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ABSTRACT

The intrinsically disordered 4E-BP2 protein regulates mRNA cap-dependent translation through
the interaction with the predominantly folded eukaryotic initiation factor 4E (eIF4E).
Phosphorylation of 4E-BP2 dramatically reduces eIF4E binding, in part by stabilizing a binding-
incompatible folded domain (REF). Here, we used a Rosetta-based sampling algorithm
optimized for IDRs to generate initial ensembles for two phospho forms of 4E-BP2, non- and
five-fold phosphorylated (NP and 5P, respectively), with the 5P folded domain flanked by N-
and C-terminal IDRs (N-IDR and C-IDR, respectively). We then applied an integrative Bayesian
approach to obtain NP and 5P conformational ensembles that agree with experimental data from
nuclear magnetic resonance, small-angle X-ray scattering and single-molecule Forster resonance
energy transfer (smFRET). For the NP state, inter-residue distance scaling and 2D maps revealed
the role of charge segregation and pi interactions in driving contacts between distal regions of the
chain (~70 residues apart). The 5P ensemble shows prominent contacts of the N-IDR region with
the two phosphosites in the folded domain, pT37 and pT46, and, to a lesser extent, delocalized
interactions with the C-IDR region. Agglomerative hierarchical clustering led to partitioning of
each of the two ensembles into four clusters, with different global dimensions and contact maps.
This helped delineate an NP cluster that, based on our smFRET data, is compatible with the
elF4E-bound state. 5P clusters were differentiated by interactions of C-IDR with the folded
domain and of the N-IDR with the two phosphosites in the folded domain. Our study provides
both a better visualization of fundamental structural poses of 4E-BP2 and a set of falsifiable

insights on intrachain interactions that bias folding and binding of this protein.
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1. INTRODUCTION

Proteins are inherently dynamic and adopt conformations that range from very stable to
completely disordered !. An extreme case of protein polymorphism, intrinsically disordered
proteins (IDPs) have been found to perform an increasingly diverse range of cellular functions,
despite (or perhaps due to) lacking stable secondary and tertiary structure 2. Statistics of the
human proteome revealed that nearly 60% of proteins contain stretches of greater than 30
residues of intrinsic disorder and ~5% of proteins are completely disordered *. IDPs are highly
involved in cellular signalling and regulation, function as hubs of protein-protein interaction
(PPI) networks #, show unexpected mechanisms of PPIs °, and are drivers of protein phase
separation 6. They are particularly sensitive to post-translational modifications (PTMs), which
can result in either stabilization or destabilization of transient secondary structures ’ and induce
order-disorder ® or disorder-to-order transitions °. IDPs are enriched in many neurodegenerative
and cancer pathways '°, but are challenging therapeutics targets due to the lack of stable binding

pockets for small molecules .

Eukaryotic translation is a highly regulated process, with most mRNAs requiring
interaction with the eukaryotic translation initiation factor (eIF4E) to be translated * > !*. The
elF4F complex is formed by assembly of eIF4E and elF4G, which is subsequently recruited to
the 40S subunit of the ribosome !*. The assembly of the eIF4F complex is inhibited by the
intrinsically disordered 4E-BPs (eIF4E binding proteins), which compete with eIF4G for an

overlapping surface of eIF4E 4,

The neuronal-specific 4E-BP isoform, 4E-BP2, modulates neuroplasticity, and impacts
learning, memory formation ', and autism spectrum disorders '®. 4E-BP2 binds eIF4E at both
the canonical 54YDRKFLLDRR63 and a secondary 78IPGVT82 binding site; the canonical

3
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motif binds to eIF4E in a helical motif on the same convex surface as eIF4G '*!7, while the

secondary binding site is more dynamic and binds to the lateral surface of eIF4E '8,

