. **609**(7927): p. 622-629.
- 813 8. Chang, S.H., et al., *Interleukin-17C Promotes Th17 Cell Responses and Autoimmune 814 Disease via Interleukin-17 Receptor E*. Immunity, 2011. **35**(4): p. 611-21.
- 815 9. Goepfert, A., et al., *Structural Analysis Reveals that the Cytokine IL-17F Forms a 816 Homodimeric Complex with Receptor IL-17RC to Drive IL-17RA-Independent Signaling*. 817 Immunity, 2020. **52**(3): p. 499-512.e5.
- 818 10. Onishi, R.M., et al., *SEF/IL-17R (SEFIR) is not enough: an extended SEFIR domain is 819 required for il-17RA-mediated signal transduction*. J Biol Chem, 2010. **285**(43): p. 32751- 820 32759.
- 821 11. Maitra, A., et al., *Distinct functional motifs within the IL-17 receptor regulate signal 822 transduction and target gene expression*. Proc Natl Acad Sci U S A, 2007. **104**(18): p. 823 7506-11.
- 824 12. Pohl, C. and I. Dikic, *Cellular quality control by the ubiquitin-proteasome system and 825 autophagy*. Science, 2019. **366**(6467): p. 818-822.
- 826 13. Rape, M., *Ubiquitylation at the crossroads of development and disease*. Nature Reviews 827 Molecular Cell Biology, 2018. **19**(1): p. 59-70.
- 828 14. Li, W., et al., *Genome-wide and functional annotation of human E3 ubiquitin ligases 829 identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and 830 signaling*. PLoS One, 2008. **3**(1): p. e1487.
- 831 15. Rotin, D. and S. Kumar, *Physiological functions of the HECT family of ubiquitin ligases*. 832 Nat Rev Mol Cell Biol, 2009. **10**(6): p. 398-409.
- 833 16. Mészáros, B., et al., *Degrons in cancer*. Sci Signal, 2017. **10**(470).
- 834 17. Deshaies, R.J. and C.A. Joazeiro, *RING domain E3 ubiquitin ligases*. Annu Rev Biochem, 835 2009. **78**: p. 399-434.
- 836 18. Petroski, M.D. and R.J. Deshaies, *Function and regulation of cullin-RING ubiquitin ligases*. 837 Nat Rev Mol Cell Biol, 2005. **6**(1): p. 9-20.

838 19. Sarikas, A., T. Hartmann, and Z.Q. Pan, *The cullin protein family*. Genome Biol, 2011.
839 12(4): p. 220.

840 20. Baek, K., et al., *NEDD8 nucleates a multivalent cullin–RING–UBE2D ubiquitin ligation*
841 *assembly*. Nature, 2020. 578(7795): p. 461-466.

842 21. Zhou, Q. and J. Zhang, *K27-linked noncanonical ubiquitination in immune regulation*. J
843 Leukoc Biol, 2022. 111(1): p. 223-235.

844 22. Garg, A.V., et al., *The deubiquitinase A20 mediates feedback inhibition of interleukin-17*
845 *receptor signaling*. Sci Signal, 2013. 6(278): p. ra44.

846 23. Shi, P., et al., *Persistent stimulation with interleukin-17 desensitizes cells through SCF6-*
847 *TrCP-mediated degradation of Act1*. Sci Signal, 2011. 4(197): p. ra73.

848 24. Qu, F., et al., *TRAF6-dependent Act1 phosphorylation by the IκB kinase-related kinases*
849 *suppresses interleukin-17-induced NF-κB activation*. Mol Cell Biol, 2012. 32(19): p. 3925-
850 37.

851 25. Liu, S., et al., *Hyperinsulinemia enhances interleukin-17-induced inflammation to*
852 *promote prostate cancer development in obese mice through inhibiting glycogen*
853 *synthase kinase 3-mediated phosphorylation and degradation of interleukin-17 receptor*.
854 Oncotarget, 2016. 7(12): p. 13651-66.

855 26. Winston, J.T., et al., *The SCF β -TRCP-ubiquitin ligase complex associates specifically*
856 *with phosphorylated destruction motifs in I κ B α and beta-catenin and*
857 *stimulates I κ B α ubiquitination in vitro*. Genes Dev, 1999. 13(3): p. 270-83.

858 27. Baek, K., D.C. Scott, and B.A. Schulman, *NEDD8 and ubiquitin ligation by cullin-RING E3*
859 *ligases*. Curr Opin Struct Biol, 2021. 67: p. 101-109.

860 28. Yada, M., et al., *Phosphorylation-dependent degradation of c-Myc is mediated by the F-*
861 *box protein Fbw7*. Embo j, 2004. 23(10): p. 2116-25.

862 29. Kisseelev, A.F., W.A. van der Linden, and H.S. Overkleeft, *Proteasome inhibitors: an*
863 *expanding army attacking a unique target*. Chem Biol, 2012. 19(1): p. 99-115.

864 30. Crawford, L.J., et al., *Comparative selectivity and specificity of the proteasome inhibitors*
865 *BzLLLCOCHO, PS-341, and MG-132*. Cancer Res, 2006. 66(12): p. 6379-86.

866 31. Yim, W.W.-Y. and N. Mizushima, *Lysosome biology in autophagy*. Cell Discovery, 2020.
867 6(1): p. 6.

868 32. Van Roey, K., et al., *Short Linear Motifs: Ubiquitous and Functionally Diverse Protein*
869 *Interaction Modules Directing Cell Regulation*. Chemical Reviews, 2014. 114(13): p.
870 6733-6778.

871 33. Cardozo, T. and M. Pagano, *The SCF ubiquitin ligase: insights into a molecular machine*.
872 Nature Reviews Molecular Cell Biology, 2004. 5(9): p. 739-751.

873 34. Lan, R., et al., *Genome and transcriptome profiling of FBXW family in human prostate*
874 *cancer*. Am J Clin Exp Urol, 2020. 8(4): p. 116-128.

875 35. Zheng, N., et al., *Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex*.
876 Nature, 2002. 416(6882): p. 703-9.

877 36. Drabnerova, H., et al., *Systematic analysis of the IL-17 receptor signalosome reveals a*
878 *robust regulatory feedback loop*. Embo j, 2020. 39(17): p. e104202.

879 37. Ernst, A., et al., *A strategy for modulation of enzymes in the ubiquitin system*. Science,
880 2013. 339(6119): p. 590-5.

881 38. Gorelik, M., et al., *Inhibition of SCF ubiquitin ligases by engineered ubiquitin variants*
882 *that target the Cul1 binding site on the Skp1-F-box interface*. Proc Natl Acad Sci U S A,
883 2016. **113**(13): p. 3527-32.

884 39. Kainulainen, M., et al., *NSs Virulence Factor of Rift Valley Fever Virus Engages the F-Box*
885 *Proteins FBXW11 and β -TRCP1 To Degrade the Antiviral Protein Kinase PKR*. J Virol, 2016.
886 **90**(13): p. 6140-7.

887 40. Frescas, D. and M. Pagano, *Deregulated proteolysis by the F-box proteins SKP2 and beta-*
888 *TrCP: tipping the scales of cancer*. Nat Rev Cancer, 2008. **8**(6): p. 438-49.

889 41. Duan, S. and M. Pagano, *Ubiquitin ligases in cancer: Functions and clinical potentials*.
890 Cell Chem Biol, 2021. **28**(7): p. 918-933.

891 42. Li, X., et al., *IL-17 receptor-based signaling and implications for disease*. Nat Immunol,
892 2019. **20**(12): p. 1594-1602.

893 43. Zhao, J., et al., *The role of interleukin-17 in tumor development and progression*. J Exp
894 Med, 2020. **217**(1).

895 44. Liu, C., et al., *Blocking IL-17A enhances tumor response to anti-PD-1 immunotherapy in*
896 *microsatellite stable colorectal cancer*. J Immunother Cancer, 2021. **9**(1).

897 45. McGeachy, M.J., D.J. Cua, and S.L. Gaffen, *The IL-17 Family of Cytokines in Health and*
898 *Disease*. Immunity, 2019. **50**(4): p. 892-906.

899 46. Levin, S.D., *IL-17 receptor signaling: ubiquitin gets in on the act*. Sci Signal, 2009. **2**(92):
900 p. pe64.

901 47. Xu, W. and Y. Huang, *Regulation of Inflammatory Cell Death by Phosphorylation*. Front
902 Immunol, 2022. **13**: p. 851169.

903 48. Battaglioni, S., et al., *mTOR substrate phosphorylation in growth control*. Cell, 2022.
904 **185**(11): p. 1814-1836.

905 49. Morrison, D.K., *MAP kinase pathways*. Cold Spring Harb Perspect Biol, 2012. **4**(11).

906 50. Rong, Z., et al., *Interleukin-17F signaling requires ubiquitination of interleukin-17*
907 *receptor via TRAF6*. Cell Signal, 2007. **19**(7): p. 1514-20.

908 51. Akhoondi, S., et al., *FBXW7/hCDC4 is a general tumor suppressor in human cancer*.
909 Cancer Res, 2007. **67**(19): p. 9006-12.

910 52. Nateri, A.S., et al., *The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling*.
911 Science, 2004. **303**(5662): p. 1374-8.

912 53. Cheng, Y. and G. Li, *Role of the ubiquitin ligase Fbw7 in cancer progression*. Cancer and
913 Metastasis Reviews, 2012. **31**(1): p. 75-87.

914 54. Lau, A.W., H. Fukushima, and W. Wei, *The Fbw7 and betaTRCP E3 ubiquitin ligases and*
915 *their roles in tumorigenesis*. Front Biosci (Landmark Ed), 2012. **17**(6): p. 2197-212.

916 55. Knizkova, D., et al., *CMTM4 is a subunit of the IL-17 receptor and mediates autoimmune*
917 *pathology*. Nat Immunol, 2022. **23**(11): p. 1644-1652.

918 56. Kim, T.Y., et al., *Substrate trapping proteomics reveals targets of the β TrCP2/FBXW11*
919 *ubiquitin ligase*. Mol Cell Biol, 2015. **35**(1): p. 167-81.

920 57. Swatek, K.N. and D. Komander, *Ubiquitin modifications*. Cell Res, 2016. **26**(4): p. 399-
921 422.

922 58. Yau, R. and M. Rape, *The increasing complexity of the ubiquitin code*. Nat Cell Biol, 2016.
923 **18**(6): p. 579-86.

924 59. Tracz, M. and W. Bialek, *Beyond K48 and K63: non-canonical protein ubiquitination*. *Cell Mol Biol Lett*, 2021. **26**(1): p. 1.

925 60. Kathania, M., et al., *Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR- γ t ubiquitination*. *Nat Immunol*, 2016. **17**(8): p. 997-1004.

926 61. Nakasone, M.A., et al., *Mixed-linkage ubiquitin chains send mixed messages*. *Structure*, 2013. **21**(5): p. 727-40.

