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ABSTRACT 24 

The intrinsically disordered 4E-BP2 protein regulates mRNA cap-dependent translation through 25 

the interaction with the predominantly folded eukaryotic initiation factor 4E (eIF4E). 26 

Phosphorylation of 4E-BP2 dramatically reduces eIF4E binding, in part by stabilizing a binding-27 

incompatible folded domain (REF). Here, we used a Rosetta-based sampling algorithm 28 

optimized for IDRs to generate initial ensembles for two phospho forms of 4E-BP2, non- and 29 

five-fold phosphorylated (NP and 5P, respectively), with the 5P folded domain flanked by N- 30 

and C-terminal IDRs (N-IDR and C-IDR, respectively). We then applied an integrative Bayesian 31 

approach to obtain NP and 5P conformational ensembles that agree with experimental data from 32 

nuclear magnetic resonance, small-angle X-ray scattering and single-molecule Förster resonance 33 

energy transfer (smFRET). For the NP state, inter-residue distance scaling and 2D maps revealed 34 

the role of charge segregation and pi interactions in driving contacts between distal regions of the 35 

chain (~70 residues apart). The 5P ensemble shows prominent contacts of the N-IDR region with 36 

the two phosphosites in the folded domain, pT37 and pT46, and, to a lesser extent, delocalized 37 

interactions with the C-IDR region. Agglomerative hierarchical clustering led to partitioning of 38 

each of the two ensembles into four clusters, with different global dimensions and contact maps. 39 

This helped delineate an NP cluster that, based on our smFRET data, is compatible with the 40 

eIF4E-bound state. 5P clusters were differentiated by interactions of C-IDR with the folded 41 

domain and of the N-IDR with the two phosphosites in the folded domain. Our study provides 42 

both a better visualization of fundamental structural poses of 4E-BP2 and a set of falsifiable 43 

insights on intrachain interactions that bias folding and binding of this protein.  44 

 45 

 46 
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1. INTRODUCTION 47 

Proteins are inherently dynamic and adopt conformations that range from very stable to 48 

completely disordered 1. An extreme case of protein polymorphism, intrinsically disordered 49 

proteins (IDPs) have been found to perform an increasingly diverse range of cellular functions, 50 

despite (or perhaps due to) lacking stable secondary and tertiary structure 2. Statistics of the 51 

human proteome revealed that nearly 60% of proteins contain stretches of greater than 30 52 

residues of intrinsic disorder and ~5% of proteins are completely disordered 3.  IDPs are highly 53 

involved in cellular signalling and regulation, function as hubs of protein-protein interaction 54 

(PPI) networks 4, show unexpected mechanisms of PPIs 5, and are drivers of protein phase 55 

separation 6. They are particularly sensitive to post-translational modifications (PTMs), which 56 

can result in either stabilization or destabilization of transient secondary structures 7 and induce 57 

order-disorder 8 or disorder-to-order transitions 9. IDPs are enriched in many neurodegenerative 58 

and cancer pathways 10, but are challenging therapeutics targets due to the lack of stable binding 59 

pockets for small molecules 11. 60 

Eukaryotic translation is a highly regulated process, with most mRNAs requiring 61 

interaction with the eukaryotic translation initiation factor (eIF4E) to be translated 9, 12, 13. The 62 

eIF4F complex is formed by assembly of eIF4E and eIF4G, which is subsequently recruited to 63 

the 40S subunit of the ribosome 13. The assembly of the eIF4F complex is inhibited by the 64 

intrinsically disordered 4E-BPs (eIF4E binding proteins), which compete with eIF4G for an 65 

overlapping surface of eIF4E 14.  66 

The neuronal-specific 4E-BP isoform, 4E-BP2, modulates neuroplasticity, and impacts 67 

learning, memory formation 15, and autism spectrum disorders 16. 4E-BP2 binds eIF4E at both 68 

the canonical 54YDRKFLLDRR63 and a secondary 78IPGVT82 binding site; the canonical 69 
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motif binds to eIF4E in a helical motif on the same convex surface as eIF4G 14, 17, while the 70 

secondary binding site is more dynamic and binds to the lateral surface of eIF4E 18.  71 

Hierarchical phosphorylation of 4E-BP2 at residues T37, T46, T70, S65, and S83 results 72 

in the five-phosphorylated (5P) state and decreases the affinity of the 4E-BP2:eIF4E complex by 73 

~4000-fold compared to the non-phosphorylated (NP) state, via the formation of a 4-stranded β-74 

sheet structure from residues 18-62 9, 19. The initial two phosphorylations at residues T37 and 75 

T46 result in a ~100-fold decrease in eIF4E affinity, while the additional phosphorylations in the 76 

C-terminal intrinsically disordered region (C-IDR) cause a further ~40-fold decrease 9, 19. 77 

Because of this, interactions with the C-IDR containing the additional three phosphosites were 78 

proposed to enhance stability of the folded β-sheet structure (which would reduce binding). In 79 

order to support this hypothesis or otherwise explain the enhanced stability/reduced 4E binding, 80 

structural models of full-length 4E-BP2 in both phosphostates are required. 81 

The free energy landscapes of IDPs are typically shallow but not featureless, with local 82 

energy minima corresponding to transient secondary and tertiary structural biases which confer 83 

functional attributes 20, 21, 22. The potentially vast number of relevant structures makes the 84 

experimental and computational characterization of IDPs difficult. Modelling them necessitates a 85 

framework of sufficient complexity to capture relevant features, while avoiding being too large 86 

to be computationally intractable. IDPs are often modelled as conformational ensembles, which 87 

are a set of 3D structures (having x,y,z coordinates of each atom) with associated weights 23. 88 

Data from nuclear magnetic resonance (NMR), small-angle X-ray scattering (SAXS), and single-89 

molecule Förster resonance energy transfer (smFRET) can be used to refine a starting pool of 90 

conformations by imposing agreement with the experimental data 24, 25. Different experiments are 91 

sensitive to different length scales and timescales, with different degrees of time-averaging and 92 
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ensemble-averaging. This is a heavily under-determined inverse problem, as the experimental 93 

restraints available are vastly insufficient to determine a unique conformational ensemble.  94 

Several approaches have been applied to generate disordered conformational ensembles, 95 

such as Trajectory Directed Ensemble Sampling (TraDES) 26, flexible-meccano 27, 96 

IDPConformerGenerator 28and FastFloppyTail (FFT) 29. TraDES generates conformers by first 97 

building the backbone from Φ/Ψ angles sampled from a non-redundant set of structures from the 98 

PDB, geometric restraints and a Leonard-Jones type potential avoid steric clashes. Flexible-99 

meccano samples amino acid specific Φ/Ψ potential wells from a compilation of non-secondary 100 

structure (loop) elements derived from the PDB. IDPConformerGenerator samples phi, psi and 101 

omega torsion angles from the PDB for various fragment lengths, and with different secondary 102 

structural biases, including based on experimental NMR chemical shifts. FFT is a PyRosetta 103 

based method that samples three-residue fragments from the PDB with a bias towards loop 104 

regions.  105 

Optimization methods such as ENSEMBLE 30, Extended Experimental Inferential 106 

Structure Determination (X-EISD) 31, and Bayesian Maximum Entropy (BME) 32 reweight or 107 

select a subset of the initial conformational ensemble so that back-calculated biophysical 108 

observables match their experimental counterparts. The ENSEMBLE method uses pseudo-109 

energy terms to quantify agreement between computation and experiment, where deviation from 110 

the initial ensemble is not being penalized. In contrast, X-EISD and BME methods use Bayesian 111 

frameworks that account for uncertainties in both experimental data and back-calculators. For 112 

example, BME treats the experimental data as time-/ensemble- averages and reweights the prior 113 

ensemble such that it agrees with experiments while maximizing the relative Shannon entropy. In 114 
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this way, confidence is given to both the prior ensemble and the experimental data to prevent 115 

overfitting. 116 

Arranging conformations into groups that share structural similarities, i.e., clusters, can 117 

lead to better visualization of heterogeneous IDP ensembles and help formulate structure-118 

function relationships 33. The high degree of conformational disorder makes traditional similarity 119 

measures that require atomic superimposition of conformers ill-suited for IDPs 34. Conversely, a 120 

similarity criterion based on inter-residue alpha-carbon (Cα) Euclidean distance can be applied in 121 

agglomerative hierarchical clustering, which was shown to be a useful tool to characterize the 122 

heterogeneity of IDPs 35. 123 

In this work, we applied the BME method 32 to optimize 4E-BP2 ensembles in both NP 124 

and 5P states that were generated by FFT 29. Agreement to experimental data such as the SAXS 125 

curve, two smFRET histograms, and C/C Chemical Shifts (CS) for most of the chain 126 

