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Abstract

Transcription factors (TFs) orchestrate gene expression programs crucial for cell physiology,
but our knowledge of their function in the brain is limited. Using bulk tissues and sorted
nuclei from multiple human post-mortem brain regions, we generated a multi-omic resource
(1121 total experiments) that includes binding maps for more than 100 TFs. We demonstrate
improved measurements of TF activity, including motif recognition and gene expression
modeling, upon identification and removal of regions of high TF occupancy. Further, we
find that predictive TF binding models demonstrate a bias for these high occupancy sites.
Neuronal TFs SATB2 and TBR1 bind unique regions depleted for such sites and promote
neuronal gene expression. Several TFs, including TBR1 and PKNOX1, are enriched for risk
variants associated with neuropsychiatric disorders, predominantly in neurons. These data
are a powerful resource for future studies seeking to understand the role of TF's in epigenetic
regulation in the human brain.
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Introduction 3

Transcription factors (TFs) are a major class of DNA-associated proteins that also include 4
transcriptional cofactors and chromatin remodelers’?. These proteins play critical roles in s
every biological process, including development, cell fate determination, and physiological &
responses® . They carry out these functions primarily by localizing to distinct genomic regions, 7
typically referred to as cis-regulatory elements (CREs), and regulate gene transcription. s
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Disruption or alteration of TF-mediated effects can increase disease risk”®, making the o
study of TF functions a critical component of understanding health and disease. Several 10
TFs with critical roles in normal brain development are involved with neuropsychiatric u
disorders, such as SP4?, EGR1'° NR3C1!!, TCF4!2, and additional TFs are implicated 1
through recent GWASs'3 16, CREs in brain tissues are enriched for GWAS hits for multiple 13
neurological disorders, suggesting they share genetic risk factors that act through altered gene 14
regulation!”1819  Additional analysis has shown that multiple psychiatric disorders associate 15
with the same loci?’. Because of their prominent role in gene regulation, understanding TF 16
functions is a critical component of understanding brain health and disease. Recent work 17
by the PsychENCODE?! and CommonMind?? consortia has generated reference maps for 1s
promoter (H3K4me3) and enhancer (H3K27ac) associated histone modifications from cortical 1
tissues of donors. These data show enrichment for neuronal development and neuropsychiatric 20
risk variants in regions with these chromatin marks?*24. While the ENCODE Consortium?® 2
has generated thousands of occupancy maps for human TFs, these are mostly derived from a 2
small set of cell lines that are distinct from the primary tissues relevant for many diseases. 2
Few TF's have been directly studied in human brain tissues, particularly in key cell-types like 24
neurons. 25

In light of these challenges, large-scale assessment of gene regulation in brain tissues is 2
necessary to better understand genetic and epigenetic features that govern brain biology and 27
contribute to neurological disease. To achieve this goal, we have paired a well-phenotyped, 23
high-quality brain tissue resource with production-scale, multi-omic profiling of multiple tissues 29
from four brain donors. We generated occupancy maps of more than 100 TF's using chromatin 30
immunoprecipitation followed by high-throughput sequencing (ChIP-seq). In addition to
profiling bulk tissue from homogenates, we performed ChIP-seq in neuronal and glial cell types 32
enriched with fluorescence activated nuclei sorting (FANS)26:27. This approach improves the 33
ability to associate epigenetic maps with their regulatory roles by reducing the confounding sa
signal of multiple cell types mixed within homogenate tissues. 35

Here, we present a summary of our work with an emphasis on brain regions and cell types 36
with the most thorough profiling and relevance to psychiatric disorders. By integrating the 7
data produced here with published data, we describe the genomic localization of numerous ss
TF's in relation to each other and their gene targets while identifying TFs whose occupancy 3o

patterns show increased heritability of several neuropsychiatric disorders. 40
Results a
Experimental outline and genomic regions characterized by ChIP-seq 2

We performed genomic assays, including ChIP-seq, ATAC-seq, RNA-seq, phased whole genome 43
sequencing, and DNA methylation profiling, on frozen postmortem brain tissue obtained s
from four donors that were free from and had no family history of psychiatric disorders s
(Supplementary Table 1). We performed assays on nine distinct brain regions; which 4
included four large regions: dorsolateral prefrontal cortex (DLPFC), frontal pole (FP), occipital 7
lobe (OL), and cerebellum (CB), as well as five smaller regions: anterior cingulate (AnCg), 4
subgenual cingulate (SCg), dorsomedial prefrontal cortex (DMPFC), amygdala (Amy), and
hippocampus (HC) (Figure 1A). We performed experiments with both homogenized tissue 5o
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(“bulk”) and nuclei isolated using FANS (“sorted”), with 96 combined TFs and several histone s
marks (H3K4mel, H3K4me3, H3K27ac, H3K27me3, H3K9ac) assayed in large bulk samples s
and 76 TF's total in sorted nuclei from large regions (106 total TFs, detailed in Supplementary s
Table 2). By sorting with immunofluorescent labeling with NeuN and Olig2 antibodies, we s
were able to enrich for neurons (NeuN+), oligodendrocytes (Olig2+), and a mixed population  ss
of microglia and astrocytes (NeuN-/Olig2-) (Figure S1A). Representative ChIP-seq and s
ATAC-seq signals in sorted nuclei showed enrichment at promoters of marker genes of their sz
respective cell type (Figure S1B). We prioritized TFs for ChIP-seq by selecting a large ss
set for which there were validated ChIP-grade antibodies from the ENCODE Consortium?®, s
many of which were done in our lab, as well as those with sufficient expression in the brain, 6o
and some level of established association with neurodevelopmental or neuropsychiatric traits e

(Supplementary Table 3). 62
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Figure 1. Overview of experimental design and profile of large brain regions
tested. A) Left: Diagram of brain regions tested from four donors; large regions are in bold.
Middle: Cell types used to perform experiments. Right: list of experiments. B) Intersections
of peaks identified from TF ChIP-seq experiments from large regions (excluding histones).
Barplot color indicates ENCODE cCREs annotation; “none” category indicates no annotation
in ¢cCRE registry. Upper barplot is the union of all TF peaks. C) GREAT enrichment of
Gene Ontology terms for genes associated with peaks from the largest cCRE categories from
the union of TF ChIP-seq experiments (top:none, middle: pELS and dELS, bottom: PLS).
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Here, we primarily focus our analysis on the four large brain regions as they were the most 63
extensively assayed. By generating the union of unique peaks for all TFs (excluding histone 6
marks) across all four of these regions, we identified 239,361 distinct regions, which span s
6.94% of the hg38 genome reference sequence, that are bound by at least one TF (Figure s
1B, Supplementary Table 4). For each tissue type, 54% - 85% of regions are occupied by 6
five or fewer TFs (Figure S1C). We categorized the regions of each intersection using the s
Registry of candidate cis-Regulatory Elements (cCREs) from the ENCODE Consortium??, e
and found that 49% were classified as distal enhancer-like sequences (dELSs) and 8% were 7o
classified as promoter-like sequences (PLSs, Figure 1B). Notably, promoters were shared 71
across significantly more cell type/tissues than were dELSs (p<2.2e-16, Welch’s t-test), 7
supporting the importance of enhancers in cell-type-specific functionality. The union of all 73
identified regions revealed that 31% of all identified regions have no classification in the 7
ENCODE Registry of cCREs, which to date consists of more than 1,500 cell lines and tissue s
types (Registry V3). Functional annotation of these regions with GREAT??3! revealed that 7
the “none” category was enriched for neuronal pathways, while enhancers (“dELS” and
“pELS”) and promoters (“PLS”) were enriched for more general gene sets (Figure 1C, s
Supplementary Table 5). We note that, while the majority of regions in the union are 7
categorized as enhancers, there are several TFs whose peaks predominantly overlap promoters so
(Figure S1D). 81

