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ABSTRACT 28 

Due to their fundamental relevance, the number of anatomical macaque brain 29 

templates is constantly growing. Novel templates aim to alleviate limitations of 30 

previously published atlases and offer the foundation to integrate multiscale multimodal 31 

data. Typical limitations of existing templates include their reliance on one subject, their 32 

unimodality (usually only T1 or histological images), or lack of anatomical details. The 33 

MEBRAINS template overcomes these limitations by using a combination of T1 and 34 

T2 images, from the same 10 animals (Macaca mulatta), which are averaged by the 35 

multi-brain toolbox for diffeomorphic registration and segmentation. The resulting 36 

volumetric T1 and T2 templates are supplemented with high quality white and gray 37 

matter surfaces built with FreeSurfer. Human-curated segmentations of pial surface, 38 

white/gray matter interface and major subcortical nuclei were used to analyse the 39 

relative quality of the MEBRAINS template. Recently published 3D maps of the 40 

macaque inferior parietal lobe and (pre)motor cortex were warped to the MEBRAINS 41 

surface template, thus populating it with a parcellation scheme based on cyto- and 42 

receptor architectonic analyses. Finally, 9 CT scans of the same monkeys were 43 

registered to the T1 modality and co-registered to the template. Through its main 44 

features (multi-subject, multi-modal, volume-and-surface, traditional and deep 45 

learning-based segmentations), MEBRAINS aims to improve integration of multi-modal 46 

multi-scale macaque data and is quantitatively equal or better compared to currently 47 

widely used macaque templates. The template is integrated in the EBRAINS and 48 

Scalable Brain Atlas web-based infrastructures, each of which comes with its own suite 49 

of spatial registration tools. 50 

 51 

INTRODUCTION 52 

The macaque monkey is an important model system for systems neuroscience. 53 

Genetic, functional, and anatomical properties of the macaque brain resemble those 54 

of the human more closely than other animal models which can be used in biomedical 55 

research. As such the macaque has provided translational benefits and the ability to 56 

test hypotheses using very precise invasive techniques (e.g., electrophysiology, 57 

optogenetics, histology, lesions, etc.). Moreover, the application of non-invasive brain 58 

imaging techniques in both humans and monkeys has helped to relate hemodynamic 59 

findings from human research to neuronal properties and demonstrate the translational 60 

relevance of the macaque as a model system (Seidlitz et al., 2018). 61 
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The existence of anatomical templates is an essential step, however, to anchor and 62 

integrate a wealth of multi-level neuroscience data (from molecules to maps) in the 63 

same ordered space and to enable objective cross-level or cross-species 64 

comparisons, an approach which has recently been implemented for the human brain 65 

(Amunts et al., 2014). Single subject-based neuroscience is by definition limited by the 66 

idiosyncratic anatomy and physiology of an individual, hence does not allow us to make 67 

general statements at population level. Multi-subject analyses, on the other hand, 68 

bolster scientific validity by increasing statistical power and highlighting reliable 69 

neurological phenomena across the population (Friston et al., 1999). To facilitate 70 

comparisons across subjects, data from each subject should be registered to a 71 

template. Moreover, templates based on multiple subjects are optimal for group-level 72 

analyses because they possess features that are more representative of the 73 

population's “average” brain anatomy which offers higher cross-subject validity (Dadar 74 

et al., 2022; Evans et al., 2012; Fonov et al., 2011).  75 

Because of their value, macaque neuroscience is populated with increasingly more 76 

and better anatomical templates (Table 1), each with their own benefits and caveats. 77 

Fortunately, mathematical transformations allow us to link representations between 78 

different template spaces. In line with this, also the number of publications (Figure 1) 79 

related to research using macaque brain templates is increasing.  80 

However, existing templates have important limitations when they are based on a 81 

single animal, unimodal images (e.g., T1-weighted images), or when they lack 82 

sufficient anatomical details (i.e., when the resolution is too low). While single subject-83 

based templates are less representative of the population’s anatomy, multi-subject 84 

templates suffer from blurred images because of non-perfect registration between 85 

images of the individual subjects and inherent averaging-induced smoothing. Recently, 86 

multi-subject templates have been improved relative to those which were based on 87 

linear registration methods (Friston et al., 1999) by employing sophisticated nonlinear 88 

transformation techniques (Brudfors et al., 2020; Friston et al., 1999). These novel 89 

methods (Brudfors et al., 2020) yielded improved anatomical details and contrast. 90 

However, nonlinear transformation algorithms on 3D volumes easily result in warping 91 

artefacts due to their high degrees of freedom and flexibility. Consequently, there is a 92 

strong interest to use surfaces for displaying data and registering brain images. Yet, 93 

multi-subject templates providing surfaces in addition to volumetric representation are 94 

still rare (see Table 1).  95 
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To address this problem, we propose a first version of a template based on the brains 96 

of 10 monkeys for which both high-resolution (isotropic 0.064 mm3) T1 and T2 images 97 

were recorded within the same scan session. Additionally, CT scans are available for 98 

9 of these monkeys. We are steadily increasing the number of subjects, which will be 99 

implemented in later versions of the template. Second, we tested and compared 100 

several non-linear registration algorithms to improve the quality of the average 101 

template. The multi-brain (MB) toolbox (Brudfors et al., 2020) applied simultaneously 102 

to T1 and T2 images resulted in the most faithful template and was selected as the 103 

best solution. Additionally, it generates an underlying tissue classification as part of the 104 

registration process. Third, our approach allows to integrate an unlimited number of 105 

modalities (e.g., T1, T2, diffusion-weighted (DW), computed tomography (CT)) using 106 

the same processing software. Fourth, we provide both volumetric and surface 107 

representations of the template. Fifth, our template is integrated in the EBRAINS 108 

environment (https://ebrains.eu/about) and thus enables to compare data from multiple 109 

species using the same meta-platform. Sixth, we started to populate the template with 110 

a human-curated segmentation of major subcortical nuclei and with recently published 111 

maps of the macaque monkey motor, parietal and early visual cortex based on cyto- 112 

and receptor architectonic analyses (Niu et al., 2020; Niu et al., 2021; Rapan et al., 113 

2021; Rapan et al., 2022). Seventh, we integrated new methods for data processing in 114 

the macaque based on recent AI developments and applications in neuroscience, 115 

(e.g., deep learning for skull stripping and segmentation). Last, but not least, several 116 

of the animals with brain anatomies included in this template are still alive, so new data 117 

can be acquired to populate and enrich the atlas. 118 

 119 

MATERIALS AND METHODS 120 

Subject information 121 

10 rhesus monkeys (Macaca mulatta; 3 female) were used in this study. The monkeys 122 

were young adults, with an average age of 5.30 year (6.33 for female, and 4.86 for 123 

male) when the anatomical scans were collected. The monkeys weighted 6.33 kg on 124 

average (5.50 kg for the females, and 8.00 kg for the males) at the time of scanning. 125 

Animal care and experimental procedures were performed in accordance with the 126 

National Institute of Health’s Guide for the Care and Use of Laboratory Animal, the 127 

European legislation (Directive 2010/63/EU) and were approved by the Animal Ethics 128 

Committee of the KU Leuven. Weatherall reports were used as reference for animal 129 
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housing and handling. All animals were group-housed in cages sized 16-32 m3, which 130 

encourages social interactions and locomotor behavior. The environment was enriched 131 

by foraging devices and toys. The animals were fed daily with standard primate chow 132 

supplemented with fruits, vegetables, bread, peanuts, cashew nuts, raisins and dry 133 

apricots. They had free water access during the period that the anatomical scans were 134 

acquired. All animals participated in behavioral, fMRI, electrophysiology and/or 135 

reversible perturbation experiments afterwards (Arsenault et al., 2014; Arsenault and 136 

Vanduffel, 2019; Balan et al., 2018; Caspari et al., 2015; Herpers et al., 2021; Janssens 137 

et al., 2014; Li et al., 2022; Murris et al., 2021; Yao and Vanduffel, 2022). 138 