Hierarchical phosphorylation of 4E-BP2 at residues T37, T46, T70, S65, and S83 results
in the five-phosphorylated (5P) state and decreases the affinity of the 4E-BP2:eIF4E complex by
~4000-fold compared to the non-phosphorylated (NP) state, via the formation of a 4-stranded f3-
sheet structure from residues 18-62 ° '°. The initial two phosphorylations at residues T37 and
T46 result in a ~100-fold decrease in eIF4E affinity, while the additional phosphorylations in the
C-terminal intrinsically disordered region (C-IDR) cause a further ~40-fold decrease % '°.
Because of this, interactions with the C-IDR containing the additional three phosphosites were
proposed to enhance stability of the folded -sheet structure (which would reduce binding). In
order to support this hypothesis or otherwise explain the enhanced stability/reduced 4E binding,

structural models of full-length 4E-BP2 in both phosphostates are required.

The free energy landscapes of IDPs are typically shallow but not featureless, with local
energy minima corresponding to transient secondary and tertiary structural biases which confer
functional attributes 2% 2!: 22, The potentially vast number of relevant structures makes the
experimental and computational characterization of IDPs difficult. Modelling them necessitates a
framework of sufficient complexity to capture relevant features, while avoiding being too large
to be computationally intractable. IDPs are often modelled as conformational ensembles, which
are a set of 3D structures (having x,y,z coordinates of each atom) with associated weights 3.
Data from nuclear magnetic resonance (NMR), small-angle X-ray scattering (SAXS), and single-
molecule Forster resonance energy transfer (sSmFRET) can be used to refine a starting pool of
conformations by imposing agreement with the experimental data >* 2>, Different experiments are

sensitive to different length scales and timescales, with different degrees of time-averaging and
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93  ensemble-averaging. This is a heavily under-determined inverse problem, as the experimental

94  restraints available are vastly insufficient to determine a unique conformational ensemble.

95 Several approaches have been applied to generate disordered conformational ensembles,
96  such as Trajectory Directed Ensemble Sampling (TraDES) %, flexible-meccano 7,
97  IDPConformerGenerator *®and FastFloppyTail (FFT) ?°. TraDES generates conformers by first
98  building the backbone from ®/¥ angles sampled from a non-redundant set of structures from the
99  PDB, geometric restraints and a Leonard-Jones type potential avoid steric clashes. Flexible-
100  meccano samples amino acid specific /¥ potential wells from a compilation of non-secondary
101 structure (loop) elements derived from the PDB. IDPConformerGenerator samples phi, psi and
102  omega torsion angles from the PDB for various fragment lengths, and with different secondary
103  structural biases, including based on experimental NMR chemical shifts. FFT is a PyRosetta
104  based method that samples three-residue fragments from the PDB with a bias towards loop

105  regions.

106 Optimization methods such as ENSEMBLE *°, Extended Experimental Inferential

107  Structure Determination (X-EISD) 3!, and Bayesian Maximum Entropy (BME) ** reweight or
108  select a subset of the initial conformational ensemble so that back-calculated biophysical

109  observables match their experimental counterparts. The ENSEMBLE method uses pseudo-

110  energy terms to quantify agreement between computation and experiment, where deviation from
111 the initial ensemble is not being penalized. In contrast, X-EISD and BME methods use Bayesian
112 frameworks that account for uncertainties in both experimental data and back-calculators. For
113 example, BME treats the experimental data as time-/ensemble- averages and reweights the prior

114  ensemble such that it agrees with experiments while maximizing the relative Shannon entropy. In
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115  this way, confidence is given to both the prior ensemble and the experimental data to prevent

116  overfitting.

117 Arranging conformations into groups that share structural similarities, i.e., clusters, can
118  lead to better visualization of heterogeneous IDP ensembles and help formulate structure-

119  function relationships **. The high degree of conformational disorder makes traditional similarity
120  measures that require atomic superimposition of conformers ill-suited for IDPs **. Conversely, a
121  similarity criterion based on inter-residue alpha-carbon (C«) Euclidean distance can be applied in
122 agglomerative hierarchical clustering, which was shown to be a useful tool to characterize the

123 heterogeneity of IDPs *°.