Correlation of ChIP-seq signal across TF's reveals co-association clusters 82

Many TF's have overlapping binding profiles and often cooperate to regulate gene expression?32:33,

We sought to identify correlations among TFs in our dataset to contextualize known TF &
interactions and discover new ones. To quantify TF associations within DLPFC-bulk ex- s
periments, we performed a principal component (PC) analysis on the signal (fold-change s
above background) of each TF at all regions identified by ChIP-seq. We then calculated the &
Pearson correlation between TF's using the first 20 PCs, accounting for 83.76% of the variation  ss
in ChIP-seq signals (Figure 2A, Figure S2A and S2B). PCs were used to quantify the s
relationship between TF's, as this approach allows us to assess subtle associations that might o
otherwise be masked by more dominant sources of variation, such as the unique binding o
pattern of cohesin-complex molecules (Figure S2C). 92

The resulting correlation heatmap can be segregated into three main clusters based on o3
prominent features (Figure 2B). Cluster 1 appears to be composed of factors with relatively o
low preference for promoters, stronger average signal-to-noise ratios, and higher peak counts. In s
contrast, Cluster 3 is primarily composed of TFs that are rich in promoter binding, consistent o
with the observed overlap of H3K4me3 signal, and are generally anticorrelated with Cluster 1. o7
Cluster 2 appears to be an intermediate cluster of factors that have some correlation across the s
full dataset. Similarities in binding among correlated TF's are evident when we examine factors o
spanning these clusters at a single locus (Figure 2C). As expected, we find the strongest 100
signals at promoters (e.g. PKNOX1 and EGR1) and these are generally consistent among 101
factors, even those from different clusters. In contrast, differences in binding are observed 102
more frequently at distal sites, as we observed for CTCF and RAD21, members of the cohesin 103
complex (Figure 2C). Similarly, members of the CTF/NF-I family NFIB and NFIC are 10
correlated and share a unique peak at this example locus, although they are not found in the 105
same cluster. Other notable correlations include EHMT2 (H3K9 methyltransferase, G9a) and 106
REST (a neural gene repressor), which are known to participate together with chromatin 107
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Figure 2. Comparison of ChIP-seq profile of TFs from DLPFC-bulk. A) Hierarchical
clustering of TFs based on Pearson correlation of the first 20 PCs in DLPFC-bulk (k-means
= 3). Noteworthy interactions within and between groups are highlighted. B) Quantification
of key characteristics distinguishing the three main clusters (** indicates t-test p-value <0.01;
*** p-value <0.001; **** p-value <0.001; n.s. non-significant). C) ChIP-seq signal tracks
from highlighted TF's representing interactions between clusters along with histone marks
H3K4me3 and H3K27ac. Gene track: small arrows denote directionality and large arrows

denote possible transcript start sites.
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remodeling complexes®*35. Finally, we observe a correlation node within Cluster 2 involving 1
TBR1 and SATB2, transcription factors with established roles in neuron development 36:37.
An axis of reciprocal correlations is formed between these two factors and 17 others, including 110
SIN3B, ARNT, BCL11A, ZNF207, and ARID1B (Figure S2D). Although these factors are 1
not widely known as direct interactors, these data suggest an association between these factors 112

as they are all involved in neuron development3®42.

109

113

High-Occupancy Target sites can vary by factor preference and cell types s

Although most regions identified across ChIP-seq experiments are bound by only a few factors 11s
(Figure S1A), many sites are occupied by a large number of TFs. Segments of hg38 with 116
abundant binding of TFs are commonly referred to as High-Occupancy Target (HOT) sites and 117
have been previously observed in various cell types?346. These regions are highly permissive 11
for TF binding and are enriched for non-specific binding of individual TFs. To define HOT 119
sites within our data, we merged overlapping peaks from all experiments while setting a 2,000 120
bp threshold to prevent concatenation of adjacent regions. We ranked these regions by the 121
number of unique TFs bound and set a threshold of the 90th percentile of the number of TFs 12
to define HOT sites, similar to previous methods**#® (Figure 3A). When overlapped with 123
ENCODE cCRE annotations, 66% of HOT sites are promoter-like sequences, particularly 124
CpG island (CGI) promoters, while most non-HOT sites are distal enhancers (Figure 3B). 12s
To determine whether HOT sites are shared across tissues and cell types, we compared HOT 126
sites identified separately in homogenate DLPFC, sorted neurons, oligodendrocytes, and 17
astrocytes/microglia from DLPFC, and HOT sites defined in two cell lines from data available 12
through ENCODE (Figure 3C). Cell type-specific HOT sites are largely distal enhancers, 12
while those shared across cell types are mostly promoter-like sequences. HOT sites shared 130
across all the cell types tested are heavily enriched for promoters of housekeeping genes (Odds 11
Ratio = 8.245; p-value <2.2 x 10-16, Chi-squared test ), which are known to coincide with 13
HOT sites*3. 133

We next looked at the binding profiles of individual TFs to measure their preference for 1
co-localizing with other TFs and thus their tendency to be in HOT sites. This was done 135
for each tissue/cell type by counting the number of TFs bound at each region in the union 13
of all peaks, then measuring the proportion of peaks for increasing numbers of TFs bound. 137
For example, SATB2 predominantly binds regions with few other TFs, while HCFC1 binds 133
predominantly at HOT sites (Figure 3D). We measured the skewness of this distribution for 13
each TF to quantify the propensity for binding at HOT sites (Figure 3E, Supplementary 1o
Table 6). Representative quantification in bulk DLPFC demonstrates the tendency of several —1a
factors to preferentially bind HOT sites and that the most HOT-skewed factors belong to the 1
promoter-biased Cluster 3 in our PC analysis above (Figure 2A). Considering all tissue/cell 13
type datasets, we found that skewness of HOT site binding is consistent between tissues 1
(Figure S3A). Cortex-specific TFs SATB2 and TBR1 have negative-skewed profiles in the s
cortex regions, while NEUROD1, a neuronal differentiation factor, maintains this skewness 14
across all three cortical regions and the cerebellum. Additionally, several TFs (e.g. PKNOX1) 17
become more negatively skewed in neuronal nuclei relative to other tissue/cell types, while 1
other TFs (e.g. NFIC) show the opposite trend (Figure 3F and S3B). We note that there is 19
a positive relationship between the number of peaks called in an experiment and the calculated 150
skewness, likely resulting from HOT sites and promoters being the majority of peaks identified 151
in ChIP-seq experiments with lower signal-to-noise ratio (Figure S3C). 152
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Figure 3. Identification and characterization of HOT sites. A) Cumulative distri-

bution of peaks called from ChIP-seq of each large brain region demonstrating the cutoff
for defining regions as “HOT”. B) Proportion of ENCODE cCREs in HOT and non-HOT
DLPFC-bulk peaks. C) Intersections of HOT sites called from our ChIP-seq for all four
cell-types of DLPFC and ENCODE ChIP-seq in cell lines HepG2 and K562. D) Distributions
of peak occupancy for example TFs. E) Skewness values for the distribution of peak occupancy
for all TFs in DLPFC-bulk. F) Distribution of peak co-occupancy in PKNOX1 across multiple

tissues and cell types.
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Profiling enrichment and centrality of TF motifs 153