 139 

Acquisition of anatomical MR and CT images 140 

High-resolution (400 μm isotropic voxel size) T1- and T2-weighted images were 141 

acquired on a 3T Siemens PrismaFit scanner while the animals were under 142 

ketamine/xylazine anaesthesia. A custom-built single loop coil with a diameter of 12 143 

cm was used as receiver, and the body coil from the scanner was used for 144 

transmission. T1 images were acquired using a magnetization prepared rapid gradient 145 

echo (MPRAGE) sequence (repetition time (TR) = 2700 ms, echo time (TE) = 3.5 ms, 146 

flip angle (α) = 9°, inversion time (TI) = 882 ms, matrix size 320×260×208) and T2 147 

images were acquired using a sampling perfection with application optimized contrasts 148 

using different flip angle evolution (SPACE) sequence (TR = 3200 ms, TE = 456 ms, 149 

variable α, matrix size 320 × 260 × 208, Turbo Factor = 131, echo spacing = 6 ms), as 150 

in (Glasser and Essen, 2011; Van Essen et al., 2001). During a single scan session, 151 

7–12 T1 images and 4–5 T2 images were acquired from each subject (Li et al., 2021). 152 

Additionally, for 9 of the animals, high resolution CT (324x324x200 matrix size; 0.25 153 

mm isotropic; on a Somatom Force Siemens CT scanner) scans were acquired in 154 

different sessions while the animals were under ketamine/xylazine anaesthesia. 155 

Pre-processing of these images for their compatibility with Freesurfer and MB 156 

constituted the first step of the pipeline developed for the development of the template 157 

(Figure 2). 158 

 159 

Anatomical MR and CT pre-processing (Autio et al., 2021). 160 

The pre-processing consisted of: 161 

- DICOM to NIFTI conversion of both MR and CT datasets using FreeSurfer 162 

(Fischl, 2012). 163 
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- Per subject, registration of the CT to the corresponding anatomical MR using 164 

FreeSurfer, ANTS (Avants et al., 2011), and ITK-SNAP (Yushkevich et al., 165 

2006). 166 

- Conversion of all volumes to the FreeSurfer-conform standard (256x256x256, 167 

orientation LIA (left-inferior-anterior)). The FreeSurfer-conform standard 168 

requires 1 mm isotropic voxel size. To satisfy this condition without losing 169 

resolution, we arbitrarily changed the voxel size in the image header from 0.4 to 170 

1 mm. 171 

- Rigid registration of all T1 volumes to a unique template (which was the average 172 

of all individual T1 volumes which were registered using a pre-run of the multi-173 

brain (MB) toolbox for SPM12 on the original T1 volumes) using a combination 174 

of FreeSurfer, ANTS and the MB toolbox. T1, T2 and CT volumes were 175 

registered using unique transformation matrices (generated when the T1 176 

volumes were registered) for each subject. 177 

- Bias field correction of the MR anatomies following the Human Connectome 178 

Protocol adapted to the macaque (Autio et al., 2021; Hayashi et al., 2021; 179 

Marcus et al., 2013). 180 

- To generate symmetrical templates, we added to the existing set of volumes 181 

(separately for T1, T2 and CT) their left-right flipped version generated using 182 

FreeSurfer. 183 

 184 

Generation of the volumetric anatomical templates using T1 and T2 anatomies 185 

MEBRAINS template construction with the multi-brain toolbox 186 

The main processing tool for building the MEBRAINS template was the MB toolbox of 187 

SPM12 (Brudfors et al., 2020) (https://github.com/WTCN-computational-anatomy-188 

group/mb), and as input we used information from both T1 and T2 images. We chose 189 

MB because it generates a probabilistic tissue classification model while performing 190 

the nonlinear registration, rather than just using voxel intensities directly. This 191 

approach has been shown to be a more robust method of registering medical images 192 

(Klein et al., 2009; Sotiras et al., 2013). Furthermore, the algorithm (Brudfors et al., 193 

2020) used by MB can integrate many imaging modalities (e.g., T1, T2, DW, CT), and 194 

can be applied with or without prior pre-processing (e.g., skull stripping). Accordingly, 195 

we took advantage of the high-resolution CT scans of the same subjects, applied the 196 

same transformations as those used to register the corresponding T1 and T2 images 197 
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to the reference template, and averaged the resulting CTs to build the CT template. 198 

Thus, multi-brain allowed us to build the following three templates using T1, T2 and CT 199 

brain images of 10 monkeys: MEBRAINS_T1, MEBRAINS_T2 and MEBRAINS_CT, 200 

respectively. We generated the volumetric templates as follows: 201 

i) Learn the MB tissue probability model. We adapted Example 1 from the MB 202 

repository (https://github.com/WTCN-computational-anatomy-group/mb). As input 203 

we used the set of 10 pairs of T1 and T2 images and additionally the same set of 204 

images mirrored across the midsagittal plane to create a symmetric template. This 205 

group-wise image registration generated the following datasets: an optimal K class 206 

tissue template; optimal intensity parameters; deformations that are used to warp 207 

between different volumes; tissue segmentations; and bias-field corrected versions 208 

of the input scans. In general, we kept the default settings to run the MB modelling 209 

(as in Example 1 mentioned above). The following parameters were modified in our 210 

script: regularization of the nonlinear registration (changed from 1 to 2), number of 211 

tissue types K (set to 14), and voxel size (set to 1).  212 

ii) Register the T1 and T2 individual volumes to the MB tissue model using the MB 213 

deformations generated during the learning step, as in example 2 of the MB 214 

repository (https://github.com/WTCN-computational-anatomy-group/mb). We used 215 

a 3rd degree B-spline interpolation algorithm, and co-registered the CT volumes 216 

with the T1 volumes. 217 

iii) Create T1, T2 and CT templates by averaging the corresponding individual images 218 

registered to the MB tissue model. Intermediate T1, T2 and CT templates are 219 

created by gradually averaging more and more individual images that are registered 220 

to the implicit MB template.  221 

iv) Linear transformation of the templates to set each origin to the center of the anterior 222 

commissure as identified in a sagittal section (voxel 108,128,70 in RAS-223 

coordinates, i.e., with voxel 0,0,0 at the left-posterior-inferior corner). 224 

v) Rescale the volumes to the original resolution of 0.4 mm isotropic voxels.  225 

vi) Check the stereotaxic orientation of the template. Since the original brains were 226 

acquired using a stereotaxic frame, we verified that the resulting average has the 227 

aural fixation points and the infraorbital ridge nearly in the same horizontal plane, 228 

which is a requirement of being aligned to the Horsley-Clarke stereotaxic frame 229 

(Seidlitz et al., 2018). 230 
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Comparative template – ANTS10 231 

The ANTS version of the template was built as a comparison with MB in terms of 232 

warping artefacts. We followed the processing described in (Seidlitz et al., 2018) and 233 

used whole-head images so that the template would accurately represent the brain-234 

skull boundary. The main processing steps were: 235 

i) Align each of the 10 preprocessed subject images to an independent coordinate 236 

space (EBRAINS_T1) using a 6-parameter rigid-body transformation. 237 

ii) Create the initial target image for the template by performing a voxel-wise average 238 

of the 10 subject images.  239 

iii) Normalization of the variations in image intensity across each volume by an N4 bias 240 

field correction (Avants et al., 2011).  241 

iv) Create the population-averaged template using symmetrical group-wise 242 

normalization, which is an iterative nonlinear registration process (Seidlitz et al., 243 

2018). Each brain was aligned to the current target image via a 12-parameter affine 244 

and a nonlinear (diffeomorphic) transformation. These aligned images were 245 

averaged to generate an improved template image. The inverse of the affine and 246 

diffeomorphic transformations was averaged across subjects, scaled, and applied 247 

to this template image to align it closer to the original input anatomies. This process 248 

was iterated, with the updated template image serving as the new target image for 249 

registration with the original subject images, until convergence between successive 250 

target images occurred. 251 

 252 

Generation of a MEBRAINS surface template 253 

Surface representations of the brain enable a more precise spatial localization and 254 

reduce the occurrence of errors arising from the spatial proximity of brain structures 255 

that are actually located at quite a distance from each other along the cortical ribbon 256 

(Logothetis et al., 2001; Zhu and Vanduffel, 2019). Additionally, they are a prerequisite 257 

for generating cortical flat maps, which are useful tools for the analysis and 258 

visualization of functional and structural neuroimaging datasets (Sultan et al., 2010; 259 

Van Essen et al., 1998; Vanduffel et al., 2001; Vanduffel et al., 2014), particularly for 260 

topographic representations such as retinotopy (Arcaro and Livingstone, 2017; 261 

Janssens et al., 2014), somatotopy (Arcaro et al., 2019) and tonotopy (Bodin et al., 262 

