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ABSTRACT

Due to their fundamental relevance, the number of anatomical macaque brain
templates is constantly growing. Novel templates aim to alleviate limitations of
previously published atlases and offer the foundation to integrate multiscale multimodal
data. Typical limitations of existing templates include their reliance on one subject, their
unimodality (usually only T1 or histological images), or lack of anatomical details. The
MEBRAINS template overcomes these limitations by using a combination of T1 and
T2 images, from the same 10 animals (Macaca mulatta), which are averaged by the
multi-brain toolbox for diffeomorphic registration and segmentation. The resulting
volumetric T1 and T2 templates are supplemented with high quality white and gray
matter surfaces built with FreeSurfer. Human-curated segmentations of pial surface,
white/gray matter interface and major subcortical nuclei were used to analyse the
relative quality of the MEBRAINS template. Recently published 3D maps of the
macaque inferior parietal lobe and (pre)motor cortex were warped to the MEBRAINS
surface template, thus populating it with a parcellation scheme based on cyto- and
receptor architectonic analyses. Finally, 9 CT scans of the same monkeys were
registered to the T1 modality and co-registered to the template. Through its main
features (multi-subject, multi-modal, volume-and-surface, traditional and deep
learning-based segmentations), MEBRAINS aims to improve integration of multi-modal
multi-scale macaque data and is quantitatively equal or better compared to currently
widely used macaque templates. The template is integrated in the EBRAINS and
Scalable Brain Atlas web-based infrastructures, each of which comes with its own suite

of spatial registration tools.

INTRODUCTION

The macaque monkey is an important model system for systems neuroscience.
Genetic, functional, and anatomical properties of the macaque brain resemble those
of the human more closely than other animal models which can be used in biomedical
research. As such the macaque has provided translational benefits and the ability to
test hypotheses using very precise invasive techniques (e.g., electrophysiology,
optogenetics, histology, lesions, etc.). Moreover, the application of non-invasive brain
imaging techniques in both humans and monkeys has helped to relate hemodynamic
findings from human research to neuronal properties and demonstrate the translational

relevance of the macaque as a model system (Seidlitz et al., 2018).

2


https://doi.org/10.1101/2023.06.21.545953
http://creativecommons.org/licenses/by-nc/4.0/

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.21.545953; this version posted June 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC 4.0 International license.

The existence of anatomical templates is an essential step, however, to anchor and
integrate a wealth of multi-level neuroscience data (from molecules to maps) in the
same ordered space and to enable objective cross-level or cross-species
comparisons, an approach which has recently been implemented for the human brain
(Amunts et al., 2014). Single subject-based neuroscience is by definition limited by the
idiosyncratic anatomy and physiology of an individual, hence does not allow us to make
general statements at population level. Multi-subject analyses, on the other hand,
bolster scientific validity by increasing statistical power and highlighting reliable
neurological phenomena across the population (Friston et al., 1999). To facilitate
comparisons across subjects, data from each subject should be registered to a
template. Moreover, templates based on multiple subjects are optimal for group-level
analyses because they possess features that are more representative of the
population's “average” brain anatomy which offers higher cross-subject validity (Dadar
et al., 2022; Evans et al., 2012; Fonov et al., 2011).

Because of their value, macaque neuroscience is populated with increasingly more
and better anatomical templates (Table 1), each with their own benefits and caveats.
Fortunately, mathematical transformations allow us to link representations between
different template spaces. In line with this, also the number of publications (Figure 1)
related to research using macaque brain templates is increasing.

However, existing templates have important limitations when they are based on a
single animal, unimodal images (e.g., T1-weighted images), or when they lack
sufficient anatomical details (i.e., when the resolution is too low). While single subject-
based templates are less representative of the population’s anatomy, multi-subject
templates suffer from blurred images because of non-perfect registration between
images of the individual subjects and inherent averaging-induced smoothing. Recently,
multi-subject templates have been improved relative to those which were based on
linear registration methods (Friston et al., 1999) by employing sophisticated nonlinear
transformation techniques (Brudfors et al., 2020; Friston et al., 1999). These novel
methods (Brudfors et al., 2020) yielded improved anatomical details and contrast.
However, nonlinear transformation algorithms on 3D volumes easily result in warping
artefacts due to their high degrees of freedom and flexibility. Consequently, there is a
strong interest to use surfaces for displaying data and registering brain images. Yet,
multi-subject templates providing surfaces in addition to volumetric representation are

still rare (see Table 1).
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96 To address this problem, we propose a first version of a template based on the brains
97  of 10 monkeys for which both high-resolution (isotropic 0.064 mm3) T1 and T2 images
98  were recorded within the same scan session. Additionally, CT scans are available for
99 9 of these monkeys. We are steadily increasing the number of subjects, which will be
100 implemented in later versions of the template. Second, we tested and compared
101  several non-linear registration algorithms to improve the quality of the average
102  template. The multi-brain (MB) toolbox (Brudfors et al., 2020) applied simultaneously
103 to T1 and T2 images resulted in the most faithful template and was selected as the
104  best solution. Additionally, it generates an underlying tissue classification as part of the
105  registration process. Third, our approach allows to integrate an unlimited number of
106  modalities (e.g., T1, T2, diffusion-weighted (DW), computed tomography (CT)) using
107 the same processing software. Fourth, we provide both volumetric and surface
108 representations of the template. Fifth, our template is integrated in the EBRAINS

109  environment (https://ebrains.eu/about) and thus enables to compare data from multiple

110  species using the same meta-platform. Sixth, we started to populate the template with
111 a human-curated segmentation of major subcortical nuclei and with recently published
112 maps of the macaque monkey motor, parietal and early visual cortex based on cyto-
113  and receptor architectonic analyses (Niu et al., 2020; Niu et al., 2021; Rapan et al.,
114  2021; Rapan et al., 2022). Seventh, we integrated new methods for data processing in
115 the macaque based on recent Al developments and applications in neuroscience,
116  (e.g., deep learning for skull stripping and segmentation). Last, but not least, several
117  of the animals with brain anatomies included in this template are still alive, so new data
118  can be acquired to populate and enrich the atlas.

119

120 MATERIALS AND METHODS

121 Subject information

122 10 rhesus monkeys (Macaca mulatta; 3 female) were used in this study. The monkeys
123 were young adults, with an average age of 5.30 year (6.33 for female, and 4.86 for
124  male) when the anatomical scans were collected. The monkeys weighted 6.33 kg on
125 average (5.50 kg for the females, and 8.00 kg for the males) at the time of scanning.
126  Animal care and experimental procedures were performed in accordance with the
127  National Institute of Health’s Guide for the Care and Use of Laboratory Animal, the
128  European legislation (Directive 2010/63/EU) and were approved by the Animal Ethics
129 Committee of the KU Leuven. Weatherall reports were used as reference for animal
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130  housing and handling. All animals were group-housed in cages sized 16-32 m?3, which
131  encourages social interactions and locomotor behavior. The environment was enriched
132 by foraging devices and toys. The animals were fed daily with standard primate chow
133  supplemented with fruits, vegetables, bread, peanuts, cashew nuts, raisins and dry
134  apricots. They had free water access during the period that the anatomical scans were
135 acquired. All animals participated in behavioral, fMRI, electrophysiology and/or
136  reversible perturbation experiments afterwards (Arsenault et al., 2014; Arsenault and
137  Vanduffel, 2019; Balan et al., 2018; Caspari et al., 2015; Herpers et al., 2021; Janssens
138 etal., 2014; Li et al., 2022; Murris et al., 2021; Yao and Vanduffel, 2022).

