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Abstract

Transcription factors (TFs) orchestrate gene expression programs crucial for cell physiology,
but our knowledge of their function in the brain is limited. Using bulk tissues and sorted
nuclei from multiple human post-mortem brain regions, we generated a multi-omic resource
(1121 total experiments) that includes binding maps for more than 100 TFs. We demonstrate
improved measurements of TF activity, including motif recognition and gene expression
modeling, upon identification and removal of regions of high TF occupancy. Further, we
find that predictive TF binding models demonstrate a bias for these high occupancy sites.
Neuronal TFs SATB2 and TBR1 bind unique regions depleted for such sites and promote
neuronal gene expression. Several TFs, including TBR1 and PKNOX1, are enriched for risk
variants associated with neuropsychiatric disorders, predominantly in neurons. These data
are a powerful resource for future studies seeking to understand the role of TFs in epigenetic
regulation in the human brain.
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Introduction 3

Transcription factors (TFs) are a major class of DNA-associated proteins that also include 4

transcriptional cofactors and chromatin remodelers1,2. These proteins play critical roles in 5

every biological process, including development, cell fate determination, and physiological 6

responses3–6. They carry out these functions primarily by localizing to distinct genomic regions, 7

typically referred to as cis-regulatory elements (CREs), and regulate gene transcription. 8
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Disruption or alteration of TF-mediated effects can increase disease risk7,8, making the 9

study of TF functions a critical component of understanding health and disease. Several 10

TFs with critical roles in normal brain development are involved with neuropsychiatric 11

disorders, such as SP49, EGR110 NR3C111, TCF412, and additional TFs are implicated 12

through recent GWASs13–16. CREs in brain tissues are enriched for GWAS hits for multiple 13

neurological disorders, suggesting they share genetic risk factors that act through altered gene 14

regulation17,18,19. Additional analysis has shown that multiple psychiatric disorders associate 15

with the same loci20. Because of their prominent role in gene regulation, understanding TF 16

functions is a critical component of understanding brain health and disease. Recent work 17

by the PsychENCODE21 and CommonMind22 consortia has generated reference maps for 18

promoter (H3K4me3) and enhancer (H3K27ac) associated histone modifications from cortical 19

tissues of donors. These data show enrichment for neuronal development and neuropsychiatric 20

risk variants in regions with these chromatin marks23,24. While the ENCODE Consortium25
21

has generated thousands of occupancy maps for human TFs, these are mostly derived from a 22

small set of cell lines that are distinct from the primary tissues relevant for many diseases. 23

Few TFs have been directly studied in human brain tissues, particularly in key cell-types like 24

neurons. 25

In light of these challenges, large-scale assessment of gene regulation in brain tissues is 26

necessary to better understand genetic and epigenetic features that govern brain biology and 27

contribute to neurological disease. To achieve this goal, we have paired a well-phenotyped, 28

high-quality brain tissue resource with production-scale, multi-omic profiling of multiple tissues 29

from four brain donors. We generated occupancy maps of more than 100 TFs using chromatin 30

immunoprecipitation followed by high-throughput sequencing (ChIP-seq). In addition to 31

profiling bulk tissue from homogenates, we performed ChIP-seq in neuronal and glial cell types 32

enriched with fluorescence activated nuclei sorting (FANS)26,27. This approach improves the 33

ability to associate epigenetic maps with their regulatory roles by reducing the confounding 34

signal of multiple cell types mixed within homogenate tissues. 35

Here, we present a summary of our work with an emphasis on brain regions and cell types 36

with the most thorough profiling and relevance to psychiatric disorders. By integrating the 37

data produced here with published data, we describe the genomic localization of numerous 38

TFs in relation to each other and their gene targets while identifying TFs whose occupancy 39

patterns show increased heritability of several neuropsychiatric disorders. 40

Results 41

Experimental outline and genomic regions characterized by ChIP-seq 42

We performed genomic assays, including ChIP-seq, ATAC-seq, RNA-seq, phased whole genome 43

sequencing, and DNA methylation profiling, on frozen postmortem brain tissue obtained 44

from four donors that were free from and had no family history of psychiatric disorders 45

(Supplementary Table 1). We performed assays on nine distinct brain regions; which 46

included four large regions: dorsolateral prefrontal cortex (DLPFC), frontal pole (FP), occipital 47

lobe (OL), and cerebellum (CB), as well as five smaller regions: anterior cingulate (AnCg), 48

subgenual cingulate (SCg), dorsomedial prefrontal cortex (DMPFC), amygdala (Amy), and 49

hippocampus (HC) (Figure 1A). We performed experiments with both homogenized tissue 50
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(“bulk”) and nuclei isolated using FANS (“sorted”), with 96 combined TFs and several histone 51

marks (H3K4me1, H3K4me3, H3K27ac, H3K27me3, H3K9ac) assayed in large bulk samples 52

and 76 TFs total in sorted nuclei from large regions (106 total TFs, detailed in Supplementary 53

Table 2). By sorting with immunofluorescent labeling with NeuN and Olig2 antibodies, we 54

were able to enrich for neurons (NeuN+), oligodendrocytes (Olig2+), and a mixed population 55

of microglia and astrocytes (NeuN-/Olig2-) (Figure S1A). Representative ChIP-seq and 56

ATAC-seq signals in sorted nuclei showed enrichment at promoters of marker genes of their 57

respective cell type (Figure S1B). We prioritized TFs for ChIP-seq by selecting a large 58

set for which there were validated ChIP-grade antibodies from the ENCODE Consortium28, 59

many of which were done in our lab, as well as those with sufficient expression in the brain, 60

and some level of established association with neurodevelopmental or neuropsychiatric traits 61

(Supplementary Table 3). 62
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Figure 1. Overview of experimental design and profile of large brain regions
tested. A) Left: Diagram of brain regions tested from four donors; large regions are in bold.
Middle: Cell types used to perform experiments. Right: list of experiments. B) Intersections
of peaks identified from TF ChIP-seq experiments from large regions (excluding histones).
Barplot color indicates ENCODE cCREs annotation; “none” category indicates no annotation
in cCRE registry. Upper barplot is the union of all TF peaks. C) GREAT enrichment of
Gene Ontology terms for genes associated with peaks from the largest cCRE categories from
the union of TF ChIP-seq experiments (top:none, middle: pELS and dELS, bottom: PLS).
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Here, we primarily focus our analysis on the four large brain regions as they were the most 63

extensively assayed. By generating the union of unique peaks for all TFs (excluding histone 64

marks) across all four of these regions, we identified 239,361 distinct regions, which span 65

6.94% of the hg38 genome reference sequence, that are bound by at least one TF (Figure 66

1B, Supplementary Table 4). For each tissue type, 54% - 85% of regions are occupied by 67

five or fewer TFs (Figure S1C). We categorized the regions of each intersection using the 68

Registry of candidate cis-Regulatory Elements (cCREs) from the ENCODE Consortium29, 69

and found that 49% were classified as distal enhancer-like sequences (dELSs) and 8% were 70

classified as promoter-like sequences (PLSs, Figure 1B). Notably, promoters were shared 71

across significantly more cell type/tissues than were dELSs (p<2.2e-16, Welch’s t-test), 72

supporting the importance of enhancers in cell-type-specific functionality. The union of all 73

identified regions revealed that 31% of all identified regions have no classification in the 74