2021; Erb et al., 2019; Petkov et al., 2006). To achieve this, a human-curated white 263 

and gray matter segmentation was performed with FreeSurfer (Fischl, 2012) and the 264 
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non-human primate version of the Human Connectome Project pipeline (Autio et al., 265 

2020), using a combination of T1 and T2 images (Autio et al., 2021). The pial and 266 

white/gray matter interface (white matter surface) was generated from the T1 images 267 

to create the MEBRAINS surface template. T2 images were used to accurately model 268 

the pial surface and remove the effect of cerebrospinal fluid and pial veins.  269 

 270 

“Populating” the MEBRAINS template: human-curated segmentations of 271 

subcortical nuclei and integration of cyto- and receptor architectonically 272 

informed cortical maps 273 

We started to populate the template by complementing MEBRAINS with human-274 

curated segmentations of several subcortical structures. We manually delineated the 275 

amygdala, anterior commissure, nucleus accumbens, caudate, claustrum, putamen, 276 

and pallidum on coronal sections of the left hemisphere of the MEBRAINS_T1 277 

template, whereby all three stereotactic planes were closely examined to reduce 278 

inconsistencies across slices. This segmentation was performed using MRIcron 279 

(Rorden and Brett, 2000) and ITKsnap (Yushkevich et al., 2006), and identification of 280 

structures was based on local contrast differences in both the EBRAINS_T1 and the 281 

EBRAINS_T2 templates, thereby relying on corresponding sections of the 2nd edition 282 

of the Atlas of the Rhesus Monkey Brain (Saleem and Nikos, 2012). The delineated 283 

structures were mirrored (using MATLAB, FreeSurfer and human-curation) to segment 284 

the right hemisphere of the template. These human-curated segmentations were also 285 

essential for our quality assessment of MEBRAINS and to develop workflows for 286 

integrating 3D volumes into MEBRAINS space. Specifically, these segmentations i) 287 

served as a reference when evaluating the quality of (semi)-automated segmentation 288 

approaches, and ii) generated target outputs (ground-truth) for training deep neural 289 

networks to automatically segment brain structures (Henschel et al., 2020). 290 

Additionally, we used the workflow to integrate other templates into MEBRAINS, for 291 

example,  to anchor the frequently used D99-atlas and our recently published 3D cyto- 292 

and receptor architectonic maps of the macaque parietal (Impieri et al., 2019; Niu et 293 

al., 2020; Niu et al., 2021), premotor and motor (Rapan et al., 2021) cortex, depicted 294 

on the Yerkes19 template (Donahue et al., 2018; Van Essen et al., 2012) into 295 

MEBRAINS space. Since the MEBRAINS template is symmetrical, and these 296 

parcellations were only available for the left hemisphere of the Yerkes template, the 297 
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ensuing maps had to be human-curated using ITKsnap (Yushkevich et al., 2006), then 298 

mirrored to the right hemisphere of MEBRAINS using MATLAB and FreeSurfer. 299 

 300 

Registration of 3D datasets to MEBRAINS 301 

Since it is essential to link MEBRAINS to commonly used template spaces, we 302 

developed a multi-method workflow to register 3D data to MEBRAINS. Independent of 303 

the method/algorithm used, registration of 3D volumes can be achieved as follows: 304 

• Step 1. Preparatory pre-processing of the data to roughly adjust the image 305 

geometry (i.e., resolution, dimensions, position) performed with FreeSurfer, FSL 306 

(Woolrich et al., 2009) and MATLAB. This step does not necessarily require MB. 307 

• Step 2. Register the brain anatomy (e.g., other template volume or individual 308 

anatomy) to MEBRAINS. This process is achieved by calculating and applying the 309 

transformation functions (matrices and deformation volumes). Noteworthy, the 310 

transformations generated for a specific volume (e.g., a template) can be applied 311 

to different entities (e.g., atlas, connectivity maps) represented in that space. The 312 

specifics of the registration performed with MB are found under 313 

“https://github.com/WTCN-computational-anatomy-group/mb - Example 3: Fitting a 314 

learned MB model”, and were applied to individual brain anatomy/template 315 

volumes. 316 

• Step 3. Evaluate the quality of the registration and improve it by adjusting different 317 

parameters of the registration algorithm. If the object to be registered is a template 318 

brain or an individual anatomical dataset, the process is finished. We used 319 

“https://github.com/WTCN-computational-anatomy-group/mb - 2. Warping with MB 320 

deformations - image-to-template – pull” to apply the deformation generated in the 321 

previous step to the brain anatomy/template. 322 

• Step 4. If we register atlases, activation maps, retinotopic maps, or connectivity 323 

maps to MEBRAINS, a supplementary step may be necessary because such data 324 

require an underlying reference anatomy. This reference anatomy should follow 325 

steps 1 to 3, to generate the corresponding transformations/deformations functions 326 

to be applied. It is important to remember that resampling algorithms can be 327 

nonlinear (e.g., cubic) when transforming anatomical volumes, and resampling 328 

algorithms used to register atlases (representing discrete values) should be linear 329 

or nearest-neighborhood. The specifics for registrations performed with MB are 330 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2023. ; https://doi.org/10.1101/2023.06.21.545953doi: bioRxiv preprint 

https://github.com/WTCN-computational-anatomy-group/mb
https://github.com/WTCN-computational-anatomy-group/mb
https://doi.org/10.1101/2023.06.21.545953
http://creativecommons.org/licenses/by-nc/4.0/


11 
 

listed in “https://github.com/WTCN-computational-anatomy-group/mb; “4. Register 331 

and warp atlas to MB space“. 332 

Since no single tool functions seamlessly, the best strategy is to combine functions 333 

from different software packages. This is illustrated by the existence of an open-source, 334 

community-developed initiative like Nypype (Gorgolewski et al., 2011) 335 

(https://nipype.readthedocs.io/en/latest/), facilitating interactions between different 336 

software packages (e.g., ANTS, SPM, FSL, FreeSurfer, Camino, MRtrix, MNE, AFNI, 337 

Slicer, DIPY).  338 

Like all methods, MB also harbors some problems. For example, recall that the 339 

MEBRAINS template is built using both T1 and T2 weighted images. If other volumes 340 

have to be registered to MEBRAINS, these data contain optimally both T1 and T2 341 

modalities. Furthermore, if we start from already skull-stripped anatomies instead of 342 

the whole head, the registration may be sub-optimal. 343 

 344 

A library of registration methods 345 

Although we selected MB as our method of choice to generate the average template, 346 

the resulting MEBRAINS template can be used with any registration method. The most 347 

relevant software packages are summarized below: 348 

a. Multi-brain (Brudfors et al., 2020) – using MATLAB and toolboxes. 349 

b. ANTS (Avants et al., 2009) – using either the RheMAP (Sirmpilatze and Klink, 2020) 350 

Jupiter notebook (https://github.com/PRIME-RE/RheMAP.git), or 351 

antsRegistrationSyNQuick to generate the registration and antsApplyTransforms to 352 

apply it. 353 

c. AFNI (Cox, 1996) – generate the registration with 3dQwarp and apply it with 354 

3dNwarpApply. 355 

d. MINC (Vincent et al., 2016) – generate the registration with minctracc and apply it 356 

with mincresample. 357 

e. ART (Ardekani et al., 2005) – generate the registration with 3dwarper and apply it 358 

with applywarp3d. 359 

f. ITKsnap (Yushkevich et al., 2006) – for illustrative affine registrations.  360 

g. FSL (Woolrich et al., 2009) – generate registrations with flirt and fnirt, and apply it 361 

with applywarp. 362 

h. Jip (http://www.nitrc.org/projects/jip) – using jip_align in two stages: auto-align 363 

affine followed by auto-align non-lin. 364 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2023. ; https://doi.org/10.1101/2023.06.21.545953doi: bioRxiv preprint 

https://github.com/WTCN-computational-anatomy-group/mb
http://stnava.github.io/ANTs/
http://www.fil.ion.ucl.ac.uk/spm
http://www.fmrib.ox.ac.uk/fsl
http://surfer.nmr.mgh.harvard.edu/
http://web4.cs.ucl.ac.uk/research/medic/camino/pmwiki/pmwiki.php
http://www.brain.org.au/software/mrtrix/index.html
https://martinos.org/mne/index.html
http://afni.nimh.nih.gov/afni
http://slicer.org/
http://dipy.org/
https://github.com/PRIME-RE/RheMAP.git
http://www.nitrc.org/projects/jip/
https://doi.org/10.1101/2023.06.21.545953
http://creativecommons.org/licenses/by-nc/4.0/


