

1 **Delineating Structural Propensities of the 4E-BP2 Protein via**
2 **Integrative Modelling and Clustering**

3

4 Thomas E. Tsangaris^{1,2,*}, Spencer Smyth^{1,2,*}, Gregory-Neal W. Gomes^{1,2,\$}, Zi Hao Liu^{3,4}, Moses
5 Milchberg^{3,4,^}, Alaji Bah^{3,4,+}, Gregory A. Wasney³, Julie D. Forman-Kay^{3,4}, and Claudiu C.
6 Gradinaru^{1,2,#}

7

8 ¹Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7, Canada;

9 ²Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga,
10 Ontario, L5L 1C6, Canada;

11 ³Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;

12 ⁴Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada

13

14 * These authors contributed equally to this work.

15 \$ Present address: Altos Labs, San Diego, CA, 92121, United States

16 ^ Present address: Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock
17 Drive, Madison, WI, 53706, USA

18 + Present address: Department of Biochemistry and Molecular Biology, SUNY Upstate Medical
19 University, Syracuse, NY 13210, United States

20 # Author to whom correspondence may be addressed: claudiu.gradinaru@utoronto.ca

21

22 **KEYWORDS:** intrinsically disordered proteins, conformational ensembles, single-molecule
23 FRET, charge segregation, residue contact maps.

24 **ABSTRACT**

25 The intrinsically disordered 4E-BP2 protein regulates mRNA cap-dependent translation through
26 the interaction with the predominantly folded eukaryotic initiation factor 4E (eIF4E).

27 Phosphorylation of 4E-BP2 dramatically reduces eIF4E binding, in part by stabilizing a binding-
28 incompatible folded domain (REF). Here, we used a Rosetta-based sampling algorithm
29 optimized for IDRs to generate initial ensembles for two phospho forms of 4E-BP2, non- and
30 five-fold phosphorylated (NP and 5P, respectively), with the 5P folded domain flanked by N-
31 and C-terminal IDRs (N-IDR and C-IDR, respectively). We then applied an integrative Bayesian
32 approach to obtain NP and 5P conformational ensembles that agree with experimental data from
33 nuclear magnetic resonance, small-angle X-ray scattering and single-molecule Förster resonance
34 energy transfer (smFRET). For the NP state, inter-residue distance scaling and 2D maps revealed
35 the role of charge segregation and pi interactions in driving contacts between distal regions of the
36 chain (~70 residues apart). The 5P ensemble shows prominent contacts of the N-IDR region with
37 the two phosphosites in the folded domain, pT37 and pT46, and, to a lesser extent, delocalized
38 interactions with the C-IDR region. Agglomerative hierarchical clustering led to partitioning of
39 each of the two ensembles into four clusters, with different global dimensions and contact maps.
40 This helped delineate an NP cluster that, based on our smFRET data, is compatible with the
41 eIF4E-bound state. 5P clusters were differentiated by interactions of C-IDR with the folded
42 domain and of the N-IDR with the two phosphosites in the folded domain. Our study provides
43 both a better visualization of fundamental structural poses of 4E-BP2 and a set of falsifiable
44 insights on intrachain interactions that bias folding and binding of this protein.

45

46

47 **1. INTRODUCTION**

48 Proteins are inherently dynamic and adopt conformations that range from very stable to
49 completely disordered¹. An extreme case of protein polymorphism, intrinsically disordered
50 proteins (IDPs) have been found to perform an increasingly diverse range of cellular functions,
51 despite (or perhaps due to) lacking stable secondary and tertiary structure². Statistics of the
52 human proteome revealed that nearly 60% of proteins contain stretches of greater than 30
53 residues of intrinsic disorder and ~5% of proteins are completely disordered³. IDPs are highly
54 involved in cellular signalling and regulation, function as hubs of protein-protein interaction
55 (PPI) networks⁴, show unexpected mechanisms of PPIs⁵, and are drivers of protein phase
56 separation⁶. They are particularly sensitive to post-translational modifications (PTMs), which
57 can result in either stabilization or destabilization of transient secondary structures⁷ and induce
58 order-disorder⁸ or disorder-to-order transitions⁹. IDPs are enriched in many neurodegenerative
59 and cancer pathways¹⁰, but are challenging therapeutics targets due to the lack of stable binding
60 pockets for small molecules¹¹.

61 Eukaryotic translation is a highly regulated process, with most mRNAs requiring
62 interaction with the eukaryotic translation initiation factor (eIF4E) to be translated^{9, 12, 13}. The
63 eIF4F complex is formed by assembly of eIF4E and eIF4G, which is subsequently recruited to
64 the 40S subunit of the ribosome¹³. The assembly of the eIF4F complex is inhibited by the
65 intrinsically disordered 4E-BPs (eIF4E binding proteins), which compete with eIF4G for an
66 overlapping surface of eIF4E¹⁴.

67 The neuronal-specific 4E-BP isoform, 4E-BP2, modulates neuroplasticity, and impacts
68 learning, memory formation¹⁵, and autism spectrum disorders¹⁶. 4E-BP2 binds eIF4E at both
69 the canonical 54YDRKFLLDRR63 and a secondary 78IPGVT82 binding site; the canonical

70 motif binds to eIF4E in a helical motif on the same convex surface as eIF4G^{14,17}, while the
71 secondary binding site is more dynamic and binds to the lateral surface of eIF4E¹⁸.

72 Hierarchical phosphorylation of 4E-BP2 at residues T37, T46, T70, S65, and S83 results
73 in the five-phosphorylated (5P) state and decreases the affinity of the 4E-BP2:eIF4E complex by
74 ~4000-fold compared to the non-phosphorylated (NP) state, via the formation of a 4-stranded β -
75 sheet structure from residues 18-62^{9,19}. The initial two phosphorylations at residues T37 and
76 T46 result in a ~100-fold decrease in eIF4E affinity, while the additional phosphorylations in the
77 C-terminal intrinsically disordered region (C-IDR) cause a further ~40-fold decrease^{9,19}.
78 Because of this, interactions with the C-IDR containing the additional three phosphosites were
79 proposed to enhance stability of the folded β -sheet structure (which would reduce binding). In
80 order to support this hypothesis or otherwise explain the enhanced stability/reduced 4E binding,
81 structural models of full-length 4E-BP2 in both phosphostates are required.

82 The free energy landscapes of IDPs are typically shallow but not featureless, with local
83 energy minima corresponding to transient secondary and tertiary structural biases which confer
84 functional attributes^{20,21,22}. The potentially vast number of relevant structures makes the
85 experimental and computational characterization of IDPs difficult. Modelling them necessitates a
86 framework of sufficient complexity to capture relevant features, while avoiding being too large
87 to be computationally intractable. IDPs are often modelled as conformational ensembles, which
88 are a set of 3D structures (having x,y,z coordinates of each atom) with associated weights²³.
89 Data from nuclear magnetic resonance (NMR), small-angle X-ray scattering (SAXS), and single-
90 molecule Förster resonance energy transfer (smFRET) can be used to refine a starting pool of
91 conformations by imposing agreement with the experimental data^{24,25}. Different experiments are
92 sensitive to different length scales and timescales, with different degrees of time-averaging and

93 ensemble-averaging. This is a heavily under-determined inverse problem, as the experimental
94 restraints available are vastly insufficient to determine a unique conformational ensemble.

95 Several approaches have been applied to generate disordered conformational ensembles,
96 such as Trajectory Directed Ensemble Sampling (TraDES)²⁶, flexible-meccano²⁷,
97 IDPConformerGenerator²⁸ and FastFloppyTail (FFT)²⁹. TraDES generates conformers by first
98 building the backbone from Φ/Ψ angles sampled from a non-redundant set of structures from the
99 PDB, geometric restraints and a Leonard-Jones type potential avoid steric clashes. Flexible-
100 meccano samples amino acid specific Φ/Ψ potential wells from a compilation of non-secondary
101 structure (loop) elements derived from the PDB. IDPConformerGenerator samples phi, psi and
102 omega torsion angles from the PDB for various fragment lengths, and with different secondary
103 structural biases, including based on experimental NMR chemical shifts. FFT is a PyRosetta
104 based method that samples three-residue fragments from the PDB with a bias towards loop
105 regions.

106 Optimization methods such as ENSEMBLE³⁰, Extended Experimental Inferential
107 Structure Determination (X-EISD)³¹, and Bayesian Maximum Entropy (BME)³² reweight or
108 select a subset of the initial conformational ensemble so that back-calculated biophysical
109 observables match their experimental counterparts. The ENSEMBLE method uses pseudo-
110 energy terms to quantify agreement between computation and experiment, where deviation from
111 the initial ensemble is not being penalized. In contrast, X-EISD and BME methods use Bayesian
112 frameworks that account for uncertainties in both experimental data and back-calculators. For
113 example, BME treats the experimental data as time-/ensemble- averages and reweights the prior
114 ensemble such that it agrees with experiments while maximizing the relative Shannon entropy. In

115 this way, confidence is given to both the prior ensemble and the experimental data to prevent
116 overfitting.

117 Arranging conformations into groups that share structural similarities, i.e., clusters, can
118 lead to better visualization of heterogeneous IDP ensembles and help formulate structure-
119 function relationships ³³. The high degree of conformational disorder makes traditional similarity
120 measures that require atomic superimposition of conformers ill-suited for IDPs ³⁴. Conversely, a
121 similarity criterion based on inter-residue alpha-carbon (C_α) Euclidean distance can be applied in
122 agglomerative hierarchical clustering, which was shown to be a useful tool to characterize the
123 heterogeneity of IDPs ³⁵.

124 In this work, we applied the BME method ³² to optimize 4E-BP2 ensembles in both NP
125 and 5P states that were generated by FFT ²⁹. Agreement to experimental data such as the SAXS
126 curve, two smFRET histograms, and C_α/C_β Chemical Shifts (CS) for most of the chain
127 (excluding residues within the folded domain in the 5P state), were imposed in the optimization
128 procedure. An independent data set, the Paramagnetic Relaxation Enhancements (PREs) at
129 several positions distributed along the 120-residue chain, was reserved for validation and for
130 tuning the hyperparameters of the BME optimization.

131 Structural-based clustering suggests that NP 4E-BP2 predominantly samples four overall
132 structural states. One of these clusters shares structural features with the eIF4E-bound state,
133 indicating that some conformations contain preformed features than enhance the probability of
134 complex formation upon collision with eIF4E. Contact maps of the 5P ensemble revealed
135 pronounced interactions of the folded-domain phosphorylation sites pT37 and pT46 with N-IDR
136 (residues 1-17), while contacts with the C-IDR were less frequent and more delocalized. 5P
137 clustering analysis led to the separation of these interactions into four different clusters. This

138 work describes highly probable structural poses and provides novel insights into the structure-
139 function relation of a fascinating disordered protein that regulates translation initiation.
140 Importantly, it also provides specific ideas valuable for designing experiments to test the validity
141 of these insights.

142

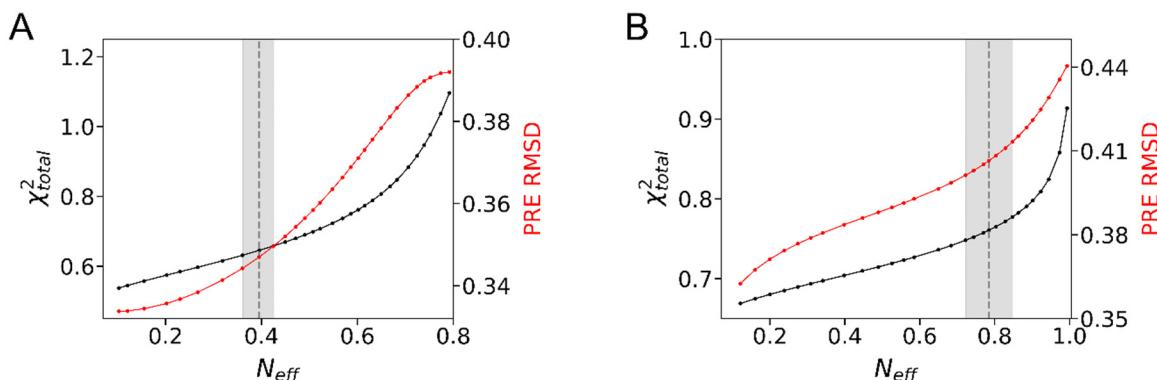
143 **2. RESULTS**

144 **Optimized 4E-BP2 ensembles**

145 Motivated by the availability of structural data yet a lack of appropriate full-length
146 computational ensembles of the 4E-BP2 protein, we calculated conformational ensembles
147 consisting of 20,000 static conformers for both the NP and 5P variants. Our approach utilizes
148 optimization and analysis methods that have been previously applied to model IDP ensembles²⁹,
149³⁶. A unique aspect of 4E-BP2 in comparison to other IDPs is the presence of a folded domain
150 within the otherwise disordered 5P phosphoform. In this hyperphosphorylated state, a four-
151 stranded beta-fold domain spanning residues 18-62 is stabilized. Modelling such a case
152 motivated our choice of the FFT conformer generator²⁹, which allows the N- and C-IDRs to be
153 sampled separately while maintaining folded domain poses derived from solution NMR
154 experiments⁹.

