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Abstract

Spatial transcriptomics (ST) offers valuable insights into gene expression patterns within the
spatial context of tissue. However, most technologies do not have a single-cell resolution,
masking the signal of the individual cell types. Here, we present SMART, a reference-free
deconvolution method that simultaneously infers the cell type-specific gene expression profile
and the cellular composition at each spot. Unlike most existing methods that rely on having a
single-cell RNA-sequencing dataset as the reference, SMART only uses marker gene symbols as
the prior knowledge to guide the deconvolution process and outperforms the existing methods in
realistic settings when an ideal reference dataset is unavailable. SMART also provides a two-
stage approach to enhance its performance on cell subtypes. Allowing the inclusion of
covariates, SMART provides condition-specific estimates and enables the identification of cell
type-specific differentially expressed genes across conditions, which elucidates biological

changes at a single-cell-type resolution.
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Introduction
Spatial transcriptomics (ST) is a cutting-edge technology that enables scientists to measure gene
expression patterns across different tissue regions with spatial information'. In general, with the
current ST platforms, the measured spots on a tissue sample do not demonstrate single-cell
resolutions but contain a complex mixture of multiple cell types*®. This hinders our understanding
of the spatial organization of these cells and precludes the identification of cell type-specific
transcriptomic signatures’. Understanding the cellular proportions and gene expression of specific
cell types could better highlight cells and genes contributing to disease pathogenesis and identify
therapeutic targets®. In silico deconvolution has been a promising approach to resolve the cellular
composition at each measured spot. Most current ST deconvolution methods are reference-based,
requiring a cell type-specific transcriptomic profile, usually generated from single-cell RNA-
sequencing (scRNA-seq) experiments. With the reference profile, the cellular composition of each
spot in the targeted ST dataset can be inferred. For example, RCTD? learns the cell type profile
from the reference dataset using a probabilistic model and predicts the cell type composition of a
spot with maximum likelihood estimation. Spatial DWLS'? uses the scRNA-seq reference-derived
signature to fit a dampened weighted least squares model to infer cell type composition. CARD'!,
as an autoregressive-based deconvolution method, combines cell type-specific expression
information learned from the scRNA-seq reference with correlation in cell type composition across
the tissue spots. Cell2location'? also borrows spatial information with a hierarchical Bayesian
framework.

Despite the emerging number of sCRNA-seq datasets, the desired reference profile may not
be available for specific cell types or conditions*. The performance of these reference-based

methods also highly depends on the quality of the reference profile, the sample processing
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techniques and the data processing procedures. The inferred cell types are also limited to those in
the reference profile. Additionally, in some methods, the batch effects between the target ST
dataset and the reference profile are not properly handled, resulting in inaccurate results®. Most
importantly, by using a reference cell type-specific transcriptomic profile, it is assumed that the
gene expression of each cell type is constant regardless of sample conditions such as disease status,
ignoring the fact that there could be major differences in the cell type composition and cell type-
specific gene expression across different sample conditions.

In contrast, reference-free methods do not require a scRNA-seq reference but rely on a list
of marker genes for each cell type. STdeconvolve'?, a Latent Dirichlet Allocation' (LDA)-based
reference-free method, decomposes the ST data into latent topics and simultaneously infers the
topic-specific transcriptomic signature and topic compositions. Subsequently, by comparing the
inferred topic-specific signature against known cell type marker genes with a gene set enrichment
analysis (GSEA), each topic can be labelled with a cell type name. However, the estimated topics
are usually redundant and cannot accurately capture cell populations with low abundance. Users
may also obtain multiple topics corresponding to an abundant cell type and no topics for rare cell
types. The estimates are also highly variable between runs, even when using the same dataset.
CARD also offers a reference-free version (CARDfree!!) that takes a list of marker genes as input
to infer the cell type composition. However, the inferred cell types can be difficult to interpret and
need to be further labelled with a GSEA.