(excluding residues within the folded domain in the 5P state), were imposed in the optimization 127 

procedure. An independent data set, the Paramagnetic Relaxation Enhancements (PREs) at 128 

several positions distributed along the 120-residue chain, was reserved for validation and for 129 

tuning the hyperparameters of the BME optimization.  130 

 Structural-based clustering suggests that NP 4E-BP2 predominantly samples four overall 131 

structural states. One of these clusters shares structural features with the eIF4E-bound state, 132 

indicating that some conformations contain preformed features than enhance the probability of 133 

complex formation upon collision with eIF4E. Contact maps of the 5P ensemble revealed 134 

pronounced interactions of the folded-domain phosphorylation sites pT37 and pT46 with N-IDR 135 

(residues 1-17), while contacts with the C-IDR were less frequent and more delocalized. 5P 136 

clustering analysis led to the separation of these interactions into four different clusters. This 137 
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work describes highly probable structural poses and provides novel insights into the structure-138 

function relation of a fascinating disordered protein that regulates translation initiation. 139 

Importantly, it also provides specific ideas valuable for designing experiments to test the validity 140 

of these insights. 141 

 142 

2. RESULTS 143 

Optimized 4E-BP2 ensembles 144 

Motivated by the availability of structural data yet a lack of appropriate full-length 145 

computational ensembles of the 4E-BP2 protein, we calculated conformational ensembles 146 

consisting of 20,000 static conformers for both the NP and 5P variants. Our approach utilizes 147 

optimization and analysis methods that have been previously applied to model IDP ensembles 29, 148 

36. A unique aspect of 4E-BP2 in comparison to other IDPs is the presence of a folded domain 149 

within the otherwise disordered 5P phosophoform. In this hyperphosphorylated state, a four-150 

stranded beta-fold domain spanning residues 18-62 is stabilized. Modelling such a case 151 

motivated our choice of the FFT conformer generator 29, which allows the N- and C-IDRs to be 152 

sampled separately while maintaining folded domain poses derived from solution NMR 153 

experiments 9.  154 

Optimization of the NP and 5P ensembles was performed with the BME method 32 using 155 

our previously published CS and smFRET data and new SAXS data (see Methods). [Note that, 156 

while sampling IDR tails and internal IDRs of proteins with folded domains is now possible 157 

within IDPConformerGenerator 28, it was not when our study began, nor was the current X-158 

EISDv2 version with enhanced accessibility 31.] To validate and/or further optimize these 159 
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ensembles, we evaluated their ability to reproduce experimental data that was withheld from the 160 

BME refinement process 37. As such, we further tuned the ensemble optimization using PRE data 161 

with its sensitivity to inter-residue contacts (< 25 Å).   162 

Figure 1.  BME optimization for NP (A) and 5P 4E-BP2 (B) ensembles using FFT-generated prior pools 163 

with 20,000 conformers and imposing agreement with experimental data (SAXS, CS and FRET). A 164 

combination of fitting the restraints (𝜒௧௢௧௔௟
ଶ ) and external validation (PRE RMSD, see SI 2.8) was used to 165 

determine the global fitting parameter 𝑁௘௙௙, indicated as dashed vertical lines and gray areas (see 4.2). 166 

For the NP ensemble (Fig. 1A), 𝜒௧௢௧௔௟
ଶ  decreases as the initial pool is reweighted and the 167 

effective fraction of conformations (𝑁௘௙௙) decreases (see Methods 4.2). The decrease is initially 168 

steep, but then it levels-off with a markedly flatter slope below 𝑁௘௙௙ ≈ 0.6. The region of steep 169 

decrease is where the conformations that are least consistent with experimental data are 170 

essentially discarded, i.e., their weights go to zero. As the slope flattens, further optimization 171 

only marginally increases agreement with experiments and leads to overfitting. After an initial 172 

plateau, PRE RMSD follows a similar downward trend, although shifted to a lower 𝑁௘௙௙ range 173 

than  𝜒௧௢௧௔௟
ଶ . To avoid overfitting, 𝑁௘௙௙ ൌ 0.40 (𝜃 ൌ 35) was chosen at the “knee” point of the 174 

sampled PRE RMSD curve (see Methods 4.2) for the optimized NP ensemble.  175 

Similarly, for the 5P ensemble (Fig. 1B), increased conformer re-weighting leads to 176 

improved agreement with both the restraints incorporated within BME (decrease of 𝜒௧௢௧௔௟
ଶ ) and 177 

the external data (decrease of PRE RMSD). The knee points of the two curves are very close to 178 
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each other, with the lower of the two, 𝑁௘௙௙ ൌ 0.78 (𝜃 ൌ 27), being chosen for the optimized 5P 179 

ensemble. Fitting parameters of the BME-optimized ensembles are shown in Table 1.   180 

Table 1. Fitness parameters and back-calculated global parameters for ensembles of NP and 5P 4E-BP2* 181 

 𝑵𝒆𝒇𝒇 𝝌𝒕𝒐𝒕𝒂𝒍
𝟐  𝝌𝑭𝑹𝑬𝑻

𝟐  𝝌𝑺𝑨𝑿𝑺
𝟐  𝝌𝑪𝑺

𝟐  𝑅௚ (Å) 𝑹𝒉
𝑯𝑷 (Å) 𝑹𝒉

𝑲𝑹(Å) 

NP  
4E-BP2 

0.40 0.64 1.03 0.67 0.62 28.7 ± 0.1 29.0 ± 1.5 23.5 ± 0.1 

5P  
4E-BP2 

0.78 0.76 1.20 0.95 0.37 26.5 ± 0.1 26.8 ± 1.5 20.8 ± 0.1 

* Uncertainties of Rg and Rh are the weighted standard deviation of the mean of the ensemble distributions. 182 

 183 

Optimization curves for each restraint are shown in Figs. S1-S2 in the SI and the initial 184 

and optimizing fitness parameters are displayed in Tables S1-S2. The effect of optimization can 185 

be visualized by the change in the distribution of conformer weights (Fig. S3). The NP 186 

distribution contains distinct outlier values that are well-separated from the bulk. In addition, 187 

61% of the initial conformers have 95% of the weight in the optimized NP ensemble, while for 188 

5P the fraction is much higher, 83%. This was perhaps expected since the 5P initial ensemble 189 

integrates atomic coordinates derived from the NMR solution structure of the folded domain (~ 190 