ENCODE Registry of cCREs, which to date consists of more than 1,500 cell lines and tissue 75

types (Registry V3). Functional annotation of these regions with GREAT30,31 revealed that 76

the “none” category was enriched for neuronal pathways, while enhancers (“dELS” and 77

“pELS”) and promoters (“PLS”) were enriched for more general gene sets (Figure 1C, 78

Supplementary Table 5). We note that, while the majority of regions in the union are 79

categorized as enhancers, there are several TFs whose peaks predominantly overlap promoters 80

(Figure S1D). 81

Correlation of ChIP-seq signal across TFs reveals co-association clusters 82

Many TFs have overlapping binding profiles and often cooperate to regulate gene expression2,32,33. 83

We sought to identify correlations among TFs in our dataset to contextualize known TF 84

interactions and discover new ones. To quantify TF associations within DLPFC-bulk ex- 85

periments, we performed a principal component (PC) analysis on the signal (fold-change 86

above background) of each TF at all regions identified by ChIP-seq. We then calculated the 87

Pearson correlation between TFs using the first 20 PCs, accounting for 83.76% of the variation 88

in ChIP-seq signals (Figure 2A, Figure S2A and S2B). PCs were used to quantify the 89

relationship between TFs, as this approach allows us to assess subtle associations that might 90

otherwise be masked by more dominant sources of variation, such as the unique binding 91

pattern of cohesin-complex molecules (Figure S2C). 92

The resulting correlation heatmap can be segregated into three main clusters based on 93

prominent features (Figure 2B). Cluster 1 appears to be composed of factors with relatively 94

low preference for promoters, stronger average signal-to-noise ratios, and higher peak counts. In 95

contrast, Cluster 3 is primarily composed of TFs that are rich in promoter binding, consistent 96

with the observed overlap of H3K4me3 signal, and are generally anticorrelated with Cluster 1. 97

Cluster 2 appears to be an intermediate cluster of factors that have some correlation across the 98

full dataset. Similarities in binding among correlated TFs are evident when we examine factors 99

spanning these clusters at a single locus (Figure 2C). As expected, we find the strongest 100

signals at promoters (e.g. PKNOX1 and EGR1) and these are generally consistent among 101

factors, even those from different clusters. In contrast, differences in binding are observed 102

more frequently at distal sites, as we observed for CTCF and RAD21, members of the cohesin 103

complex (Figure 2C). Similarly, members of the CTF/NF-I family NFIB and NFIC are 104

correlated and share a unique peak at this example locus, although they are not found in the 105

same cluster. Other notable correlations include EHMT2 (H3K9 methyltransferase, G9a) and 106

REST (a neural gene repressor), which are known to participate together with chromatin 107
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Figure 2. Comparison of ChIP-seq profile of TFs from DLPFC-bulk. A) Hierarchical
clustering of TFs based on Pearson correlation of the first 20 PCs in DLPFC-bulk (k-means
= 3). Noteworthy interactions within and between groups are highlighted. B) Quantification
of key characteristics distinguishing the three main clusters (** indicates t-test p-value <0.01;
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H3K4me3 and H3K27ac. Gene track: small arrows denote directionality and large arrows
denote possible transcript start sites.
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remodeling complexes34,35. Finally, we observe a correlation node within Cluster 2 involving 108

TBR1 and SATB2, transcription factors with established roles in neuron development 36,37. 109

An axis of reciprocal correlations is formed between these two factors and 17 others, including 110

SIN3B, ARNT, BCL11A, ZNF207, and ARID1B (Figure S2D). Although these factors are 111

not widely known as direct interactors, these data suggest an association between these factors 112

as they are all involved in neuron development38–42. 113

High-Occupancy Target sites can vary by factor preference and cell types 114

Although most regions identified across ChIP-seq experiments are bound by only a few factors 115

(Figure S1A), many sites are occupied by a large number of TFs. Segments of hg38 with 116

abundant binding of TFs are commonly referred to as High-Occupancy Target (HOT) sites and 117

have been previously observed in various cell types43–46. These regions are highly permissive 118

for TF binding and are enriched for non-specific binding of individual TFs. To define HOT 119

sites within our data, we merged overlapping peaks from all experiments while setting a 2,000 120

bp threshold to prevent concatenation of adjacent regions. We ranked these regions by the 121

number of unique TFs bound and set a threshold of the 90th percentile of the number of TFs 122

to define HOT sites, similar to previous methods43,45 (Figure 3A). When overlapped with 123

ENCODE cCRE annotations, 66% of HOT sites are promoter-like sequences, particularly 124

CpG island (CGI) promoters, while most non-HOT sites are distal enhancers (Figure 3B). 125

To determine whether HOT sites are shared across tissues and cell types, we compared HOT 126

sites identified separately in homogenate DLPFC, sorted neurons, oligodendrocytes, and 127

astrocytes/microglia from DLPFC, and HOT sites defined in two cell lines from data available 128

through ENCODE (Figure 3C). Cell type-specific HOT sites are largely distal enhancers, 129

while those shared across cell types are mostly promoter-like sequences. HOT sites shared 130

across all the cell types tested are heavily enriched for promoters of housekeeping genes (Odds 131

Ratio = 8.245; p-value <2.2 x 10-16, Chi-squared test ), which are known to coincide with 132

HOT sites43. 133

We next looked at the binding profiles of individual TFs to measure their preference for 134

co-localizing with other TFs and thus their tendency to be in HOT sites. This was done 135

for each tissue/cell type by counting the number of TFs bound at each region in the union 136

of all peaks, then measuring the proportion of peaks for increasing numbers of TFs bound. 137

For example, SATB2 predominantly binds regions with few other TFs, while HCFC1 binds 138

predominantly at HOT sites (Figure 3D). We measured the skewness of this distribution for 139

each TF to quantify the propensity for binding at HOT sites (Figure 3E, Supplementary 140

Table 6). Representative quantification in bulk DLPFC demonstrates the tendency of several 141

factors to preferentially bind HOT sites and that the most HOT-skewed factors belong to the 142

promoter-biased Cluster 3 in our PC analysis above (Figure 2A). Considering all tissue/cell 143

type datasets, we found that skewness of HOT site binding is consistent between tissues 144

(Figure S3A). Cortex-specific TFs SATB2 and TBR1 have negative-skewed profiles in the 145

cortex regions, while NEUROD1, a neuronal differentiation factor, maintains this skewness 146

across all three cortical regions and the cerebellum. Additionally, several TFs (e.g. PKNOX1) 147

become more negatively skewed in neuronal nuclei relative to other tissue/cell types, while 148

other TFs (e.g. NFIC) show the opposite trend (Figure 3F and S3B). We note that there is 149

a positive relationship between the number of peaks called in an experiment and the calculated 150

skewness, likely resulting from HOT sites and promoters being the majority of peaks identified 151

in ChIP-seq experiments with lower signal-to-noise ratio (Figure S3C). 152
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Figure 3. Identification and characterization of HOT sites. A) Cumulative distri-
bution of peaks called from ChIP-seq of each large brain region demonstrating the cutoff
for defining regions as “HOT”. B) Proportion of ENCODE cCREs in HOT and non-HOT
DLPFC-bulk peaks. C) Intersections of HOT sites called from our ChIP-seq for all four
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Profiling enrichment and centrality of TF motifs 153