To address these challenges, we present the deconvolution for Spatial transcriptomics using
MARKker-gene-assisted Topic models (SMART), a reference-free deconvolution method based on
semi-supervised topic models (Figure 1). In natural language processing, the topic models were

used to identify the topic distribution from the words in a large number of unlabeled documents as
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well as the word frequencies within each topic. In the context of ST deconvolution, SMART
simultaneously infers the cell type composition of the spots and the cell type-specific gene
expression profile. Compared to unsupervised approaches such as STdeconvolve, which uses the
marker information after the deconvolution process to label the latent topics, SMART directly
incorporates marker gene information as prior knowledge during the topic inference procedures to
guide cell type identification and, thus, improves the predictive accuracy and minimizes the
variability. Using three datasets simulated from single-cell ST data and two real ST datasets, we
demonstrate that SMART accurately estimates cell type composition and cell type-specific gene
expression. Despite being a reference-free method, it outperforms some of the best-performing
reference-based and reference-free methods for ST data'>~'7 when an ideal reference dataset is
unavailable. Instead of a scRNA-seq reference, SMART uses a list of marker gene symbols for
each cell type as the input. SMART also allows the inclusion of cell types with no marker gene
information (“no-marker” cell type), which can be helpful in identifying novel cell types. The
performance of SMART on cell subtypes can be augmented using a two-stage approach and the

ability to obtain condition-specific estimation with a covariate model.

Results

SMART accurately predicted cell type composition in simulated ST data

To evaluate the performance of SMART, we used publicly available single-cell ST data in
mouse kidneys (MK)'®, which were profiled using the Vizgen Multiplexed Error-Robust
Fluorescence in situ Hybridization'” (MERFISH) platform. The MK dataset contains the
expression of 304 genes from 126,241 cells annotated to eight cell types. We simulated ST data

by dividing the single-cell ST data of the MK dataset into 2474 spatially contiguous squares and
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aggregated the gene expression of cells within each square to mimic the spots of ST data (Figure
2A). The ground truth (GT) cell type proportion, cell type-specific gene expression and marker
genes can be obtained accordingly from the simulated ST data and the original single-cell ST
data. Then, we applied SMART to the simulated data along with the GT marker genes to
simultaneously infer the cell type composition of each spot (Figure 2B) and the cell type-
specific gene expression profile. We observed a strong correlation (>0.70) between the predicted

cell type composition and the ground truth cell type composition in all cell types (Figure 2C).

SMART demonstrated superior performance to existing methods in realistic settings

To compare the performance of SMART against existing deconvolution methods, we next
applied some of the best-performing reference-free (STdeconvolve, CARDfree) and reference-
based methods (RCTD, CARD, cell2location, spatialDWLS) to the simulated MK dataset. For
STdeconvolve and CARDfree, the GT marker genes were used to label the cell types; for
reference-based methods, the original single-cell ST dataset used to simulate the ST data was
used as the reference. We quantified the performance of each method with the Pearson
correlation coefficient (PCC) and the root mean square error (RMSE) between the predicted and
the GT cell type proportions of all spots across all cell types as well as the per-spot RMSE
between the predicted and the GT cell type proportions of each spot. In the simulated MK
dataset, SMART demonstrated better performance than most of the methods (PCC = 0.937,
RMSE = 0.0715, mean per-spot RMSE = 0.0666, Diebold-Mariano P<0.001) except for
RCTD">7 (PCC = 0.955, RMSE = 0.0565, mean per-spot RMSE=0.0572) (Figure 2D left).
However, using the original single-cell ST dataset as the reference profile to predict the ST

dataset simulated from it will likely provide the best possible results for reference-based
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methods. Therefore, the reference-based methods were given a testing advantage over the
reference-free methods. In reality, such an ideal reference profile with the same cell types and
technical details rarely exists.

To examine the performance of the above methods in a more realistic situation where an
ideal reference dataset is unavailable, we collected single-cell RNA-seq data in mouse kidneys
from the Tabula Muris Senis (TMS) cell atlas?®. The TMS single-cell dataset was used as the
reference profile for reference-based methods to deconvolve the simulated MK dataset; the
marker genes derived from the TMS dataset were used in reference-free methods. In this
situation, SMART demonstrated the best performance over all the other methods (PCC = 0.921,
RMSE = 0.0786, per-spot RMSE = 0.0860, Diebold-Mariano P<0.001, Figure 2D right). In

both scenarios, SMART demonstrated the smallest variability in per-spot RMSE (Figure 2D).