40 residues), and fewer residues required refinement.  191 

Table 1 also includes back-calculated global size parameters, radii of gyration and 192 

hydrodynamic radii (𝑅௚ and 𝑅௛), of the two optimized ensembles. The back-calculated 𝑅௚ values 193 

are close to those derived by Guinier analysis from the SAXS data (Fig. S11) and confirm that 194 

the 5P state is overall more compact than the NP state. The 𝑅௛ of the optimized NP 4E-BP2 195 

ensemble, back-calculated using the Kirkwood-Riseman approximation (23.5 േ 0.1 Å), is closer 196 

to the value measured by FCS (24.8 േ 1.0 Å) 20 than the value back-calculated with 197 
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HYDROPRO (29.0 േ 1.5 Å). Our results are consistent with a recent comparative study, where 198 

the Kirkwood-Riseman approach was shown to be a better predictor of experimental 199 

hydrodynamic radii of IDP ensembles and resulted in values ~20% lower than HYDROPRO 200 

predictions 38. However, the Kirkwood-Riseman prediction for the 5P ensemble (20.8 േ 0.1 Å) 201 

is significantly smaller than the FCS-measured value (27.9 േ 1.1 Å) while the HYDROPRO 202 

prediction (26.8 േ 1.5 Å) is in better agreement. This discrepancy is perhaps not surprising, 203 

given that a significant fraction of the 5P protein (~1/3 of the sequence) forms a stable fold, and 204 

HYDROPRO has been optimized to match the measured 𝑅௛ of folded proteins.  205 

 206 

Charge segregation and global compaction of NP 4E-BP2 207 

Despite showing significant structural flexibility, IDPs have transiently sampled contacts 208 

due to intra-chain interactions such as hydrophobic 39 40, electrostatic 41, 42 and pi interactions 43 209 

44. Considering the global compaction of NP 4E-BP2 (see above), we asked whether there are 210 

indicators of non-local residue interactions in the optimized ensemble. As such, we analyzed the 211 

relation between mean inter-residue distances (𝑅|௜ି௝|) and residue separations (|𝑖 െ 𝑗|), i.e., the 212 

Internal Scaling Profile (ISP). Distances were calculated as double averages, first for each 213 

conformer and then within the ensemble (Gomes JACS 2020). For comparison with a null-214 

hypothesis lacking preferential interactions, we generated an ensemble consisting of 20,000 self-215 

avoiding random coil (RC) conformations using TraDES 26 and computed its ISP curve. 216 

Within the polymer physics framework, the ISP curve is typically fitted to the following 217 

power-law relation: 218 
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𝑅|௜ି௝| ൌ ට2𝑙௣𝑏|𝑖 െ 𝑗|ఔ ሺ1ሻ 219 

where 𝑏 is the distance between bonded Cα atoms (3.8 Å), 𝜈 is the Flory scaling exponent and the 220 

persistence length 𝑙௣ was fixed at 𝑙௣ ൌ 4 Å (see SI, Table S3 for fitting parameter values). This 221 

persistence length is commonly applied to model disordered proteins and has been shown to be 222 

applicable for unfolded and disordered proteins 45. The behavior of infinitely long homopolymer 223 

models representing the comparative strength of Protein-Protein Interactions (PPIs) vs Protein-224 

Solvent Interactions (PSIs) converge for three distinct cases. A case in which PPIs dominate is 225 

termed the poor-solvent state (𝜈~0.33), PPIs being equal to PSIs is denoted as the 𝜃-state 226 

(𝜈~0.5) and a chain with dominating PSIs is termed the good-solvent state, or the excluded-227 

volume (EV) limit (𝜈~0.59).  228 

To facilitate comparison, the ISPs of the optimized NP 4E-BP2 and TraDES RC 229 

ensembles are plotted together with the ISPs of the EV limit and the 𝜃-state homopolymers (Fig. 230 

2A). For sequence separations 10 ൑  |𝑖 െ  𝑗|  ൑  40 the NP 4E-BP2 scaling resembles the 231 

TraDES RC ensemble (), while for the largest separations, 100 ൑  |𝑖 െ  𝑗|  ൑  120, the 232 

scaling exponent decreases only slightly (. In the intermediate range, 60 ൑  |𝑖 െ  𝑗| ൑233 

 95, the ISP curve flattens and undergoes a change in concavity, so it cannot be fit to a simple 234 

power-law dependence. In addition, intra-chain distances in the NP 4E-BP2 ensemble start to 235 

deviate from those in the TraDES RC ensemble for |𝑖 െ 𝑗| ൒ 20 (Fig. 2A). Taken together, this 236 

suggests that scale invariance breaks down due to specific intra-chain contacts, which are also 237 

responsible for the high transient helical content spanning the entire chain 14 (Fig. S4).  238 

Charge segregation or patterning within a disordered chain can be quantified by the 239 

parameter 𝜅 , 0 ൑ 𝜅 ൑ 1, with the low limit corresponding to well-mixed charges and the high 240 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.06.20.545775doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.20.545775
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

limit to positive and negative charges separated in the two halves of the chain 46, or by the 241 

sequence charge decoration (SCD) parameter 47. Das and Pappu tested the effects of charge 242 

segregation on the ISP behavior for a 50-residue model chain consisting of two oppositely 243 

charged residues that are distributed in patches of variable size across the sequence 46. They also 244 

observed a concavity “dip” in the ISP curves of model sequences, which became more 245 

pronounced with increasing 𝜅. Interestingly, their model sequence with the closest 𝜅 value to NP 246 

4E-BP2 (𝜅 ൌ 0.1552) has an ISP curve with a similar dip as our NP ensemble.  247 

Figure 2. (A) Internal scaling profiles of the optimized NP 4E-BP2 ensemble (red), the TraDES random 248 

coil ensemble (blue), excluded-volume (black, dotted) and theta-solvent (black, dashed) homopolymers, 249 

and fits of the regions 10–40 and 100–121 to Eq. 1 (green dashed). A concave region of the ISP curve, 250 

spanning residue separations of 60-95, is indicated by a grey shaded box. (B) Net-Charge-Per-Residue 251 

(NCPR) index calculated using a five-residue sliding-window; blue-positive, red-negative.  252 

 253 

We evaluated various sequence-charge parameters using the Classification of 254 

Intrinsically Disordered Ensemble Relationships (CIDER) program 48 (Table S4). For example, 255 

the Net Charge Per Residue (NCPR) has been previously used to relate global dimensions of 256 

IDPs to electrostatic interactions 49 42. The NCPR map of NP 4E-BP2 (Fig. 2B) shows patches of 257 

oppositely charged residues in the sequence which may cause the dip in the ISP curve for 60 ൑258 

 |𝑖 െ  𝑗|  ൑  95 via electrostatic attraction. We identified three such attractive pairs: 11-24 259 
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(positive NCPR) with 85-98 (negative NCPR), 22-37 (negative NCPR) with 103-111 (positive 260 

NCPR), and 47-63 (positive NCPR) with 108-121 (negative NCPR).  261 

To better visualize the proximity between different regions of the NP 4E-BP2 chain in 262 

our optimized ensemble, we constructed the 2D map of mean pairwise inter-residue Cα-Cα 263 

distance map normalized by each respective value from the RC ensemble (Fig. 3A). The most 264 

prominent region of compaction is centered between residues ~20-40 and ~80-100. The putative 265 

interacting regions based on NCPR analysis (Fig. 3 B-D) also contain hydrophobic, hydrogen-266 

bonding and pi-containing residues. This suggests that transient contacts are formed through a 267 

combined effect of charge-based attraction with other physico-chemical interactions, potentially 268 

including the hydrophobic effect, hydrogen bonding and pi interactions.  269 

Figure 3. 2D maps of mean inter-residue distances in NP 4E-BP2. (A) Distances in the BME-optimized 270 

ensemble normalized by the TraDES RC ensemble (red-expanded, blue-compacted). Zoom in the regions 271 

corresponding to pairs with opposite sign NCPRs (see Fig. 2): (B) residues 11-24 with residues 85-98, 272 