927 62. Gao, D., et al., *mTOR drives its own activation via SCF(β TrCP)-dependent degradation of the mTOR inhibitor DEPTOR*. *Mol Cell*, 2011. **44**(2): p. 290-303.

928 63. Hunter, T., *The age of crosstalk: phosphorylation, ubiquitination, and beyond*. *Mol Cell*, 2007. **28**(5): p. 730-8.

929 64. Li, X. and Y. Song, *Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy*. *J Hematol Oncol*, 2020. **13**(1): p. 50.

930 65. Prescott, J.A., J.P. Mitchell, and S.J. Cook, *Inhibitory feedback control of NF- κ B signalling in health and disease*. *Biochem J*, 2021. **478**(13): p. 2619-2664.

931 66. Chen, Y., et al., *Ubiquitin ligase TRIM71 suppresses ovarian tumorigenesis by degrading mutant p53*. *Cell Death & Disease*, 2019. **10**(10): p. 737.

932 67. Qian, Y., et al., *The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease*. *Nat Immunol*, 2007. **8**(3): p. 247-56.

933 68. You, Z., et al., *Differential expression of IL-17RC isoforms in androgen-dependent and androgen-independent prostate cancers*. *Neoplasia*, 2007. **9**(6): p. 464-70.

934 69. Ran, F.A., et al., *Genome engineering using the CRISPR-Cas9 system*. *Nat Protoc*, 2013. **8**(11): p. 2281-2308.

935 70. Shalem, O., et al., *Genome-scale CRISPR-Cas9 knockout screening in human cells*. *Science*, 2014. **343**(6166): p. 84-87.

936 71. van Kley, H. and S.M. Hale, *Assay for protein by dye binding*. *Anal Biochem*, 1977. **81**(2): p. 485-7.

937 72. Livak, K.J. and T.D. Schmittgen, *Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method*. *Methods*, 2001. **25**(4): p. 402-8.

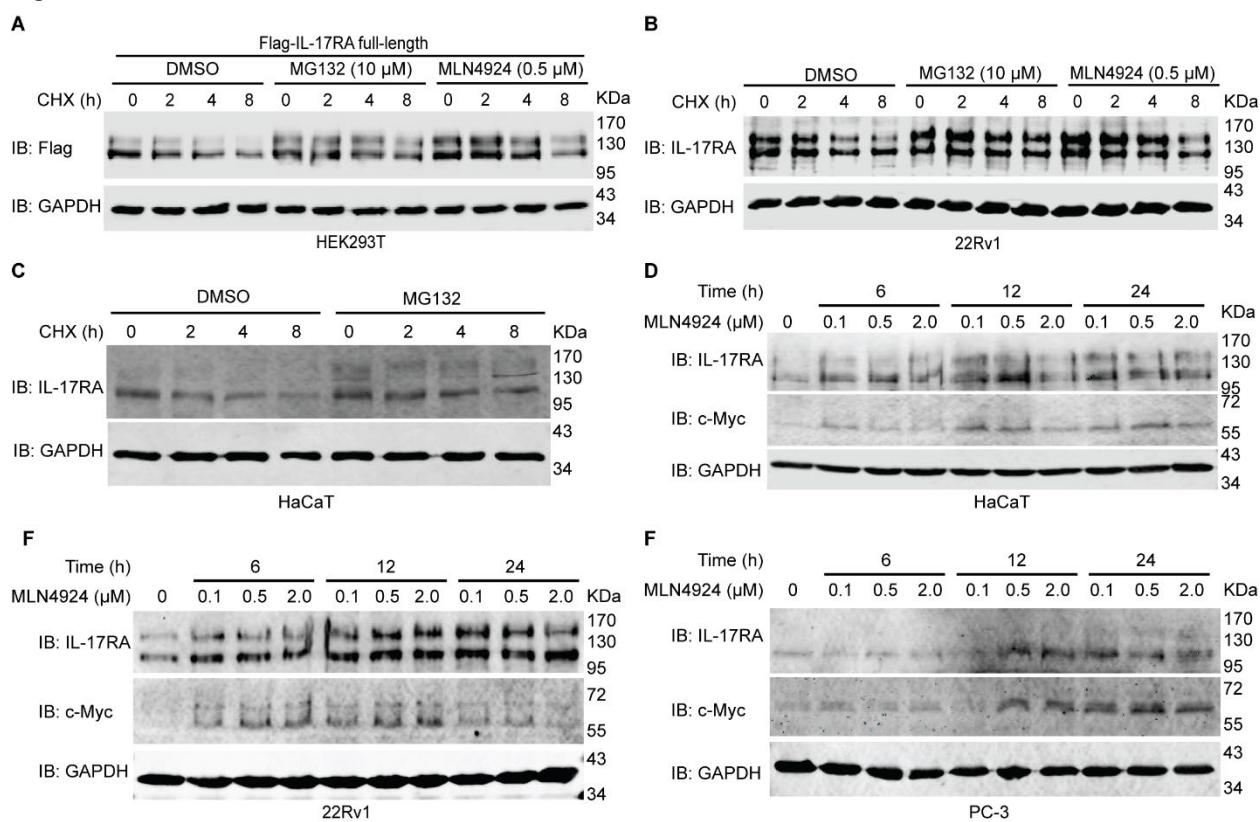
938 73. Karlsson, M., et al., *A single-cell type transcriptomics map of human tissues*. *Sci Adv*, 2021. **7**(31).

939 74. Kumar, M., et al., *The Eukaryotic Linear Motif resource: 2022 release*. *Nucleic Acids Res*, 2022. **50**(D1): p. D497-d508.

940 75. Sievers, F. and D.G. Higgins, *Clustal Omega for making accurate alignments of many protein sequences*. *Protein Sci*, 2018. **27**(1): p. 135-145.

941 76. Dou, Y., et al., *Proteogenomic Characterization of Endometrial Carcinoma*. *Cell*, 2020. **180**(4): p. 729-748.e26.

942 77. Wang, L.B., et al., *Proteogenomic and metabolomic characterization of human glioblastoma*. *Cancer Cell*, 2021. **39**(4): p. 509-528.e20.

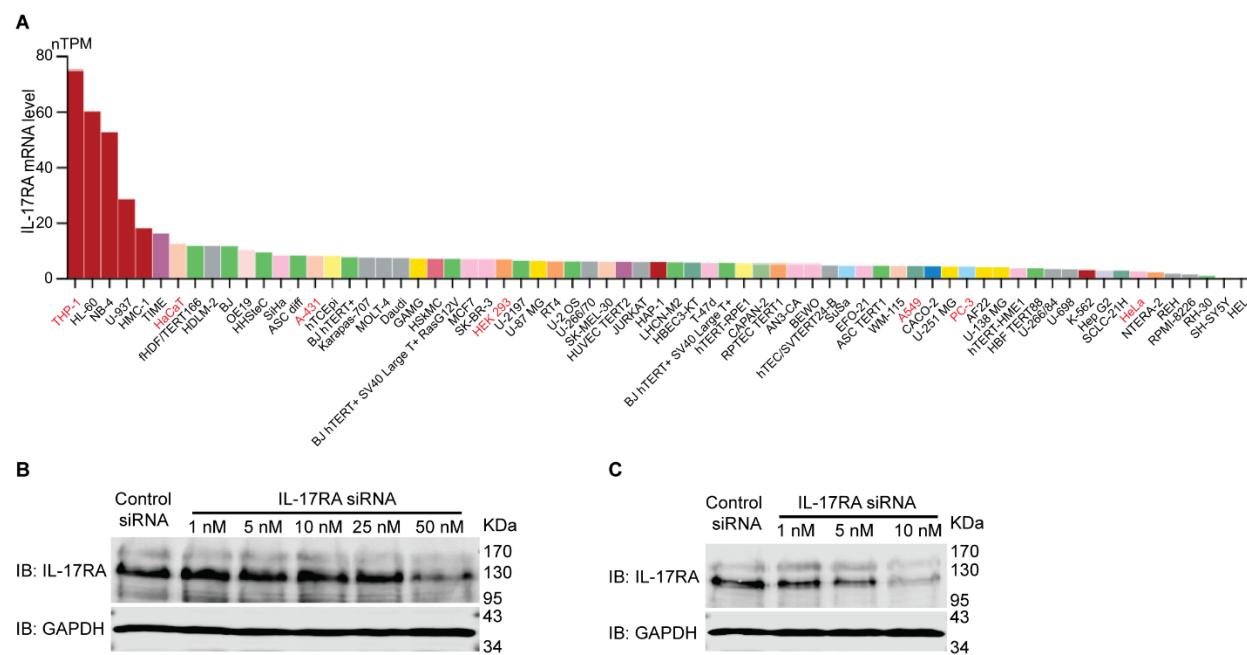

943 78. Chandrashekhar, D.S., et al., *UALCAN: An update to the integrated cancer data analysis platform*. *Neoplasia*, 2022. **25**: p. 18-27.

944 79. Zhang, S.R.S.Y.L.Y.D.Z.S.X.Y.W.J.J.T.L.B. *LinkedOmicsKB: A web portal to explore pan-cancer molecular and phenotype associations* in AACR. 2023. Orlando: Cancer Res.

945 966

967 **Figure and Corresponding Legends**

Figure 1.



968

969 **Figure 1. Exogenous and endogenous IL-17RA are degraded through ubiquitin-
970 proteasome system, particularly Cullin-Ring-E3 Ligase complex.**

971 **(A)** Western Blot analysis of expression levels of exogenous Flag-IL-17RA. 5 μ g full-
972 length Flag-IL-17RA plasmids were transiently transfected into HEK293T cells in a 10-cm
973 dish. 18 hours (h) post transfection, cells were evenly split into 6-well plates. 42 h post
974 transfection, the cells were treated with 20 μ M MG132 or 0.5 μ M MLN4924 for 8 h and
975 50 μ g/ml CHX for indicated hours. Of note, in the group with CHX treatment for 8 h,
976 MG132 or MLN4924 was added to all treatment groups simultaneously. Treatment of
977 each subgroup was terminated at the same time, therefore CHX was added to another
978 two subgroups 2 and 4 h before collecting cells. Overall, treatment time of MG132 and
979 MLN4924 was 8 h and treatment time of CHX was 0, 2, 4, and 8 h, respectively. DMSO
980 was used as control treatment. **(B)** Western blot analysis of endogenous IL-17RA in
981 22Rv1 cells after treatment with 20 μ M MG132, 0.5 μ M MLN4924 for 8h and 50 μ g/ml
982 CHX for indicated hours. DMSO was used as control treatment. **(C)** Western blot analysis
983 of endogenous IL-17RA in HaCaT cell line after treatment with 10 μ M of MG132 for 8 h
984 and 50 μ g/ml of CHX for indicated time. DMSO was used as control treatment. **(D-F)**
985 Neddylation inhibitor MLN4924 at 0.1 μ M, 0.5 μ M, and 2.0 μ M was used to treat HaCaT
986 (D), 22Rv1 (E) and PC-3 (F) cell lines for 6, 12 and 24 h. DMSO was used as control
987 treatment. Each experiment was repeated at least 3 times.
988