139

140  Acquisition of anatomical MR and CT images

141  High-resolution (400 um isotropic voxel size) T1- and T2-weighted images were
142 acquired on a 3T Siemens PrismaFit scanner while the animals were under
143  ketamine/xylazine anaesthesia. A custom-built single loop coil with a diameter of 12
144 cm was used as receiver, and the body coil from the scanner was used for
145  transmission. T1 images were acquired using a magnetization prepared rapid gradient
146  echo (MPRAGE) sequence (repetition time (TR) = 2700 ms, echo time (TE) = 3.5 ms,
147  flip angle (a) = 9°, inversion time (TI) = 882 ms, matrix size 320x260x208) and T2
148 images were acquired using a sampling perfection with application optimized contrasts
149  using different flip angle evolution (SPACE) sequence (TR = 3200 ms, TE = 456 ms,
150  variable a, matrix size 320 x 260 x 208, Turbo Factor = 131, echo spacing = 6 ms), as
151  in (Glasser and Essen, 2011; Van Essen et al., 2001). During a single scan session,
152  7-12 T1 images and 4-5 T2 images were acquired from each subject (Li et al., 2021).
153  Additionally, for 9 of the animals, high resolution CT (324x324x200 matrix size; 0.25
154 mm isotropic; on a Somatom Force Siemens CT scanner) scans were acquired in
155  different sessions while the animals were under ketamine/xylazine anaesthesia.

156  Pre-processing of these images for their compatibility with Freesurfer and MB
157  constituted the first step of the pipeline developed for the development of the template
158  (Figure 2).

159

160 Anatomical MR and CT pre-processing (Autio et al., 2021).

161  The pre-processing consisted of:

162 - DICOM to NIFTI conversion of both MR and CT datasets using FreeSurfer
163 (Fischl, 2012).
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164 - Per subject, registration of the CT to the corresponding anatomical MR using
165 FreeSurfer, ANTS (Avants et al., 2011), and ITK-SNAP (Yushkevich et al.,
166 2006).

167 - Conversion of all volumes to the FreeSurfer-conform standard (256x256x256,
168 orientation LIA (left-inferior-anterior)). The FreeSurfer-conform standard
169 requires 1 mm isotropic voxel size. To satisfy this condition without losing
170 resolution, we arbitrarily changed the voxel size in the image header from 0.4 to
171 1 mm.

172 - Rigid registration of all T1 volumes to a unique template (which was the average
173 of all individual T1 volumes which were registered using a pre-run of the multi-
174 brain (MB) toolbox for SPM12 on the original T1 volumes) using a combination
175 of FreeSurfer, ANTS and the MB toolbox. T1, T2 and CT volumes were
176 registered using unique transformation matrices (generated when the T1
177 volumes were registered) for each subject.

178 - Bias field correction of the MR anatomies following the Human Connectome
179 Protocol adapted to the macaque (Autio et al., 2021; Hayashi et al., 2021,
180 Marcus et al., 2013).

181 - To generate symmetrical templates, we added to the existing set of volumes
182 (separately for T1, T2 and CT) their left-right flipped version generated using
183 FreeSurfer.

184

185  Generation of the volumetric anatomical templates using T1 and T2 anatomies

186 MEBRAINS template construction with the multi-brain toolbox

187  The main processing tool for building the MEBRAINS template was the MB toolbox of
188 SPM12 (Brudfors et al., 2020) (https://github.com/WTCN-computational-anatomy-

189  group/mb), and as input we used information from both T1 and T2 images. We chose
190 MB because it generates a probabilistic tissue classification model while performing
191 the nonlinear registration, rather than just using voxel intensities directly. This
192  approach has been shown to be a more robust method of registering medical images
193  (Klein et al., 2009; Sotiras et al., 2013). Furthermore, the algorithm (Brudfors et al.,
194  2020) used by MB can integrate many imaging modalities (e.g., T1, T2, DW, CT), and
195 can be applied with or without prior pre-processing (e.g., skull stripping). Accordingly,
196  we took advantage of the high-resolution CT scans of the same subjects, applied the
197 same transformations as those used to register the corresponding T1 and T2 images
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to the reference template, and averaged the resulting CTs to build the CT template.
Thus, multi-brain allowed us to build the following three templates using T1, T2 and CT
brain images of 10 monkeys: MEBRAINS_T1, MEBRAINS_ T2 and MEBRAINS_CT,
respectively. We generated the volumetric templates as follows:

i) Learn the MB tissue probability model. We adapted Example 1 from the MB
repository (https://github.com/WTCN-computational-anatomy-group/mb). As input

we used the set of 10 pairs of T1 and T2 images and additionally the same set of
images mirrored across the midsagittal plane to create a symmetric template. This
group-wise image registration generated the following datasets: an optimal K class
tissue template; optimal intensity parameters; deformations that are used to warp
between different volumes; tissue segmentations; and bias-field corrected versions
of the input scans. In general, we kept the default settings to run the MB modelling
(as in Example 1 mentioned above). The following parameters were modified in our
script: regularization of the nonlinear registration (changed from 1 to 2), number of
tissue types K (set to 14), and voxel size (set to 1).

i) Register the T1 and T2 individual volumes to the MB tissue model using the MB
deformations generated during the learning step, as in example 2 of the MB

repository (https://github.com/WTCN-computational-anatomy-group/mb). We used

a 39 degree B-spline interpolation algorithm, and co-registered the CT volumes
with the T1 volumes.

iii) Create T1, T2 and CT templates by averaging the corresponding individual images
registered to the MB tissue model. Intermediate T1, T2 and CT templates are
created by gradually averaging more and more individual images that are registered
to the implicit MB template.

iv) Linear transformation of the templates to set each origin to the center of the anterior
commissure as identified in a sagittal section (voxel 108,128,70 in RAS-
coordinates, i.e., with voxel 0,0,0 at the left-posterior-inferior corner).

V) Rescale the volumes to the original resolution of 0.4 mm isotropic voxels.

vi) Check the stereotaxic orientation of the template. Since the original brains were
acquired using a stereotaxic frame, we verified that the resulting average has the
aural fixation points and the infraorbital ridge nearly in the same horizontal plane,
which is a requirement of being aligned to the Horsley-Clarke stereotaxic frame
(Seidlitz et al., 2018).
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231  Comparative template — ANTS10

232 The ANTS version of the template was built as a comparison with MB in terms of
233  warping artefacts. We followed the processing described in (Seidlitz et al., 2018) and
234  used whole-head images so that the template would accurately represent the brain-
235  skull boundary. The main processing steps were:

236 i) Align each of the 10 preprocessed subject images to an independent coordinate
237 space (EBRAINS_T1) using a 6-parameter rigid-body transformation.

238 i) Create the initial target image for the template by performing a voxel-wise average
239 of the 10 subject images.

240 iii) Normalization of the variations in image intensity across each volume by an N4 bias
241 field correction (Avants et al., 2011).

242 iv) Create the population-averaged template using symmetrical group-wise

243 normalization, which is an iterative nonlinear registration process (Seidlitz et al.,
244 2018). Each brain was aligned to the current target image via a 12-parameter affine
245 and a nonlinear (diffeomorphic) transformation. These aligned images were
246 averaged to generate an improved template image. The inverse of the affine and
247 diffeomorphic transformations was averaged across subjects, scaled, and applied
248 to this template image to align it closer to the original input anatomies. This process
249 was iterated, with the updated template image serving as the new target image for
250 registration with the original subject images, until convergence between successive
251 target images occurred.