12 
 

i. DISCO (Ardekani et al., 2005) – using the Diffeomorphic Sulcal-based COrtical 365 

(DISCO) registration. 366 

j. FreeSurfer (Fischl et al., 1999) – perform either a surface based registration using 367 

mris_register, or a combined surface and volume morph method (Postelnicu et al., 368 

2009; Zöllei et al., 2010) using mri_cvs_register. The latter approach accurately 369 

registers both cortical and subcortical regions, establishing a single coordinate 370 

system suitable for the entire brain.  371 

Many of these tools (a - f) can rapidly register source with target volumes. The others 372 

(especially i - j) are computationally costly, and are mainly recommended when the 373 

‘fast’ methods yield suboptimal results.  374 

This library of methods raises a fundamental question: which strategy should one use? 375 

We propose the following: 376 

a. Use your own knowledge/preference, but consider the quality of the source 377 

anatomy that has to be registered (e.g., template). 378 

b. Try-N-select-winner. The strategy works with anatomies and involves the following 379 

straightforward steps: 380 

1. Select a registration method and optimize the results by adjusting the 381 

parameters of the algorithm. 382 

2. If the result is not satisfactory, add a new method and repeat 1. 383 

3. Compare the existing results and select a winner. 384 

4. If the winner is not satisfactory, repeat 2. If the winner meets your needs stop 385 

the process. We list a few recommendations regarding the “try-N-select-winner” 386 

strategy: 387 

O1. N should be as small as possible. 388 

O2. Try to optimize a method before adding another one. 389 

O3. The quality of the registration can be evaluated: i) By human-curation 390 

(although laborious, this is the most reliable method). ii) Automatic quantification 391 

of the quality of the registration relative to MEBRAINS. After masking the 392 

volumes with the MEBRAINS-mask, the following parameters can be evaluated: 393 

Pearson correlation; Normalized mutual information; SNR and peak-SNR; Mean 394 

Squared Error; Structural Similarity Index; Jaccard index; Dice Score; Hausdorff 395 

distance; Focal parameters for 3d images from the Image Quality Index toolbox 396 

(bias, correlation, divergency, entropy difference, root of mean squared error); 397 

Universal Image Quality Index (Vaiopoulos, 2011). All parameters should be 398 
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normalized and scaled (0 – completely dissimilar; 1 - identical images), and can 399 

be calculated using MATLAB. The winner registration is established as the 400 

maximum value of the evaluated parameters, or of a metric defined on the space 401 

of all parameters (e.g., Euclidean distance). 402 

c. Run-N-select-high-probability-values. The strategy works with volumes with 403 

discrete values such as atlases and involves the following steps: 404 

1. Select N registration methods and run the registration of the same atlas (N ~ 5). 405 

2. Evaluate the quality of the registration and select M (M ≤ N) of the best 406 

registrations. 407 

3. Build the probability distribution of values in corresponding voxels of the M 408 

selected volumes. 409 

4. Build the resulting volume by giving to each voxel the value that has the 410 

occurrence probability greater than an optimal threshold. The optimal threshold 411 

depends on the overall probability distributions. 412 

Note that higher N values are optimal. For example, we increased the number 413 

of registrations of the D99 atlas using both the registration of the D99-atlas to 414 

MEBRAINS and of the D99 atlas in NMT v2.0 space to MEBRAINS. 415 

 416 

Deep learning-based neuroimaging pipeline for automated processing of 417 

monkey brain MRI scans  418 

Deep learning is becoming popular in the analysis of brain MR images, and is more 419 

widely used to MRI compared to other types of medical images (Zhao and Zhao, 2021). 420 

Deep learning has been used for pre-processing and analysing MR images, including 421 

brain segmentation, registration, noise reduction, resolution enhancement, restoration, 422 

and reconstruction (Zhao and Zhao, 2021). It has also been instrumental for computer-423 

aided diagnosis, including lesion and tumor detection, and diagnostics of psychiatric 424 

and neurodegenerative disorders (e.g., Schizophrenia, Alzheimer's disease, 425 

Parkinson’s disease, brain age estimation). 426 

Traditional neuroimaging pipelines involve computationally intensive, time-consuming 427 

optimization steps, often requiring manual interventions (Henschel et al., 2020). To 428 

avoid these issues, we prepared two deep neural networks-based tools to work with 429 

the EBRAINS template: 430 

U-Net Brain extraction tool for nonhuman primates (Wang et al., 2021). 431 
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This is a fast and stable U-Net based pipeline for brain extraction that exhibited 432 

superior performance compared to traditional approaches using a heterogenous, 433 

multisite non-human primate (NHP) dataset. The pipeline includes code for brain mask 434 

prediction (https://github.com/HumanBrainED/NHP-BrainExtraction.git), model-435 

building, and model-updating, as well as macaque brain masks of PRIME-DE data 436 

(https://fcon_1000.projects.nitrc.org/indi/indiPRIME.html). A major advantage of the 437 

pipeline is that it uses a transfer-learning framework leveraging a large human imaging 438 

dataset to pre-train a convolutional neural network (U-Net Model), which is transferred 439 

to NHP data using a much smaller NHP training sample. Furthermore, the 440 

generalizability of the model can be improved by upgrading the transfer-learned model 441 

using additional training datasets from multiple research sites in the Primate Data-442 

Exchange (PRIME-DE) consortium (136 macaque monkeys with skull-stripped masks 443 

repository, publicly available) (Milham et al., 2018). 444 

We applied the package by carrying out these steps: 445 

a. Minimal pre-processing of the T1 images of the 10 monkeys included in the 446 

MEBRAINS template: 447 

- Conformed all images (FreeSurfer’s standard). 448 

- Spatial adaptive non-local means filtering (using ANTS’s DenoiseImage). 449 

- Bias field correction (using ANTS’s N4BiasFieldCorrection) 450 

b. Mask prediction - use existing trained models to predict the mask for our data. 451 

The package provides 15 pre-trained models using different sets of data for transfer 452 

of learning and upgrading results. Each of the 15 models predicted a mask for each 453 

macaque anatomy including: 454 

- 10 monkeys used to build MEBRAINS template, and 3 supplementary monkeys 455 

from our lab that will be included in later versions of the template. 456 

- 21 monkeys from PRIME-DE (19 UC Davis and 2 U Minnesota). 457 

The goal of this process was to select the best performing models on our data. 458 

c. Supplementary model updating - use the existing trained models and additional 459 

training datasets to improve the generalizability of the model: 460 

- Select 7 models showing high performance in (b). 461 

- Update each of these 7 models by supplementary training (40 epochs) using: 462 

• Training data – 34 T1 images (10 used for MEBRAINS + 3 new from our lab; 463 

21 from PRIME-DE (19 UC Davis and 2 U Minnesota)). 464 

• Testing data: 66 T1 images (34 training data; 32 new data from KU Leuven). 465 
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For all T1 images, ground-truth was derived from human-curated masks either 466 

created by us or taken form the repository from the U-net brain extraction package 467 

(https://fcon_1000.projects.nitrc.org/indi/indiPRIME.html, 468 

https://github.com/HumanBrainED/NHP-BrainExtraction.git). 469 

d. Applications of the results: 470 

- Use N-models to predict N versions of the mask for the same whole brain 471 

anatomy. N includes the 7 selected U-net models with their original parameters, 472 

and the 7 upgraded models (step c). 473 

- Select the best result(s). 474 

- If there was a clear winner, we used it. If there were more than one good 475 

approximations of the mask, we built a probability distribution for values (0 or 1) 476 

in each voxel. The final mask can be built by optimal thresholding of the 477 

probability distribution (“Run-N-select-high-probability-values” strategy). 478 

- If necessary, adjust the result using manual adjustments and mathematical 479 

morphology applications in FSL, ANTS, AFNI and FreeSurfer 480 

In all cases, the goodness of the predicted mask was evaluated by visual inspection 481 

or calculation of the dice score.  482 

 483 

Relative quality of the MEBRAINS template 484 

To quantitatively evaluate the quality of our template relative to that of other templates, 485 

we used a method inspired by (Seidlitz et al., 2018).  We chose for comparisons the 486 

following T1 templates: our MEBRAINS and ANTS10 templates, the NMT v2.0 (Seidlitz 487 

et al., 2018) and Yerkes19 (Donahue et al., 2018; Van Essen et al., 2012) templates, 488 

and the combination of the T1/T2 images of MEBRAINS and ANTS10. The two latter 489 

datasets were introduced to emphasize the usefulness of our multimodal approach. 490 