124 In this work, we applied the BME method *? to optimize 4E-BP2 ensembles in both NP

125  and 5P states that were generated by FFT ?°. Agreement to experimental data such as the SAXS
126 curve, two smFRET histograms, and C./Cp Chemical Shifts (CS) for most of the chain

127  (excluding residues within the folded domain in the 5P state), were imposed in the optimization
128  procedure. An independent data set, the Paramagnetic Relaxation Enhancements (PREs) at

129  several positions distributed along the 120-residue chain, was reserved for validation and for

130  tuning the hyperparameters of the BME optimization.

131 Structural-based clustering suggests that NP 4E-BP2 predominantly samples four overall
132 structural states. One of these clusters shares structural features with the eIF4E-bound state,

133 indicating that some conformations contain preformed features than enhance the probability of
134  complex formation upon collision with eI[F4E. Contact maps of the 5P ensemble revealed

135  pronounced interactions of the folded-domain phosphorylation sites pT37 and pT46 with N-IDR
136  (residues 1-17), while contacts with the C-IDR were less frequent and more delocalized. 5P

137  clustering analysis led to the separation of these interactions into four different clusters. This

6
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138  work describes highly probable structural poses and provides novel insights into the structure-
139  function relation of a fascinating disordered protein that regulates translation initiation.
140 Importantly, it also provides specific ideas valuable for designing experiments to test the validity

141  of these insights.
142
143 2. RESULTS

144  Optimized 4E-BP2 ensembles

145 Motivated by the availability of structural data yet a lack of appropriate full-length

146  computational ensembles of the 4E-BP2 protein, we calculated conformational ensembles

147  consisting of 20,000 static conformers for both the NP and 5P variants. Our approach utilizes
148  optimization and analysis methods that have been previously applied to model IDP ensembles **
149 3%, A unique aspect of 4E-BP2 in comparison to other IDPs is the presence of a folded domain
150  within the otherwise disordered 5P phosophoform. In this hyperphosphorylated state, a four-

151  stranded beta-fold domain spanning residues 18-62 is stabilized. Modelling such a case

152 motivated our choice of the FFT conformer generator 2, which allows the N- and C-IDRs to be

153  sampled separately while maintaining folded domain poses derived from solution NMR

154  experiments °.

155 Optimization of the NP and 5P ensembles was performed with the BME method * using
156  our previously published CS and smFRET data and new SAXS data (see Methods). [Note that,
157  while sampling IDR tails and internal IDRs of proteins with folded domains is now possible

158  within IDPConformerGenerator %, it was not when our study began, nor was the current X-

159  EISDv2 version with enhanced accessibility *!.] To validate and/or further optimize these
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160  ensembles, we evaluated their ability to reproduce experimental data that was withheld from the
161  BME refinement process *’. As such, we further tuned the ensemble optimization using PRE data

162  with its sensitivity to inter-residue contacts (< 25 A).

A i5 ; 0.40 B 10 ;
il : : -0.44
‘ //4 : /
1.0 , F0.38 0.9 i o
- i wn - i n
g | = I ' =
NS 0.84 i o NS i o
>~ 0. i 0.36 W > 0.8 w
) o a
0.6 : i
el -0.34 0.7 :
- . ; ; . . 0.35
0.2 0.4 0.6 0.8 02 04 06 08 1.0
Nefr Nefr

163  Figure 1. BME optimization for NP (A) and 5P 4E-BP2 (B) ensembles using FFT-generated prior pools
164  with 20,000 conformers and imposing agreement with experimental data (SAXS, CS and FRET). A

165  combination of fitting the restraints (y2,;) and external validation (PRE RMSD, see SI 2.8) was used to
166  determine the global fitting parameter Nesf, indicated as dashed vertical lines and gray areas (see 4.2).

167 For the NP ensemble (Fig. 1A), y2 ., decreases as the initial pool is reweighted and the
168  effective fraction of conformations (N,fr) decreases (see Methods 4.2). The decrease is initially
169  steep, but then it levels-off with a markedly flatter slope below N, ¢~ 0.6. The region of steep
170  decrease is where the conformations that are least consistent with experimental data are

171  essentially discarded, i.e., their weights go to zero. As the slope flattens, further optimization
172 only marginally increases agreement with experiments and leads to overfitting. After an initial
173 plateau, PRE RMSD follows a similar downward trend, although shifted to a lower N, ¢ range
174  than y2,,. To avoid overfitting, Ngsr = 0.40 (6 = 35) was chosen at the “knee” point of the

175  sampled PRE RMSD curve (see Methods 4.2) for the optimized NP ensemble.