Figure 1-figure supplement 1

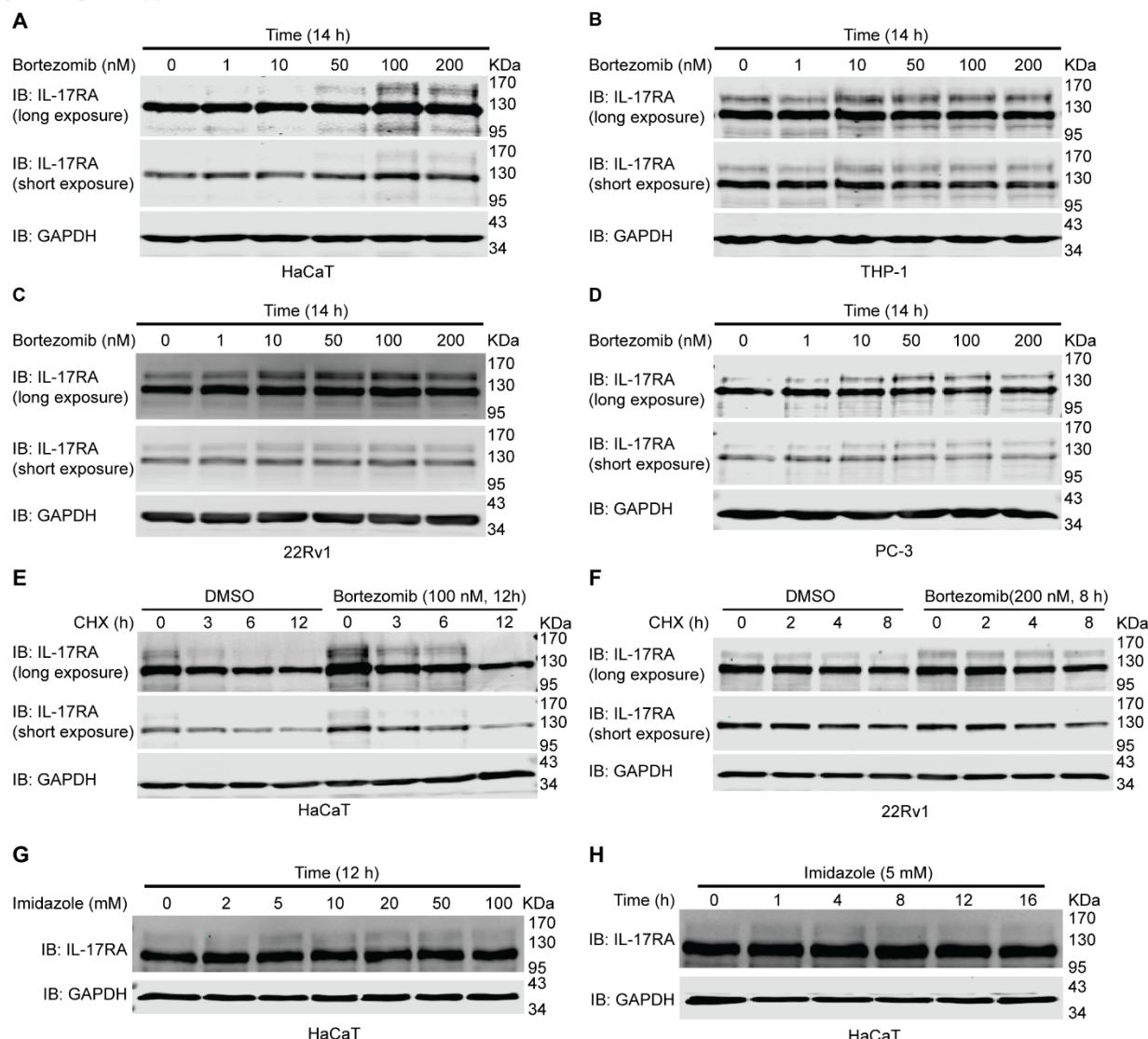
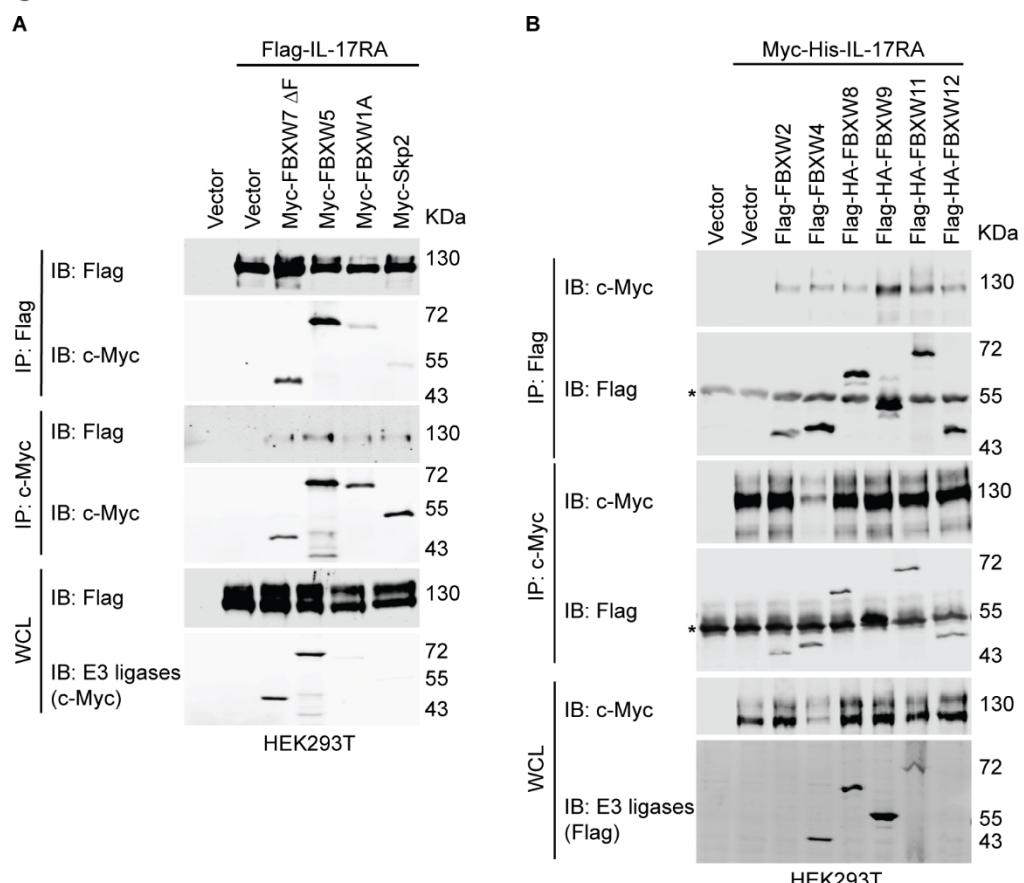


Figure 1-figure supplement 1. Expression level of endogenous IL-17RA mRNAs across multiple cell lines and validation of the specificity of anti-IL-17RA antibody.

(A) Human Protein Atlas database (<https://www.proteinatlas.org/>; access date 10/27/2022) was explored to figure out mRNA levels of IL-17RA across multiple human cell lines. **(B & C)** To validate the specificity of anti-IL-17RA antibody (G9 clone, Santa Cruz Biotechnology), HaCaT cells in 10-cm dishes **(B)** and 22Rv1 cells in 6-cm dishes **(C)** were transiently transfected with various amounts of IL-17RA siRNA or control siRNA for 48 h. Protein levels of endogenous IL-17RA were analyzed using Western blot.

998

Figure 1-figure supplement 2

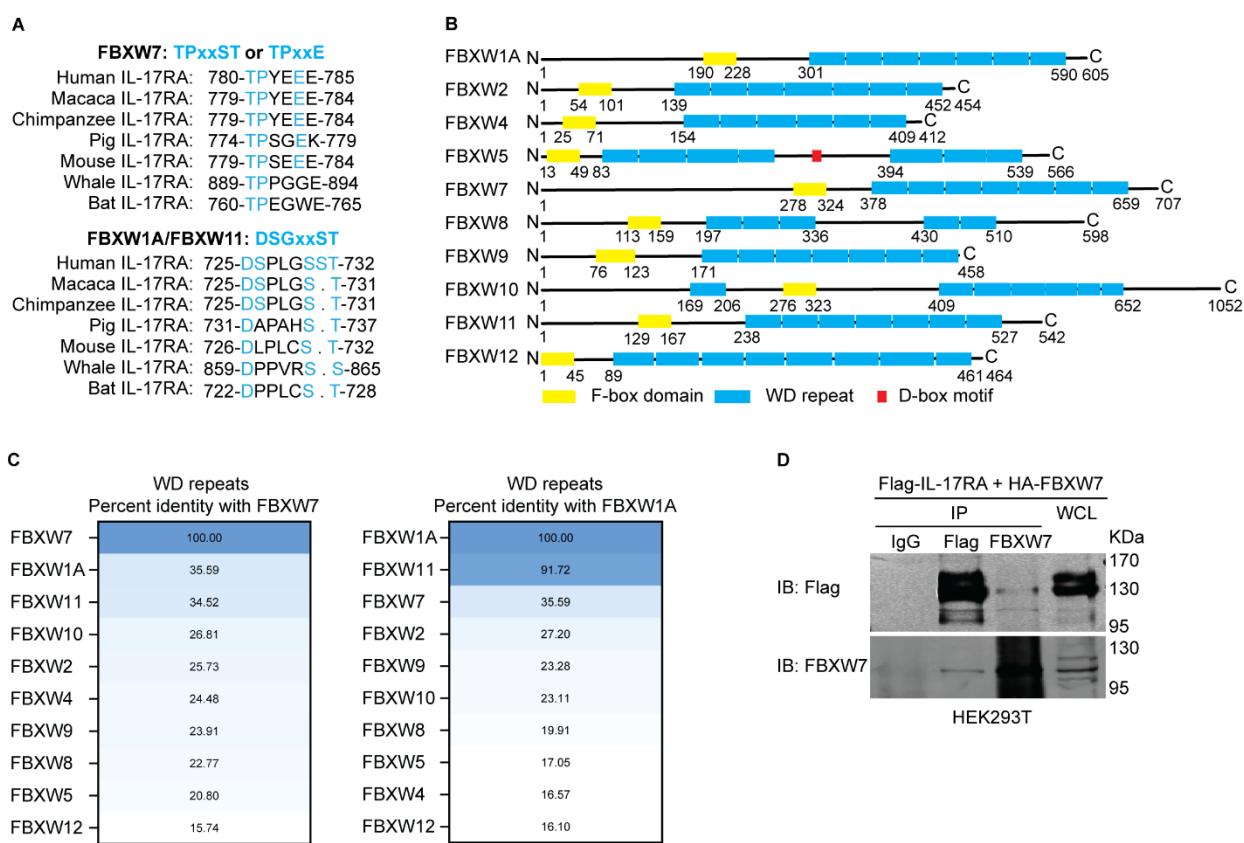


999

1000 **Figure 1-figure supplement 2. Proteasome inhibitor bortezomib slightly**
1001 **accumulates endogenous IL-17RA but lysosome inhibitor imidazole has no**
1002 **obvious effect on IL-17RA protein levels.**

1003 **(A-D)** Western blot analysis of endogenous IL-17RA in HaCaT **(A)**, THP-1 **(B)**, 22Rv1 **(C)**,
1004 and PC-3 **(D)** cell lines treated with 1 nM, 10 nM, 50 nM, 100 nM, and 200 nM bortezomib
1005 for 14 h. DMSO was used as control treatment. **(E)** Western blot analysis of endogenous
1006 IL-17RA in HaCaT cell line treated with 100 nM bortezomib for 12 h and 50 µg/ml CHX
1007 for indicated time. DMSO was used as control treatment. **(F)** Western blot analysis of
1008 endogenous IL-17RA in 22Rv1 cell line treated with 200 nM bortezomib for 8 h and 50
1009 µg/ml CHX for indicated time. DMSO was used as control treatment. **(G)** Western blot
1010 analysis of endogenous IL-17RA in HaCaT cell line treated with 2 mM, 5 mM, 10 mM, 20
1011 mM, 50 mM, and 100 mM imidazole for 12 h. DMSO was used as control treatment. **(H)**
1012 Western blot analysis of endogenous IL-17RA in HaCaT cell line treated with 5 mM
1013 imidazole for indicated time. DMSO was used as control treatment. Treatment of
1014 bortezomib was repeated 3 times while treatment of imidazole was repeated 2 times.

