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ABSTRACT

Background: Following descriptive studies on skin microbiota in health and disease,
mechanistic studies on the interplay between skin and microbes are on the rise, for which
experimental models are in great demand. Here, we present a novel methodology for microbial
colonization of organotypic skin and analysis thereof. Results: An inoculation device ensured
a standardized application area on the stratum corneum and a homogenous distribution of
bacteria, while preventing infection of the basolateral culture medium even during prolonged
co-culture periods for up to two weeks at a specific culture temperature and humidity. Hereby,
host-microbe interactions and antibiotic interventions could be studied, revealing diverse host
responses to various skin-related bacteria and pathogens. Conclusions: Our methodology is
easily transferable to a wide variety of organotypic skin or mucosal models and different
microbes at every cell culture facility at low costs. We envision that this study will Kick-start
skin microbiome studies using human organotypic skin cultures, providing a powerful

alternative to experimental animal models in pre-clinical research.
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INTRODUCTION
The skin is a multi-faceted barrier organ that hosts a diversity of commensal microbial
communities, composing the human skin microbiota. Over the past decade, we have witnessed
a scientific breakthrough with respect to our knowledge and understanding of these
microorganisms due to advances in sequencing technologies and the initiation of the human
microbiome project [1]. Skin microbiome composition and diversity varies between body sites
and individuals and is affected by environmental influences [2, 3]. The most abundant bacteria
identified at the genus level are Corynebacterium, Cutibacterium and Staphylococcus [2, 4],
along with the most common fungal commensal Malassezia [4-6]. These microbes play an
important role in skin health by educating the immune system [7-9], preventing the colonization
by pathogens [10, 11] and promoting skin barrier function [12, 13].

Alterations in skin microbiome composition, called dysbiosis, are nowadays associated with
a plethora of skin conditions, such as atopic dermatitis (AD), psoriasis and acne [14-21].
Colonization and infection of the skin by Staphylococcus aureus (S. aureus) has been under
investigation for decades [22, 23], but recent studies also suggest other Staphylococcus species
like S. epidermidis [24] and S. capitis [25] to contribute to skin pathologies. The question
remains whether dysbiosis is the cause or consequence of skin diseases and to what extent the
microbiome can be leveraged as a therapeutic target [26-28]. Following initial descriptive
studies on the skin microbiome [4, 29], investigative mechanistic studies using biologically
relevant experimental models are of utmost importance to dissect the cause or contribution of
microbial dysbiosis to health and disease [27, 30, 31].

Notwithstanding the importance and utility of widely used in vivo-animal models [32-34],
the skin microbiome of rodents is significantly different from humans and the instability of the
microbiome in laboratory animals is known to affect the experimental outcome [30].

Alternatively, human skin cell cultures (e.g., keratinocyte monolayer cultures) allow
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investigations on the direct interaction between keratinocytes and microbes [35, 36]. Herein,
co-cultures with live bacteria are restricted to be short-term as cell viability will be
compromised upon the bacterial overgrowth within a few hours [37, 38]. Optionally, heat-killed
bacteria, bacterial components or the bacterial culture supernatant can be used [39-41].
However, these do not mimic the actual colonization onto the protective stratum corneum,
which acts as a physical barrier and filter for microbial metabolites [42]. Investigative studies
on these metabolites and potential quorum sensing molecules [43, 44] that interact with bacterial
or host cell receptors to activate signal transduction pathways [13, 45, 46], would benefit from
models in which live bacteria are grown under biologically relevant culture conditions, such as
a natural growth substrate (the stratum corneum) with a viable epidermis underneath.

Advanced organotypic skin models (either full-thickness skin or epidermal equivalents) have
recently been used more often in host-microbe interaction studies. Next to bacterial infection
models, microbial colonization is reported for a variety of skin-related bacteria and fungi. To
summarize the current state-of-the-art, we provide a literature overview including experimental
details and read-out parameters in Supplemental Table S1. These studies clearly indicate the
utility of organotypic skin models for skin microbiome research, but also highlight a lack of
standardization, relatively short co-culture periods of up to 24 hours, the high risk of basolateral
culture infections and low assay throughput at high costs. Furthermore, the common use of
standard cell culture conditions (37°C at a high relative humidity) in these microbial co-culture
studies favors the growth of aerobic bacteria which will affect the bacterial diversity of in vitro
cultured skin microbiome samples [47].

In an attempt to overcome these limitations, we here present a low cost and easy to use
technical advance for microbial colonization of 3D human epidermal equivalents (HEES). This
may enable standardization of microbiome research using organotypic skin models and

facilitate multi-parameter analytics from one single co-culture. Using this model system we
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provide proof-of-concept for differential host defense responses by skin commensals and
pathogens, establish long-term co-culture periods up to two weeks and implement effective

intervention studies by topical antibiotics.
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EXTENDED METHODS DESCRIPTION

RESOURCES TABLE

REAGENT or RESOURCE

| SOURCE

| IDENTIFIER

Antibodies (Supplemental Table 2)

Mouse monoclonal anti-Filaggrin (clone
FLGO1)

Thermo Fisher Scientific

Cat#FLGO01-1
RRID:AB 2894828

Rabbit monoclonal anti-Ki67 (clone SP6) Abcam Cat#ab16667,
RRID:AB 302459

Mouse monoclonal anti-Involucrin [48] N/A

(clone Mon150)

Mouse monoclonal anti-Keratin 10 Abcam Cat# ab9026

(clone DE-K10) RRID:AB 306950

Rabbit monoclonal anti-SKALP/Elafin [49] N/A

(clone 92-1)

Goat polyclonal anti-hBD2 Abcam Cat# ab9871,

RRID:AB 296681

Bacterial and virus strains (Supplemental Table 3)

Cutibacterium acnes ATCC ATCC-6919

Staphylococcus epidermidis ATCC ATCC-12228

Staphylococcus capitis Clinical isolate N/A

Corynebacterium aurimucosum Clinical isolate N/A

Staphylococcus aureus ATCC ATCC-29213

Staphylococcus aureus Clinical isolate from AD skin | N/A
(SA-DUS-011)

Biological samples

N/A

Chemicals

CnT-Prime Epithelial Proliferation Medium CELLNTEC Cat#CnT-PR

CnT-Prime 3D Barrier Culture Medium CELLNTEC Cat#CnT-PR-3D

EpiLife Medium, with 60 uM calcium Gibco Cat#MEPI500CA

Dulbecco’s Modified Eagle's Medium - high Sigma-Aldrich Cat#D6546

glucose

Formaldehyde solution 4%, buffered, pH 6.9 Sigma-Aldrich Cat#1.00496

Fusidic acid sodium salt Sigma-Aldrich Cat#F0881

Fluoromount-G™ Mounting Medium, with
DAPI (4',6-diamidino-2-phenylindole)