The processing of these 6 datasets included the following steps: 491 

a. For each template, we segmented the amygdala (Am), caudate (Cd), claustrum 492 

(Cl), nucleus accumbens (NAc), putamen (Pu), white matter (WM), cortical gray 493 

matter (GM) and lateral ventricle (LV). 494 

b. Normalization of the variations in T1 image intensity across each volume by N4 495 

bias field correction (Avants et al., 2011) (using ANTS’s N4BiasFieldCorrection). 496 

T1/T2 images were generated from the original T1 and T2 images (without N4 bias 497 

field correction). 498 
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c. Using volume contraction (AFNI), we selected the kernel of each segment by 499 

excluding the external 3 voxels thick shell of each sub-cortical region.  500 

d. We calculated the average gray matter (meanGM) of N randomly selected voxels (N 501 

= 50) for each segmented region (Am, Cd, Cl, NAc, Pu, and GM). For the white 502 

matter, we calculated the average white matter intensity (meanWM) of all voxels from 503 

the WM kernel. For LV, we calculated the standard deviation of the intensity of the 504 

cerebral spinal fluid (stdCSF) of N randomly selected voxels. Both means and 505 

standard deviation included equal numbers of randomly selected voxels from the 506 

left and right hemisphere (N = 50). These values were used to calculate the 507 

following parameters, that represent contrast-to-noise (C2N) (Jang et al., 2022) and 508 

relative difference (KI): 509 

C2N = (meanWM – meanGM)/stdCSF 510 

KI = 2*(meanWM – meanGM)/ (meanWM + meanGM) 511 

e. To evaluate the mean distribution of C2N and KI we performed the following steps: 512 

e1. Compute the mean of C2N and KI by repeating their calculation 25 times, 513 

each time using a new set of 50 randomly selected voxels. 514 

e2. Repeat step e1 2500 times to estimate the distribution of mean of the 515 

parameters. 516 

e3. Steps e1-e2 were repeated for all 6 templates (the four T1 and the two T1/T2 517 

datasets).  518 

e4. Calculate the median values for each template and run a Kruskal-Wallis test 519 

followed by multiple comparison corrections.  520 

 521 

RESULTS 522 

MEBRAINS volumetric and surface templates 523 

Our central goal was to build a population-based macaque brain template using 524 

multimodal imaging data to overcome limitations in the existing templates. Accordingly, 525 

we used MB to build three volumetric templates based on T1, T2 and CT brain images 526 

of 10 monkeys: MEBRAINS_T1 (Figure 3A), MEBRAINS_T2 (Figure 3B) and 527 

MEBRAINS_CT (Figure 4), respectively.  528 

Additionally, we created a second set of templates with the T1 and T2 brain images 529 

from the same 10 monkeys, but using ANTS, one of the few alternative tools besides 530 

MB that can rely both on T1 and T2 images for building templates (ANTS10_T1, Figure 531 

5A and ANTS10_T2, Figure 5B). We found ANTS to result in a poorer tissue contrast 532 
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compared to MB. Hence, we did not use it for our novel template, but to quantitatively 533 

compare the quality of the MEBRAINS templates relative to others. 534 

Finally, we also created a surface version of MEBRAINS, which will allow users to 535 

select between a folded or a flattened representation of the template’s cortex. We 536 

decided to use FreeSurfer to segment the white and grey matter of MEMBRAINS 537 

(Figure 6A), because it provided a better result than the grey and white matter masks 538 

generated by MB - as illustrated in Figure 6B, C. Note that, during the group-wise 539 

image registration process, MB generates tissue segmentations. Although the resulting 540 

probabilistic tissues do not necessarily correspond to anatomical parts of the brain, 541 

some of them provided a good approximation of the white and gray matter (Figure 6B, 542 

C). A supplementary merging and processing of the original MB-generated tissues may 543 

further improve the segmentation process. Yet given the satisfactory FreeSurfer 544 

results, we did not attempt this. 545 

 546 

“Populating” the MEBRAINS template 547 

It is essential for a template to be populated with neuroscience data. Indeed, a template 548 

becomes gradually more valuable by anchoring research results such as cyto-and 549 

myeloarchitectonic information, receptor distributions, task related activations, 550 

connectivity maps, electrophysiological data, and topographic maps such as 551 

retinotopic, somatotopic and tonotopic maps. In addition, it is important to link different 552 

template spaces. To start addressing these goals, we provided - in addition to white 553 

and grey matter segmentations based on FreeSurfer (Figure 6A) or MB (Figure 6B, C) 554 

- a human-curated segmentation of the anterior commissure and several major 555 

subcortical structures including the amygdala, nucleus accumbens, caudate, 556 

claustrum, putamen and pallidum (Figure 7A).  557 

Furthermore, our recently published 3D cyto- and receptor architectonically-informed 558 

maps of the macaque monkey motor, premotor and parietal cortex were warped from 559 

YERKES19 space to the MEBRAINS surface template (Figure 7B), which were also 560 

represented on a cortical flat map (Figure 7C), and transformed into volumetric 561 

MEBRAINS space (Figure 7D). Since these areas were only available on the left 562 

hemisphere of the Yerkes19 template, and the MEBRAINS template is symmetrical, 563 

areas were mirrored to its right hemisphere.  564 

 565 

Registration of 3D datasets to MEBRAINS 566 
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The purpose of a template is to offer a standardized stereotaxic space for the analysis 567 

and/or visualization of neuroscience data, often requiring the co-registration of different 568 

volumes (e.g., individual brain anatomies, templates). Given the aforementioned 569 

advantages and limitations of MB, we propose a multi-method workflow with 4 major 570 

steps to integrate data into MEBRAINS space: Steps 1-3 encompass standardized pre-571 

processing procedures, the actual computation of transformation functions (such as 572 

matrices and deformation volumes) necessary to register an anatomical image to 573 

MEBRAINS, as well as a quality assessments and improvements of the registration. 574 

Step 4 is only required if a data set instead of a structural anatomical volume needs to 575 

be registered, such as retinotopic maps, connectivity maps or parcellation schemes. In 576 

this case, steps 1-3 are performed with the reference anatomy, and the 577 

transformations/deformations functions are then applied to the associated datasets.  578 

To demonstrate the validity and flexibility of our workflow, we first describe the result 579 

of our registration procedures when applied to some frequently used macaque brain 580 

templates, although they can be applied to any individual or averaged anatomical 3D 581 

volume. In a second step, we provide an example of how Step 4 can be implemented 582 

to transform a parcellation scheme of the macaque brain from the Yerkes19 surface to 583 

the MEBRAINS surface and volumetric templates. 584 

 585 

Registration of other macaque brain templates to MEBRAINS 586 

We considered the following macaque brain templates (Table 1; Figure 8): NMT v2.0, 587 

Yerkes19, D99, MNI macaque, F99, INIA19, ONPRC18 and 112RM-SL. Most of these 588 

templates are uni-modal (T1-weighted images) and skull-stripped, whereas 589 

MEBRAINS is a multi-modal (T1 and T2) template which includes the skull. Thus, these 590 

comparisons enabled us to test the aforementioned limitations of MB, and to 591 

demonstrate the usefulness of multi-method workflows for working with MEBRAINS. 592 

We used several methods (“Try-N-select-winner” strategy, see methods) from the 593 

library described in the methods (a – g; MB, ANTS, AFNI, MINC, ART, ITKsnap and 594 