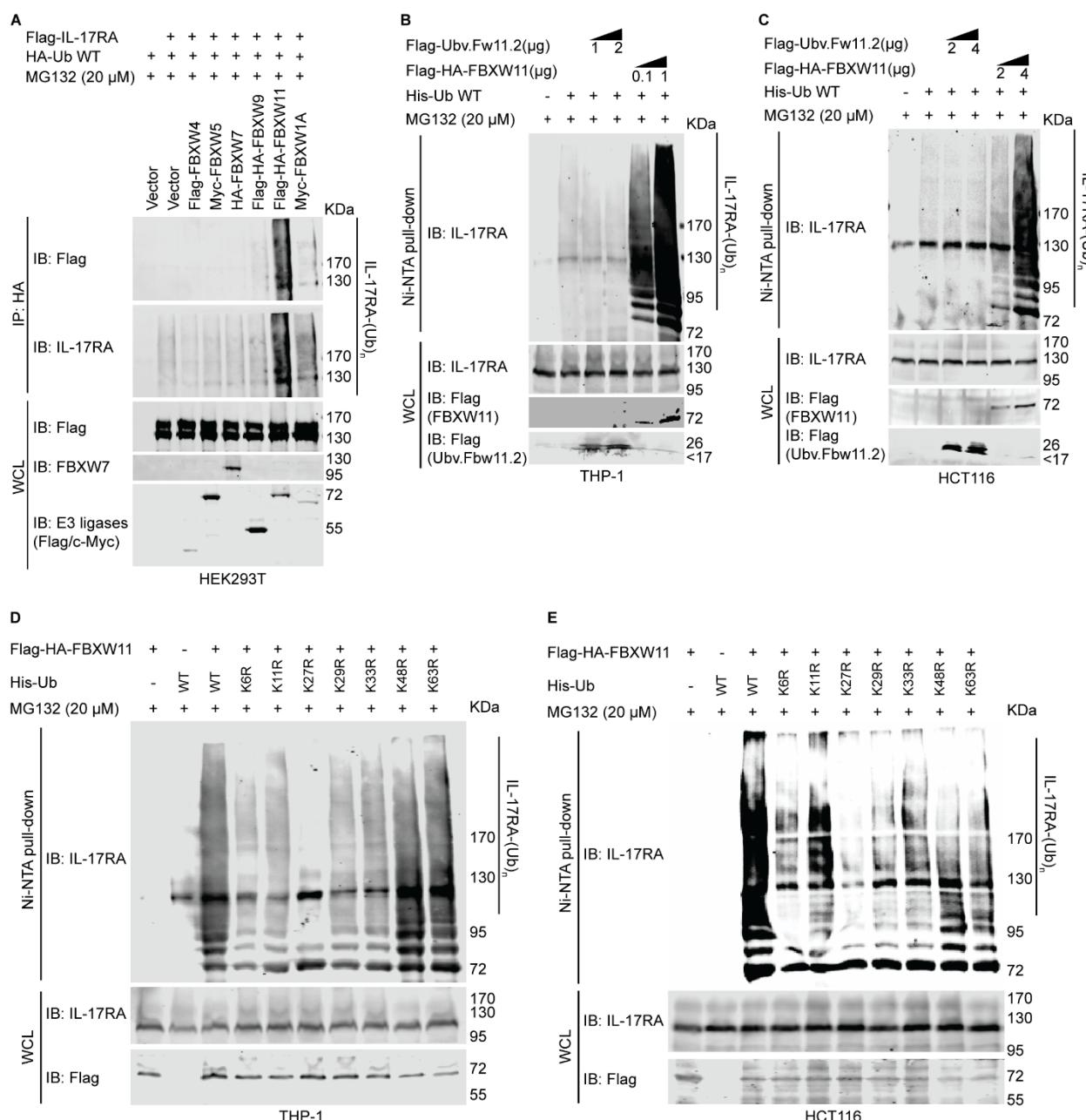
Figure 2.


1015

1016 **Figure 2. Several FBXW E3 ligases bind to IL-17RA.**

1017 **(A)** Binding of IL-17RA with E3 ligases. HEK293T cells were seeded at a density of 1×10^6 into 6-cm dishes. 20 h post-seeding, 1.5 μ g full-length Flag-IL-17RA, 1.5 μ g Myc-FBXW7 Δ F, 1.5 μ g Myc-FBXW5, 1.5 μ g Myc-FBXW1A and 1.5 μ g Myc-Skp2 plasmids were transiently transfected using jetPRIME transfection reagent as indicated. An empty vector was used to compensate for the total amount of plasmids. 48 h post transfection, 1021 proteins were extracted using IP lysis buffer. The reciprocal co-IP assays were carried out 1022 using 1 μ g anti-Flag M2 or 1 μ g anti-c-Myc antibodies. Experiments were repeated 4 times 1023 independently. **(B)** Binding of IL-17RA with E3 ligases. HEK293T cells were seeded at a 1024 density of 1×10^6 into 6-cm dishes. 2 μ g full-length Myc-His-IL-17RA, 2 μ g Flag-FBXW2, 1025 2 μ g Flag-FBXW4, 1.5 μ g Flag-HA-FBXW8, 1 μ g Flag-HA-FBXW9, 2 μ g Flag-HA-FBXW11, 1026 and 2 μ g Flag-FBXW12 plasmids were transiently transfected using jetPRIME 1027 transfection reagent as indicated. An empty vector was used to compensate for the total 1028 amount of plasmids. 48 h post transfection, proteins were extracted using IP lysis buffer. 1029 The reciprocal co-IP assays were carried out using 1 μ g anti-Flag M2 or 1 μ g anti-c-Myc 1030 antibodies. Experiments were repeated 3 times independently. Asterisks indicate IgG 1031 heavy chain of antibodies used in co-IP. Experiments were repeated 4 times 1032 independently.

1034


Figure 2-figure supplement 1.

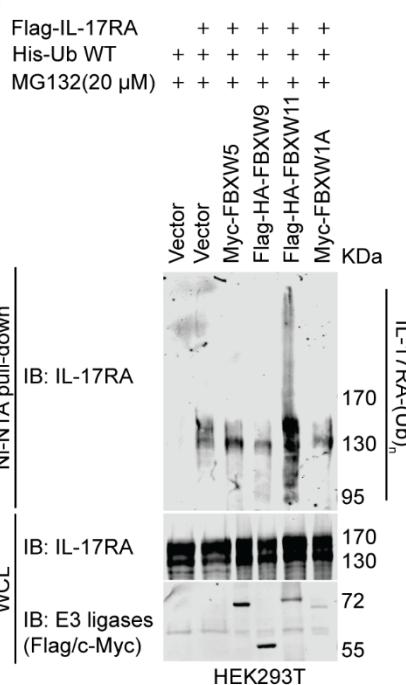
1035 **Figure 2-figure supplement 1. F-box and WD repeat domain containing 7 (FBXW7) and FBXW1A/11 are E3 ligase candidates recognizing IL-17RA phosphodegron.**

1036 **(A)** Phosphodegron TPxxE recognized by FBXW7 matches amino acid 780-785 of human
 1037 IL-17RA. Phosphodegron DSGxxST recognized by FBXW1A/11 matches amino acid
 1038 725-732 of human IL-17RA. The phosphodegrons are conserved across different species.
 1039 **(B)** Diagram showing conserved domains, F-box domain and WD repeat domain, of
 1040 FBXW family members. FBXW5 has a special D-box domain. **(C)** Percent identity of
 1041 tryptophan-aspartic acid (WD) repeat domains of FBXW family members was computed
 1042 with Clustal Omega algorithm [75]. The plot was made using Prism GraphPad. **(D)** Binding
 1043 of IL-17RA with FBXW7. HEK293T cells were seeded into 6-cm dishes at the density of
 1044 1×10^6 . 1.5 μ g full-length Flag-IL-17RA and 1.5 μ g full-length HA-FBXW7 plasmids were
 1045 transiently transfected using jetPRIME transfection reagent. An empty vector was used
 1046 to compensate for the total amount of plasmids. 48 h post transfection, proteins were
 1047 extracted using IP lysis buffer. The co-IP assays were carried out using 2 μ g normal IgG
 1048 (Cell signaling technology, #2729), 2 μ g anti-Flag M2 or 12 μ g anti-FBXW7. Experiments
 1049 were repeated 4 times independently.

Figure 3.