Thermo Fisher Scientific

Cat#00-4959-52

Critical commercial assays

Vectastain ABC Kit (Rabbit, Mouse, Goat IgG)

Vectorlabs

Cat#PK-6101, 6102,
6105

Deposited data

N/A
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Experimental models: Cell lines

Human: Primary normal keratinocytes [50] N/A

Human: N/TERT-2G [51] N/A
[52]

Experimental models: Organisms/strains

N/A

Oligonucleotides (Supplemental Table 4)

Primers for human beta defensin-2 (hBD2), This paper N/A
DEFB4
Primers for ribosomal phospoprotein PO, This paper N/A
RPLPO
Primers for chemokine (C-C motif) ligand 20, | This paper N/A
CCL20
Primers for interleukin-1p, IL1B This paper N/A
Primers for S100 calcium-binding protein A9, | This paper N/A

S100A9 (also known as migration inhibitory
factor-related protein 14, MRP14)

Recombinant DNA

N/A

Software and algorithms

GraphPad Prism 9.0

Other

Glass Culture Cylinders, 4 mm inner diameter, | Bioptechs Cat#070303-04
5 mm height

Nunc Cell Culture Inserts in 24-well Carrier Thermo Fisher Scientific Cat#141002

Plate Systems, 0.4 micron pore size

CONTACT FOR REAGENT AND RESOURCE SHARING
Further information and requests for resources and reagents should be directed to and will be

fulfilled by the lead contact, Ellen van den Bogaard (Ellen.vandenBogaard@radboudumc.nl).
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EXPERIMENTAL MODEL & METHOD DETAILS

Primary keratinocyte isolation

Surplus human skin was obtained from plastic surgery (according to the principles of the
Declaration of Helsinki). Human primary keratinocytes were isolated as previously described
[50]. Briefly, 6 mm full-thickness biopsy punches of the freshly excised skin tissue were taken
and placed into antibiotic/antimycotic medium for 4 hours at 4°C. Thereafter, 0.25% trypsin in
phosphate buffered saline (PBS) was added and incubated overnight (o/n) at 4°C. Next, the
enzymatic reaction was stopped by the addition of 10% (v/v) fetal bovine serum (GE Healthcare
Life Sciences). A pair of tweezers was used to scrape the surface of the biopsy for harvesting
of the keratinocytes. The keratinocytes were counted and seeded onto feeder cells at a density
of 50.000 cells/cm? in keratinocyte growth medium. The cells were harvested at 95%
confluency with a final DMSO concentration of 10% and the cryovials were placed o/n into a

freezing container at -70°C, after which the cells were stored in liquid nitrogen.

3D human epidermal equivalent (HEE) culture

HEEs were generated according to the protocols previously described (Rikken et al. 2020).
Briefly, cell culture inserts (24-wells, 0.4 um pore size filters; Thermo Fisher Scientific, Nunc)
were coated with 150 pL of rat tail collagen in sterile cold PBS (100 pug/mL, BD Biosciences,
Bedford, USA) at 4°C for 1 hour. Thereafter, excessive collagen solutions were carefully
aspirated and the filters were washed with sterile cold PBS. Then, 150.000 primary human
keratinocytes were seeded submerged in 150 pL CnT-prime medium (CELLNTEC, Bern,
Switzerland). 900 pL of CnT-prime was added to the basolateral chamber, after which the
cultures were incubated at 37°C and 5% CO». After 48 hours, cultures were switched to 3D
differentiation medium, which consists of 60% CnT-Prime 3D Barrier medium (CELLnTEC,

Bern, Switzerland) and 40% High Glucose Dulbecco’s Modified Eagle’s Medium (DMEM,
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D6546, Sigma-Aldrich). 24 hours later, the HEEs were lifted to the air-liquid interface (ALI)
using 1600 pL of 3D differentiation medium, which was refreshed every other day. The HEE
culture schedule is depicted in Figure 1F (created with Adobe lllustrator,
https://www.adobe.com/illustrator).

For the N/TERT-2G cells, EpiLife medium (Gibco) or CnT-prime (CELLNTEC) was used
(based on availability) for seeding the cells and during the first 48 hours of submerged culture.

The N/TERT-2G HEEs were generated from N/TERT-2G keratinocytes at passage 3.

Bacterial cultures

Bacterial strains (see Supplemental Table S2) were obtained from the Department of Medical
Microbiology of the Radboud University Medical Center and the Department of Dermatology
of the Heinrich-Heine-University in Dusseldorf (clinical isolate of AD skin, SA-DUS-011). S.
aureus, S. epidermidis, S. capitis and Corynebacterium aurimucosum (C. aurimucosum) strains
were grown o/n on Columbia agar with 5% sheep blood (Becton, Dickinson and Co.) under
aerobic conditions at 37°C. Single colonies were used to inoculate cultures in 3 mL brain heart
infusion (BHI) medium (Mediaproducts BV) in a 14 mL round bottom tube with snap cap
(Cat#352057, Falcon, Corning) and incubated o/n at 37°C while shaking (225 rpm). Thereafter,
bacterial cultures were diluted 100 times (30 pL in 3 mL BHI medium) and grown for another
2.5 hours in a shaking incubator to reach exponential growth. Cutibacterium acnes (C. acnes)
was grown on Columbia agar with 5% sheep blood for 2 days at 37°C under anaerobic
conditions (anaerobic jar system with an Oxoid Anaerogen 3.5L sachet (Cat#ANO035A,
Thermo Fisher Scientific)), after which a single colony was picked and cultured o/n in 3 mL
BHI medium at 37°C under anaerobic conditions. Thereafter, the bacteria were collected by
centrifugation. The pellets containing the bacteria were washed twice in PBS and finally

resuspended in PBS to reach the desired amount of colony forming units (CFU)/mL.
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Glass cylinder methodology for topical application of bacteria

After resuspension, the bacterial strains were topically applied on the stratum corneum of the
organotypic cultures using a glass cloning cylinder (Cat#070303-04, Bioptechs, Pennsylvania,
USA) with an outer diameter of 6 mm (inner diameter of 4 mm). Cylinders were first washed
with soap followed by disinfection with 70% and 100% ethanol (air-dried in flow cabinet). The
cylinder was placed on top of the HEE, with the raw surface facing downwards in the middle
of the insert, using forceps, leaving approximately 1 mm space at the edge of the culture area.
25 pL of bacterial suspension (or PBS only) was carefully pipetted inside the cylinder. During
4-5 hours, the cultures were placed on a heated plate (37°C) in the flow cabinet (without the
lid) to allow the surface to become dry again. Afterwards, the cylinder was carefully removed
and additional supplementation of culture medium (approximately 100 pL) in the basolateral
compartment was required before returning co-cultures to the incubator at 37°C and 5% COs..
A macroscopic view of the glass cylinder on top of the HEE is shown in Figure 1B, whereas a
schematic overview of the HEE co-culture schedule is depicted in Figure 1F. During the co-
culture experiments, samples of the culture medium were brought onto blood agar plates and
incubated o/n at 37°C to check for sterility.