155 Optimization of the NP and 5P ensembles was performed with the BME method³² using
156 our previously published CS and smFRET data and new SAXS data (see Methods). [Note that,
157 while sampling IDR tails and internal IDRs of proteins with folded domains is now possible
158 within IDPConformerGenerator²⁸, it was not when our study began, nor was the current X-
159 EISDv2 version with enhanced accessibility³¹.] To validate and/or further optimize these

160 ensembles, we evaluated their ability to reproduce experimental data that was withheld from the
161 BME refinement process³⁷. As such, we further tuned the ensemble optimization using PRE data
162 with its sensitivity to inter-residue contacts (< 25 Å).



163 **Figure 1.** BME optimization for NP (A) and 5P 4E-BP2 (B) ensembles using FFT-generated prior pools
164 with 20,000 conformers and imposing agreement with experimental data (SAXS, CS and FRET). A
165 combination of fitting the restraints (χ^2_{total}) and external validation (PRE RMSD, see SI 2.8) was used to
166 determine the global fitting parameter N_{eff} , indicated as dashed vertical lines and gray areas (see 4.2).

167 For the NP ensemble (Fig. 1A), χ^2_{total} decreases as the initial pool is reweighted and the
168 effective fraction of conformations (N_{eff}) decreases (see Methods 4.2). The decrease is initially
169 steep, but then it levels-off with a markedly flatter slope below $N_{eff} \approx 0.6$. The region of steep
170 decrease is where the conformations that are least consistent with experimental data are
171 essentially discarded, i.e., their weights go to zero. As the slope flattens, further optimization
172 only marginally increases agreement with experiments and leads to overfitting. After an initial
173 plateau, PRE RMSD follows a similar downward trend, although shifted to a lower N_{eff} range
174 than χ^2_{total} . To avoid overfitting, $N_{eff} = 0.40$ ($\theta = 35$) was chosen at the “knee” point of the
175 sampled PRE RMSD curve (see Methods 4.2) for the optimized NP ensemble.

176 Similarly, for the 5P ensemble (Fig. 1B), increased conformer re-weighting leads to
177 improved agreement with both the restraints incorporated within BME (decrease of χ^2_{total}) and
178 the external data (decrease of PRE RMSD). The knee points of the two curves are very close to

179 each other, with the lower of the two, $N_{eff} = 0.78$ ($\theta = 27$), being chosen for the optimized 5P
180 ensemble. Fitting parameters of the BME-optimized ensembles are shown in **Table 1**.

181 **Table 1.** Fitness parameters and back-calculated global parameters for ensembles of NP and 5P 4E-BP2*

	N_{eff}	χ^2_{total}	χ^2_{FRET}	χ^2_{SAXS}	χ^2_{CS}	R_g (Å)	R_h^{HP} (Å)	R_h^{KR} (Å)
NP 4E-BP2	0.40	0.64	1.03	0.67	0.62	28.7 ± 0.1	29.0 ± 1.5	23.5 ± 0.1
5P 4E-BP2	0.78	0.76	1.20	0.95	0.37	26.5 ± 0.1	26.8 ± 1.5	20.8 ± 0.1

182 * Uncertainties of R_g and R_h are the weighted standard deviation of the mean of the ensemble distributions.

183
184 Optimization curves for each restraint are shown in Figs. S1-S2 in the SI and the initial
185 and optimizing fitness parameters are displayed in Tables S1-S2. The effect of optimization can
186 be visualized by the change in the distribution of conformer weights (Fig. S3). The NP
187 distribution contains distinct outlier values that are well-separated from the bulk. In addition,
188 61% of the initial conformers have 95% of the weight in the optimized NP ensemble, while for
189 5P the fraction is much higher, 83%. This was perhaps expected since the 5P initial ensemble
190 integrates atomic coordinates derived from the NMR solution structure of the folded domain (~
191 40 residues), and fewer residues required refinement.

192 **Table 1** also includes back-calculated global size parameters, radii of gyration and
193 hydrodynamic radii (R_g and R_h), of the two optimized ensembles. The back-calculated R_g values
194 are close to those derived by Guinier analysis from the SAXS data (Fig. S11) and confirm that
195 the 5P state is overall more compact than the NP state. The R_h of the optimized NP 4E-BP2
196 ensemble, back-calculated using the Kirkwood-Riseman approximation (23.5 ± 0.1 Å), is closer
197 to the value measured by FCS (24.8 ± 1.0 Å)²⁰ than the value back-calculated with

198 HYDROPRO ($29.0 \pm 1.5 \text{ \AA}$). Our results are consistent with a recent comparative study, where
199 the Kirkwood-Riseman approach was shown to be a better predictor of experimental
200 hydrodynamic radii of IDP ensembles and resulted in values $\sim 20\%$ lower than HYDROPRO
201 predictions³⁸. However, the Kirkwood-Riseman prediction for the 5P ensemble ($20.8 \pm 0.1 \text{ \AA}$)
202 is significantly smaller than the FCS-measured value ($27.9 \pm 1.1 \text{ \AA}$) while the HYDROPRO
203 prediction ($26.8 \pm 1.5 \text{ \AA}$) is in better agreement. This discrepancy is perhaps not surprising,
204 given that a significant fraction of the 5P protein ($\sim 1/3$ of the sequence) forms a stable fold, and
205 HYDROPRO has been optimized to match the measured R_h of folded proteins.

206

207 **Charge segregation and global compaction of NP 4E-BP2**

208 Despite showing significant structural flexibility, IDPs have transiently sampled contacts
209 due to intra-chain interactions such as hydrophobic^{39 40}, electrostatic^{41, 42} and pi interactions⁴³
210⁴⁴. Considering the global compaction of NP 4E-BP2 (see above), we asked whether there are
211 indicators of non-local residue interactions in the optimized ensemble. As such, we analyzed the
212 relation between mean inter-residue distances ($R_{|i-j|}$) and residue separations ($|i - j|$), i.e., the
213 Internal Scaling Profile (ISP). Distances were calculated as double averages, first for each
214 conformer and then within the ensemble (Gomes JACS 2020). For comparison with a null-
215 hypothesis lacking preferential interactions, we generated an ensemble consisting of 20,000 self-
216 avoiding random coil (RC) conformations using TraDES²⁶ and computed its ISP curve.

217 Within the polymer physics framework, the ISP curve is typically fitted to the following
218 power-law relation:

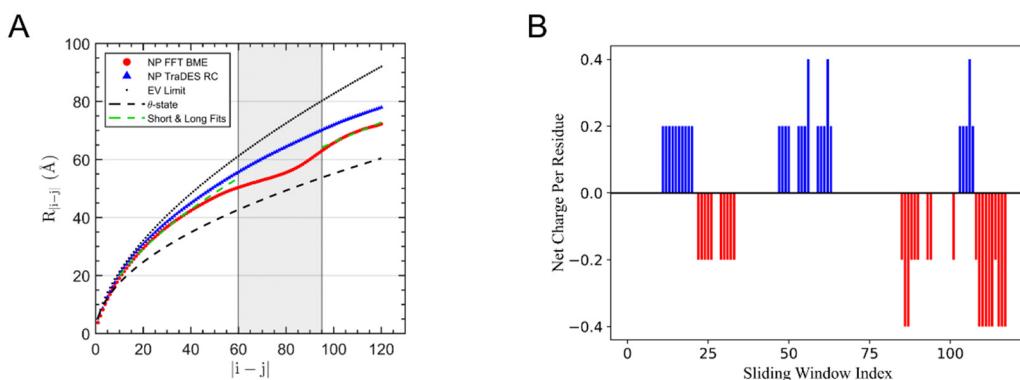
219
$$R_{|i-j|} = \sqrt{2l_p b} |i-j|^\nu \quad (1)$$

220 where b is the distance between bonded C_α atoms (3.8 Å), ν is the Flory scaling exponent and the
221 persistence length l_p was fixed at $l_p = 4$ Å (see SI, Table S3 for fitting parameter values). This
222 persistence length is commonly applied to model disordered proteins and has been shown to be
223 applicable for unfolded and disordered proteins⁴⁵. The behavior of infinitely long homopolymer
224 models representing the comparative strength of Protein-Protein Interactions (PPIs) vs Protein-
225 Solvent Interactions (PSIs) converge for three distinct cases. A case in which PPIs dominate is
226 termed the poor-solvent state ($\nu \sim 0.33$), PPIs being equal to PSIs is denoted as the θ -state
227 ($\nu \sim 0.5$) and a chain with dominating PSIs is termed the good-solvent state, or the excluded-
228 volume (EV) limit ($\nu \sim 0.59$).

229 To facilitate comparison, the ISPs of the optimized NP 4E-BP2 and TraDES RC
230 ensembles are plotted together with the ISPs of the EV limit and the θ -state homopolymers (Fig.
231 **2A**). For sequence separations $10 \leq |i - j| \leq 40$ the NP 4E-BP2 scaling resembles the
232 TraDES RC ensemble ($\nu = 0.556$), while for the largest separations, $100 \leq |i - j| \leq 120$, the
233 scaling exponent decreases only slightly ($\nu = 0.539$). In the intermediate range, $60 \leq |i - j| \leq$
234 95, the ISP curve flattens and undergoes a change in concavity, so it cannot be fit to a simple
235 power-law dependence. In addition, intra-chain distances in the NP 4E-BP2 ensemble start to
236 deviate from those in the TraDES RC ensemble for $|i - j| \geq 20$ (Fig. **2A**). Taken together, this
237 suggests that scale invariance breaks down due to specific intra-chain contacts, which are also
238 responsible for the high transient helical content spanning the entire chain¹⁴ (Fig. S4).

239 Charge segregation or patterning within a disordered chain can be quantified by the
240 parameter κ , $0 \leq \kappa \leq 1$, with the low limit corresponding to well-mixed charges and the high

241 limit to positive and negative charges separated in the two halves of the chain⁴⁶, or by the
242 sequence charge decoration (SCD) parameter⁴⁷. Das and Pappu tested the effects of charge
243 segregation on the ISP behavior for a 50-residue model chain consisting of two oppositely
244 charged residues that are distributed in patches of variable size across the sequence⁴⁶. They also
245 observed a concavity “dip” in the ISP curves of model sequences, which became more
246 pronounced with increasing κ . Interestingly, their model sequence with the closest κ value to NP
247 4E-BP2 ($\kappa = 0.1552$) has an ISP curve with a similar dip as our NP ensemble.

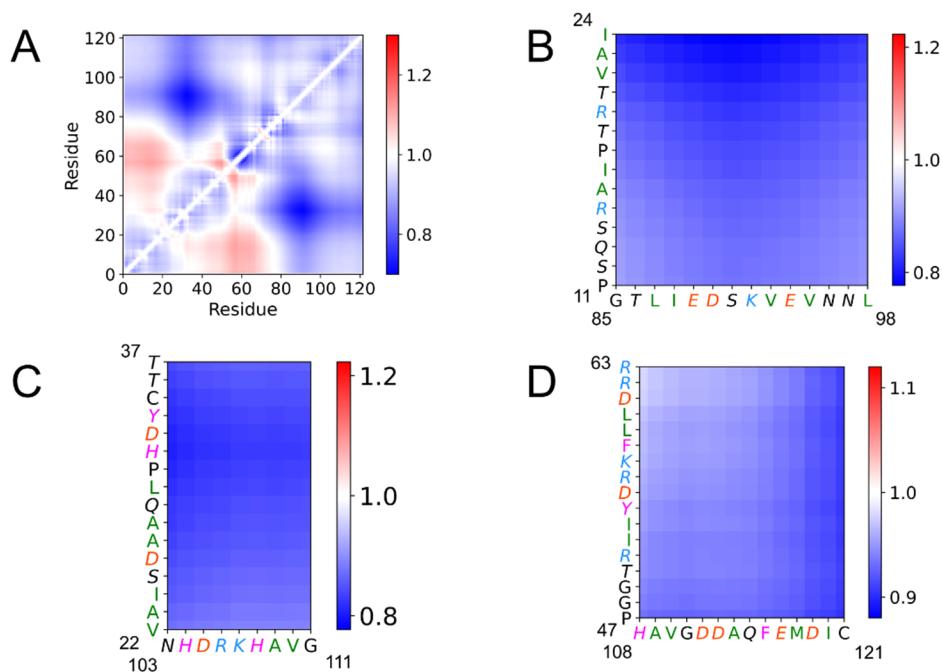


248 **Figure 2. (A)** Internal scaling profiles of the optimized NP 4E-BP2 ensemble (red), the TraDES random
249 coil ensemble (blue), excluded-volume (black, dotted) and theta-solvent (black, dashed) homopolymers,
250 and fits of the regions 10–40 and 100–121 to Eq. 1 (green dashed). A concave region of the ISP curve,
251 spanning residue separations of 60–95, is indicated by a grey shaded box. **(B)** Net-Charge-Per-Residue
252 (NCPR) index calculated using a five-residue sliding-window; blue-positive, red-negative.

