

1 **MEBRAINS 1.0: a new population-based macaque atlas**

2 Puiu F Balan^{1,2}, Qi Zhu^{1,2,3}, Xiaolian Li¹, Meiqi Niu³, Lucija Rapan³, Thomas Funck³,
3 Rembrandt Bakker^{4,5}, Nicola Palomero-Gallagher^{*,3,6}, Wim Vanduffel^{*,1,7,8,9}

4

5 ¹ Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU
6 Leuven Medical School, 3000 Leuven, Belgium

7 ² Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin
8 Center, 91191 Gif/Yvette, France

9 ³ Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany

10 ⁴ Donders Institute, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ
11 Nijmegen, The Netherlands

12 ⁵ Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation
13 (IAS-6), Jülich Research Centre and JARA, 52425 Jülich, Germany

14 ⁶ C. and O. Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf,
15 Düsseldorf, Germany

16 ⁷ Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium

17 ⁸ Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General
18 Hospital, Charlestown, MA 02129, USA

19 ⁹ Department of Radiology, Harvard Medical School, Boston, MA 02144, USA

20

21 [#] Authors contributed equally

22 ^{*} Joint senior authorship

23

24 **corresponding authors:** Wim Vanduffel (wim.vanduffel@kuleuven.be); Nicola
25 Palomero-Gallagher (n.palomero-gallagher@fz-juelich.de)

26

27

28 **ABSTRACT**

29 Due to their fundamental relevance, the number of anatomical macaque brain
30 templates is constantly growing. Novel templates aim to alleviate limitations of
31 previously published atlases and offer the foundation to integrate multiscale multimodal
32 data. Typical limitations of existing templates include their reliance on one subject, their
33 unimodality (usually only T1 or histological images), or lack of anatomical details. The
34 MEBRAINS template overcomes these limitations by using a combination of T1 and
35 T2 images, from the same 10 animals (*Macaca mulatta*), which are averaged by the
36 multi-brain toolbox for diffeomorphic registration and segmentation. The resulting
37 volumetric T1 and T2 templates are supplemented with high quality white and gray
38 matter surfaces built with FreeSurfer. Human-curated segmentations of pial surface,
39 white/gray matter interface and major subcortical nuclei were used to analyse the
40 relative quality of the MEBRAINS template. Recently published 3D maps of the
41 macaque inferior parietal lobe and (pre)motor cortex were warped to the MEBRAINS
42 surface template, thus populating it with a parcellation scheme based on cyto- and
43 receptor architectonic analyses. Finally, 9 CT scans of the same monkeys were
44 registered to the T1 modality and co-registered to the template. Through its main
45 features (multi-subject, multi-modal, volume-and-surface, traditional and deep
46 learning-based segmentations), MEBRAINS aims to improve integration of multi-modal
47 multi-scale macaque data and is quantitatively equal or better compared to currently
48 widely used macaque templates. The template is integrated in the EBRAINS and
49 Scalable Brain Atlas web-based infrastructures, each of which comes with its own suite
50 of spatial registration tools.

51

52 **INTRODUCTION**

53 The macaque monkey is an important model system for systems neuroscience.
54 Genetic, functional, and anatomical properties of the macaque brain resemble those
55 of the human more closely than other animal models which can be used in biomedical
56 research. As such the macaque has provided translational benefits and the ability to
57 test hypotheses using very precise invasive techniques (e.g., electrophysiology,
58 optogenetics, histology, lesions, etc.). Moreover, the application of non-invasive brain
59 imaging techniques in both humans and monkeys has helped to relate hemodynamic
60 findings from human research to neuronal properties and demonstrate the translational
61 relevance of the macaque as a model system (Seidlitz et al., 2018).

62 The existence of anatomical templates is an essential step, however, to anchor and
63 integrate a wealth of multi-level neuroscience data (from molecules to maps) in the
64 same ordered space and to enable objective cross-level or cross-species
65 comparisons, an approach which has recently been implemented for the human brain
66 (Amunts et al., 2014). Single subject-based neuroscience is by definition limited by the
67 idiosyncratic anatomy and physiology of an individual, hence does not allow us to make
68 general statements at population level. Multi-subject analyses, on the other hand,
69 bolster scientific validity by increasing statistical power and highlighting reliable
70 neurological phenomena across the population (Friston et al., 1999). To facilitate
71 comparisons across subjects, data from each subject should be registered to a
72 template. Moreover, templates based on multiple subjects are optimal for group-level
73 analyses because they possess features that are more representative of the
74 population's "average" brain anatomy which offers higher cross-subject validity (Dadar
75 et al., 2022; Evans et al., 2012; Fonov et al., 2011).

76 Because of their value, macaque neuroscience is populated with increasingly more
77 and better anatomical templates ([Table 1](#)), each with their own benefits and caveats.
78 Fortunately, mathematical transformations allow us to link representations between
79 different template spaces. In line with this, also the number of publications ([Figure 1](#))
80 related to research using macaque brain templates is increasing.

81 However, existing templates have important limitations when they are based on a
82 single animal, unimodal images (e.g., T1-weighted images), or when they lack
83 sufficient anatomical details (i.e., when the resolution is too low). While single subject-
84 based templates are less representative of the population's anatomy, multi-subject
85 templates suffer from blurred images because of non-perfect registration between
86 images of the individual subjects and inherent averaging-induced smoothing. Recently,
87 multi-subject templates have been improved relative to those which were based on
88 linear registration methods (Friston et al., 1999) by employing sophisticated nonlinear
89 transformation techniques (Brudfors et al., 2020; Friston et al., 1999). These novel
90 methods (Brudfors et al., 2020) yielded improved anatomical details and contrast.
91 However, nonlinear transformation algorithms on 3D volumes easily result in warping
92 artefacts due to their high degrees of freedom and flexibility. Consequently, there is a
93 strong interest to use surfaces for displaying data and registering brain images. Yet,
94 multi-subject templates providing surfaces in addition to volumetric representation are
95 still rare (see [Table 1](#)).

96 To address this problem, we propose a first version of a template based on the brains
97 of 10 monkeys for which both high-resolution (isotropic 0.064 mm³) T1 and T2 images
98 were recorded within the same scan session. Additionally, CT scans are available for
99 9 of these monkeys. We are steadily increasing the number of subjects, which will be
100 implemented in later versions of the template. Second, we tested and compared
101 several non-linear registration algorithms to improve the quality of the average
102 template. The multi-brain (MB) toolbox (Brudfors et al., 2020) applied simultaneously
103 to T1 and T2 images resulted in the most faithful template and was selected as the
104 best solution. Additionally, it generates an underlying tissue classification as part of the
105 registration process. Third, our approach allows to integrate an unlimited number of
106 modalities (e.g., T1, T2, diffusion-weighted (DW), computed tomography (CT)) using
107 the same processing software. Fourth, we provide both volumetric and surface
108 representations of the template. Fifth, our template is integrated in the EBRAINS
109 environment (<https://ebrains.eu/about>) and thus enables to compare data from multiple
110 species using the same meta-platform. Sixth, we started to populate the template with
111 a human-curated segmentation of major subcortical nuclei and with recently published
112 maps of the macaque monkey motor, parietal and early visual cortex based on cyto-
113 and receptor architectonic analyses (Niu et al., 2020; Niu et al., 2021; Rapan et al.,
114 2021; Rapan et al., 2022). Seventh, we integrated new methods for data processing in
115 the macaque based on recent AI developments and applications in neuroscience,
116 (e.g., deep learning for skull stripping and segmentation). Last, but not least, several
117 of the animals with brain anatomies included in this template are still alive, so new data
118 can be acquired to populate and enrich the atlas.

119

120 MATERIALS AND METHODS

121 Subject information

122 10 rhesus monkeys (*Macaca mulatta*; 3 female) were used in this study. The monkeys
123 were young adults, with an average age of 5.30 year (6.33 for female, and 4.86 for
124 male) when the anatomical scans were collected. The monkeys weighted 6.33 kg on
125 average (5.50 kg for the females, and 8.00 kg for the males) at the time of scanning.
126 Animal care and experimental procedures were performed in accordance with the
127 National Institute of Health's Guide for the Care and Use of Laboratory Animal, the
128 European legislation (Directive 2010/63/EU) and were approved by the Animal Ethics
129 Committee of the KU Leuven. Weatherall reports were used as reference for animal

130 housing and handling. All animals were group-housed in cages sized 16-32 m³, which
131 encourages social interactions and locomotor behavior. The environment was enriched
132 by foraging devices and toys. The animals were fed daily with standard primate chow
133 supplemented with fruits, vegetables, bread, peanuts, cashew nuts, raisins and dry
134 apricots. They had free water access during the period that the anatomical scans were
135 acquired. All animals participated in behavioral, fMRI, electrophysiology and/or
136 reversible perturbation experiments afterwards (Arsenault et al., 2014; Arsenault and
137 Vanduffel, 2019; Balan et al., 2018; Caspari et al., 2015; Herpers et al., 2021; Janssens
138 et al., 2014; Li et al., 2022; Murris et al., 2021; Yao and Vanduffel, 2022).

139

140 **Acquisition of anatomical MR and CT images**

141 High-resolution (400 µm isotropic voxel size) T1- and T2-weighted images were
142 acquired on a 3T Siemens PrismaFit scanner while the animals were under
143 ketamine/xylazine anaesthesia. A custom-built single loop coil with a diameter of 12
144 cm was used as receiver, and the body coil from the scanner was used for
145 transmission. T1 images were acquired using a magnetization prepared rapid gradient
146 echo (MPRAGE) sequence (repetition time (TR) = 2700 ms, echo time (TE) = 3.5 ms,
147 flip angle (α) = 9°, inversion time (TI) = 882 ms, matrix size 320×260×208) and T2
148 images were acquired using a sampling perfection with application optimized contrasts
149 using different flip angle evolution (SPACE) sequence (TR = 3200 ms, TE = 456 ms,
150 variable α , matrix size 320 × 260 × 208, Turbo Factor = 131, echo spacing = 6 ms), as
151 in (Glasser and Essen, 2011; Van Essen et al., 2001). During a single scan session,
152 7–12 T1 images and 4–5 T2 images were acquired from each subject (Li et al., 2021).
153 Additionally, for 9 of the animals, high resolution CT (324x324x200 matrix size; 0.25
154 mm isotropic; on a Somatom Force Siemens CT scanner) scans were acquired in
155 different sessions while the animals were under ketamine/xylazine anaesthesia.
156 Pre-processing of these images for their compatibility with Freesurfer and MB
157 constituted the first step of the pipeline developed for the development of the template
158 ([Figure 2](#)).

159

160 **Anatomical MR and CT pre-processing (Autio et al., 2021).**

161 The pre-processing consisted of:

162 - DICOM to NIFTI conversion of both MR and CT datasets using FreeSurfer
163 (Fischl, 2012).

164 - Per subject, registration of the CT to the corresponding anatomical MR using
165 FreeSurfer, ANTS (Avants et al., 2011), and ITK-SNAP (Yushkevich et al.,
166 2006).

167 - Conversion of all volumes to the FreeSurfer-conform standard (256x256x256,
168 orientation LIA (left-inferior-anterior)). The FreeSurfer-conform standard
169 requires 1 mm isotropic voxel size. To satisfy this condition without losing
170 resolution, we arbitrarily changed the voxel size in the image header from 0.4 to
171 1 mm.

172 - Rigid registration of all T1 volumes to a unique template (which was the average
173 of all individual T1 volumes which were registered using a pre-run of the multi-
174 brain (MB) toolbox for SPM12 on the original T1 volumes) using a combination
175 of FreeSurfer, ANTS and the MB toolbox. T1, T2 and CT volumes were
176 registered using unique transformation matrices (generated when the T1
177 volumes were registered) for each subject.

178 - Bias field correction of the MR anatomies following the Human Connectome
179 Protocol adapted to the macaque (Autio et al., 2021; Hayashi et al., 2021;
180 Marcus et al., 2013).

181 - To generate symmetrical templates, we added to the existing set of volumes
182 (separately for T1, T2 and CT) their left-right flipped version generated using
183 FreeSurfer.

184

185 **Generation of the volumetric anatomical templates using T1 and T2 anatomies**

186 MEBRAINS template construction with the multi-brain toolbox

187 The main processing tool for building the MEBRAINS template was the MB toolbox of
188 SPM12 (Brudfors et al., 2020) (<https://github.com/WTCN-computational-anatomy-group/mb>), and as input we used information from both T1 and T2 images. We chose
189 MB because it generates a probabilistic tissue classification model while performing
190 the nonlinear registration, rather than just using voxel intensities directly. This
191 approach has been shown to be a more robust method of registering medical images
192 (Klein et al., 2009; Sotiras et al., 2013). Furthermore, the algorithm (Brudfors et al.,
193 2020) used by MB can integrate many imaging modalities (e.g., T1, T2, DW, CT), and
194 can be applied with or without prior pre-processing (e.g., skull stripping). Accordingly,
195 we took advantage of the high-resolution CT scans of the same subjects, applied the
196 same transformations as those used to register the corresponding T1 and T2 images
197

198 to the reference template, and averaged the resulting CTs to build the CT template.
199 Thus, multi-brain allowed us to build the following three templates using T1, T2 and CT
200 brain images of 10 monkeys: MEBRAINS_T1, MEBRAINS_T2 and MEBRAINS_CT,
201 respectively. We generated the volumetric templates as follows:

202 i) Learn the MB tissue probability model. We adapted Example 1 from the MB
203 repository (<https://github.com/WTCN-computational-anatomy-group/mb>). As input
204 we used the set of 10 pairs of T1 and T2 images and additionally the same set of
205 images mirrored across the midsagittal plane to create a symmetric template. This
206 group-wise image registration generated the following datasets: an optimal K class
207 tissue template; optimal intensity parameters; deformations that are used to warp
208 between different volumes; tissue segmentations; and bias-field corrected versions
209 of the input scans. In general, we kept the default settings to run the MB modelling
210 (as in Example 1 mentioned above). The following parameters were modified in our
211 script: regularization of the nonlinear registration (changed from 1 to 2), number of
212 tissue types K (set to 14), and voxel size (set to 1).

213 ii) Register the T1 and T2 individual volumes to the MB tissue model using the MB
214 deformations generated during the learning step, as in example 2 of the MB
215 repository (<https://github.com/WTCN-computational-anatomy-group/mb>). We used
216 a 3rd degree B-spline interpolation algorithm, and co-registered the CT volumes
217 with the T1 volumes.

218 iii) Create T1, T2 and CT templates by averaging the corresponding individual images
219 registered to the MB tissue model. Intermediate T1, T2 and CT templates are
220 created by gradually averaging more and more individual images that are registered
221 to the implicit MB template.

222 iv) Linear transformation of the templates to set each origin to the center of the anterior
223 commissure as identified in a sagittal section (voxel 108,128,70 in RAS-
224 coordinates, i.e., with voxel 0,0,0 at the left-posterior-inferior corner).

225 v) Rescale the volumes to the original resolution of 0.4 mm isotropic voxels.

226 vi) Check the stereotaxic orientation of the template. Since the original brains were
227 acquired using a stereotaxic frame, we verified that the resulting average has the
228 aural fixation points and the infraorbital ridge nearly in the same horizontal plane,
229 which is a requirement of being aligned to the Horsley-Clarke stereotaxic frame
230 (Seidlitz et al., 2018).

231 **Comparative template – ANTS10**

232 The ANTS version of the template was built as a comparison with MB in terms of
233 warping artefacts. We followed the processing described in (Seidlitz et al., 2018) and
234 used whole-head images so that the template would accurately represent the brain-
235 skull boundary. The main processing steps were:
236 i) Align each of the 10 preprocessed subject images to an independent coordinate
237 space (EBRAINS_T1) using a 6-parameter rigid-body transformation.
238 ii) Create the initial target image for the template by performing a voxel-wise average
239 of the 10 subject images.
240 iii) Normalization of the variations in image intensity across each volume by an N4 bias
241 field correction (Avants et al., 2011).
242 iv) Create the population-averaged template using symmetrical group-wise
243 normalization, which is an iterative nonlinear registration process (Seidlitz et al.,
244 2018). Each brain was aligned to the current target image via a 12-parameter affine
245 and a nonlinear (diffeomorphic) transformation. These aligned images were
246 averaged to generate an improved template image. The inverse of the affine and
247 diffeomorphic transformations was averaged across subjects, scaled, and applied
248 to this template image to align it closer to the original input anatomies. This process
249 was iterated, with the updated template image serving as the new target image for
250 registration with the original subject images, until convergence between successive
251 target images occurred.