Depending on the experimental design, the bacteria were applied at different time points of
the ALI (day 7, 8 and 11) and HEES were harvested after 6 hours up to 13 days of co-culture.
For the N/TERT-2G co-culture experiment, S. aureus ATCC 29213 was colonized at day 9 of
the ALI.

To mimic the in vivo skin environment and to optimize co-culture conditions, HEEs
inoculated with the SA-DUS-011 strain were also cultured at 32°C (at the start of colonization,
up to 10 days) at low relative humidity. Of note, the culture medium in the basolateral chamber

thereby evaporated faster requiring additional culture medium supplementation of 200 uL every
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day. Alternatively, the medium level could be increased with 500 pL to account for the
evaporation and prevent the HEEs from running dry o/n.

The glass cylinder methodology was compared to a small droplet application (5 uL volume
of bacterial suspension (SA-DUS-011 strain)) without the cylinder. The droplet was pipetted in
the middle of the HEE (to minimize the risk of basolateral infections) and thereafter subjected

to the same protocol as described above (37°C and 32°C).

Topical application of antibiotics
Fusidic acid (FA, F0881, Sigma-Aldrich) was used as a narrow spectrum antibiotic known to
combat S. aureus infections. Both S. aureus ATCC 29213 and the SA-DUS-011 strain were
analyzed after the addition of FA in a concentration series. Immediately after the colonization
of S. aureus (~4 hours later, complete evaporation of PBS), 25 pL of FA (1% DMSO in water)
was applied inside the same cylinder as used for the application of S. aureus. Again, the liquid
was allowed to evaporate inside the flow cabinet (without lid on a heated plate, 37°C) and the
cylinders were carefully removed afterwards. The HEEs with S. aureus ATCC 29213 were
subjected to 1, 10 and 100 pg/mL FA, incubated at 37°C and 5% CO; and harvested after 24
hours (technical triplicates).

For a prolonged HEE co-culture experiment with the SA-DUS-011 strain, FA (10 and 100
png/mL) was applied every other day using the sterile glass cloning cylinder on top of the HEE.
Co-cultures were incubated at 32°C (dry incubator) with 5% CO; and harvested after 24 hours

(technical triplicates) and 8 days (technical quadruplicates) of colonization.
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ANALYSIS METHOD DETAILS

Multi-parameter end point analysis of organotypic co-cultures

The polycarbonate filter supporting the organotypic culture was gently pressed out of the
transwell by placing it up-side-down and using a 8 mm biopsy punch (BP-80F, KAI Medical).
A 6 mm biopsy punch was used to sample the area that had been covered by the glass cylinder.
The bacterial colonization area was macroscopically visible to the naked eye, which allowed
the precise excision using the biopsy punch. Of this 6 mm sample, a 3 mm biopsy was punched
and fixed for 4 hours in 4% formalin for histological processing. The remainder of the sample
was divided in two, with one part placed in 350 uL lysis buffer for total RNA isolation and the
remainder in 250 uL PBS for CFU count, or in 500 pL PBS for microbial genomic DNA
isolation for 16S rRNA gene sequencing. In summary, also depicted in the schematic image in
Supplemental Figure S2B, samples were obtained for i) tissue morphology and/or protein
expression ii) bacterial growth and iii) host gene expression from one single HEE to minimize

batch effects and increase assay throughput.

Immunohistochemistry

6 um paraffin sections were stained with hematoxylin and eosin (Sigma-Aldrich) or mounted
with DAPI (4',6-diamidino-2-phenylindole) fluoromount-G (Thermo Fisher Scientific) after
deparaffinization. For immunohistochemical analysis, sections were first blocked with 5%
normal goat, rabbit or horse serum in PBS for 15 minutes and incubated with the primary
antibody for 1 hour at room temperature or o/n at 4°C (Supplemental Table S3). Thereafter, the
sections were washed in PBS and subsequently incubated with biotinylated secondary
antibodies for 30 minutes. Next, sections were washed again in PBS and incubated with avidin-
biotin complex (1:50 avidin, 1:50 biotin in 1% BSA/PBS (v/v)) (Vector laboratories) for 30

minutes. Protein expression was visualized by color change due to the peroxidase activity of 3-
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amino-9-ethylcarbazole (AEC). The tissue was counterstained with hematoxylin, after which

the sections were mounted with glycerol gelatin (Sigma-Aldrich, Cat No. 1002946952).

Keratinocyte RNA isolation and RT-qPCR analysis

RNA from the epidermal cells was isolated with the E.Z.N.A. Total RNA Kit I (OMEGA bio-
tek) according to the manufacturer’s protocol. Isolated RNA was treated with DNasel
(Invitrogen) and used for cDNA synthesis using SuperScript IV VILO Master Mix (Invitrogen)
and UltraScript 2.0 (PCR Biosystems) according to the manufacturer’s protocols. Subsequent
real-time quantitative PCR (RT-gPCR) was performed using SYBR Green (Bio-Rad). g°PCR
primers were obtained from Biolegio (Nijmegen, The Netherlands) and depicted in
Supplemental Table S4. Target gene expression levels were normalized using the house keeping
gene human acidic ribosomal phosphoprotein PO (RPLP0). The AACt method was used to

calculate relative mMRNA expression levels [53].

Bacterial analysis

To isolate the bacteria from the organotypic co-cultures, the sample was
homogenized/disintegrated in 250 pL PBS using a plastic micro pestle (Bel-Art, USA) ina 1.5
mL Eppendorf tube with convex bottom, by turning it around 10 times. Then, the suspension
was completely homogenized using a needle (BD Microlance, 0.8 mm x 50 mm) and syringe
(Henke-Ject, Tuberculin, 1 mL) by passing it 10 times. The homogenate was used to prepare a
10x dilution series and plated out on Columbia agar with 5% sheep blood. Plates were incubated
at 37°C either o/n at aerobic conditions or for 2 days at anaerobic conditions. CFUs were
counted and corrected for dilution and harvesting method, considering that only a part (3/8) of

the co-culture was used for counting.
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Dye penetration assay

To determine the time point of stratum corneum formation allowing bacterial colonization, 25
puL of 1 mM lucifer yellow (LY, Sigma-Aldrich) was applied inside a glass cylinder on top of
the HEES at various time points of the ALI culture (day 5 till day 8) and incubated for 2.5 hours
at 37°C. After routine formalin fixation and embedding in paraffin, 6 pum sections were
counterstained and mounted using DAPI Fluoromount-G (Thermo Fisher Scientific). LY was
visualized at excitation wavelength of 488 nm using the ZEISS Axiocam 305 mono and a 10x

or 40x objective.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 9.0 (https://www.graphpad.com).
Each HEE culture experiment includes technical replicates from a single keratinocyte donor,
unless specified otherwise in the figure legend.