An important feature of many TFs is their ability to preferentially recognize and bind a 154

particular DNA sequence motif. We compiled known motifs from the JASPAR 2022 database47 155

that correspond to TFs that we profiled, then measured the proportion of ChIP-seq peaks 156

containing the motif and its centrality across all experiments in bulk DLPFC (Figure 157

4A, Supplementary Table 7, ). Similar analyses of ENCODE data found a comparable 158

percentage of peaks containing the expected TF motif (Figure S4A). 24 out of 49 factors 159

had the highest relative proportion for their expected motif when scaled to all other factors in 160

the dataset (Figure S4B and C). Some TFs are not the most enriched for their respective 161

motif, but this is commonly due to closely related TFs having a stronger signal for the 162

same motif ( e.g., NFIB and NFIC, CREB1 and CREM). The centrality of all tested motifs, 163

measured as the variance in distance from the motif to the center of the peak, showed a similar 164

profile in that most TFs with high motif recognition also displayed high centrality for their 165

expected motif relative to other TFs (Figure S4D and E). Plotting the normalized values 166

together provides a visualization of the specificity of each factor for its expected motif in our 167

experiments (Figure 4A). We also performed de novo motif discovery using MEME48. We 168

found that TFs with higher specificity tend to match with their expected motif. We also note 169

that peaks for a few TFs only revealed their expected motif once HOT sites were removed 170

(Figure S4B, Supplementary Table 8). Previous ChIP-seq studies in human tissues49 171

have also found this to be true and it is likely driven by HOT sites composed of strong motifs 172

for a few TFs2. 173

To identify commonly occurring motifs across experiments, we used a previously published 174

approach that identifies and clusters motifs by similarity50. Among the 346 motifs that 175

passed our quality metrics in experiments from bulk DLPFC, several motifs were repeatedly 176

found among many experiments ((Figure 4B). These common motifs are highly GC-rich, 177

emphasizing the role of GC-preferring factors, such as the NRF and SP families (represented 178

in clusters 4 and 10 respectively), in regulating gene expression in the brain51–53. The largest 179

motif cluster (1) resembles that of THAP11, which was previously shown to be common 180

across ChIP-seq experiments and may be involved with promoter-promoter interactions54,55. 181

These motifs highlighted in Figure 4B are often enriched in de novo motif discovery across 182

individual experiments. 183

Because HOT sites are regions that lack motif diversity, we calculated the difference in 184

motif recognition between the full and HOT-depleted peak set for each TF and compared 185

it to the GC content of the expected motif (Figure 4C). TFs for which the expected motif 186

was more enriched in HOT sites tended to be those with higher GC content in the motif 187

sequence, reflecting the common motifs highlighted in Figure 4B. Conversely, removing HOT 188

sites improved enrichment for motifs with lower GC content. For example, when de novo 189

motif calling was performed on the top 500 NFIB ChIP-seq peaks, the expected NFIB motif 190

was the second ranked motif called by MEME, but after excluding HOT sites, it became the 191

top ranked motif with drastically increased enrichment (Figure 4D) and sharpened centrality 192

(Figure S5A). Compared with ATAC-seq peaks, ChIP-seq experiments from all tissues 193

and cell types generally showed a greater enrichment for the expected motif (Figure S5B). 194

Altogether, these data show that the ChIP-seq experiments performed in this study show 195

enrichment for their respective motifs by multiple metrics and that the results are influenced 196

by the GC content, likely due to its association with HOT sites43. 197
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Figure 4. Motif recognition by transcription factors. A) Schematic demonstrating the
specificity of individual TFs for their expected motif relative to the other TFs tested which
had a matching motif in the JASPAR 2022 database (49 in DLPFC-bulk ChIP-seq). Motif
Proportion is the scaled proportion of peaks for individual TFs containing their expected
motif relative to other TFs tested. Similarly, Motif Centrality is the scaled centrality of
the expected motif within respective peaks relative to other TFs tested. Increase in these
two metrics indicate a ChIP-seq that is more specific for its expected motif relative to other
ChIP-seq experiments. B) Matrix of de novo motif calls using top 500 peaks from all ChIP-
seq experiments in DLPFC-bulk. The most prominent clusters are highlighted along with
the called motif. C) Dot plot showing the relationship between motif GC content and the
difference in proportion of peaks with expected motif matches found in all peaks from a
ChIP-seq experiment and the proportion with HOT sites removed. D) NFIB ChIP-seq as an
example of the effect that removing HOT sites has on de novo motif calling using MEME-ChIP.
The left table uses the top 500 peaks ranked by q-value; the right table uses the top 500
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Ability of predictive models to predict ChIP-seq results 198

With the growing availability of TF-occupancy data from sources such as the ENCODE 199

Consortium, there have been efforts to predict TF binding with computational models trained 200

on existing data. To test predictions versus our experimental results, we compared our 201

ChIP-seq datasets to models generated by Virtual ChIP-seq56, a peak predictor that is trained 202

on many datasets from CCLE 57 and ENCODE 28. There were 16 TFs in both our dataset 203

and the Virtual ChIP-seq trained models that used multiple cell lines for each TF. We assessed 204

the precision-recall at increasing posterior 205
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Figure 5. Comparison of ChIP-seq results with predictive models. A) Precision-
recall curves of predictions made by Virtual ChIP-seq compared to ChIP-seq results. Red
asterisk represents precision-recall of ATAC-seq peaks containing the expected motif. B)
Calculated Virtual ChIP-seq predictions made using ChIP-seq from our experiments using
DLPFC-bulk or from experiments on GM12878 available through ENCODE database (R =
Pearson correlation coefficient). C) auPR with and without HOT sites. D) The enrichment
for cCREs categories in regions predicted at a posterior probability >0.5 over unpredicted
regions.

probability cutoffs calculated by Virtual ChIP-seq and derived the area under the precision- 206

recall curve (auPR) for each TF (Figure 5A, Supplementary Table 9). Where applicable, 207

we also assessed the precision-recall of ATAC-seq peaks containing the expected motif to gauge 208

its predictive accuracy alongside the respective model (Figure 5A, red asterisk). Higher 209

10/26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2023. ; https://doi.org/10.1101/2023.06.21.545934doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545934
http://creativecommons.org/licenses/by-nc-nd/4.0/


auPR, as demonstrated by CTCF and NRF1, is indicative of stronger agreement between the 210

predictive model and the experimental data. Models with relatively low auPR, for factors 211

such as EGR1 and REST, failed to outperform ATAC-seq peaks containing motifs for a given 212

level of recall. We also calculated the auPR on ENCODE datasets for the GM12878 cell 213

line (included in the training data) and found that the auPR for predictions using data from 214

bulk DLPFC were generally comparable (r = 0.69, p-value = 0.0093) to those of the cell 215

lines (Figure 5B). We replicated this approach in sorted nuclei and found the results to be 216

consistent across multiple cell types, with predictive models typically having higher auPR for 217

experiments in bulk tissues compared to NeuN+ and Olig2+ sorted nuclei (Figure S6B). 218

However, we note that the predictive power of these models is primarily derived from HOT 219

sites, as the auPR is drastically reduced across most models when HOT sites are removed 220