(C) 22-37 with 103-111, and (D) 47-63 with 108-121; residue color scheme: positive - blue, negative– 273 

red, hydrophobic – green, aromatic - magenta, hydrogen bonding – italic. 274 

 275 
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In particular, pi contacts between two tyrosines (Y34 and Y54) and two C-terminal 276 

lysines (K92, K107) and/or an arginine (R106) could contribute synergistically to the nonlocal 277 

interactions causing the dip in the ISP curve of NP 4E-BP2. Notably, for the first pair, the largest 278 

deviations from random coil expectations are located in residues of the positive NCPR selection 279 

and contain sites which are functionally relevant: the phosphoregulatory RAIP site (residues 15-280 

18) 50, and a region following the secondary binding site.  281 

 282 

Resolving non-local contacts that stabilize the folded domain of 5P 4E-BP2 283 

  Phosphorylation at residues T37, T46, S65, T70 and S83 induces the formation of a four-284 

stranded beta-fold between residues 18-62 which sequesters the canonical eIF4E binding motif 285 

and is incompatible with binding 9. Phosphorylation is hierarchical. Initial phosphorylation at 286 

residues T37 and T46 leads to folding of a marginally stable domain, decreasing the eIF4E 287 

binding affinity by ca. 100-fold. Subsequent phosphorylation of the C-IDR at residues T70, S65 288 

and S83 decrease the binding affinity by a further ca. 40-fold 9, primarily by stabilization of the 289 

folded domain and not by direct interactions with eIF4E. The non-cooperative 290 

folding/stabilization of this domain allows a graded inhibition of translation inhibition by 291 

phosphorylation induced tuning of the eIF4E:4E-BP2 affinity 19.  292 

However, no structural models exist to provide detailed information on how the three 293 

additional C-IDR phosphorylation sites stabilize the folded domain, despite several experimental 294 

studies probing the properties of 5P 4E-BP2 9 19, 20. Molecular dynamics simulations have studied 295 

the formation of the four-stranded beta-fold but the N-IDR and C-IDR were omitted 51 52. NP 4E-296 

BP2 contains significant transient α-helical structure, particularly between residues 49-67, 297 
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partially pre-ordering the canonical helical eIF4E-binding element, and in the C-terminal region 298 

14. Phosphorylation at residues S37 and S46 switches this helical character to extended beta-like, 299 

and the additional C-IDR phosphorylations result in additional helical character in residues 300 

proximal to the canonical binding element as well as in the C-IDR, with pS65 having the largest 301 

effect 19. We examined our models to better understand stabilization of the fold by identifying 302 

potential C-IDR phosphorylation-induced stabilizing contacts between the folded domain and the 303 

rest of 4E-BP2 and potential destabilizing contacts present in the NP state that are abolished in 304 

the 5P state.  305 

Figure 4: 5P 4E-BP2 inter-residue distance and contact maps of optimized vs. coil ensembles. (A) 2D 306 

map of the mean inter-residue distances of the 5P 4E-BP2 optimized ensemble normalized by the 5P coil 307 

ensemble (red – expanded, blue – compacted). (B) Difference contact map obtained by subtracting the 308 

fractional degree of inter-residue contacts in the 5P coil ensemble from those in the BME-optimized 5P 309 

ensemble. Two residues are in contact if their Cα atoms are within 8 Å. 310 

 311 

To evaluate 5P intra-chain interactions in the context of “topological” features imposed 312 

by the presence of a fixed folded domain, we compared the optimized 5P 4E-BP2 ensemble to 313 

the 5P coil ensemble (see SI 1.2). Similar to the NP analysis above, normalized pairwise inter-314 

residue Cα-Cα distances reveal regions of compaction (𝑟௜,௝
௡௢௥௠ ൏ 1) and expansion (𝑟௜,௝

௡௢௥௠ ൐ 1). 315 

Most inter-residue distances are closer in the 5P BME optimized ensemble compared to the 5P 316 

coil ensemble, with the closest contacts (besides those within the folded domain) involving 317 

residues of the folded domain with those of the N-IDR (Fig. 4A). Interestingly, the NP ensemble 318 
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(Fig. 3A) showed greater distances between residues of the canonical binding motif 319 

54YXXXXLɸ60 and the N-terminus (residues 1-17), in contrast to the 5P state.  320 

These changes are consistent with the observation that the chemical shift changes 321 

between the NP and the 5P state are the largest at the canonical binding site residues 19. In the NP 322 

state there are larger distances between the T46 phosphorylation site and all residues that will 323 

become the "N-IDR" upon phosphorylation than for the coil ensemble, and there are also larger 324 

distances between T37 and some residues in this N-IDR forming domain than in the coil (Fig. 325 

3A). Conversely, in the 5P ensemble, the residues near phosphorylation sites pT37 and pT46 326 

have distances that are the most reduced compared to the 5P coil ensemble. This can be seen 327 

more clearly by considering the difference contact map (Fig. 4B), where differences in fractional 328 

occupancy of inter-residue contacts between the optimized and the coil 5P ensembles are shown, 329 

with a contact defined as a Cα-Cα distance ൏ 8 Å (see SI 2.9). The areas of greatest positive 330 

contact difference are centered around the T37 and T46 phosphorylation sites and the N-IDR. 331 

It has been proposed that C-IDR phosphorylation induces stabilizing contacts with the 332 

folded domain, possibly via electrostatic attractions between the C-IDR phosphate groups and 333 

the basic regions of the folded domain 9, 19. In our analysis, although the C-IDR is more compact 334 

than the random coil and shows sparse contacts with the folded domain, these contacts are not 335 

exclusive to the phosphorylation sites, implying that underlying interactions are of a mean-field 336 

nature. Instead, our results allude to a potential major role of the N-IDR in stabilizing the 337 

structure of the folded domain. The NCPR for 5P 4E-BP2 (see SI, Fig. S5) illustrates that the N-338 

IDR is predominantly positive, while phosphorylation at T37 and T46 lead to a negative four 339 

charge difference in the folded domain.  340 
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A combination of electrostatic interactions between the basic N-IDR and the negative 341 

phospho-sites of the folded domain and between the basic parts of the folded domain and the 342 

negative phospho-sites in the C-IDR may increase the stability of the folded domain. At the same 343 

time, our analysis suggests that C-IDR phosphorylation disrupts the network of intramolecular 344 

interactions at regions far away from the phosphorylation sites with only small changes to the 345 

global dimensions, similar to other multi-phosphorylated proteins 25, 53 54. 346 

 347 

Prominent 4E-BP2 structural states revealed by clustering  348 

In contrast to stable folded proteins, IDPs feature a shallow and rugged free-energy 349 

landscape, without a pronounced global minimum. This facilitates fast conformational exchange, 350 

however weakly funneled landscapes exist for various IDPs 22 55 56. Our previous NMR studies 351 

have shown that intra-chain interactions significantly affect conformational propensities of 4E-352 

BP2 in different phosphorylation states 14 9 19.  353 

To better define non-local interactions impacting the 4E-BP2 structure, we applied 354 

agglomerative hierarchical clustering to partition the two optimized ensembles 57 35. The 355 

partitioning leads to a separation of global dimensions and shape, such as radius of gyration, end-356 

to-end distance and asphericity (see SI 2.6, Figs. S6-S7). The dendrogram obtained from 357 

hierarchical clustering provides a visualization of the conformer amalgamation process (Fig. 358 