252

253 **Generation of a MEBRAINS surface template**

254 Surface representations of the brain enable a more precise spatial localization and
255 reduce the occurrence of errors arising from the spatial proximity of brain structures
256 that are actually located at quite a distance from each other along the cortical ribbon
257 (Logothetis et al., 2001; Zhu and Vanduffel, 2019). Additionally, they are a prerequisite
258 for generating cortical flat maps, which are useful tools for the analysis and
259 visualization of functional and structural neuroimaging datasets (Sultan et al., 2010;
260 Van Essen et al., 1998; Vanduffel et al., 2001; Vanduffel et al., 2014), particularly for
261 topographic representations such as retinotopy (Arcaro and Livingstone, 2017;
262 Janssens et al., 2014), somatotopy (Arcaro et al., 2019) and tonotopy (Bodin et al.,
263 2021; Erb et al., 2019; Petkov et al., 2006). To achieve this, a human-curated white
264 and gray matter segmentation was performed with FreeSurfer (Fischl, 2012) and the

265 non-human primate version of the Human Connectome Project pipeline (Autio et al.,
266 2020), using a combination of T1 and T2 images (Autio et al., 2021). The pial and
267 white/gray matter interface (white matter surface) was generated from the T1 images
268 to create the MEBRAINS surface template. T2 images were used to accurately model
269 the pial surface and remove the effect of cerebrospinal fluid and pial veins.

270

271 **“Populating” the MEBRAINS template: human-curated segmentations of
272 subcortical nuclei and integration of cyto- and receptor architectonically
273 informed cortical maps**

274 We started to populate the template by complementing MEBRAINS with human-
275 curated segmentations of several subcortical structures. We manually delineated the
276 amygdala, anterior commissure, nucleus accumbens, caudate, claustrum, putamen,
277 and pallidum on coronal sections of the left hemisphere of the MEBRAINS_T1
278 template, whereby all three stereotactic planes were closely examined to reduce
279 inconsistencies across slices. This segmentation was performed using MRIcron
280 (Rorden and Brett, 2000) and ITKsnap (Yushkevich et al., 2006), and identification of
281 structures was based on local contrast differences in both the EBRAINS_T1 and the
282 EBRAINS_T2 templates, thereby relying on corresponding sections of the 2nd edition
283 of the Atlas of the Rhesus Monkey Brain (Saleem and Nikos, 2012). The delineated
284 structures were mirrored (using MATLAB, FreeSurfer and human-curation) to segment
285 the right hemisphere of the template. These human-curated segmentations were also
286 essential for our quality assessment of MEBRAINS and to develop workflows for
287 integrating 3D volumes into MEBRAINS space. Specifically, these segmentations i)
288 served as a reference when evaluating the quality of (semi)-automated segmentation
289 approaches, and ii) generated target outputs (ground-truth) for training deep neural
290 networks to automatically segment brain structures (Henschel et al., 2020).

291 Additionally, we used the workflow to integrate other templates into MEBRAINS, for
292 example, to anchor the frequently used D99-atlas and our recently published 3D cyto-
293 and receptor architectonic maps of the macaque parietal (Impieri et al., 2019; Niu et
294 al., 2020; Niu et al., 2021), premotor and motor (Rapan et al., 2021) cortex, depicted
295 on the Yerkes19 template (Donahue et al., 2018; Van Essen et al., 2012) into
296 MEBRAINS space. Since the MEBRAINS template is symmetrical, and these
297 parcellations were only available for the left hemisphere of the Yerkes template, the

298 ensuing maps had to be human-curated using ITKsnap (Yushkevich et al., 2006), then
299 mirrored to the right hemisphere of MEBRAINS using MATLAB and FreeSurfer.
300

301 **Registration of 3D datasets to MEBRAINS**

302 Since it is essential to link MEBRAINS to commonly used template spaces, we
303 developed a multi-method workflow to register 3D data to MEBRAINS. Independent of
304 the method/algorithm used, registration of 3D volumes can be achieved as follows:

- 305 • **Step 1.** Preparatory pre-processing of the data to roughly adjust the image
306 geometry (i.e., resolution, dimensions, position) performed with FreeSurfer, FSL
307 (Woolrich et al., 2009) and MATLAB. This step does not necessarily require MB.
- 308 • **Step 2.** Register the brain anatomy (e.g., other template volume or individual
309 anatomy) to MEBRAINS. This process is achieved by calculating and applying the
310 transformation functions (matrices and deformation volumes). Noteworthy, the
311 transformations generated for a specific volume (e.g., a template) can be applied
312 to different entities (e.g., atlas, connectivity maps) represented in that space. The
313 specifics of the registration performed with MB are found under
314 “<https://github.com/WTCN-computational-anatomy-group/mb> - Example 3: Fitting a
315 learned MB model”, and were applied to individual brain anatomy/template
316 volumes.
- 317 • **Step 3.** Evaluate the quality of the registration and improve it by adjusting different
318 parameters of the registration algorithm. If the object to be registered is a template
319 brain or an individual anatomical dataset, the process is finished. We used
320 “<https://github.com/WTCN-computational-anatomy-group/mb> - 2. Warping with MB
321 deformations - image-to-template – pull” to apply the deformation generated in the
322 previous step to the brain anatomy/template.
- 323 • **Step 4.** If we register atlases, activation maps, retinotopic maps, or connectivity
324 maps to MEBRAINS, a supplementary step may be necessary because such data
325 require an underlying reference anatomy. This reference anatomy should follow
326 steps 1 to 3, to generate the corresponding transformations/deformations functions
327 to be applied. It is important to remember that resampling algorithms can be
328 nonlinear (e.g., cubic) when transforming anatomical volumes, and resampling
329 algorithms used to register atlases (representing discrete values) should be linear
330 or nearest-neighborhood. The specifics for registrations performed with MB are

331 listed in “<https://github.com/WTCN-computational-anatomy-group/mb>; “4. Register
332 and warp atlas to MB space“.

333 Since no single tool functions seamlessly, the best strategy is to combine functions
334 from different software packages. This is illustrated by the existence of an open-source,
335 community-developed initiative like Nipype (Gorgolewski et al., 2011)
336 (<https://nipype.readthedocs.io/en/latest/>), facilitating interactions between different
337 software packages (e.g., ANTS, SPM, FSL, FreeSurfer, Camino, MRtrix, MNE, AFNI,
338 Slicer, DIPY).

339 Like all methods, MB also harbors some problems. For example, recall that the
340 MEBRAINS template is built using both T1 and T2 weighted images. If other volumes
341 have to be registered to MEBRAINS, these data contain optimally both T1 and T2
342 modalities. Furthermore, if we start from already skull-stripped anatomies instead of
343 the whole head, the registration may be sub-optimal.

344

345 A library of registration methods

346 Although we selected MB as our method of choice to generate the average template,
347 the resulting MEBRAINS template can be used with any registration method. The most
348 relevant software packages are summarized below:

- 349 a. Multi-brain (Brudfors et al., 2020) – using MATLAB and toolboxes.
- 350 b. ANTS (Avants et al., 2009) – using either the RheMAP (Sirmipilatze and Klink, 2020)
351 Jupiter notebook (<https://github.com/PRIME-RE/RheMAP.git>), or
352 antsRegistrationSyNQuick to generate the registration and antsApplyTransforms to
353 apply it.
- 354 c. AFNI (Cox, 1996) – generate the registration with 3dQwarp and apply it with
355 3dNwarpApply.
- 356 d. MINC (Vincent et al., 2016) – generate the registration with minctracc and apply it
357 with mincresample.
- 358 e. ART (Ardekani et al., 2005) – generate the registration with 3dwarper and apply it
359 with applywarp3d.
- 360 f. ITKsnap (Yushkevich et al., 2006) – for illustrative affine registrations.
- 361 g. FSL (Woolrich et al., 2009) – generate registrations with flirt and fnirt, and apply it
362 with applywarp.
- 363 h. Jip (<http://www.nitrc.org/projects/jip>) – using jip_align in two stages: auto-align
364 affine followed by auto-align non-lin.

365 i. DISCO (Ardekani et al., 2005) – using the Diffeomorphic Sulcal-based COrtical
366 (DISCO) registration.

367 j. FreeSurfer (Fischl et al., 1999) – perform either a surface based registration using
368 mris_register, or a combined surface and volume morph method (Postelnicu et al.,
369 2009; Zöllei et al., 2010) using mri_cvs_register. The latter approach accurately
370 registers both cortical and subcortical regions, establishing a single coordinate
371 system suitable for the entire brain.

372 Many of these tools (a - f) can rapidly register source with target volumes. The others
373 (especially i - j) are computationally costly, and are mainly recommended when the
374 'fast' methods yield suboptimal results.

375 This library of methods raises a fundamental question: which strategy should one use?

376 We propose the following:

377 a. Use your own knowledge/preference, but consider the quality of the source
378 anatomy that has to be registered (e.g., template).

379 b. *Try-N-select-winner*. The strategy works with anatomies and involves the following
380 straightforward steps:

381 1. Select a registration method and optimize the results by adjusting the
382 parameters of the algorithm.

383 2. If the result is not satisfactory, add a new method and repeat 1.

384 3. Compare the existing results and select a winner.

385 4. If the winner is not satisfactory, repeat 2. If the winner meets your needs stop
386 the process. We list a few recommendations regarding the "*try-N-select-winner*"
387 strategy:

388 **O1.** N should be as small as possible.

389 **O2.** Try to optimize a method before adding another one.

390 **O3.** The quality of the registration can be evaluated: i) By human-curation
391 (although laborious, this is the most reliable method). ii) Automatic quantification
392 of the quality of the registration relative to MEBRAINS. After masking the
393 volumes with the MEBRAINS-mask, the following parameters can be evaluated:
394 Pearson correlation; Normalized mutual information; SNR and peak-SNR; Mean
395 Squared Error; Structural Similarity Index; Jaccard index; Dice Score; Hausdorff
396 distance; Focal parameters for 3d images from the Image Quality Index toolbox
397 (bias, correlation, divergency, entropy difference, root of mean squared error);
398 Universal Image Quality Index (Vaiopoulos, 2011). All parameters should be

399 normalized and scaled (0 – completely dissimilar; 1 - identical images), and can
400 be calculated using MATLAB. The winner registration is established as the
401 maximum value of the evaluated parameters, or of a metric defined on the space
402 of all parameters (e.g., Euclidean distance).

403 c. *Run-N-select-high-probability-values*. The strategy works with volumes with
404 discrete values such as atlases and involves the following steps:

- 405 1. Select N registration methods and run the registration of the same atlas (N ~ 5).
- 406 2. Evaluate the quality of the registration and select M ($M \leq N$) of the best
407 registrations.
- 408 3. Build the probability distribution of values in corresponding voxels of the M
409 selected volumes.
- 410 4. Build the resulting volume by giving to each voxel the value that has the
411 occurrence probability greater than an optimal threshold. The optimal threshold
412 depends on the overall probability distributions.

413 Note that higher N values are optimal. For example, we increased the number
414 of registrations of the D99 atlas using both the registration of the D99-atlas to
415 MEBRAINS and of the D99 atlas in NMT v2.0 space to MEBRAINS.

416

417 **Deep learning-based neuroimaging pipeline for automated processing of 418 monkey brain MRI scans**

419 Deep learning is becoming popular in the analysis of brain MR images, and is more
420 widely used to MRI compared to other types of medical images (Zhao and Zhao, 2021).
421 Deep learning has been used for pre-processing and analysing MR images, including
422 brain segmentation, registration, noise reduction, resolution enhancement, restoration,
423 and reconstruction (Zhao and Zhao, 2021). It has also been instrumental for computer-
424 aided diagnosis, including lesion and tumor detection, and diagnostics of psychiatric
425 and neurodegenerative disorders (e.g., Schizophrenia, Alzheimer's disease,
426 Parkinson's disease, brain age estimation).

427 Traditional neuroimaging pipelines involve computationally intensive, time-consuming
428 optimization steps, often requiring manual interventions (Henschel et al., 2020). To
429 avoid these issues, we prepared two deep neural networks-based tools to work with
430 the EBRAINS template:

431 [U-Net Brain extraction tool for nonhuman primates \(Wang et al., 2021\)](#).

432 This is a fast and stable U-Net based pipeline for brain extraction that exhibited
433 superior performance compared to traditional approaches using a heterogenous,
434 multisite non-human primate (NHP) dataset. The pipeline includes code for brain mask
435 prediction (<https://github.com/HumanBrainED/NHP-BrainExtraction.git>), model-
436 building, and model-updating, as well as macaque brain masks of PRIME-DE data
437 (https://fcon_1000.projects.nitrc.org/indi/indiPRIME.html). A major advantage of the
438 pipeline is that it uses a transfer-learning framework leveraging a large human imaging
439 dataset to pre-train a convolutional neural network (U-Net Model), which is transferred
440 to NHP data using a much smaller NHP training sample. Furthermore, the
441 generalizability of the model can be improved by upgrading the transfer-learned model
442 using additional training datasets from multiple research sites in the Primate Data-
443 Exchange (PRIME-DE) consortium (136 macaque monkeys with skull-stripped masks
444 repository, publicly available) (Milham et al., 2018).

445 We applied the package by carrying out these steps:

446 a. **Minimal pre-processing of the T1 images of the 10 monkeys included in the
447 MEBRAINS template:**

- 448 - Conformed all images (FreeSurfer's standard).
- 449 - Spatial adaptive non-local means filtering (using ANTS's DenoiseImage).
- 450 - Bias field correction (using ANTS's N4BiasFieldCorrection)

451 b. **Mask prediction** - use existing trained models to predict the mask for our data.

452 The package provides 15 pre-trained models using different sets of data for transfer
453 of learning and upgrading results. Each of the 15 models predicted a mask for each
454 macaque anatomy including:

- 455 - 10 monkeys used to build MEBRAINS template, and 3 supplementary monkeys
456 from our lab that will be included in later versions of the template.
- 457 - 21 monkeys from PRIME-DE (19 UC Davis and 2 U Minnesota).

458 The goal of this process was to select the best performing models on our data.

459 c. **Supplementary model updating** - use the existing trained models and additional
460 training datasets to improve the generalizability of the model:

- 461 - Select 7 models showing high performance in (b).
- 462 - Update each of these 7 models by supplementary training (40 epochs) using:
 - 463 • Training data – 34 T1 images (10 used for MEBRAINS + 3 new from our lab;
464 21 from PRIME-DE (19 UC Davis and 2 U Minnesota)).
 - 465 • Testing data: 66 T1 images (34 training data; 32 new data from KU Leuven).

466 For all T1 images, ground-truth was derived from human-curated masks either
467 created by us or taken from the repository from the U-net brain extraction package
468 (https://fcon_1000.projects.nitrc.org/indi/indiPRIME.html,
469 <https://github.com/HumanBrainED/NHP-BrainExtraction.git>).

470 **d. Applications of the results:**

471 - Use N-models to predict N versions of the mask for the same whole brain
472 anatomy. N includes the 7 selected U-net models with their original parameters,
473 and the 7 upgraded models (step c).
474 - Select the best result(s).
475 - If there was a clear winner, we used it. If there were more than one good
476 approximations of the mask, we built a probability distribution for values (0 or 1)
477 in each voxel. The final mask can be built by optimal thresholding of the
478 probability distribution (“Run-N-select-high-probability-values” strategy).
479 - If necessary, adjust the result using manual adjustments and mathematical
480 morphology applications in FSL, ANTS, AFNI and FreeSurfer

481 In all cases, the goodness of the predicted mask was evaluated by visual inspection
482 or calculation of the dice score.

483

484 **Relative quality of the MEBRAINS template**

485 To quantitatively evaluate the quality of our template relative to that of other templates,
486 we used a method inspired by (Seidlitz et al., 2018). We chose for comparisons the
487 following T1 templates: our MEBRAINS and ANTS10 templates, the NMT v2.0 (Seidlitz
488 et al., 2018) and Yerkes19 (Donahue et al., 2018; Van Essen et al., 2012) templates,
489 and the combination of the T1/T2 images of MEBRAINS and ANTS10. The two latter
490 datasets were introduced to emphasize the usefulness of our multimodal approach.
491 The processing of these 6 datasets included the following steps:

492 a. For each template, we segmented the amygdala (Am), caudate (Cd), claustrum
493 (Cl), nucleus accumbens (NAc), putamen (Pu), white matter (WM), cortical gray
494 matter (GM) and lateral ventricle (LV).
495 b. Normalization of the variations in T1 image intensity across each volume by N4
496 bias field correction (Avants et al., 2011) (using ANTS’s N4BiasFieldCorrection).
497 T1/T2 images were generated from the original T1 and T2 images (without N4 bias
498 field correction).