For the RT-gPCR gene expression analysis, the raw ACt values were used. An unpaired t-
test was performed to determine statistical significance between two groups. Paired (biological
replicates) and unpaired one-way analysis of variance (ANOVA) was used for comparison
between multiple groups followed by Tukey’s multiple comparison post hoc test.

To determine statistical significance for the CFU count data, unpaired nonparametric one-

sided Mann—Whitney U test was used.
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RESULTS

The prerequisites for bacterial colonization of organotypic skin in vitro

For bacterial colonization of organotypic skin and the study of host-microbe interactions,
prevention of cell culture infection is crucial. Like in native intact skin, the stratum corneum of
organotypic skin models should form a barrier preventing bacteria from penetrating the
epidermis. Therefore, the start of bacterial inoculation heavily depends on the correct stratum
corneum formation of the organotypic HEEs to discriminate bacterial colonization from
invasive infection. The first appearance of lipid-rich stratum corneum layers that marks the time
point of inoculation can be easily visualized by a tracer molecule, lucifer yellow (LY). For all
primary keratinocyte donors (N=8), LY was retained in the stratum corneum at day 7 of the air-
liquid interface (ALI) culture, which was therefore considered as the starting point for bacterial
colonization of HEEs in further experiments (Supplemental Figure S1A). To address the
suitability of the HEE model for long-term bacterial co-culture studies, the lifespan of the HEES
was monitored. Expression patterns of the proliferation marker Ki-67, differentiation markers
keratin 10 (K10) and filaggrin (FLG) and antimicrobial peptide (AMP) SKALP/elafin remained
normal [54] for 25 days. The number of stratum corneum layers, however, increased due to lack
of desquamation in vitro (Supplemental Figure S1B). After 30 days, a reduced number of
epidermal layers and loss of the granular layer was seen (Supplemental Figure S1C). Therefore,
the window of opportunity for studying host-microbe interactions or intervention strategies in
the herein presented HEE model system was estimated being 18 days: from the start point of

co-culture at day 7 of the ALI to maximally day 25.

Glass cylinder methodology for standardized topical inoculation of HEES

In our efforts to optimize the bacterial application method for inoculating HEEs (from small

to larger bacterial suspension droplets or complete coverage of the HEE), we were challenged
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by the labor-intensiveness, lack in reproducibility of bacterial colonization, high inter-
individual variation between researchers, detrimental effects on epidermal morphology and
most importantly frequent immediate infections (<24 hours of co-culture) of the basolateral
culture medium via the edges of the HEE. We therefore considered the utility of a glass
cloning cylinder for topical application of the bacteria. The inert material minimally interacts
with the bacteria or epidermis and allows easy sterilization. To quickly monitor the
containment of liquid inside the cylinder at macroscopic level, we visualized the distribution
of trypan blue on the HEE without and with the glass cylinder (Figure 1A-B, respectively).
Microscopic analysis after LY application indicated an equal distribution over the stratum
corneum, containment of liquid within the cylinder area and foremost clean edges of the HEE
(Figure 1C).

Next, we investigated the effects of the glass cylinder and proposed vehicle (PBS) on the
viability and structural integrity of the HEE. Prolonged immersion of organotypic epidermis
is less desirable considering the detrimental effects on skin barrier formation and function [55,
56]. Indeed, covering HEEs with PBS for 24 hours changed the expression of markers for
epidermal proliferation (Ki-67) and terminal differentiation (FLG) (Figure 1D). To reduce the
time of liquid coverage of the stratum corneum, the cultures were placed on a laboratory hot
plate (set at 37°C) without the lid of the transwell culture plate in the laminar flow hood to
accelerate PBS evaporation. Thereby, the glass cylinder could be removed within 4-5 hours
before returning the culture plates to the incubator. After careful morphological analysis
(Figure 1E), this co-culture setup as depicted in Figure 1F was used as the basis for all further

experiments.

Inoculation of HEE with pathogens and skin commensals
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For acquiring first proof-of-concept on our methodology, a bacterial suspension of the pathogen
S. aureus (ATCC 29213, 10* CFU in PBS) was added inside the glass cylinder, followed by a
colonization period of 24 hours. Whole epidermal tissue analysis (8 mm biopsy punch) showed
a homogenous distribution of the bacteria on the stratum corneum in the middle part, whilst
keeping the edges of the HEEs free from bacteria (Supplemental Figure S2A). Next, we used
one single HEE for multi-parameter readout analysis (Supplemental Figure S2B). After 24
hours of co-culture with two S. aureus strains (ATCC 29213 and a clinical isolate from an AD
patient (SA-DUS-011)), CFU analysis indicated exponential bacterial growth reaching similar
CFUs for both strains, with unaffected epidermal morphology (Figure 2A, Supplemental Figure
S2C). Remarkably, marker gene expression analysis of AMPs (DEFB4, S100A9 and PI3),
revealed a strong induction after co-culture with SA-DUS-011 (Figure 2B). Also inflammatory
mediators, here illustrated by CCL20 and IL1B, were highly upregulated (Supplemental Figure
S2D) in contrast to the laboratory ATCC strain.

To study the capability of aerobic, aerotolerant or facultative anaerobic skin commensals to
colonize HEEs, S. epidermidis, S. capitis, C. aurimucosum and C. acnes were co-cultured for
24 hours. CFU analysis indicated overall bacterial growth (Figure 2C), albeit at different growth
rates between the tested strains (Supplemental Figure S2E). No differences were observed in
the morphological appearance of the HEES exposed to different bacterial strains (Supplemental
Figure S2F), yet expression levels of host defense marker genes were significantly different,
and mostly highly induced by S. epidermidis (Figure 2D, Supplemental Figure S2E and S2G).
Importantly, no basolateral infections occurred during all HEE cultures as confirmed by plating

culture medium onto blood agar plates.
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Prolonged co-culture of S. aureus ATCC 29213

Considering the favorable aerobic growth conditions for Staphylococci in HEE models and cell
cultures in general, infections are expected upon long-term co-cultures if the glass cylinder does
not effectively constrain the bacteria from leaking via the HEE edges, or when bacteria actively
penetrate the stratum corneum. Being a commonly used human pathogenic strain, S. aureus
ATCC 29213 was first selected for a prolonged two week co-culture period. S. aureus quickly
reached a maximum of approximately 108 CFU within 24 hours followed by a plateau phase
during 13 days of co-culture (Figure 3A). The growth and survival of S. aureus on the HEE was
irrespective of the start inoculum, reaching maximum levels between 107 and 108 CFU after 20
hours in all conditions (Supplemental Figure S3A). The epidermal morphology and protein
marker expression for keratinocyte proliferation (Ki-67) and differentiation (FLG, involucrin
(IVL)) of the HEEs co-cultured with S. aureus were comparable to control HEEs (Figure 3B,
Supplemental Figure S3B). Induction of SKALP/elafin protein expression was observed after
24 hours of co-culture and remained stable over time (Figure 3C).