176 Similarly, for the 5P ensemble (Fig. 1B), increased conformer re-weighting leads to
177  improved agreement with both the restraints incorporated within BME (decrease of y2,;4;) and
178  the external data (decrease of PRE RMSD). The knee points of the two curves are very close to

8
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each other, with the lower of the two, N, = 0.78 (6 = 27), being chosen for the optimized 5P

ensemble. Fitting parameters of the BME-optimized ensembles are shown in Table 1.

Table 1. Fitness parameters and back-calculated global parameters for ensembles of NP and 5P 4E-BP2*
Nesy Xiotal | XFRET | XSaxs Xés Ry (A) RE" (A) RER(A)
NP 0.40 0.64 1.03 0.67 0.62 28.7+0.1 | 29.0+1.5 | 23.5+0.1
AE-BP2 . . . . . . . . . . .
>P 0.78 0.76 1.20 0.95 0.37 26.5+0.1 | 26.8+1.5 | 20.8+0.1
AE-BP2 . . . . . . . . . . .

* Uncertainties of R, and R;, are the weighted standard deviation of the mean of the ensemble distributions.

Optimization curves for each restraint are shown in Figs. S1-S2 in the SI and the initial
and optimizing fitness parameters are displayed in Tables S1-S2. The effect of optimization can
be visualized by the change in the distribution of conformer weights (Fig. S3). The NP
distribution contains distinct outlier values that are well-separated from the bulk. In addition,
61% of the initial conformers have 95% of the weight in the optimized NP ensemble, while for
5P the fraction is much higher, 83%. This was perhaps expected since the 5P initial ensemble
integrates atomic coordinates derived from the NMR solution structure of the folded domain (~

40 residues), and fewer residues required refinement.

Table 1 also includes back-calculated global size parameters, radii of gyration and

hydrodynamic radii (R, and Ry,), of the two optimized ensembles. The back-calculated R, values

are close to those derived by Guinier analysis from the SAXS data (Fig. S11) and confirm that

the 5P state is overall more compact than the NP state. The R;, of the optimized NP 4E-BP2
ensemble, back-calculated using the Kirkwood-Riseman approximation (23.5 + 0.1 A), is closer

to the value measured by FCS (24.8 + 1.0 &) 2 than the value back-calculated with
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198  HYDROPRO (29.0 + 1.5 A). Our results are consistent with a recent comparative study, where
199 the Kirkwood-Riseman approach was shown to be a better predictor of experimental

200  hydrodynamic radii of IDP ensembles and resulted in values ~20% lower than HYDROPRO
201  predictions *®. However, the Kirkwood-Riseman prediction for the 5P ensemble (20.8 + 0.1 A)
202 is significantly smaller than the FCS-measured value (27.9 + 1.1 A) while the HYDROPRO
203 prediction (26.8 + 1.5 A) is in better agreement. This discrepancy is perhaps not surprising,
204  given that a significant fraction of the 5P protein (~1/3 of the sequence) forms a stable fold, and

205  HYDROPRO has been optimized to match the measured R;, of folded proteins.

206

207  Charge segregation and global compaction of NP 4E-BP2

208 Despite showing significant structural flexibility, IDPs have transiently sampled contacts

39 40 41,42 43

209  due to intra-chain interactions such as hydrophobic , electrostatic and pi interactions
210  *. Considering the global compaction of NP 4E-BP2 (see above), we asked whether there are
211  indicators of non-local residue interactions in the optimized ensemble. As such, we analyzed the

212 relation between mean inter-residue distances (R);_j|) and residue separations (|i — j|), i.e., the
213 Internal Scaling Profile (ISP). Distances were calculated as double averages, first for each

214  conformer and then within the ensemble (Gomes JACS 2020). For comparison with a null-

215  hypothesis lacking preferential interactions, we generated an ensemble consisting of 20,000 self-

216  avoiding random coil (RC) conformations using TraDES 2° and computed its ISP curve.