(Figure 5C). This is likely due to the preferential removal of promoter regions, which are 221

inherently correlated with expressed genes and open chromatin. As CTCF is not typically 222

associated with promoter regions, it is the least affected by HOT site removal. We calculated 223

the enrichment for cCRE categories of predicted peaks that matched the experimental data 224

and show that distal elements are depleted, further exemplifying the bias of a predictive model 225

for predicting peaks in promoters (Figure 5D). 226

Multi-omic Integration 227

We classified genes as to whether or not their promoters overlap a HOT site. Genes with 228

HOT-site promoters have higher median expression and stronger indicators for active gene 229

expression, including H3K4me3, chromatin accessibility, and hypomethylation (Figure 6A). 230

We quantified the functional consequence of TF localization on gene regulation by correlating 231

their binding with gene expression using data from NeuN+ sorted DLPFC nuclei. To measure 232

the impact of individual TFs on gene expression, we implemented a linear model for each 233

factor to estimate the effect on gene expression while controlling for the number of TFs bound 234

at the promoter (Figure 6B, left). Most TFs have a positive impact on gene expression with 235

the largest effect sizes measured in genes with non-HOT promoters, suggesting that individual 236

TFs have a relatively small impact at HOT-promoters. Genes with HOT promoters appear to 237

have become saturated, as there is no association between activation signals such as ATAC-seq 238

or TF count and transcription (Figures S7A & B). We performed a similar analysis using 239

ChIP-seq signal at distal elements that were linked to specific genes in our previous single-cell 240

study using 10x Genomics multiomic technology58 (Figure 6B, right), and demonstrated a 241

similar trend, albeit with smaller effect sizes overall. These findings were replicated in bulk 242

DLPFC samples, although there are discrepancies in some TFs having a strongly negative 243

effect on expression likely caused by differences in gene expression between cell types (Figure 244

S7C). 245

We determined the cell type composition of TF peaks from bulk DLPFC ChIP-seq by 246

overlapping with ATAC-seq peaks from sorted nuclei. We identified TFs that were biased 247

towards specific cell types, notably SATB2, TBR1, and BCL11A for NeuN+ nuclei, OLIG2 248

and SOX8 in Olig2+ nuclei, and MITF for NeuN-/Olig2- (Figure 6C). These results were 249

replicated by measuring the enrichment of these factors for cell type-specific linkages from our 250

single-nuclei multiomic data (Figure S7D), of which all were shown to significantly affect 251

gene expression in the linear models for either sorted or bulk ChIP-seq. We note that TFs in 252

bulk OL have a greater proportion of peaks exclusive to NeuN+ ATAC-seq (Figure S7E), 253

likely due to the higher proportion of neurons in OL relative to DLPFC as observed from 254
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Figure 6. Correlating TF binding with gene expression and chromatin accessibility.
A) Heatmap demonstrating the relationship between gene expression and markers for active
gene expression and gene promoters such as H3K4me3, chromatin accessibility (ATAC-seq),
cumulative TF binding (ChIP-seq), and methylation in experiments from DLPFC-bulk.
Cumulative ChIP-seq signal was generated by combining peaks called from all TF ChIP-
seq experiments in DLPFC-bulk into a single bed file and converting it into a bigwig file.
Methylation signal was derived from whole genome bisulfite sequencing. B) Calculated beta
values from linear models estimating the effect that each TF has on predicting gene expression
based on ChIP-seq signal in DLPFC-NEUN at the promoter (left) or a linked distal region
(right) while controlling for the number of co-bound TFs. Top: Illustration of the ChIP-seq
signal at promoters and distal sites linked to gene expression. Bottom: beta values for
individual TFs with histone marks and ATAC-seq shown separate. C) ChIP-seq peaks of TFs
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HOT skew is calculated as in Figure 3. NEUN: NeuN+ nuclei; OLIG: Olig2+ nuclei, NEG:
NeuN-/Olig2- nuclei.

12/26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2023. ; https://doi.org/10.1101/2023.06.21.545934doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545934
http://creativecommons.org/licenses/by-nc-nd/4.0/


FANS (Figure S1A). Of all TFs tested in bulk DLPFC, ATAC-seq signal in sorted nuclei 255

was disproportionately high across regions bound by each of the three neuronal TFs when 256

corrected for the relative number of total TFs bound (Figure 6D). This effect is not observed 257

in the corresponding sorted ATAC-seq signal in other cell type-enriched factors such as OLIG2 258

and MITF, suggesting that this effect is neuron-specific. 259

Enrichment of heritability for psychiatric disorders within TF peaks 260

To identify disease-relevant TFs, we integrated our genomic data with GWAS findings using 261

stratified LD score regression (sLDSC), a statistical method developed to estimate and 262

partition SNP heritability of a trait by different functional genomic annotations59. We used 263

the ChIP-seq and ATAC-seq datasets performed in bulk tissue and sorted nuclei along with 264

GWAS summary statistics from various neuropsychiatric and neurodegenerative diseases. 265

Using sLDSC analysis for experiments from DLPFC, there is a clear increase in the 266

enrichment of neuropsychiatric disease markers for experiments from NeuN+ sorted nuclei 267

compared to those from bulk and other sorted cell types (Figure 7A, Supplementary Table 268

10). This is evidenced by the increase in the number of individual TFs significantly associated 269

with neuropsychiatric disorders and overall increase in enrichment. While histone marks and 270

ATAC-seq regions have similar enrichment between bulk and NeuN+ datasets, the individual 271

TFs show a clear increase in enrichment for associated diseases. By looking at a single 272

factor (PKNOX1), we highlight the increase in enrichment provided by ChIP-seq compared 273

to ATAC-seq (Figure 7B). Neuronal TFs TBR1 and BCL11A were significantly enriched for 274

schizophrenia and bipolar disorder in both bulk and NeuN+, but SATB2 is not. We note 275

an enrichment of Alzheimer’s disease risk alleles for several TFs in the NeuN-/Olig2- nuclei, 276

notably for REST in the DLPFC and FP (Figure 7A, S8A). TFs were generally not enriched 277

in experiments from Olig2+ nuclei. No dataset from this study was significantly enriched 278

for non-neuronal phenotypes that served as negative controls, including immune diseases or 279

other physical traits. However, TFs from this study that were also profiled by ENCODE in 280

the GM12878 immune cell line did show enrichment in those experiments for inflammatory 281

disorders, highlighting the cell type specificity of DNA binding by these factors (Figure 282

S8B).As an example, we highlight a genomic region where a PKNOX1 peak from NeuN+ 283

DLPFC nuclei overlaps a risk locus for schizophrenia14 (Figure 7C). The most significant 284

SNPs were in the intronic regions at the 3’ end of TSNARE1 (bottom). Overlapping PKNOX1 285

peaks with linkages from our previous single-cell multiomics study shows that this particular 286

region is correlated with ADGRB1 and ARC expression in neurons, two genes that were 287

previously implicated in schizophrenia60-62. We note that this link does not overlap an ATAC- 288

seq peak, although it was identified as an ATAC-seq peak in the single-cell study and shows 289

some signal above background in our study. 290
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Figure 7. Association of TFs with disease through GWAS traits. A) Results from
sLDSC measuring heritability of TFs with GWAS traits grouped by disorder type and separated
by cell type. Heatmap indicates coefficient Z score from sLDSC of TF ChIP-seq peaks from
each cell-type combined with 97 baseline features. Feature-trait combinations with a Z score
significantly larger than 0 (one-sided Z test with alpha = 0.05, p values corrected within each
trait using Benjamini-Hochberg method) are indicated with a numeric value reporting the
enrichment score. B) Direct comparison of sLDSC results for single TF (PKNOX1) with
ATAC-seq to highlight the increase in heritability enrichment for neuropsychiatric disorders.
C) Browser tracks of a region containing SNPs with statistically high association with
schizophrenia (Trubetskoy et al 2022). Top: Zoomed in region to show signal and called peaks
from both ATAC-seq and PKNOX1 ChIP-seq in relation to significant peaks from GWAS and
links, which are regions identified by single-cell multiomic study in cortex tissue identifying
differentially accessible regions significantly associated with nearby genes. Bottom: Zoom
out of region. Arcs represent the correlation between the linked-peak overlapping a PKNOX1
peak in the top panel with nearby genes ADGRB1 and ARC.