253
254 We evaluated various sequence-charge parameters using the Classification of
255 Intrinsically Disordered Ensemble Relationships (CIDER) program⁴⁸ (Table S4). For example,
256 the Net Charge Per Residue (NCPR) has been previously used to relate global dimensions of
257 IDPs to electrostatic interactions^{49 42}. The NCPR map of NP 4E-BP2 (**Fig. 2B**) shows patches of
258 oppositely charged residues in the sequence which may cause the dip in the ISP curve for $60 \leq$
259 $|i - j| \leq 95$ via electrostatic attraction. We identified three such attractive pairs: 11-24

260 (positive NCPR) with 85-98 (negative NCPR), 22-37 (negative NCPR) with 103-111 (positive
261 NCPR), and 47-63 (positive NCPR) with 108-121 (negative NCPR).

262 To better visualize the proximity between different regions of the NP 4E-BP2 chain in
263 our optimized ensemble, we constructed the 2D map of mean pairwise inter-residue C_{α} - C_{α}
264 distance map normalized by each respective value from the RC ensemble (Fig. 3A). The most
265 prominent region of compaction is centered between residues ~20-40 and ~80-100. The putative
266 interacting regions based on NCPR analysis (Fig. 3 B-D) also contain hydrophobic, hydrogen-
267 bonding and pi-containing residues. This suggests that transient contacts are formed through a
268 combined effect of charge-based attraction with other physico-chemical interactions, potentially
269 including the hydrophobic effect, hydrogen bonding and pi interactions.



270 **Figure 3.** 2D maps of mean inter-residue distances in NP 4E-BP2. (A) Distances in the BME-optimized
271 ensemble normalized by the TraDES RC ensemble (red-expanded, blue-compact). Zoom in the regions
272 corresponding to pairs with opposite sign NCPRs (see Fig. 2): (B) residues 11-24 with residues 85-98,
273 (C) 22-37 with 103-111, and (D) 47-63 with 108-121; residue color scheme: positive - blue, negative-
274 red, hydrophobic – green, aromatic - magenta, hydrogen bonding – italic.

275

276 In particular, pi contacts between two tyrosines (Y34 and Y54) and two C-terminal
277 lysines (K92, K107) and/or an arginine (R106) could contribute synergistically to the nonlocal
278 interactions causing the dip in the ISP curve of NP 4E-BP2. Notably, for the first pair, the largest
279 deviations from random coil expectations are located in residues of the positive NCPR selection
280 and contain sites which are functionally relevant: the phosphoregulatory RAIP site (residues 15-
281 18)⁵⁰, and a region following the secondary binding site.

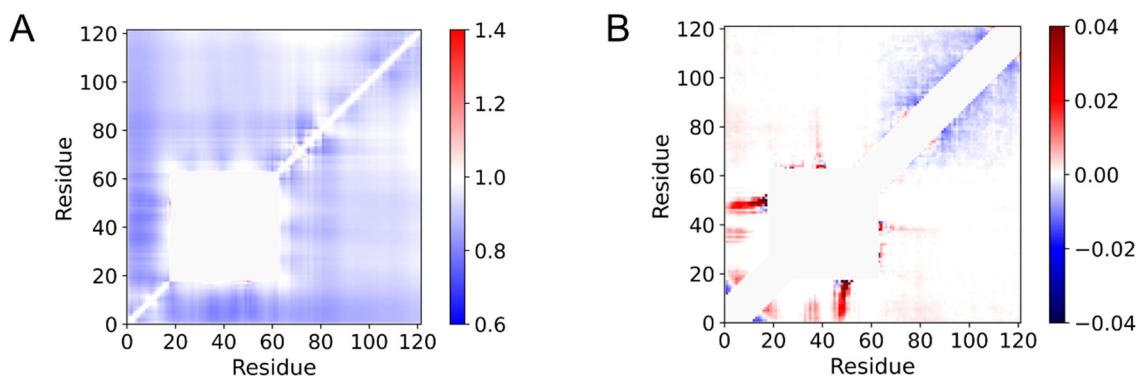
282

283 **Resolving non-local contacts that stabilize the folded domain of 5P 4E-BP2**

284 Phosphorylation at residues T37, T46, S65, T70 and S83 induces the formation of a four-
285 stranded beta-fold between residues 18-62 which sequesters the canonical eIF4E binding motif
286 and is incompatible with binding⁹. Phosphorylation is hierarchical. Initial phosphorylation at
287 residues T37 and T46 leads to folding of a marginally stable domain, decreasing the eIF4E
288 binding affinity by ca. 100-fold. Subsequent phosphorylation of the C-IDR at residues T70, S65
289 and S83 decrease the binding affinity by a further ca. 40-fold⁹, primarily by stabilization of the
290 folded domain and not by direct interactions with eIF4E. The non-cooperative
291 folding/stabilization of this domain allows a graded inhibition of translation inhibition by
292 phosphorylation induced tuning of the eIF4E:4E-BP2 affinity¹⁹.

293 However, no structural models exist to provide detailed information on how the three
294 additional C-IDR phosphorylation sites stabilize the folded domain, despite several experimental
295 studies probing the properties of 5P 4E-BP2^{9 19, 20}. Molecular dynamics simulations have studied
296 the formation of the four-stranded beta-fold but the N-IDR and C-IDR were omitted^{51 52}. NP 4E-
297 BP2 contains significant transient α -helical structure, particularly between residues 49-67,

298 partially pre-ordering the canonical helical eIF4E-binding element, and in the C-terminal region
299 ¹⁴. Phosphorylation at residues S37 and S46 switches this helical character to extended beta-like,
300 and the additional C-IDR phosphorylations result in additional helical character in residues
301 proximal to the canonical binding element as well as in the C-IDR, with pS65 having the largest
302 effect ¹⁹. We examined our models to better understand stabilization of the fold by identifying
303 potential C-IDR phosphorylation-induced stabilizing contacts between the folded domain and the
304 rest of 4E-BP2 and potential destabilizing contacts present in the NP state that are abolished in
305 the 5P state.



306 **Figure 4:** 5P 4E-BP2 inter-residue distance and contact maps of optimized vs. coil ensembles. (A) 2D
307 map of the mean inter-residue distances of the 5P 4E-BP2 optimized ensemble normalized by the 5P coil
308 ensemble (red – expanded, blue – compacted). (B) Difference contact map obtained by subtracting the
309 fractional degree of inter-residue contacts in the 5P coil ensemble from those in the BME-optimized 5P
310 ensemble. Two residues are in contact if their C_α atoms are within 8 Å.

311
312 To evaluate 5P intra-chain interactions in the context of “topological” features imposed
313 by the presence of a fixed folded domain, we compared the optimized 5P 4E-BP2 ensemble to
314 the 5P coil ensemble (see SI 1.2). Similar to the NP analysis above, normalized pairwise inter-
315 residue C_α-C_α distances reveal regions of compaction ($r_{i,j}^{norm} < 1$) and expansion ($r_{i,j}^{norm} > 1$).
316 Most inter-residue distances are closer in the 5P BME optimized ensemble compared to the 5P
317 coil ensemble, with the closest contacts (besides those within the folded domain) involving
318 residues of the folded domain with those of the N-IDR (**Fig. 4A**). Interestingly, the NP ensemble

319 (Fig. 3A) showed greater distances between residues of the canonical binding motif
320 $^{54}\text{YXXXXL}\phi^{60}$ and the N-terminus (residues 1-17), in contrast to the 5P state.

321 These changes are consistent with the observation that the chemical shift changes
322 between the NP and the 5P state are the largest at the canonical binding site residues ¹⁹. In the NP
323 state there are larger distances between the T46 phosphorylation site and all residues that will
324 become the "N-IDR" upon phosphorylation than for the coil ensemble, and there are also larger
325 distances between T37 and some residues in this N-IDR forming domain than in the coil (Fig.
326 3A). Conversely, in the 5P ensemble, the residues near phosphorylation sites pT37 and pT46
327 have distances that are the most reduced compared to the 5P coil ensemble. This can be seen
328 more clearly by considering the difference contact map (Fig. 4B), where differences in fractional
329 occupancy of inter-residue contacts between the optimized and the coil 5P ensembles are shown,
330 with a contact defined as a C_α - C_α distance $< 8 \text{ \AA}$ (see SI 2.9). The areas of greatest positive
331 contact difference are centered around the T37 and T46 phosphorylation sites and the N-IDR.

332 It has been proposed that C-IDR phosphorylation induces stabilizing contacts with the
333 folded domain, possibly via electrostatic attractions between the C-IDR phosphate groups and
334 the basic regions of the folded domain ^{9, 19}. In our analysis, although the C-IDR is more compact
335 than the random coil and shows sparse contacts with the folded domain, these contacts are not
336 exclusive to the phosphorylation sites, implying that underlying interactions are of a mean-field
337 nature. Instead, our results allude to a potential major role of the N-IDR in stabilizing the
338 structure of the folded domain. The NCPR for 5P 4E-BP2 (see SI, Fig. S5) illustrates that the N-
339 IDR is predominantly positive, while phosphorylation at T37 and T46 lead to a negative four
340 charge difference in the folded domain.

341 A combination of electrostatic interactions between the basic N-IDR and the negative
342 phospho-sites of the folded domain and between the basic parts of the folded domain and the
343 negative phospho-sites in the C-IDR may increase the stability of the folded domain. At the same
344 time, our analysis suggests that C-IDR phosphorylation disrupts the network of intramolecular
345 interactions at regions far away from the phosphorylation sites with only small changes to the
346 global dimensions, similar to other multi-phosphorylated proteins^{25, 53 54}.

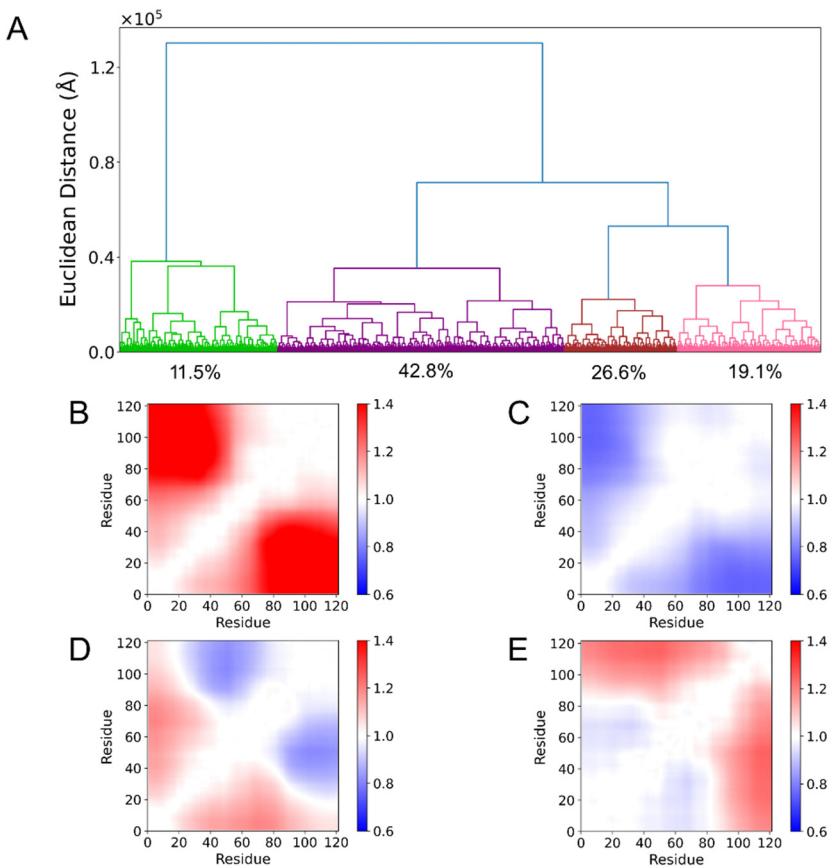
347

348 **Prominent 4E-BP2 structural states revealed by clustering**

349 In contrast to stable folded proteins, IDPs feature a shallow and rugged free-energy
350 landscape, without a pronounced global minimum. This facilitates fast conformational exchange,
351 however weakly funneled landscapes exist for various IDPs^{22 55 56}. Our previous NMR studies
352 have shown that intra-chain interactions significantly affect conformational propensities of 4E-
353 BP2 in different phosphorylation states^{14 9 19}.

354 To better define non-local interactions impacting the 4E-BP2 structure, we applied
355 agglomerative hierarchical clustering to partition the two optimized ensembles^{57 35}. The
356 partitioning leads to a separation of global dimensions and shape, such as radius of gyration, end-
357 to-end distance and asphericity (see SI 2.6, Figs. S6-S7). The dendrogram obtained from
358 hierarchical clustering provides a visualization of the conformer amalgamation process (**Fig.**
359 **5A**). Motivated by the availability of experimental evidence for significant transient contacts, we
360 sought to define states that are more likely to be populated in the function of this protein, since
361 our computational models are optimized to agree with the experimental data.

362



363 **Figure 5.** Agglomerative hierarchical clustering applied to the unrestrained NP 4E-BP2 ensemble. (A)
364 Dendrogram showing the 4 resulting clusters: Cluster 1 (green), Cluster 2 (purple), Cluster 3 (brown) and
365 Cluster 4 (pink). Inter-residue distance maps for each cluster normalized by the entire BME-optimized NP
366 ensemble: (B) Cluster 1, (C) Cluster 2, (D) Cluster 3, and (E) Cluster 4.
367

368 The NP ensemble (unrestrained) partitions first into a small (23%, 4510 conformers) and
369 a large (77%, 15490 conformers) cluster. The large cluster then splits twice before the cutoff
370 criterion is satisfied (Fig. S8A), which brings the total number of clusters to four (Fig. 5A).
371 Upon reweighting the conformers with their BME-derived weights, the abundance of each
372 cluster in the optimized ensemble is obtained (Table S5). Mean pairwise C_α inter-residue
373 distances in each reweighted cluster were normalized by the corresponding distances for the
374 optimized ensemble (Figs. 5B-E).