SMART demonstrated improved stability and interpretability than STdeconvolve

Similar to other reference-free methods based on generative models with sampling algorithms,
the results of SMART and STdeconvolve may vary between runs according to the starting value.
To assess the variability in performance, we performed 100 repeats of SMART and
STdeconvolve on the MK dataset and examined the PCC and the RMSE between the predicted
and GT cellular composition across all spots. We observed that SMART delivered more
consistent results than STdeconvolve with less variability (Figure 2E & F). To further improve
the stability, SMART provides the option to perform a user-specified number of repeats in
parallel and average the results. Importantly, STdeconvolve identifies multiple latent topics for
abundant cell types while identifying no topics for cell types that are less abundant. Out of the

100 repeats of STdeconvolve, 12 repeats identified only three cell types when using the GT
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marker genes in the GSEA to label the cell types; 58 repeats failed to identify more than five cell
types; only four repeats were able to identify six cell types and no repeats identified all eight cell
types. This indicates that the marker genes in SMART not only stabilize the deconvolution

process but also ensure that we obtain an accurate estimate for each of the cell types.

SMART demonstrated improved performance with a two-stage approach
Although marker genes can be shared across cell types in SMART, we recommend using marker
genes with high specificity to achieve the best results. However, in some cases, marker genes can
be very similar between cell types (i.e. monocyte, macrophage, and dendritic cells), especially
those arising from the same lineage?', which makes it difficult to select specific marker genes.
This ambiguity may lead to a drop in the accuracy of deconvolution results. To mitigate this
limitation, we implemented a two-stage approach to improve the performance in predicting
individual cell subtypes. In this two-stage approach, SMART was first applied to deconvolve the
ST dataset into major cell types. Next, we extracted the gene counts explained by the cell type of
interest. A second round of deconvolution was performed on the extracted gene counts to further
decompose the cell type of interest to its subtypes. By separating the deconvolution process into
two stages, any non-specific marker genes shared between the major cell types and those that
were discarded in the first stage may be re-used in the second stage to discriminate the cell
subtypes. In this manner, the selection of marker genes becomes easier for subtype identification
compared to a one-stage approach that estimates all major cell types and cell subtypes during one
run.

To illustrate, we collected a human non-small cell lung cancer (NSCLC) single-cell ST

dataset®?, which was profiled using the NanoString CosMx platform and simulated a ST dataset
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of 120 contiguous spots in the same manner (Figure 3A). The NSCLC single-cell dataset
contains the expression of 960 genes from 32,272 cells. These cells were pre-annotated to ten
major cell types or thirteen cell types with the inclusion of T cell subtypes (CD4+ T, CD8+ T,
regulatory T) and dendritic cell (DC) subtypes (plasmacytoid DC and myeloid DC). In the two-
stage approach, we first applied SMART to deconvolve the ST dataset into the major cell types
(Figure 3B). Most cell types demonstrated a PCC > 0.90 between the GT and the predicted cell
type composition (Figure 3C). Next, we extracted the gene counts explained by the T cells to
further deconvolve them into T cell subtypes. The T cell subtype proportions obtained from the
two-stage approach showed stronger correlations with the GT T cell subtype proportions
compared to a regular one-stage approach (Figure 3D top). Users can also choose to include a
cell type that is transcriptomically similar to the cell type of interest in the second round of
deconvolution to recover potential incorrectly allocated gene counts. For example, to assist
identification of DC subtypes, we included macrophages, which showed the greatest similarity to
DCs in gene expression, during the second-stage deconvolution of DCs. By doing this, the
correlation between the GT and predicted cell type proportion showed a dramatic increase for

both pDCs and macrophages while staying similar for mDCs (Figure 3D bottom).

SMART identified condition-specific genes for each cell type with a covariate model

While reference-based methods assume that the cell type-gene expression is constant regardless
of the sample conditions and that only the cell type composition can be changed, SMART
respects the fact that cell type-specific gene expression can also vary between conditions. This
was achieved by providing a covariate model allowing users to incorporate covariates to identify

condition-specific genes for each deconvolved cell type. For demonstration, we simulated a ST
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dataset using a single-cell ST dataset on mouse hypothalamic preoptic area (MPOA) generated
using the MERFISH platform?® (Figure 4A). The MPOA dataset contains the expression of 135
genes from 49,138 cells of a female mouse. We first validated the performance of the base model
on the simulated MPOA dataset (Figure 4B) and observed a correlation of > (.75 between the
GT and the predicted cell type proportions in all of the cell types except microglia (r=0.65,
Figure 4C). Next, to evaluate the performance of the covariate model, we re-simulated the ST
dataset by including the data on another male mouse from the MPOA single-cell dataset. Then,
we applied the covariate model using sex as the covariate and obtained the cell type-specific
gene expression for the female mouse and the male mouse. Consistent with the literature, we
observed that in excitatory neurons, Brs3 was up-regulated in the female mouse (Figure 4D
top); in inhibitory neurons, Esr1 was up-regulated in the female mouse while Sytl4, Cyp19al
and Grebl were up-regulated in the male mouse?? (Figure 4D bottom). SMART then
incorporates the differences in their cell type-specific gene expression profile with GSEA,
identifying pathways that were enriched due to sex differences. For example, we found that ion,
inorganic molecular entity, and salt transmembrane transporter activity were up-regulated in
inhibitory neurons of the female mouse in comparison with those of the male mouse (Benjamini-

Hochberg false discovery rate < 0.05).