An important feature of many TFs is their ability to preferentially recognize and bind a 154
particular DNA sequence motif. We compiled known motifs from the JASPAR 2022 database®” 15
that correspond to TFs that we profiled, then measured the proportion of ChIP-seq peaks 156
containing the motif and its centrality across all experiments in bulk DLPFC (Figure 157
4A, Supplementary Table 7, ). Similar analyses of ENCODE data found a comparable 1ss
percentage of peaks containing the expected TF motif (Figure S4A). 24 out of 49 factors 1s
had the highest relative proportion for their expected motif when scaled to all other factors in 160
the dataset (Figure S4B and C). Some TFs are not the most enriched for their respective 161
motif, but this is commonly due to closely related TFs having a stronger signal for the 1
same motif ( e.g., NFIB and NFIC, CREB1 and CREM). The centrality of all tested motifs, 163
measured as the variance in distance from the motif to the center of the peak, showed a similar 16
profile in that most TFs with high motif recognition also displayed high centrality for their 165
expected motif relative to other TFs (Figure S4D and E). Plotting the normalized values 166
together provides a visualization of the specificity of each factor for its expected motif in our 167
experiments (Figure 4A). We also performed de novo motif discovery using MEME*®. We 165
found that TFs with higher specificity tend to match with their expected motif. We also note 16
that peaks for a few TFs only revealed their expected motif once HOT sites were removed 170
(Figure S4B, Supplementary Table 8). Previous ChIP-seq studies in human tissues*® 17
have also found this to be true and it is likely driven by HOT sites composed of strong motifs 17
for a few TFs?. 173

To identify commonly occurring motifs across experiments, we used a previously published 174
approach that identifies and clusters motifs by similarity®®. Among the 346 motifs that 175
passed our quality metrics in experiments from bulk DLPFC, several motifs were repeatedly 176
found among many experiments ((Figure 4B). These common motifs are highly GC-rich, 177
emphasizing the role of GC-preferring factors, such as the NRF and SP families (represented 17s
in clusters 4 and 10 respectively), in regulating gene expression in the brain® 3. The largest 17
motif cluster (1) resembles that of THAP11, which was previously shown to be common 1s
across ChIP-seq experiments and may be involved with promoter-promoter interactions®®5.
These motifs highlighted in Figure 4B are often enriched in de novo motif discovery across 1s
individual experiments. 183

181

Because HOT sites are regions that lack motif diversity, we calculated the difference in 1s4
motif recognition between the full and HOT-depleted peak set for each TF and compared 1ss
it to the GC content of the expected motif (Figure 4C). TFs for which the expected motif 1ss
was more enriched in HOT sites tended to be those with higher GC content in the motif 1s7
sequence, reflecting the common motifs highlighted in Figure 4B. Conversely, removing HOT 183
sites improved enrichment for motifs with lower GC content. For example, when de novo 1s
motif calling was performed on the top 500 NFIB ChlIP-seq peaks, the expected NFIB motif 190
was the second ranked motif called by MEME, but after excluding HOT sites, it became the 101
top ranked motif with drastically increased enrichment (Figure 4D) and sharpened centrality 10
(Figure S5A). Compared with ATAC-seq peaks, ChIP-seq experiments from all tissues 13
and cell types generally showed a greater enrichment for the expected motif (Figure S5B). 10
Altogether, these data show that the ChIP-seq experiments performed in this study show 10
enrichment for their respective motifs by multiple metrics and that the results are influenced 196
by the GC content, likely due to its association with HOT sites*3. 107
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Figure 4. Motif recognition by transcription factors. A) Schematic demonstrating the
specificity of individual TFs for their expected motif relative to the other TF's tested which
had a matching motif in the JASPAR 2022 database (49 in DLPFC-bulk ChIP-seq). Motif
Proportion is the scaled proportion of peaks for individual TFs containing their expected
motif relative to other TFs tested. Similarly, Motif Centrality is the scaled centrality of
the expected motif within respective peaks relative to other TFs tested. Increase in these
two metrics indicate a ChIP-seq that is more specific for its expected motif relative to other
ChIP-seq experiments. B) Matrix of de novo motif calls using top 500 peaks from all ChIP-
seq experiments in DLPFC-bulk. The most prominent clusters are highlighted along with
the called motif. C) Dot plot showing the relationship between motif GC content and the
difference in proportion of peaks with expected motif matches found in all peaks from a
ChIP-seq experiment and the proportion with HOT sites removed. D) NFIB ChIP-seq as an
example of the effect that removing HOT sites has on de novo motif calling using MEME-ChIP.
The left table uses the top 500 peaks ranked by g-value; the right table uses the top 500
peaks excluding HOT sites. E-value enrichment for each called motif is calculated by MEME
and highlighted in gray. TOMTOM calculated the p-value of the match between the de novo
motif and the corresponding position weight matrix from the JASPAR database.
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Ability of predictive models to predict ChIP-seq results 108

With the growing availability of TF-occupancy data from sources such as the ENCODE 19
Consortium, there have been efforts to predict TF binding with computational models trained 200
on existing data. To test predictions versus our experimental results, we compared our 2o
ChIP-seq datasets to models generated by Virtual ChIP-seq®®, a peak predictor that is trained 20
on many datasets from CCLE ®7 and ENCODE 2%, There were 16 TFs in both our dataset 20
and the Virtual ChIP-seq trained models that used multiple cell lines for each TF. We assessed 204

the precision-recall at increasing posterior 205
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Figure 5. Comparison of ChIP-seq results with predictive models. A) Precision-
recall curves of predictions made by Virtual ChIP-seq compared to ChIP-seq results. Red
asterisk represents precision-recall of ATAC-seq peaks containing the expected motif. B)
Calculated Virtual ChIP-seq predictions made using ChIP-seq from our experiments using
DLPFC-bulk or from experiments on GM12878 available through ENCODE database (R =
Pearson correlation coefficient). C) auPR with and without HOT sites. D) The enrichment
for cCREs categories in regions predicted at a posterior probability >0.5 over unpredicted
regions.

probability cutoffs calculated by Virtual ChIP-seq and derived the area under the precision- 206
recall curve (auPR) for each TF (Figure 5A, Supplementary Table 9). Where applicable, 207
we also assessed the precision-recall of ATAC-seq peaks containing the expected motif to gauge 208
its predictive accuracy alongside the respective model (Figure 5A, red asterisk). Higher 20
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auPR, as demonstrated by CTCF and NRF1, is indicative of stronger agreement between the 210
predictive model and the experimental data. Models with relatively low auPR, for factors ou
such as EGR1 and REST, failed to outperform ATAC-seq peaks containing motifs for a given 212
level of recall. We also calculated the auPR on ENCODE datasets for the GM12878 cell 23
line (included in the training data) and found that the auPR for predictions using data from i
bulk DLPFC were generally comparable (r = 0.69, p-value = 0.0093) to those of the cell 25
lines (Figure 5B). We replicated this approach in sorted nuclei and found the results to be 26
consistent across multiple cell types, with predictive models typically having higher auPR for 217
experiments in bulk tissues compared to NeuN+ and Olig2+ sorted nuclei (Figure S6B). 2
However, we note that the predictive power of these models is primarily derived from HOT 210
sites, as the auPR is drastically reduced across most models when HOT sites are removed 22
(Figure 5C). This is likely due to the preferential removal of promoter regions, which are 2z
inherently correlated with expressed genes and open chromatin. As CTCF is not typically 22
associated with promoter regions, it is the least affected by HOT site removal. We calculated 223
the enrichment for cCRE categories of predicted peaks that matched the experimental data 22
and show that distal elements are depleted, further exemplifying the bias of a predictive model 225
for predicting peaks in promoters (Figure 5D). 226