FSL) to register the selected templates to MEBRAINS. MB performed well for the T1 595 

templates in which the skull was not stripped (e.g., NMT v2.0), yet produced distorted 596 

registrations for many of the skull-stripped templates. The most optimal registration 597 

method for all registered templates was ANTS. Figure 8 shows ANTS10_T1, the 8 598 

selected templates, and a meta-template (the average of the ANTS10_T1, and all 599 

template datasets, excluding 112RM-SL), all registered to MEBRAINS using ANTS. 600 
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Furthermore, figure 8 also provides a unique opportunity to compare other templates 601 

with MEBRAINS. At qualitative level, MEBRAINS reveals comparable anatomical 602 

details as NMT V2.0, unlike the other templates.  603 

Figure 9 shows a quantitative evaluation of the quality of the registrations of the 604 

different templates with MEBRAINS (in Figure 8) using Pearson correlation and focal 605 

entropy differences -which was scaled to improve comparisons with the correlation 606 

method (0 – total dissimilarity; 1 – total similarity). Focal entropy was calculated for 607 

each coronal section using a symmetrical window radius of 7 voxels centered on each 608 

voxel and the results were averaged. Next, the differences between the average values 609 

for the registered and the reference (MEBRAINS) anatomies were calculated for each 610 

coronal section and averaged to obtain a value characterizing the entire volume. Both 611 

parameters provide an evaluation of how similar the compared anatomies are. 612 

Considering the range of values for both parameters (0.92-0.99), we conclude that all 613 

registrations have a good and relatively similar quality. The small individual variations 614 

also include differences between the intrinsic quality of the input image, which can be 615 

noticed by visual inspection in Figure 8). 616 

 617 

Registration of a volumetric atlas to MEBRAINS. 618 

We here describe the result of the registration of the frequently used D99 atlas to 619 

MEBRAINS. We first registered the D99 template to MEBRAINS as described above 620 

using MB or ANTS and applied the “Try-N-select-winner” strategy (see methods). The 621 

resulting transformation objects (volume/matrix) were then applied to the associated 622 

D99 atlas using a nearest neighbourhood resampling algorithm (MB, Figure 10A; 623 

ANTS Figure 10B). Both registrations represent a good starting point for human-624 

curated refinements. 625 

We also performed the same registration (D99 atlas to MEBRAINS) using the “run-N-626 

select-high-probability-values” strategy (Figure 10C). Because this method yields more 627 

information, given by the probability distribution of the voxel intensity values, than the 628 

single registration methods (Figure 10A, B), the resulting registration is more reliable. 629 

 630 

Registration of a surface-based atlas to MEBRAINS. 631 

Since the 3D cyto- and receptor architectonically informed maps of the macaque motor, 632 

premotor and parietal cortex are associated with the Yerkes19 surface template, it was 633 
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necessary to warp them to the MEBRAINS surface template using FreeSurfer, thereby 634 

establishing a link between both spaces. The ensuing labels can be visualized on the 635 

folded (Figure 7B) or flattened (Figure 7C) versions of the MEBRAINS surface 636 

template. Finally, they were transferred to the MEBRAINS volumetric template (Figure 637 

7B). 638 

 639 

Deep learning-based neuroimaging pipeline for automated processing of 640 

monkey brain MRI scans  641 

Automated brain extraction tool for nonhuman primates (U-NET) (Wang et al., 2021) 642 

We performed supplementary training and updated the 7 existing models in the U-Net 643 

brain extraction package using 34 T1 images for training and 66 T1 images to test the 644 

mask prediction performances (see methods). The model training reached a dice score 645 

of 0.9882  0.0005 (mean  SEM) in epochs ranging between 35 to 39. The 7 upgraded 646 

models correctly predicted the mask in 85.71  1.35 % (mean  SEM) of the test brains 647 

and 94.96  0.84 % of the trained brains. Moreover, more than one of the used models 648 

gave good predictions for the mask of the same brain. Accordingly, of 12 models used 649 

to predict the mask for each brain, 8.65  0.27 (mean  SEM) made good predictions 650 

for training and 7.97  0.44 for testing data. Therefore, there is a substantial pool of 651 

good mask predictions for each brain allowing the use of either "try-N-select-winner” 652 

or “run-N-select-high-probability-values” strategies for brain extraction. 653 

Figure 11 provides two example results of the winner for an ‘easy”, good quality 654 

anatomy, (Figure 11A) and for a more “difficult” lower quality anatomy (Figure 11C). 655 

As can be seen in Figure 11B, the dataset with the “difficult” anatomy requires longer 656 

training time than the “easy” anatomy before reaching the optimal solution. The 657 

example also emphasizes the robustness of the model, which is largely independent 658 

of the quality of the input data. 659 

 660 

Relative quality of the MEBRAINS template 661 

To quantitatively compare the quality of different templates, we segmented a number 662 

of anatomical structures from four T1 templates (MEBRAINS_T1, ANTS10_T1, NMT 663 

v2.0, Yerkes19) and two T1/T2 datasets (MEBRAINS_T1/T2, ANTS10_T1/T2) 664 

(Figures 12A). Depending on the quality of the template, the exact border of a structure 665 

may be difficult to estimate. Therefore, to be conservative in our comparison, we 666 
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excluded the 3 most external voxels at each boundary of each of these compartments: 667 

for example, 3 voxels at the pial and 3 at the grey-white matter boundary for the cortical 668 

ribbon. As an example, Figure 12B shows the result of this process for MEBRAINS_T1. 669 

We used two different indices, inspired by (Seidlitz et al., 2018), to compare the quality 670 

of the templates (C2N and KI, see methods). The results presented in Figures 13 and 671 

14 and Tables 2 and 3, support a few important conclusions regarding the possibility 672 

to distinguish different anatomical substructures of the brain in the different templates. 673 

First, the multi-modal templates MEBRAINS_T1/T2 and ANTS10_T1/T2 carry far more 674 

information compared to the unimodal ones. Hence, templates based on a combination 675 

of modalities allow improved segmentation of important brain structures. This is 676 

reflected in the larger C2N and KI values for the T1/T2 images. Notice that 677 

MEBRAINS_T1/T2 and ANTS10_T1/T2 (colored red and greed in Tables 2 and 3, 678 

respectively) outperform all other templates. Second, parameters for the T1-based 679 

templates show two different trends: C2N yields the largest values for the 680 

MEBRAINS_T1 template, while KI is dominated by NMT v2.0 (colored blue in Tables 681 

2 and 3, respectively). Third, although NMT v2.0 is on par with the unimodal (T1) 682 

MEBRAINS, as shown by C2N and KI values, the multi-modal (T1/T2) approach in 683 

MEBRAINS provides a substantial advantage to all templates. Finally, comparison 684 

between MEBRAINS and ANTS10 demonstrates the superiority of MB compared to 685 

the ANTS for template generation. 686 

 687 

DISCUSSION 688 

We built a macaque brain template, MEBRAINS, in an attempt to mitigate common 689 

limitations of existing macaque templates. MEBRAINS is a multi-modal template that 690 

integrated relatively high resolution T1, T2 and CT modalities by using the MB toolbox 691 

(Brudfors et al., 2020). In addition, we developed both a volumetric and surface 692 

template. This approach will facilitate the combination of volumetric and surface data 693 

and enable the generation of flattened 2D maps of the cortex. As MEBRAINS is 694 

embedded in the EBRAINS environment which also houses human and rodent 695 

templates, and because other existing macaque templates have been registered to 696 

MEBRAINS, this will also expedite comparative research between macaques, humans 697 

and rodents.  698 

To ensure the quality of both the data used to create MEBRAINS, and of the template 699 

itself, we applied a large spectrum of methods including those described in Marcus et 700 
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al., 2013 (Marcus et al., 2013), tools borrowed from the image processing field tuned 701 

to evaluate image quality (e.g., see Figures 9, 11, 13, 14), and careful visual curation. 702 

Simple visual inspection of all the templates included in the present analysis (Figure 8) 703 

shows that the resolution and GM/WM contrast of MEBRAINS reveal a level of 704 

anatomical granularity and sharpness comparable to that of the NMT V2.0 template 705 

(Seidlitz et al., 2018), which is higher than that of most of the other templates, including 706 

the ANTS version of our template (ANTS10). This subjective impression was 707 

corroborated by the quantitative evaluation (Figures 13, 14), showing that the multi-708 

modal MEBRAINS template represents anatomical details better than the other 709 

templates. The MEBRAINS_T1/T2 template presented the highest C2N values, 710 

indicating that the segmented structures have better signal to noise ratio compared to 711 

the other templates. Moreover, the multimodal character of MEBRAINS increases the 712 

discriminative power: MEBRAINS_T1/T2 yielded not only higher C2N (Jang et al., 713 

2022) but also KI values compared to the remaining templates, including 714 

ANTS10_T1/T2. The latter finding is particularly interesting, because MEBRAINS and 715 