SMART is compatible with diverse ST platforms

To validate the performance of SMART on real ST datasets, we applied SMART to a mouse
brain ST dataset>*, which was profiled using the 10X Visium platform (Figure 5A). Depending
on the tissue type, the Visium platform usually contains 1-10 cells per spot’. With marker genes

identified from the Mouse Brain Atlas*’, we deconvolved the mouse brain ST dataset into seven
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known cell types as well as an unknown cell type (Figure 5B). SMART successfully identified
cell types in brain regions such as fiber tracts, ventricles, cortex, thalamus and hypothalamus. As
expected, the oligodendrocytes were predicted to be highly enriched in fiber tracts compared to
non-fiber tract regions (t-test P<0.05, Figure SC & D); neurons were highly enriched in non-
fiber tract regions as opposed to fiber tracts (t-test P<0.05, Figure SE). Similarly, we observed a
high predicted proportion of ependymal cells in ventricular regions compared to non-ventricular
regions (t-test P<0.05, Figure SF & G). Interestingly, the unknown cell type we obtained may
correspond to a cell type in the medial habenula region of the mouse brain (Figure H). This
suggests that SMART, as a reference-free method, may help identify novel cell types without
marker genes.

In addition to the mouse brain ST dataset, we also validated the performance of SMART
on an ST dataset generated from human pancreatic ductal adenocarcinoma sample?¢ using
microarray slides (Figure 6A). With marker genes derived from its sample-matched scRNA-seq
dataset generated using the inDrop platform, SMART identified sixteen cell types across four
distinct tissue regions labelled based on histology staining (Figure 6B-D). As expected, we
observed a higher predicted proportion of ductal cells in the ductal region than in the non-ductal
regions (t-test P<0.05, Figure 6E). Also, we observed a higher predicted proportion of acinar
cells in the pancreatic region (t-test P<0.05, Figure 6F) and cancer clone cells in the cancerous

region (t-test P<0.05, Figure 6G).

Factors affecting the performance of SMART
Finally, to assess factors that may affect the results of SMART, we first examined if the total

number of spots affects the deconvolution performance. With the simulated MK dataset, we
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randomly selected 50, 100, 300, 500 and 1000 spots and applied SMART. The results show that
interrogation of more spots did not lead to a significant decrease in the per-spot RMSE (t-test
P>0.05, Supp. Figure 1A).

Next, we examined if the number of cells in each spot has any effect on SMART. With
technological improvement, the resolution has become higher in recent ST platforms?’. Using the
NSCLC dataset, we re-simulated the ST data by decreasing the size of the contiguous squares to
contain, on average, 269, 68 and 17 cells per spot to mimic the scenario that higher-resolution
platforms usually have more spots with a smaller tissue coverage area in each spot. Interestingly,
while the change in per-spot RMSE is subtle, it decreased with a higher number of cells per spot
(t-test P<0.001, Supp. Figure 1B), suggesting that SMART may perform better on ST platforms
with a lower resolution.

Most importantly, since the selection of input marker genes can affect the performance of
SMART, we examined how the number of marker genes affects the results of SMART by using
at most 3, 5, 10 and 15 marker genes per cell type. As anticipated, SMART demonstrated a lower
per-spot RMSE as the number of marker genes increased (t-test P<0.001, Supp. Figure 1C).
This suggests that including more marker genes improves the performance of SMART, assuming
the quality of the marker genes. The largest decrease in mean per-spot RMSE occurred between
having five marker genes and having ten marker genes (7.13% decrease). These data suggest that
having approximately ten marker genes per cell type may efficiently improve the performance of

SMART.