375 These maps confirm that the clusters have clearly distinct distributions of inter-residue
376 distances, as expected since the dissimilarity metric used was a Euclidean distance between inter-
377 residue distances in different conformers (see Methods 4.3). Note that such populations could not
378 be trivially determined by analyzing the distribution of global parameters such as the radius of
379 gyration (see SI, Fig. S9), underscoring the utility of clustering to disentangle coarse-grained
380 structural propensities in a large and disordered protein ensemble.

381 Cluster 1 (green), whose fraction was reduced from 23% to ~12% upon BME
382 optimization, is the most expanded of all clusters (**Fig. 5B**). In particular, the N- and C-terminal
383 regions are further apart, indicative of extended, quasi-linear poses. On the contrary, Cluster 2
384 (purple) is the most compact overall, while the other two clusters (3-brown, 4-magenta) have
385 complementary distance maps, with a mixture of expansion and compaction compared to the full
386 ensemble. Motivated by the growing literature on the binding mechanisms of IDPs^{58 59 60} and the
387 expansion we previously captured between residues 32-91 and 73-121 of NP 4E-BP2 upon
388 binding to eIF4E²⁰, we asked whether the expanded clusters were conformationally similar to
389 bound-state structures.

390 To this end, back-calculated mean FRET values for each NP cluster were compared via a
391 *z*-test (**Table 2**) to the experimental values obtained for the eIF4E-bound state, $E_{32-91} = 0.26 \pm$
392 0.02 and $E_{73-121} = 0.51 \pm 0.02$ ²⁰. With this metric, Cluster 1 resembles the eIF4E-bound state,
393 as it agrees within a 3σ tolerance level to the experimental values, in particular regarding E_{32-91} .
394 In contrast, the other three clusters have significantly higher E_{32-91} values than the bound-state,
395 but instead agree within 3σ tolerance with the apo-state value.

396

397 **Table 2.** Mean FRET efficiencies of NP clusters compared to apo- & bound-states values via a χ^2 -test*

Cluster #	E_{32-91}	E_{73-121}	Bound z_{32-91}	Bound z_{73-121}	Apo z_{32-91}	Apo z_{73-121}
Cluster 1	0.34	0.56	2.1	1.4	8.2	0.5
Cluster 2	0.70	0.60	12.2	2.4	1.9	0.5
Cluster 3	0.65	0.62	10.8	3.0	0.6	1.0
Cluster 4	0.58	0.49	9.0	0.6	1.3	2.6

398 * Uncertainties of back-calculated FRET efficiencies are ± 0.036 (see Methods 4.4).

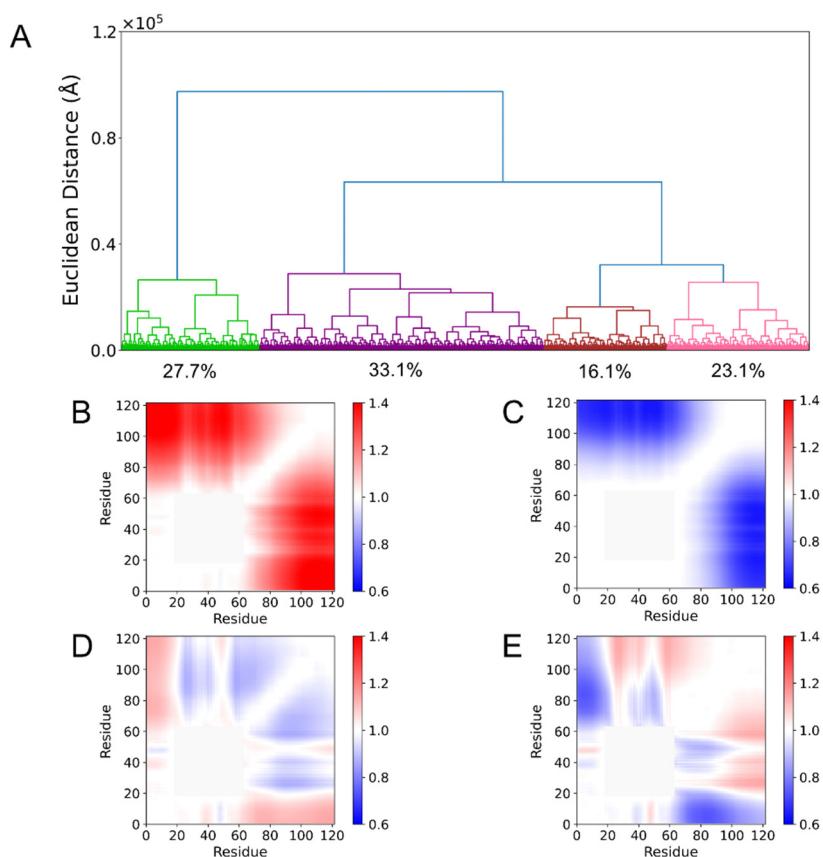
399

400 The presence of a sizeable cluster resembling the bound-state within the apo-state
401 ensemble cannot be predicted *a priori*, as an ensemble could be split/clustered in many ways.
402 Our results allude to a subclass of extended 4E-BP2 conformations that maximize attractive
403 interactions with the eIF4E surface and initiate binding. At the same time, a large majority of
404 conformers (88%) are not compatible with bound-state FRET. This suggests a hybrid model of
405 binding, where both conformational selection and induced fit play a role, the latter being perhaps
406 dominant for 4E-BP2. This remains an area of interest in the field, as both binding models have
407 been proposed for disordered proteins⁶¹ and combined binding mechanisms have also been
408 described⁶².

409 For the 5P ensemble, the normalized cutoff distance clearly levels off when increasing the
410 number of clusters above $N = 4$ (see SI, Figure S8B). BME reweighting increases the population
411 of the most expanded cluster from 20.1% to 30.6%, while reducing the population of the most
412 compact cluster from 41.3% to 30.3% (Table S6). These observations agree with the overall
413 expansion observed in 4E-BP2 upon hyper-phosphorylation using smFRET²⁰.

414 A more obvious clustering cutoff distance and a more balanced distribution of cluster
415 fractions for the 5P ensemble compared to the NP ensemble suggest that the former energy

416 landscape has fewer and deeper “structural wells” than the latter. The inter-residue distance maps
417 reveal the complementarity of clusters (Fig. 6B-E). For instance, Cluster 1 mostly consists of
418 conformers that are expanded throughout the entire chain, while the opposite is true for Cluster
419 2; similarly, Cluster 3 is compact in regions where Cluster 4 is expanded, and vice-versa.

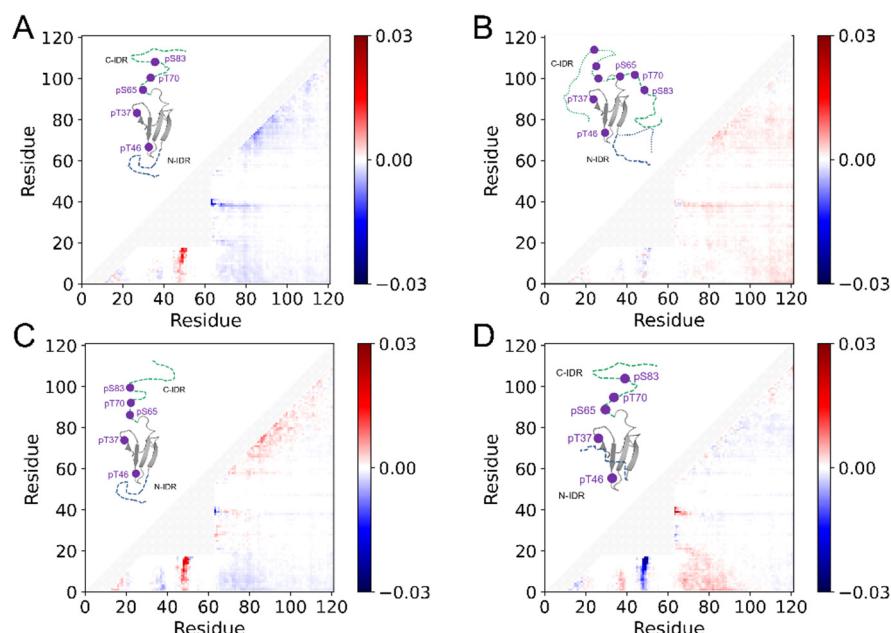


420 **Figure 6.** Agglomerative hierarchical clustering on the unrestrained 5P 4E-BP2 ensemble. (A)
421 Dendrogram showing the 4 resulting clusters: Cluster 1 (green), Cluster 2 (purple), Cluster 3 (brown)
422 and Cluster 4 (pink). Inter-residue distance maps for each cluster normalized by the entire BME-optimized 5P
423 ensemble: (B) Cluster 1, (C) Cluster 2, (D) Cluster 3, and (E) Cluster 4.

424

425 Since interactions of disordered tails with the folded domain in 5P 4E-BP2 are thought to
426 increase the stability of the fold ¹⁹, we then analyzed the abundance of intramolecular contacts at
427 the cluster level (Fig. 7). Cluster 1 shows prominent contacts between the N-IDR and a segment
428 around pT46 in the folded domain, while Cluster 2 shows a delocalized contact pattern between

429 the C-IDR and the folded domain. Conversely, Clusters 3 and 4 contain prominent contacts
430 between the N-IDR and pT46 and pT37 sites in the folded domain, respectively. We refer to
431 Clusters 1 and 2 as C- Interaction Mode (CIM) clusters and Clusters 3 and 4 as N- Interaction
432 Mode (NIM) clusters. To differentiate within the same mode, we denote Cluster 1 as CIM-off
433 and Cluster 2 as CIM-on, while Clusters 3 and 4 are denoted as NIM-pT46 and NIM-pT37,
434 respectively.



435 **Figure 7.** Difference contact maps obtained by subtracting the fractional level of inter-residue contacts in
436 the entire BME-optimized 5P ensemble from those in each cluster. **(A)** Cluster 1 or CIM-off; **(B)** Cluster
437 2 or CIM-on; **(C)** Cluster 3 or NIM-pT46; **(D)** Cluster 4 or NIM-pT37. Representative conformations of
438 each cluster are shown in the upper region of each panel. Two residues are in contact if their C_{α} atoms are
439 within 8 Å.

440

441 These pairs of clusters represent two prominent modes of interaction within the BME-
442 optimized 5P 4E-BP2 ensemble. The CIM-on cluster is enriched in contacts between residues
443 69-73 and 99-103 in the C-IDR with residues 14-19 and 10-13 in the N-IDR, respectively. Such
444 contacts may be stabilized by attractive charge-based interactions as the aforementioned C-IDR
445 residues have negative NCPR values and those within the N-IDR have positive NCPR values

446 (Fig. S5). To a lesser degree, contacts are formed between pT37 and pT46 of the folded domain
447 and the entire C-IDR. This implies CIM-on conformations exhibit more contacts between the N-
448 IDR and the C-IDR, which also brings the C-IDR in closer proximity to the folded domain for
449 possible interactions. Such contacts are absent in the CIM-off cluster. Instead, CIM-off is
450 enriched in contacts between a region near residue pT46 (47-51) and the entire N-IDR.

451 This N-IDR interaction with the folded domain (residues 44-53) is more prominent in the
452 NIM-pT46 cluster, with the highest contact fractions between residues 6 and 48-49, 9-10 and 48,
453 and 10-13 and 49. This cluster has minimal C-IDR contacts, resembling the CIM-off map. The
454 NIM-pT37 cluster also has a high occurrence contact fraction between the N-IDR and the folded
455 domain, except it is centered around residue pT37 and interacts with residues 1-11 of the N-IDR.
456 The opposite sign NCPR values in these regions may aid in driving such contacts (Fig. S5). For
457 these conformers, prominent contacts between the N-IDR and the C-IDR occur between residues
458 4-7 and 77-81, 4-6 and 66-69, and 1-3 and 102-105. This is similar to CIM-on conformers,
459 suggesting that contacts occurring between the N- and C-IDRs facilitate interactions between the
460 folded domain and the C-IDR.

461

462 **3. DISCUSSION**

463 Ensemble modelling of dynamic and/or disordered proteins is a growing area of research
464 ^{24, 25, 31, 63}, reflecting the increased awareness of their functional importance. Recently, we
465 assessed the effects of various starting conformer pools and optimization methods for the
466 integrative modelling of the disordered protein Sic1 ³⁷. The quality of initial conformer pools had
467 the highest impact in obtaining good agreement of the optimized ensemble with experimental
468 data and is positively correlated with the N_{eff} value for the optimized ensemble. Using MD

469 priors for the Sic1 protein, we found $N_{eff} \approx 0.75$ ³⁷, while a study that applied BME to MD
470 simulations of the ACTR protein with CS restraints found $N_{eff} \approx 0.67$ ⁶⁴.