ANTS10 were constructed from the same 10 subjects. Specifically, this difference 716 

highlights the usefulness of multimodal approaches to construct brain templates. 717 

Beyond the goal of creating a qualitative template, we adapted existing tools to register 718 

data to MEBRAINS (Figure 7, 10), to segment major anatomical structures (Figure 6, 719 

7, 11, 12) and to generate surfaces (Figure 7). This included the adaptation of deep 720 

neural network approaches (U-NET), some of them also used in human research 721 

(FastServer) for processing monkey data. 722 

Finally, we started to populate the MEBRAINS with previously published architectonic 723 

data (Donahue et al., 2016; Niu et al., 2020; Niu et al., 2021; Rapan et al., 2021). The 724 

comparison of such data with other parcellation schemes and future data sets will 725 

advance objective discussions about parcellations. In the future, we aim to refine the 726 

template by increasing the number of T1 and T2 images and by adding very high-727 

resolution postmortem MRI anatomies. We also aim to register other functional data 728 

(e.g., probabilistic retinotopy data, category selective fMRI data, etc.) and increase the 729 

number of automatically segmented structures. Ultimately, we aim to obtain enough 730 

data to have a robust training set for our deep-learning based automated segmentation 731 

and registration of macaque data to MEBRAINS and any other template. 732 

The MEBRAINS template represents the cornerstone of the “MEBRAINS Multilevel 733 

Macaque Brain Atlas” (https://atlases.ebrains.eu/viewer/monkey) developed in the 734 
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framework of the Human Brain Project, which is freely available to the neuroscientific 735 

community via the interactive siibra-explorer on the EBRAINS platform (https://at-736 

lases.ebrains.eu/viewer/monkey). Thus, MEBRAINS constitutes a spatial reference 737 

system to which a myriad of structural and functional in vivo and post mortem datasets 738 

with different degrees of spatial and temporal resolution will be anchored. Examples of 739 

in vivo datasets are electrophysiological, probabilistic retinotopy, category selective or 740 

resting state fMRI data as well as DTI datasets. Post mortem datasets include 3D-741 

reconstructions of sections processed for visualization of cell bodies, myelinated fibres, 742 

neurotransmitter receptors distribution patterns or that of their subunits and/or the cor-743 

responding encoding genes, tractography datasets, as well as architectonic parcella-744 

tion schemes of the macaque monkey brain. In this framework, the “Julich Brain Ma-745 

caque Maps” (Donahue et al., 2016; Niu et al., 2020; Niu et al., 2021; Rapan et al., 746 

2021), which are based on the quantitative analysis of differences in the distribution 747 

patterns of cell bodies and of multiple types of classical neurotransmitters, and to date 748 

had solely been available via the Yerkes19 surface template (Donahue et al., 2018; 749 

Van Essen et al., 2012), have now been registered to the MEBRAINS template. The 750 

maps and data associated with the MEBRAINS template can be used as entry point 751 

for higher level meta-analyses, or for guiding functional and interventional studies in 752 

MEBRAINS space. Furthermore, the richness of the EBRAINS meta-platform hosting 753 

the “MEBRAINS Multilevel Macaque Brain Atlas” and also representing humans and 754 

rodents in a unitary context enable efficient inter-species meta-analytical studies. Thus, 755 

MEBRAINS not only constitutes a technical improvement compared to previously pub-756 

lished templates, but also facilitates cross-species comparisons. 757 

 758 

In conclusion, via MEBRAINS we provide a novel population-based template of the 759 

macaque brain which was created using a multimodal approach and T1 and T2-760 

weighted images. Quantitative evaluation of its quality demonstrated that it scores 761 

better than other unimodal templates. MEBRAINS constitutes the cornerstone of the 762 

“MEBRAINS Multilevel Macaque Brain Atlas” and has been populated with the cyto- 763 

and receptor-architectonically informed “Julich Brain Macaque Maps”. Importantly, 764 

MEBRAINS has been embedded in the framework of HBP’s EBRAINS platform, where 765 

it will enable the integration and analysis of multiple datasets of different spatio-766 

temporal scales, and the comparison with other species. 767 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2023. ; https://doi.org/10.1101/2023.06.21.545953doi: bioRxiv preprint 

https://atlases.ebrains.eu/viewer/monkey
https://atlases.ebrains.eu/viewer/monkey
https://doi.org/10.1101/2023.06.21.545953
http://creativecommons.org/licenses/by-nc/4.0/


24 
 

DATA AVAILABILITY 768 

The volumetric and surface representation files of the MEBRAINS template are 769 

provided as supplementary files accompanying the manuscript and are also made 770 

freely available via the Human Brain Project platform EBRAINS 771 

(https://doi.org/10.25493/5454-ZEA). 772 

 773 

 774 

CODE AVAILABILITY 775 

The following code is available on GitHub or software package webpages: 776 

- Code used for creation of the templates is publicly available at 777 

(https://github.com/WTCN-computational-anatomy-group/mb). It requires the 778 

toolbox multi-brain for SPM12 and the commercial software MATLAB (Version R-779 

2018b). The repository includes example MATLAB scripts for template generation, 780 

registration to the template, different images co-registration 781 

- FreeSurfer (https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall),  782 

ANTS (http://stnava.github.io/ANTs/), 783 

FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation), 784 

AFNI (https://afni.nimh.nih.gov/), 785 

MINC (https://www.mcgill.ca/bic/software/minc), 786 

ART (https://www.nitric.org/projects/art/), 787 

Jip (http://www.nitrc.org/projects/jip), 788 

MRIcron (https://www.nitrc.org/projects/mricron), 789 

and ITK-SNAP (http://www.itksnap.org/pmwiki/pmwiki.php) are open source 790 

publicly available. 791 

- U-Net Brain extraction tool for nonhuman primates 792 

(https://github.com/HumanBrainED/NHP-BrainExtraction) is publicly available and 793 

requires a python environment. Authors will provide by request the supplementary 794 

trained models. 795 

 796 

 797 
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Tables 1064 

Table 1. Non-exhaustive list of some of the most frequently used macaque templates. 1065 

All templates were obtained from Macaca mulatta monkeys, except for the MNI 1066 

template, which was built from Macaca mulatta (Mm) and Macaca fascicularis (Mf) 1067 

brain scans. Abbreviations: N/A = not available; Res. = Resolution; Skull str. = the 1068 

template is available in the original format (OF) or only in a skull stripped (SSF) format. 1069 

 1070 

Template Skull 
str. 

Sequence Res. 
(mm) 

Number 
of brains 

Associated 
atlas(es) 

Volume  
format 

Surface  
format 

NMT (Jung et 
al., 2021; 

Seidlitz et al., 
2018) 

v1.2/v1.3/v2.0 

OF T1 0.25 31 D99-SL 
(Reveley et 
al., 2017)  
CHARM 

(Jung et al., 
2021) 
SARM 

(Hartig et al., 
2021) 

NIFTI GIFTI 

D99 (Reveley 
et al., 2017; 

Saleem et al., 
2021) v1/v2 

SSF T1, T2, DTI, 
MAP-MRI, 

MTR 

0.25 1 D99-SL NIFTI GIFTI 

INIA19 
(Rohlfing et 
al., 2012) 

OF T1 0.50 19 Neuromaps NIFTI N/A 

MNI (Frey et 
al., 2011) 

OF T1 0.25 18 Mf 
7Mm 

Paxinos MINC, 
NIFTI 

N/A 

Yerkes19 
(Donahue et 

al., 2018; Van 
Essen et al., 

2012) 

OF T1, T2 0.50 19 F99(Van 
Essen, 2004) 

NIFTI, 
MGZ 

GIFTI, 
MGZ 

112RM-SL 
(McLaren et 

al., 2009) 

SSF T1, T2* 0.50 112 
(McLaren 

et al., 
2009)* 

D99-SL 
(Reveley et 
al., 2017) 
F99 (Van 

Essen, 2004) 

NIFTI N/A 

UNC-Emory 
atlas (Shi et 
al., 2016) 

OF T1, T2, DTI 0.60 40  NRRD N/A 

ONPRC18 
(Weiss et al., 

2021) 

SSF T1, T2, DTI 0.50 18 ONPRC18 NIFTI N/A 

F99 (Van 
Essen, 2004) 