5A). Motivated by the availability of experimental evidence for significant transient contacts, we 359 

sought to define states that are more likely to be populated in the function of this protein, since 360 

our computational models are optimized to agree with the experimental data.  361 

 362 
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Figure 5. Agglomerative hierarchical clustering applied to the unrestrained NP 4E-BP2 ensemble. (A) 363 

Dendrogram showing the 4 resulting clusters: Cluster 1 (green), Cluster 2 (purple), Cluster 3 (brown) and 364 

Cluster 4 (pink). Inter-residue distance maps for each cluster normalized by the entire BME-optimized NP 365 

ensemble: (B) Cluster 1, (C) Cluster 2, (D) Cluster 3, and (E) Cluster 4.  366 

 367 

The NP ensemble (unrestrained) partitions first into a small (23%, 4510 conformers) and 368 

a large (77%, 15490 conformers) cluster. The large cluster then splits twice before the cutoff 369 

criterion is satisfied (Fig. S8A), which brings the total number of clusters to four (Fig. 5A). 370 

Upon reweighting the conformers with their BME-derived weights, the abundance of each 371 

cluster in the optimized ensemble is obtained (Table S5). Mean pairwise Cα inter-residue 372 

distances in each reweighted cluster were normalized by the corresponding distances for the 373 

optimized ensemble (Figs. 5B-E).  374 
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These maps confirm that the clusters have clearly distinct distributions of inter-residue 375 

distances, as expected since the dissimilarity metric used was a Euclidean distance between inter-376 

residue distances in different conformers (see Methods 4.3). Note that such populations could not 377 

be trivially determined by analyzing the distribution of global parameters such as the radius of 378 

gyration (see SI, Fig. S9), underscoring the utility of clustering to disentangle coarse-grained 379 

structural propensities in a large and disordered protein ensemble.  380 

 Cluster 1 (green), whose fraction was reduced from 23% to ~12% upon BME 381 

optimization, is the most expanded of all clusters (Fig. 5B). In particular, the N- and C-terminal 382 

regions are further apart, indicative of extended, quasi-linear poses. On the contrary, Cluster 2 383 

(purple) is the most compact overall, while the other two clusters (3-brown, 4-magenta) have 384 

complementary distance maps, with a mixture of expansion and compaction compared to the full 385 

ensemble. Motivated by the growing literature on the binding mechanisms of IDPs 58 59 60 and the 386 

expansion we previously captured between residues 32-91 and 73-121 of NP 4E-BP2 upon 387 

binding to eIF4E 20, we asked whether the expanded clusters were conformationally similar to 388 

bound-state structures. 389 

To this end, back-calculated mean FRET values for each NP cluster were compared via a 390 

z-test (Table 2) to the experimental values obtained for the eIF4E-bound state, 𝐸ଷଶିଽଵ ൌ 0.26 േ391 

0.02 and 𝐸଻ଷିଵଶଵ ൌ 0.51 േ 0.02 20. With this metric, Cluster 1 resembles the eIF4E-bound state, 392 

as it agrees within a 3𝜎 tolerance level to the experimental values, in particular regarding 𝐸ଷଶିଽଵ. 393 

In contrast, the other three clusters have significantly higher 𝐸ଷଶିଽଵ values than the bound-state, 394 

but instead agree within 3𝜎 tolerance with the apo-state value. 395 

 396 
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Table 2. Mean FRET efficiencies of NP clusters compared to apo- & bound-states values via a 𝑧 െtest*  397 

Cluster # 𝑬𝟑𝟐ି𝟗𝟏   𝑬𝟕𝟑ି𝟏𝟐𝟏 
Bound 
𝐳𝟑𝟐ି𝟗𝟏 

Bound 
𝐳𝟕𝟑ି𝟏𝟐𝟏 

Apo  
𝐳𝟑𝟐ି𝟗𝟏 

Apo  
 𝐳𝟕𝟑ି𝟏𝟐𝟏 

Cluster 1 0.34 0.56 2.1 1.4 8.2 0.5 

Cluster 2 0.70 0.60 12.2 2.4 1.9 0.5 

Cluster 3 0.65 0.62 10.8 3.0 0.6 1.0 

Cluster 4 0.58 0.49 9.0 0.6 1.3 2.6 

* Uncertainties of back-calculated FRET efficiencies are ±0.036 (see Methods 4.4).  398 

 399 

The presence of a sizeable cluster resembling the bound-state within the apo-state 400 

ensemble cannot be predicted a priori, as an ensemble could be split/clustered in many ways. 401 

Our results allude to a subclass of extended 4E-BP2 conformations that maximize attractive 402 

interactions with the eIF4E surface and initiate binding. At the same time, a large majority of 403 

conformers (88%) are not compatible with bound-state FRET. This suggests a hybrid model of 404 

binding, where both conformational selection and induced fit play a role, the latter being perhaps 405 

dominant for 4E-BP2. This remains an area of interest in the field, as both binding models have 406 

been proposed for disordered proteins 61 and combined binding mechanisms have also been 407 

described 62. 408 

For the 5P ensemble, the normalized cutoff distance clearly levels off when increasing the 409 

number of clusters above N = 4 (see SI, Figure S8B). BME reweighting increases the population 410 

of the most expanded cluster from 20.1% to 30.6%, while reducing the population of the most 411 

compact cluster from 41.3% to 30.3% (Table S6). These observations agree with the overall 412 

expansion observed in 4E-BP2 upon hyper-phosphorylation using smFRET 20.  413 

A more obvious clustering cutoff distance and a more balanced distribution of cluster 414 

fractions for the 5P ensemble compared to the NP ensemble suggest that the former energy 415 
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landscape has fewer and deeper “structural wells” than the latter. The inter-residue distance maps 416 

reveal the complementarity of clusters (Fig. 6B-E). For instance, Cluster 1 mostly consists of 417 

conformers that are expanded throughout the entire chain, while the opposite is true for Cluster 418 

2; similarly, Cluster 3 is compact in regions where Cluster 4 is expanded, and vice-versa. 419 

Figure 6. Agglomerative hierarchical clustering on the unrestrained 5P 4E-BP2 ensemble. (A) 420 
Dendrogram showing the 4 resulting clusters: Cluster 1 (green), Cluster 2 (purple), Cluster 3 (brown) and 421 
Cluster 4 (pink). Inter-residue distance maps for each cluster normalized by the entire BME-optimized 5P 422 
ensemble: (B) Cluster 1, (C) Cluster 2, (D) Cluster 3, and (E) Cluster 4. 423 

 424 

Since interactions of disordered tails with the folded domain in 5P 4E-BP2 are thought to 425 

increase the stability of the fold 19, we then analyzed the abundance of intramolecular contacts at 426 

the cluster level (Fig. 7). Cluster 1 shows prominent contacts between the N-IDR and a segment 427 

around pT46 in the folded domain, while Cluster 2 shows a delocalized contact pattern between 428 
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the C-IDR and the folded domain. Conversely, Clusters 3 and 4 contain prominent contacts 429 

between the N-IDR and pT46 and pT37 sites in the folded domain, respectively. We refer to 430 

Clusters 1 and 2 as C- Interaction Mode (CIM) clusters and Clusters 3 and 4 as N- Interaction 431 

Mode (NIM) clusters. To differentiate within the same mode, we denote Cluster 1 as CIM-off 432 

and Cluster 2 as CIM-on, while Clusters 3 and 4 are denoted as NIM-pT46 and NIM-pT37, 433 

respectively. 434 

Figure 7. Difference contact maps obtained by subtracting the fractional level of inter-residue contacts in 435 
the entire BME-optimized 5P ensemble from those in each cluster. (A) Cluster 1 or CIM-off; (B) Cluster 436 
2 or CIM-on; (C) Cluster 3 or NIM-pT46; (D) Cluster 4 or NIM-pT37. Representative conformations of 437 
each cluster are shown in the upper region of each panel. Two residues are in contact if their Cα atoms are 438 
within 8 Å.  439 