499 c. Using volume contraction (AFNI), we selected the kernel of each segment by
500 excluding the external 3 voxels thick shell of each sub-cortical region.
501 d. We calculated the average gray matter (mean_{GM}) of N randomly selected voxels (N
502 = 50) for each segmented region (Am, Cd, Cl, NAc, Pu, and GM). For the white
503 matter, we calculated the average white matter intensity (mean_{WM}) of all voxels from
504 the WM kernel. For LV, we calculated the standard deviation of the intensity of the
505 cerebral spinal fluid (std_{CSF}) of N randomly selected voxels. Both means and
506 standard deviation included equal numbers of randomly selected voxels from the
507 left and right hemisphere ($N = 50$). These values were used to calculate the
508 following parameters, that represent contrast-to-noise (C2N) (Jang et al., 2022) and
509 relative difference (KI):

$$\text{C2N} = (\text{mean}_{\text{WM}} - \text{mean}_{\text{GM}}) / \text{std}_{\text{CSF}}$$

$$\text{KI} = 2 * (\text{mean}_{\text{WM}} - \text{mean}_{\text{GM}}) / (\text{mean}_{\text{WM}} + \text{mean}_{\text{GM}})$$

510 e. To evaluate the mean distribution of C2N and KI we performed the following steps:
511 **e1.** Compute the mean of C2N and KI by repeating their calculation 25 times,
512 each time using a new set of 50 randomly selected voxels.
513 **e2.** Repeat step e1 2500 times to estimate the distribution of mean of the
514 parameters.
515 **e3.** Steps e1-e2 were repeated for all 6 templates (the four T1 and the two T1/T2
516 datasets).
517 **e4.** Calculate the median values for each template and run a Kruskal-Wallis test
518 followed by multiple comparison corrections.

519

520 **RESULTS**

521 **MEBRAINS volumetric and surface templates**

522 Our central goal was to build a population-based macaque brain template using
523 multimodal imaging data to overcome limitations in the existing templates. Accordingly,
524 we used MB to build three volumetric templates based on T1, T2 and CT brain images
525 of 10 monkeys: MEBRAINS_T1 ([Figure 3A](#)), MEBRAINS_T2 ([Figure 3B](#)) and
526 MEBRAINS_CT ([Figure 4](#)), respectively.

527 Additionally, we created a second set of templates with the T1 and T2 brain images
528 from the same 10 monkeys, but using ANTS, one of the few alternative tools besides
529 MB that can rely both on T1 and T2 images for building templates (ANTS10_T1, [Figure
530 5A](#) and ANTS10_T2, [Figure 5B](#)). We found ANTS to result in a poorer tissue contrast
531

533 compared to MB. Hence, we did not use it for our novel template, but to quantitatively
534 compare the quality of the MEBRAINS templates relative to others.

535 Finally, we also created a surface version of MEBRAINS, which will allow users to
536 select between a folded or a flattened representation of the template's cortex. We
537 decided to use FreeSurfer to segment the white and grey matter of MEMBRAINS
538 ([Figure 6A](#)), because it provided a better result than the grey and white matter masks
539 generated by MB - as illustrated in [Figure 6B, C](#). Note that, during the group-wise
540 image registration process, MB generates tissue segmentations. Although the resulting
541 probabilistic tissues do not necessarily correspond to anatomical parts of the brain,
542 some of them provided a good approximation of the white and gray matter ([Figure 6B,](#)
543 [C](#)). A supplementary merging and processing of the original MB-generated tissues may
544 further improve the segmentation process. Yet given the satisfactory FreeSurfer
545 results, we did not attempt this.

546

547 **“Populating” the MEBRAINS template**

548 It is essential for a template to be populated with neuroscience data. Indeed, a template
549 becomes gradually more valuable by anchoring research results such as cyto-and
550 myeloarchitectonic information, receptor distributions, task related activations,
551 connectivity maps, electrophysiological data, and topographic maps such as
552 retinotopic, somatotopic and tonotopic maps. In addition, it is important to link different
553 template spaces. To start addressing these goals, we provided - in addition to white
554 and grey matter segmentations based on FreeSurfer ([Figure 6A](#)) or MB ([Figure 6B, C](#))
555 - a human-curated segmentation of the anterior commissure and several major
556 subcortical structures including the amygdala, nucleus accumbens, caudate,
557 claustrum, putamen and pallidum ([Figure 7A](#)).

558 Furthermore, our recently published 3D cyto- and receptor architectonically-informed
559 maps of the macaque monkey motor, premotor and parietal cortex were warped from
560 YERKES19 space to the MEBRAINS surface template ([Figure 7B](#)), which were also
561 represented on a cortical flat map ([Figure 7C](#)), and transformed into volumetric
562 MEBRAINS space ([Figure 7D](#)). Since these areas were only available on the left
563 hemisphere of the Yerkes19 template, and the MEBRAINS template is symmetrical,
564 areas were mirrored to its right hemisphere.

565

566 **Registration of 3D datasets to MEBRAINS**

567 The purpose of a template is to offer a standardized stereotaxic space for the analysis
568 and/or visualization of neuroscience data, often requiring the co-registration of different
569 volumes (e.g., individual brain anatomies, templates). Given the aforementioned
570 advantages and limitations of MB, we propose a multi-method workflow with 4 major
571 steps to integrate data into MEBRAINS space: Steps 1-3 encompass standardized pre-
572 processing procedures, the actual computation of transformation functions (such as
573 matrices and deformation volumes) necessary to register an anatomical image to
574 MEBRAINS, as well as a quality assessments and improvements of the registration.
575 Step 4 is only required if a data set instead of a structural anatomical volume needs to
576 be registered, such as retinotopic maps, connectivity maps or parcellation schemes. In
577 this case, steps 1-3 are performed with the reference anatomy, and the
578 transformations/deformations functions are then applied to the associated datasets.
579 To demonstrate the validity and flexibility of our workflow, we first describe the result
580 of our registration procedures when applied to some frequently used macaque brain
581 templates, although they can be applied to any individual or averaged anatomical 3D
582 volume. In a second step, we provide an example of how Step 4 can be implemented
583 to transform a parcellation scheme of the macaque brain from the Yerkes19 surface to
584 the MEBRAINS surface and volumetric templates.

585

586 Registration of other macaque brain templates to MEBRAINS

587 We considered the following macaque brain templates (Table 1; [Figure 8](#)): NMT v2.0,
588 Yerkes19, D99, MNI macaque, F99, INIA19, ONPRC18 and 112RM-SL. Most of these
589 templates are uni-modal (T1-weighted images) and skull-stripped, whereas
590 MEBRAINS is a multi-modal (T1 and T2) template which includes the skull. Thus, these
591 comparisons enabled us to test the aforementioned limitations of MB, and to
592 demonstrate the usefulness of multi-method workflows for working with MEBRAINS.
593 We used several methods ([“Try-N-select-winner” strategy, see methods](#)) from the
594 library described in the methods (a – g; MB, ANTS, AFNI, MINC, ART, ITKsnap and
595 FSL) to register the selected templates to MEBRAINS. MB performed well for the T1
596 templates in which the skull was not stripped (e.g., NMT v2.0), yet produced distorted
597 registrations for many of the skull-stripped templates. The most optimal registration
598 method for all registered templates was ANTS. [Figure 8](#) shows ANTS10_T1, the 8
599 selected templates, and a meta-template (the average of the ANTS10_T1, and all
600 template datasets, excluding 112RM-SL), all registered to MEBRAINS using ANTS.

601 Furthermore, [figure 8](#) also provides a unique opportunity to compare other templates
602 with MEBRAINS. At qualitative level, MEBRAINS reveals comparable anatomical
603 details as NMT V2.0, unlike the other templates.

604 [Figure 9](#) shows a quantitative evaluation of the quality of the registrations of the
605 different templates with MEBRAINS (in [Figure 8](#)) using Pearson correlation and focal
606 entropy differences -which was scaled to improve comparisons with the correlation
607 method (0 – total dissimilarity; 1 – total similarity). Focal entropy was calculated for
608 each coronal section using a symmetrical window radius of 7 voxels centered on each
609 voxel and the results were averaged. Next, the differences between the average values
610 for the registered and the reference (MEBRAINS) anatomies were calculated for each
611 coronal section and averaged to obtain a value characterizing the entire volume. Both
612 parameters provide an evaluation of how similar the compared anatomies are.
613 Considering the range of values for both parameters (0.92-0.99), we conclude that all
614 registrations have a good and relatively similar quality. The small individual variations
615 also include differences between the intrinsic quality of the input image, which can be
616 noticed by visual inspection in [Figure 8](#)).

617

618 Registration of a volumetric atlas to MEBRAINS.

619 We here describe the result of the registration of the frequently used D99 atlas to
620 MEBRAINS. We first registered the D99 template to MEBRAINS as described above
621 using MB or ANTS and applied the “Try-N-select-winner” strategy (see methods). The
622 resulting transformation objects (volume/matrix) were then applied to the associated
623 D99 atlas using a nearest neighbourhood resampling algorithm (MB, [Figure 10A](#);
624 ANTS [Figure 10B](#)). Both registrations represent a good starting point for human-
625 curated refinements.

626 We also performed the same registration (D99 atlas to MEBRAINS) using the “run-N-
627 select-high-probability-values” strategy ([Figure 10C](#)). Because this method yields more
628 information, given by the probability distribution of the voxel intensity values, than the
629 single registration methods ([Figure 10A, B](#)), the resulting registration is more reliable.
630

631 Registration of a surface-based atlas to MEBRAINS.

632 Since the 3D cyto- and receptor architectonically informed maps of the macaque motor,
633 premotor and parietal cortex are associated with the Yerkes19 surface template, it was

634 necessary to warp them to the MEBRAINS surface template using FreeSurfer, thereby
635 establishing a link between both spaces. The ensuing labels can be visualized on the
636 folded ([Figure 7B](#)) or flattened ([Figure 7C](#)) versions of the MEBRAINS surface
637 template. Finally, they were transferred to the MEBRAINS volumetric template ([Figure](#)
638 [7B](#)).

639

640 **Deep learning-based neuroimaging pipeline for automated processing of** 641 **monkey brain MRI scans**

642 [Automated brain extraction tool for nonhuman primates \(U-NET\) \(Wang et al., 2021\)](#)
643 We performed supplementary training and updated the 7 existing models in the U-Net
644 brain extraction package using 34 T1 images for training and 66 T1 images to test the
645 mask prediction performances (see methods). The model training reached a dice score
646 of 0.9882 ± 0.0005 (mean \pm SEM) in epochs ranging between 35 to 39. The 7 upgraded
647 models correctly predicted the mask in $85.71 \pm 1.35\%$ (mean \pm SEM) of the test brains
648 and $94.96 \pm 0.84\%$ of the trained brains. Moreover, more than one of the used models
649 gave good predictions for the mask of the same brain. Accordingly, of 12 models used
650 to predict the mask for each brain, 8.65 ± 0.27 (mean \pm SEM) made good predictions
651 for training and 7.97 ± 0.44 for testing data. Therefore, there is a substantial pool of
652 good mask predictions for each brain allowing the use of either "*try-N-select-winner*"
653 or "*run-N-select-high-probability-values*" strategies for brain extraction.

654 [Figure 11](#) provides two example results of the winner for an 'easy', good quality
655 anatomy, ([Figure 11A](#)) and for a more "difficult" lower quality anatomy ([Figure 11C](#)).
656 As can be seen in [Figure 11B](#), the dataset with the "difficult" anatomy requires longer
657 training time than the "easy" anatomy before reaching the optimal solution. The
658 example also emphasizes the robustness of the model, which is largely independent
659 of the quality of the input data.

660

661 **Relative quality of the MEBRAINS template**

662 To quantitatively compare the quality of different templates, we segmented a number
663 of anatomical structures from four T1 templates (MEBRAINS_T1, ANTS10_T1, NMT
664 v2.0, Yerkes19) and two T1/T2 datasets (MEBRAINS_T1/T2, ANTS10_T1/T2)
665 ([Figures 12A](#)). Depending on the quality of the template, the exact border of a structure
666 may be difficult to estimate. Therefore, to be conservative in our comparison, we

667 excluded the 3 most external voxels at each boundary of each of these compartments:
668 for example, 3 voxels at the pial and 3 at the grey-white matter boundary for the cortical
669 ribbon. As an example, [Figure 12B](#) shows the result of this process for MEBRAINS_T1.
670 We used two different indices, inspired by (Seidlitz et al., 2018), to compare the quality
671 of the templates (C2N and KI, see methods). The results presented in [Figures 13 and](#)
672 [14](#) and Tables 2 and 3, support a few important conclusions regarding the possibility
673 to distinguish different anatomical substructures of the brain in the different templates.
674 First, the multi-modal templates MEBRAINS_T1/T2 and ANTS10_T1/T2 carry far more
675 information compared to the unimodal ones. Hence, templates based on a combination
676 of modalities allow improved segmentation of important brain structures. This is
677 reflected in the larger C2N and KI values for the T1/T2 images. Notice that
678 MEBRAINS_T1/T2 and ANTS10_T1/T2 (colored red and green in Tables 2 and 3,
679 respectively) outperform all other templates. Second, parameters for the T1-based
680 templates show two different trends: C2N yields the largest values for the
681 MEBRAINS_T1 template, while KI is dominated by NMT v2.0 (colored blue in Tables
682 2 and 3, respectively). Third, although NMT v2.0 is on par with the unimodal (T1)
683 MEBRAINS, as shown by C2N and KI values, the multi-modal (T1/T2) approach in
684 MEBRAINS provides a substantial advantage to all templates. Finally, comparison
685 between MEBRAINS and ANTS10 demonstrates the superiority of MB compared to
686 the ANTS for template generation.

687

688 **DISCUSSION**

689 We built a macaque brain template, MEBRAINS, in an attempt to mitigate common
690 limitations of existing macaque templates. MEBRAINS is a multi-modal template that
691 integrated relatively high resolution T1, T2 and CT modalities by using the MB toolbox
692 (Brudfors et al., 2020). In addition, we developed both a volumetric and surface
693 template. This approach will facilitate the combination of volumetric and surface data
694 and enable the generation of flattened 2D maps of the cortex. As MEBRAINS is
695 embedded in the EBRAINS environment which also houses human and rodent
696 templates, and because other existing macaque templates have been registered to
697 MEBRAINS, this will also expedite comparative research between macaques, humans
698 and rodents.

699 To ensure the quality of both the data used to create MEBRAINS, and of the template
700 itself, we applied a large spectrum of methods including those described in Marcus et

701 al., 2013 (Marcus et al., 2013), tools borrowed from the image processing field tuned
702 to evaluate image quality (e.g., see [Figures 9, 11, 13, 14](#)), and careful visual curation.
703 Simple visual inspection of all the templates included in the present analysis ([Figure 8](#))
704 shows that the resolution and GM/WM contrast of MEBRAINS reveal a level of
705 anatomical granularity and sharpness comparable to that of the NMT V2.0 template
706 (Seidlitz et al., 2018), which is higher than that of most of the other templates, including
707 the ANTS version of our template (ANTS10). This subjective impression was
708 corroborated by the quantitative evaluation ([Figures 13, 14](#)), showing that the multi-
709 modal MEBRAINS template represents anatomical details better than the other
710 templates. The MEBRAINS_T1/T2 template presented the highest C2N values,
711 indicating that the segmented structures have better signal to noise ratio compared to
712 the other templates. Moreover, the multimodal character of MEBRAINS increases the
713 discriminative power: MEBRAINS_T1/T2 yielded not only higher C2N (Jang et al.,
714 2022) but also KI values compared to the remaining templates, including
715 ANTS10_T1/T2. The latter finding is particularly interesting, because MEBRAINS and
716 ANTS10 were constructed from the same 10 subjects. Specifically, this difference
717 highlights the usefulness of multimodal approaches to construct brain templates.
718 Beyond the goal of creating a qualitative template, we adapted existing tools to register
719 data to MEBRAINS ([Figure 7, 10](#)), to segment major anatomical structures ([Figure 6,](#)
720 [7, 11, 12](#)) and to generate surfaces ([Figure 7](#)). This included the adaptation of deep
721 neural network approaches (U-NET), some of them also used in human research
722 (FastServer) for processing monkey data.
723 Finally, we started to populate the MEBRAINS with previously published architectonic
724 data (Donahue et al., 2016; Niu et al., 2020; Niu et al., 2021; Rapan et al., 2021). The
725 comparison of such data with other parcellation schemes and future data sets will
726 advance objective discussions about parcellations. In the future, we aim to refine the
727 template by increasing the number of T1 and T2 images and by adding very high-
728 resolution postmortem MRI anatomies. We also aim to register other functional data
729 (e.g., probabilistic retinotopy data, category selective fMRI data, etc.) and increase the
730 number of automatically segmented structures. Ultimately, we aim to obtain enough
731 data to have a robust training set for our deep-learning based automated segmentation
732 and registration of macaque data to MEBRAINS and any other template.
733 The MEBRAINS template represents the cornerstone of the “MEBRAINS Multilevel
734 Macaque Brain Atlas” (<https://atlases.ebrains.eu/viewer/monkey>) developed in the

735 framework of the Human Brain Project, which is freely available to the neuroscientific
736 community via the interactive *sibra-explorer* on the EBRAINS platform (<https://at-lases.ebrains.eu/viewer/monkey>). Thus, MEBRAINS constitutes a spatial reference
737 system to which a myriad of structural and functional *in vivo* and *post mortem* datasets
738 with different degrees of spatial and temporal resolution will be anchored. Examples of
739 *in vivo* datasets are electrophysiological, probabilistic retinotopy, category selective or
740 resting state fMRI data as well as DTI datasets. *Post mortem* datasets include 3D-
741 reconstructions of sections processed for visualization of cell bodies, myelinated fibres,
742 neurotransmitter receptors distribution patterns or that of their subunits and/or the cor-
743 responding encoding genes, tractography datasets, as well as architectonic parcella-
744 tion schemes of the macaque monkey brain. In this framework, the “Julich Brain Ma-
745 caque Maps” (Donahue et al., 2016; Niu et al., 2020; Niu et al., 2021; Rapan et al.,
746 2021), which are based on the quantitative analysis of differences in the distribution
747 patterns of cell bodies and of multiple types of classical neurotransmitters, and to date
748 had solely been available via the Yerkes19 surface template (Donahue et al., 2018;
749 Van Essen et al., 2012), have now been registered to the MEBRAINS template. The
750 maps and data associated with the MEBRAINS template can be used as entry point
751 for higher level meta-analyses, or for guiding functional and interventional studies in
752 MEBRAINS space. Furthermore, the richness of the EBRAINS meta-platform hosting
753 the “MEBRAINS Multilevel Macaque Brain Atlas” and also representing humans and
754 rodents in a unitary context enable efficient inter-species meta-analytical studies. Thus,
755 MEBRAINS not only constitutes a technical improvement compared to previously pub-
756 lished templates, but also facilitates cross-species comparisons.
757

758

759 In conclusion, via MEBRAINS we provide a novel population-based template of the
760 macaque brain which was created using a multimodal approach and T1 and T2-
761 weighted images. Quantitative evaluation of its quality demonstrated that it scores
762 better than other unimodal templates. MEBRAINS constitutes the cornerstone of the
763 “MEBRAINS Multilevel Macaque Brain Atlas” and has been populated with the cyto-
764 and receptor-architectonically informed “Julich Brain Macaque Maps”. Importantly,
765 MEBRAINS has been embedded in the framework of HBP’s EBRAINS platform, where
766 it will enable the integration and analysis of multiple datasets of different spatio-
767 temporal scales, and the comparison with other species.