471 For 4E-BP2, the N_{eff} obtained for the optimized 5P ensemble is significantly higher than
472 the value for the optimized NP ensemble, 0.78 vs. 0.40. This result is consistent with the
473 aforementioned studies, as 5P conformers contain a significant folded fraction (residues 18-62).
474 Although we included not one, but 20 different PDB structures to describe the folded domain⁹,
475 initial 5P conformers are much more restrained than initial NP conformers. For both
476 phosphoforms, two smFRET efficiencies/distances were the most powerful restraints for the
477 optimization procedure, while chemical shifts had the least impact, reflecting the high
478 uncertainty from back-calculation of these values.

479 Interestingly, the NP ensemble appears to be more expanded overall than the 5P
480 ensemble by R_g (experimental, back-calculated) and R_h (back-calculated) measures, while R_h
481 measured by FCS and two internal distances measured by smFRET show the opposite trend^{19, 20}.
482 This may be a real effect reflecting different shapes/topologies of the two 4E-BP2 phosphoforms,
483 or it may be an artefact due to limited sampling in the initial pools. Future studies will benefit
484 from more accurate and diverse sampling of the conformational space, e.g., by better sampling
485 at/around the five phosphorylation sites. In addition, more reliable back-calculators for NMR
486 quantities (CS and PRE) and more smFRET distance restraints would significantly increase the
487 confidence of the optimized ensembles.

488 Analysis of the optimized NP ensemble revealed a pronounced concavity in the inter-
489 residue scaling profile for sequence separations on the order of 60-80 residues. This is likely
490 caused by a combination of electrostatic charge mixing, hydrophobic interactions between

491 residues 20-40 and 80-100, and pi interactions involving tyrosines Y34 and Y54 and C-terminal
492 lysines and arginines.

493 Residues 19-28 show increased flexibility when bound to eIF4E ¹⁴. Our 2D distance maps
494 point to interactions between these residues and residues in the C-terminal region controlling the
495 non-local compaction of NP 4E-BP2. Binding to the surface of eIF4E may release these intra-
496 molecular interactions, enhancing chain dynamics. This scenario would be consistent with our
497 recent findings, in which we captured the expansion and increased local dynamics of 4E-BP2
498 upon binding to eIF4E ²⁰. Furthermore, clustering analysis reveals only a minor sub-population
499 (~12%) that is “bound-state like”, also indicating major rearrangements of the chain when 4E-
500 BP2 binds to eIF4E. smFRET experiments are currently under way probing different segments of
501 the chain in the apo vs. the bound state. The new data will add important restraints to our
502 modelling and help define the binding mechanism of this IDP system.

503 Difference distance maps reveal that the residues in the 5P folded domain show fewer
504 contacts with the C-terminal region than they do in the NP state. Previously, we found evidence
505 of a fast exchange between α -helical and β -strand conformations in the 2P state (pT37 and
506 pT46), especially between residues 49 and 67 ⁹. Our results suggest that the addition of three
507 phosphate groups in the C-terminal region may break the residue contacts that stabilize the α -
508 helix, thus favoring the β -fold. Clustering analysis of the 5P ensemble captured four different
509 modes of non-local interaction that define major topologies of the 5P state. This categorization of
510 the ensemble’s heterogeneity hints at a mechanism for stabilization of the folded domain by the
511 C-IDR in which the N-IDR acts both as a chaperone and an inhibitor.

512 This mechanism could act as follows: interaction of N-IDR with the folded domain
513 driven by contacts with pT46 (present in CIM-off and more prominently in NIM-pT46) stabilizes
514 a pose in which N- and C-IDRs are brought closer to each other. The average conformation then
515 enters a NIM-pT37 average conformation where the pT46 contact is broken and the N-IDR
516 forms contacts with the folded domain around pT37. This allows the C-IDR to form contacts
517 with the starting residues of the N-IDR and permits the C-IDR to loosely interact with the
518 starting residues of the folded domain. Finally, the N-IDR moves away from the folded domain
519 as 5P 4E-BP2 enters the CIM-on state. Here, residues throughout the C-IDR form contacts
520 around residues pT37 and pT46 after being led there by the N-IDR.

521 Additional ensemble models of the other 4E-BP2 phosphorylation states, in particular the
522 two-fold phosphorylated state would contribute to unraveling this mechanism. Undoubtedly,
523 combined efforts in improving the quality of the starting conformers, increasing the accuracy of
524 back-calculators and obtaining new more restrictive experimental data will be instrumental in
525 solving the fascinating molecular puzzle that is the 4E-BP2/eIF4E system.

526

527 **4. METHODS**

528 **4.1 Conformer generation**

529 4E-BP2 conformers were generated using the FastFloppyTail (FFT) algorithm, an
530 optimized version of the Rosetta-based FloppyTail program which is ~10 times faster and has
531 enhanced accuracy via an improved fragment selection scheme ²⁹ (see SI 1.1) . FFT has been
532 applied to model inter-domain linkers ³⁶ and several IDPs such as α -synuclein, Sic1 and the
533 unfolded state of the drkN SH3 domain ²⁹.

534 For NP 4E-BP2, we generated 20,000 conformers using FFT and a disorder prediction
535 file created by the PsiPred DISOPRED3 web server ⁶⁵. For the partially folded 5P 4E-BP2, we
536 used FFT to sample the N- and C-termini (residues 1-17 and 63-121, respectively) with PsiPred
537 DISOPRED3 disorder predictions. The folded domain (residues 18-62) consisted of the 20
538 lowest energy NMR-derived structures ⁹ and were fixed during FFT sampling of the IDRs. Each
539 of the 20 PDB entries (PDB ID: 2MX4) were used with equal weight in generating the 5P 4E-
540 BP2 ensemble (1000 structures per folded domain for a 20,000-conformer ensemble). The
541 starting 5P structures had N- and C-terminal IDRs concatenated to the folded domain by using
542 the “bond” function between pairs of carbon atoms in PyMOL ⁶⁶. To create ideal bond lengths
543 and angles while avoiding steric clashes, the “Idealize” and “Relax” Rosetta algorithms ^{67 68} were
544 applied to the structures.

545

546 **4.2 Ensemble refinement**

547 We used the BME method ³² to refine the starting FFT conformational ensembles based
548 on information supplied by experimental data. BME accounts for the uncertainty in estimating
549 the confidence in the unrestrained FFT ensemble versus the experimental data by means of a
550 tunable hyperparameter (θ). Given certain restraints, it holds that the most probable distribution
551 compatible with the experimental data is the distribution of maximal entropy, ^{65 69}. As such,
552 conformer weights are tuned to minimize the following objective function:

$$553 \quad \mathcal{L} = \frac{1}{2} \tilde{\chi}^2(\omega_1, \dots, \omega_M) - \theta S_{REL}(\omega_1, \dots, \omega_M) \quad (1)$$

554 where ω_i is the weight for conformer i in the reweighted ensemble, M is the number of
555 conformers, θ is a hyperparameter which represents the degree of ensemble refinement and $\tilde{\chi}^2$ is

556 the non-reduced chi-squared. Note that we refer to reduced chi-squared values (normalized by
557 the number of degrees of freedom) without a tilde (χ^2) and the non-reduced variant with a tilde
558 ($\tilde{\chi}^2$). For more details, see SI section 2.1.

559 In the absence of a clear minimum on the optimization curve, L-curve analysis was
560 applied to find the “knee” point using the *kneed* package in Python⁷⁰. The value of N_{eff} for both
561 NP and 5P 4E-BP2 ensembles were determined by first removing concave down portions of the
562 PRE RMSD curve plotted as a function of N_{eff} (see **Fig. 1**), and then sampling the spline
563 interpolated plot at 1000 points uniformly throughout the curve. The “knee” point was then
564 determined from the resulting discrete data to obtain the point of maximum curvature.

565 The points determined by the kneedle algorithm corresponds to the solid dashed lines in
566 **Fig. 1** and the associated gray regions account for the variance across 5000-conformer replicate
567 ensemble calculations of the same optimization (see SI, Tables S7, S8). More specifically, the
568 gray region (on both sides of the dashed grey line) is the largest absolute difference between the
569 point obtained via the above procedure for the 20,000-conformer ensemble analyzed in the main
570 text and across the 5000-conformer replicates. This results in an N_{eff} uncertainty of ± 0.03 and
571 ± 0.05 for the NP and 5P 4E-BP2 ensembles, respectively. The 5000-conformer replicate
572 ensembles were generated by splitting the 20,000-conformer ensemble into four equally sized
573 ensembles.

574 Upon refining ensembles with BME, the difficulty of fitting the mean FRET efficiency
575 for NP 4E-BP2 labelled at residues 32 and 91 ($\langle E \rangle_{32-91}$) became apparent. Indeed, a large
576 fraction of the prior ensemble must be discarded ($N_{eff} = 0.03$) to obtain good agreement with
577 the experimental averages ($\chi^2_{FRET} = 1.0$). The reason for this behavior is due to the BME

578 protocol minimizing the sum: $\tilde{\chi}_{Total}^2 = \tilde{\chi}_{SAXS}^2 + \tilde{\chi}_{CS}^2 + \tilde{\chi}_{FRET}^2$, where each term in the sum is a
579 non-reduced chi-squared. This means that experiments with many experimental datapoints,
580 although not all independent (e.g., SAXS and CS), contribute much more to the total than
581 smFRET. Hence, the optimization will be heavily biased towards reducing their $\tilde{\chi}^2$ values. To
582 correct this, a hyperparameter controlling the weight of $\tilde{\chi}_{FRET}^2$ in the BME optimization was
583 introduced (Ω), modifying $\tilde{\chi}_{Total}^2$ to the following form: $\tilde{\chi}_{Total}^2 = \tilde{\chi}_{SAXS}^2 + \tilde{\chi}_{CS}^2 + \Omega \tilde{\chi}_{FRET}^2$, as
584 implemented in our previous study³⁷. The hyperparameter Ω was tuned such that FRET was in
585 good agreement with experimental values with negligible changes to the other restraints (see SI,
586 Fig. S10).

587 Due to inaccuracies in both prior ensemble and experimental data, it is not clear what θ
588 value should be selected for the most probable ensemble that fits all restraints. To resolve this
589 issue, PRE data were not integrated as a restraint and were used instead to determine an optimal
590 N_{eff} by choosing the “knee” point on the PRE RMSD curve that is uniformly sampled 1000
591 times for the full range of N_{eff} after spline interpolation. For comparison of experimental and
592 back-calculated PRE NMR data, we have opted to compare ratios of intensities of peaks in the
593 oxidized and reduced samples to back-calculated data using DEERPREDict⁷¹; see below. We
594 prefer comparing intensity ratios in contrast to a generally utilized strategy which converts PRE
595 intensity ratios to distances⁷². Such estimates are highly imprecise and, due to the required r^{-6}
596 averaging, PRE distances act as a weak restraint where only a few conformers are needed to fit
597 the data in order to achieve good agreement⁷³.

598

599

600 **4.3 Hierarchical clustering**

601 The NP and 5P 4E-BP2 ensembles were divided into sub-ensembles using hierarchical
602 clustering using the Ward variance minimization algorithm⁷⁴. The distance metric for conformer
603 (di)similarity is computed as the Euclidean distance in the 7260 – dimensional space where
604 conformers are represented as matrices containing all non-degenerate pairwise inter-residue C_α-
605 C_α distances. The distance $D_{i,j}$ between two conformers i and j is:

606
$$D_{i,j} = \sqrt{\sum_{a=1}^{N(N-1)/2} |r_a^{(i)} - r_a^{(j)}|^2} \quad (2)$$

607 where N is the number of residues (121 in this case) and $r_a^{(i)}$ is the distance between C_α atoms of
608 the a^{th} residue pair for the i^{th} conformer.

609 The dendrogram distance axis does not have a simple biophysical interpretation (see SI
610 2.4); we therefore transformed the dendrogram distance axis to a Euclidean distance between
611 cluster means (D_T) using the relation given by eq. S8 in SI, section 2.5⁷⁵. We then divide this
612 value by the square root of the number of non-degenerate inter-residue distance combinations to
613 obtain an RMSD value of inter-residue C_α distances. We name this quantity, which is analogous
614 to the atomic RMSD for protein structures (eq. S4), “normalized variance”.

615 To determine a cutoff for clustering, the number of clusters was plotted against the
616 normalized variance (see Fig. S5), and L-curve analysis was applied to find the optimum number
617 of clusters. This corresponds to 6 clusters for NP and 4 clusters for 5P. However, the three lowest
618 populated clusters in the optimized NP ensemble (1.3%, 2.9%, and 7.3%) were combined into a
619 single cluster to which these states are agglomerated.

620

621 **4.4 FRET calculations**

622 Back-calculated FRET efficiency, $\langle E \rangle$, values of the IDP ensembles were computed via
623 accessible volume simulations^{76 77} using the *AvTraj*⁷⁸ and *MDTraj*⁷⁹ Python packages. We
624 utilize dye parameters for Alexa488 and Alexa647 dye-linker systems documented previously⁸⁰
625⁸¹. The back-calculated uncertainty was calculated by taking the difference between the mean
626 FRET efficiencies in an ensemble computed using the lower and upper bounds of the Förster
627 radius, respectively²⁵. A back-calculated uncertainty of $\sigma_{FRET}^{BC} = 0.03$ was computed for all
628 ensembles. For use in BME, we added this uncertainty in quadrature with the experimental
629 uncertainty ($\sigma_{FRET}^{BC} = 0.02$), resulting in a combined uncertainty of $\sqrt{\sigma_{FRET}^{BC}^2 + \sigma_{FRET}^{EXP}^2} = 0.036$
630 used for BME calculations.