252

253  Generation of a MEBRAINS surface template

254  Surface representations of the brain enable a more precise spatial localization and
255  reduce the occurrence of errors arising from the spatial proximity of brain structures
256 that are actually located at quite a distance from each other along the cortical ribbon
257  (Logothetis et al., 2001; Zhu and Vanduffel, 2019). Additionally, they are a prerequisite
258 for generating cortical flat maps, which are useful tools for the analysis and
259  visualization of functional and structural neuroimaging datasets (Sultan et al., 2010;
260 Van Essen et al., 1998; Vanduffel et al., 2001; Vanduffel et al., 2014), particularly for
261 topographic representations such as retinotopy (Arcaro and Livingstone, 2017,
262 Janssens et al., 2014), somatotopy (Arcaro et al., 2019) and tonotopy (Bodin et al.,
263 2021; Erb et al., 2019; Petkov et al., 2006). To achieve this, a human-curated white
264  and gray matter segmentation was performed with FreeSurfer (Fischl, 2012) and the
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265 non-human primate version of the Human Connectome Project pipeline (Autio et al.,
266  2020), using a combination of T1 and T2 images (Autio et al., 2021). The pial and
267  white/gray matter interface (white matter surface) was generated from the T1 images
268 to create the MEBRAINS surface template. T2 images were used to accurately model
269 the pial surface and remove the effect of cerebrospinal fluid and pial veins.

270

271 “Populating” the MEBRAINS template: human-curated segmentations of
272 subcortical nuclei and integration of cyto- and receptor architectonically
273 informed cortical maps

274  We started to populate the template by complementing MEBRAINS with human-
275  curated segmentations of several subcortical structures. We manually delineated the
276  amygdala, anterior commissure, nucleus accumbens, caudate, claustrum, putamen,
277 and pallidum on coronal sections of the left hemisphere of the MEBRAINS T1
278 template, whereby all three stereotactic planes were closely examined to reduce
279 inconsistencies across slices. This segmentation was performed using MRIcron
280 (Rorden and Brett, 2000) and ITKsnap (Yushkevich et al., 2006), and identification of
281  structures was based on local contrast differences in both the EBRAINS_T1 and the
282 EBRAINS_T2 templates, thereby relying on corresponding sections of the 2" edition
283  of the Atlas of the Rhesus Monkey Brain (Saleem and Nikos, 2012). The delineated
284  structures were mirrored (using MATLAB, FreeSurfer and human-curation) to segment
285  the right hemisphere of the template. These human-curated segmentations were also
286  essential for our quality assessment of MEBRAINS and to develop workflows for
287 integrating 3D volumes into MEBRAINS space. Specifically, these segmentations i)
288 served as a reference when evaluating the quality of (semi)-automated segmentation
289 approaches, and ii) generated target outputs (ground-truth) for training deep neural
290 networks to automatically segment brain structures (Henschel et al., 2020).

291  Additionally, we used the workflow to integrate other templates into MEBRAINS, for
292  example, to anchor the frequently used D99-atlas and our recently published 3D cyto-
293  and receptor architectonic maps of the macaque parietal (Impieri et al., 2019; Niu et
294 al., 2020; Niu et al., 2021), premotor and motor (Rapan et al., 2021) cortex, depicted
295 on the Yerkesl9 template (Donahue et al.,, 2018; Van Essen et al., 2012) into
296 MEBRAINS space. Since the MEBRAINS template is symmetrical, and these
297  parcellations were only available for the left hemisphere of the Yerkes template, the
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ensuing maps had to be human-curated using ITKsnap (Yushkevich et al., 2006), then
mirrored to the right hemisphere of MEBRAINS using MATLAB and FreeSurfer.

Registration of 3D datasets to MEBRAINS

Since it is essential to link MEBRAINS to commonly used template spaces, we

developed a multi-method workflow to register 3D data to MEBRAINS. Independent of

the method/algorithm used, registration of 3D volumes can be achieved as follows:

e Step 1. Preparatory pre-processing of the data to roughly adjust the image
geometry (i.e., resolution, dimensions, position) performed with FreeSurfer, FSL
(Woolrich et al., 2009) and MATLAB. This step does not necessarily require MB.

e Step 2. Register the brain anatomy (e.g., other template volume or individual
anatomy) to MEBRAINS. This process is achieved by calculating and applying the
transformation functions (matrices and deformation volumes). Noteworthy, the
transformations generated for a specific volume (e.g., a template) can be applied
to different entities (e.g., atlas, connectivity maps) represented in that space. The
specifics of the registration performed with MB are found under

“https://github.com/WTCN-computational-anatomy-group/mb - Example 3: Fitting a

learned MB model”, and were applied to individual brain anatomy/template
volumes.

e Step 3. Evaluate the quality of the registration and improve it by adjusting different
parameters of the registration algorithm. If the object to be registered is a template
brain or an individual anatomical dataset, the process is finished. We used

“https://github.com/WTCN-computational-anatomy-group/mb - 2. Warping with MB

deformations - image-to-template — pull” to apply the deformation generated in the
previous step to the brain anatomy/template.

e Step 4. If we register atlases, activation maps, retinotopic maps, or connectivity
maps to MEBRAINS, a supplementary step may be necessary because such data
require an underlying reference anatomy. This reference anatomy should follow
steps 1 to 3, to generate the corresponding transformations/deformations functions
to be applied. It is important to remember that resampling algorithms can be
nonlinear (e.g., cubic) when transforming anatomical volumes, and resampling
algorithms used to register atlases (representing discrete values) should be linear

or nearest-neighborhood. The specifics for registrations performed with MB are
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331 listed in “https://github.com/WTCN-computational-anatomy-group/mb; “4. Register

332 and warp atlas to MB space®.

333  Since no single tool functions seamlessly, the best strategy is to combine functions
334 from different software packages. This is illustrated by the existence of an open-source,
335 community-developed initiative like Nypype (Gorgolewski et al, 2011)
336  (https://nipype.readthedocs.io/en/latest/), facilitating interactions between different
337 software packages (e.g., ANTS, SPM, FSL, FreeSurfer, Camino, MRtrix, MNE, AFNI,
338  Slicer, DIPY).

339 Like all methods, MB also harbors some problems. For example, recall that the

340 MEBRAINS template is built using both T1 and T2 weighted images. If other volumes
341 have to be registered to MEBRAINS, these data contain optimally both T1 and T2
342  modalities. Furthermore, if we start from already skull-stripped anatomies instead of
343 the whole head, the registration may be sub-optimal.

344

345 Alibrary of reqgistration methods

346  Although we selected MB as our method of choice to generate the average template,
347  the resulting MEBRAINS template can be used with any registration method. The most
348 relevant software packages are summarized below:

349 a. Multi-brain (Brudfors et al., 2020) — using MATLAB and toolboxes.

350 b. ANTS (Avants et al., 2009) — using either the RheMAP (Sirmpilatze and Klink, 2020)

351 Jupiter notebook (https://github.com/PRIME-RE/RheMAP.qit), or
352 antsRegistrationSyNQuick to generate the registration and antsApplyTransforms to
353 apply it.

354 c. AFNI (Cox, 1996) — generate the registration with 3dQwarp and apply it with
355 3dNwarpApply.

356 d. MINC (Vincent et al., 2016) — generate the registration with minctracc and apply it
357 with mincresample.

358 e. ART (Ardekani et al., 2005) — generate the registration with 3dwarper and apply it
359 with applywarp3d.

360 f. ITKsnap (Yushkevich et al., 2006) — for illustrative affine registrations.

361 g. FSL (Woolrich et al., 2009) — generate registrations with flirt and fnirt, and apply it
362 with applywarp.

363 h. Jip (http://www.nitrc.org/projects/jip) — using jip_align in two stages: auto-align

364 affine followed by auto-align non-lin.
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i. DISCO (Ardekani et al., 2005) — using the Diffeomorphic Sulcal-based COrtical
(DISCO) registration.

j. FreeSurfer (Fischl et al., 1999) — perform either a surface based registration using
mris_register, or a combined surface and volume morph method (Postelnicu et al.,
2009; Zollei et al., 2010) using mri_cvs_register. The latter approach accurately
registers both cortical and subcortical regions, establishing a single coordinate
system suitable for the entire brain.

Many of these tools (a - f) can rapidly register source with target volumes. The others

(especially i - j) are computationally costly, and are mainly recommended when the

‘fast’ methods yield suboptimal results.

This library of methods raises a fundamental question: which strategy should one use?