Discussion

11
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Using multiple simulated and real ST datasets, here, we demonstrated that SMART accurately
captures the cell type composition and cell type-specific gene expression of ST data across
various ST platforms, even in comparison to some of the best-performing reference-based
methods'>"7. Using the MK simulated dataset, we showed that in an ideal situation, where we
used the original single-cell dataset as the reference to deconvolve the ST dataset simulated from
it, SMART showed comparable performance to the reference-based methods. Although methods
such as RCTD may show a slightly better performance in an optimal setting, such conditions
rarely exist in the real world. In a more realistic circumstance where we used an external
reference dataset, SMART shows significantly lower error compared to reference-based
methods, indicating that SMART, as a reference-free tool, provides more accurate results in real-
world settings. Without the need to properly process a reference dataset, SMART minimizes the
impact of batch effects and is also easier to use compared to most reference-based methods. The
results from the NSCLC dataset showed that the two-stage approach might help to further
improve SMART’s performance in decomposing cell subtypes by optimizing the use of marker
genes and by recovering falsely allocated gene counts. Finally, we used the MPOA dataset to
demonstrate the ability of SMART-covariate to estimate the condition-specific gene expression
profile for each cell type by including the condition as a covariate. An important assumption in
the reference-based methods is that the cell type-specific gene expression is constant across
sample conditions, and only cell type compositions differ. However, this assumption is
frequently violated in the real world as gene expression in samples is modified by disease and
treatment, leading to inaccurate results. SMART surmounts this limitation by enabling the
inclusion of covariates that can capture the impact of disease status and phenotypes. A recent

method Celloscope also uses a marker-gene-driven probabilistic model to perform

12


https://doi.org/10.1101/2023.06.20.545793
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.20.545793; this version posted June 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

deconvolution?®; however, it does not provide a two-stage approach nor a covariate model. In
addition, the ability to include cell types without marker genes assists in identifying novel cell
types, as shown in the analysis of the 10X Visium mouse brain dataset. With the two real ST
datasets, we showed the compatibility of SMART on high-resolution platforms such as the 10X
Visium as well as lower-resolution platforms such as the one used in the PDAC dataset.

SMART allows shared marker genes between cell types; however, using markers specific
to cell types usually provides better results. While obtaining high-quality marker genes can be
challenging, SMART only requires a small number of marker genes. As illustrated with the
NSCLC dataset, we can obtain a good to excellent estimation with as few as three marker genes
per cell type. The results can be improved efficiently by using approximately ten marker genes
per cell type.

There are also limitations to SMART. Firstly, all the spots are assumed to be independent
in SMART instead of borrowing spatial information from the adjacent spots. However, SMART
does include a gene weighting scheme to borrow gene abundance information from all spots to
prevent certain genes from dominating a cell type. Moreover, the selection of input marker genes
is critical to optimize the performance of SMART. To make the tool more accessible, SMART
provides several pre-defined lists of marker genes for common tissue types.

In summary, we present SMART as a reference-free deconvolution method for spatial
transcriptomics without needing a sScRNA-seq reference profile. By incorporating marker genes
for the cell types as guidance, SMART showed improved accuracy, stability and interpretability
even when compared with some of the best-performing reference-based methods. With the two-
stage approach and the covariate model, SMART shows an advantage in discriminating the cell

subtypes and studying biological perturbations. Ultimately, we believe that SMART will be a
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powerful tool to unravel the tissue heterogeneity and identify potential therapeutic targets at a

single-cell-type resolution with spatial information.

Methods

Overview of SMART

SMART builds on the keyword-assisted topic models (keyATM)?°, which are semi-supervised
topic models that integrate prior knowledge to guide the formation of topics. By including a
small number of keywords for each topic prior to model fitting, keyATM accurately infers the
proportion of topics within each document and the word frequencies within each topic.

In the context of cell type deconvolution in SMART, the spots correspond to the documents,
the genes correspond to the words, and the cell types correspond to the inferred topics. A small
number of marker genes for each cell type (keywords) were used as prior knowledge to help
infer the cell type proportions (topic proportions within each document) and the cell type-
specific gene expression (word frequencies within each topic) in the form of relative gene
frequencies.