 440 

These pairs of clusters represent two prominent modes of interaction within the BME-441 

optimized 5P 4E-BP2 ensemble. The CIM-on cluster is enriched in contacts between residues 442 

69-73 and 99-103 in the C-IDR with residues 14-19 and 10-13 in the N-IDR, respectively. Such 443 

contacts may be stabilized by attractive charge-based interactions as the aforementioned C-IDR 444 

residues have negative NCPR values and those within the N-IDR have positive NCPR values 445 
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(Fig. S5). To a lesser degree, contacts are formed between pT37 and pT46 of the folded domain 446 

and the entire C-IDR. This implies CIM-on conformations exhibit more contacts between the N-447 

IDR and the C-IDR, which also brings the C-IDR in closer proximity to the folded domain for 448 

possible interactions. Such contacts are absent in the CIM-off cluster. Instead, CIM-off is 449 

enriched in contacts between a region near residue pT46 (47-51) and the entire N-IDR.  450 

This N-IDR interaction with the folded domain (residues 44-53) is more prominent in the 451 

NIM-pT46 cluster, with the highest contact fractions between residues 6 and 48-49, 9-10 and 48, 452 

and 10-13 and 49. This cluster has minimal C-IDR contacts, resembling the CIM-off map. The 453 

NIM-pT37 cluster also has a high occurrence contact fraction between the N-IDR and the folded 454 

domain, except it is centered around residue pT37 and interacts with residues 1-11 of the N-IDR. 455 

The opposite sign NCPR values in these regions may aid in driving such contacts (Fig. S5). For 456 

these conformers, prominent contacts between the N-IDR and the C-IDR occur between residues 457 

4-7 and 77-81, 4-6 and 66-69, and 1-3 and 102-105. This is similar to CIM-on conformers, 458 

suggesting that contacts occurring between the N- and C-IDRs facilitate interactions between the 459 

folded domain and the C-IDR. 460 

 461 

3. DISCUSSION 462 

Ensemble modelling of dynamic and/or disordered proteins is a growing area of research 463 

24, 25, 31, 63, reflecting the increased awareness of their functional importance. Recently, we 464 

assessed the effects of various starting conformer pools and optimization methods for the 465 

integrative modelling of the disordered protein Sic1 37. The quality of initial conformer pools had 466 

the highest impact in obtaining good agreement of the optimized ensemble with experimental 467 

data and is positively correlated with the 𝑁௘௙௙ value for the optimized ensemble. Using MD 468 
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priors for the Sic1 protein, we found 𝑁௘௙௙ ≈ 0.75 37, while a study that applied BME to MD 469 

simulations of the ACTR protein with CS restraints found 𝑁௘௙௙ ≈ 0.67 64.  470 

For 4E-BP2, the 𝑁௘௙௙ obtained for the optimized 5P ensemble is significantly higher than 471 

the value for the optimized NP ensemble, 0.78 vs. 0.40. This result is consistent with the 472 

aforementioned studies, as 5P conformers contain a significant folded fraction (residues 18-62). 473 

Although we included not one, but 20 different PDB structures to describe the folded domain 9, 474 

initial 5P conformers are much more restrained than initial NP conformers. For both 475 

phosphoforms, two smFRET efficiencies/distances were the most powerful restraints for the 476 

optimization procedure, while chemical shifts had the least impact, reflecting the high 477 

uncertainty from back-calculation of these values. 478 

Interestingly, the NP ensemble appears to be more expanded overall than the 5P 479 

ensemble by 𝑅௚ (experimental, back-calculated) and 𝑅௛ (back-calculated) measures, while 𝑅௛  480 

measured by FCS and two internal distances measured by smFRET show the opposite trend 19, 20. 481 

This may be a real effect reflecting different shapes/topologies of the two 4E-BP2 phosphoforms, 482 

or it may be an artefact due to limited sampling in the initial pools. Future studies will benefit 483 

from more accurate and diverse sampling of the conformational space, e.g., by better sampling 484 

at/around the five phosphorylation sites. In addition, more reliable back-calculators for NMR 485 

quantities (CS and PRE) and more smFRET distance restraints would significantly increase the 486 

confidence of the optimized ensembles.  487 

Analysis of the optimized NP ensemble revealed a pronounced concavity in the inter-488 

residue scaling profile for sequence separations on the order of 60-80 residues. This is likely 489 

caused by a combination of electrostatic charge mixing, hydrophobic interactions between 490 
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residues 20-40 and 80-100, and pi interactions involving tyrosines Y34 and Y54 and C-terminal 491 

lysines and arginines.  492 

Residues 19-28 show increased flexibility when bound to eIF4E 14. Our 2D distance maps 493 

point to interactions between these residues and residues in the C-terminal region controlling the 494 

non-local compaction of NP 4E-BP2. Binding to the surface of eIF4E may release these intra-495 

molecular interactions, enhancing chain dynamics. This scenario would be consistent with our 496 

recent findings, in which we captured the expansion and increased local dynamics of 4E-BP2 497 

upon binding to eIF4E 20. Furthermore, clustering analysis reveals only a minor sub-population 498 

(~12%) that is “bound-state like”, also indicating major rearrangements of the chain when 4E-499 

BP2 binds to eIF4E. smFRET experiments are currently under way probing different segments of 500 

the chain in the apo vs. the bound state. The new data will add important restraints to our 501 

modelling and help define the binding mechanism of this IDP system. 502 

Difference distance maps reveal that the residues in the 5P folded domain show fewer 503 

contacts with the C-terminal region than they do in the NP state. Previously, we found evidence 504 

of a fast exchange between -helical and -strand conformations in the 2P state (pT37 and 505 

pT46), especially between residues 49 and 67 9.  Our results suggest that the addition of three 506 

phosphate groups in the C-terminal region may break the residue contacts that stabilize the -507 

helix, thus favoring the -fold. Clustering analysis of the 5P ensemble captured four different 508 

modes of non-local interaction that define major topologies of the 5P state. This categorization of 509 

the ensemble’s heterogeneity hints at a mechanism for stabilization of the folded domain by the 510 

C-IDR in which the N-IDR acts both as a chaperone and an inhibitor.  511 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2023. ; https://doi.org/10.1101/2023.06.20.545775doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.20.545775
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

This mechanism could act as follows: interaction of N-IDR with the folded domain 512 

driven by contacts with pT46 (present in CIM-off and more prominently in NIM-pT46) stabilizes 513 

a pose in which N- and C-IDRs are brought closer to each other. The average conformation then 514 

enters a NIM-pT37 average conformation where the pT46 contact is broken and the N-IDR 515 

forms contacts with the folded domain around pT37. This allows the C-IDR to form contacts 516 

with the starting residues of the N-IDR and permits the C-IDR to loosely interact with the 517 

starting residues of the folded domain. Finally, the N-IDR moves away from the folded domain 518 

as 5P 4E-BP2 enters the CIM-on state. Here, residues throughout the C-IDR form contacts 519 

around residues pT37 and pT46 after being led there by the N-IDR.  520 

Additional ensemble models of the other 4E-BP2 phosphorylation states, in particular the 521 

two-fold phosphorylated state would contribute to unraveling this mechanism.  Undoubtedly, 522 

combined efforts in improving the quality of the starting conformers, increasing the accuracy of 523 

back-calculators and obtaining new more restrictive experimental data will be instrumental in 524 

solving the fascinating molecular puzzle that is the 4E-BP2/eIF4E system. 525 

 526 

4. METHODS 527 

4.1 Conformer generation 528 

  4E-BP2 conformers were generated using the FastFloppyTail (FFT) algorithm, an 529 

optimized version of the Rosetta-based FloppyTail program which is ~10 times faster and has 530 

enhanced accuracy via an improved fragment selection scheme 29 (see SI 1.1) . FFT has been 531 

applied to model inter-domain linkers 36 and several IDPs such as α-synuclein, Sic1 and the 532 

unfolded state of the drkN SH3 domain 29.  533 
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For NP 4E-BP2, we generated 20,000 conformers using FFT and a disorder prediction 534 

file created by the PsiPred DISOPRED3 web server 65. For the partially folded 5P 4E-BP2, we 535 

used FFT to sample the N- and C-termini (residues 1-17 and 63-121, respectively) with PsiPred 536 