We propose the following:

a. Use your own knowledge/preference, but consider the quality of the source
anatomy that has to be registered (e.g., template).

b. Try-N-select-winner. The strategy works with anatomies and involves the following
straightforward steps:

1. Select a registration method and optimize the results by adjusting the
parameters of the algorithm.

2. If the result is not satisfactory, add a new method and repeat 1.

3. Compare the existing results and select a winner.

4. If the winner is not satisfactory, repeat 2. If the winner meets your needs stop
the process. We list a few recommendations regarding the “try-N-select-winner”
strategy:

O1. N should be as small as possible.

O2. Try to optimize a method before adding another one.

03. The quality of the registration can be evaluated: i) By human-curation
(although laborious, this is the most reliable method). ii) Automatic quantification
of the quality of the registration relative to MEBRAINS. After masking the
volumes with the MEBRAINS-mask, the following parameters can be evaluated:
Pearson correlation; Normalized mutual information; SNR and peak-SNR; Mean
Squared Error; Structural Similarity Index; Jaccard index; Dice Score; Hausdorff
distance; Focal parameters for 3d images from the Image Quality Index toolbox
(bias, correlation, divergency, entropy difference, root of mean squared error);

Universal Image Quality Index (Vaiopoulos, 2011). All parameters should be
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399 normalized and scaled (0 — completely dissimilar; 1 - identical images), and can
400 be calculated using MATLAB. The winner registration is established as the
401 maximum value of the evaluated parameters, or of a metric defined on the space
402 of all parameters (e.g., Euclidean distance).

403 c. Run-N-select-high-probability-values. The strategy works with volumes with

404 discrete values such as atlases and involves the following steps:

405 1. Select N registration methods and run the registration of the same atlas (N ~ 5).
406 2. Evaluate the quality of the registration and select M (M < N) of the best
407 registrations.

408 3. Build the probability distribution of values in corresponding voxels of the M
409 selected volumes.

410 4. Build the resulting volume by giving to each voxel the value that has the
411 occurrence probability greater than an optimal threshold. The optimal threshold
412 depends on the overall probability distributions.

413 Note that higher N values are optimal. For example, we increased the number
414 of registrations of the D99 atlas using both the registration of the D99-atlas to
415 MEBRAINS and of the D99 atlas in NMT v2.0 space to MEBRAINS.

416

417 Deep learning-based neuroimaging pipeline for automated processing of
418 monkey brain MRI scans

419 Deep learning is becoming popular in the analysis of brain MR images, and is more
420 widely used to MRI compared to other types of medical images (Zhao and Zhao, 2021).
421  Deep learning has been used for pre-processing and analysing MR images, including
422  brain segmentation, registration, noise reduction, resolution enhancement, restoration,
423  and reconstruction (Zhao and Zhao, 2021). It has also been instrumental for computer-
424  aided diagnosis, including lesion and tumor detection, and diagnostics of psychiatric
425 and neurodegenerative disorders (e.g., Schizophrenia, Alzheimer's disease,
426  Parkinson’s disease, brain age estimation).

427  Traditional neuroimaging pipelines involve computationally intensive, time-consuming
428  optimization steps, often requiring manual interventions (Henschel et al., 2020). To
429 avoid these issues, we prepared two deep neural networks-based tools to work with
430 the EBRAINS template:

431  U-Net Brain extraction tool for nonhuman primates (Wang et al., 2021).
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432 This is a fast and stable U-Net based pipeline for brain extraction that exhibited
433  superior performance compared to traditional approaches using a heterogenous,
434  multisite non-human primate (NHP) dataset. The pipeline includes code for brain mask

435  prediction (https://qgithub.com/HumanBrainED/NHP-BrainExtraction.qgit), model-

436  building, and model-updating, as well as macaque brain masks of PRIME-DE data
437  (https://fcon_1000.projects.nitrc.org/indi/indiPRIME.html). A major advantage of the

438  pipeline is that it uses a transfer-learning framework leveraging a large human imaging
439  dataset to pre-train a convolutional neural network (U-Net Model), which is transferred
440 to NHP data using a much smaller NHP training sample. Furthermore, the
441  generalizability of the model can be improved by upgrading the transfer-learned model
442  using additional training datasets from multiple research sites in the Primate Data-
443  Exchange (PRIME-DE) consortium (136 macaque monkeys with skull-stripped masks
444  repository, publicly available) (Milham et al., 2018).

445  We applied the package by carrying out these steps:

446 a. Minimal pre-processing of the T1 images of the 10 monkeys included in the

447 MEBRAINS template:

448 - Conformed all images (FreeSurfer’s standard).

449 - Spatial adaptive non-local means filtering (using ANTS’s Denoiselmage).
450 - Bias field correction (using ANTS’s N4BiasFieldCorrection)

451 b. Mask prediction - use existing trained models to predict the mask for our data.

452 The package provides 15 pre-trained models using different sets of data for transfer
453 of learning and upgrading results. Each of the 15 models predicted a mask for each
454 macaque anatomy including:

455 - 10 monkeys used to build MEBRAINS template, and 3 supplementary monkeys
456 from our lab that will be included in later versions of the template.

457 - 21 monkeys from PRIME-DE (19 UC Davis and 2 U Minnesota).

458 The goal of this process was to select the best performing models on our data.

459 c. Supplementary model updating - use the existing trained models and additional

460 training datasets to improve the generalizability of the model:

461 - Select 7 models showing high performance in (b).

462 - Update each of these 7 models by supplementary training (40 epochs) using:
463 + Training data — 34 T1 images (10 used for MEBRAINS + 3 new from our lab;
464 21 from PRIME-DE (19 UC Davis and 2 U Minnesota)).

465 » Testing data: 66 T1 images (34 training data; 32 new data from KU Leuven).
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For all T1 images, ground-truth was derived from human-curated masks either
created by us or taken form the repository from the U-net brain extraction package
(https://fcon_1000.projects.nitrc.org/indi/indiPRIME.html,
https://qgithub.com/HumanBrainED/NHP-BrainExtraction.qit).

d. Applications of the results:

- Use N-models to predict N versions of the mask for the same whole brain
anatomy. N includes the 7 selected U-net models with their original parameters,
and the 7 upgraded models (step c).

- Select the best result(s).

- If there was a clear winner, we used it. If there were more than one good
approximations of the mask, we built a probability distribution for values (0 or 1)
in each voxel. The final mask can be built by optimal thresholding of the
probability distribution (“Run-N-select-high-probability-values” strategy).

- If necessary, adjust the result using manual adjustments and mathematical
morphology applications in FSL, ANTS, AFNI and FreeSurfer

In all cases, the goodness of the predicted mask was evaluated by visual inspection

or calculation of the dice score.

Relative quality of the MEBRAINS template

To quantitatively evaluate the quality of our template relative to that of other templates,

we used a method inspired by (Seidlitz et al., 2018). We chose for comparisons the

following T1 templates: our MEBRAINS and ANTS10 templates, the NMT v2.0 (Seidlitz
et al., 2018) and Yerkes19 (Donahue et al., 2018; Van Essen et al., 2012) templates,
and the combination of the T1/T2 images of MEBRAINS and ANTS10. The two latter
datasets were introduced to emphasize the usefulness of our multimodal approach.

The processing of these 6 datasets included the following steps:

a. For each template, we segmented the amygdala (Am), caudate (Cd), claustrum
(CI), nucleus accumbens (NAc), putamen (Pu), white matter (WM), cortical gray
matter (GM) and lateral ventricle (LV).

b. Normalization of the variations in T1 image intensity across each volume by N4
bias field correction (Avants et al., 2011) (using ANTS’s N4BiasFieldCorrection).
T1/T2 images were generated from the original T1 and T2 images (without N4 bias

field correction).
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499 c. Using volume contraction (AFNI), we selected the kernel of each segment by
500 excluding the external 3 voxels thick shell of each sub-cortical region.