Accumulating stratum corneum layers due to lack of desquamation in vitro (Figure 3B)
could in principle hamper potential host-microbe interactions at later stages of the co-culture
period. However, stratum corneum thickness did not influence bacterial growth and viability
(Supplemental Figure S3C), nor did it hamper the induction of SKALP/elafin (Supplemental
Figure S3D) when applying S. aureus at later stages of the ALI (day 11). Considering the
popularity of the immortalized N/TERT Kkeratinocytes in skin science as an alternative cell
source for primary keratinocytes, we generated HEEs from the N/TERT-2G cell line which
resulted in similar colonization rates as observed for primary keratinocytes (Supplemental
Figure S4A-B). Again, in all experiments, no infections occurred during the short-term co-

culture period.
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Epidermal infections after prolonged colonization by S. epidermidis and S. aureus
Commensal bacteria like S. epidermidis can become opportunistic pathogens causing skin
infections [57] and may induce AD-like disease at high abundances [58]. Considering the strong
host defense response we observed already after 24 hours of HEE colonization (Figure 2D,
Supplemental Figure S2G), we evaluated the effects of a more prolonged co-culture with S.
epidermidis. Epidermal infections occurred within 96 hours, even at a minimal input inoculum
of 102 CFU. Structural damage of the epidermis, including loss of the granular layer,
parakeratosis and reduced epidermal layers was observed (Figure 4A). Strong induction of
hBD2 and SKALP/elafin protein expression after 96 hours (Figure 4B) was subsequently
accompanied by the confirmed presence of bacteria in the culture medium. Of note, no
basolateral infections were observed after 24 hours, rejecting the hypothesis of initial infection
via leaky HEE edges.

Since the S. aureus clinical isolate (SA-DUS-011) also showed strong induction of host
defense gene expression at 24 hours, we also prolonged this co-culture, resulting in basolateral
cell culture infections within 96 hours (Figure 4C). Prior to bacterial growth in the basolateral
compartment, yellow colonies typical for S. aureus were macroscopically visible on the HEE
surface after 48 hours. Harvesting the SA-DUS-011 HEEs at different time points indicated
various degrees of infection by upregulated AMP expression (hDB2 and SKALP) at the start
of infection followed by structural damage to the epidermis (Figure 4D). Similar results were
obtained using N/TERT HEEs. Herein, epidermal infections were seen in 5/6 replicates after
72 hours with concomitant upregulation of DEFB4 (Supplemental Figure S4C). The induction
of antimicrobial proteins upon microbial co-culture may thus be considered as an indicator of
an epidermal infection in vitro, even when the epidermal morphology is still unaffected and

basolateral culture medium shows no signs of infection.
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Bacterial infections related to culture conditions

To address the influence of potential experimental artefacts (e.g., stratum corneum defects)
from the cylinder application, the glass cylinder methodology was head-to-head compared with
the application of a small volume of SA-DUS-011 in the middle of the HEEs [59-61]. In
addition, to better mimic the natural growth conditions of bacteria on skin, physiologically
relevant co-culture conditions (32°C, dry atmosphere; cold and dry) were compared to the
traditional cell culture conditions (37°C, high humidity; warm and humid).

The large bacterial surface area in the cylinder in warm and humid conditions conferred
significantly higher CFU count and relative growth than the droplet area and reached similar
CFU counts as in previous experiments (107-108 CFU) (Figure 5A-B). At cold and dry
conditions, a maximum CFU of 10° per HEE was reached at both the droplet and cylinder
application method, albeit the number of HEEs that became infected significantly differed
between both application methods (Figure 5C). Briefly, the smaller droplet area delayed
infection onset in a warm and humid environment by at least 4 days, but could not prevent all
HEEs becoming infected within 7 days of co-culture. Dry and cold conditions delayed infection
onset using the cylinder and even prevented infections in 80% of HEEs with a small (droplet)
application area.

To further dissect the influence of temperature versus humidity on bacterial growth and
infection rate, HEEs were also cultured at 32°C in a humid environment. After 48 hours, SA-
DUS-011 caused epidermal infections in all HEES that were incubated in humid conditions (of
note: the infections started earlier at 37°C compared to 32°C). In dry and cold conditions, only

3 out of 8 HEESs became infected.
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Topical antibiotic inhibits the growth of S. aureus
Next to more fundamental studies on skin host-microbe interactions, organotypic 3D skin
microbiome models could be of importance for research and development of pre-, pro- and
antibiotics to modulate the skin microbiome for therapeutic purposes. We implemented the
cylinder methodology for the topical application of antibiotics using readout parameters for
both host and microbe. Fusidic acid (FA) is used in clinical practice for the treatment of
Staphylococci skin infections and herein chosen as a proof-of-principle intervention.

Inhibition of S. aureus ATCC 29213 growth was observed in a dose dependent manner after
a single dose of FA was added inside the cylinder directly after the initiation of S. aureus
colonization, indicating the bacteriostatic effect of FA (Figure 6A). In the morphological
analysis, the lower amount of S. aureus colonies on top of the stratum corneum relate to the
effective FA treatment. At the effective FA concentrations of 10 and 100 pg/mL, no
morphological changes of the HEE were observed (Figure 6B). Based on the aforementioned
optimal co-culture conditions, FA efficacy was tested (10 and 100 pg/mL) on the S. aureus
clinical isolate SA-DUS-011 using the glass cylinder and culturing in a cold and dry
environment up to 8 days. At day 1, CFU analysis showed a strong reduction of S. aureus
(Figure 6C) indicative of the effective bacteriostatic effects of FA (bacteria were not completely
killed, resulting in 10° CFU on day 8 upon FA treatment every other day). During the following
7 days, 50% of the untreated S. aureus-colonized HEEs became infected after 4 days. The
remainder of the untreated S. aureus-colonized HEEs that were harvested at day 8 showed
severe epidermal damage (Figure 6D) with high CFU counts (Figure 6C) indicative of
epidermal infections. FA treatment not only limited the bacterial growth, but also completely

prevented infections and epidermal damage caused by S. aureus in HEES
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DISCUSSION
We here present a technical advance for the topical bacterial inoculation of a 3D human
epidermal equivalent (HEE) with a minimal risk of basolateral infections, whilst allowing in
vitro studies on infectious virulent strains. This methodology using glass cylinders will be easily
transferable to a wide variety of advanced organotypic skin [62], [63] or mucosal models [64],
would be amenable for the application of diverse microbiota (bacteria [65, 66], viruses [67-69]
and fungi [70, 71]) and can be used in every cell culture facility considering the various sizes
and commercial availability. We were able to increase the assay throughput by the large
bacterial exposure area and thus obtaining multiple samples for various endpoint analysis from
one single HEE.