Multi-omic Integration 207

We classified genes as to whether or not their promoters overlap a HOT site. Genes with 20
HOT-site promoters have higher median expression and stronger indicators for active gene 22
expression, including H3K4me3, chromatin accessibility, and hypomethylation (Figure 6A). 23
We quantified the functional consequence of TF localization on gene regulation by correlating 2:
their binding with gene expression using data from NeuN+ sorted DLPFC nuclei. To measure 23
the impact of individual TFs on gene expression, we implemented a linear model for each 233
factor to estimate the effect on gene expression while controlling for the number of TFs bound 234
at the promoter (Figure 6B, left). Most TFs have a positive impact on gene expression with 235
the largest effect sizes measured in genes with non-HOT promoters, suggesting that individual 236
TF's have a relatively small impact at HOT-promoters. Genes with HOT promoters appear to 237
have become saturated, as there is no association between activation signals such as ATAC-seq 23
or TF count and transcription (Figures STA & B). We performed a similar analysis using 23
ChIP-seq signal at distal elements that were linked to specific genes in our previous single-cell 240
study using 10x Genomics multiomic technology®® (Figure 6B, right), and demonstrated a 2s
similar trend, albeit with smaller effect sizes overall. These findings were replicated in bulk 24
DLPFC samples, although there are discrepancies in some TFs having a strongly negative 243
effect on expression likely caused by differences in gene expression between cell types (Figure 24
S7C). 25

We determined the cell type composition of TF peaks from bulk DLPFC ChIP-seq by 2s6
overlapping with ATAC-seq peaks from sorted nuclei. We identified TF's that were biased 24
towards specific cell types, notably SATB2, TBR1, and BCL11A for NeuN+ nuclei, OLIG2 23
and SOX8 in Olig2+ nuclei, and MITF for NeuN-/Olig2- (Figure 6C). These results were 2s
replicated by measuring the enrichment of these factors for cell type-specific linkages from our 2s0
single-nuclei multiomic data (Figure S7D), of which all were shown to significantly affect s
gene expression in the linear models for either sorted or bulk ChIP-seq. We note that TFs in 252
bulk OL have a greater proportion of peaks exclusive to NeuN+ ATAC-seq (Figure S7TE), 2
likely due to the higher proportion of neurons in OL relative to DLPFC as observed from 254
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Figure 6. Correlating TF binding with gene expression and chromatin accessibility.
A) Heatmap demonstrating the relationship between gene expression and markers for active
gene expression and gene promoters such as H3K4me3, chromatin accessibility (ATAC-seq),
cumulative TF binding (ChIP-seq), and methylation in experiments from DLPFC-bulk.
Cumulative ChIP-seq signal was generated by combining peaks called from all TF ChIP-
seq experiments in DLPFC-bulk into a single bed file and converting it into a bigwig file.
Methylation signal was derived from whole genome bisulfite sequencing. B) Calculated beta
values from linear models estimating the effect that each TF has on predicting gene expression
based on ChIP-seq signal in DLPFC-NEUN at the promoter (left) or a linked distal region
(right) while controlling for the number of co-bound TFs. Top: Illustration of the ChIP-seq
signal at promoters and distal sites linked to gene expression. Bottom: beta values for
individual TFs with histone marks and ATAC-seq shown separate. C) ChIP-seq peaks of TFs
in DLPFC-bulk segmented by their overlap with ATAC-seq from sorted nuclei. Shown here
are TFs with the highest proportion of non-Common peaks. D) Plot of average ATAC-seq
signal (normalized across cell-types) across ChIP-seq peaks for each TF from DLPFC-bulk.
HOT skew is calculated as in Figure 3. NEUN: NeuN+ nuclei; OLIG: Olig2+ nuclei, NEG:
NeuN-/Olig2- nuclei.
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FANS (Figure S1A). Of all TFs tested in bulk DLPFC, ATAC-seq signal in sorted nuclei 255
was disproportionately high across regions bound by each of the three neuronal TFs when 256
corrected for the relative number of total TFs bound (Figure 6D). This effect is not observed 27
in the corresponding sorted ATAC-seq signal in other cell type-enriched factors such as OLIG2 258
and MITF, suggesting that this effect is neuron-specific. 259

Enrichment of heritability for psychiatric disorders within TF peaks 260

To identify disease-relevant TF's, we integrated our genomic data with GWAS findings using 261
stratified LD score regression (sLDSC), a statistical method developed to estimate and e
partition SNP heritability of a trait by different functional genomic annotations®. We used 23
the ChIP-seq and ATAC-seq datasets performed in bulk tissue and sorted nuclei along with 264
GWAS summary statistics from various neuropsychiatric and neurodegenerative diseases. 265

Using sLDSC analysis for experiments from DLPFC, there is a clear increase in the 26
enrichment of neuropsychiatric disease markers for experiments from NeuN-+ sorted nuclei 267
compared to those from bulk and other sorted cell types (Figure 7A, Supplementary Table 25
10). This is evidenced by the increase in the number of individual TFs significantly associated 260
with neuropsychiatric disorders and overall increase in enrichment. While histone marks and 270
ATAC-seq regions have similar enrichment between bulk and NeuN+ datasets, the individual o
TFs show a clear increase in enrichment for associated diseases. By looking at a single 27
factor (PKNOX1), we highlight the increase in enrichment provided by ChIP-seq compared 273
to ATAC-seq (Figure 7B). Neuronal TFs TBR1 and BCL11A were significantly enriched for 27
schizophrenia and bipolar disorder in both bulk and NeuN-+, but SATB2 is not. We note 275
an enrichment of Alzheimer’s disease risk alleles for several TFs in the NeuN-/Olig2- nuclei, 27
notably for REST in the DLPFC and FP (Figure 7TA, S8A). TFs were generally not enriched 277
in experiments from Olig2+ nuclei. No dataset from this study was significantly enriched 273
for non-neuronal phenotypes that served as negative controls, including immune diseases or 279
other physical traits. However, TF's from this study that were also profiled by ENCODE in 2s0
the GM12878 immune cell line did show enrichment in those experiments for inflammatory 2s:
disorders, highlighting the cell type specificity of DNA binding by these factors (Figure 2.
S8B).As an example, we highlight a genomic region where a PKNOX1 peak from NeuN-+ 283
DLPFC nuclei overlaps a risk locus for schizophrenia'* (Figure 7C). The most significant 2ss
SNPs were in the intronic regions at the 3’ end of TSNARE1 (bottom). Overlapping PKNOX1 2ss
peaks with linkages from our previous single-cell multiomics study shows that this particular 26
region is correlated with ADGRB1 and ARC expression in neurons, two genes that were 2s7
previously implicated in schizophrenia®*-62. We note that this link does not overlap an ATAC- s
seq peak, although it was identified as an ATAC-seq peak in the single-cell study and shows 2s
some signal above background in our study. 290
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Figure 7. Association of TFs with disease through GWAS traits. A) Results from
sLDSC measuring heritability of TFs with GWAS traits grouped by disorder type and separated
by cell type. Heatmap indicates coefficient Z score from sLDSC of TF ChIP-seq peaks from
each cell-type combined with 97 baseline features. Feature-trait combinations with a Z score
significantly larger than 0 (one-sided Z test with alpha = 0.05, p values corrected within each
trait using Benjamini-Hochberg method) are indicated with a numeric value reporting the
enrichment score. B) Direct comparison of sSLDSC results for single TF (PKNOX1) with
ATAC-seq to highlight the increase in heritability enrichment for neuropsychiatric disorders.
C) Browser tracks of a region containing SNPs with statistically high association with
schizophrenia (Trubetskoy et al 2022). Top: Zoomed in region to show signal and called peaks
from both ATAC-seq and PKNOX1 ChIP-seq in relation to significant peaks from GWAS and
links, which are regions identified by single-cell multiomic study in cortex tissue identifying
differentially accessible regions significantly associated with nearby genes. Bottom: Zoom
out of region. Arcs represent the correlation between the linked-peak overlapping a PKNOX1
peak in the top panel with nearby genes ADGRBI and ARC.