The ST data is represented as a N X D matrix with N genes and D spots. The total number of
RNA molecules in each spot d is N;. We use wy; to represent the ith gene in spot d. KeyATM is
a generative model based on a mixture of two Dirichlet distributions, one for the marker genes
and one for other non-marker genes. A key assumption is that the marker genes should have a
higher frequency in a given cell type than the non-marker genes. The data generation process is
as follows:

1) Suppose there are a total of K cell types and the first K of them are cell types provided

with marker genes.
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2) For each gene i in spot d, we draw the cell type variable z;; from the topic distribution:

indep. .
zqi ~ Categorial (6;)

8, represents the cell type proportions within each spot d.
3) Ifthe sampled cell type k is a “no-marker” cell type, we draw the gene wy; from the

gene distribution:

Wi | Zzai = k mice Categorial (¢y,)
forke {K+1,K+2,..,K}
b L Dirichlet(p) represents the gene frequencies within cell type k.
4) If the sampled cell type contains gene markers, we first draw a Bernoulli random variable
sq4; With success probability 7, for gene i in spot d

indep. . ~
Sai | Zas =k ~ Bernoulli (m) fork€e{1,2,..,K}

where 1, L. Beta (y,,Y,) fork€e{1,2,..,K}

If the variable equals 1, gene wy; is drawn from the gene frequencies for cell type k with

marker genes ¢, L Dirichlet(B); if the variable equals 0, wy; is drawn from the gene
frequencies for cell types without marker genes ¢,. That is,

indep. ( Categorial (¢p) ifsyz; =0
Wai | Sai» Zai Categorial (¢;) ifsy =1

fork€{1,2, ,K}
B and f are hyperparameters to make the prior means for the frequency of marker genes
higher than those of non-marker genes.

5) And,

0,4 Lhd. Dirichlet(a) ford =1,2,...,D
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, nder Gamma (7j,,7,) fork €{1,2,..,K}
Gamma (n,,m,) fork€{K+1,K+2,..,K}

7,and 7], were set to sample from larger values so that the spots are more dominant by
cell types with marker genes.
Figure 1 shows a graphic representation of this generative process. By integrating out the latent
variables (6, ¢, ¢, ), keyATM uses a collapsed Gibbs sampling algorithm to sample from their
posterior distribution. It also uses an inverse gene frequency weighting strategy to help prevent
highly expressed genes from dominating the inferred cell types. The resulting 8 matrix
represents the cell type proportions for each spot; ¢ and ¢, combining, represents the cell-type

specific gene expression.

The two-stage approach
To better estimate the composition of cell subtypes of a major cell type k, we take SMART one
step further to perform a second round of deconvolution as follows:
1) Perform the first round of deconvolution and during deconvolution.
2) Calculate the total library size (sum of the gene counts) of each spot d
3) Calculate the library size for each cell type of each spot dx with d+8, where 8 is the cell
type composition matrix.
4) Calculate the gene counts for cell type k of with d ¢y, where dj, is the library size for
cell type k of each spot and ¢, is the relative gene frequency for cell type k.
5) Identify another cell type m with the highest similarity by calculating the PCC or the
Euclidian distance between the relative gene frequency of the cell types. This cell type m
can also be user-defined.

6) Calculate the gene counts for cell type m as in step 4).
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7) Perform the second round of deconvolution on the sum of the gene counts for cell type k
and m.
SMART includes a “no-marker” cell type in both stages to represent any data that cannot be

explained by the cell types with marker genes.

The SMART-covariate model
SMART-covariate extends the base model and builds on the keyATM covariate model. Instead

of step 5) in the base model, the covariate model uses the following cell type distribution:

indep.
04 nlr Dirichlet(exp (ATxy)) ford =1,2,..,D

i
where 1,,;, "~ N(u,0?)
X4 is an M-dimensional covariate matrix for each spot d. A is an M X K matrix of coefficients

and A,y is the (m, k) element of A.

Simulating ST data

To mimic the spots of ST data, we collected pre-annotated single-cell resolution ST data and cut
the spatial image into contiguous squares. To start with, the bottom and left edge of the bottom-
left square was aligned with the bottom and the left edge of the spatial image. Then, the squares
were created by drawing boundaries in increments of a selected value based on the datasets until
they reached the top and right edge of the spatial image. Any squares with less than two cells
were removed from the simulated dataset. The squares overlapping with the spatial image's
edges were also removed. The gene counts of cells within the coordinate of each square were
aggregated together to obtain the gene expression of this simulated spot. The GT cell type

proportions of each spot can be calculated by counting the number of cells of each cell type in
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each square. The GT cell type-specific gene expression can be obtained by averaging the gene
expression of cells of the same cell type in the original single-cell ST dataset. Finally, the GT
gene markers for each cell type can be obtained through a differential expression analysis
between one cell type and the rest. The differential expression analysis was performed with a
Wilcoxon rank-sum test, and the Benjamini-Hochberg procedure was used to correct for multiple
hypotheses testing. A false discovery rate < 0.05 was used as the threshold for significant gene
markers. The resulting markers were also filtered by fold changes to select markers of high

confidence. The gene markers were further pruned to keep marker genes specific to each cell

type.