We generated both a colonization and infection model based on the single strain exposure of
a fully developed epidermal model. While other bacterial co-culture models to date induce an
infection by making a wound [61, 63, 72, 73], we here showed that the S. aureus clinical isolate
(SA-DUS-011) caused epidermal infections after colonizing an intact skin. Albeit similar
growth rates and a high CFU output (10-10%), the S. aureus strain ATCC 29213 did not infect
the HEE within two weeks of co-culture nor did it induce the expression levels of any of the
host defense markers, indicating a strain specific effect. Therefore, screening of various skin
related bacterial species and using more than one strain per bacterium, ideally isolated from
individual patients or volunteers, followed by whole genome sequencing [47], could relate
virulence factors to the clinical features of the patient and host-microbe responses in vitro.

While here we present the model characteristics using single bacterial strains, the ultimate
goal would be the application of whole skin microbiome samples or pre-designed microbial
communities, as used in experimental animal models [13]. Yet, in vitro cell culture conditions
have been shown to affect the stability of the commensal communities, skewing towards a

dominance of aerobic bacteria after the co-culture period [47] and 16S or shotgun sequencing
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only includes information on relative abundancies whilst lacking information on bacterial
viability. Methods to exclude bacterial DNA from dead cells, like propidium monoazide (PMA)
[74], may provide a solution but require a labor-intense multi-step protocol and will be difficult
to validate for the correct dosing of complex bacterial mixtures to avoid killing of microbes due
to treatment.

The major advantage of a glass cylinder is the large colonization surface, allowing the
collection of multiple samples, that we called “multiple parameter endpoint analysis”. A small
droplet, as commonly used, prevents infection of the basolateral chamber, but will require
multiple transwell inserts, large experimental setups or cell culture formats (6-12well), [59, 62,
65, 66, 75-77]. Others completely cover the cell culture surface with bacterial suspension, but
this requires immediate analysis or removal of non-adherent bacteria [71, 78-81]. Furthermore,
when the set-up of experiments require multiple treatment steps of the equivalents, the cylinder
provides a defined area wherein treatments can be applied after each other by equally distributed
evaporation of the solutions, as we here showed for fusidic acid. This antibiotic prevented
infections and maintained the epidermal morphology for at least 8 days of treatment, which is
a novel finding compared to other antibiotic organotypic models [59, 78, 80, 82]. Although we
found that the glass cylinder does accelerate the start of epidermal infections, a small droplet
application also resulted in infections. Therefore, we value the utility of the glass cylinder and
changed the culture environmental conditions (32°C in a dry atmosphere) to delay the onset of
infections and maximize the co-culture period and window of opportunity for interventions. By
changing the cell culture environmental conditions and varying the application area of bacteria
we leverage the opportunity to either study skin infection or colonization. Interestingly, we
observed that under dry culture conditions, co-cultures located in the middle of the culture plate

infected earlier than those in the outer rows, presumably due to higher humidity in the middle
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of the culture plate. Hence, only controlling the humidity in the cell culture incubator is not
sufficient to fully standardize environmental conditions within the culture plate.

Modulation of microbiome composition and its effects might also be accomplished by
changing host factors. We here showed that the use of the N/TERT-2G immortalized
keratinocyte cell line is a suitable alternative for microbial colonization of HEEs since the
epidermal structure is similar to that of primary keratinocytes [51]. In addition, it is the preferred
cell type for genome editing and the use of a cell line instead of primary cells will reduce the
biological variation. For example, knockdown of the differentiation protein filaggrin (FLG)
showed increased colonization of S. aureus on top of the organotypic N/TERT model [79]. This
correlation between FLG and microbial colonization is also observed in vivo for S. aureus [83,
84]. In addition, specific commensal species are underrepresented on FLG-deficient skin
showing a reduction of gram positive anaerobic cocci [37], that appear to harbor important
AMP-inducing capabilities [41]. Furthermore, continued efforts in the optimization of culture
conditions and protocols to better mimic the in vitro skin barrier to that of native skin [85, 86]
will also affect the interaction between microbes and epidermal keratinocytes in organotypic
model systems and as such, it will remain a challenge to compare results obtained between
various models. Detailed information on the model characteristics (morphology, skin barrier
function, cell sources, culture medium, microbial strain selection) are pre-requisites for studies
that aim to investigate cell-host-microbe interactions in organotypic skin models.

In conclusion, our developed model system allows for easy utilization of organotypic human
epidermal models for investigative skin microbiome research. This opens avenues into the
application of more complex microbial cultures, the evaluation of specific pathogens in
genotype-defined organotypic human skin models, and the screening of pre-, pro- or antibiotic

treatments therein.
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FIGURE LEGENDS

Figure 1. Validation of glass cylinder methodology. (A) i) 25 uL drop of trypan blue in PBS
applied on top of the HEE, ii) the basolateral penetration of trypan blue after 4 hours of
incubation (red arrow) and iii) H&E staining showing the open edges of the HEE (black arrow).
(B) i) Glass cloning cylinder on top of the HEE indicated with the black arrow, ii) 25 pL of
trypan blue in PBS was pipetted inside the cylinder, iii) the PBS was evaporated 4 hours later
(in flow cabinet on heated plate at 37°C, without lid) and iv) the removal of the cylinder
revealed a blue colonized circle without basolateral penetration. (C) Lucifer yellow (LY) added
inside the glass cylinder and harvested after 2.5 hours of incubation. DAPI staining and
fluorescent imaging (10x magnification) shows i) the distribution of LY onto the whole HEE
and ii) clean edges. (D) H&E, Ki-67 and filaggrin (FLG) staining of HEE with a drop of PBS
on top for 24 hours to analyze the morphological changes and protein expression patterns
compared to the control. (E) Difference in morphology between the removal of the cylinder
after PBS evaporation or leaving it on top of the HEE for 48 hours shown with an H&E staining.
(F) Schematic overview of HEE culture and the topical application of bacteria using a glass

cylinder. Scale bar = 100 um.