Discussion 201

Large epigenetic datasets, such as those provided by ENCODE, have been cited in thousands of 202
publications and have played a major role in understanding the role of TFs in gene regulation®®. 203
However, such datasets typically focus on cell lines that have limitations with respect to 20
modeling gene regulation observed in human tissues, particularly brain. Recent studies have 295

highlighted the importance of using human tissues for studying epigenetic regulation in normal 206
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brain function and understanding of psychiatric disorders'”%:23:24 but such studies often 207
focus on general markers such as histone modifications and chromatin accessibility. Here, we 298
have used ChIP-seq to map the binding of more than 100 proteins that regulate chromatin 20
structure, including histones, transcription factors, and chromatin remodelers (Figure 1). 30
ENCODE has generated an extensive registry of 1,063,878 candidate cis-Regulatory Elements sot
(cCREs) defined from more than 1,500 cell lines and human tissues, of which 235 are considered 302
neural (defined as brain, spinal cord, or nerve)??. Nearly 30% of the regions identified by 03
TFs here are not annotated in this cCRE registry and are enriched for neuronal pathways, 30
highlighting the unique attributes of our study. 305

A benefit to performing ChIP-seq experiments on such a large number of TFs in uniform 36
contexts is that it allows the study of TFs as a group, including the identification of HOT 307
sites. We identified many HOT sites outside of typical CpG islands, gene promoters, and sites sos
found in ENCODE data (Figure 4C), emphasizing the need to experimentally determine 3o
such sites in relevant tissues and cells. Providing this information will aid researchers in using s
this resource and potentially help to interpret analyses from other studies by identifying those su
TFs and regions that exhibit unique occupancy patterns. For example, knowing which TFs 312
are most selective for specific sites (e.g., Figure 3) may help in prioritizing factors in future s
studies. Similarly, knowing regions of seemingly indiscriminate binding can identify genes sia
whose expression is relatively unchanged regardless of which TFs are bound at the promoter 315
or potential enhancers (Figure 5). Analyzing data from regions outside of HOT sites also 316
substantially improves de novo motif discovery for some factors (Figure 4C). 317

As the generation of epigenetic and multi-omic datasets of brain tissue increases, there ss
will be a greater need for resources capable of predicting TF-binding at sites of interest. The 319
ability to overlap findings with ChIP-seq from human samples will be a valuable resource that sz
is difficult to replicate in silico. For example, comparison of predicted TF-binding results from s
Virtual ChlIP-seq to experiments from our study showed major discrepancies that suggest 32
limitations to the accuracy of computational models that rely solely on motifs and ATAC-seq 32
for predicting the function of many TFs (Figure 5). Most of the predictive power from s
these models come from predicting HOT sites (which are more easily predicted and the most s
well-understood CRESs) because the auPR plummets upon their removal. We showed that the 32
“none” cCRE category lacking annotation in the ENCODE registry is enriched for neuronal so7
pathways (FigurelC) and is the most depleted cCRE category in the predictions (Figure 3
5D). These findings accentuate the unique value of the brain-derived data described here 32
which may improve model performance in the future. 330

Analyzing ChIP-seq data with sLDSC connects specific TFs to their potential roles in s
psychiatric disorders using GWAS data from neurological diseases. The increased enrichment 33
of heritability for TFs in specific cell types (psychiatric in neuron-enriched and Alzheimer’s in 333
microglia-enriched) relative to histone marks and ATAC-seq shows the value of performing 33
ChIP-seq in disease-relevant cell types (Figure 7). Several highly enriched TFs have been 335
previously implicated in psychiatric disorders, such as PKNOX1%3 CREB1%*2 EGR1'0, and 33
NEUROD1%%. Using PKNOX1 as an example, we show binding at a region of significance 33
for schizophrenia that would likely be missed in ATAC-seq analysis and is associated with 33
neuronal expression of multiple disease-related genes. This dataset provides a multitude of 33
opportunities for functional annotation and analysis of disease-associated genes and CREs. 340
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To date, this is the largest study directly measuring TF binding in human postmortem s
brain and is complementary to other large-scale genomic efforts (e.g., ENCODE, PsychEN- sz
CODE, GTEx, etc.). These data and the accompanying analyses will serve as a resource 343
to understand genome regulation in psychiatric diseases and will be publicly available 344
through the PsychENCODE Consortium and available for download at the following link: s
https://doi.org/10.7303/syn4921369 . 346

Acknowledgments 347

This study was supported by NIH grant 5RO01MH110472 awarded to R.M.M. and G.M.C, the 348
Memory and Mobility Fund from HudsonAlpha Institute for Biotechnology, and support from 349
the Pritzker Neuropsychiatric Research Consortium. We especially thank the brain donors sso
and their families without whom this research would not have been possible. 351

Author contributions 352

Conceptualization: R.M.M, G.M.C., J.M.L. Investigation: J.M.L., L.R., LR.N., K.T.L., R.J., 35
Data Curation: J.M.L., L.R., A.G.A. Formal analysis: J.M.L., A.G.A., B.M., .LR.N. Provision 35
of brain tissue and resources: W.E.B, B.G.B, P.C.; A.S., S.J.W., H.A. Writing - Original 355

Draft: J.M.L. Funding acquisition: R.M.M., G.M.C. 356
Declaration of interests 357
The authors declare no competing interests. 358
Data and code availability 350

The data will be publicly available through the PsychENCODE Consortium and available 360
for download at the following link: https://doi.org/10.7303/syn4921369 . All supplementary so
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available at 363
github.com/aanderson54/Loupe_BrainTF and has been depositied at Zenodo (DOI: 10.5281/zen- 364
Od0.8065798). 365
Methods 366
Brain tissues. 367

Human brain tissues were obtained from collaborators at the Department of Psychiatry and ses
Human Behavior, University of California Irvine; dissections were performed at the Molecular 369
& Behavioral Sciences Institute, University of Michigan. Both donors died without prolonged 37
agonal state and had no personal or family history of psychiatric disease. Samples were stored 3n
at -80°C. 372
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Chromatin Preparation: Bulk. 373

Buffers required: RIPA: 1x PBS (Cytiva SH30256.02), 1% NP-40, 0.5% sodium deoxycholate, 37
0.1% SDS. Farnham Lysis buffer: 5 mM PIPES pH 8.0 / 85 mM KCl / 0.5% NP-40. Roche 375
Protease Inhibitor Cocktail Tablet (Sigma 11836145001 for 50 ml or mini tablets 11836153001 76
for 10 ml). 377