631

632 **4.5 SAXS data and calculations**

633 The cloning, expression, purification and phosphorylation of 4E-BP2 was performed as
634 previously described^{9, 14, 19}. A SAXSpace instrument with ASX autosampler (Anton-Paar
635 GmbH, Austria) was used to conduct small-angle X-Ray scattering experiments. The SAXSpace
636 was equipped with a long fine focus glass sealed copper tube using line collimation focus (40
637 kV/50 mA, $K\alpha = 0.1542$ nm), TCStage 150 sample holder and a 1D CMOS Mythen2 R 1K
638 detector. 4E-BP2 protein samples at concentrations of 2-20 mg/mL were loaded into a 1 mm
639 diameter quartz flow cell using the autosampler and six, 10-minute exposure frames were
640 collected at 20°C under vacuum. Data was corrected for background scattering using sample
641 buffer alone analyzed under the same conditions. SAXStreat software (Anton-Paar GmbH,
642 Austria) was used to define the origin of the scattering curve, correct image distortion and

643 convert the data to 1D scattering profiles. SAXSQuant (Anton-Paar GmbH, Austria) was then
644 used to desmear the data.

645 The Pepsi-SAXS method ⁸² with default solvation parameters was used to back-calculate
646 SAXS curves from IDP ensembles. Pepsi-SAXS is an efficient method which utilizes the
647 multipole expansion scheme for scattering intensities and has been validated on more than 50
648 experimental SAXS scattering profiles. Only the experimental SAXS scattering intensity
649 uncertainties were utilized in the BME optimization.

650

651 **4.6 NMR data and calculations**

652 The ShiftX program ⁸³ was used to back-calculate secondary structure Chemical Shifts
653 (CS) from the IDP ensembles. The ShiftX method can quickly compute backbone and sidechain
654 ¹H, ¹³C and ¹⁵N chemical shifts in for a single ~100-residue conformer. All experimentally
655 measured chemical shifts were employed in our BME calculations except in the 5P 4E-BP2
656 ensemble where phosphosites (65, 70, 83) and immediately subsequent residues (66, 71, 84)
657 were excluded due to lack of functionality and inaccurate predictions indicated in the ShiftX
658 output files, respectively. We also excluded 5P 4E-BP2 CS values assigned to residues within the
659 folded domain (residues 19-61) since BME would not be able to refine the disordered conformer
660 ensemble otherwise. Only back-calculation uncertainties of 0.98 and 1.10 were used for C_α and
661 C_β chemical shifts, respectively for BME calculations.

662 To generate PRE data for NP 4E-BP2, we first generated single-cysteine mutant
663 constructs using a cysteineless version with C35 and C73 mutated to serines. Single cysteines
664 were then introduced at positions 35, 65, 73, 91, 110 and 121 in order to attach a paramagnetic

665 spin label at these positions. Proteins, that were labelled isotopically with ^{15}N , were purified and
666 a TEMPOL-maleimide (Toronto Research Chemicals) spin label was covalently linked as
667 previously described ¹⁹. Two matched samples were made for each protein with the spin label in
668 either an oxidized or a reduced state. Samples were oxidized or reduced by addition of either
669 five-fold excess of TEMPOL (Toronto Research Chemicals) or 1 mM ascorbic acid,
670 respectively. Prior to NMR experiments, the samples were buffer exchanged into a buffer
671 containing 30 mM sodium phosphate, 100 mM sodium chloride, 1 mM EDTA, 1 mM
672 benzamidine, pH 6 using argon purged buffers to maintain the oxidation state of the spin label.

673 For all samples, sensitivity-enhanced HSQC experiments ⁸⁴ and unenhanced-NH-T2
674 experiments ⁸⁵ were recorded at 20 °C on an 800 MHz Bruker spectrometer equipped with a
675 triple-resonance cryoprobe. Relaxation delays for the T2 experiment were 7, 9, 14, 20, 26, 33,
676 41, 49, 59, 70, 82 and 95 ms, with the 14 and 59 ms points repeated for error estimation. A
677 comparison of the T2 data and the ratios of the oxidized and reduced samples revealed highly
678 similar trends. Though less rigorously quantitative, the peak intensities from the HSQC
679 experiments were used as input for DEERPREDict (see below), because the T2 data and HSQC
680 shared highly similar trends. PRE data for NP 4E-BP2 is included in the supplementary
681 information, and the PRE data for 5P 4E-BP2 has been published previously ¹⁹.

682 The DEERPREDict program was used to back-calculate PRE intensity ratios ⁷¹. The
683 parameters used were the same for both phosphoforms: total correlation time $\tau_t = 0.5$ ns, spin
684 label effective correlation time $\tau_C = 4$ ns, total INEPT time $t_d = 10$ ms, reduced transverse
685 relaxation time $R_2 = 6$ Hz and proton Larmor frequency $\omega_H/2\pi = 800.14$. PRE data points for
686 which both the spin label residue and residue to which it transfers were both in the folded
687 domain were excluded in the analysis as they experienced little or no change. The metric chosen

688 to quantify agreement is the root-mean-squared average over the root-mean-squared deviations
689 between back-calculated and experimental PRE intensity ratios (PRE RMSD) (see SI 2.8).

690

691

692 **ACKNOWLEDGEMENTS**

693 We thank John J. Ferrie from the Department of Chemistry at the University of Pennsylvania for
694 advice on applying FastFloppyTail to generate 4E-BP2 conformers, as well as modifying the
695 FastFloppyTail program so that it can include phosphorylated residues for the 5P state. This work
696 has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC
697 RGPIN-2023-04864 to C.C.G.) and the Canadian Institutes of Health Research (CIHR FND-
698 148375 to J.D.F.-K.).

699 **References**

700 (1) Fisher, C. K.; Stoltz, C. M. Protein Structure along the Order-Disorder Continuum. *Journal of the*
701 *American Chemical Society* **2011**, 133 (26), 10022-10025. DOI: 10.1021/ja203075p. Forman-Kay, J. D.;

702 Mittag, T. From Sequence and Forces to Structure, Function, and Evolution of Intrinsically Disordered
703 Proteins. *Structure* **2013**, 21 (9), 1492-1499. DOI: 10.1016/j.str.2013.08.001.

704 (2) Berlow, R. B.; Dyson, H. J.; Wright, P. E. Functional advantages of dynamic protein disorder. *Febs Lett*
705 **2015**, 589 (19), 2433-2440. DOI: 10.1016/j.febslet.2015.06.003.

706 (3) Tsang, B.; Pritišanac, I.; Scherer, S. W.; Moses, A. M.; Forman-Kay, J. D. Phase Separation as a Missing
707 Mechanism for Interpretation of Disease Mutations. *Cell* **2020**, 183 (7), 1742-1756. DOI:
708 <https://doi.org/10.1016/j.cell.2020.11.050>.

709 (4) Csizmok, V.; Follis, A. V.; Kriwacki, R. W.; Forman-Kay, J. D. Dynamic Protein Interaction Networks and
710 New Structural Paradigms in Signaling. *Chem Rev* **2016**, 116 (11), 6424-6462. DOI:
711 10.1021/acs.chemrev.5b00548. Dosztanyi, Z.; Chen, J.; Dunker, A. K.; Simon, I.; Tompa, P. Disorder and
712 sequence repeats in hub proteins and their implications for network evolution. *J Proteome Res* **2006**, 5
713 (11), 2985-2995. DOI: 10.1021/pr060171o.

714 (5) Borgia, A.; Borgia, M. B.; Bugge, K.; Kissling, V. M.; Heidarsson, P. O.; Fernandes, C. B.; Sottini, A.;
715 Soranno, A.; Buholzer, K. J.; Nettels, D.; et al. Extreme disorder in an ultrahigh-affinity protein complex.
716 *Nature* **2018**, 555 (7694), 61-+. DOI: 10.1038/nature25762.

717 (6) Martin, E. W.; Holehouse, A. S. Intrinsically disordered protein regions and phase separation:
718 sequence determinants of assembly or lack thereof. *Emerg Top Life Sci* **2020**, 4 (3), 307-329. DOI:
719 10.1042/ETls20190164. Pak, C. W.; Kosno, M.; Holehouse, A. S.; Padrick, S. B.; Mittal, A.; Ali, R.; Yunus, A.
720 A.; Liu, D. R.; Pappu, R. V.; Rosen, M. K. Sequence Determinants of Intracellular Phase Separation by
721 Complex Coacervation of a Disordered Protein. *Mol Cell* **2016**, 63 (1), 72-85. DOI:
722 10.1016/j.molcel.2016.05.042.

723 (7) Baker, J. M. R.; Hudson, R. P.; Kanelis, V.; Choy, W. Y.; Thibodeau, P. H.; Thomas, P. J.; Forman-Kay, J.
724 D. CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. *Nat Struct
725 Mol Biol* **2007**, 14 (8), 738-745. DOI: 10.1038/nsmb1278. He, Y. N.; Chen, Y. H.; Mooney, S. M.;
726 Rajagopalan, K.; Bhargava, A.; Sacho, E.; Weninger, K.; Bryan, P. N.; Kulkarni, P.; Orban, J.
727 Phosphorylation-induced Conformational Ensemble Switching in an Intrinsically Disordered
728 Cancer/Testis Antigen. *J Biol Chem* **2015**, 290 (41), 25090-25102. DOI: 10.1074/jbc.M115.658583.

729 (8) Banerjee, P. R.; Mitrea, D. M.; Kriwacki, R. W.; Deniz, A. A. Asymmetric Modulation of Protein Order-
730 Disorder Transitions by Phosphorylation and Partner Binding. *Angewandte Chemie International Edition*
731 **2016**, 55 (5), 1675-1679. DOI: <https://doi.org/10.1002/anie.201507728>.

732 (9) Bah, A.; Vernon, R. M.; Siddiqui, Z.; Krzeminski, M.; Muhandiram, R.; Zhao, C.; Sonenberg, N.; Kay, L.
733 E.; Forman-Kay, J. D. Folding of an intrinsically disordered protein by phosphorylation as a regulatory
734 switch. *Nature* **2015**, 519 (7541), 106-U240. DOI: 10.1038/nature13999.

735 (10) Uversky, V. N.; Oldfield, C. J.; Dunker, A. K. Intrinsically disordered proteins in human diseases:
736 Introducing the D-2 concept. *Annu Rev Biophys* **2008**, 37, 215-246. DOI:
737 10.1146/annurev.biophys.37.032807.125924.

738 (11) Biesaga, M.; Frigole-Vivas, M.; Salvatella, X. Intrinsically disordered proteins and biomolecular
739 condensates as drug targets. *Curr Opin Chem Biol* **2021**, 62, 90-100. DOI: 10.1016/j.cbpa.2021.02.009.

740 (12) Tait, S.; Dutta, K.; Cowburn, D.; Warwicker, J.; Doig, A. J.; McCarthy, J. E. G. Local control of a
741 disorder-order transition in 4E-BP1 underpins regulation of translation via eIF4E. *P Natl Acad Sci USA*
742 **2010**, 107 (41), 17627-17632. DOI: 10.1073/pnas.1008242107. De Benedetti, A.; Harris, A. L. eIF4E
743 expression in tumors: its possible role in progression of malignancies. *Int J Biochem Cell B* **1999**, 31 (1),
744 59-72. DOI: Doi 10.1016/S1357-2725(98)00132-0.

745 (13) Sonenberg, N.; Hinnebusch, A. G. Regulation of Translation Initiation in Eukaryotes: Mechanisms
746 and Biological Targets. *Cell* **2009**, *136* (4), 731-745. DOI: 10.1016/j.cell.2009.01.042.

747 (14) Lukhele, S.; Bah, A.; Lin, H.; Sonenberg, N.; Forman-Kay, J. D. Interaction of the Eukaryotic Initiation
748 Factor 4E with 4E-BP2 at a Dynamic Bipartite Interface. *Structure* **2013**, *21* (12), 2186-2196. DOI:
749 10.1016/j.str.2013.08.030.

750 (15) Banko, J. L.; Merhav, M.; Stern, E.; Sonenberg, N.; Rosenblum, K.; Klann, E. Behavioral alterations in
751 mice lacking the translation repressor 4E-BP2. *Neurobiol Learn Mem* **2007**, *87* (2), 248-256. DOI:
752 10.1016/j.nlm.2006.08.012. Klann, E.; Sweatt, J. D. Altered protein synthesis is a trigger for long-term
753 memory formation. *Neurobiol Learn Mem* **2008**, *89* (3), 247-259. DOI: 10.1016/j.nlm.2007.08.009.

754 (16) Gkogkas, C. G.; Khoutorsky, A.; Ran, I.; Rampakakis, E.; Nevarko, T.; Weatherill, D. B.; Vasuta, C.;
755 Yee, S.; Truitt, M.; Dallaire, P.; et al. Autism-related deficits via dysregulated eIF4E-dependent
756 translational control. *Nature* **2013**, *493* (7432), 371-U113. DOI: 10.1038/nature11628.