Discussion 291

Large epigenetic datasets, such as those provided by ENCODE, have been cited in thousands of 292

publications and have played a major role in understanding the role of TFs in gene regulation25. 293

However, such datasets typically focus on cell lines that have limitations with respect to 294

modeling gene regulation observed in human tissues, particularly brain. Recent studies have 295

highlighted the importance of using human tissues for studying epigenetic regulation in normal 296
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brain function and understanding of psychiatric disorders17,18,23,24, but such studies often 297

focus on general markers such as histone modifications and chromatin accessibility. Here, we 298

have used ChIP-seq to map the binding of more than 100 proteins that regulate chromatin 299

structure, including histones, transcription factors, and chromatin remodelers (Figure 1). 300

ENCODE has generated an extensive registry of 1,063,878 candidate cis-Regulatory Elements 301

(cCREs) defined from more than 1,500 cell lines and human tissues, of which 235 are considered 302

neural (defined as brain, spinal cord, or nerve)29. Nearly 30% of the regions identified by 303

TFs here are not annotated in this cCRE registry and are enriched for neuronal pathways, 304

highlighting the unique attributes of our study. 305

A benefit to performing ChIP-seq experiments on such a large number of TFs in uniform 306

contexts is that it allows the study of TFs as a group, including the identification of HOT 307

sites. We identified many HOT sites outside of typical CpG islands, gene promoters, and sites 308

found in ENCODE data (Figure 4C), emphasizing the need to experimentally determine 309

such sites in relevant tissues and cells. Providing this information will aid researchers in using 310

this resource and potentially help to interpret analyses from other studies by identifying those 311

TFs and regions that exhibit unique occupancy patterns. For example, knowing which TFs 312

are most selective for specific sites (e.g., Figure 3) may help in prioritizing factors in future 313

studies. Similarly, knowing regions of seemingly indiscriminate binding can identify genes 314

whose expression is relatively unchanged regardless of which TFs are bound at the promoter 315

or potential enhancers (Figure 5). Analyzing data from regions outside of HOT sites also 316

substantially improves de novo motif discovery for some factors (Figure 4C). 317

As the generation of epigenetic and multi-omic datasets of brain tissue increases, there 318

will be a greater need for resources capable of predicting TF-binding at sites of interest. The 319

ability to overlap findings with ChIP-seq from human samples will be a valuable resource that 320

is difficult to replicate in silico. For example, comparison of predicted TF-binding results from 321

Virtual ChIP-seq to experiments from our study showed major discrepancies that suggest 322

limitations to the accuracy of computational models that rely solely on motifs and ATAC-seq 323

for predicting the function of many TFs (Figure 5). Most of the predictive power from 324

these models come from predicting HOT sites (which are more easily predicted and the most 325

well-understood CREs) because the auPR plummets upon their removal. We showed that the 326

“none” cCRE category lacking annotation in the ENCODE registry is enriched for neuronal 327

pathways (Figure1C) and is the most depleted cCRE category in the predictions (Figure 328

5D). These findings accentuate the unique value of the brain-derived data described here 329

which may improve model performance in the future. 330

Analyzing ChIP-seq data with sLDSC connects specific TFs to their potential roles in 331

psychiatric disorders using GWAS data from neurological diseases. The increased enrichment 332

of heritability for TFs in specific cell types (psychiatric in neuron-enriched and Alzheimer’s in 333

microglia-enriched) relative to histone marks and ATAC-seq shows the value of performing 334

ChIP-seq in disease-relevant cell types (Figure 7). Several highly enriched TFs have been 335

previously implicated in psychiatric disorders, such as PKNOX163,CREB142,EGR110, and 336

NEUROD165. Using PKNOX1 as an example, we show binding at a region of significance 337

for schizophrenia that would likely be missed in ATAC-seq analysis and is associated with 338

neuronal expression of multiple disease-related genes. This dataset provides a multitude of 339

opportunities for functional annotation and analysis of disease-associated genes and CREs. 340
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To date, this is the largest study directly measuring TF binding in human postmortem 341

brain and is complementary to other large-scale genomic efforts (e.g., ENCODE, PsychEN- 342

CODE, GTEx, etc.). These data and the accompanying analyses will serve as a resource 343

to understand genome regulation in psychiatric diseases and will be publicly available 344

through the PsychENCODE Consortium and available for download at the following link: 345

https://doi.org/10.7303/syn4921369 . 346
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Methods 366

Brain tissues. 367

Human brain tissues were obtained from collaborators at the Department of Psychiatry and 368

Human Behavior, University of California Irvine; dissections were performed at the Molecular 369

& Behavioral Sciences Institute, University of Michigan. Both donors died without prolonged 370

agonal state and had no personal or family history of psychiatric disease. Samples were stored 371

at -80◦C. 372
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Chromatin Preparation: Bulk. 373

Buffers required: RIPA: 1x PBS (Cytiva SH30256.02), 1% NP-40, 0.5% sodium deoxycholate, 374

0.1% SDS. Farnham Lysis buffer: 5 mM PIPES pH 8.0 / 85 mM KCl / 0.5% NP-40. Roche 375

Protease Inhibitor Cocktail Tablet (Sigma 11836145001 for 50 ml or mini tablets 11836153001 376

for 10 ml). 377

In order to reduce variability between experiments and reduce sample loss of precious tissue, 378

chromatin inputs for ChIP-seq were prepared in large batches (enough for 20-100 experiments 379

for small and large regions respectively). Techniques for generating chromatin from frozen 380

human tissue were similar to those described previously from our lab64. For processing 381

frozen brain tissue, all instruments and materials are chilled on dry ice and kept cold until 382

crosslinking. To begin, a small portion of each dissected brain region is broken off using a 383

metallic block and hammer with care taken to obtain an even balance of gray and white 384

matter when possible. The starting material for each region (2500mg for large regions and 385

500mg for small regions) was sealed inside of a Covaris Tissue TUBE (Covaris 520021, 520023) 386

and thoroughly pulverized using the chilled hammer and metallic block, with intermittent 387

submerging into liquid nitrogen to maintain cold temperature and brittleness. At this point, 388

a small amount of pulverized tissue (<100mg) is preserved in an Eppendorf tube at -80◦C to 389

be used in parallel experiments. The remaining tissue can be used immediately or stored for 390

a few days at -80◦C. 391

For crosslinking, pulverized tissue was poured into a conical tube holding PBS plus protease 392

inhibitor at room temperature and a small volume of PBS is used to wash the remaining 393

contents of the Covaris bag. Immediately, add 37% formaldehyde (Sigma F8775-25ML) to 394

a final of 1% formaldehyde and rotate end-over-end for 10 minutes at room temperature. 395