Deconvolution using SMART and other existing methods
In SMART, the input ST data could be either gene counts or un-transformed normalized gene
expression rounded to integers. A list of gene symbols for marker genes of each cell type was
used as the supplemental input to guide cell type inference. By including the marker genes prior
to deconvolution, the resulting cell type proportions and cell type-specific gene expression were
automatically labelled with cell type names, improving the results’ interpretability. In addition to
cell types with marker genes, SMART also allows the inclusion of unknown cell types without
specifying any marker genes, which may be helpful in identifying novel cell types. The GSEA in
SMART-covariate was implemented using the R package “fGSEA”.

STdeconvolve, as an unsupervised reference-free method, used the ST data as the only
input. The resulting cell type proportions and cell type-specific gene expression matrices

contained no cell type names. These unlabeled cell types were subsequently annotated with a
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name through a GSEA by comparing the inferred cell type-specific gene expression profile
against the marker genes using the R package “liger”!.

CARDfree requires marker genes as the input in addition to the ST data. In all the
analyses, the same gene markers used in SMART were used as the input for CARDfree. The
inferred cell types, however, were not annotated with any cell type names. The same gene set
enrichment analysis approach used in STdeconvolve was applied to label the cell types with cell
type names.

The reference-based methods (RCTD, cell2location, spatialDWLS, CARD) were
performed using the recommended settings according to the guidelines on their websites. These

methods require a reference single-cell RNA-sequencing dataset as the input instead of a list of

gene symbols used in reference-free methods.

Data availability

Data from the MK dataset is available for download from

https://tfigshare.com/projects/ MERFISH mouse comparison_study/134213. Data from the
MPOA is available at: https://datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248/. The 10X
Visium coronal section of the mouse brain dataset is available for download at
https://www.10xgenomics.com/resources/datasets/mouse-brain-section-coronal-1-standard-1-1-
0. The PDAC data were obtained from sample A of the PDAC dataset and are available at the
Gene Expression Omnibus (accession number GSE111672).

Code availability
SMART is available as an R package on GitHub at https://github.com/yyolanda/SMART.

Contribution of authors

All authors contributed to project design, data analysis and results interpretation. CY contributed
to the implementation of the software package. All authors contributed to the writing of the
manuscript.
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Figure 1. Overview of SMART. SMART takes the spatial transcriptomics data (a gene-by-spot matrix) and a list of
marker gene symbols for each cell type as the inputs. Then, SMART uses a semi-supervised topic model to predict
the cell type composition (a cell type-by-spot matrix) and the cell type-specific gene expression (a gene-by-cell type
matrix) simultaneously. The model’s variables are described in Methods.

-+
Y



https://doi.org/10.1101/2023.06.20.545793
http://creativecommons.org/licenses/by-nc-nd/4.0/

[ enco [l Preni [] 1c [] coepi [[] octepi [ orepi [T Peri [l Poco

0.4 1

O
o
"

0.3 4

o
w
1

0.24

. 0.1
i c .
0.0 0.0 T T T T T T T

_ 5
3 g
'—
& 3
Endo . . 0.22 oM -0.24 . (6.43 -0.04
0.8

Per Spot RMSE
o o
- N

& FO S PP TR

@V?\AO; Q‘ 0’5\;0 O??‘ @V‘ Ai QS(;/\O \;O O??\ PTEpi | -0.4 -0.28 0.07 ‘ 046 | -0.02 |14
N

éé o \\6Q(b"\\ c:)gbe’ O OQ\\ %Qé\ IC | 023  -04 . 0.17 | -0.12 0.7 | 0.22 | 0.01 0.4

. 02
E 001 1,00 Fos- 034 CDEpi | 0.12 ‘ 0.08 . 0.02 ‘ 03 |-0.13

c 0754 0.75 DCTEpi  -0.15|-0.13 | 0.1 | 0.08 . -0.25 -0.04  0.12 o
g w 0.2+ 0.24
© LoHEpi | o. f -0. b -0.
o 0.50 A 0.50 g OHEpI | 0.12 ‘ 0.05 . 006. 033 -0.18 | [ g4
= o
o 0.1+ 0.14 Peri . f 0. . . 0. 0.6
O 0.25- 0.25- i @9 007 082 -0s2 8109
0.8
Podo | 0.1 | -0.34 0.16 | 0.08 -0.02 0.01 | 0.11
0.004 0.04 0.0 ‘