501 d. We calculated the average gray matter (meancm) of N randomly selected voxels (N

502 = 50) for each segmented region (Am, Cd, ClI, NAc, Pu, and GM). For the white
503 matter, we calculated the average white matter intensity (meanww) of all voxels from
504 the WM kernel. For LV, we calculated the standard deviation of the intensity of the
505 cerebral spinal fluid (stdcsF) of N randomly selected voxels. Both means and
506 standard deviation included equal numbers of randomly selected voxels from the
507 left and right hemisphere (N = 50). These values were used to calculate the
508 following parameters, that represent contrast-to-noise (C2N) (Jang et al., 2022) and
509 relative difference (KI):

510 C2N = (meanwm — meancwm)/stdcsrk

511 Kl = 2*(meanwm — meancm)/ (meanwwm + meancm)

512 e. To evaluate the mean distribution of C2N and KI we performed the following steps:

513 el. Compute the mean of C2N and KI by repeating their calculation 25 times,
514 each time using a new set of 50 randomly selected voxels.

515 e2. Repeat step el 2500 times to estimate the distribution of mean of the
516 parameters.

517 e3. Steps el-e2 were repeated for all 6 templates (the four T1 and the two T1/T2
518 datasets).

519 e4. Calculate the median values for each template and run a Kruskal-Wallis test
520 followed by multiple comparison corrections.

521

522 RESULTS

523 MEBRAINS volumetric and surface templates

524  Our central goal was to build a population-based macaque brain template using
525 multimodal imaging data to overcome limitations in the existing templates. Accordingly,
526 we used MB to build three volumetric templates based on T1, T2 and CT brain images
527 of 10 monkeys: MEBRAINS T1 (Figure 3A), MEBRAINS_T2 (Figure 3B) and
528 MEBRAINS_CT (Figure 4), respectively.

529  Additionally, we created a second set of templates with the T1 and T2 brain images
530 from the same 10 monkeys, but using ANTS, one of the few alternative tools besides
531  MB that can rely both on T1 and T2 images for building templates (ANTS10_T1, Figure
532  5A and ANTS10_T2, Figure 5B). We found ANTS to result in a poorer tissue contrast
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533 compared to MB. Hence, we did not use it for our novel template, but to quantitatively
534 compare the quality of the MEBRAINS templates relative to others.

535 Finally, we also created a surface version of MEBRAINS, which will allow users to
536 select between a folded or a flattened representation of the template’s cortex. We
537 decided to use FreeSurfer to segment the white and grey matter of MEMBRAINS
538  (Figure 6A), because it provided a better result than the grey and white matter masks
539 generated by MB - as illustrated in Figure 6B, C. Note that, during the group-wise
540 image registration process, MB generates tissue segmentations. Although the resulting
541  probabilistic tissues do not necessarily correspond to anatomical parts of the brain,
542  some of them provided a good approximation of the white and gray matter (Figure 6B,
543  C). A supplementary merging and processing of the original MB-generated tissues may
544  further improve the segmentation process. Yet given the satisfactory FreeSurfer
545  results, we did not attempt this.

546

547 “Populating” the MEBRAINS template

548 Itis essential for a template to be populated with neuroscience data. Indeed, a template
549 becomes gradually more valuable by anchoring research results such as cyto-and
550 myeloarchitectonic information, receptor distributions, task related activations,
551  connectivity maps, electrophysiological data, and topographic maps such as
552  retinotopic, somatotopic and tonotopic maps. In addition, it is important to link different
553 template spaces. To start addressing these goals, we provided - in addition to white
554 and grey matter segmentations based on FreeSurfer (Figure 6A) or MB (Figure 6B, C)
555 - a human-curated segmentation of the anterior commissure and several major
556  subcortical structures including the amygdala, nucleus accumbens, caudate,
557  claustrum, putamen and pallidum (Figure 7A).

558  Furthermore, our recently published 3D cyto- and receptor architectonically-informed
559 maps of the macaque monkey motor, premotor and parietal cortex were warped from
560 YERKES19 space to the MEBRAINS surface template (Figure 7B), which were also
561 represented on a cortical flat map (Figure 7C), and transformed into volumetric
562 MEBRAINS space (Figure 7D). Since these areas were only available on the left
563 hemisphere of the Yerkes19 template, and the MEBRAINS template is symmetrical,
564 areas were mirrored to its right hemisphere.

565

566 Registration of 3D datasets to MEBRAINS
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567 The purpose of a template is to offer a standardized stereotaxic space for the analysis
568 and/or visualization of neuroscience data, often requiring the co-registration of different
569 volumes (e.g., individual brain anatomies, templates). Given the aforementioned
570 advantages and limitations of MB, we propose a multi-method workflow with 4 major
571  stepsto integrate data into MEBRAINS space: Steps 1-3 encompass standardized pre-
572  processing procedures, the actual computation of transformation functions (such as
573 matrices and deformation volumes) necessary to register an anatomical image to
574 MEBRAINS, as well as a quality assessments and improvements of the registration.
575  Step 4 is only required if a data set instead of a structural anatomical volume needs to
576  be registered, such as retinotopic maps, connectivity maps or parcellation schemes. In
577 this case, steps 1-3 are performed with the reference anatomy, and the
578 transformations/deformations functions are then applied to the associated datasets.
579  To demonstrate the validity and flexibility of our workflow, we first describe the result
580  of our registration procedures when applied to some frequently used macaque brain
581 templates, although they can be applied to any individual or averaged anatomical 3D
582  volume. In a second step, we provide an example of how Step 4 can be implemented
583  to transform a parcellation scheme of the macaque brain from the Yerkes19 surface to
584 the MEBRAINS surface and volumetric templates.

585

586  Reqistration of other macaque brain templates to MEBRAINS

587 We considered the following macaque brain templates (Table 1; Figure 8): NMT v2.0,
588  Yerkesl19, D99, MNI macaque, F99, INIA19, ONPRC18 and 112RM-SL. Most of these
589 templates are uni-modal (T1l-weighted images) and skull-stripped, whereas
590 MEBRAINS is a multi-modal (T1 and T2) template which includes the skull. Thus, these
591 comparisons enabled us to test the aforementioned limitations of MB, and to
592 demonstrate the usefulness of multi-method workflows for working with MEBRAINS.

593 We used several methods (“Try-N-select-winner” strategy, see methods) from the
594 library described in the methods (a — g; MB, ANTS, AFNI, MINC, ART, ITKsnap and
595 FSL) to register the selected templates to MEBRAINS. MB performed well for the T1

596 templates in which the skull was not stripped (e.g., NMT v2.0), yet produced distorted
597 registrations for many of the skull-stripped templates. The most optimal registration
598 method for all registered templates was ANTS. Figure 8 shows ANTS10_T1, the 8
599 selected templates, and a meta-template (the average of the ANTS10_T1, and all
600 template datasets, excluding 112RM-SL), all registered to MEBRAINS using ANTS.
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601  Furthermore, figure 8 also provides a unique opportunity to compare other templates
602 with MEBRAINS. At qualitative level, MEBRAINS reveals comparable anatomical
603 details as NMT V2.0, unlike the other templates.

604 Figure 9 shows a quantitative evaluation of the quality of the registrations of the
605 different templates with MEBRAINS (in Figure 8) using Pearson correlation and focal
606 entropy differences -which was scaled to improve comparisons with the correlation
607 method (0O — total dissimilarity; 1 — total similarity). Focal entropy was calculated for
608  each coronal section using a symmetrical window radius of 7 voxels centered on each
609  voxel and the results were averaged. Next, the differences between the average values
610 for the registered and the reference (MEBRAINS) anatomies were calculated for each
611  coronal section and averaged to obtain a value characterizing the entire volume. Both
612 parameters provide an evaluation of how similar the compared anatomies are.
613  Considering the range of values for both parameters (0.92-0.99), we conclude that all
614  registrations have a good and relatively similar quality. The small individual variations
615 also include differences between the intrinsic quality of the input image, which can be
616  noticed by visual inspection in Figure 8).