In order to reduce variability between experiments and reduce sample loss of precious tissue, 37s
chromatin inputs for ChIP-seq were prepared in large batches (enough for 20-100 experiments 37
for small and large regions respectively). Techniques for generating chromatin from frozen s
human tissue were similar to those described previously from our lab64. For processing ss:
frozen brain tissue, all instruments and materials are chilled on dry ice and kept cold until ss2
crosslinking. To begin, a small portion of each dissected brain region is broken off using a  3ss
metallic block and hammer with care taken to obtain an even balance of gray and white ss4
matter when possible. The starting material for each region (2500mg for large regions and 385
500mg for small regions) was sealed inside of a Covaris Tissue TUBE (Covaris 520021, 520023) sss
and thoroughly pulverized using the chilled hammer and metallic block, with intermittent ss
submerging into liquid nitrogen to maintain cold temperature and brittleness. At this point, 3ss
a small amount of pulverized tissue (<100mg) is preserved in an Eppendorf tube at -80°C to 38
be used in parallel experiments. The remaining tissue can be used immediately or stored for s
a few days at -80°C. 301

For crosslinking, pulverized tissue was poured into a conical tube holding PBS plus protease 3o
inhibitor at room temperature and a small volume of PBS is used to wash the remaining 3o
contents of the Covaris bag. Immediately, add 37% formaldehyde (Sigma F8775-25ML) to 30
a final of 1% formaldehyde and rotate end-over-end for 10 minutes at room temperature. 3o
Fixation was halted by adding 2.5M Glycine to a final concentration of 0.125M and rotating 36
for another 5 minutes at room temperature. Pour the fixed tissue mixture into a Dounce 307
homogenizer and pass the loose pestle 5 times to break up any remaining large pieces. Spin 3o
the mixture in a conical tube at 5,000g for 5 minutes at 4°C. The supernatant is discarded 3o
and the pellet is resuspended and washed in cold PBS. Spin and 5,000g for 5 minutes at 4°C. 400
Wash twice more with cold PBS. Resuspend final pellet in Farnham Lysis buffer plus protease 40
inhibitor and hold on ice for 5 minutes. Pour contents in Dounce homogenizer on ice and 402
complete 10 pulses with tight pestle. Pour into new conical tube and spin 5,000g for 5 minutes 403
at 4°C. Resuspend pellet in cold RIPA buffer plus protease inhibitor. Sonicate tissue using 4o
Diagenode Bioruptor Pico (10 cycles; 30 seconds on/ 30 seconds off) using 1.5mL microtubes 405
(Diagenode C30010016) with 300ul. per tube (several rounds needed). Pool the sonicated 406
chromatin into a conical tube and centrifuge 16,000g for 30 minutes at 4°C to remove any 407
insoluble debris. Collect supernatant, raise to final volume with RIPA, and dispense working 408
aliquots into 1.5mL Eppendorf tubes held on dry ice. Store at -80°C. 400

Chromatin Preparation: Sorted 410

Buffers required: Nuclei Extraction Buffer (NEB): 0.32 M Sucrose, 5 mM CaCl2, 3 mM
Mg(Ac)2, 0.1 mM EDTA, 10 mM Tris-HC1, 0.1 mM PMSF, 0.1% Triton X-100, 1 mM 42
DTT. Before use, add protease inhibitor cocktail according to manufacturer recommendation. 413
Sucrose Cushion Buffer (SCB): 1.6 M Sucrose, 3 mM Mg(Ac)2, 10 mM Tris-HCL, 1 mM DTT.
Interphase Buffer: 0.8 M Sucrose, 3 mM Mg(Ac)2, 10 mM Tris-HCI. Blocking buffer: 1x PBS, s
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1% BSA (Sigma 3117332001), 1 mM EDTA. Pellet buffer: add 200 ul. 1 M CaCl2 to 10 mL 41
SCB 417

Methods for extracting and sorting nuclei from postmortem brain are similar to previously s
published methods67. Here, approximately 500 mg of tissue was placed into a chilled 40 mL 19
Dounce homogenizer containing 5 mL of NEB on ice and allowed to partially thaw to ease 420
douncing (2-3 minutes). Extract nuclei by douncing with “tight” pestle 30-40 times until 421
the tissue is homogenized. Transfer to a 15 mL conical tube on ice, wash glassware with 5 42
mL NEB and add to 15 mL tube. Fix chromatin by adding 625 uL of 16% formaldehyde 423
(methanol free, Thermo 28906) to a final concentration of 1% and rotate end-over-end at room 424
temperature for 10 minutes. Halt fixation by adding 500 uL of 2.5 M Glycine and incubate 425
another 5 minutes rotating at room temperature then place homogenate back on ice. During 42
fixation, prepare sucrose gradient in 2 ultracentrifuge buckets (Beckman Coulter cat: 344058) 47
by layering 5 mL of Interphase buffer atop 10 mL of SCB in each. Carefully layer nuclei 423
homogenate atop sucrose gradient, balance with NEB, then ultracentrifuge at 24,000 rpm for s
2 h using SW28 swinging bucket rotor (Beckman Coulter). Upon completion, inspect tubes 430
for a visible pellet of nuclei at the bottom of the tube. Remove debris at interphase first by s
using a 25 mL graduated pipette, then continue removing the remaining sucrose gradient s
being careful not to disturb the nuclei pellet. Carefully resuspend the pellet in 1 mL cold PBS 133
and transfer to a 15 mL lo-bind tube containing 2 mL PBS on ice. Wash ultracentrifuge tubes 434
with 1 mL cold PBS and combine in 15 mL tube to a final volume of 10 mL, inverting to mix. a3s
Centrifuge the nuclei at 1,000xg for 10 minutes at 4°C to remove residual sucrose. Label nuclei 436
by resuspending pellet in 5 mL blocking buffer with NeuN-488 antibody (Millipore MAB377X) 437
and Olig2 antibody (Abcam ab109186) at 1:5,000 each. Incubate nuclei in staining buffer s
with rotation for at least 1 hour at 4°C. Spin nuclei 500 x g for 5 minutes to pellet, remove 439
supernatant, then resuspend in 5 mL blocking buffer with goat-anti-rabbit-647 (ThermoFisher o0
A-21245) at 1:5,000 and DAPT at 1:100,000. Incubate for at least 1 hour at 4°C with rotation s
(overnight preferred). Remove stain by centrifuging 500xg 5 minutes at 4°C and resuspending 44
in 3 mLL cold PBS. Hold on ice and proceed immediately to sorting. 443

Nuclei were sorted using Sony MA900 with a 70 um nozzle and pressure not exceeding s
pressure setting of 7. Gates were set to capture those populations that were positive for 488 s
signal (NeuN+), positive for 647 signal (Olig2+), or negative for both (NeuN-;OLIG-). Each s
population was collected into 5 mL tubes held at 4°C and pooled into 15 mL lo-bind tubes s
on ice. Purity of selected samples were typically ;95% based on reanalysis of sorted samples. a4
To concentrate nuclei for downstream analysis, add approximately 2 mL of pellet buffer per a4
10 mL of sorted nuclei and rotate at 4°C for 15 minutes. Centrifuge 500 x g for 10 minutes 4so
at 4°C, after which a pellet should be visible. Remove supernatant and carefully resuspend s
pelleted nuclei in at least 3 mL cold PBS to wash. Centrifuge 500xg for 5 minutes at 4°C. s

To generate chromatin for ChIP-seq, resuspend pellet in cold RIPA plus protease inhibitor s
at approximately 3 million nuclei per 250 uL.. Transfer 250 ulL of each sample to the Bioruptor s
tubes and sonicate tissue using a Bioruptor Pico (8 cycles; 30 seconds on/ 30 seconds off). sss
Pool the sonicated chromatin into a 1.5 mL. DNA lo-bind conical tube and centrifuge 12,000xg 456
for 5 minutes at 4°C to remove any insoluble debris. Collect supernatant into a separate tube, as7
add RIPA to final volume equivalent to 500,000 nuclei per 100 ul, then dispense working ss
aliquots into 1.5 mL tubes held on dry ice. Store at -80°C. 450