1053 **Figure 3. FBXW11 ubiquitylates IL-17RA mainly via K27-linked polyubiquitin chain
1054 in a dose-dependent way.**

1055 (A) HEK293T cells were seeded into 10-cm dishes at a density of 4×10^6 . 3 μ g full-length Flag-IL-17RA, 2 μ g HA-ubiquitin WT, 3 μ g Flag-FBXW4, 3 μ g Myc-FBXW5, 4 μ g HA-FBXW7, 2 μ g Flag-HA-FBXW9, 3 μ g Flag-HA-FBXW11, and 3 μ g Myc-FBXW1A plasmids were transiently transfected using jetPRIME transfection reagent as indicated. An empty vector was used to compensate for the total amount of plasmids. 42 h post transfection, transfected cells were treated with 10 μ M MG132 for 6 h. Experiments were repeated 4 times independently. (B) THP-1 cells were seeded into 10-cm dishes at a density of 1.5×10^6 . 24 h post seeding, 1 or 2 μ g Flag-Ubv.Fw.11.2, 0.1 or 1 μ g Flag-

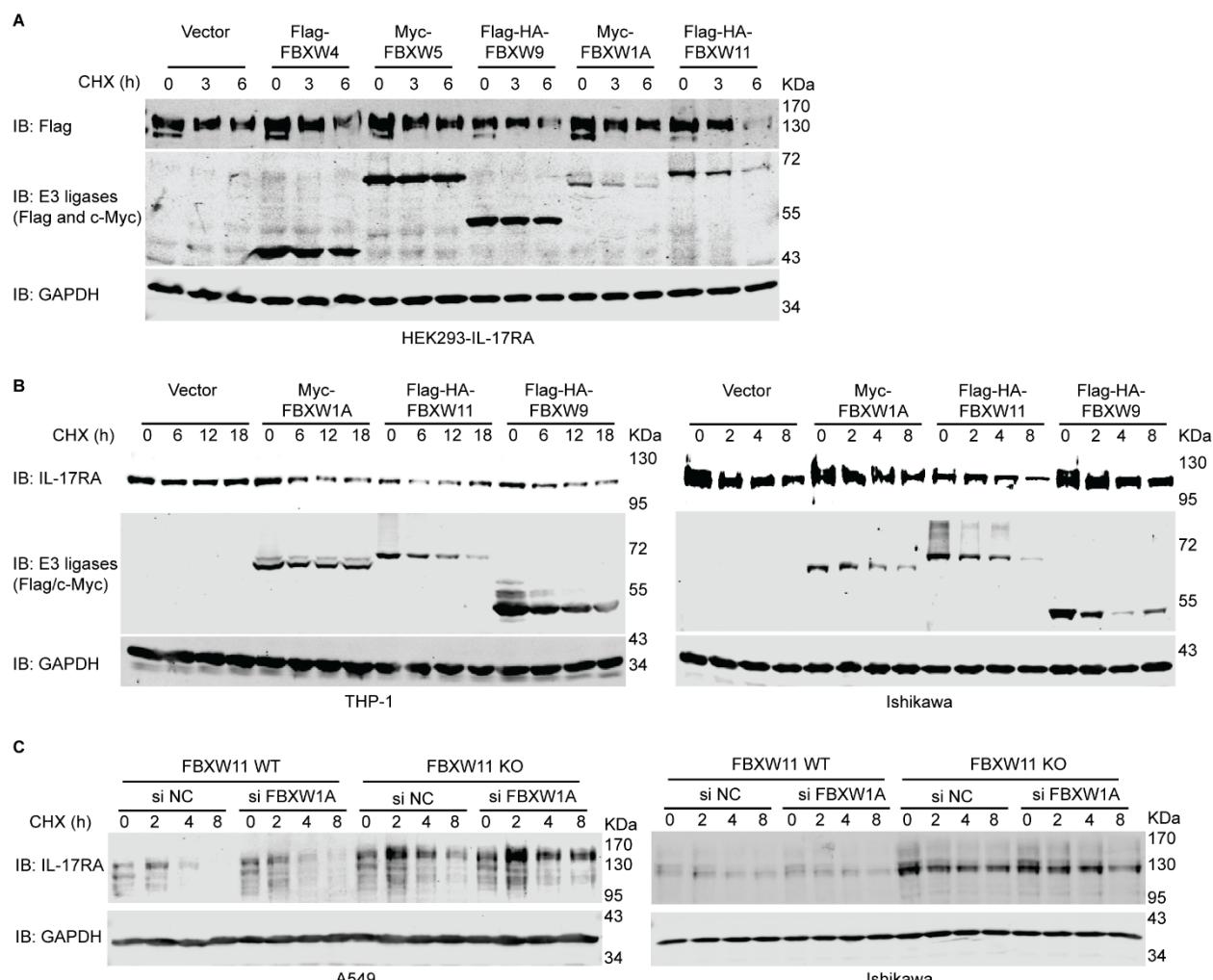

1063 HA-FBXW11, and 2.5 μ g His-ubiquitin WT plasmids were transfected using JetPrime
1064 transfection reagent. An empty vector was used to compensate for the total amount of
1065 plasmids. 42 h post transfection, 20 μ M MG132 was added to treat the cells for 6 h. **(C)**
1066 HCT116 cells were seeded into 10-cm dishes at the density of 2×10^6 . 24 h post seeding,
1067 2 or 4 μ g Flag-Ubv.Fw.11.2, 2 or 4 μ g Flag-HA-FBXW11, and 2.5 μ g His-ubiquitin WT
1068 plasmids were transfected using JetPrime transfection reagent. An empty vector was
1069 used to compensate for the total amount of plasmids. 42 h post transfection, 20 μ M
1070 MG132 was added to treat the cells for 6 h. Experiments were repeated 4 times
1071 independently. **(D)** THP-1 cells were seeded into 10-cm dishes at a density of 1.5×10^6 .
1072 24 h post-seeding, 1 μ g Flag-HA-FBXW11, and 2.5 μ g WT or single lysine mutated His-
1073 ubiquitin plasmids were transfected using JetPrime transfection reagent. Empty vector
1074 was used to compensate for the total amount of plasmids in transfection. 42 h post-
1075 transfection, 20 μ M MG132 was added to treat the cells for 6 h. Experiments were
1076 repeated 4 times independently. **(E)** HCT116 cells were seeded into 10-cm dishes at a
1077 density of 3×10^6 . 24 h post-seeding, 2 or 4 μ g Flag-HA-FBXW11, and 2.5 μ g WT or
1078 single lysine mutated His-ubiquitin plasmids were transfected using JetPrime transfection
1079 reagent. Empty vector was used to compensate for the total amount of plasmids in
1080 transfection. 42 h post-transfection, 20 μ M MG132 was added to treat the cells for 6 h.
1081 Experiments were repeated 3 times independently.

1082

1083

Figure 3-figure supplement 1.

A

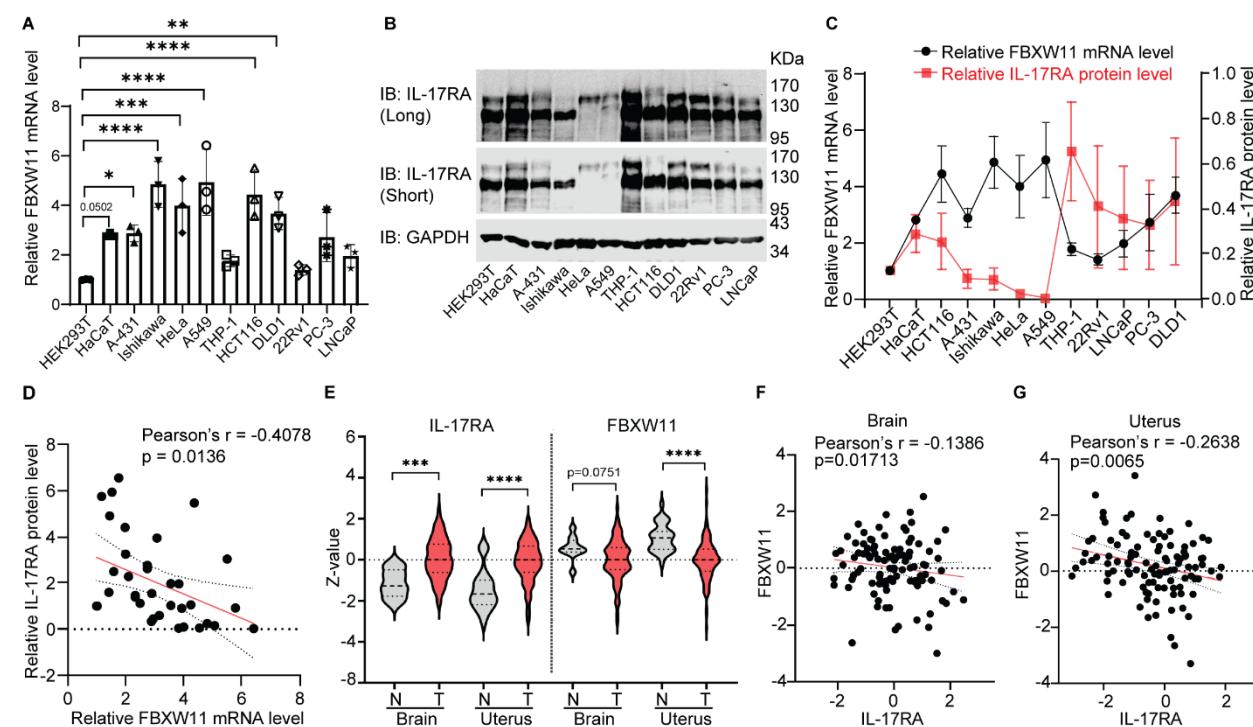


1084

1085 **Figure 3-figure supplement 1. FBXW11 has the highest ubiquitylation activity**
1086 **towards IL-17RA.**

1087 **(A)** 21 h before transfection, HEK293T cells were seeded into 10-cm dishes at a density
1088 of 4.5×10^6 . 1.5 μ g full-length Flag-IL17RA, 3 μ g His-ubiquitin WT, 2 μ g Myc-FBXW5,
1089 1.5 μ g Flag-HA-FBXW9, 3.5 μ g Flag-HA-FBXW11, 3.5 μ g Myc-FBXW1A, and various
1090 amounts of empty vector (to compensate for the total amount of plasmids) were
1091 transiently transfected using jetPRIME transfection reagent as indicated; 40 h post
1092 transfection, 20 μ M MG132 was added to treat cells for 8 h.

Figure 4.