617

618  Reqistration of a volumetric atlas to MEBRAINS.

619  We here describe the result of the registration of the frequently used D99 atlas to
620 MEBRAINS. We first registered the D99 template to MEBRAINS as described above
621 using MB or ANTS and applied the “Try-N-select-winner” strategy (see methods). The
622  resulting transformation objects (volume/matrix) were then applied to the associated
623 D99 atlas using a nearest neighbourhood resampling algorithm (MB, Figure 10A;
624 ANTS Figure 10B). Both registrations represent a good starting point for human-
625  curated refinements.

626  We also performed the same registration (D99 atlas to MEBRAINS) using the “run-N-
627  select-high-probability-values” strategy (Figure 10C). Because this method yields more
628 information, given by the probability distribution of the voxel intensity values, than the
629  single registration methods (Figure 10A, B), the resulting registration is more reliable.
630

631 Reqistration of a surface-based atlas to MEBRAINS.

632  Since the 3D cyto- and receptor architectonically informed maps of the macaque motor,

633  premotor and parietal cortex are associated with the Yerkes19 surface template, it was
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634 necessary to warp them to the MEBRAINS surface template using FreeSurfer, thereby
635 establishing a link between both spaces. The ensuing labels can be visualized on the
636 folded (Figure 7B) or flattened (Figure 7C) versions of the MEBRAINS surface
637 template. Finally, they were transferred to the MEBRAINS volumetric template (Figure
638 7B).

639

640 Deep learning-based neuroimaging pipeline for automated processing of
641 monkey brain MRI scans

642  Automated brain extraction tool for nonhuman primates (U-NET) (Wanq et al., 2021)

643  We performed supplementary training and updated the 7 existing models in the U-Net
644  brain extraction package using 34 T1 images for training and 66 T1 images to test the
645 mask prediction performances (see methods). The model training reached a dice score
646 0f0.9882 + 0.0005 (mean + SEM) in epochs ranging between 35 to 39. The 7 upgraded
647  models correctly predicted the mask in 85.71 + 1.35 % (mean + SEM) of the test brains
648 and 94.96 + 0.84 % of the trained brains. Moreover, more than one of the used models
649  gave good predictions for the mask of the same brain. Accordingly, of 12 models used
650 to predict the mask for each brain, 8.65 + 0.27 (mean + SEM) made good predictions
651  for training and 7.97 + 0.44 for testing data. Therefore, there is a substantial pool of
652 good mask predictions for each brain allowing the use of either "try-N-select-winner”
653  or “run-N-select-high-probability-values” strategies for brain extraction.

654 Figure 11 provides two example results of the winner for an ‘easy”, good quality
655 anatomy, (Figure 11A) and for a more “difficult” lower quality anatomy (Figure 11C).
656 As can be seen in Figure 11B, the dataset with the “difficult” anatomy requires longer
657 training time than the “easy” anatomy before reaching the optimal solution. The
658 example also emphasizes the robustness of the model, which is largely independent
659  of the quality of the input data.

660

661 Relative quality of the MEBRAINS template

662  To quantitatively compare the quality of different templates, we segmented a number
663  of anatomical structures from four T1 templates (MEBRAINS T1, ANTS10 T1, NMT
664 v2.0, Yerkesl9) and two T1/T2 datasets (MEBRAINS T1/T2, ANTS10 T1/T2)
665 (Figures 12A). Depending on the quality of the template, the exact border of a structure
666 ~may be difficult to estimate. Therefore, to be conservative in our comparison, we
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667 excluded the 3 most external voxels at each boundary of each of these compartments:
668 for example, 3 voxels at the pial and 3 at the grey-white matter boundary for the cortical
669  ribbon. As an example, Figure 12B shows the result of this process for MEBRAINS T1.
670  We used two different indices, inspired by (Seidlitz et al., 2018), to compare the quality
671  of the templates (C2N and KI, see methods). The results presented in Figures 13 and
672 14 and Tables 2 and 3, support a few important conclusions regarding the possibility
673  to distinguish different anatomical substructures of the brain in the different templates.
674  First, the multi-modal templates MEBRAINS_T1/T2 and ANTS10_T1/T2 carry far more
675 information compared to the unimodal ones. Hence, templates based on a combination
676  of modalities allow improved segmentation of important brain structures. This is
677 reflected in the larger C2N and KI values for the T1/T2 images. Notice that
678 MEBRAINS_T1/T2 and ANTS10 _T1/T2 (colored red and greed in Tables 2 and 3,
679  respectively) outperform all other templates. Second, parameters for the T1-based
680 templates show two different trends: C2N yields the largest values for the
681 MEBRAINS_T1 template, while Kl is dominated by NMT v2.0 (colored blue in Tables
682 2 and 3, respectively). Third, although NMT v2.0 is on par with the unimodal (T1)
683 MEBRAINS, as shown by C2N and KI values, the multi-modal (T1/T2) approach in
684 MEBRAINS provides a substantial advantage to all templates. Finally, comparison
685 between MEBRAINS and ANTS10 demonstrates the superiority of MB compared to
686  the ANTS for template generation.

687

688 DISCUSSION

689  We built a macaque brain template, MEBRAINS, in an attempt to mitigate common
690 limitations of existing macaque templates. MEBRAINS is a multi-modal template that
691 integrated relatively high resolution T1, T2 and CT modalities by using the MB toolbox
692  (Brudfors et al., 2020). In addition, we developed both a volumetric and surface
693 template. This approach will facilitate the combination of volumetric and surface data
694 and enable the generation of flattened 2D maps of the cortex. As MEBRAINS is
695 embedded in the EBRAINS environment which also houses human and rodent
696 templates, and because other existing macaque templates have been registered to
697 MEBRAINS, this will also expedite comparative research between macaques, humans
698 and rodents.

699  To ensure the quality of both the data used to create MEBRAINS, and of the template
700 itself, we applied a large spectrum of methods including those described in Marcus et
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701 al., 2013 (Marcus et al., 2013), tools borrowed from the image processing field tuned
702  to evaluate image quality (e.g., see Figures 9, 11, 13, 14), and careful visual curation.
703  Simple visual inspection of all the templates included in the present analysis (Figure 8)
704  shows that the resolution and GM/WM contrast of MEBRAINS reveal a level of
705  anatomical granularity and sharpness comparable to that of the NMT V2.0 template
706  (Seidlitz et al., 2018), which is higher than that of most of the other templates, including
707 the ANTS version of our template (ANTS10). This subjective impression was
708  corroborated by the quantitative evaluation (Figures 13, 14), showing that the multi-
709 modal MEBRAINS template represents anatomical details better than the other
710 templates. The MEBRAINS T1/T2 template presented the highest C2N values,
711  indicating that the segmented structures have better signal to noise ratio compared to
712 the other templates. Moreover, the multimodal character of MEBRAINS increases the
713 discriminative power: MEBRAINS_T1/T2 yielded not only higher C2N (Jang et al.,
714 2022) but also Kl values compared to the remaining templates, including
715  ANTS10 _T1/T2. The latter finding is particularly interesting, because MEBRAINS and
716  ANTS10 were constructed from the same 10 subjects. Specifically, this difference
717  highlights the usefulness of multimodal approaches to construct brain templates.

718  Beyond the goal of creating a qualitative template, we adapted existing tools to register
719 data to MEBRAINS (Figure 7, 10), to segment major anatomical structures (Figure 6,
720 7, 11, 12) and to generate surfaces (Figure 7). This included the adaptation of deep
721 neural network approaches (U-NET), some of them also used in human research
722  (FastServer) for processing monkey data.