Fixation was halted by adding 2.5M Glycine to a final concentration of 0.125M and rotating 396

for another 5 minutes at room temperature. Pour the fixed tissue mixture into a Dounce 397

homogenizer and pass the loose pestle 5 times to break up any remaining large pieces. Spin 398

the mixture in a conical tube at 5,000g for 5 minutes at 4◦C. The supernatant is discarded 399

and the pellet is resuspended and washed in cold PBS. Spin and 5,000g for 5 minutes at 4◦C. 400

Wash twice more with cold PBS. Resuspend final pellet in Farnham Lysis buffer plus protease 401

inhibitor and hold on ice for 5 minutes. Pour contents in Dounce homogenizer on ice and 402

complete 10 pulses with tight pestle. Pour into new conical tube and spin 5,000g for 5 minutes 403

at 4◦C. Resuspend pellet in cold RIPA buffer plus protease inhibitor. Sonicate tissue using 404

Diagenode Bioruptor Pico (10 cycles; 30 seconds on/ 30 seconds off) using 1.5mL microtubes 405

(Diagenode C30010016) with 300uL per tube (several rounds needed). Pool the sonicated 406

chromatin into a conical tube and centrifuge 16,000g for 30 minutes at 4◦C to remove any 407

insoluble debris. Collect supernatant, raise to final volume with RIPA, and dispense working 408

aliquots into 1.5mL Eppendorf tubes held on dry ice. Store at -80◦C. 409

Chromatin Preparation: Sorted 410

Buffers required: Nuclei Extraction Buffer (NEB): 0.32 M Sucrose, 5 mM CaCl2, 3 mM 411

Mg(Ac)2, 0.1 mM EDTA, 10 mM Tris-HCl, 0.1 mM PMSF, 0.1% Triton X-100, 1 mM 412

DTT. Before use, add protease inhibitor cocktail according to manufacturer recommendation. 413

Sucrose Cushion Buffer (SCB): 1.6 M Sucrose, 3 mM Mg(Ac)2, 10 mM Tris-HCl, 1 mM DTT. 414

Interphase Buffer: 0.8 M Sucrose, 3 mM Mg(Ac)2, 10 mM Tris-HCl. Blocking buffer: 1x PBS, 415
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1% BSA (Sigma 3117332001), 1 mM EDTA. Pellet buffer: add 200 uL 1 M CaCl2 to 10 mL 416

SCB. 417

Methods for extracting and sorting nuclei from postmortem brain are similar to previously 418

published methods67. Here, approximately 500 mg of tissue was placed into a chilled 40 mL 419

Dounce homogenizer containing 5 mL of NEB on ice and allowed to partially thaw to ease 420

douncing (2-3 minutes). Extract nuclei by douncing with “tight” pestle 30-40 times until 421

the tissue is homogenized. Transfer to a 15 mL conical tube on ice, wash glassware with 5 422

mL NEB and add to 15 mL tube. Fix chromatin by adding 625 uL of 16% formaldehyde 423

(methanol free, Thermo 28906) to a final concentration of 1% and rotate end-over-end at room 424

temperature for 10 minutes. Halt fixation by adding 500 uL of 2.5 M Glycine and incubate 425

another 5 minutes rotating at room temperature then place homogenate back on ice. During 426

fixation, prepare sucrose gradient in 2 ultracentrifuge buckets (Beckman Coulter cat: 344058) 427

by layering 5 mL of Interphase buffer atop 10 mL of SCB in each. Carefully layer nuclei 428

homogenate atop sucrose gradient, balance with NEB, then ultracentrifuge at 24,000 rpm for 429

2 h using SW28 swinging bucket rotor (Beckman Coulter). Upon completion, inspect tubes 430

for a visible pellet of nuclei at the bottom of the tube. Remove debris at interphase first by 431

using a 25 mL graduated pipette, then continue removing the remaining sucrose gradient 432

being careful not to disturb the nuclei pellet. Carefully resuspend the pellet in 1 mL cold PBS 433

and transfer to a 15 mL lo-bind tube containing 2 mL PBS on ice. Wash ultracentrifuge tubes 434

with 1 mL cold PBS and combine in 15 mL tube to a final volume of 10 mL, inverting to mix. 435

Centrifuge the nuclei at 1,000xg for 10 minutes at 4◦C to remove residual sucrose. Label nuclei 436

by resuspending pellet in 5 mL blocking buffer with NeuN-488 antibody (Millipore MAB377X) 437

and Olig2 antibody (Abcam ab109186) at 1:5,000 each. Incubate nuclei in staining buffer 438

with rotation for at least 1 hour at 4◦C. Spin nuclei 500 x g for 5 minutes to pellet, remove 439

supernatant, then resuspend in 5 mL blocking buffer with goat-anti-rabbit-647 (ThermoFisher 440

A-21245) at 1:5,000 and DAPI at 1:100,000. Incubate for at least 1 hour at 4◦C with rotation 441

(overnight preferred). Remove stain by centrifuging 500xg 5 minutes at 4◦C and resuspending 442

in 3 mL cold PBS. Hold on ice and proceed immediately to sorting. 443

Nuclei were sorted using Sony MA900 with a 70 um nozzle and pressure not exceeding 444

pressure setting of 7. Gates were set to capture those populations that were positive for 488 445

signal (NeuN+), positive for 647 signal (Olig2+), or negative for both (NeuN-;OLIG-). Each 446

population was collected into 5 mL tubes held at 4◦C and pooled into 15 mL lo-bind tubes 447

on ice. Purity of selected samples were typically ¿95% based on reanalysis of sorted samples. 448

To concentrate nuclei for downstream analysis, add approximately 2 mL of pellet buffer per 449

10 mL of sorted nuclei and rotate at 4◦C for 15 minutes. Centrifuge 500 x g for 10 minutes 450

at 4◦C, after which a pellet should be visible. Remove supernatant and carefully resuspend 451

pelleted nuclei in at least 3 mL cold PBS to wash. Centrifuge 500xg for 5 minutes at 4◦C. 452

To generate chromatin for ChIP-seq, resuspend pellet in cold RIPA plus protease inhibitor 453

at approximately 3 million nuclei per 250 uL. Transfer 250 uL of each sample to the Bioruptor 454

tubes and sonicate tissue using a Bioruptor Pico (8 cycles; 30 seconds on/ 30 seconds off). 455

Pool the sonicated chromatin into a 1.5 mL DNA lo-bind conical tube and centrifuge 12,000xg 456

for 5 minutes at 4◦C to remove any insoluble debris. Collect supernatant into a separate tube, 457

add RIPA to final volume equivalent to 500,000 nuclei per 100 uL, then dispense working 458

aliquots into 1.5 mL tubes held on dry ice. Store at -80◦C. 459
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ChIP-seq. 460

Buffers required: BSA wash: 1x PBS + 5 mg/mL BSA. LiCl wash: 100 mM Tris at pH 7.5, 461

500 mM LiCl, 1% NP-40, 1% sodium deoxycholate. TE buffer: 10 mM Tris-HCl at pH 7.5, 462

0.1 mM Na2EDTA. IP elution buffer: 1% SDS, 0.1 M NaHCO3. 463

Antibodies used in ChIP-seq are detailed in Supplementary Table 3. 464

Protocols for ChIP-seq are similar to those for frozen tissue previously described by 465

our lab66,68 and consistent with techniques recommended by the ENCODE consortium 466