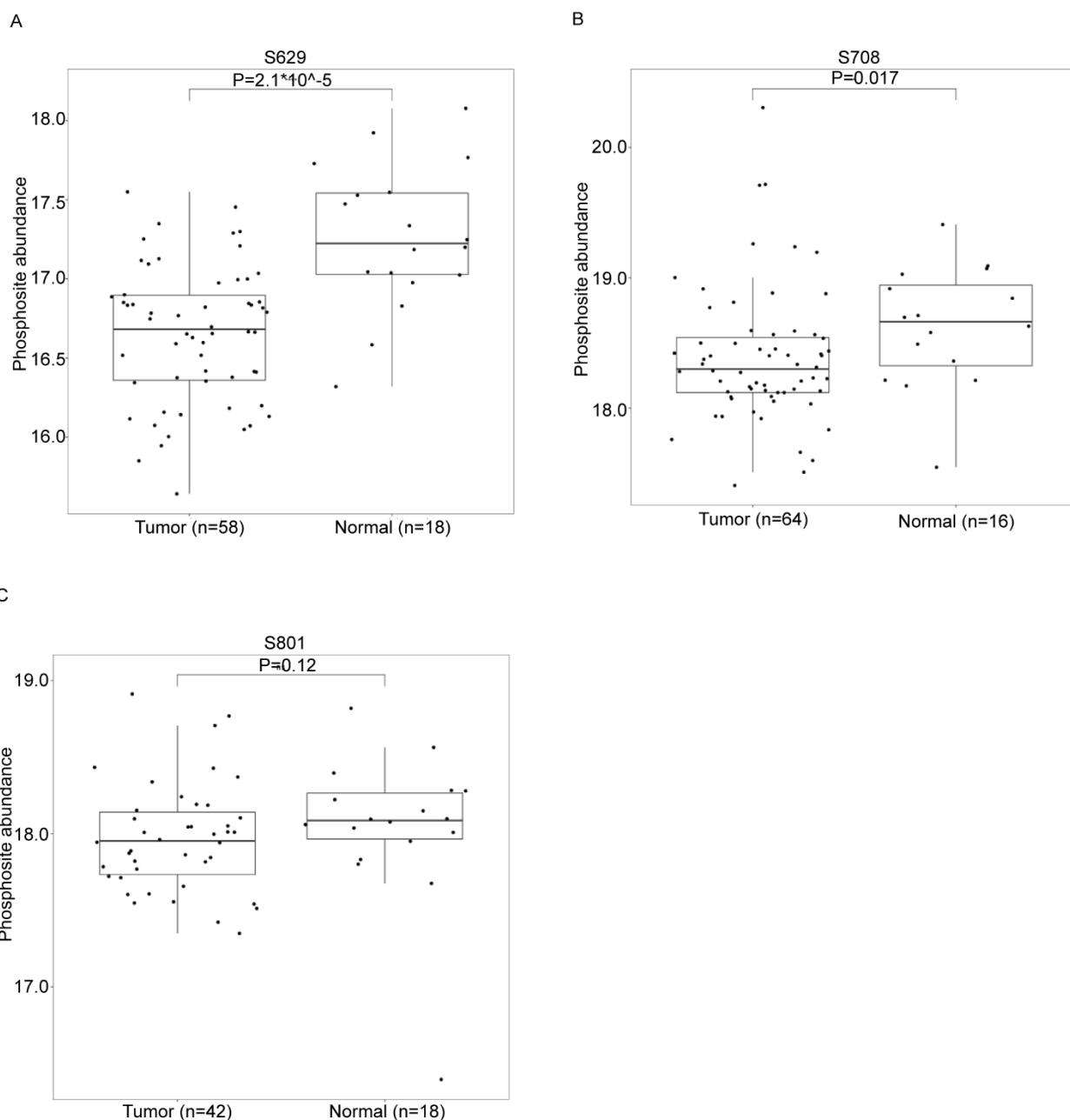


1093

1094 **Figure 4. FBXW11 down-regulates the protein level of IL-17RA.**
1095 **(A)** CHX assays were conducted to investigate the effects of FBXW1A, FBXW9, and
1096 FBXW11 overexpression on HEK293-IL-17RA stable cell line. 24 h before transfection,
1097 1.2 x 10⁶ HEK293-IL-17RA cells were seeded into 6-cm dishes. 2 µg Flag-FBXW4, 1.5
1098 µg Myc-FBXW5, 1.5 µg Flag-HA-FBXW9, 3 µg Myc-FBXW1A, or 3 µg Flag-HA-FBXW11
1099 plasmids were transiently transfected using jetPRIME transfection reagent. Empty vector
1100 was used as transfection control and to compensate for the total amount of plasmids for
1101 each transfection. 6 h post-transfection, the cells in each 6-cm dish were evenly split into
1102 3 wells of a 6-well plate. 24 h post-transfection, the cells were treated with 100 µg/ml CHX
1103 for 0, 3, and 6 h, respectively. DMSO was used as control treatment. **(B)** CHX assays
1104 were conducted to investigate the effects of FBXW1A, FBXW9, and FBXW11 on
1105 endogenous IL-17RA protein levels in THP-1 (left panel) and Ishikawa (right panel) cell
1106 lines. For THP-1 cells, 1.0 x 10⁶ cells were seeded into 6-cm dishes 24 h before
1107 transfection, and 4 µg Myc-FBXW1A, 1.5 µg Flag-HA-FBXW9, or 5 µg Flag-HA-FBXW11
1108 were transiently transfected using jetPRIME transfection reagent. Empty vector was used
1109 as a transfection control and to compensate for the total amount of plasmids in each

1110 transfection. 24 h post-transfection, the cells were treated with 100 μ g/ml CHX for 0, 6,
1111 12, and 18 h, respectively, with DMSO used as control treatment. For Ishikawa cells, 3.5
1112 $\times 10^6$ cells were seeded into 10-cm dishes 24 h before transfection, and 9 μ g Myc-
1113 FBXW1A, 3 μ g Flag-HA-FBXW9, or 10 μ g Flag-HA-FBXW11 plasmids were transiently
1114 transfected using jetPRIME transfection reagent. Empty vector was used as a transfection
1115 control and to compensate for the total amount of plasmids in each transfection. 12 h
1116 post-transfection, the cells in each 10-cm dish were evenly split into four 6-cm dishes. 36
1117 h post-transfection, the cells were treated with 100 μ g/ml CHX for 0, 2, 4, and 8 h,
1118 respectively, with DMSO used as control treatment. The experiments were independently
1119 repeated 3 times. **(C)** CHX assays were conducted to investigate the effects of FBXW11
1120 knock-out combined with/without FBXW1A knock-down on A549 (left panel) and Ishikawa
1121 (right panel) cell lines. For both cell lines, 2.0×10^6 FBXW11 WT or 2.5×10^6 FBXW11
1122 KO cells were seeded into 10-cm dishes 24 h before transfection, and 20 nM FBXW1A
1123 siRNAs were transiently transfected using jetPRIME transfection reagent. Negative
1124 control siRNAs were used as control. 24 h post-transfection, the cells in each 10-cm dish
1125 were split evenly into four 6-cm dishes. 48 h post-transfection, cells were treated with 50
1126 μ g/ml CHX for 0, 2, 4, and 8 h, respectively, with DMSO used as control treatment. The
1127 experiments were independently repeated 3 times.

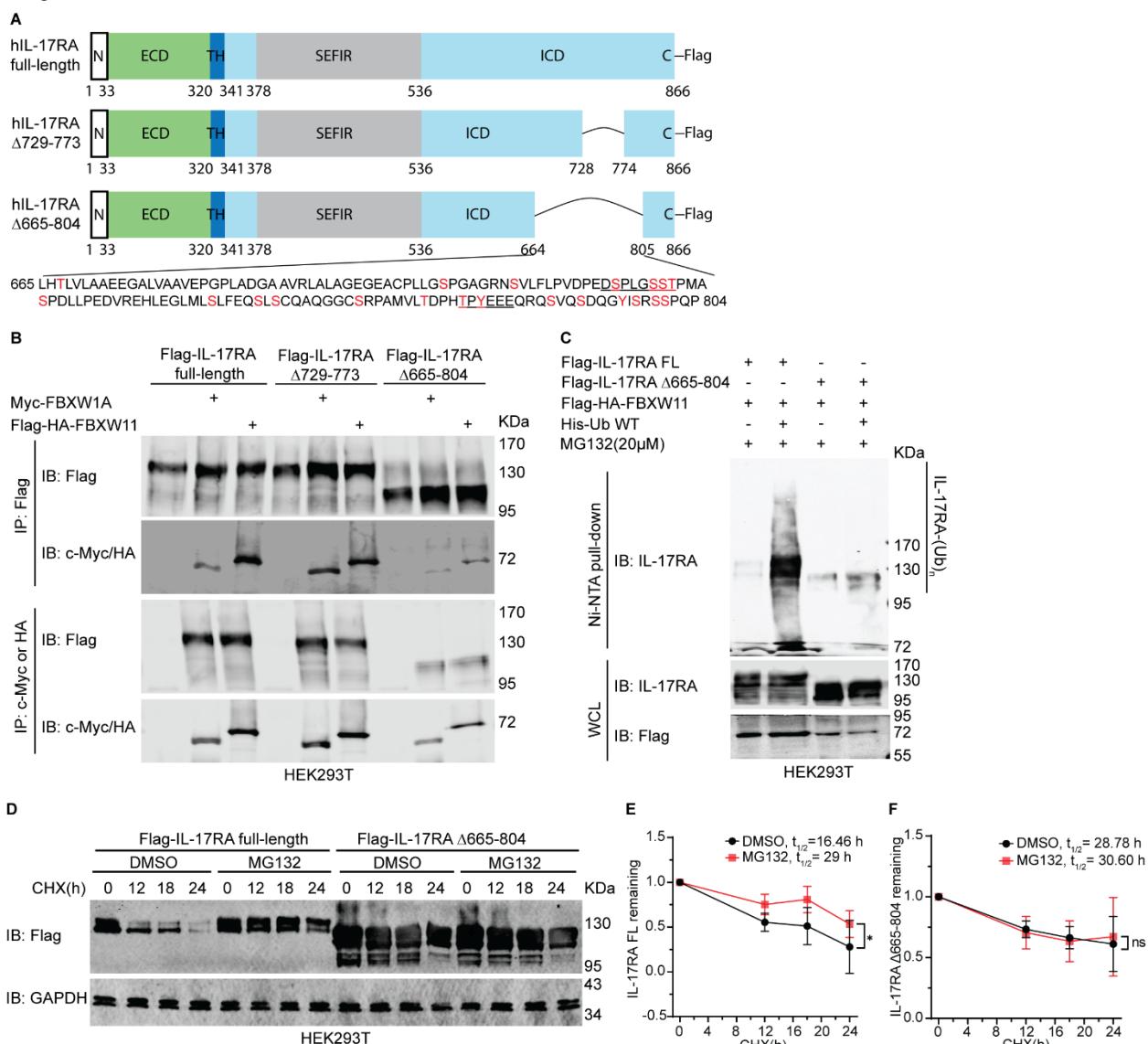
Figure 5.


1128

1129 **Figure 5. FBXW11 and IL-17RA are inversely correlated.**

1130 **(A)** Total RNA was isolated from 12 cell lines, including HEK293T, HaCaT, A-431, Ishikawa, HeLa, A549, THP-1, HCT116, DLD1, 22RV1, PC-3, and LNCaP. Real-time qPCR analysis was conducted to measure FBXW11 mRNA levels. HEK293T cell line was used as calibration control and Student's *t* test was used to determine statistical significance when compared to HEK293T. ** $P < 0.01$, *** $P < 0.001$, and **** $P < 0.0001$. Data were collected from 3 independent biological replicates. **(B)** Western blot analysis was used to determine IL-17RA protein levels across 12 cell lines, including HEK293T, HaCaT, A-431, Ishikawa, HeLa, A549, THP-1, HCT116, DLD1, 22RV1, PC-3, and LNCaP. "Long" indicates long exposure and "Short" indicates short exposure. Signal intensities of IL-17RA and Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) in each cell line were determined using Image Studio (Lite Ver 5.2, Li-Cor) software. The ratio of IL-17RA/GAPDH was then calculated to compare relative protein levels. HEK293T cell line was used as calibration control. Data were collected from 3 independent replicates. **(C)** The quantification results shown in **(A)** and **(B)** were plotted to illustrate the trajectory of relative FBXW11 mRNA levels and IL-17RA protein levels across the 12 human cell lines. Error bar represents mean \pm standard deviation (S.D.). **(D)** Pearson's correlation analysis was conducted using the data of relative FBXW11 mRNA levels and relative IL-17RA protein levels. **(E)** Proteomic data obtained from CPTAC database demonstrated IL-17RA and FBXW11 protein levels among glioblastoma multiform (brain tumors), uterus corpus endometrial cancer (UCEC, uterine tumors) and corresponding normal control tissues. Z-value indicates standard deviations from the median across samples for the given cancer type. The Student's *t* test was used to determine statistical significance between normal

1152 control tissues and tumors. *** $P < 0.001$ and **** $P < 0.0001$. **(F)** Pearson's correlation
1153 analysis was conducted using the proteomic data on FBXW11 and IL-17RA protein levels
1154 of glioblastoma multiform and normal control tissues. **(G)** Pearson's correlation analysis
1155 was conducted using the proteomic data on FBXW11 and IL-17RA protein levels of UCEC
1156 and normal control tissues. Control tissues of glioblastoma were from the frontal cortex.
1157 Control tissues of uterine tumors were from endometrium (with or without enrichment)
1158 and myometrium.