768 **DATA AVAILABILITY**

769 The volumetric and surface representation files of the MEBRAINS template are
770 provided as supplementary files accompanying the manuscript and are also made
771 freely available via the Human Brain Project platform EBRAINS
772 (<https://doi.org/10.25493/5454-ZEA>).

773

774

775 **CODE AVAILABILITY**

776 The following code is available on GitHub or software package webpages:

777 - Code used for creation of the templates is publicly available at
778 (<https://github.com/WTCN-computational-anatomy-group/mb>). It requires the
779 toolbox multi-brain for SPM12 and the commercial software MATLAB (Version R-
780 2018b). The repository includes example MATLAB scripts for template generation,
781 registration to the template, different images co-registration

782 - FreeSurfer (<https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall>),
783 ANTS (<http://stnava.github.io/ANTs/>),
784 FSL (<https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FsInstall>),
785 AFNI (<https://afni.nimh.nih.gov/>),
786 MINC (<https://www.mcgill.ca/bic/software/minc>),
787 ART (<https://www.nitrc.org/projects/art/>),
788 Jip (<http://www.nitrc.org/projects/jip>),
789 MRcron (<https://www.nitrc.org/projects/mrcron>),
790 and ITK-SNAP (<http://www.itksnap.org/pmwiki/pmwiki.php>) are open source
791 publicly available.

792 - U-Net Brain extraction tool for nonhuman primates
793 (<https://github.com/HumanBrainED/NHP-BrainExtraction>) is publicly available and
794 requires a python environment. Authors will provide by request the supplementary
795 trained models.

796

797

798 **ACKNOWLEDGEMENTS**

799 This work received funding from Fonds Wetenschappelijk Onderzoek-Vlaanderen
800 (FWO-Flanders) G0D5817N, G0B8617N, G0C1920N, G0E0520N; the European
801 Union's Horizon 2020 Framework Programme for Research and Innovation under
802 Grant Agreement No 945539 (Human Brain Project SGA3); KU Leuven C14/21/111,
803 C3/21/027, IDN/20/016; the Federal Ministry of Education and Research (BMBF) under
804 project number 01GQ1902.

805 We would also like to thank all members of the PRIMatE data sharing consortium
806 (https://fcon_1000.projects.nitrc.org/indi/indiPRIME.html) for collecting, publishing and
807 making their data available.

808

809

810 **AUTHOR CONTRIBUTIONS**

- 811 1) Puiu F Balan – paper drafting, paradigm design, methods selection, data
812 processing, data visualization
- 813 2) Qi Zhu – paper drafting, paradigm design, methods selection, data processing, data
814 acquisition, data visualization
- 815 3) Xiaolian Li – data acquisition, data processing
- 816 4) Thomas Funck – paper drafting, data processing
- 817 5) Meiqi Niu – data processing, data visualization
- 818 6) Rapan – data processing, data visualization
- 819 7) Rembrandt Bakker – paper drafting, paradigm design, methods selection, data
820 processing
- 821 8) Nicola Palomero-Gallagher – paper drafting, paradigm design, methods selection,
822 project coordination, human-curated segmentation
- 823 9) Wim Vanduffel – paper drafting, paradigm design, methods selection, project
824 coordination

825

826

827 **REFERENCES**

828 Amunts, K., Hawrylycz, M.J., Van Essen, D.C., Van Horn, J.D., Harel, N., Poline, J.B.,
829 De Martino, F., Bjaalie, J.G., Dehaene-Lambertz, G., Dehaene, S., Valdes-Sosa, P.,
830 Thirion, B., Zilles, K., Hill, S.L., Abrams, M.B., Tass, P.A., Vanduffel, W., Evans, A.C.,
831 Eickhoff, S.B., 2014. Interoperable atlases of the human brain. *Neuroimage* 99, 525-
832 532.

833 Arcaro, M.J., Livingstone, M.S., 2017. Retinotopic Organization of Scene Areas in
834 Macaque Inferior Temporal Cortex. *J Neurosci* 37, 7373-7389.

835 Arcaro, M.J., Schade, P.F., Livingstone, M.S., 2019. Body map proto-organization in
836 newborn macaques. *Proceedings of the National Academy of Sciences* 116, 24861-
837 24871.

838 Ardekani, B., Guckemus, S., Bachman, A., Hoptman, M., Wojtaszek, M., Nierenberg,
839 J., 2005. Ardekani BA, Guckemus S, Bachman A, Hoptman MJ, Wojtaszek M, Nierenberg J. Quantitative comparison of inter-subject volumetric MRI registration
840 methods. *J Neurosci Methods* 142: 67-76. *Journal of Neuroscience Methods* 142, 67-
841 76.

842

843 Arsenault, J.T., Rima, S., Stemmann, H., Vanduffel, W., 2014. Role of the primate
844 ventral tegmental area in reinforcement and motivation. *Curr Biol* 24, 1347-1353.

845 Arsenault, J.T., Vanduffel, W., 2019. Ventral midbrain stimulation induces perceptual
846 learning and cortical plasticity in primates. *Nat Commun* 10, 3591.

847 Autio, J.A., Glasser, M.F., Ose, T., Donahue, C.J., Bastiani, M., Ohno, M., Kawabata,
848 Y., Urushibata, Y., Murata, K., Nishigori, K., Yamaguchi, M., Hori, Y., Yoshida, A., Go,
849 Y., Coalson, T.S., Jbabdi, S., Sotiroopoulos, S.N., Kennedy, H., Smith, S., Van Essen,
850 D.C., Hayashi, T., 2020. Towards HCP-Style macaque connectomes: 24-Channel 3T
851 multi-array coil, MRI sequences and preprocessing. *Neuroimage* 215, 116800.

852 Autio, J.A., Zhu, Q., Li, X., Glasser, M.F., Schwiedrzik, C.M., Fair, D.A., Zimmermann,
853 J., Yacoub, E., Menon, R.S., Van Essen, D.C., Hayashi, T., Russ, B., Vanduffel, W.,
854 2021. Minimal specifications for non-human primate MRI: Challenges in standardizing
855 and harmonizing data collection. *Neuroimage* 236, 118082.

856 Avants, B.B., Tustison, N., Song, G., 2009. Advanced normalization tools (ANTS).
857 *Insight j* 2, 1-35.

858 Avants, B.B., Tustison, N.J., Wu, J., Cook, P.A., Gee, J.C., 2011. An open source
859 multivariate framework for n-tissue segmentation with evaluation on public data.
860 *Neuroinformatics* 9, 381-400.

861 Balan, P.F., Gerits, A., Zhu, Q., Kolster, H., Orban, G.A., Wardak, C., Vanduffel, W.,
862 2018. Fast Compensatory Functional Network Changes Caused by Reversible
863 Inactivation of Monkey Parietal Cortex. *Cereb Cortex*.

864 Bodin, C., Trapeau, R., Nazarian, B., Sein, J., Degiovanni, X., Baurberg, J., Rapha, E.,
865 Renaud, L., Giordano, B.L., Belin, P., 2021. Functionally homologous representation
866 of vocalizations in the auditory cortex of humans and macaques. *Curr Biol* 31, 4839-
867 4844 e4834.

868 Brudfors, M., Balbastre, Y., Flandin, G., Nachev, P., Ashburner, J., 2020. Flexible
869 Bayesian Modelling for Nonlinear Image Registration. *Lecture Notes in Computer
870 Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
871 in Bioinformatics)* 12263 LNCS, 253-263.

872 Caspari, N., Janssens, T., Mantini, D., Vandenberghe, R., Vanduffel, W., 2015. Covert
873 shifts of spatial attention in the macaque monkey. *J Neurosci* 35, 7695-7714.

874 Cox, R.W., 1996. AFNI: Software for analysis and visualization of functional magnetic
875 resonance neuroimages. *Computers and Biomedical Research* 29, 162-173.

876 Dadar, M., Camicioli, R., Duchesne, S., 2022. Multi sequence average templates for
877 aging and neurodegenerative disease populations. *Sci Data* 9, 238.

878 Donahue, C.C.J., Sotropoulos, S.S.N., Jbabdi, S., Hernandez-Fernandez, M.,
879 Behrens, T.E.T., Dyrby, T.B.T., Coalson, T., Kennedy, H., Knoblauch, K., Van Essen,
880 D.D.C., Glasser, M.M.F., 2016. Using diffusion tractography to predict cortical
881 connection strength and distance: A quantitative comparison with tracers in the
882 monkey. *The Journal of neuroscience : the official journal of the Society for
883 Neuroscience* 36, 6758-6770.

884 Donahue, C.J., Glasser, M.F., Preuss, T.M., Rilling, J.K., Van Essen, D.C., 2018.
885 Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates.
886 *Proc Natl Acad Sci U S A* 115, E5183-E5192.

887 Erb, J., Armendariz, M., De Martino, F., Goebel, R., Vanduffel, W., Formisano, E.,
888 2019. Homology and Specificity of Natural Sound-Encoding in Human and Monkey
889 Auditory Cortex. *Cereb Cortex* 29, 3636-3650.

890 Evans, A.C., Janke, A.L., Collins, D.L., Baillet, S., 2012. Brain templates and atlases.
891 *Neuroimage* 62, 911-922.

892 Fischl, B., 2012. FreeSurfer. *Neuroimage* 62, 774-781.

893 Fischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M., 1999. High-resolution intersubject
894 averaging and a coordinate system for the cortical surface. *Hum. Brain Mapp* 8, 272-
895 284.

896 Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L., Brain
897 Development Cooperative, G., 2011. Unbiased average age-appropriate atlases for
898 pediatric studies. *Neuroimage* 54, 313-327.

899 Frey, S., Pandya, D.N., Chakravarty, M.M., Bailey, L., Petrides, M., Collins, D.L., 2011.
900 An MRI based average macaque monkey stereotaxic atlas and space (MNI monkey
901 space). *Neuroimage* 55, 1435-1442.

902 Friston, K.J., Holmes, A.P., Price, C.J., Buchel, C., Worsley, K.J., 1999. Multisubject
903 fMRI studies and conjunction analyses. *Neuroimage* 10, 385-396.

904 Glasser, M.F., Essen, D.C.V., 2011. Mapping Human Cortical Areas In Vivo Based on
905 Myelin Content as Revealed by T1- and T2-Weighted MRI. *Journal of Neuroscience*
906 31, 11597-11616.

907 Gorgolewski, K., Burns, C.D., Madison, C., Clark, D., Halchenko, Y.O., Waskom, M.L.,
908 Ghosh, S.S., 2011. Nipype: A flexible, lightweight and extensible neuroimaging data
909 processing framework in Python. *Frontiers in Neuroinformatics* 5, 13.

910 Hartig, R., Glen, D., Jung, B., Logothetis, N.K., Paxinos, G., Garza-Villarreal, E.A.,
911 Messinger, A., Evrard, H.C., 2021. The Subcortical Atlas of the Rhesus Macaque
912 (SARM) for neuroimaging. *Neuroimage* 235.

913 Hayashi, T., Hou, Y., Glasser, M.F., Autio, J.A., Knoblauch, K., Inoue-Murayama, M.,
914 Coalson, T., Yacoub, E., Smith, S., Kennedy, H., Van Essen, D.C., 2021. The
915 nonhuman primate neuroimaging and neuroanatomy project. *Neuroimage* 229,
916 117726.

917 Henschel, L., Conjeti, S., Estrada, S., Diers, K., Fischl, B., Reuter, M., 2020. FastSurfer
918 - A fast and accurate deep learning based neuroimaging pipeline. *Neuroimage* 219,
919 117012.

920 Herpers, J., Arsenault, J.T., Vanduffel, W., Vogels, R., 2021. Stimulation of the ventral
921 tegmental area induces visual cortical plasticity at the neuronal level. *Cell Rep* 37,
922 109998.

923 Impieri, D., Zilles, K., Niu, M., Rapan, L., Schubert, N., Galletti, C., Palomero-
924 Gallagher, N., 2019. Receptor density pattern confirms and enhances the anatomic-
925 functional features of the macaque superior parietal lobule areas. *Brain Structure &*
926 *Function* 224, 2733-2756.

927 Jang, G., Lee, W., Son, S., Lee, K.M., 2022. C2N: Practical Generative Noise Modeling
928 for Real-World Denoising.

929 Janssens, T., Zhu, Q., Popivanov, I.D., Vanduffel, W., 2014. Probabilistic and single-
930 subject retinotopic maps reveal the topographic organization of face patches in the
931 macaque cortex. *J Neurosci* 34, 10156-10167.

932 Jung, B., Taylor, P.A., Seidlitz, J., Sponheim, C., Perkins, P., Ungerleider, L.G., Glen,
933 D., Messinger, A., 2021. A comprehensive macaque fMRI pipeline and hierarchical
934 atlas. *Neuroimage* 235, 117997.

935 Klein, A., Andersson, J., Ardekani, B.A., Ashburner, J., Avants, B., Chiang, M.C.,
936 Christensen, G.E., Collins, D.L., Gee, J., Hellier, P., Song, J.H., Jenkinson, M., Lepage,
937 C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R.P., Mann, J.J., Parsey,
938 R.V., 2009. Evaluation of 14 nonlinear deformation algorithms applied to human brain
939 MRI registration. *Neuroimage* 46, 786-802.

940 Li, X., Zhu, Q., Vanduffel, W., 2021. Myelin densities in retinotopically defined dorsal
941 visual areas of the macaque. *Brain Struct Funct* 226, 2869-2880.

942 Li, X., Zhu, Q., Vanduffel, W., 2022. Submillimeter fMRI reveals an extensive, fine-
943 grained and functionally-relevant scene-processing network in monkeys. *Prog
944 Neurobiol* 211, 102230.

945 Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A., 2001.
946 Neurophysiological investigation of the basis of the fMRI signal. *Nature* 412, 150-157.

947 Marcus, D.S., Harms, M.P., Snyder, A.Z., Jenkinson, M., Wilson, J.A., Glasser, M.F.,
948 Barch, D.M., Archie, K.A., Burgess, G.C., Ramaratnam, M., Hodge, M., Horton, W.,
949 Herrick, R., Olsen, T., McKay, M., House, M., Hileman, M., Reid, E., Harwell, J.,
950 Coalson, T., Schindler, J., Elam, J.S., Curtiss, S.W., Van Essen, D.C., 2013. Human
951 Connectome Project informatics: Quality control, database services, and data
952 visualization. *Neuroimage* 80, 202-219.