0001 = ' ! ! ! n , ! 4
A @ A @ A @ A @
Q N Q N Q 0 Q 0
\s S \a Y \s O \s &
> & N & > N > &
& & & Nd
S 3 $ $

Figure 2. Performance evaluation of SMART using simulated ST data in mouse kidney. (A) The spatial image of the single-
cell MERFISH data (left) and the zoom-in view of a selected area (right). (B) The SMART-predicted cell type composition of
the selected area. (C) A heatmap showing the Pearson correlation coefficients between the predicted and the GT cell type
proportions of each cell type. (D) The per-spot RMSE between the predicted and the GT cell type proportions using the GT
(left) and the TMS markers/reference (right). Blue = reference-free methods; Red = reference-based methods. (E) The
Pearson correlation between the predicted and the GT cell type proportions across all spots over 100 repeats using the GT
(left) and the TMS markers/reference (right). (F) The RMSE between the predicted and the GT cell type proportions across all
spots over 100 repeats using the GT (left) and the TMS markers/reference (right). Abbreviations: endothelial cell (Endo),
epithelial cell of the proximal tubule (PTEpi), immune cell (IC), collecting duct epithelial cell(CDEpi), distal convoluted
tubule epithelial cell (DCTEpi), loop of Henle epithelial cell (LoHEpi), pericyte (Peri), podocyte (Podo).
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Figure 3. Demonstration of the two-stage approach of SMART. (A) An example field of view of the single-cell
Nanostring CosMx data in human non-small cell lung cancer. (B) The SMART-predicted cell type composition of the
example field of view. (C) A heatmap showing the Pearson correlation coefficients between the predicted and the GT
cell type proportions of each cell type. (D) A comparison between the one-stage approach and the two-stage approach
on predicting T cell subtypes (top) and dendritic cell subtypes (bottom).
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Figure 4. Demonstration of the covariate model of SMART using simulated data in mouse hypothalamic preoptic region.
(A) Spatial image of the single-cell MERFISH data. (B) The SMART-predicted cell type composition. (C) A heatmap
showing the Pearson correlation coefficients between the predicted and the GT cell type proportions of each cell type. (E)
The log?2 fold change of gene expression between the female mouse and the male mouse in the excitatory neurons (top) and
the inhibitory neurons (bottom). Red bars = genes up-regulated in the female mouse; Blue bars = genes up-regulated in the
male mouse.
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Figure 5. Application of SMART on a mouse brain ST dataset profiled using the 10X Visium platform. (A) Histology
staining image of the tissue. (B) SMART-predicted cell type composition. (C) The predicted proportion of
oligodendrocytes in each spot. (D) A comparison of the predicted proportion of oligodendrocytes in the spots of the fiber
tract region and the spots of the non-fiber tract region. (E) A comparison of the predicted proportion of neurons in the
spots of the fiber tract region and the spots of the non-fiber tract region. (F) The predicted proportion of ependymal cells
in each spot. (G) A comparison of the predicted proportion of ependymal cells in the spots of the ventricular region and
the spots of the non-ventricular region. (H) The predicted proportion of the unknown cell type in each spot.
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Figure 6. Application of SMART on a pancreatic ductal adenocarcinoma ST dataset. (A) Histology staining image of the
tissue (left) and the regions annotated by histologists from the original study (right). (B) The predicted proportions of
ductal cells. (C) The predicted proportions of acinar cells. (D) The predicted proportions of cancer clone cells. (E) A
comparison of the predicted proportion of ductal cells in the spots of ductal region and the spots of the non-ductal region.
(F) A comparison of the predicted proportion of acinar cells in the spots of the pancreatic region and the spots of the non-
pancreatic region. (G) A comparison of the predicted proportion of cancer clone cells in the spots of the cancerous region
and the spots of the non-cancerous region.
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Supp. Figure 1. Factors that may affect the performance of SMART. (A) The number of total spots. (B) The number
of cells on average within each spot. (C) The number of marker genes.


https://doi.org/10.1101/2023.06.20.545793
http://creativecommons.org/licenses/by-nc-nd/4.0/