DISOPRED3 disorder predictions. The folded domain (residues 18-62) consisted of the 20 537 

lowest energy NMR-derived structures 9 and were fixed during FFT sampling of the IDRs. Each 538 

of the 20 PDB entries (PDB ID: 2MX4) were used with equal weight in generating the 5P 4E-539 

BP2 ensemble (1000 structures per folded domain for a 20,000-conformer ensemble). The 540 

starting 5P structures had N- and C-terminal IDRs concatenated to the folded domain by using 541 

the “bond” function between pairs of carbon atoms in PyMOL 66. To create ideal bond lengths 542 

and angles while avoiding steric clashes, the “Idealize” and “Relax” Rosetta algorithms 67 68 were 543 

applied to the structures. 544 

 545 

4.2 Ensemble refinement 546 

We used the BME method 32 to refine the starting FFT conformational ensembles based 547 

on information supplied by experimental data. BME accounts for the uncertainty in estimating 548 

the confidence in the unrestrained FFT ensemble versus the experimental data by means of a 549 

tunable hyperparameter (𝜃). Given certain restraints, it holds that the most probable distribution 550 

compatible with the experimental data is the distribution of maximal entropy, 65 69. As such, 551 

conformer weights are tuned to minimize the following objective function:  552 

ℒ ൌ
1
2

𝜒෤ଶሺ𝜔ଵ, … , 𝜔ெሻ െ 𝜃𝑆ோா௅ሺ𝜔ଵ, … , 𝜔ெሻ ሺ1ሻ 553 

where ω௜ is the weight for conformer 𝑖 in the reweighted ensemble, 𝑀 is the number of 554 

conformers, 𝜃 is a hyperparameter which represents the degree of ensemble refinement and 𝜒෤ଶ is 555 
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the non-reduced chi-squared. Note that we refer to reduced chi-squared values (normalized by 556 

the number of degrees of freedom) without a tilde (𝜒ଶ) and the non-reduced variant with a tilde 557 

(𝜒෤ଶ). For more details, see SI section 2.1. 558 

In the absence of a clear minimum on the optimization curve, L-curve analysis was 559 

applied to find the “knee” point using the kneed package in Python 70. The value of 𝑁௘௙௙ for both 560 

NP and 5P 4E-BP2 ensembles were determined by first removing concave down portions of the 561 

PRE RMSD curve plotted as a function of 𝑁௘௙௙ (see Fig. 1), and then sampling the spline 562 

interpolated plot at 1000 points uniformly throughout the curve. The “knee” point was then 563 

determined from the resulting discrete data to obtain the point of maximum curvature.  564 

The points determined by the kneedle algorithm corresponds to the solid dashed lines in 565 

Fig. 1 and the associated gray regions account for the variance across 5000-conformer replicate 566 

ensemble calculations of the same optimization (see SI, Tables S7, S8). More specifically, the 567 

gray region (on both sides of the dashed grey line) is the largest absolute difference between the 568 

point obtained via the above procedure for the 20,000-conformer ensemble analyzed in the main 569 

text and across the 5000-conformer replicates. This results in an 𝑁௘௙௙ uncertainty of േ0.03 and 570 

േ0.05 for the NP and 5P 4E-BP2 ensembles, respectively. The 5000-conformer replicate 571 

ensembles were generated by splitting the 20,000-conformer ensemble into four equally sized 572 

ensembles. 573 

Upon refining ensembles with BME, the difficulty of fitting the mean FRET efficiency 574 

for NP 4E-BP2 labelled at residues 32 and 91 (〈𝐸〉ଷଶିଽଵ) became apparent. Indeed, a large 575 

fraction of the prior ensemble must be discarded (𝑁௘௙௙ ൌ 0.03) to obtain good agreement with 576 

the experimental averages (𝜒ிோா்
ଶ ൌ 1.0). The reason for this behavior is due to the BME 577 
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protocol minimizing the sum: 𝜒෤்௢௧௔௟
ଶ ൌ 𝜒෤ௌ஺௑ௌ

ଶ ൅ 𝜒෤஼ௌ
ଶ ൅ 𝜒෤ிோா்

ଶ , where each term in the sum is a 578 

non-reduced chi-squared. This means that experiments with many experimental datapoints, 579 

although not all independent (e.g., SAXS and CS), contribute much more to the total than 580 

smFRET. Hence, the optimization will be heavily biased towards reducing their 𝜒෤ଶ values. To 581 

correct this, a hyperparameter controlling the weight of 𝜒෤ிோா்
ଶ  in the BME optimization was 582 

introduced ሺΩሻ, modifying 𝜒෤்௢௧௔௟
ଶ  to the following form: 𝜒෤்௢௧௔௟

ଶ ൌ 𝜒෤ௌ஺௑ௌ
ଶ ൅ 𝜒෤஼ௌ

ଶ ൅ Ω𝜒෤ிோா்
ଶ , as 583 

implemented in our previous study 37. The hyperparameter Ω was tuned such that FRET was in 584 

good agreement with experimental values with negligible changes to the other restraints (see SI, 585 

Fig. S10). 586 

 Due to inaccuracies in both prior ensemble and experimental data, it is not clear what 𝜃 587 

value should be selected for the most probable ensemble that fits all restraints. To resolve this 588 

issue, PRE data were not integrated as a restraint and were used instead to determine an optimal 589 

𝑁௘௙௙ by choosing the “knee” point on the PRE RMSD curve that is uniformly sampled 1000 590 

times for the full range of 𝑁௘௙௙ after spline interpolation. For comparison of experimental and 591 

back-calculated PRE NMR data, we have opted to compare ratios of intensities of peaks in the 592 

oxidized and reduced samples to back-calculated data using DEERPREdict 71; see below. We 593 

prefer comparing intensity ratios in contrast to a generally utilized strategy which converts PRE 594 

intensity ratios to distances 72. Such estimates are highly imprecise and, due to the required 𝑟ି଺ 595 

averaging, PRE distances act as a weak restraint where only a few conformers are needed to fit 596 

the data in order to achieve good agreement 73.  597 

 598 

 599 
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4.3 Hierarchical clustering  600 

The NP and 5P 4E-BP2 ensembles were divided into sub-ensembles using hierarchical 601 

clustering using the Ward variance minimization algorithm 74. The distance metric for conformer 602 

(di)similarity is computed as the Euclidean distance in the 7260 – dimensional space where 603 

conformers are represented as matrices containing all non-degenerate pairwise inter-residue Cα-604 