(www.encodeproject.org/documents). Briefly, Dynabeads (ThermoFisher Scientific; 11201D 467

anti-mouse or 11203D anti-rabbit) were washed with cold 1x PBS + 5 mg/mL BSA then 468

combined with respective antibodies at a desired ratio of 5 ug antibody to 150 uL Dynabeads 469

(dependent on concentration from manufacturer) at a final volume of 200 uL and held at 4◦C 470

overnight with rotation. The following morning, tubes of aliquoted chromatin are thawed on 471

ice and bead/antibody complex is washed with PBS + 5 mg/mL BSA solution. Beads are 472

ultimately resuspended in 100 uL RIPA and brought to 200 uL with 100 uL chromatin aliquot. 473

Incubate bead/antibody with chromatin using rotation for one hour at room temperature 474

then move to 4◦C for another hour. After incubation, bead complexes were washed five times 475

with a LiCl wash buffer and removed remaining ions with a single wash with 1 mL of cold TE 476

buffer. Chromatin was eluted from beads by incubating with intermittent shaking for 1 hour 477

at 65◦C in IP elution buffer, followed by incubating overnight at 65◦C to reverse formaldehyde 478

cross-links. DNA was purified using DNeasy Blood and Tissue kit (Qiagen 69506) and eluted 479

in a final volume of 50 uL EB. 2 uL was used to quantify recovered DNA using Qubit dsDNA 480

HS Assay kit (Thermo Q32854). For input controls, one aliquot of each tissue was brought to 481

200 uL with RIPA and reverse-crosslinked overnight at 65◦C. The following morning, samples 482

were incubated an additional 30 minutes with 20 uL Proteinase K and 4 uL RNase A (Qiagen 483

19101) and subsequently eluted for DNA using DNeasy Blood and Tissue kit. 484

The entirety of the remaining IP DNA (and 100 - 500 ng input control for sorted and 485

bulk chromatin, respectively) were used to generate sequencing libraries. Libraries were 486

prepared by blunting and ligating ChIP DNA fragments to Illumina sequencing adapters for 487

amplification with barcoded primers (30 sec at 98◦C; [10 sec at 98◦C, 30 sec at 65◦C, 30 488

sec at 72◦C] x 15 cycles; 5 min at 72◦C). Libraries were quantified with Qubit dsDNA HS 489

Assay kit and visualized with Standard Sensitivity NGS Fragment Analysis Kit (Advanced 490

Analytical DNF-473) and Fragment Analyzer 5200 (Agilent). Libraries were sequenced using 491

the Illumina NovaSeq with 100 bp single-end runs. 492

ChIP-seq analysis pipeline. 493

Prior to analysis, reads were processed to remove optical duplicates with clumpify (BBMap 494

v38.20; Bushnell B.; https://sourceforge.net/projects/bbmap/) [dedupe=t optical=t dupedist=2500]495

and remove adapter reads with Cutadapt69 (v1.16) [-a AGATCGGAAGAGC -m 40]. Input 496

reads for TFs were capped at 30 million and 40 million for bulk and sorted, respectively, 497

using Seqtk (v1.2; https://github.com/lh3/seqtk). Individual experiments were constructed 498

following ENCODE guidelines70 with two donors used as biological replicates for each experi- 499

ment unless otherwise noted. Results were analyzed with the ENCODE processing pipeline 500

(https://github.com/ENCODE-DCC/chip-seq-pipeline2) with alignments to the hg38 build 501

19/26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2023. ; https://doi.org/10.1101/2023.06.21.545934doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545934
http://creativecommons.org/licenses/by-nc-nd/4.0/


of the human genome. All software within the package was run using the default settings 502

or those recommended by the authors for transcription factors [-type tf] or histones [-type 503

histone]. Final peaks were called using the IDR näıve overlapping method with a threshold 504

of 0.05. QC measurements and results of the reproducibility test provided by ENCODE are 505

listed in Supplementary Table 2 with most experiments passing ENCODE recommended 506

benchmarks. For completion, we include some experiments that failed in a certain cell-type if 507

the tested TF passed in another experiment. Shortcomings in the reproducibility test were 508

typically attributed to an experiment performing much better in one donor versus another. 509

Whole genome bisulfite sequencing (WGBS). 510

DNA was extracted from 10-20 mg fresh-frozen postmortem brain tissue using the DNEasy 511

Blood and Tissue kit (cat#: 69504, Qiagen) following the manufacturer’s instructions. WGBS 512

dual indexed libraries were generated using NEBNext Ultra DNA library Prep kit for Illumina 513

(New England BioLabs) according to the manufacturer’s instructions with modifications. 514

500 ng gDNA was quantified by Qubit dsDNA HS assay (Invitrogen) and 1% unmethylated 515

lambda DNA (cat#: D1521, Promega) was spiked in to measure bisulfite conversion efficiency. 516

DNA was fragmented to an average insert size of 400-450 bp using a Covaris S2 sonicator in a 517

55 uL volume. The fragmented gDNA was converted to end-repaired, adenylated DNA using 518

the NEBNext Ultra End Repair/dA-Tailing Module (cat#: 7442L, New England BioLabs). 519

Methylated adaptors (NEBNext Multiplex Oligos for Illumina; cat#: E7535L New England 520

BioLabs) were ligated to the product from the preceding step using the NEBNext Ultra 521

Ligation Module (cat#: 7445L, New England BioLabs). Size-selection was performed using 522

AMPure XP beads and insert sizes of 400 bp were isolated (0.4x and 0.2x ratios). Samples 523

were bisulfite converted after size selection using the EZ DNA Methylation-Lightning Kit 524

(cat#: D5030, Zymo) following the manufacturer’s instructions. Amplification was performed 525

following bisulfite conversion using primers from the NEBNext Multiplex Oligos for Illumina 526

(cat#: E6440S, New England BioLabs) and the Kapa HiFi Uracil+ PCR system (cat#: 527

KK2801, Kapa Biosystems) with the following cycling parameters: 98◦C 45 sec / 8 cycles: 528

98◦C 15 sec, 65◦C 30 sec, 72◦C 30 sec / 72◦C 1min. The PCR enriched product was cleaned 529

up using 0.9x AMPure XP beads (cat#: A63881, Beckman Coulter). Final libraries were run 530

on 2100 Bioanalyzer (Agilent) using the High-Sensitivity DNA assay; samples were also run 531

on Bioanalyzer after shearing and size selection for quality control purposes. Libraries were 532

quantified by qPCR using the Library Quantification Kit for Illumina sequencing platforms 533

(cat#: KK4824, KAPA Biosystems, Boston), using 7900HT Real Time PCR System (Applied 534

Biosystems). Libraries were sequenced with the Illumina NovaSeq S4 flowcell using 151 bp 535

paired-end run with a 10% PhiX spike-in. 536

Enzymatic Methyl-seq Kit of sorted nuclei 537

Nuclei were isolated from brain tissue samples and sorted similarly to sorted ChIP-seq 538

experiments described above excluding the formaldehyde fixation step. DNA was extracted 539

similarly to WGBS protocol above and processed using the NEBNext Enzymatic Methyl- 540

seq Kit (NEB E7120S) according to the manufacturer’s recommendations. Libraries were 541

sequenced with the Illumina NovaSeq S4 flowcell using 151 bp paired-end run with a 10% 542