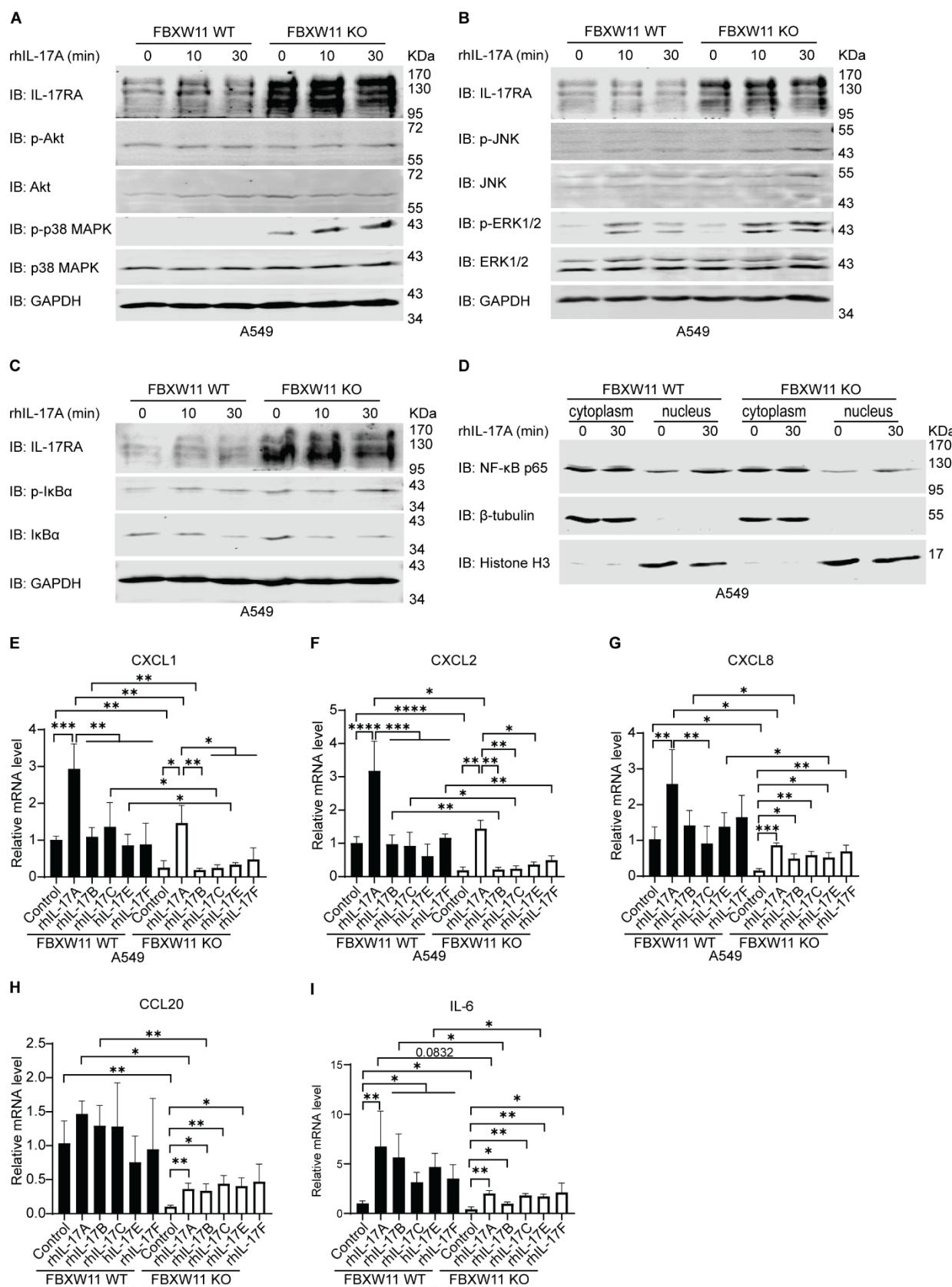

Figure 5-figure supplement 1.

1160 **Figure 5-figure supplement 1. Phosphosite abundance of IL-17RA in UCEC and**
1161 **Normal tissue.**

1162 (A) Phosphosite abundance data obtained from the LinkedOmicsKB platform showed that
1163 phosphorylation of S629 in UCEC was significantly lower than normal control. (B)
1164 Phosphosite abundance data obtained from the LinkedOmicsKB platform showed that
1165 phosphorylation of S708 in UCEC was significantly lower than normal control. (C)
1166 Phosphosite abundance data obtained from the LinkedOmicsKB platform showed that
1167 phosphorylation of S801 in UCEC was slightly lower than normal control without statistical
1168 significance.

Figure 6.

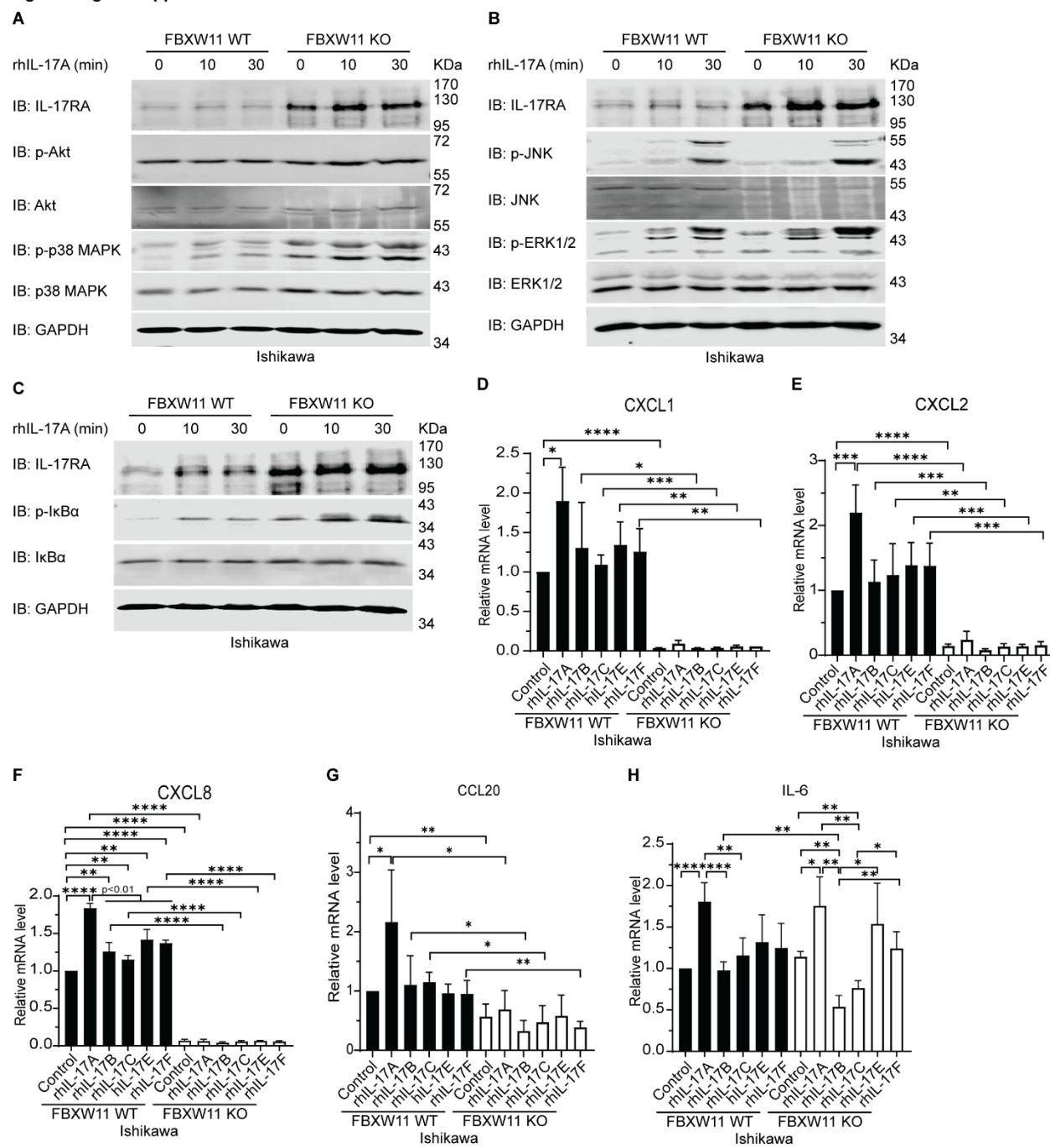
1169


1170 **Figure 6. 665-804 domain of IL-17RA is required for ubiquitylation and protein**
1171 **stability of IL-17RA.**

1172 **(A)** Schematic diagram of full-length IL-17RA (Flag-IL-17RA FL) and truncated mutants
1173 (Flag-IL-17RA Δ729-773 and Flag-IL-17RA Δ665-804) used in this study. **(B)** Binding of
1174 full-length IL-17RA and truncated mutants with FBXW1A and FBXW11. HEK293T cells
1175 were seeded into 10-cm dishes at a density of 2.0×10^6 . 20 h post-seeding, 1.5 μ g Flag-
1176 IL-17RA FL, 1.5 μ g Flag-IL-17RA Δ729-773, 1 μ g Flag-IL-17RA Δ665-804, 1.5 μ g Myc-
1177 FBXW1A, and 1.5 μ g Flag-HA-Fbxw11 were transiently transfected using jetPRIME
1178 transfection reagent as indicated. Empty vector was used to compensate for the total
1179 amount of plasmids in transfection. 48 h post transfection, the whole cell lysates were
1180 extracted for subsequent co-IP and Western blot analyses. **(C)** Ubiquitylation of Flag-IL-
1181 17RA Δ665-804 by FBXW11 was less than Flag-IL-17RA FL. HEK293T cells were seeded
1182 into 10-cm dishes at a density of 4.5×10^6 . 24 h post-seeding, 1 μ g Flag-IL-17RA full-