Figure 2. Colonization of HEEs with skin pathogens and commensals. (A) Growth and
viability analysis by means of colony forming unit (CFU) count (input at O hours) (biological
N=4) and (B) gene expression analysis of the antimicrobial peptides DEFB4 (gene encoding
hBD2), S100A9 (MRP14) and P13 (SKALP/elafin) after 24 hours of co-culture with two S.
aureus strains (ATCC 29213 and the clinical isolate SA-DUS-011) (biological N=4, all controls
setat 1). (C) CFU count (input at 0 hours) (N=3) and (D) gene analysis of DEFB4, S100A9 and

PI3 after 24 hours of co-culture with skin related bacteria (S. epidermidis = Se, C. acnes = Ca,
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C. aurimucosum = Cau, S. capitis = Sc) (N=3, control set at 1 (dashed line)). *p<0.05,

**p<0.01. Mean + SEM.

Figure 3. Prolonged co-culture analysis after S. aureus ATCC 29213 colonization. (A)
Colony forming unit (CFU) analysis of HEEs inoculated with S. aureus ATCC 29213 and
harvested at different time points of co-culture up to 13 days (input at day 0). All data points
represent N=4 biological keratinocyte donor replicates, except for the 13 days co-culture
(N=1). (B) H&E and (C) SKALP/elafin staining of the HEE donor co-cultured for 13 days with

S. aureus and its vehicle (PBS). Scale bar = 100 um.

Figure 4. Epidermal infections caused by S. epidermidis and S. aureus. (A) S. epidermidis
(102 and 10* CFU input) caused epidermal infections within 96 hours of co-culture, visualized
with H&E staining that revealed the structural damage and loss of granular layer compared to
the control HEE (PBS). (B) Immunostainings of the AMPs SKALP/elafin and hBD2 showed
induction of protein expression in case of an epidermal infection. (C) H&E staining of HEE
colonized with the S. aureus clinical isolate SA-DUS-011 (10* CFU input) for 96 hours
compared to the control HEE (PBS). (D) HEEs inoculated with SA-DUS-011, harvested at
different time points of infection and stained for the AMPs SKALP/elafin and hBD2. All HEES
had multiple visible large yellow colonies on top of the stratum corneum. Only the culture
medium of the first HEE was not infected yet, analyzed with a blood agar plate and o/n

incubation at 37°C. Scale bar = 100 pum.

Figure 5. Bacterial infections using different culture conditions. (A) Colony forming unit
(CFU) analysis and (B) relative growth of the S. aureus clinical isolate SA-DUS-011 after 24

hours of colonization applying four different methods (glass cylinder methodology (25 pL)
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versus small droplet (5 puL) and 37°C (humid) versus 32°C (dry)) (N=3 per method) (input at 0
hours), *p<0.05 (Mann-Whitney U test, CFU outcome of 37°C glass cylinder method compared
to the other methods). (C) Percentage of infected HEEs (N=5 per method), co-cultured for up

to 10 days with SA-DUS-011 applied using the four different methods.

Figure 6. Fusidic acid inhibits the growth of S. aureus on HEESs. (A) Dose inhibiting effect
via colony forming unit (CFU analysis) of HEES topically applied with fusidic acid (FA, 1-10-
100 pg/mL, 1% DMSO in water (0 pg/mL, vehicle)) 4 hours after S. aureus ATCC 29213
colonization (dotted line: amount of CFUs at start of treatment) and harvested 24 hours later
(N=3), and (B) H&E staining thereof. (C) CFU analysis on day 1 (N=3 per treatment) and day
8 (0 pg/mL (N=2) and 10-100 pg/mL (N=4)), and (D) H&E staining of HEESs colonized with
the S. aureus clinical isolate SA-DUS-011 subjected to the FA treatment protocol (10 and 100
pg/mL). HEEs were analyzed with a prolonged co-culture up to 8 days to study epidermal
infections; 50% (2 out of 4) S. aureus HEESs infected after 96 hours (FA applied at day 0, 2, 4
and 6) (of note, co-cultured at 32°C (dry)). *p<0.05 (Mann-Whitney U test, CFU outcome of

fusidic acid dosages compared to the vehicle (0 pg/mL)). Mean + SEM. Scale bar = 100 pm.

Supplemental Figure S1. Stratum corneum formation and lifespan of HEEs. (A) H&E and
DAPI staining of two HEE donors that were topically applied with LYY for 2.5 hours on different
days of the air-liquid interface (ALI) to evaluate stratum corneum penetration (images represent
eight biological keratinocyte donors). (B) Protein expression of the proliferation marker Ki-67,
differentiation markers filaggrin (FLG) and keratin 10 (K10) and the AMP SKALP/elafin of a
HEE at day 25 of the ALI. (C) H&E staining of HEEs harvested at day 25 and 30 of the ALI to

investigate the lifespan of the culture. Scale bar = 100 um.
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Supplemental Figure S2. Multi-parameter endpoint analysis, bacterial colonization,
growth and host defense response. (A) DAPI (white nuclei and colonies (white arrow)) and
H&E (colonies indicated with black arrow) staining of HEE co-cultured for 24 hours with 10*
colony forming units (CFU) of S. aureus ATCC 29213 to visualize bacterial colonization and
clean edges of the HEE. (B) Multi-parameter analysis for i) morphology and/or protein
expression, ii) host gene expression and iii) bacterial growth. (C) H&E staining and (D)
inflammatory gene expression (CCL20 and IL1B) of HEEs colonized with S. aureus ATCC
29213 and the S. aureus clinical isolate SA-DUS-011 for 24 hours to analyze epidermal
morphology (biological N=4, controls set at 1). (E) Logarithmic growth, (F) H&E staining and
(G) inflammatory gene expression (CCL20 and IL1B) after 24 hours of co-culture with skin
related bacteria (S. epidermidis = Se, C. acnes = Ca, C. aurimucosum = Cau, S. capitis = Sc)

(N=3, control set at 1). *p<0.05, ***p<0.001. Mean + SEM. Scale bar = 100 pm.

Supplemental Figure S3. Inoculum and stratum corneum thickness do not influence
growth of S. aureus ATCC 29213. (A) Colony forming unit (CFU) count of HEEs inoculated
with a concentration series (10, 102, 10%, 10% 10° and 10’ CFU) of S. aureus and harvested
after 20, 28 and 44 hours of co-culture (N=2). (B) Normal epidermal protein expression after
S. aureus colonization up to 13 days compared to the control HEE (PBS) shown with the
proliferation marker Ki-67 and the differentiation markers filaggrin (FLG) and involucrin
(IVL). (C) CFU analysis of S. aureus colonized at day 8 and day 11 (thick layer of stratum
corneum) of the air-liquid interface (ALI) for 24 hours (biological N=5, input at day 0). (D)
SKALP/elafin protein expression of HEE inoculated with S. aureus at day 11 of the ALI (thick
layer of stratum corneum) in comparison with the control HEE (PBS) and co-cultured for 24

hours. Images represent N=5 biological keratinocyte donors. Scale bar = 100 um.
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Supplemental Figure S4. HEEs generated with immortalized N/TERT cells and colonized
with S. aureus strains. (A) Colony forming unit (CFU) analysis of N/TERT HEEs colonized
with S. aureus ATCC 29213 and harvested after different time points of co-culture up to 7 days
(each data point N=3), in comparison with primary human keratinocytes (grey line, biological
N=4) and (B) H&E staining thereof. (C) Gene expression analysis of the antimicrobial peptide
DEFB4 after 72 hours of co-culture with the S. aureus clinical isolate (SA-DUS-011) (N=6).