217 Within the polymer physics framework, the ISP curve is typically fitted to the following

218  power-law relation:

10
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219 R|L—]| = lebll —]lv (1)

220  where b is the distance between bonded Cq atoms (3.8 A), v is the Flory scaling exponent and the
221 persistence length [, was fixed at [, =4 A (see SI, Table S3 for fitting parameter values). This
222 persistence length is commonly applied to model disordered proteins and has been shown to be
223 applicable for unfolded and disordered proteins *°. The behavior of infinitely long homopolymer
224 models representing the comparative strength of Protein-Protein Interactions (PPIs) vs Protein-
225  Solvent Interactions (PSIs) converge for three distinct cases. A case in which PPIs dominate is
226  termed the poor-solvent state (v~0.33), PPIs being equal to PSIs is denoted as the 6-state

227  (v~0.5) and a chain with dominating PSIs is termed the good-solvent state, or the excluded-

228 volume (EV) limit (v~0.59).

229 To facilitate comparison, the ISPs of the optimized NP 4E-BP2 and TraDES RC

230  ensembles are plotted together with the ISPs of the EV limit and the 8-state homopolymers (Fig.
231 2A). For sequence separations 10 < |i — j| < 40 the NP 4E-BP2 scaling resembles the

232 TraDES RC ensemble (v = 0.556), while for the largest separations, 100 < |i — j| < 120, the
233 scaling exponent decreases only slightly (v = 0.539). In the intermediate range, 60 < |[i — j| <
234 95, the ISP curve flattens and undergoes a change in concavity, so it cannot be fit to a simple
235  power-law dependence. In addition, intra-chain distances in the NP 4E-BP2 ensemble start to
236  deviate from those in the TraDES RC ensemble for |i — j| = 20 (Fig. 2A). Taken together, this
237  suggests that scale invariance breaks down due to specific intra-chain contacts, which are also

238  responsible for the high transient helical content spanning the entire chain '* (Fig. S4).

239 Charge segregation or patterning within a disordered chain can be quantified by the

240 parameter k ,0 < k < 1, with the low limit corresponding to well-mixed charges and the high

11
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241  limit to positive and negative charges separated in the two halves of the chain *°, or by the

242 sequence charge decoration (SCD) parameter *’. Das and Pappu tested the effects of charge

243 segregation on the ISP behavior for a 50-residue model chain consisting of two oppositely

244 charged residues that are distributed in patches of variable size across the sequence “. They also
245  observed a concavity “dip” in the ISP curves of model sequences, which became more

246  pronounced with increasing k. Interestingly, their model sequence with the closest k value to NP

247  4E-BP2 (k = 0.1552) has an ISP curve with a similar dip as our NP ensemble.

100 T T T T T
® NPFFTBME P 0.4
A NP TraDES RC -~
« EVLimit e
80 |— - -4 A B

-state
— — -Short & Long Fits -

0.2

0.0 7

\
\
Net Charge Per Residue

L L L L -0.4
0 20 40 60 80 100 120 0 25 50 75 100
i—jl Sliding Window Index

248  Figure 2. (A) Internal scaling profiles of the optimized NP 4E-BP2 ensemble (red), the TraDES random
249  coil ensemble (blue), excluded-volume (black, dotted) and theta-solvent (black, dashed) homopolymers,
250 and fits of the regions 10—40 and 100-121 to Eq. 1 (green dashed). A concave region of the ISP curve,
251  spanning residue separations of 60-95, is indicated by a grey shaded box. (B) Net-Charge-Per-Residue
252  (NCPR) index calculated using a five-residue sliding-window; blue-positive, red-negative.