953 McLaren, D.G., Kosmatka, K.J., Oakes, T.R., Kroenke, C.D., Kohama, S.G., Matochik,
954 J.A., Ingram, D.K., Johnson, S.C., 2009. A population-average MRI-based atlas
955 collection of the rhesus macaque. *Neuroimage* 45, 52-59.

956 Milham, M.P., Ai, L., Koo, B., Xu, T., Amiez, C., Balezeau, F., Baxter, M.G., Blezer,
957 E.L.A., Brochier, T., Chen, A., Croxson, P.L., Damatac, C.G., Dehaene, S., Everling,
958 S., Fair, D.A., Fleysher, L., Freiwald, W., Froudast-Walsh, S., Griffiths, T.D., Guedj, C.,
959 Hadj-Bouziane, F., Ben Hamed, S., Harel, N., Hiba, B., Jarraya, B., Jung, B., Kastner,
960 S., Klink, P.C., Kwok, S.C., Laland, K.N., Leopold, D.A., Lindenfors, P., Mars, R.B.,
961 Menon, R.S., Messinger, A., Meunier, M., Mok, K., Morrison, J.H., Nacef, J., Nagy, J.,
962 Rios, M.O., Petkov, C.I., Pinsk, M., Poirier, C., Procyk, E., Rajimehr, R., Reader, S.M.,
963 Roelfsema, P.R., Rudko, D.A., Rushworth, M.F.S., Russ, B.E., Sallet, J., Schmid,
964 M.C., Schwiedrzik, C.M., Seidlitz, J., Sein, J., Shmuel, A., Sullivan, E.L., Ungerleider,
965 L., Thiele, A., Todorov, O.S., Tsao, D., Wang, Z., Wilson, C.R.E., Yacoub, E., Ye, F.Q.,
966 Zarco, W., Zhou, Y.D., Margulies, D.S., Schroeder, C.E., 2018. An Open Resource for
967 Non-human Primate Imaging. *Neuron* 100, 61-74 e62.

968 Murris, S.R., Arsenault, J.T., Raman, R., Vogels, R., Vanduffel, W., 2021. Electrical
969 stimulation of the macaque ventral tegmental area drives category-selective learning
970 without attention. *Neuron* 109, 1381-1395 e1387.

971 Niu, M., Impieri, D., Rapan, L., Funck, T., Palomero-Gallagher, N., Zilles, K., 2020.
972 Receptor-driven, multimodal mapping of cortical areas in the macaque monkey
973 intraparietal sulcus. *Elife* 9, 1-31.

974 Niu, M., Rapan, L., Funck, T., Froudast-Walsh, S., Zhao, L., Zilles, K., Palomero-
975 Gallagher, N., 2021. Organization of the macaque monkey inferior parietal lobule
976 based on multimodal receptor architectonics. *Neuroimage* 231, 117843.

977 Petkov, C.I., Kayser, C., Augath, M., Logothetis, N.K., 2006. Functional imaging
978 reveals numerous fields in the monkey auditory cortex. *PLoS Biol* 4, e215.

979 Postelnicu, G., Zollei, L., Fischl, B., 2009. Combined Volumetric and Surface
980 Registration. *IEEE Transactions on Medical Imaging* 28, 508.

981 Rapan, L., Froudist-Walsh, S., Niu, M., Xu, T., Funck, T., Zilles, K., Palomero-
982 Gallagher, N., 2021. Multimodal 3D atlas of the macaque monkey motor and premotor
983 cortex. *Neuroimage* 226, 117574.

984 Rapan, L., Niu, M., Zhao, L., Funck, T., Amunts, K., Zilles, K., Palomero-Gallagher, N.,
985 2022. Receptor architecture of macaque and human early visual areas: not equal, but
986 comparable. *Brain Struct Funct* 227, 1247-1263.

987 Reveley, C., Gruslys, A., Ye, F.Q., Glen, D., Samaha, J., B, E.R., Saad, Z., A, K.S.,
988 Leopold, D.A., Saleem, K.S., 2017. Three-Dimensional Digital Template Atlas of the
989 Macaque Brain. *Cereb Cortex* 27, 4463-4477.

990 Rohlfing, T., Kroenke, C.D., Sullivan, E.V., Dubach, M.F., Bowden, D.M., Grant, K.A.,
991 Pfefferbaum, A., 2012. The INIA19 Template and NeuroMaps Atlas for Primate Brain
992 Image Parcellation and Spatial Normalization. *Front Neuroinform* 6, 27.

993 Rorden, C., Brett, M., 2000. Stereotaxic display of brain lesions. *Behavioural
994 Neurology* 12, 191-200.

995 Saleem, K., Nikos, L., 2012. A Combined MRI and Histology Atlas of the Rhesus
996 Monkey Brain in Stereotaxic Coordinates. 402.

997 Saleem, K.S., Avram, A.V., Glen, D., Yen, C.C., Ye, F.Q., Komlosh, M., Basser, P.J.,
998 2021. High-resolution mapping and digital atlas of subcortical regions in the macaque
999 monkey based on matched MAP-MRI and histology. *Neuroimage* 245, 118759.

1000 Seidlitz, J., Sponheim, C., Glen, D., Ye, F.Q., Saleem, K.S., Leopold, D.A.,
1001 Ungerleider, L., Messinger, A., 2018. A population MRI brain template and analysis
1002 tools for the macaque. *Neuroimage* 170, 121-131.

1003 Shi, Y., Budin, F., Yapuncich, E., Rumple, A., Young, J.T., Payne, C., Zhang, X., Hu,
1004 X., Godfrey, J., Howell, B., Sanchez, M.M., Styner, M.A., 2016. UNC-Emory Infant
1005 Atlases for Macaque Brain Image Analysis: Postnatal Brain Development through 12
1006 Months. *Front Neurosci* 10, 617.

1007 Sirmpilatze, N., Klink, P.C., 2020. RheMAP: Non-linear warps between common
1008 rhesus macaque brain templates.

1009 Sotiras, A., Davatzikos, C., Paragios, N., 2013. Deformable medical image registration:
1010 a survey. *IEEE Trans Med Imaging* 32, 1153-1190.

1011 Sultan, F., Hamodeh, S., Murayama, Y., Saleem, K.S., Logothetis, N., 2010. Flat map
1012 areal topography in *Macaca mulatta* based on combined MRI and histology. *Magn
1013 Reson Imaging* 28, 1159-1164.

1014 Vaiopoulos, A.D., 2011. Developing Matlab scripts for image analysis and quality
1015 assessment. In: Michel, U., Civco, D.L. (Eds.), Earth Resources and Environmental
1016 Remote Sensing/GIS Applications II. SPIE, p. 81810B.

1017 Van Essen, D.C., 2004. Surface-based approaches to spatial localization and
1018 registration in primate cerebral cortex. *Neuroimage* 23 Suppl 1, S97-107.

1019 Van Essen, D.C., Drury, H.A., Dickson, J., Harwell, J., Hanlon, D., Anderson, C.H.,
1020 2001. An integrated software suite for surface-based analyses of cerebral cortex. *J Am
1021 Med Inform Assoc* 8, 443-459.

1022 Van Essen, D.C., Drury, H.A., Joshi, S., Miller, M.I., 1998. Functional and structural
1023 mapping of human cerebral cortex: solutions are in the surfaces. *Proc. Natl. Acad. Sci.
1024 U. S. A* 95, 788-795.

1025 Van Essen, D.C., Glasser, M.F., Dierker, D.L., Harwell, J., 2012. Cortical parcellations
1026 of the macaque monkey analyzed on surface-based atlases. *Cereb Cortex* 22, 2227-
1027 2240.

1028 Vanduffel, W., Fize, D., Mandeville, J.B., Nelissen, K., Van Hecke, P., Rosen, B.R.,
1029 Tootell, R.B.H., Orban, G.A., 2001. Visual motion processing investigated using
1030 contrast agent-enhanced fMRI in awake behaving monkeys. *Neuron* 32, 565-577.

1031 Vanduffel, W., Zhu, Q., Orban, G.A., 2014. Monkey Cortex through fMRI Glasses.
1032 *Neuron* 83, 533-550.

1033 Vincent, R.D., Neelin, P., Khalili-Mahani, N., Janke, A.L., Fonov, V.S., Robbins, S.M.,
1034 Baghdadi, L., Lerch, J., Sled, J.G., Adalat, R., MacDonald, D., Zijdenbos, A.P., Collins,
1035 D.L., Evans, A.C., 2016. MINC 2.0: A Flexible Format for Multi-Modal Images. *Frontiers
1036 in Neuroinformatics* 10, 35.

1037 Wang, X., Li, X.H., Cho, J.W., Russ, B.E., Rajamani, N., Omelchenko, A., Ai, L.,
1038 Korchmaros, A., Sawiak, S., Benn, R.A., Garcia-Saldivar, P., Wang, Z., Kalin, N.H.,
1039 Schroeder, C.E., Craddock, R.C., Fox, A.S., Evans, A.C., Messinger, A., Milham, M.P.,
1040 Xu, T., 2021. U-net model for brain extraction: Trained on humans for transfer to non-
1041 human primates. *Neuroimage* 235, 118001.

1042 Weiss, A.R., Liu, Z., Wang, X., Liguore, W.A., Kroenke, C.D., McBride, J.L., 2021. The
1043 macaque brain ONPRC18 template with combined gray and white matter labelmap for
1044 multimodal neuroimaging studies of Nonhuman Primates. *Neuroimage* 225.

1045 Woolrich, M.W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T.,
1046 Beckmann, C., Jenkinson, M., Smith, S.M., 2009. Bayesian analysis of neuroimaging
1047 data in FSL. *Neuroimage* 45, S173-S186.

1048 Yao, T., Vanduffel, W., 2022. Neuronal congruency effects in macaque prefrontal
1049 cortex. *Nat Commun* 13, 4702.

1050 Yushkevich, P.A., Piven, J., Cody Hazlett, H., Gimpel Smith, R., Ho, S., Gee, J.C.,
1051 Gerig, G., 2006. User-Guided 3D Active Contour Segmentation of Anatomical

1052 Structures: Significantly Improved Efficiency and Reliability. *Neuroimage* 31, 1116–
1053 1128.

1054 Zhao, X., Zhao, X.M., 2021. Deep learning of brain magnetic resonance images: A
1055 brief review. *Methods (San Diego, Calif.)* 192, 131-140.

1056 Zhu, Q., Vanduffel, W., 2019. Submillimeter fMRI reveals a layout of dorsal visual
1057 cortex in macaques, remarkably similar to New World monkeys. *Proc Natl Acad Sci U
1058 S A* 116, 2306-2311.

1059 Zöllei, L., Stevens, A., Huber, K., Kakunoori, S., Fischl, B., 2010. Improved
1060 Tractography Alignment Using Combined Volumetric and Surface Registration.
1061 *Neuroimage* 51, 206.

1062

1063

1064 **Tables**

1065 **Table 1.** Non-exhaustive list of some of the most frequently used macaque templates.

1066 All templates were obtained from *Macaca mulatta* monkeys, except for the MNI
1067 template, which was built from *Macaca mulatta* (Mm) and *Macaca fascicularis* (Mf)
1068 brain scans. Abbreviations: N/A = not available; Res. = Resolution; Skull str. = the
1069 template is available in the original format (OF) or only in a skull stripped (SSF) format.

1070

Template	Skull str.	Sequence	Res. (mm)	Number of brains	Associated atlas(es)	Volume format	Surface format
NMT (Jung et al., 2021; Seidlitz et al., 2018) v1.2/v1.3/v2.0	OF	T1	0.25	31	D99-SL (Reveley et al., 2017) CHARM (Jung et al., 2021) SARM (Hartig et al., 2021)	NIFTI	GIFTI
D99 (Reveley et al., 2017; Saleem et al., 2021) v1/v2	SSF	T1, T2, DTI, MAP-MRI, MTR	0.25	1	D99-SL	NIFTI	GIFTI
INIA19 (Rohlfing et al., 2012)	OF	T1	0.50	19	Neuromaps	NIFTI	N/A
MNI (Frey et al., 2011)	OF	T1	0.25	18 Mf 7Mm	Paxinos	MINC, NIFTI	N/A
Yerkes19 (Donahue et al., 2018; Van Essen et al., 2012)	OF	T1, T2	0.50	19	F99(Van Essen, 2004)	NIFTI, MGZ	GIFTI, MGZ
112RM-SL (McLaren et al., 2009)	SSF	T1, T2*	0.50	112 (McLaren et al., 2009)*	D99-SL (Reveley et al., 2017) F99 (Van Essen, 2004)	NIFTI	N/A
UNC-Emory atlas (Shi et al., 2016)	OF	T1, T2, DTI	0.60	40		NRRD	N/A
ONPRC18 (Weiss et al., 2021)	SSF	T1, T2, DTI	0.50	18	ONPRC18	NIFTI	N/A
F99 (Van Essen, 2004)	SSF	T1	0.50	1		NIFTI	GIFTI

1071 * T2-weighted scans only available for 9 of the 112 animals

1072

1073

1074

1075 **Table 2.** C2N median values for MEBRAINS_T1, MEBRAINS_T1/T2, ANTS10_T1,
1076 ANTS10_T1/T2, NMT v2.0 and Yerkes19. All pairs of medians are significantly
1077 different ($p < 10^{-8}$) for each sub-structure. Fonts colored red, green (for T1/T2 images)
1078 and blue (for T1 images) outline the largest values of C2N. Abbreviations: Am =
1079 Amygdala; Cd = Caudate; Cl = Claustrum; NAc = Nucleus accumbens; Pu = Putamen;
1080 GM = cortical Gray-Matter.

C2N	Cd	Pu	Am	NAc	Cl	GM
MEBRAINS_T1	2.06	1.42	2.82	2.34	2.32	2.26
MEBRAINS_T1/T2	4.31	3.13	5.81	4.97	5.06	4.71
ANTS10_T1	1.20	0.89	1.27	1.19	1.20	1.02
ANTS10_T1/T2	4.10	3.01	4.73	4.34	4.44	4.09
NMT v2.0	1.77	1.04	2.05	1.73	1.67	1.74
Yerkes19	1.79	1.40	2.03	1.82	1.47	1.63

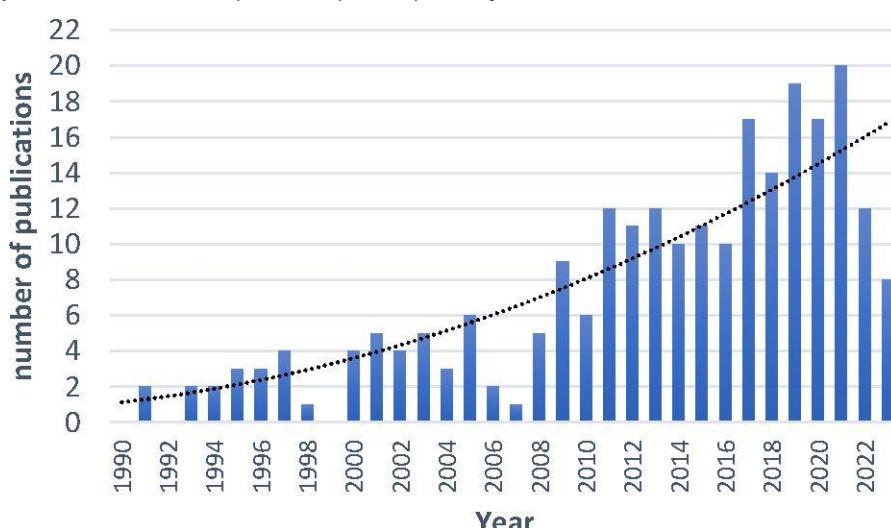
1081
1082
1083 **Table 3.** KI median values. for MEBRAINS_T1, MEBRAINS_T1/T2, ANTS10_T1,
1084 ANTS10_T1/T2, NMT v2.0 and Yerkes19. All pairs of medians are significantly
1085 different ($p < 10^{-8}$) for each sub-structure. Fonts colored red, green (for T1/T2 images)
1086 and blue (for T1 images) outline the largest values of KI. Abbreviations: Am =
1087 Amygdala; Cd = Caudate; Cl = Claustrum; NAc = Nucleus accumbens; Pu = Putamen;
1088 GM = cortical Gray-Matter

KI	Cd	Pu	Am	NAc	Cl	GM
MEBRAINS_T1	0.33	0.23	0.45	0.37	0.37	0.36
MEBRAINS_T1/T2	0.69	0.50	0.93	0.79	0.81	0.75
ANTS10_T1	0.28	0.21	0.30	0.28	0.28	0.24
ANTS10_T1/T2	0.66	0.49	0.76	0.70	0.72	0.66
NMT v2.0	0.51	0.30	0.59	0.50	0.48	0.50
Yerkes19	0.40	0.32	0.46	0.41	0.33	0.37