723 Finally, we started to populate the MEBRAINS with previously published architectonic
724  data (Donahue et al., 2016; Niu et al., 2020; Niu et al., 2021; Rapan et al., 2021). The
725  comparison of such data with other parcellation schemes and future data sets will
726  advance objective discussions about parcellations. In the future, we aim to refine the
727 template by increasing the number of T1 and T2 images and by adding very high-
728  resolution postmortem MRI anatomies. We also aim to register other functional data
729  (e.g., probabilistic retinotopy data, category selective fMRI data, etc.) and increase the
730 number of automatically segmented structures. Ultimately, we aim to obtain enough
731 datato have arobust training set for our deep-learning based automated segmentation
732  and registration of macaque data to MEBRAINS and any other template.

733 The MEBRAINS template represents the cornerstone of the “MEBRAINS Multilevel
734  Macaque Brain Atlas” (https://atlases.ebrains.eu/viewer/monkey) developed in the
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735  framework of the Human Brain Project, which is freely available to the neuroscientific
736 community via the interactive siibra-explorer on the EBRAINS platform (https://at-

737  lases.ebrains.eu/viewer/monkey). Thus, MEBRAINS constitutes a spatial reference

738  system to which a myriad of structural and functional in vivo and post mortem datasets
739  with different degrees of spatial and temporal resolution will be anchored. Examples of
740  in vivo datasets are electrophysiological, probabilistic retinotopy, category selective or
741  resting state fMRI data as well as DTI datasets. Post mortem datasets include 3D-
742  reconstructions of sections processed for visualization of cell bodies, myelinated fibres,
743 neurotransmitter receptors distribution patterns or that of their subunits and/or the cor-
744  responding encoding genes, tractography datasets, as well as architectonic parcella-
745  tion schemes of the macaque monkey brain. In this framework, the “Julich Brain Ma-
746  caque Maps” (Donahue et al., 2016; Niu et al., 2020; Niu et al., 2021; Rapan et al.,
747  2021), which are based on the quantitative analysis of differences in the distribution
748  patterns of cell bodies and of multiple types of classical neurotransmitters, and to date
749  had solely been available via the Yerkes19 surface template (Donahue et al., 2018;
750 Van Essen et al., 2012), have now been registered to the MEBRAINS template. The
751  maps and data associated with the MEBRAINS template can be used as entry point
752  for higher level meta-analyses, or for guiding functional and interventional studies in
753  MEBRAINS space. Furthermore, the richness of the EBRAINS meta-platform hosting
754  the “MEBRAINS Multilevel Macaque Brain Atlas” and also representing humans and
755  rodents in a unitary context enable efficient inter-species meta-analytical studies. Thus,
756  MEBRAINS not only constitutes a technical improvement compared to previously pub-
757  lished templates, but also facilitates cross-species comparisons.

758

759  In conclusion, via MEBRAINS we provide a novel population-based template of the
760 macaque brain which was created using a multimodal approach and T1 and T2-
761  weighted images. Quantitative evaluation of its quality demonstrated that it scores
762  better than other unimodal templates. MEBRAINS constitutes the cornerstone of the
763  “MEBRAINS Multilevel Macaque Brain Atlas” and has been populated with the cyto-
764 and receptor-architectonically informed “Julich Brain Macaque Maps”. Importantly,
765 MEBRAINS has been embedded in the framework of HBP’s EBRAINS platform, where
766 it will enable the integration and analysis of multiple datasets of different spatio-

767  temporal scales, and the comparison with other species.
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768 DATA AVAILABILITY

769  The volumetric and surface representation files of the MEBRAINS template are
770  provided as supplementary files accompanying the manuscript and are also made
771 freely available via the Human Brain Project platform EBRAINS
772 (https://doi.org/10.25493/5454-ZEA).

773
774

775  CODE AVAILABILITY

776  The following code is available on GitHub or software package webpages:

777 - Code used for creation of the templates is publicly available at
778 (https://github.com/WTCN-computational-anatomy-group/mb). It requires the
779 toolbox multi-brain for SPM12 and the commercial software MATLAB (Version R-
780 2018b). The repository includes example MATLAB scripts for template generation,
781 registration to the template, different images co-registration

782 - FreeSurfer (https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndinstall),
783 ANTS (http://stnava.qgithub.io/ANTS/),

784 FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation),

785 AFNI (https://afni.nimh.nih.gov/),

786 MINC (https://www.mcgill.ca/bic/software/minc),

787 ART (https://www.nitric.org/projects/art/),

788 Jip (http://www.nitrc.org/projects/jip),

789 MRIcron (https://www.nitrc.org/projects/mricron),

790 and ITK-SNAP (http://www.itksnap.org/pmwiki/pmwiki.php) are open source
791 publicly available.

792 - U-Net Brain extraction tool for nonhuman primates
793 (https://github.com/HumanBrainED/NHP-BrainExtraction) is publicly available and
794 requires a python environment. Authors will provide by request the supplementary
795 trained models.

796

797
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Tables

Table 1. Non-exhaustive list of some of the most frequently used macaque templates.
All templates were obtained from Macaca mulatta monkeys, except for the MNI
template, which was built from Macaca mulatta (Mm) and Macaca fascicularis (Mf)
brain scans. Abbreviations: N/A = not available; Res. = Resolution; Skull str. = the

template is available in the original format (OF) or only in a skull stripped (SSF) format.

Template Skull | Sequence Res. Number | Associated Volume Surface
str. (mm) | of brains atlas(es) format format
NMT (Jung et | OF T1 0.25 31 D99-SL NIFTI GIFTI
al., 2021, (Reveley et
Seidlitz et al., al., 2017)
2018) CHARM
v1.2/v1.3/v2.0 (Jung et al.,
2021)
SARM
(Hartig et al.,
2021)
D99 (Reveley | SSF | T1, T2, DTI, 0.25 1 D99-SL NIFTI GIFTI
etal., 2017, MAP-MRI,
Saleem et al., MTR
2021) viiv2
INIA19 OF T1 0.50 19 Neuromaps NIFTI N/A
(Rohlfing et
al., 2012)
MNI (Frey et OF T1 0.25 18 Mf Paxinos MINC, N/A
al., 2011) 7Mm NIFTI
Yerkes19 OF T1, T2 0.50 19 F99(Van NIFTI, GIFTI,
(Donahue et Essen, 2004) MGZ MGZ
al., 2018; Van
Essen et al.,
2012)
112RM-SL SSF T1, T2* 0.50 112 D99-SL NIFTI N/A
(McLaren et (McLaren | (Reveley et
al., 2009) etal, al., 2017)
2009)* F99 (Van
Essen, 2004)
UNC-Emory OF T1, T2, DTI 0.60 40 NRRD N/A
atlas (Shi et
al., 2016)
ONPRC18 SSF | T1, T2, DTI 0.50 18 ONPRC18 NIFTI N/A
(Weiss et al.,
2021)
F99 (Van SSF T1 0.50 1 NIFTI GIFTI
Essen, 2004)

* T2-weighted scans only available for 9 of the 112 animals
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1075 Table 2. C2N median values for MEBRAINS_T1, MEBRAINS_T1/T2, ANTS10_T1,
1076 ANTS10 T1/T2, NMT v2.0 and Yerkesl9. All pairs of medians are significantly
1077  different (p < 10°®) for each sub-structure. Fonts colored red, green (for T1/T2 images)
1078 and blue (for T1 images) outline the largest values of C2N. Abbreviations: Am =
1079  Amygdala; Cd = Caudate; Cl = Claustrum; NAc = Nucleus accumbens; Pu = Putamen;