SSF T1 0.50 1  NIFTI GIFTI 

* T2-weighted scans only available for 9 of the 112 animals 1071 

 1072 

 1073 
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Table 2. C2N median values for MEBRAINS_T1, MEBRAINS_T1/T2, ANTS10_T1, 1075 

ANTS10_T1/T2, NMT v2.0 and Yerkes19. All pairs of medians are significantly 1076 

different (p < 10-8) for each sub-structure. Fonts colored red, green (for T1/T2 images) 1077 

and blue (for T1 images) outline the largest values of C2N. Abbreviations: Am = 1078 

Amygdala; Cd = Caudate; Cl = Claustrum; NAc = Nucleus accumbens; Pu = Putamen; 1079 

GM = cortical Gray-Matter. 1080 

C2N Cd Pu Am NAc Cl GM 

MEBRAINS_T1 2.06 1.42 2.82 2.34 2.32 2.26 

MEBRAINS_T1/T2 4.31 3.13 5.81 4.97 5.06 4.71 

ANTS10_T1 1.20 0.89 1.27 1.19 1.20 1.02 

ANTS10_T1/T2 4.10 3.01 4.73 4.34 4.44 4.09 

NMT v2.0 1.77 1.04 2.05 1.73 1.67 1.74 

Yerkes19 1.79 1.40 2.03 1.82 1.47 1.63 

 1081 

 1082 

Table 3. KI median values. for MEBRAINS_T1, MEBRAINS_T1/T2, ANTS10_T1, 1083 

ANTS10_T1/T2, NMT v2.0 and Yerkes19. All pairs of medians are significantly 1084 

different (p < 10-8) for each sub-structure. Fonts colored red, green (for T1/T2 images) 1085 

and blue (for T1 images) outline the largest values of KI. Abbreviations: Am = 1086 

Amygdala; Cd = Caudate; Cl = Claustrum; NAc = Nucleus accumbens; Pu = Putamen; 1087 

GM = cortical Gray-Matter 1088 

KI Cd Pu Am NAc Cl GM 

MEBRAINS_T1 0.33 0.23 0.45 0.37 0.37 0.36 

MEBRAINS_T1/T2 0.69 0.50 0.93 0.79 0.81 0.75 

ANTS10_T1 0.28 0.21 0.30 0.28 0.28 0.24 

ANTS10_T1/T2 0.66 0.49 0.76 0.70 0.72 0.66 

NMT v2.0 0.51 0.30 0.59 0.50 0.48 0.50 

Yerkes19 0.40 0.32 0.46 0.41 0.33 0.37 
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Figures 1092 

Figure 1. Number of publications per year related to brain templates in macaque 1093 

monkeys. A PubMed search query was performed June 2023 using the following 1094 

keyword combination: (“monkey” OR “macaque” OR “NHP” OR “non-human primate”) 1095 

AND (“template” OR “atlas”) AND (brain). Polynomial fit with R2 = 0.7157.   1096 

 1097 

 1098 

Figure 2. Overview of the pipeline used for the generation of a population-based 1099 

template that represents an average of high-resolution structural T1 and T2 MRI scans 1100 

as well as CT. 1101 

 1102 

 1103 
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Figure 3. Three orthogonal sections of the MEBRAINS_T1 (A) and MEBRAINS_T2 1104 

(B) templates. The NIFTI-volumes used to create this figure can be found in supple-1105 

mentary material, and are also made publicly available via the EBRAINS platform from 1106 

the Human Brain Project (https://doi.org/10.25493/5454-ZEA). 1107 
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Figure 4. Three orthogonal sections (A-C) and 3D rendering (D) of the MEBRAINS_CT 1110 

template. The corresponding NIFTI-volume can be found in the supplementary 1111 

material, and is also made publicly available via the EBRAINS platform from the 1112 

Human Brain Project (https://doi.org/10.25493/5454-ZEA). 1113 
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Figure 5. Three orthogonal sections of the ANTS10 templates generated from T1 (A) 1116 

and T2 (B) images. To facilitate comparison with the corresponding MEBRAINS 1117 

templates, the sections shown are the same as those depicted in Figure 1. 1118 
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Figure 6. Generation of pial and white matter surfaces using FreeSurfer (A) and MB 1122 

(B, C). (A) Pial (magenta) and white matter (yellow) boundaries overlaid on the 1123 

MEBRAINS_T1 template. (B) White matter mask overlaid on the MEBRAINS_T1 1124 

template. (C) Gray matter mask overlaid on the MEBRAINS_T1 template. The sagittal, 1125 

coronal, and horizontal sections depicted correspond to coordinates x13, y0 and z4, 1126 

respectively. 1127 
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Figure 7. (A) Human curated segmentation of the cortical ribbon, white matter and 1131 

lateral ventricles, as well as of diverse subcortical nuclei, and the anterior commissure. 1132 

(B,C,D) Areas of the macaque inferior parietal lobule (Niu et al., 2021) and of the motor 1133 

and pre-motor cortex (Rapan et al., 2021) warped from the Yerkes19 template to 1134 

MEBRAINS. Areas are overlaid on the folded surface of MEBRAINS in (B), the flat 1135 

maps in (C), and exemplary sections of MEBRAINS_T1 are shown in (D). 1136 

Abbreviations: AC = anterior commissure; Am = Amygdala; CC = cerebral cortex; 1137 

Cd=Caudate nucleus; Cl = Claustrum; GP = globus pallidus; LV = lateral ventricle; NAc 1138 

= Nucleus accumbens; Pu=Putamen. The sagittal, coronal, and horizontal sections 1139 

depicted in A and D correspond to coordinates x13, y0 and z4, respectively. 1140 
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Figure 8. Eight of commonly used rhesus macaque brain templates (NMT v2.0 1142 

(Seidlitz et al., 2018), Yerkes19 (Donahue et al., 2018; Van Essen et al., 2012), D99 1143 

(Reveley et al., 2017), MNI (Frey et al., 2011), F99 (Van Essen, 2004), INIA19 1144 

(Rohlfing et al., 2012), ONPRC18 (Weiss et al., 2021) and 112RM-SL (McLaren et al., 1145 

2009)), as well as our ANTS10_T1 volume (i.e., the template built with ANTS using the 1146 

same 10 datasets as MEBRAINS_T1) were registered to MEBRAINS using ANTS. The 1147 

meta-template represents the average of all these datasets with the exception of 1148 

112RM-SL. 1149 
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Figure 9. Pearson correlation and “1 – Focal Entropy Difference” (scaled to facilitate 1152 

comparisons with the correlation method: 0 – total dissimilarity; 1 – total similarity) 1153 

calculated for the reference anatomy MEBRAINS compared with the following 1154 

templates: MEMRAINS, ANTS10_T1, NMT v2.0, Yerkes19, D99, MNI, F99, INIA19, 1155 

ONPRC18 and 112RM-SL. Comparison of MEBRAINS with itself (value 1) provides 1156 

the reference for the ideal registration. 1157 
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Figure 10. D99 atlas registered to MEBRAINS using the MB (A), ANTS (B) and “run-1161 

N-select-high-probability-values” (C) approaches. The different registrations of the 1162 

atlas are overlaid on the MEBRAINS template. 1163 
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Figure 11. Masking performance of the U-net convolutional neural network using one 1167 

example model. The predicted mask at the end of the training for an “easy” anatomy 1168 

(A) and a “difficult” anatomy (C), and the dice score during the training (B). The 1169 

performance for the “difficult” anatomy (red line in B) reached the optimal performance 1170 

later than for the “easy” anatomy (green line in B). The maximum average dice score 1171 

is 0.9887, and was reached in epoch 38. 1172 
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Figure 12. (A) Anatomies of the six templates used to quantitatively compare the 1176 

quality of the EBRAINS template. (B) Structures that were selected for the 1177 

MEBRAINS_T1 template: Am = Amygdala; Cd=Caudate; Cl = Claustrum; GM = 1178 

cortical Gray Matter; Pu=Putamen; WM = White Matter. 1179 
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Figure 13. C2N parameter distribution of means for the templates shown in Table 2 1183 

and Figure 12A. Parameters were calculated for the 6 selected sub-structures 1184 

separately, and numbers represent the median values. 1185 
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Figure 14. KI parameter distribution of means for the templates shown in Table 3 and 1189 

Figure 12. Parameters were calculated for the 6 selected sub-structures separately, 1190 

and numbers represent the median values. 1191 
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