18,/26


https://doi.org/10.1101/2023.06.21.545934
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.21.545934; this version posted June 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ChIP-seq. 460

Buffers required: BSA wash: 1x PBS + 5 mg/mL BSA. LiCl wash: 100 mM Tris at pH 7.5, 4
500 mM LiCl, 1% NP-40, 1% sodium deoxycholate. TE buffer: 10 mM Tris-HC1 at pH 7.5, 4
0.1 mM Na2EDTA. IP elution buffer: 1% SDS, 0.1 M NaHCO3. 463

Antibodies used in ChIP-seq are detailed in Supplementary Table 3. 464

Protocols for ChlIP-seq are similar to those for frozen tissue previously described by ses
our 1ab%68 and consistent with techniques recommended by the ENCODE consortium ass
(www.encodeproject.org/documents). Briefly, Dynabeads (ThermoFisher Scientific; 11201D 467
anti-mouse or 11203D anti-rabbit) were washed with cold 1x PBS + 5 mg/mL BSA then 4
combined with respective antibodies at a desired ratio of 5 ug antibody to 150 uLL Dynabeads 469
(dependent on concentration from manufacturer) at a final volume of 200 uL and held at 4°C 470
overnight with rotation. The following morning, tubes of aliquoted chromatin are thawed on 41
ice and bead/antibody complex is washed with PBS + 5 mg/mL BSA solution. Beads are s
ultimately resuspended in 100 uLL RIPA and brought to 200 ulL with 100 uL. chromatin aliquot. 473
Incubate bead/antibody with chromatin using rotation for one hour at room temperature s
then move to 4°C for another hour. After incubation, bead complexes were washed five times a5
with a LiCl wash buffer and removed remaining ions with a single wash with 1 mL of cold TE 47
buffer. Chromatin was eluted from beads by incubating with intermittent shaking for 1 hour 477
at 65°C in IP elution buffer, followed by incubating overnight at 65°C to reverse formaldehyde 47s
cross-links. DNA was purified using DNeasy Blood and Tissue kit (Qiagen 69506) and eluted a7
in a final volume of 50 uLL EB. 2 ul. was used to quantify recovered DNA using Qubit dsDNA g0
HS Assay kit (Thermo Q32854). For input controls, one aliquot of each tissue was brought to as:
200 ulb with RIPA and reverse-crosslinked overnight at 65°C. The following morning, samples s
were incubated an additional 30 minutes with 20 ul. Proteinase K and 4 ulL RNase A (Qiagen 483
19101) and subsequently eluted for DNA using DNeasy Blood and Tissue kit. 484

The entirety of the remaining IP DNA (and 100 - 500 ng input control for sorted and sss
bulk chromatin, respectively) were used to generate sequencing libraries. Libraries were sss
prepared by blunting and ligating ChIP DNA fragments to [llumina sequencing adapters for s
amplification with barcoded primers (30 sec at 98°C; [10 sec at 98°C, 30 sec at 65°C, 30 ass
sec at 72°C] x 15 cycles; 5 min at 72°C). Libraries were quantified with Qubit dsDNA HS s
Assay kit and visualized with Standard Sensitivity NGS Fragment Analysis Kit (Advanced 490
Analytical DNF-473) and Fragment Analyzer 5200 (Agilent). Libraries were sequenced using o1
the Illumina NovaSeq with 100 bp single-end runs. 492

ChIP-seq analysis pipeline. 493

Prior to analysis, reads were processed to remove optical duplicates with clumpify (BBMap 0
v38.20; Bushnell B.; https://sourceforge.net /projects/bbmap/) [dedupe=t optical=t dupedist=2506)]
and remove adapter reads with Cutadapt®® (v1.16) [-a AGATCGGAAGAGC -m 40]. Input 40
reads for TFs were capped at 30 million and 40 million for bulk and sorted, respectively, 4o
using Seqtk (v1.2; https://github.com/1h3/seqtk). Individual experiments were constructed ase
following ENCODE guidelines70 with two donors used as biological replicates for each experi- a9
ment unless otherwise noted. Results were analyzed with the ENCODE processing pipeline s
(https://github.com/ENCODE-DCC/chip-seq-pipeline2) with alignments to the hg38 build s
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of the human genome. All software within the package was run using the default settings so2
or those recommended by the authors for transcription factors [-type tf] or histones [-type 5o
histone]. Final peaks were called using the IDR naive overlapping method with a threshold so
of 0.05. QC measurements and results of the reproducibility test provided by ENCODE are sos
listed in Supplementary Table 2 with most experiments passing ENCODE recommended sos
benchmarks. For completion, we include some experiments that failed in a certain cell-type if soz
the tested TF passed in another experiment. Shortcomings in the reproducibility test were sos
typically attributed to an experiment performing much better in one donor versus another.  soo

Whole genome bisulfite sequencing (WGBS). 510

DNA was extracted from 10-20 mg fresh-frozen postmortem brain tissue using the DNEasy su
Blood and Tissue kit (cat#: 69504, Qiagen) following the manufacturer’s instructions. WGBS = si
dual indexed libraries were generated using NEBNext Ultra DNA library Prep kit for Illumina sis
(New England BioLabs) according to the manufacturer’s instructions with modifications. s
500 ng gDNA was quantified by Qubit dsDNA HS assay (Invitrogen) and 1% unmethylated sis
lambda DNA (cat#: D1521, Promega) was spiked in to measure bisulfite conversion efficiency. sis
DNA was fragmented to an average insert size of 400-450 bp using a Covaris S2 sonicator in a sz
55 uL, volume. The fragmented gDNA was converted to end-repaired, adenylated DNA using sis
the NEBNext Ultra End Repair/dA-Tailing Module (cat#: 7442L, New England BioLabs). s
Methylated adaptors (NEBNext Multiplex Oligos for Illumina; cat#: E7535L New England s
BioLabs) were ligated to the product from the preceding step using the NEBNext Ultra s
Ligation Module (cat#: 7445L, New England BioLabs). Size-selection was performed using s
AMPure XP beads and insert sizes of 400 bp were isolated (0.4x and 0.2x ratios). Samples sz
were bisulfite converted after size selection using the EZ DNA Methylation-Lightning Kit 524
(cat#: D5030, Zymo) following the manufacturer’s instructions. Amplification was performed s
following bisulfite conversion using primers from the NEBNext Multiplex Oligos for Illumina s
(cat#: E6440S, New England BioLabs) and the Kapa HiFi Uracil+ PCR system (cat#: s
KK2801, Kapa Biosystems) with the following cycling parameters: 98°C 45 sec / 8 cycles: s
98°C 15 sec, 65°C 30 sec, 72°C 30 sec / 72°C 1min. The PCR enriched product was cleaned s
up using 0.9x AMPure XP beads (cat#: A63881, Beckman Coulter). Final libraries were run s
on 2100 Bioanalyzer (Agilent) using the High-Sensitivity DNA assay; samples were also run s
on Bioanalyzer after shearing and size selection for quality control purposes. Libraries were s3
quantified by qPCR using the Library Quantification Kit for Illumina sequencing platforms ss3
(cat#: KK4824, KAPA Biosystems, Boston), using 7900HT Real Time PCR System (Applied s34
Biosystems). Libraries were sequenced with the Illumina NovaSeq S4 flowcell using 151 bp = s3s
paired-end run with a 10% PhiX spike-in. 536