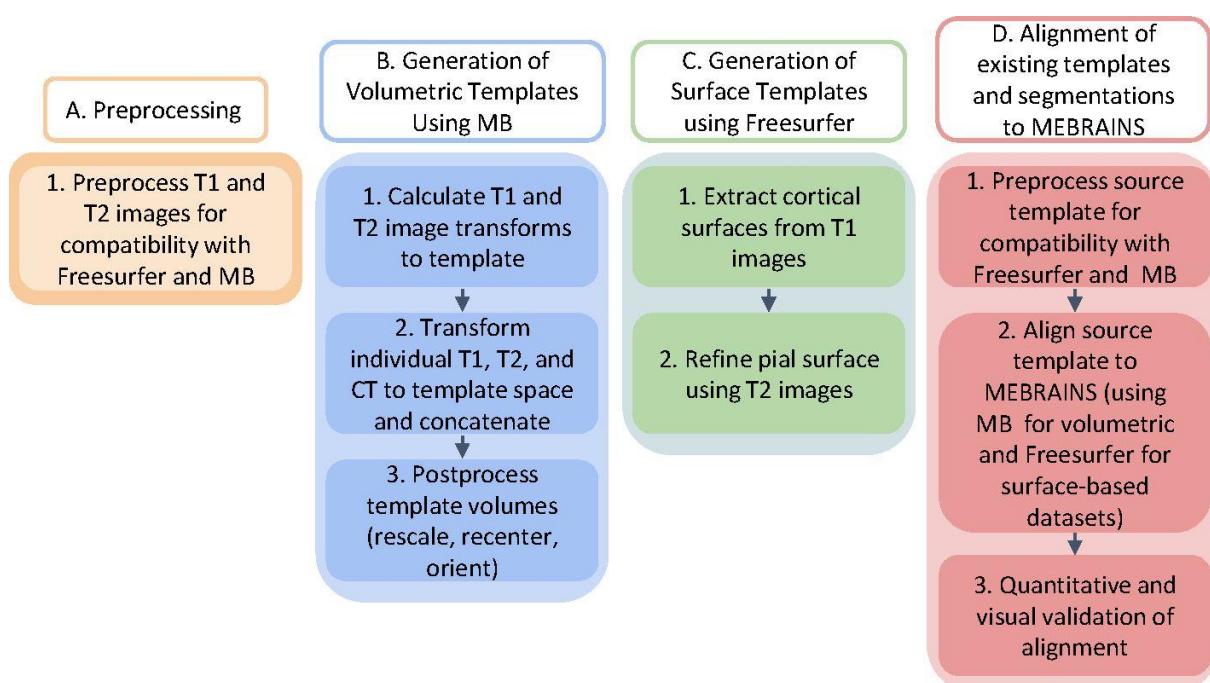
1089
1090
1091

1092 **Figures**

1093 **Figure 1.** Number of publications per year related to brain templates in macaque
1094 monkeys. A PubMed search query was performed June 2023 using the following
1095 keyword combination: (“monkey” OR “macaque” OR “NHP” OR “non-human primate”)
1096 AND (“template” OR “atlas”) AND (brain). Polynomial fit with $R^2 = 0.7157$.

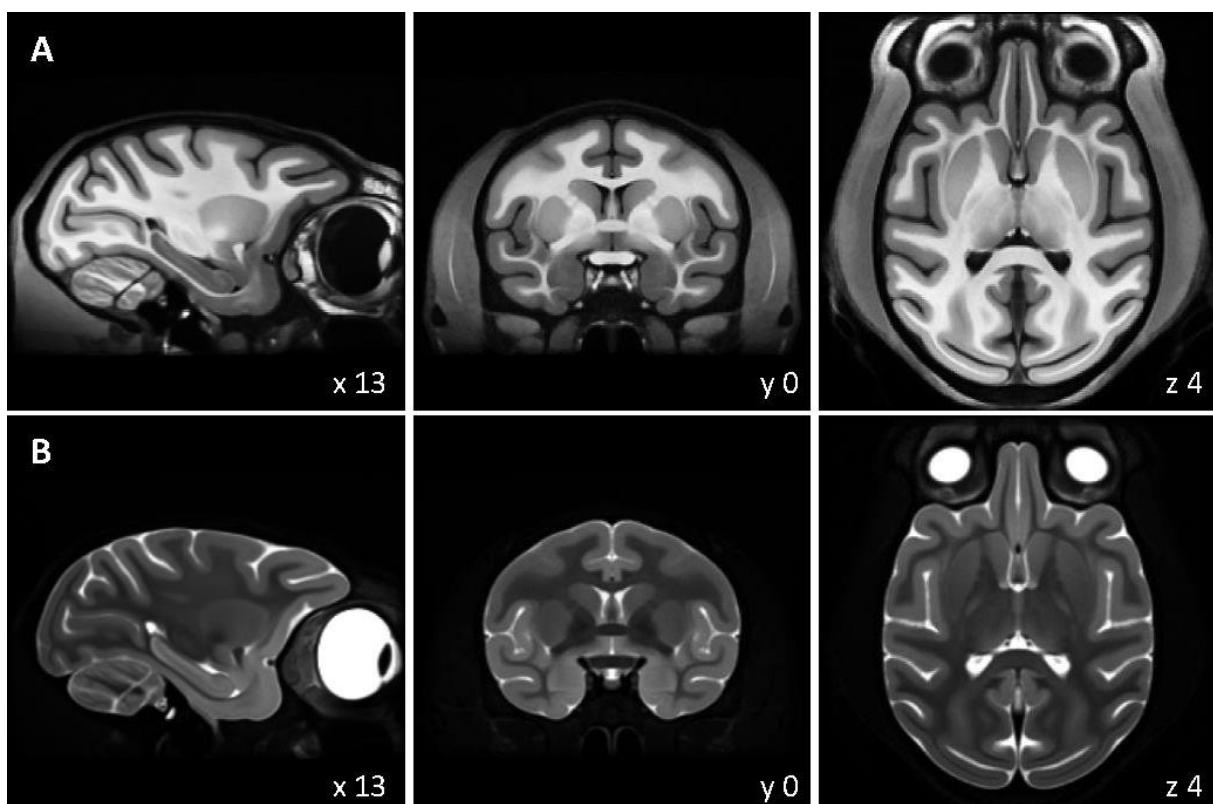


1097
1098
1099 **Figure 2.** Overview of the pipeline used for the generation of a population-based
1100 template that represents an average of high-resolution structural T1 and T2 MRI scans
1101 as well as CT.



1102
1103

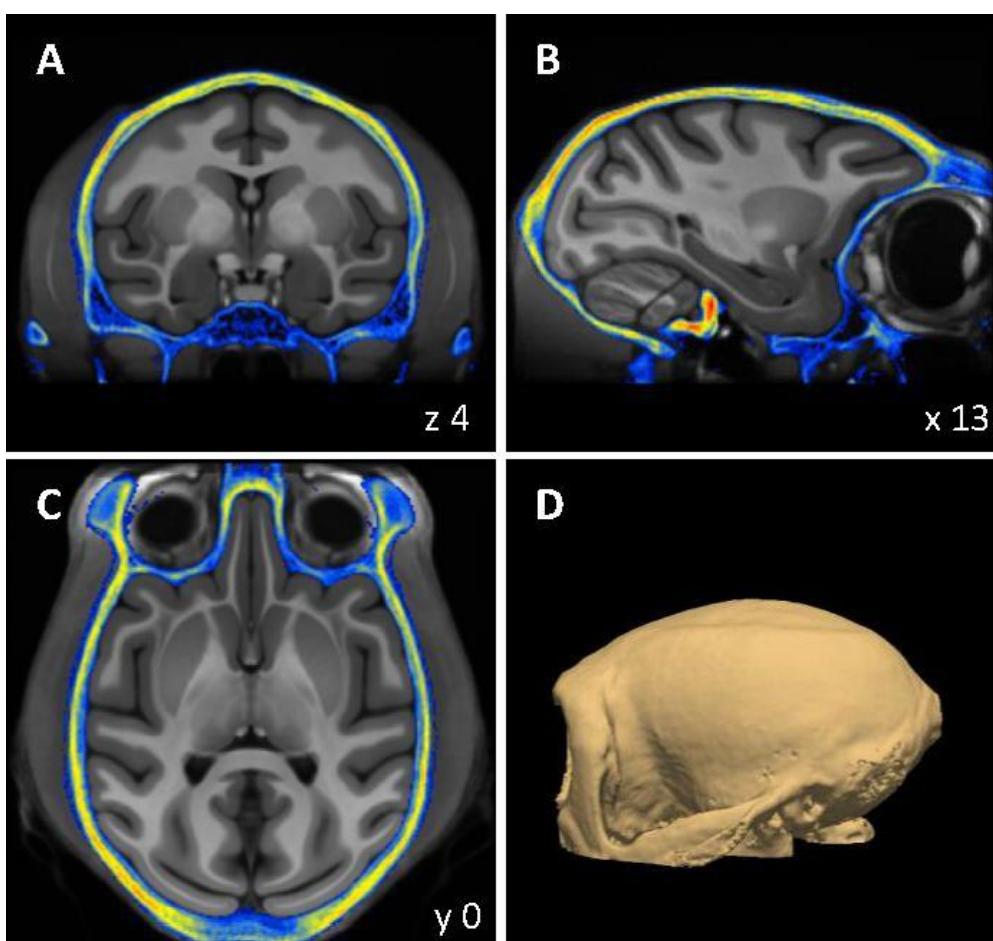
1104 **Figure 3.** Three orthogonal sections of the MEBRAINS_T1 (A) and MEBRAINS_T2
1105 (B) templates. The NIFTI-volumes used to create this figure can be found in supple-
1106 mentary material, and are also made publicly available via the EBRAINS platform from
1107 the Human Brain Project (<https://doi.org/10.25493/5454-ZEA>).



1108

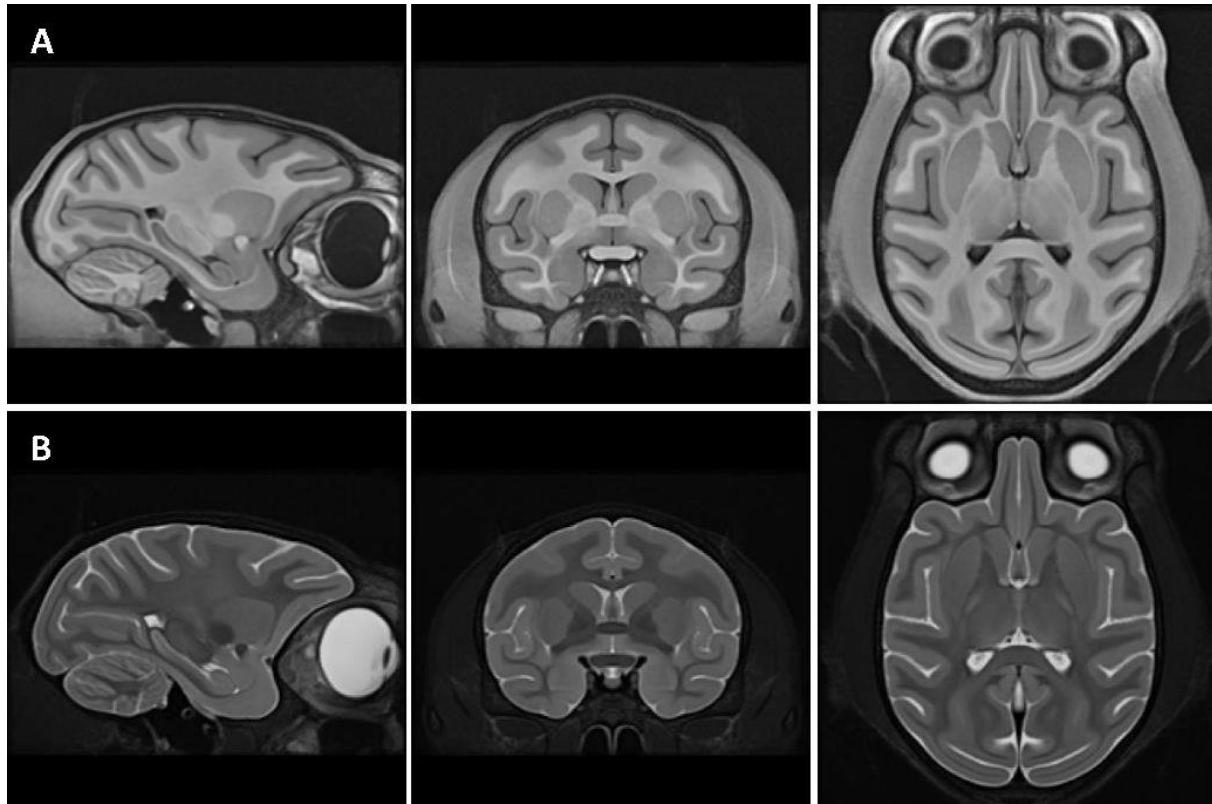
1109

1110 **Figure 4.** Three orthogonal sections (A-C) and 3D rendering (D) of the MEBRAINS_CT
1111 template. The corresponding NIFTI-volume can be found in the supplementary
1112 material, and is also made publicly available via the EBRAINS platform from the
1113 Human Brain Project (<https://doi.org/10.25493/5454-ZEA>).



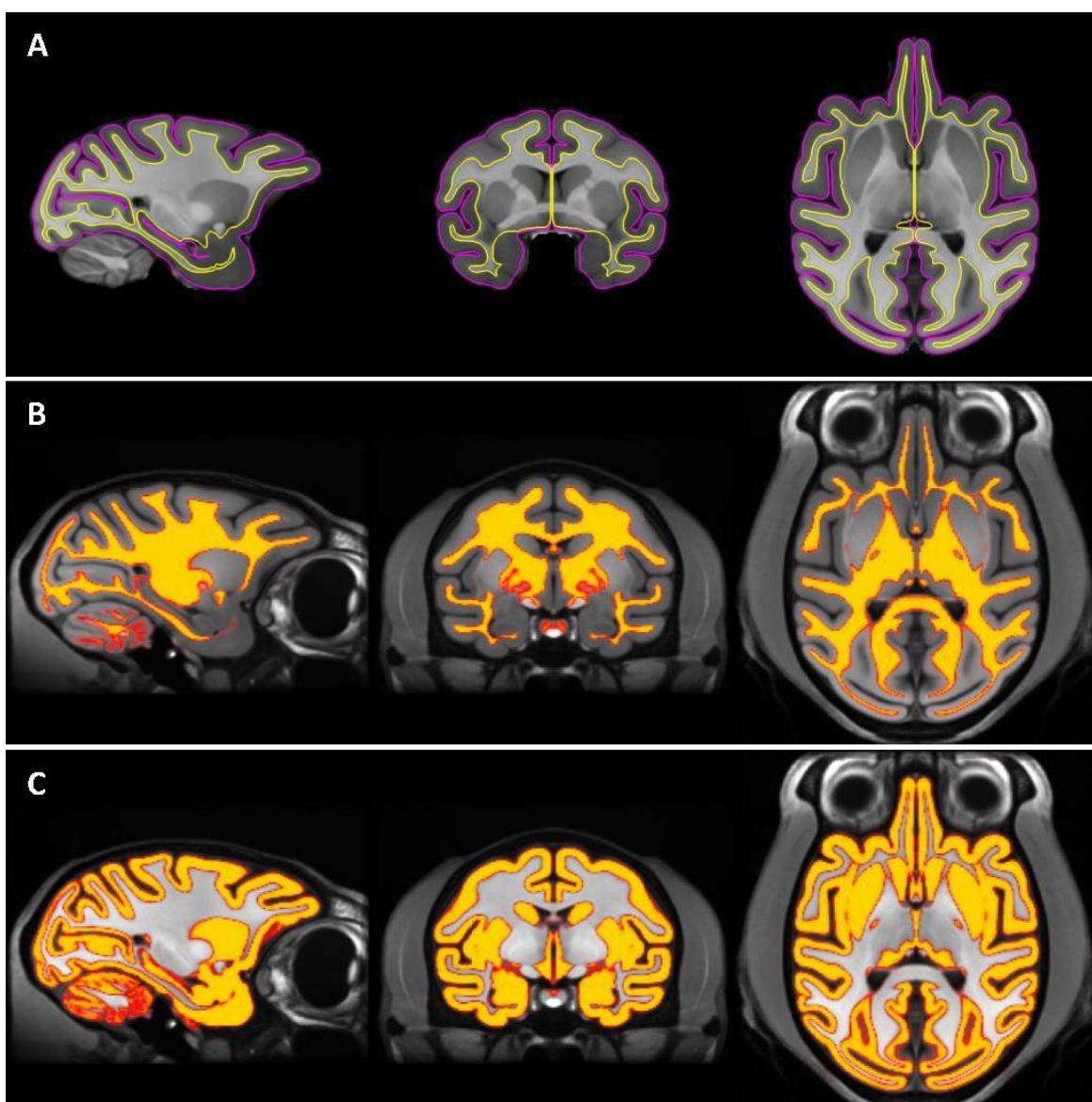
1114
1115

1116 **Figure 5.** Three orthogonal sections of the ANTS10 templates generated from T1 (A)
1117 and T2 (B) images. To facilitate comparison with the corresponding MEBRAINS
1118 templates, the sections shown are the same as those depicted in Figure 1.