253

254 We evaluated various sequence-charge parameters using the Classification of

255  Intrinsically Disordered Ensemble Relationships (CIDER) program *® (Table S4). For example,
256  the Net Charge Per Residue (NCPR) has been previously used to relate global dimensions of

257  IDPs to electrostatic interactions ** #*, The NCPR map of NP 4E-BP2 (Fig. 2B) shows patches of
258  oppositely charged residues in the sequence which may cause the dip in the ISP curve for 60 <

259 |i — j| < 95 via electrostatic attraction. We identified three such attractive pairs: 11-24

12
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260  (positive NCPR) with 85-98 (negative NCPR), 22-37 (negative NCPR) with 103-111 (positive

261 NCPR), and 47-63 (positive NCPR) with 108-121 (negative NCPR).

262 To better visualize the proximity between different regions of the NP 4E-BP2 chain in
263 our optimized ensemble, we constructed the 2D map of mean pairwise inter-residue Co-Cq

264  distance map normalized by each respective value from the RC ensemble (Fig. 3A). The most
265  prominent region of compaction is centered between residues ~20-40 and ~80-100. The putative
266  interacting regions based on NCPR analysis (Fig. 3 B-D) also contain hydrophobic, hydrogen-
267  bonding and pi-containing residues. This suggests that transient contacts are formed through a
268  combined effect of charge-based attraction with other physico-chemical interactions, potentially

269  including the hydrophobic effect, hydrogen bonding and pi interactions.
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270  Figure 3. 2D maps of mean inter-residue distances in NP 4E-BP2. (A) Distances in the BME-optimized
271  ensemble normalized by the TraDES RC ensemble (red-expanded, blue-compacted). Zoom in the regions
272 corresponding to pairs with opposite sign NCPRs (see Fig. 2): (B) residues 11-24 with residues 85-98,
273 (C)22-37 with 103-111, and (D) 47-63 with 108-121; residue color scheme: positive - blue, negative—
274  red, hydrophobic — green, aromatic - magenta, hydrogen bonding — italic.

275
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276 In particular, pi contacts between two tyrosines (Y34 and Y54) and two C-terminal

277  lysines (K92, K107) and/or an arginine (R106) could contribute synergistically to the nonlocal
278  interactions causing the dip in the ISP curve of NP 4E-BP2. Notably, for the first pair, the largest
279  deviations from random coil expectations are located in residues of the positive NCPR selection
280  and contain sites which are functionally relevant: the phosphoregulatory RAIP site (residues 15-

281  18)*°, and a region following the secondary binding site.
282
283 Resolving non-local contacts that stabilize the folded domain of 5P 4E-BP2

284 Phosphorylation at residues T37, T46, S65, T70 and S83 induces the formation of a four-
285  stranded beta-fold between residues 18-62 which sequesters the canonical elF4E binding motif
286  and is incompatible with binding °. Phosphorylation is hierarchical. Initial phosphorylation at
287  residues T37 and T46 leads to folding of a marginally stable domain, decreasing the elF4E

288  binding affinity by ca. 100-fold. Subsequent phosphorylation of the C-IDR at residues T70, S65
289  and S83 decrease the binding affinity by a further ca. 40-fold °, primarily by stabilization of the
290  folded domain and not by direct interactions with eI[F4E. The non-cooperative

291  folding/stabilization of this domain allows a graded inhibition of translation inhibition by

292  phosphorylation induced tuning of the eIF4E:4E-BP2 affinity !°.

293 However, no structural models exist to provide detailed information on how the three

294  additional C-IDR phosphorylation sites stabilize the folded domain, despite several experimental
295  studies probing the properties of 5P 4E-BP2 ? 120, Molecular dynamics simulations have studied
296  the formation of the four-stranded beta-fold but the N-IDR and C-IDR were omitted °!' 2. NP 4E-