757 (17) Peter, D.; Igreja, C.; Weber, R.; Wohlbold, L.; Weiler, C.; Ebertsch, L.; Weichenrieder, O.; Izaurrealde,
758 E. Molecular Architecture of 4E-BP Translational Inhibitors Bound to eIF4E. *Mol Cell* **2015**, *57* (6), 1074-
759 1087. DOI: <https://doi.org/10.1016/j.molcel.2015.01.017>.

760 (18) Igreja, C.; Peter, D.; Weiler, C.; Izaurrealde, E. 4E-BPs require non-canonical 4E-binding motifs and a
761 lateral surface of eIF4E to repress translation. *Nat Commun* **2014**, *5* (1), 4790. DOI:
762 10.1038/ncomms5790.

763 (19) Dawson, J. E.; Bah, A.; Zhang, Z. F.; Vernon, R. M.; Lin, H.; Chong, P. A.; Vanama, M.; Sonenberg, N.;
764 Grdinaru, C. C.; Forman-Kay, J. D. Non-cooperative 4E-BP2 folding with exchange between eIF4E-
765 binding and binding-incompatible states tunes cap-dependent translation inhibition. *Nat Commun* **2020**,
766 *11* (1). DOI: 10.1038/s41467-020-16783-8.

767 (20) Smyth, S.; Zhang, Z.; Bah, A.; Tsangaris, T. E.; Dawson, J.; Forman-Kay, J. D.; Grdinaru, C. C.
768 Multisite phosphorylation and binding alter conformational dynamics of the 4E-BP2 protein. *Biophys J*
769 **2022**, *121* (16), 3049-3060. DOI: 10.1016/j.bpj.2022.07.015 From NLM Medline.

770 (21) Mittag, T.; Marsh, J.; Grishaev, A.; Orlicky, S.; Lin, H.; Sicheri, F.; Tyers, M.; Forman-Kay, J. D.
771 Structure/Function Implications in a Dynamic Complex of the Intrinsically Disordered Sic1 with the Cdc4
772 Subunit of an SCF Ubiquitin Ligase. *Structure* **2010**, *18* (4), 494-506. DOI: 10.1016/j.str.2010.01.020.

773 (22) Marsh, J. A.; Dancheck, B.; Ragusa, M. J.; Allaire, M.; Forman-Kay, J. D.; Peti, W. Structural Diversity in
774 Free and Bound States of Intrinsically Disordered Protein Phosphatase 1 Regulators. *Structure* **2010**, *18*
775 (9), 1094-1103. DOI: 10.1016/j.str.2010.05.015.

776 (23) Papoian, G. A. Proteins with weakly funneled energy landscapes challenge the classical structure-
777 function paradigm. *P Natl Acad Sci USA* **2008**, *105* (38), 14237-14238. DOI: 10.1073/pnas.0807977105.

778 (24) Bonomi, M.; Heller, G. T.; Camilloni, C.; Vendruscolo, M. Principles of protein structural ensemble
779 determination. *Curr Opin Struc Biol* **2017**, *42*, 106-116. DOI: 10.1016/j.sbi.2016.12.004. Jensen, M. R.;
780 Zweckstetter, M.; Huang, J. R.; Backledge, M. Exploring Free-Energy Landscapes of Intrinsically
781 Disordered Proteins at Atomic Resolution Using NMR Spectroscopy. *Chem Rev* **2014**, *114* (13), 6632-
782 6660. DOI: 10.1021/cr400688u. Marsh, J. A.; Forman-Kay, J. D. Ensemble modeling of protein disordered
783 states: Experimental restraint contributions and validation. *Proteins-Structure Function and*
784 *Bioinformatics* **2012**, *80* (2), 556-572. DOI: 10.1002/prot.23220.

785 (25) Gomes, G. N. W.; Krzeminski, M.; Namini, A.; Martin, E. W.; Mittag, T.; Head-Gordon, T.; Forman-
786 Kay, J. D.; Grdinaru, C. C. Quantitative Description of
787 Intrinsically Disordered Proteins Using Single-Molecule FRET, NMR, and SAXS. *Journal of the American
788 Chemical Society* **2021**, *143* (48), 20109-20121. DOI: 10.1021/jacs.1c06264.

789 (26) Gomes, G. N. W.; Krzeminski, M.; Namini, A.; Martin, E. W.; Mittag, T.; Head-Gordon, T.; Forman-
790 Kay, J. D.; Grdinaru, C. C. Conformational Ensembles of an Intrinsically Disordered Protein Consistent
791 with NMR, SAXS, and Single-Molecule FRET. *Journal of the American Chemical Society* **2020**, *142* (37),
15697-15710. DOI: 10.1021/jacs.0c02088.

792 (26) Feldman, H. J.; Hogue, C. W. A fast method to sample real protein conformational space. *Proteins*
793 **2000**, 39 (2), 112-131. From NLM Medline. Feldman, H. J.; Hogue, C. W. V. Probabilistic sampling of
794 protein conformations: New hope for brute force? *Proteins-Structure Function and Bioinformatics* **2002**,
795 46 (1), 8-23.

796 (27) Ozenne, V.; Bauer, F.; Salmon, L.; Huang, J. R.; Jensen, M. R.; Segard, S.; Bernado, P.; Charavay, C.;
797 Blackledge, M. Flexible-meccano: a tool for the generation of explicit ensemble descriptions of
798 intrinsically disordered proteins and their associated experimental observables. *Bioinformatics* **2012**, 28
799 (11), 1463-1470. DOI: 10.1093/bioinformatics/bts172.

800 (28) Teixeira, J. M. C.; Liu, Z. H.; Namini, A.; Li, J.; Vernon, R. M.; Krzeminski, M.; Shamandy, A. A.; Zhang,
801 O.; Haghightlari, M.; Yu, L.; et al. IDPConformerGenerator: A Flexible Software Suite for Sampling the
802 Conformational Space of Disordered Protein States. *The Journal of Physical Chemistry A* **2022**, 126 (35),
803 5985-6003. DOI: 10.1021/acs.jpca.2c03726.

804 (29) Ferrie, J. J.; Petersson, E. J. A Unified De Novo Approach for Predicting the Structures of Ordered
805 and Disordered Proteins. *J Phys Chem B* **2020**, 124 (27), 5538-5548. DOI: 10.1021/acs.jpcb.0c02924
806 From NLM Medline.

807 (30) Krzeminski, M.; Marsh, J. A.; Neale, C.; Choy, W. Y.; Forman-Kay, J. D. Characterization of disordered
808 proteins with ENSEMBLE. *Bioinformatics* **2013**, 29 (3), 398-399. DOI: 10.1093/bioinformatics/bts701
809 From NLM Medline.

810 (31) Lincoff, J.; Haghightlari, M.; Krzeminski, M.; Teixeira, J. M. C.; Gomes, G. N. W.; Grdinaru, C. C.;
811 Forman-Kay, J. D.; Head-Gordon, T. Extended experimental inferential structure determination method
812 in determining the structural ensembles of disordered protein states. *Commun Chem* **2020**, 3 (1). DOI:
813 ARTN 74
814 10.1038/s42004-020-0323-0.

815 (32) Bottaro, S.; Bengtsen, T.; Lindorff-Larsen, K. Integrating Molecular Simulation and Experimental
816 Data: A Bayesian/Maximum Entropy Reweighting Approach. *Methods Mol Biol* **2020**, 2112, 219-240.
817 DOI: 10.1007/978-1-0716-0270-6_15 From NLM Medline.

818 (33) Appadurai, R.; Koneru, J. K.; Bonomi, M.; Robustelli, P.; Srivastava, A. Demultiplexing the
819 heterogeneous conformational ensembles of intrinsically disordered proteins into structurally similar
820 clusters. *bioRxiv* **2022**, 2022.2011.2011.516231. DOI: 10.1101/2022.11.11.516231.

821 (34) Lazar, T.; Guharoy, M.; Vranken, W.; Rauscher, S.; Wodak, S. J.; Tompa, P. Distance-Based Metrics
822 for Comparing Conformational Ensembles of Intrinsically Disordered Proteins. *Biophys J* **2020**, 118 (12),
823 2952-2965. DOI: 10.1016/j.bpj.2020.05.015 From NLM Medline.

824 (35) Baul, U.; Chakraborty, D.; Mugnai, M. L.; Straub, J. E.; Thirumalai, D. Sequence Effects on Size,
825 Shape, and Structural Heterogeneity in Intrinsically Disordered Proteins. *J Phys Chem B* **2019**, 123 (16),
826 3462-3474. DOI: 10.1021/acs.jpcb.9b02575 From NLM Medline.

827 (36) Graham, T. G. W.; Ferrie, J. J.; Dailey, G. M.; Tjian, R.; Darzacq, X. Detecting molecular interactions in
828 live-cell single-molecule imaging with proximity-assisted photoactivation (PAPA). *eLife* **2022**, 11. DOI:
829 10.7554/eLife.76870 From NLM Medline.

830 (37) Gomes, G. W.; Namini, A.; Grdinaru, C. C. Integrative Conformational Ensembles of Sic1 Using
831 Different Initial Pools and Optimization Methods. *Front Mol Biosci* **2022**, 9, 910956. DOI:
832 10.3389/fmols.2022.910956 From NLM PubMed-not-MEDLINE.

833 (38) Pesce, F.; Newcombe, E. A.; Seiffert, P.; Tranchant, E. E.; Olsen, J. G.; Grace, C. R.; Kragelund, B. B.;
834 Lindorff-Larsen, K. Assessment of models for calculating the hydrodynamic radius of intrinsically
835 disordered proteins. *Biophys J* **2023**, 122 (2), 310-321. DOI: 10.1016/j.bpj.2022.12.013 From NLM
836 Medline.

837 (39) Felitsky, D. J.; Lietzow, M. A.; Dyson, H. J.; Wright, P. E. Modeling transient collapsed states of an
838 unfolded protein to provide insights into early folding events. *Proc Natl Acad Sci U S A* **2008**, *105* (17),
839 6278-6283. DOI: 10.1073/pnas.0710641105 From NLM Medline.

840 (40) Yamada, J.; Phillips, J. L.; Patel, S.; Goldfien, G.; Calestagne-Morelli, A.; Huang, H.; Reza, R.; Acheson,
841 J.; Krishnan, V. V.; Newsam, S.; et al. A bimodal distribution of two distinct categories of intrinsically
842 disordered structures with separate functions in FG nucleoporins. *Mol Cell Proteomics* **2010**, *9* (10),
843 2205-2224. DOI: 10.1074/mcp.M000035-MCP201 From NLM Medline.

844 (41) Sizemore, S. M.; Cope, S. M.; Roy, A.; Ghirlanda, G.; Vaiana, S. M. Slow Internal Dynamics and
845 Charge Expansion in the Disordered Protein CGRP: A Comparison with Amylin. *Biophys J* **2015**, *109* (5),
846 1038-1048. DOI: 10.1016/j.bpj.2015.07.023 From NLM Medline.

847 (42) Bianchi, G.; Longhi, S.; Grandori, R.; Brocca, S. Relevance of Electrostatic Charges in Compactness,
848 Aggregation, and Phase Separation of Intrinsically Disordered Proteins. *Int J Mol Sci* **2020**, *21* (17). DOI:
849 10.3390/ijms21176208 From NLM Medline.

850 (43) Jo, Y.; Jang, J.; Song, D.; Park, H.; Jung, Y. Determinants for intrinsically disordered protein
851 recruitment into phase-separated protein condensates. *Chem Sci* **2022**, *13* (2), 522-530. DOI:
852 10.1039/d1sc05672g From NLM PubMed-not-MEDLINE.

853 (44) Vernon, R. M.; Chong, P. A.; Tsang, B.; Kim, T. H.; Bah, A.; Farber, P.; Lin, H.; Forman-Kay, J. D. Pi-Pi
854 contacts are an overlooked protein feature relevant to phase separation. *Elife* **2018**, *7*. DOI:
855 10.7554/elife.31486 From NLM Medline.

856 (45) Hofmann, H.; Soranno, A.; Borgia, A.; Gast, K.; Nettels, D.; Schuler, B. Polymer scaling laws of
857 unfolded and intrinsically disordered proteins quantified with single-molecule spectroscopy. *Proceedings
858 of the National Academy of Sciences* **2012**, *109* (40), 16155-16160. DOI: doi:10.1073/pnas.1207719109.

859 (46) Das, R. K.; Pappu, R. V. Conformations of intrinsically disordered proteins are influenced by linear
860 sequence distributions of oppositely charged residues. *Proc Natl Acad Sci U S A* **2013**, *110* (33), 13392-
861 13397. DOI: 10.1073/pnas.1304749110 From NLM Medline.

862 (47) Sawle, L.; Ghosh, K. A theoretical method to compute sequence dependent configurational
863 properties in charged polymers and proteins. *The Journal of Chemical Physics* **2015**, *143* (8). DOI:
864 10.1063/1.4929391 (acccesed 5/18/2023).