1183 length, 0.75 μ g Flag-IL-17RA Δ 665-804, 3.5 μ g Flag-HA-FBXW11, 2.5 μ g His-ubiquitin
1184 WT plasmids were transfected using jetPRIME transfection reagent as indicated. 40 h
1185 post-transfection, the cells were treated with 20 μ M MG132 for 8 h. Precipitates pulled-
1186 down by Ni-NTA resins and corresponding whole cell lysate (WCL) were subject to
1187 Western blot analysis. **(D)** Western Blot analysis of protein stability of Flag-IL-17RA FL
1188 and Flag-IL-17RA Δ 665-804. 1.5 μ g Flag-IL-17RA FL or 1.5 μ g Flag-IL-17RA Δ 665-804
1189 plasmids were transiently transfected into 1.5×10^6 HEK293T cells in a 6-cm dish. 24 h
1190 post-transfection, the cells were treated with 10 μ M MG132 for 24 h and 50 μ g/ml CHX
1191 for indicated time. DMSO was applied as control treatment. Experiments were repeated
1192 4 times independently. **(E)** Quantification of ratio of exogenous Flag-IL-17RA FL/GAPDH
1193 after treatment with MG132 and CHX. The $t_{1/2}$ means half-life of IL-17RA FL. Statistical
1194 significance was conducted using a two-way ANOVA with Šídák's multiple comparison
1195 test. Error bar represents mean \pm standard deviation (S.D.). * P < 0.05. **(F)** Quantification
1196 of ratio of exogenous Flag-IL-17RA Δ 665-804 to GAPDH after treatment with MG132 and
1197 CHX. The $t_{1/2}$ means half-life of IL-17RA Δ 665-804. Statistical significance was computed
1198 using a two-way ANOVA with Šídák's multiple comparison test. Error bar represents mean
1199 \pm standard deviation (S.D.). The "ns" means no statistical significance. Experiments were
1200 repeated 3 times independently.

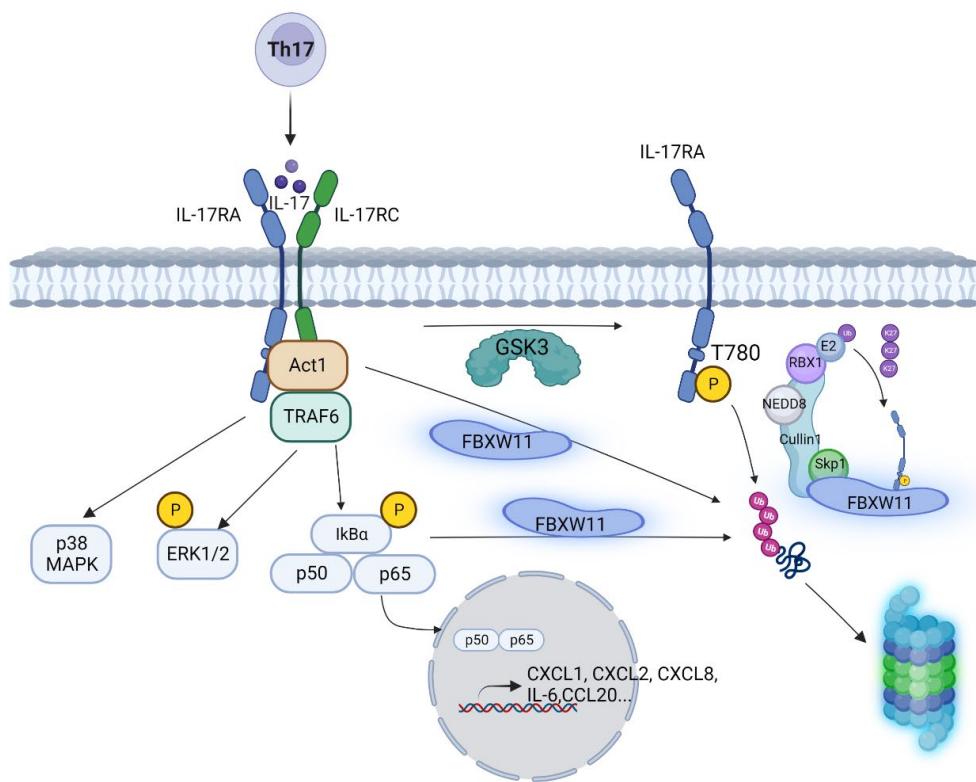
1201


Figure 7.

1203 **Figure 7. Knock-out of FBXW11 suppresses expression of IL-17-downstream genes**
1204 **through inhibiting nuclear entry of NF-κB p65.**

1205 (A-C) Western blot analysis of IL-17RA, phosphorylated AKT (p-AKT), AKT,
1206 phosphorylated p38 MAPK (p-p38 MAPK), p38 MAPK, phosphorylated JNK (p-JNK), JNK,
1207 phosphorylated ERK1/2 (p-ERK1/2), phosphorylated I κ B α (p-I κ B α) and I κ B α . 2 x 10⁶
1208 A549 FBXW11 WT cells and 2.5 x 10⁶ A549 FBXW11 KO cells were treated with 20
1209 ng/ml rhIL-17A for 10 min and 30 min, while the control cells were treated with 0.1% BSA.
1210 (D) Western blot analysis of NF-κB p65 in cytoplasmic and nuclear extracts. 2 x 10⁶
1211 A549 FBXW11 WT cells and 2.5 x 10⁶ A549 FBXW11 KO cells were treated with 20
1212 ng/ml rhIL-17A for 30 min, while the control cells were treated with 0.1% BSA.
1213 Experiments were repeated 6 times independently. (E-I) Induction of IL-17-downstream
1214 gene expression. A549 FBXW11 WT and FBXW11 KO cells were treated with 20 ng/ml
1215 recombinant human IL-17 (rhIL-17) cytokines, including rhIL-17A, rhIL-17B, rhIL-17C,
1216 rhIL-17E, and rhIL-17F, for 2 h. Expression of CXCL1 (E), CXCL2 (F), CXCL8 (G), CCL20
1217 (H), and IL-6 (I) was evaluated using real-time qPCR analysis, normalized to internal
1218 GAPDH control. The cells treated with 0.1% bovine serum albumin (BSA) were used as
1219 calibration control. Fold change of each target gene over control is shown. Error bar
1220 represents mean \pm standard deviation (S.D.). The student's *t* test was used to calculate
1221 statistical significance of fold change. * P < 0.05, ** P < 0.01, *** P < 0.001, and **** P <
1222 0.0001. Experiments were repeated 3 times independently.
1223

Figure 7-figure supplement 1.



1224

1225 **Figure 7-figure supplement 1. Knock-out of FBXW11 suppresses expression of IL-1226 17-downstream genes.**

1227 **(A-C)** Western blot analysis of IL-17RA, phosphorylated AKT (p-AKT), AKT, 1228 phosphorylated p38 MAPK (p-p38 MAPK), p38 MAPK, phosphorylated JNK (p-JNK), JNK, 1229 phosphorylated ERK1/2 (p-ERK1/2), phosphorylated IkBa (p-IkBa) and IkBa. 2×10^6 1230 Ishikawa FBXW11 WT cells and 2.5×10^6 Ishikawa FBXW11 KO cells were treated with 1231 20 ng/ml rhIL-17A for 10 min and 30 min, while the control cells were treated with 0.1% 1232 BSA. Experiments were repeated at least 5 times independently. **(D-H)** Induction of IL-

1233 17-downstream gene expression. Ishikawa FBXW11 WT and FBXW11 KO cells were
1234 treated with 20 ng/ml recombinant human IL-17 (rhIL-17) cytokines, including rhIL-17A,
1235 rhIL-17B, rhIL-17C, rhIL-17E, and rhIL-17F, for 2 h. Expression of CXCL1 (**D**), CXCL2 (**E**),
1236 CXCL8 (**F**), CCL20 (**G**), and IL-6 (**H**) was evaluated using real-time qPCR analysis,
1237 normalized to internal GAPDH control. The cells treated with 0.1% bovine serum albumin
1238 (BSA) were used as calibration control. Fold change of each target gene over control is
1239 shown. Error bar represents mean \pm standard deviation (S.D.). The student's *t* test was
1240 used to calculate statistical significance of fold change. * P < 0.05, ** P < 0.01, *** P <
1241 0.001, and **** P < 0.0001. Experiments were repeated 3 times independently.

1242

1243 **Figure 8. SCF^{FBXW11} complex regulates IL-17 signaling at multiple levels, including**
1244 **IL-17RA, Act1, and I κ B α .**

1245 IL-17A, interleukin-17A; IL-17RA, interleukin-17 receptor A; IL-17RC, interleukin-17
1246 receptor C; Act1, NF- κ B-activated protein 1; TRAF6, tumor-necrosis factor receptor-
1247 associated factor 6; Ub, ubiquitin; I κ B α , NF- κ B inhibitor α ; p50 and p65, NF- κ B subunits;
1248 p38 MAPK, p38 mitogen-activated protein kinase; ERK1/2, extracellular signal-regulated
1249 kinase 1/2; IL-6, interleukin-6; CXCL1, C-X-C motif ligand 1; CXCL2, C-X-C motif ligand
1250 2; CXCL8, C-X-C motif ligand 8; CCL20, C-C motif ligand 20; GSK3, Glycogen Synthase
1251 Kinase; E2, ubiquitin conjugation enzyme E2; RBX1, Ring-Box 1; NEDD8, Neural
1252 Precursor Cell Expressed, Developmentally Down-Regulated 8; Skp1, S-Phase Kinase
1253 Associated Protein 1; FBXW11, F-Box and WD Repeat Domain Containing 11. Illustration
1254 was made using BioRendor.

1255

1256 **Table**

1257 **Table 1: Primers used in Real-time qPCR.**

Gene name	Primers (synthesized by Eurofins Genomics)
hCXCL1	Forward: 5'-AACCGAAGTCATAGCCACAC-3' Reverse: 5'-GTTGGATTGTCACTGTTCAGC-3'
hCXCL2	Forward: 5'-CTGCGCTGCCAGTGCTT-3' Reverse: 5'-CCTTCACACTTGGATGTTCTTGA-3'
hCXCL8	Forward: 5'-GTGCAGTTGCCAAGGAGT-3' Reverse: 5'-CTCTGCACCCAGTTTCCTT-3'
hCCL20	Forward: 5'-TGCTGTACCAAGAGTTGCTC-3' Reverse: 5'-CGCACACAGACAACCTTTCTT-3'
hIL-6	Forward: 5'-GGTACATCCTCGACGGCATCT-3' Reverse: 5'-GTGCCTCTTGCTGCTTCAC-3'
hFBXW11	Forward: 5'-GTGGGATGTGAACACGGGTGA-3' Reverse: 5'-CGTAAAGTGATGTCGGTCGCAG-3'
hGAPDH	Forward: 5'-CCATGGGAAAGGTGAAGGTC-3' Reverse: 5'-AGTGTGGCATGGACTGTGG-3'

1258