297  BP2 contains significant transient a-helical structure, particularly between residues 49-67,
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partially pre-ordering the canonical helical eI[F4E-binding element, and in the C-terminal region
14 Phosphorylation at residues S37 and S46 switches this helical character to extended beta-like,
and the additional C-IDR phosphorylations result in additional helical character in residues
proximal to the canonical binding element as well as in the C-IDR, with pS65 having the largest
effect 1. We examined our models to better understand stabilization of the fold by identifying
potential C-IDR phosphorylation-induced stabilizing contacts between the folded domain and the
rest of 4E-BP2 and potential destabilizing contacts present in the NP state that are abolished in

the 5P state.
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Figure 4: 5P 4E-BP2 inter-residue distance and contact maps of optimized vs. coil ensembles. (A) 2D
map of the mean inter-residue distances of the SP 4E-BP2 optimized ensemble normalized by the 5P coil
ensemble (red — expanded, blue — compacted). (B) Difference contact map obtained by subtracting the
fractional degree of inter-residue contacts in the 5P coil ensemble from those in the BME-optimized 5P
ensemble. Two residues are in contact if their C, atoms are within 8 A.

To evaluate SP intra-chain interactions in the context of “topological” features imposed
by the presence of a fixed folded domain, we compared the optimized 5P 4E-BP2 ensemble to

the 5P coil ensemble (see SI 1.2). Similar to the NP analysis above, normalized pairwise inter-

residue Co-C distances reveal regions of compaction (r*"™

7T < 1) and expansion (7" > 1).

Lj

Most inter-residue distances are closer in the SP BME optimized ensemble compared to the 5P
coil ensemble, with the closest contacts (besides those within the folded domain) involving
residues of the folded domain with those of the N-IDR (Fig. 4A). Interestingly, the NP ensemble
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319  (Fig. 3A) showed greater distances between residues of the canonical binding motif

320 *YXXXXL$® and the N-terminus (residues 1-17), in contrast to the 5P state.

321 These changes are consistent with the observation that the chemical shift changes

322 between the NP and the 5P state are the largest at the canonical binding site residues °. In the NP
323  state there are larger distances between the T46 phosphorylation site and all residues that will
324  become the "N-IDR" upon phosphorylation than for the coil ensemble, and there are also larger
325  distances between T37 and some residues in this N-IDR forming domain than in the coil (Fig.
326 3A). Conversely, in the 5P ensemble, the residues near phosphorylation sites pT37 and pT46

327  have distances that are the most reduced compared to the 5P coil ensemble. This can be seen

328 more clearly by considering the difference contact map (Fig. 4B), where differences in fractional
329  occupancy of inter-residue contacts between the optimized and the coil 5P ensembles are shown,
330  with a contact defined as a Co-Cq distance < 8 A (see SI 2.9). The areas of greatest positive

331  contact difference are centered around the T37 and T46 phosphorylation sites and the N-IDR.

332 It has been proposed that C-IDR phosphorylation induces stabilizing contacts with the
333  folded domain, possibly via electrostatic attractions between the C-IDR phosphate groups and
334 the basic regions of the folded domain ® '°. In our analysis, although the C-IDR is more compact
335  than the random coil and shows sparse contacts with the folded domain, these contacts are not
336  exclusive to the phosphorylation sites, implying that underlying interactions are of a mean-field
337 nature. Instead, our results allude to a potential major role of the N-IDR in stabilizing the

338  structure of the folded domain. The NCPR for 5P 4E-BP2 (see SI, Fig. S5) illustrates that the N-
339  IDR is predominantly positive, while phosphorylation at T37 and T46 lead to a negative four

340  charge difference in the folded domain.
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341 A combination of electrostatic interactions between the basic N-IDR and the negative

342 phospho-sites of the folded domain and between the basic parts of the folded domain and the

343  negative phospho-sites in the C-IDR may increase the stability of the folded domain. At the same
344  time, our analysis suggests that C-IDR phosphorylation disrupts the network of intramolecular
345 interactions at regions far away from the phosphorylation sites with only small changes to the

346 global dimensions, similar to other multi-phosphorylated proteins 2% 33 34,

347

348 Prominent 4E-BP2 structural states revealed by clustering

349 In contrast to stable folded proteins, IDPs feature a shallow and rugged free-energy

350 landscape, without a pronounced global minimum. This facilitates fast conformational exchange,
351 however weakly funneled landscapes exist for various IDPs 22 3 3¢ Our previous NMR studies
352  have shown that intra-chain interactions significantly affect conformational propensities of 4E-