1119
1120
1121

1122 **Figure 6.** Generation of pial and white matter surfaces using FreeSurfer (A) and MB
1123 (B, C). (A) Pial (magenta) and white matter (yellow) boundaries overlaid on the
1124 MEBRAINS_T1 template. (B) White matter mask overlaid on the MEBRAINS_T1
1125 template. (C) Gray matter mask overlaid on the MEBRAINS_T1 template. The sagittal,
1126 coronal, and horizontal sections depicted correspond to coordinates x13, y0 and z4,
1127 respectively.

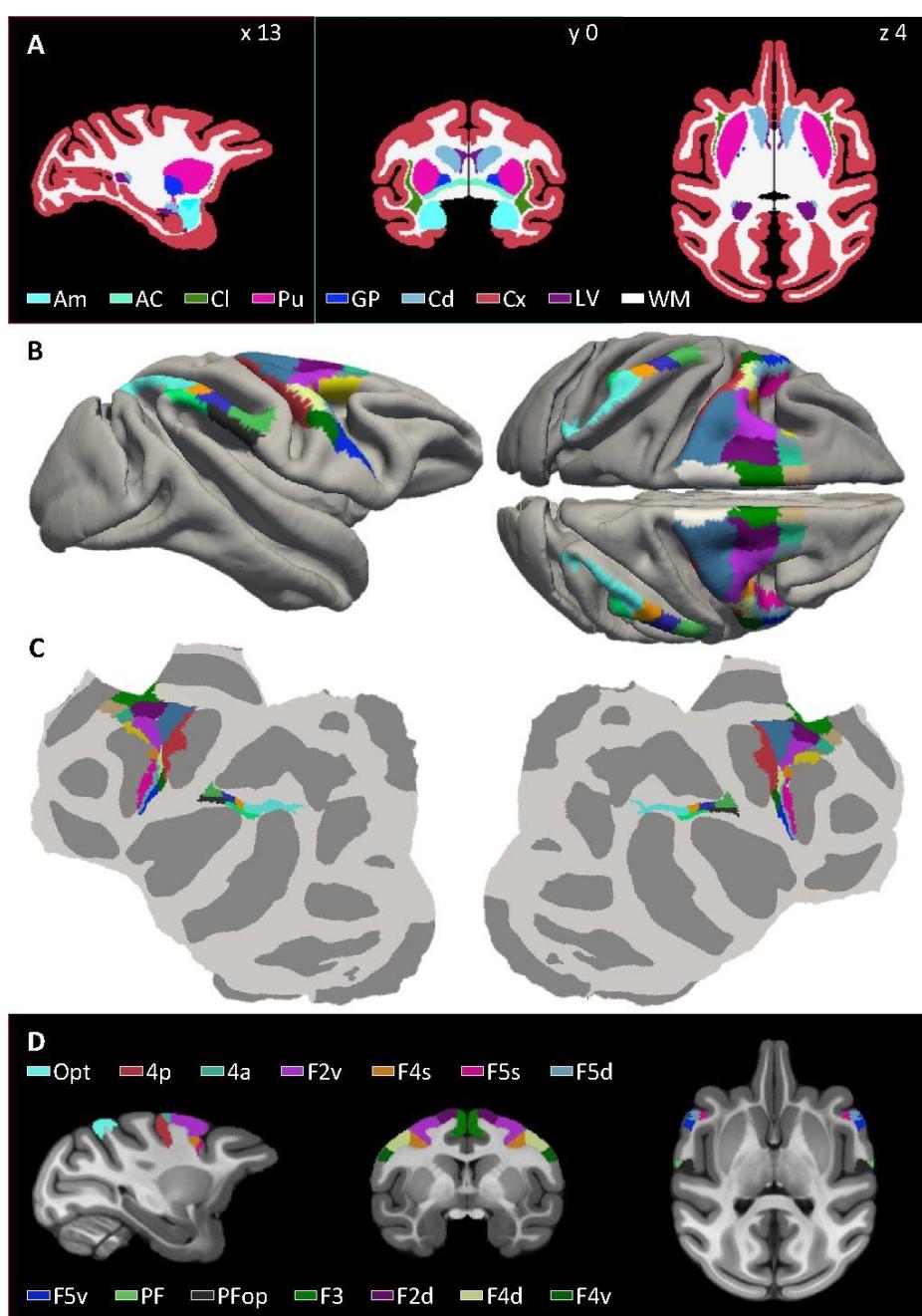


1128

1129

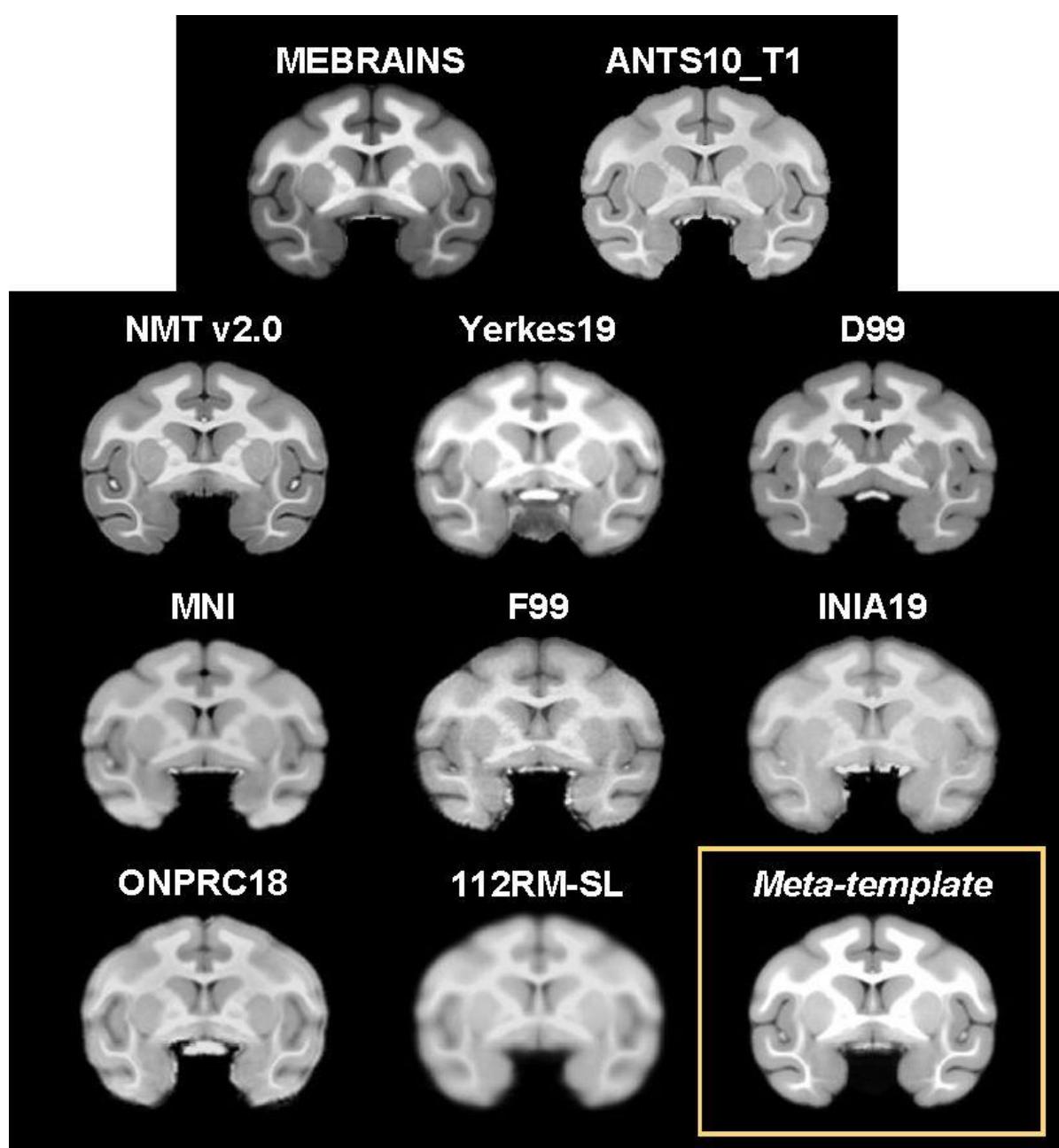
1130

1131 **Figure 7.** (A) Human curated segmentation of the cortical ribbon, white matter and
1132 lateral ventricles, as well as of diverse subcortical nuclei, and the anterior commissure.
1133 (B,C,D) Areas of the macaque inferior parietal lobule (Niu et al., 2021) and of the motor
1134 and pre-motor cortex (Rapan et al., 2021) warped from the Yerkes19 template to
1135 MEBRAINS. Areas are overlaid on the folded surface of MEBRAINS in (B), the flat
1136 maps in (C), and exemplary sections of MEBRAINS_T1 are shown in (D).
1137 Abbreviations: AC = anterior commissure; Am = Amygdala; CC = cerebral cortex;
1138 Cd=Caudate nucleus; Cl = Claustrum; GP = globus pallidus; LV = lateral ventricle; NAc
1139 = Nucleus accumbens; Pu=Putamen. The sagittal, coronal, and horizontal sections
1140 depicted in A and D correspond to coordinates x13, y0 and z4, respectively.



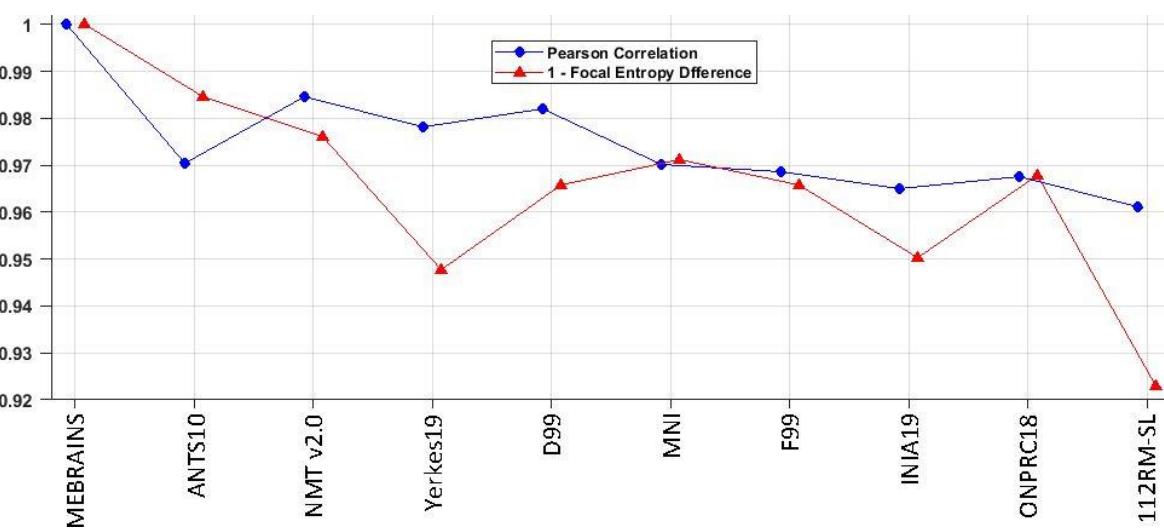
1141

1142 **Figure 8.** Eight of commonly used rhesus macaque brain templates (NMT v2.0
1143 (Seidlitz et al., 2018), Yerkes19 (Donahue et al., 2018; Van Essen et al., 2012), D99
1144 (Reveley et al., 2017), MNI (Frey et al., 2011), F99 (Van Essen, 2004), INIA19
1145 (Rohlfing et al., 2012), ONPRC18 (Weiss et al., 2021) and 112RM-SL (McLaren et al.,
1146 2009)), as well as our ANTS10_T1 volume (i.e., the template built with ANTS using the
1147 same 10 datasets as MEBRAINS_T1) were registered to MEBRAINS using ANTS. The
1148 meta-template represents the average of all these datasets with the exception of
1149 112RM-SL.



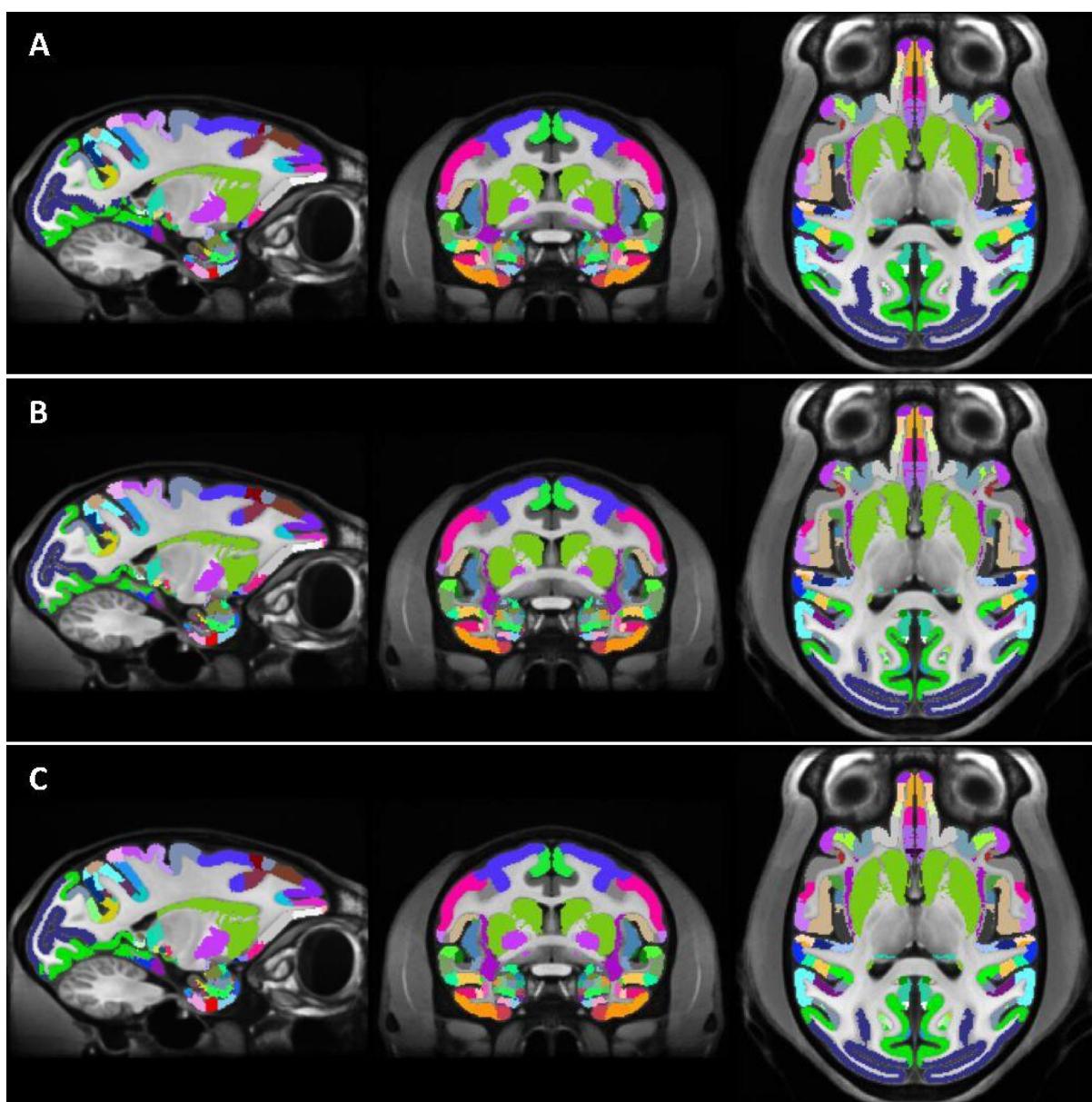
1150
1151

1152 **Figure 9.** Pearson correlation and “1 – Focal Entropy Difference” (scaled to facilitate
1153 comparisons with the correlation method: 0 – total dissimilarity; 1 – total similarity)
1154 calculated for the reference anatomy MEBRAINS compared with the following
1155 templates: MEMRAINS, ANTS10_T1, NMT v2.0, Yerkes19, D99, MNI, F99, INIA19,
1156 ONPRC18 and 112RM-SL. Comparison of MEBRAINS with itself (value 1) provides
1157 the reference for the ideal registration.