1080 GM = cortical Gray-Matter.

C2N Cd Pu Am NAC Cl GM

MEBRAINS_T1 206 142 282 234 232 226

MEBRAINS_T1/T2 431 3.13 581 497 506 471

ANTS10_T1 120 089 127 119 120 1.02

NMT v2.0 177 104 205 173 167 1.74

Yerkes19 179 140 203 182 147 1.63
1081
1082

1083 Table 3. KI median values. for MEBRAINS T1, MEBRAINS T1/T2, ANTS10 T1,
1084 ANTS10 T1/T2, NMT v2.0 and Yerkesl9. All pairs of medians are significantly
1085 different (p < 10°®) for each sub-structure. Fonts colored red, green (for T1/T2 images)
1086 and blue (for T1 images) outline the largest values of KI. Abbreviations: Am =
1087 Amygdala; Cd = Caudate; Cl = Claustrum; NAc = Nucleus accumbens; Pu = Putamen,;

1088  GM = cortical Gray-Matter

Kl Cd Pu Am NAC Cl GM

MEBRAINS_T1 033 023 045 037 037 0.36

MEBRAINS_T1/T2 069 050 093 0.79 081 0.75

ANTS10_T1 028 021 030 028 0.28 0.24

NMT v2.0 051 030 059 050 048 0.50

Yerkes19 040 032 046 041 033 0.37
1089
1090
1091
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Figure 1. Number of publications per year related to brain templates in macaque

monkeys. A PubMed search query was performed June 2023 using the following

keyword combination: (“monkey” OR “macaque” OR “NHP” OR “non-human primate”)
AND (“template” OR “atlas”) AND (brain). Polynomial fit with R? = 0.7157.
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Figure 2. Overview of the pipeline used for the generation of a population-based

template that represents an average of high-resolution structural T1 and T2 MRI scans

as well as CT.

A. Preprocessing

1. Preprocess T1 and
T2 images for
compatibility with
Freesurfer and MB

B. Generation of
Volumetric Templates
Using MB

1. Calculate T1 and
T2 image transforms
to template

v

2. Transform
individual T1, T2, and
CT to template space

and concatenate

3. Postprocess
template volumes
{rescale, recenter,

orient)

C. Generation of
Surface Templates
using Freesurfer

1. Extract cortical
surfaces from T1
images

v

2. Refine pial surface
using T2 images

35

D. Alignment of
existing templates
and segmentations

to MEBRAINS

1. Preprocess source
template for
compatibility with
Freesurfer and MB

2. Align source
template to
MEBRAINS (using
MB for volumetric
and Freesurfer for
surface-based
datasets)

3. Quantitative and
visual validation of
alignment


https://doi.org/10.1101/2023.06.21.545953
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.21.545953; this version posted June 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

1104  Figure 3. Three orthogonal sections of the MEBRAINS_T1 (A) and MEBRAINS_T2
1105  (B) templates. The NIFTI-volumes used to create this figure can be found in supple-
1106  mentary material, and are also made publicly available via the EBRAINS platform from
1107  the Human Brain Project (https://doi.org/10.25493/5454-ZEA).

1108
1109
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1110  Figure 4. Three orthogonal sections (A-C) and 3D rendering (D) of the MEBRAINS_CT
1111  template. The corresponding NIFTI-volume can be found in the supplementary
1112  material, and is also made publicly available via the EBRAINS platform from the
1113  Human Brain Project (https://doi.org/10.25493/5454-ZEA).
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1116  Figure 5. Three orthogonal sections of the ANTS10 templates generated from T1 (A)
1117 and T2 (B) images. To facilitate comparison with the corresponding MEBRAINS

1118  templates, the sections shown are the same as those depicted in Figure 1.
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1122 Figure 6. Generation of pial and white matter surfaces using FreeSurfer (A) and MB
1123 (B, C). (A) Pial (magenta) and white matter (yellow) boundaries overlaid on the
1124 MEBRAINS_T1 template. (B) White matter mask overlaid on the MEBRAINS T1
1125 template. (C) Gray matter mask overlaid on the MEBRAINS_T1 template. The sagittal,
1126 coronal, and horizontal sections depicted correspond to coordinates x13, yO and z4,
1127  respectively.
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1131 Figure 7. (A) Human curated segmentation of the cortical ribbon, white matter and
1132  lateral ventricles, as well as of diverse subcortical nuclei, and the anterior commissure.
1133  (B,C,D) Areas of the macaque inferior parietal lobule (Niu et al., 2021) and of the motor
1134 and pre-motor cortex (Rapan et al., 2021) warped from the Yerkesl19 template to
1135 MEBRAINS. Areas are overlaid on the folded surface of MEBRAINS in (B), the flat
1136 maps in (C), and exemplary sections of MEBRAINS T1 are shown in (D).
1137  Abbreviations: AC = anterior commissure; Am = Amygdala; CC = cerebral cortex;
1138  Cd=Caudate nucleus; Cl = Claustrum; GP = globus pallidus; LV = lateral ventricle; NAc
1139 = Nucleus accumbens; Pu=Putamen. The sagittal, coronal, and horizontal sections

1140 depicted in A and D correspond to coordinates x13, yO and z4, respectively.

mAm mAC =] =Py | =GP mmld =m(Cx =LV =mWM ! !

D
mQOpt =4p =m43 =F2ly ==EF4s =F5s =mF5d

jE

cfSy =mPF Pfop =IF3 F2d =mF4d =F4y

1141
40


https://doi.org/10.1101/2023.06.21.545953
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.21.545953; this version posted June 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

1142  Figure 8. Eight of commonly used rhesus macaque brain templates (NMT v2.0
1143  (Seidlitz et al., 2018), Yerkes19 (Donahue et al., 2018; Van Essen et al., 2012), D99
1144  (Reveley et al., 2017), MNI (Frey et al., 2011), F99 (Van Essen, 2004), INIA19
1145  (Rohlfing et al., 2012), ONPRC18 (Weiss et al., 2021) and 112RM-SL (McLaren et al.,
1146 2009)), as well as our ANTS10_T1 volume (i.e., the template built with ANTS using the
1147  same 10 datasets as MEBRAINS_T1) were registered to MEBRAINS using ANTS. The
1148 meta-template represents the average of all these datasets with the exception of
1149  112RM-SL.
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1152  Figure 9. Pearson correlation and “1 — Focal Entropy Difference” (scaled to facilitate
1153  comparisons with the correlation method: 0 — total dissimilarity; 1 — total similarity)
1154  calculated for the reference anatomy MEBRAINS compared with the following
1155 templates: MEMRAINS, ANTS10_T1, NMT v2.0, Yerkes19, D99, MNI, F99, INIA19,
1156 ONPRC18 and 112RM-SL. Comparison of MEBRAINS with itself (value 1) provides

1157  the reference for the ideal registration.
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1161  Figure 10. D99 atlas registered to MEBRAINS using the MB (A), ANTS (B) and “run-
1162  N-select-high-probability-values” (C) approaches. The different registrations of the
1163  atlas are overlaid on the MEBRAINS template.
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1167  Figure 11. Masking performance of the U-net convolutional neural network using one
1168 example model. The predicted mask at the end of the training for an “easy” anatomy
1169  (A) and a “difficult” anatomy (C), and the dice score during the training (B). The
1170  performance for the “difficult” anatomy (red line in B) reached the optimal performance
1171  later than for the “easy” anatomy (green line in B). The maximum average dice score

1172  is 0.9887, and was reached in epoch 38.
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1176  Figure 12. (A) Anatomies of the six templates used to quantitatively compare the
1177 quality of the EBRAINS template. (B) Structures that were selected for the
1178 MEBRAINS T1 template: Am = Amygdala; Cd=Caudate; Cl = Claustrum; GM =
1179  cortical Gray Matter; Pu=Putamen; WM = White Matter.
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1183  Figure 13. C2N parameter distribution of means for the templates shown in Table 2
1184 and Figure 12A. Parameters were calculated for the 6 selected sub-structures

1185  separately, and numbers represent the median values.
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1189  Figure 14. Kl parameter distribution of means for the templates shown in Table 3 and
1190 Figure 12. Parameters were calculated for the 6 selected sub-structures separately,

1191  and numbers represent the median values.
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