PhiX spike-in. 543
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Mapping and quality control of methylation reads. 544

We trimmed reads of their adapter sequences using Trim Galore 545

(v0.6.0; http://www.bioinformatics.babraham.ac.uk/projects/trim galore/) and quality-trimmed 546

using [– nextseq 20]. We then aligned these trimmed reads to the hg38 build of the human 547

genome [including autosomes, sex chromosomes, mitochondrial sequence (available from 548

https://software.broadinstitute.org/gatk/download/bundle) plus lambda phage (accession 549

NC 001416.1) but excluding non-chromosomal sequences] using Bismark69 (v0.22.1) with the 550

following alignment parameters: bismark –bowtie2 -X 1000 -1 READ1− 2READ2. 551

We then used bismark methylation extractor to summarize the number of reads supporting 552

a methylated cytosine and the number of reads supported a unmethylated cytosine for every 553

cytosine in the reference genome. Specifically, we first computed and visually inspected the 554

M-bias[5] of our libraries. Based on these results, we decided to ignore the first 5 bp of read2 555

in the subsequent call to bismark methylation extractor with parameters: –ignore r2 5 -p 556

–bedGraph –counts –cytosine report –comprehensive –merge non CpG. The final cytosine 557

report file summarizes the methylation evidence at each cytosine in the reference genome. 558

Whole genome sequencing 559

High molecular weight was extracted from approximately 20mg of cortex tissue from each 560

donor using either the MagAttract HMW DNA kit (Qiagen 67563) or Circulomics Nanobind 561

Tissue kit (Pacbio 102-302-100). The linked read library was prepared using the Chromium 562

Genome Reagent Kit v2 following the protocol provided by 10x Genomics. Sequence reads 563

were processed using the longranger software suite from 10x Genomics. Linked reads were 564

demultiplexed with longranger demux and then aligned to a 10x Genomics-provided, longranger- 565

enabled hg38 reference (version 2.1.0) using longranger wgs v2.2.2. Variants were called using 566

GATK 3.8-1-0-gf15c1c3ef via the –vcmode gatk option in the longranger wgs workflow. 567

Assay for transposase-accessible chromatin using sequencing (ATAC-seq). 568

Homogenate, NeuN+, and NeuN- nuclei were isolated as previously described and 100,000 569

nuclei were used for ATAC-seq library preparation as per standard protocols70–72 with the 570

following modifications. Briefly, 50 uL of cold 5X lysis buffer was added to sorted nuclei to 571

reach a final concentration of 1X (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 572

0.1% NP40) and incubated 20 min on ice followed by centrifugation for 10 min as previously 573

described. The transposition reaction was incubated for 30 min or 1h at 37◦C (Illumina 574

Tagment DNA Enzyme and Buffer kit; cat #:20034198). After column clean up via the Qiagen 575

MinElute Reaction Cleanup kit (cat#:28204, Qiagen) and PCR amplification of libraries, 576

an additional clean up with AMPure XP beads (0.8x ratio) was performed with two 80% 577

ethanol washes before quantification using a DNA High Sensitivity chip on a 2100 BioAnalyzer 578

(Agilent). Libraries were sequenced with the Illumina NovaSeq S2 50bp paired-end dual 579

indexed run. Reads were processed using the standard ENCODE ATAC-seq pipeline (v1.7.0). 580

RNA-seq. 581

Total RNA was isolated using the Qiagen miRNeasy Mini kit according to the manufac- 582

turer’s protocol for acquiring total RNA with a DNAse digest, using approximately 20mg 583

pulverized brain tissue or 200,000 nuclei as input. 10ng and 1ug of RNA (from nuclei and 584
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bulk, respectively) was used as input for TruSeq stranded Total RNA Library Prep Gold 585

kit (Illumina 20020598) according to manufacturer’s protocol with TruSeq RNA UD Indexes 586

(Illumina 20022371). Sequencing was carried out using Illumina NovaSeq S4 150bp pair-end 587

dual indexed run. Reads were aligned to hg38-GENCODEv42 using STAR with ENCODE 588

standard options [-outFilterType BySJout –outFilterMultimapNmax 20 –alignSJoverhangMin 589

8 –alignSJDBoverhangMin 1 –outFilterMismatchNmax 999 590

–outFilterMismatchNoverReadLmax 0.04 –alignIntronMin 20 –alignIntronMax 1000000 – 591

alignMatesGapMax 1000000]. Count tables were generated using htseq-count [-m union 592

-s no] then transformed to Transcripts Per Million (TPM). 593

GREAT analysis. 594

GREAT analysis was performed using the rGREAT (v2.1.8) package 595

(https://www.bioconductor.org/packages/release/bioc/html/rGREAT.html). Genomic re- 596

gions were associated with genes using the basal plus extension method (5kb upstream, 597

1kb downstream, 500kb max extension). Enrichment for GO Biological Process terms were 598

calculated within GREAT with background regions set as the union of all ChIP-seq peaks. 599

Correlation matrix and PCA analysis. 600

The signal value for each TF at each peak was first quantified using the custom script 601

pull vals to GR.R which calculates the median signal value from the fold-change bigWig 602

within the specified peaks. PCA was performed on the matrix of signal values using the 603

prcomp function with scaling. The correlation matrix was then calculated for all TFs using 604

the first 20 PCs. Clusters were determined with ComplexHeatmap using k-means partitioning 605

(k=3). 606

Motif Calling. 607

Motifs were identified with motifmatchr and a curated list of JASPAR 2022 motifs at a p-value 608

cutoff of 5e-05. For motif centrality, peaks were centered on the summit and resized to 500 609

bp before calling motif positions. Motif distance was determined from the start of the motif 610

to the summit of the peak. Centrality score was calculated as the variance in motif distance. 611

De novo motif calling was performed using the MEME suite (5.3.3) on the top 500 peaks 612

(ranked by q-value from ENCODE pipeline) that were resized to 200 bp centered on the 613

summit. MEME-ChIP was run with [-meme-nmotifs 5 -maxw 20 -minw 6 -meme-norand]. An 614

experiment successfully called a motif de novo if the expected motif available in the JASPAR47
615

or CIS-BP75 database appears in the top 5 derived motif sequences. 616

For motif clustering, the MEME-ChIP suite was used to call de novo motifs using the top 617

500 peaks (sorted by q-value) and tested for enrichment and centrality in regions beyond 618

those top peaks. The de novo motifs were then compared using TOMTOM and clustered 619

based on similarity based on a previously published method50. 620

Predictive Models. 621

Predicted transcription factor binding scores were calculated using Virtual ChIP-seqmake input.py622
and predict.py. ATAC-seq idr narrowPeak files and TPM transformed RNA-seq matrices were 623

22/26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2023. ; https://doi.org/10.1101/2023.06.21.545934doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545934
http://creativecommons.org/licenses/by-nc-nd/4.0/


used as input for the predictions. Predictions were run for TFs that were both ChIPed in this 624

study and had a pre-trained model available with Virtual ChIP-seq. Posterior probabilities were 625

determined for a bin size of 200bp. Bins overlapping ENCODE blacklist regions were excluded 626

(https://www.encodeproject.org/files/ENCFF419RSJ/@@download/ENCFF419RSJ.bed.gz). 627

Precision and recall were calculated at a posterior probability step size of 0.01, and auPR was 628

calculated using zoo’s rollmean function. 629
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