1158
1159
1160

1161 **Figure 10.** D99 atlas registered to MEBRAINS using the MB (A), ANTS (B) and “run-
1162 N-select-high-probability-values” (C) approaches. The different registrations of the
1163 atlas are overlaid on the MEBRAINS template.

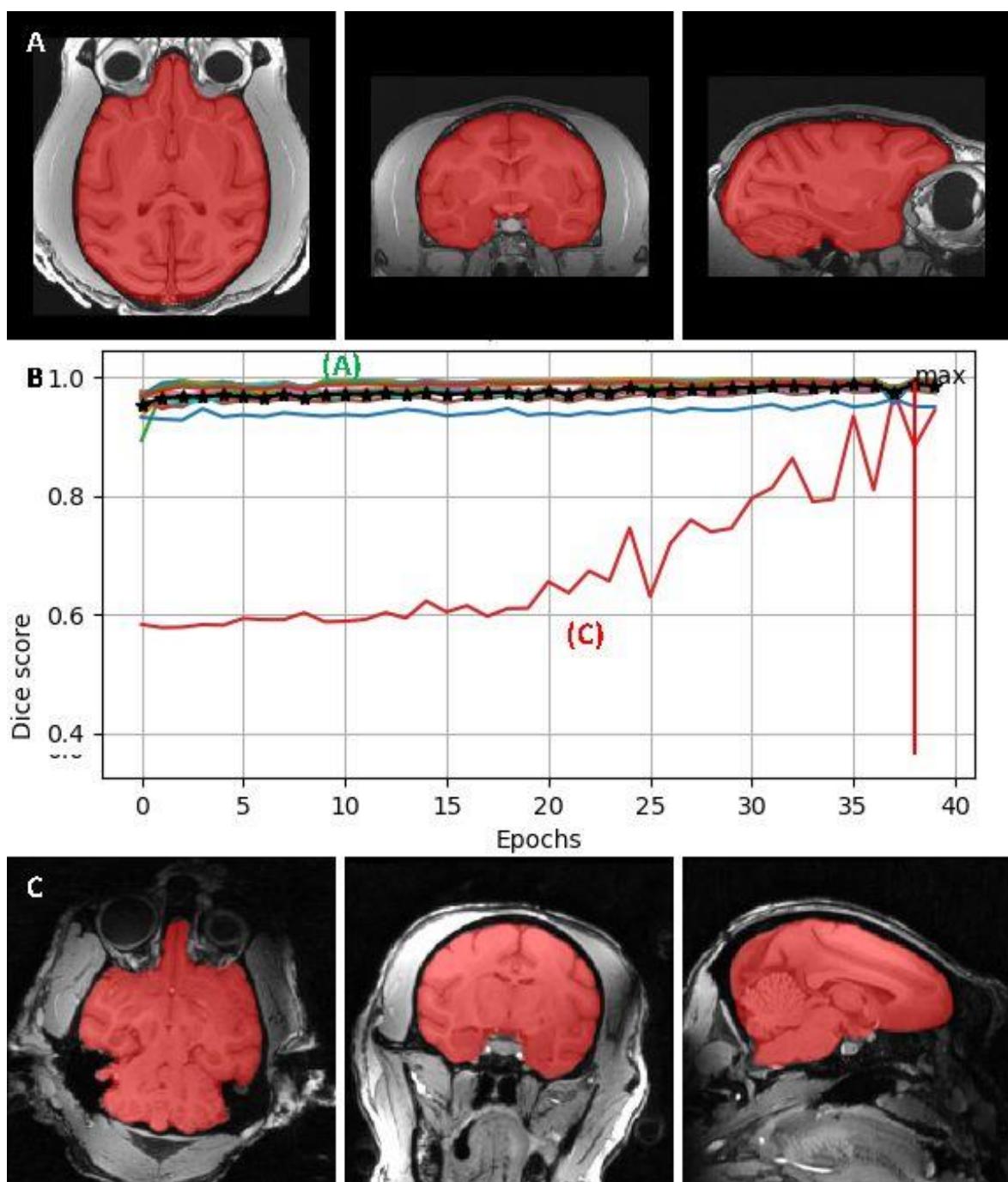


1164

1165

1166

1167 **Figure 11.** Masking performance of the U-net convolutional neural network using one
1168 example model. The predicted mask at the end of the training for an “easy” anatomy
1169 (A) and a “difficult” anatomy (C), and the dice score during the training (B). The
1170 performance for the “difficult” anatomy (red line in B) reached the optimal performance
1171 later than for the “easy” anatomy (green line in B). The maximum average dice score
1172 is 0.9887, and was reached in epoch 38.

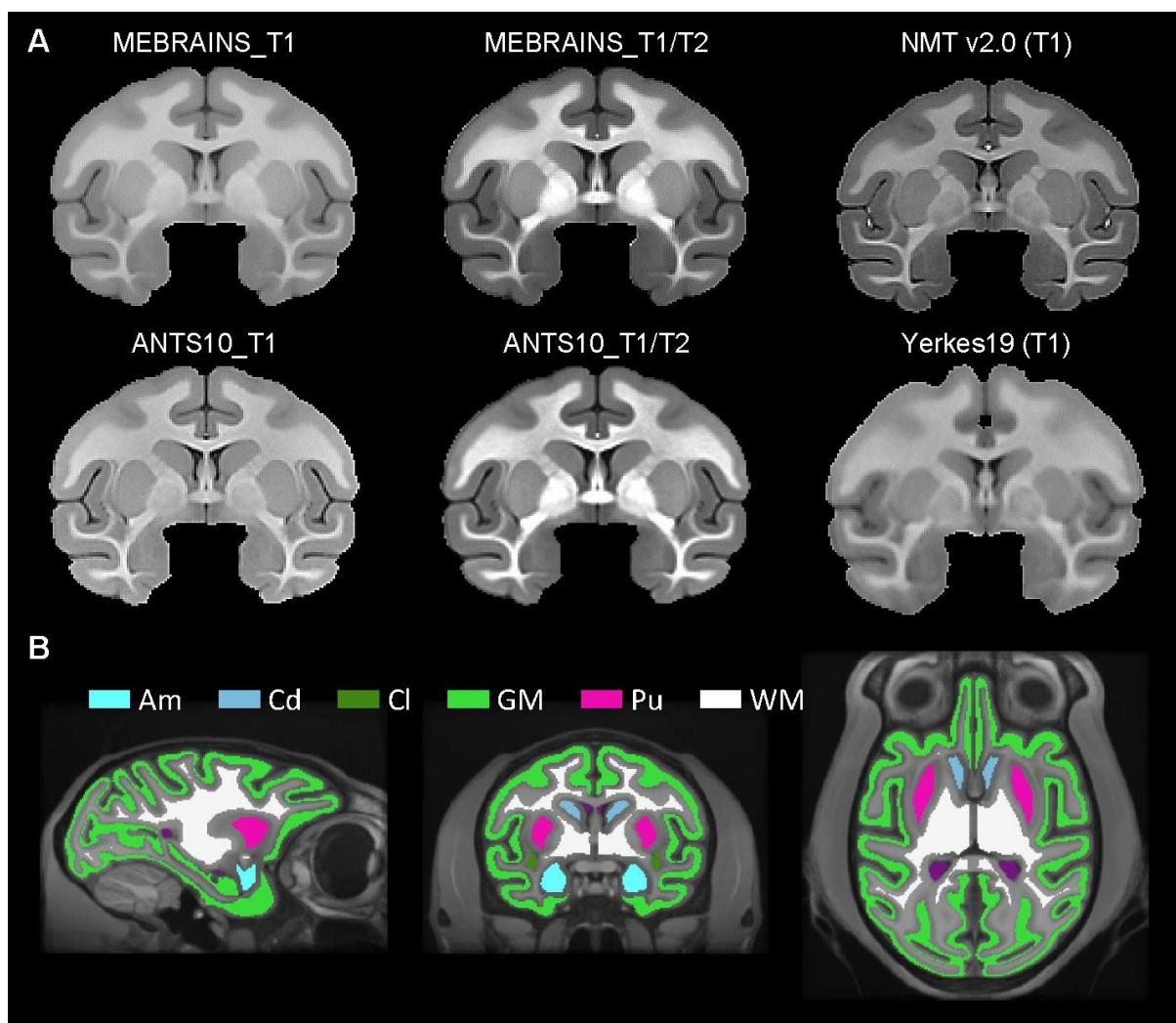


1173

1174

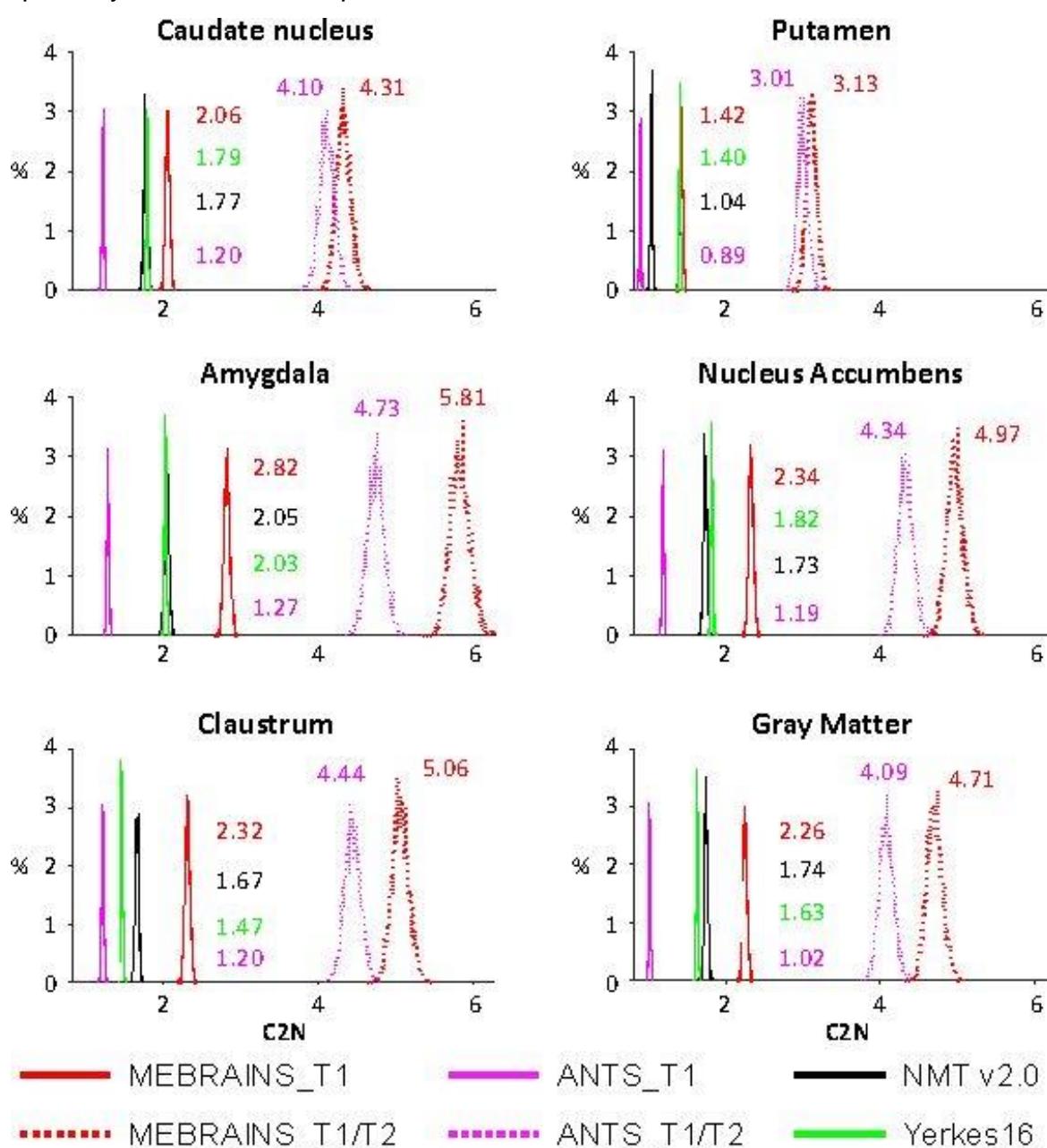
1175

1176 **Figure 12.** (A) Anatomies of the six templates used to quantitatively compare the
1177 quality of the EBRAINS template. (B) Structures that were selected for the
1178 MEBRAINS_T1 template: Am = Amygdala; Cd=Caudate; Cl = Claustrum; GM =
1179 cortical Gray Matter; Pu=Putamen; WM = White Matter.



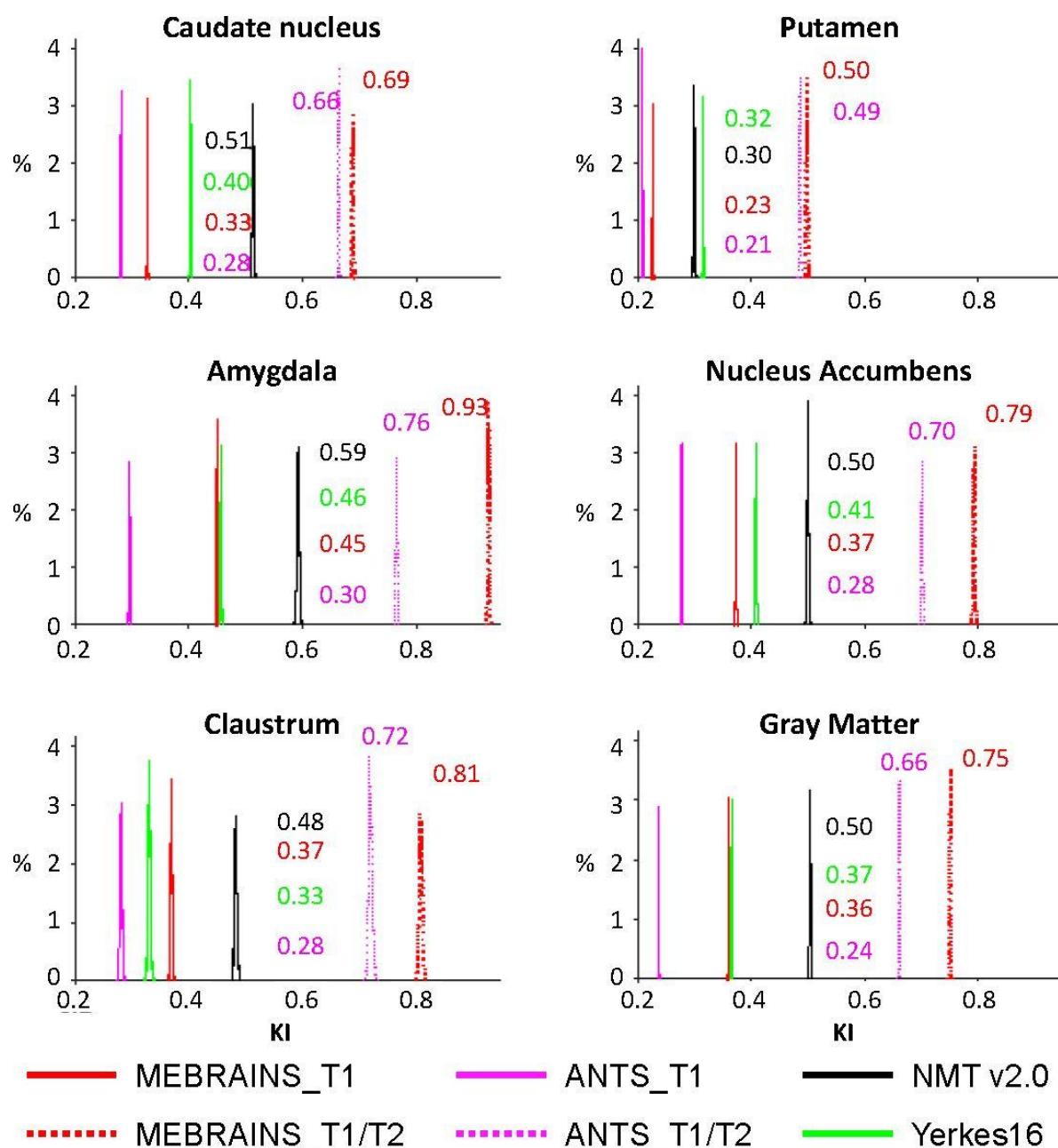
1180
1181
1182

1183 **Figure 13.** C2N parameter distribution of means for the templates shown in Table 2
1184 and [Figure 12A](#). Parameters were calculated for the 6 selected sub-structures
1185 separately, and numbers represent the median values.



1186
1187
1188

1189 **Figure 14.** KI parameter distribution of means for the templates shown in Table 3 and
1190 **Figure 12.** Parameters were calculated for the 6 selected sub-structures separately,
1191 and numbers represent the median values.



1192