****p<0.0001. Mean + SEM. Scale bar = 100 pm.
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SUPPLEMENTAL TABLES

Supplemental Table S1: Studies that used 3D organotypic skin models to investigate

bacterial colonization, infection and host-microbe interactions.
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Model Cell source  Microbe(s) Inoculation  Co-culture  Analysis Reference
HSE, NHEK S. epidermidis 102 - 108 72,120 CFUs, histology and TEWL [87]
colonization (foreskin) C. acnes hours

M. furfur

S. aureus
HSE, NHEK S. epidermidis  10* 24 hours RNA (microarray) [88]
colonization (foreskin) S. aureus
HSE, NHEK P. aeruginosa 107 24 -72 CFUs and histology [72]
wound S. aureus hours
HSE, NHEK P. aeruginosa  10° 3,5,7,10, Histology [61]
wound (neonatal) S. aureus 24 hours
HEE, NHEK A. baumannii  10° 72 hours CFUs, histology and RNA (gPCR) [81]
colonization A. junii
HSE, NHEK S. aureus 10° 24,48 hours  CFUs, histology, IHC, RNA (qPCR) [80]
wound, and ELISA
antibiotic
HEE, Skinethic S. aureus 107-10° 24 hours Biochemical assays, RNA (qPCR) [60]
colonization S. epidermidis

C. acnes
HEE, N/TERT S. aureus 10° 24 hours CFUs, histology, IHC, RNA (gqPCR) [79]
colonization and ELISA
HEE, NHEK P. aeruginosa  10° 2, 24 hours CFU, MTT [82]
colonization S. aureus
Ex vivo, Ovine D. nodosus 10* 28 hours Histology, FISH and ELISA [89]
colonization biopsy (anaerobic)
HSE, NHEK S. aureus 107 24 hours CFUs, Histology, LDH, RNA (gPCR) [59]
infection, and ELISA
antibiotic
HSE, NHEK S. aureus 104 2 hours SEM, CFU [90]
wound
HSE, NHEK S. aureus 107 24 hours CFUs, histology, IF [62]
infection
HSE, Labskin E. faecium 10° 24,48, 72, LESA mass spectra [73]
wound S. aureus 96 hours

K.

pneumoniae

A. baumannii

P. aeruginosa
HSE, NHEK C. albicans 10° 24 hours Histology, TEM, XTT assay, WB and [71]
Infection, immunoassay
antibiotic
Ex vivo, Human M. 108 6 days Histology, SEM, TUNEL, RNA, [63]
wound biopsy sympodialis Immunoassay
HSE, MatTek M. luteus 104 - 108 4, 8 days CFUs, Gram stain, ELISA, RNA [75]
colonization EpiDerm P. oleovorans (9PCR, microarray), WB
HEE, Episkin C. acnes 10°-107 72 hours CFUs, histology, TEER, IF and SEM [91]
colonization M. restricta
HEE, NHEK C. acnes 10° 24,48 hours  Histology, IF, LY, TEER, RNA and [66]
colonization (foreskin) ELISA
HSE, EpiDerm S. aureus 10° 18 hours 16S and RNA sequencing, histology and  [76]
colonization P. aeruginosa IF

Microbiome
HEE, NHEK S. aureus 104 1 hour CFUs, histology, RNA (gPCR) [78]

(foreskin) C. acnes
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colonization, S. epidermidis
antibiotic
HEE, LabCyte S. aureus 108 - 10° 48 hours CFUs, LDH, ELISA, IF [65]
colonization Epi-Model  S. epidermidis
(foreskin)
HSE, NHEK S. aureus 107 2,24, 48 CFUs, histology, TUNEL 771
infection (foreskin) hours
HEE, Episkin Microbial 107 24 hours Histology, RNA (qPCR), Proteomics [92]
colonization, biofilm
therapeutics
HSE, Phenion C. albicans 102 24,48 hours  CFUs, LY, histology, TUNEL, IF, [93]
colonization, (foreskin) ELISA
therapeutics
HEE, N/TERT, S. aureus 10° 24,48 CFUs, ELISA, Luminex [94]
colonization NHEK hours, 8
days

HEE = human epidermal equivalent, HSE = human skin equivalent, NHEK = normal human epidermal keratinocytes, CFU = colony forming
units, IF = immunofluorescence, gPCR = quantitative polymerase chain reaction, TEER = Transepithelial electrical resistance, LDH = lactate
dehydrogenase, ELISA = enzyme-linked immunosorbent assay, LY = lucifer yellow, WB = western blot, TEWL = transepidermal water loss,
IHC = immunohistochemistry, FISH = fluorescence in situ hybridization, LESA = liquid extraction surface analysis, TEM = transmission
electron microscopy, SEM = scanning electron microscope, TUNEL = terminal deoxynucleotidyl transferase biotin-dUTP nick end labelling

Supplemental Table S2. Antibodies used for immunohistochemistry

Target Antibody clone Antigen retrieval | Dilution
Filaggrin (FLG) FLGO1, Thermo Fisher Yes 1:100
Ki-67 SP-6, Abcam Yes 1:200 (o/n 4°C)
Involucrin (1IVL) Mon150, van Duijnhovenetal. |Yes 1:20
Keratin 10 (K10) DE-K10, Abcam Yes 1:100
SKALP/elafin 92-1, Schalkwijk et al. No 1:500
Human B-Defensin-2 (hBD2) | Abcam No 1:100
Supplemental Table S3. Bacterial strains
Strain Identification number Gram Growth conditions
Cutibacterium acnes ATCC-6919 positive anaerobe
Staphylococcus epidermidis ATCC-12228 positive aerobe
Staphylococcus capitis Clinical isolate positive aerobe
Corynebacterium aurimucosum Clinical isolate positive aerobe
Staphylococcus aureus ATCC-29213 positive aerobe
Staphylococcus aureus Clinical isolate positive aerobe

Supplemental Table S4. Primers for gPCR

HUGO Protein Forward primer Reverse primer

gene symbol 5 —-3) 5 —-3)

RPLPO ribosomal phospoprotein PO caccattgaaatcctgagtgatgt tgaccagcccaaaggagaag
DEFB4 human defensin-2, hBD2 gatgcctcttccaggtgttttt ggatgacatatggctccactctt
CCL20 chemokine (C-C motif) ligand 20 tggccaatgaaggctgtga gatttgcgcacacagacaactt
IL1B interleukin-1p aatctgtacctgtcctgegtgtt tgggtaatttttgggatctacactct
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S100A9

S100 calcium-binding protein A9

tgtggctectcggctttg

gegttccagctgegacat
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