Cα distances. The distance 𝐷௜,௝ between two conformers 𝑖 and 𝑗 is: 605 

𝐷௜,௝ ൌ ඨ෍ ቚ𝑟௔
ሺ௜ሻ െ 𝑟௔

ሺ௝ሻቚ
ଶேሺேିଵሻ/ଶ

௔ୀଵ
ሺ2ሻ 606 

where 𝑁 𝑖𝑠 the number of residues (121 in this case) and 𝑟௔
ሺ௜ሻ is the distance between Cα atoms of 607 

the 𝑎௧௛ residue pair for the 𝑖௧௛ conformer.  608 

The dendrogram distance axis does not have a simple biophysical interpretation (see SI 609 

2.4); we therefore transformed the dendrogram distance axis to a Euclidean distance between 610 

cluster means ሺ𝐷்ሻ using the relation given by eq. S8 in SI, section 2.5 75. We then divide this 611 

value by the square root of the number of non-degenerate inter-residue distance combinations to 612 

obtain an RMSD value of inter-residue Cα distances. We name this quantity, which is analogous 613 

to the atomic RMSD for protein structures (eq. S4), “normalized variance”.  614 

To determine a cutoff for clustering, the number of clusters was plotted against the 615 

normalized variance (see Fig. S5), and L-curve analysis was applied to find the optimum number 616 

of clusters. This corresponds to 6 clusters for NP and 4 clusters for 5P. However, the three lowest 617 

populated clusters in the optimized NP ensemble (1.3%, 2.9%, and 7.3%) were combined into a 618 

single cluster to which these states are agglomerated. 619 

 620 
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4.4 FRET calculations 621 

Back-calculated FRET efficiency, 〈𝐸〉, values of the IDP ensembles were computed via 622 

accessible volume simulations 76 77 using the AvTraj 78 and MDTraj 79 Python packages. We 623 

utilize dye parameters for Alexa488 and Alexa647 dye-linker systems documented previously 80 624 

81. The back-calculated uncertainty was calculated by taking the difference between the mean 625 

FRET efficiencies in an ensemble computed using the lower and upper bounds of the Fӧrster 626 

radius, respectively 25. A back-calculated uncertainty of 𝜎 ிோா்
஻஼ ൌ 0.03 was computed for all 627 

ensembles. For use in BME, we added this uncertainty in quadrature with the experimental 628 

uncertainty (𝜎 ிோா்
஻஼ ൌ 0.02), resulting in a combined uncertainty of ට𝜎 ிோா்

஻஼ ଶ
൅ 𝜎 ிோா்

ா௑௉ ଶ
ൌ 0.036 629 

used for BME calculations. 630 

 631 

4.5 SAXS data and calculations 632 

The cloning, expression, purification and phosphorylation of 4E-BP2 was performed as 633 

previously described 9, 14, 19. A SAXSpace instrument with ASX autosampler (Anton-Paar 634 

GmbH, Austria) was used to conduct small-angle X-Ray scattering experiments. The SAXSpace 635 

was equipped with a long fine focus glass sealed copper tube using line collimation focus (40 636 

kV/50 mA, Kα = 0.1542 nm), TCStage 150 sample holder and a 1D CMOS Mythen2 R 1K 637 

detector. 4E-BP2 protein samples at concentrations of 2-20 mg/mL were loaded into a 1 mm 638 

diameter quartz flow cell using the autosampler and six, 10-minute exposure frames were 639 

collected at 20°C under vacuum. Data was corrected for background scattering using sample 640 

buffer alone analyzed under the same conditions. SAXStreat software (Anton-Paar GmbH, 641 

Austria) was used to define the origin of the scattering curve, correct image distortion and 642 
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convert the data to 1D scattering profiles. SAXSQuant (Anton-Paar GmbH, Austria) was then 643 

used to desmear the data. 644 

The Pepsi-SAXS method 82 with default solvation parameters was used to back-calculate 645 

SAXS curves from IDP ensembles. Pepsi-SAXS is an efficient method which utilizes the 646 

multipole expansion scheme for scattering intensities and has been validated on more than 50 647 

experimental SAXS scattering profiles. Only the experimental SAXS scattering intensity 648 

uncertainties were utilized in the BME optimization. 649 

 650 

4.6 NMR data and calculations 651 

The ShiftX program 83 was used to back-calculate secondary structure Chemical Shifts 652 

(CS) from the IDP ensembles. The ShiftX method can quickly compute backbone and sidechain 653 

1H, 13C and 15N chemical shifts in for a single ~100-residue conformer. All experimentally 654 

measured chemical shifts were employed in our BME calculations except in the 5P 4E-BP2 655 

ensemble where phosphosites (65, 70, 83) and immediately subsequent residues (66, 71, 84) 656 

were excluded due to lack of functionality and inaccurate predictions indicated in the ShiftX 657 

output files, respectively. We also excluded 5P 4E-BP2 CS values assigned to residues within the 658 

folded domain (residues 19-61) since BME would not be able to refine the disordered conformer 659 

ensemble otherwise. Only back-calculation uncertainties of 0.98 and 1.10 were used for Cα and 660 

Cβ chemical shifts, respectively for BME calculations. 661 

 To generate PRE data for NP 4E-BP2, we first generated single-cysteine mutant 662 

constructs using a cysteineless version with C35 and C73 mutated to serines. Single cysteines 663 

were then introduced at positions 35, 65, 73, 91, 110 and 121 in order to attach a paramagnetic 664 
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spin label at these positions. Proteins, that were labelled isotopically with 15N, were purified and 665 

a TEMPOL-maleimide (Toronto Research Chemicals) spin label was covalently linked as 666 

previously described 19. Two matched samples were made for each protein with the spin label in 667 

either an oxidized or a reduced state. Samples were oxidized or reduced by addition of either 668 

five-fold excess of TEMPOL (Toronto Research Chemicals) or 1 mM ascorbic acid, 669 

respectively. Prior to NMR experiments, the samples were buffer exchanged into a buffer 670 

containing 30 mM sodium phosphate, 100 mM sodium chloride, 1 mM EDTA, 1 mM 671 

benzamidine, pH 6 using argon purged buffers to maintain the oxidation state of the spin label. 672 

For all samples, sensitivity-enhanced HSQC experiments 84 and unenhanced-NH-T2 673 

experiments 85 were recorded at 20 ºC on an 800 MHz Bruker spectrometer equipped with a 674 

triple-resonance cryoprobe. Relaxation delays for the T2 experiment were 7, 9, 14, 20, 26, 33, 675 

41, 49, 59, 70, 82 and 95 ms, with the 14 and 59 ms points repeated for error estimation. A 676 

comparison of the T2 data and the ratios of the oxidized and reduced samples revealed highly 677 

similar trends. Though less rigorously quantitative, the peak intensities from the HSQC 678 

experiments were used as input for DEERPREdict (see below), because the T2 data and HSQC 679 

shared highly similar trends. PRE data for NP 4E-BP2 is included in the supplementary 680 

information, and the PRE data for 5P 4E-BP2 has been published previously 19.   681 

The DEERPREdict program was used to back-calculate PRE intensity ratios 71. The 682 

parameters used were the same for both phosphoforms: total correlation time 𝜏௧ = 0.5 ns, spin 683 

label effective correlation time 𝜏஼ = 4 ns, total INEPT time 𝑡ௗ = 10 ms, reduced transverse 684 

relaxation time 𝑅ଶ = 6 Hz and proton Larmor frequency 𝜔ு/2𝜋 = 800.14.  PRE data points for 685 

which both the spin label residue and residue to which it transfers were both in the folded 686 

domain were excluded in the analysis as they experienced little or no change. The metric chosen 687 
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to quantify agreement is the root-mean-squared average over the root-mean-squared deviations 688 

between back-calculated and experimental PRE intensity ratios (PRE RMSD) (see SI 2.8).  689 

 690 
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