865 (48) Holehouse, A. S.; Das, R. K.; Ahad, J. N.; Richardson, M. O.; Pappu, R. V. CIDER: Resources to Analyze
866 Sequence-Ensemble Relationships of Intrinsically Disordered Proteins. *Biophys J* **2017**, *112* (1), 16-21.
867 DOI: 10.1016/j.bpj.2016.11.3200 From NLM Medline.

868 (49) Mao, A. H.; Crick, S. L.; Vitalis, A.; Chicoine, C. L.; Pappu, R. V. Net charge per residue modulates
869 conformational ensembles of intrinsically disordered proteins. *Proc Natl Acad Sci U S A* **2010**, *107* (18),
870 8183-8188. DOI: 10.1073/pnas.0911107107 From NLM Medline.

871 (50) Wang, X.; Beugnet, A.; Murakami, M.; Yamanaka, S.; Proud, C. G. Distinct Signaling Events
872 Downstream of mTOR Cooperate To Mediate the Effects of Amino Acids and Insulin on Initiation Factor
873 4E-Binding Proteins. *Molecular and Cellular Biology* **2005**, *25* (7), 2558-2572. DOI:
874 10.1128/MCB.25.7.2558-2572.2005.

875 (51) Bomblies, R.; Luitz, M. P.; Zacharias, M. Molecular Dynamics Analysis of 4E-BP2 Protein Fold
876 Stabilization Induced by Phosphorylation. *Journal of Physical Chemistry B* **2017**, *121* (15), 3387-3393.
877 DOI: 10.1021/acs.jpcb.6b08597.

878 (52) Zeng, J.; Jiang, F.; Wu, Y. D. Mechanism of Phosphorylation-Induced Folding of 4E-BP2 Revealed by
879 Molecular Dynamics Simulations. *J Chem Theory Comput* **2017**, *13* (1), 320-328. DOI:
880 10.1021/acs.jctc.6b00848.

881 (53) Gibbs, E. B.; Lu, F.; Portz, B.; Fisher, M. J.; Medellin, B. P.; Laremore, T. N.; Zhang, Y. J.; Gilmour, D.
882 S.; Showalter, S. A. Phosphorylation induces sequence-specific conformational switches in the RNA
883 polymerase II C-terminal domain. *Nat Commun* **2017**, *8*, 15233. DOI: 10.1038/ncomms15233 From NLM
884 Medline.

885 (54) Martin, E. W.; Holehouse, A. S.; Grace, C. R.; Hughes, A.; Pappu, R. V.; Mittag, T. Sequence
886 Determinants of the Conformational Properties of an Intrinsically Disordered Protein Prior to and upon
887 Multisite Phosphorylation. *J Am Chem Soc* **2016**, *138* (47), 15323-15335. DOI: 10.1021/jacs.6b10272
888 From NLM Medline.

889 (55) Qiao, Q.; Bowman, G. R.; Huang, X. Dynamics of an intrinsically disordered protein reveal
890 metastable conformations that potentially seed aggregation. *J Am Chem Soc* **2013**, *135* (43), 16092-
891 16101. DOI: 10.1021/ja403147m From NLM Medline.

892 (56) Choi, U. B.; Sanabria, H.; Smirnova, T.; Bowen, M. E.; Weninger, K. R. Spontaneous Switching among
893 Conformational Ensembles in Intrinsically Disordered Proteins. *Biomolecules* **2019**, *9* (3). DOI:
894 10.3390/biom9030114 From NLM Medline.

895 (57) Samanta, H. S.; Chakraborty, D.; Thirumalai, D. Charge fluctuation effects on the shape of flexible
896 polyampholytes with applications to intrinsically disordered proteins. *J Chem Phys* **2018**, *149* (16),
897 163323. DOI: 10.1063/1.5035428 From NLM Medline.

898 (58) Schuler, B.; Borgia, A.; Borgia, M. B.; Heidarsson, P. O.; Holmstrom, E. D.; Nettels, D.; Sottini, A.
899 Binding without folding – the biomolecular function of disordered polyelectrolyte complexes. *Curr Opin
900 Struc Biol* **2020**, *60*, 66-76. DOI: 10.1016/j.sbi.2019.12.006 PMID - 31874413.

901 (59) Wang, W. Recent advances in atomic molecular dynamics simulation of intrinsically disordered
902 proteins. *Phys Chem Chem Phys* **2021**, *23* (2), 777-784. DOI: 10.1039/d0cp05818a From NLM Medline.

903 (60) Luong, T. D. N.; Nagpal, S.; Sadqi, M.; Munoz, V. A modular approach to map out the conformational
904 landscapes of unbound intrinsically disordered proteins. *Proc Natl Acad Sci U S A* **2022**, *119* (23),
905 e2113572119. DOI: 10.1073/pnas.2113572119 From NLM Medline.

906 (61) Uversky, V. N. Multitude of binding modes attainable by intrinsically disordered proteins: a portrait
907 gallery of disorder-based complexes. *Chem Soc Rev* **2011**, *40* (3), 1623-1634. DOI: 10.1039/c0cs00057d
908 From NLM Medline.

909 (62) Arai, M.; Sugase, K.; Dyson, H. J.; Wright, P. E. Conformational propensities of intrinsically
910 disordered proteins influence the mechanism of binding and folding. *Proceedings of the National
911 Academy of Sciences* **2015**, *112* (31), 9614-9619. DOI: doi:10.1073/pnas.1512799112. Chu, X.; Nagpal, S.;
912 Muñoz, V. Molecular Simulations of Intrinsically Disordered Proteins and Their Binding Mechanisms. In
913 *Protein Folding: Methods and Protocols*, Muñoz, V. Ed.; Springer US, 2022; pp 343-362.

914 (63) Lazar, T.; Martínez-Pérez, E.; Quaglia, F.; Hatos, A.; Chemes, Lucía B.; Iserte, J. A.; Méndez, N. A.;
915 Garrone, N. A.; Saldaño, Tadeo E.; Marchetti, J.; et al. PED in 2021: a major update of the protein
916 ensemble database for intrinsically disordered proteins. *Nucleic Acids Research* **2020**, *49* (D1), D404-
917 D411. DOI: 10.1093/nar/gkaa1021 (acccesed 5/5/2023).

918 (64) Crehuet, R.; Buigues, P. J.; Salvatella, X.; Lindorff-Larsen, K. Bayesian-Maximum-Entropy
919 Reweighting of IDP Ensembles Based on NMR Chemical Shifts. *Entropy* **2019**, *21* (9), 898. DOI:
920 10.3390/e21090898.

921 (65) Jones, D. T.; Cozzetto, D. DISOPRED3: precise disordered region predictions with annotated protein-
922 binding activity. *Bioinformatics* **2015**, *31* (6), 857-863. DOI: 10.1093/bioinformatics/btu744 From NLM
923 Medline.

924 (66) Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 1.8. 2015.

925 (67) Bonneau, R.; Tsai, J.; Ruczinski, I.; Chivian, D.; Rohl, C.; Strauss, C. E.; Baker, D. Rosetta in CASP4:
926 progress in ab initio protein structure prediction. *Proteins* **2001**, *Suppl 5*, 119-126. DOI:
927 10.1002/prot.1170 From NLM Medline.

928 (68) Rohl, C. A.; Strauss, C. E.; Misura, K. M.; Baker, D. Protein structure prediction using Rosetta.
929 *Methods Enzymol* **2004**, *383*, 66-93. DOI: 10.1016/S0076-6879(04)83004-0 From NLM PubMed-not-
930 MEDLINE.

931 (69) Rozycki, B.; Kim, Y. C.; Hummer, G. SAXS Ensemble Refinement of ESCRT-III CHMP3 Conformational
932 Transitions. *Structure* **2011**, *19* (1), 109-116. DOI: 10.1016/j.str.2010.10.006.

933 (70) Satopaa, V.; Albrecht, J.; Irwin, D.; Raghavan, B. Finding a "Kneedle" in a Haystack: Detecting Knee
934 Points in System Behavior. In *2011 31st International Conference on Distributed Computing Systems*
935 *Workshops*, 20-24 June 2011, 2011; pp 166-171. DOI: 10.1109/ICDCSW.2011.20.

936 (71) Tesei, G.; Martins, J. M.; Kunze, M. B. A.; Wang, Y.; Crehuet, R.; Lindorff-Larsen, K. DEER-PREdict:
937 Software for efficient calculation of spin-labeling EPR and NMR data from conformational ensembles.
938 *PLoS Comput Biol* **2021**, 17 (1), e1008551. DOI: 10.1371/journal.pcbi.1008551 From NLM Medline.

939 (72) Gillespie, J. R.; Shortle, D. Characterization of long-range structure in the denatured state of
940 staphylococcal nuclease. I. Paramagnetic relaxation enhancement by nitroxide spin labels. *J Mol Biol*
941 **1997**, 268 (1), 158-169. DOI: 10.1006/jmbi.1997.0954 From NLM Medline.

942 (73) Ganguly, D.; Chen, J. Structural interpretation of paramagnetic relaxation enhancement-derived
943 distances for disordered protein states. *J Mol Biol* **2009**, 390 (3), 467-477. DOI:
944 10.1016/j.jmb.2009.05.019 From NLM Medline.

945 (74) Ward, J. H. Hierarchical Grouping to Optimize an Objective Function. *J Am Stat Assoc* **1963**, 58 (301),
946 236-&. DOI: Doi 10.2307/2282967.

947 (75) Wishart, D. 256. Note: An Algorithm for Hierarchical Classifications. *Biometrics* **1969**, 25 (1), 165-
948 170. DOI: 10.2307/2528688 (acccesed 2023/03/22/).JSTOR.

949 (76) Kalinin, S.; Peulen, T.; Sindbert, S.; Rothwell, P. J.; Berger, S.; Restle, T.; Goody, R. S.; Gohlke, H.;
950 Seidel, C. A. A toolkit and benchmark study for FRET-restrained high-precision structural modeling. *Nat*
951 *Methods* **2012**, 9 (12), 1218-1225. DOI: 10.1038/nmeth.2222 From NLM Medline.

952 (77) Sindbert, S.; Kalinin, S.; Nguyen, H.; Kienzler, A.; Clima, L.; Bannwarth, W.; Appel, B.; Muller, S.;
953 Seidel, C. A. Accurate distance determination of nucleic acids via Forster resonance energy transfer:
954 implications of dye linker length and rigidity. *J Am Chem Soc* **2011**, 133 (8), 2463-2480. DOI:
955 10.1021/ja105725e From NLM Medline.

956 (78) Dimura, M.; Peulen, T. O.; Hanke, C. A.; Prakash, A.; Gohlke, H.; Seidel, C. A. Quantitative FRET
957 studies and integrative modeling unravel the structure and dynamics of biomolecular systems. *Curr Opin*
958 *Struct Biol* **2016**, 40, 163-185. DOI: 10.1016/j.sbi.2016.11.012 From NLM Medline.

959 (79) McGibbon, R. T.; Beauchamp, K. A.; Harrigan, M. P.; Klein, C.; Swails, J. M.; Hernandez, C. X.;
960 Schwantes, C. R.; Wang, L. P.; Lane, T. J.; Pande, V. S. MDTraj: A Modern Open Library for the Analysis of
961 Molecular Dynamics Trajectories. *Biophys J* **2015**, 109 (8), 1528-1532. DOI: 10.1016/j.bpj.2015.08.015
962 From NLM Medline.

963 (80) Gebhardt, C.; Lehmann, M.; Reif, M. M.; Zacharias, M.; Gemmecker, G.; Cordes, T. Molecular and
964 Spectroscopic Characterization of Green and Red Cyanine Fluorophores from the Alexa Fluor and AF
965 Series. *Chemphyschem* **2021**, 22 (15), 1546. DOI: 10.1002/cphc.202100509 From NLM PubMed-not-
966 MEDLINE.

967 (81) Peulen, T. O.; Opanasyuk, O.; Seidel, C. A. M. Combining Graphical and Analytical Methods with
968 Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules
969 Accurately. *J Phys Chem B* **2017**, 121 (35), 8211-8241. DOI: 10.1021/acs.jpcb.7b03441 From NLM
970 Medline.

971 (82) Grudinin, S.; Garkavenko, M.; Kazennov, A. Pepsi-SAXS: an adaptive method for rapid and accurate
972 computation of small-angle X-ray scattering profiles. *Acta Crystallographica Section D* **2017**, 73 (5), 449-
973 464. DOI: doi:10.1107/S2059798317005745.

974 (83) Neal, S.; Nip, A. M.; Zhang, H.; Wishart, D. S. Rapid and accurate calculation of protein 1H, 13C and
975 15N chemical shifts. *Journal of Biomolecular NMR* **2003**, 26 (3), 215-240. DOI:
976 10.1023/A:1023812930288.

977 (84) Kay, L. E.; Keifer, P.; Saarinen, T. Pure absorption gradient enhanced heteronuclear single quantum
978 correlation spectroscopy with improved sensitivity. *Journal of the American Chemical Society* **1992**, 114
979 (26), 10663-10665. DOI: 10.1021/ja00052a088.

980 (85) Kay, L. E.; Torchia, D. A.; Bax, A. Backbone dynamics of proteins as studied by ¹⁵N inverse detected
981 heteronuclear NMR spectroscopy: application to staphylococcal nuclease. *Biochemistry* **1989**, *28* (23),
982 8972-8979. DOI: 10.1021/bi00449a003 From NLM.

983