Enzymatic Methyl-seq Kit of sorted nuclei 537

Nuclei were isolated from brain tissue samples and sorted similarly to sorted ChIP-seq s3s
experiments described above excluding the formaldehyde fixation step. DNA was extracted ss
similarly to WGBS protocol above and processed using the NEBNext Enzymatic Methyl- s
seq Kit (NEB E71208S) according to the manufacturer’s recommendations. Libraries were sa
sequenced with the Illumina NovaSeq S4 flowcell using 151 bp paired-end run with a 10% s«
PhiX spike-in. 543
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Mapping and quality control of methylation reads. 544

We trimmed reads of their adapter sequences using Trim Galore 545
(v0.6.0; http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and quality-trimmed s4s
using [~ nextseq 20]. We then aligned these trimmed reads to the hg38 build of the human s
genome [including autosomes, sex chromosomes, mitochondrial sequence (available from 548
https://software.broadinstitute.org/gatk /download/bundle) plus lambda phage (accession s
NC_001416.1) but excluding non-chromosomal sequences] using Bismark69 (v0.22.1) with the sso
following alignment parameters: bismark —bowtie2 -X 1000 -1 READ1 — 2READ2. 551

We then used bismark_methylation_extractor to summarize the number of reads supporting ss2
a methylated cytosine and the number of reads supported a unmethylated cytosine for every sss
cytosine in the reference genome. Specifically, we first computed and visually inspected the ss
M-bias[5] of our libraries. Based on these results, we decided to ignore the first 5 bp of read2 sss
in the subsequent call to bismark_methylation_extractor with parameters: —ignore_r2 5 -p sss
—bedGraph —counts —cytosine_report —comprehensive —merge non_CpG. The final cytosine ss7
report file summarizes the methylation evidence at each cytosine in the reference genome. 558

Whole genome sequencing 550

High molecular weight was extracted from approximately 20mg of cortex tissue from each seo
donor using either the MagAttract HMW DNA kit (Qiagen 67563) or Circulomics Nanobind s
Tissue kit (Pacbio 102-302-100). The linked read library was prepared using the Chromium se
Genome Reagent Kit v2 following the protocol provided by 10x Genomics. Sequence reads ses
were processed using the longranger software suite from 10x Genomics. Linked reads were ses
demultiplexed with longranger demux and then aligned to a 10x Genomics-provided, longranger- ses
enabled hg38 reference (version 2.1.0) using longranger wgs v2.2.2. Variants were called using ses
GATK 3.8-1-0-gf15clc3ef via the —vemode gatk option in the longranger wgs workflow. 567

Assay for transposase-accessible chromatin using sequencing (ATAC-seq). s

Homogenate, NeulN+, and NeulN- nuclei were isolated as previously described and 100,000 seo
nuclei were used for ATAC-seq library preparation as per standard protocols™ "2 with the s
following modifications. Briefly, 50 uL. of cold 5X lysis buffer was added to sorted nuclei to sn
reach a final concentration of 1X (10 mM Tris-HCI, pH 7.4, 10 mM NaCl, 3 mM MgCI2, s
0.1% NP40) and incubated 20 min on ice followed by centrifugation for 10 min as previously s
described. The transposition reaction was incubated for 30 min or 1h at 37°C (Illumina s
Tagment DNA Enzyme and Buffer kit; cat #:20034198). After column clean up via the Qiagen s
MinElute Reaction Cleanup kit (cat#:28204, Qiagen) and PCR amplification of libraries, s
an additional clean up with AMPure XP beads (0.8x ratio) was performed with two 80% s
ethanol washes before quantification using a DNA High Sensitivity chip on a 2100 BioAnalyzer ss
(Agilent). Libraries were sequenced with the Illumina NovaSeq S2 50bp paired-end dual s
indexed run. Reads were processed using the standard ENCODE ATAC-seq pipeline (v1.7.0). ss0

RNA-seq. 581

Total RNA was isolated using the Qiagen miRNeasy Mini kit according to the manufac- ss
turer’s protocol for acquiring total RNA with a DNAse digest, using approximately 20mg ses
pulverized brain tissue or 200,000 nuclei as input. 10ng and lug of RNA (from nuclei and sss
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bulk, respectively) was used as input for TruSeq stranded Total RNA Library Prep Gold sss
kit (Illumina 20020598) according to manufacturer’s protocol with TruSeq RNA UD Indexes ss
(Illumina 20022371). Sequencing was carried out using Illumina NovaSeq S4 150bp pair-end  ss7
dual indexed run. Reads were aligned to hg38-GENCODEv42 using STAR with ENCODE  sss
standard options [-outFilterType BySJout —outFilterMultimapNmax 20 —alignSJoverhangMin  ss
8 —alignSJDBoverhangMin 1 —outFilterMismatchNmax 999 590
—outFilterMismatchNoverReadLmax 0.04 —alignIntronMin 20 —alignIntronMax 1000000 — s
alignMatesGapMax 1000000]. Count tables were generated using htseq-count [-m union se

-s no| then transformed to Transcripts Per Million (TPM). 503
GREAT analysis. 504
GREAT analysis was performed using the rtGREAT (v2.1.8) package 595

(https://www.bioconductor.org/packages/release/bioc/html/rGREAT .html). Genomic re- s
gions were associated with genes using the basal plus extension method (5kb upstream, sor
1kb downstream, 500kb max extension). Enrichment for GO Biological Process terms were s
calculated within GREAT with background regions set as the union of all ChIP-seq peaks. s

Correlation matrix and PCA analysis. 600

The signal value for each TF at each peak was first quantified using the custom script eo
pull_vals_-to_.GR.R which calculates the median signal value from the fold-change bigWig 602
within the specified peaks. PCA was performed on the matrix of signal values using the 603
prcomp function with scaling. The correlation matrix was then calculated for all TFs using 6oa
the first 20 PCs. Clusters were determined with ComplexHeatmap using k-means partitioning sos
(k=3). 606

Motif Calling. 607

Motifs were identified with motifmatchr and a curated list of JASPAR 2022 motifs at a p-value eos
cutoff of 5e-05. For motif centrality, peaks were centered on the summit and resized to 500 0o
bp before calling motif positions. Motif distance was determined from the start of the motif 610
to the summit of the peak. Centrality score was calculated as the variance in motif distance. o1

De novo motif calling was performed using the MEME suite (5.3.3) on the top 500 peaks 61
(ranked by g-value from ENCODE pipeline) that were resized to 200 bp centered on the 613
summit. MEME-ChIP was run with [-meme-nmotifs 5 -maxw 20 -minw 6 -meme-norand]. An e
experiment successfully called a motif de novo if the expected motif available in the JASPARY” 615
or CIS-BP™ database appears in the top 5 derived motif sequences. 616

For motif clustering, the MEME-ChIP suite was used to call de novo motifs using the top 617
500 peaks (sorted by g-value) and tested for enrichment and centrality in regions beyond e1s
those top peaks. The de novo motifs were then compared using TOMTOM and clustered 619
based on similarity based on a previously published method®°. 620

Predictive Models. 621

Predicted transcription factor binding scores were calculated using Virtual ChIP-seq make_input.pgp2
and predict.py. ATAC-seq idr narrowPeak files and TPM transformed RNA-seq matrices were 623
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used as input for the predictions. Predictions were run for TFs that were both ChIPed in this 624
study and had a pre-trained model available with Virtual ChIP-seq. Posterior probabilities were 625
determined for a bin size of 200bp. Bins overlapping ENCODE blacklist regions were excluded 626
(https://www.encodeproject.org/files/ ENCFF419RSJ /@Q@Qdownload /ENCFF419RSJ.bed.gz). e
Precision and recall were calculated at a posterior probability step size of 0.01, and auPR was 62
calculated using zoo’s rollmean function. 629
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