353 BP2 in different phosphorylation states 4 1°.

354 To better define non-local interactions impacting the 4E-BP2 structure, we applied

355  agglomerative hierarchical clustering to partition the two optimized ensembles 37 3. The

356  partitioning leads to a separation of global dimensions and shape, such as radius of gyration, end-
357  to-end distance and asphericity (see SI 2.6, Figs. S6-S7). The dendrogram obtained from

358 hierarchical clustering provides a visualization of the conformer amalgamation process (Fig.

359  5A). Motivated by the availability of experimental evidence for significant transient contacts, we
360  sought to define states that are more likely to be populated in the function of this protein, since

361  our computational models are optimized to agree with the experimental data.

362
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363  Figure 5. Agglomerative hierarchical clustering applied to the unrestrained NP 4E-BP2 ensemble. (A)
364  Dendrogram showing the 4 resulting clusters: Cluster 1 (green), Cluster 2 (purple), Cluster 3 (brown) and
365  Cluster 4 (pink). Inter-residue distance maps for each cluster normalized by the entire BME-optimized NP
366  ensemble: (B) Cluster 1, (C) Cluster 2, (D) Cluster 3, and (E) Cluster 4.

367

368 The NP ensemble (unrestrained) partitions first into a small (23%, 4510 conformers) and
369  alarge (77%, 15490 conformers) cluster. The large cluster then splits twice before the cutoff
370  criterion is satisfied (Fig. S8A), which brings the total number of clusters to four (Fig. 5A).

371 Upon reweighting the conformers with their BME-derived weights, the abundance of each

372 cluster in the optimized ensemble is obtained (Table S5). Mean pairwise Cq inter-residue

373  distances in each reweighted cluster were normalized by the corresponding distances for the

374  optimized ensemble (Figs. SB-E).
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375 These maps confirm that the clusters have clearly distinct distributions of inter-residue
376  distances, as expected since the dissimilarity metric used was a Euclidean distance between inter-
377  residue distances in different conformers (see Methods 4.3). Note that such populations could not
378  be trivially determined by analyzing the distribution of global parameters such as the radius of
379  gyration (see SI, Fig. S9), underscoring the utility of clustering to disentangle coarse-grained

380  structural propensities in a large and disordered protein ensemble.

381 Cluster 1 (green), whose fraction was reduced from 23% to ~12% upon BME

382  optimization, is the most expanded of all clusters (Fig. 5B). In particular, the N- and C-terminal
383  regions are further apart, indicative of extended, quasi-linear poses. On the contrary, Cluster 2
384  (purple) is the most compact overall, while the other two clusters (3-brown, 4-magenta) have

385  complementary distance maps, with a mixture of expansion and compaction compared to the full
386  ensemble. Motivated by the growing literature on the binding mechanisms of IDPs 3 3 ¢ and the
387  expansion we previously captured between residues 32-91 and 73-121 of NP 4E-BP2 upon

388  binding to elF4E 2°, we asked whether the expanded clusters were conformationally similar to

389  bound-state structures.

390 To this end, back-calculated mean FRET values for each NP cluster were compared via a
391  z-test (Table 2) to the experimental values obtained for the eI[F4E-bound state, E5,_g; = 0.26 £
392 0.02 and E;5_15; = 0.51 4 0.02 . With this metric, Cluster 1 resembles the eIF4E-bound state,
393  asitagrees within a 3¢ tolerance level to the experimental values, in particular regarding E3,_o4.
394  In contrast, the other three clusters have significantly higher E5,_g; values than the bound-state,

395  but instead agree within 3¢ tolerance with the apo-state value.

396
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Table 2. Mean FRET efficiencies of NP clusters compared to apo- & bound-states values via a z —test™
Bound Bound Apo Apo
Cluster # E32-01 E73-121 723291 Z73-121 23291 Z73-121
Cluster 1 0.34 0.56 2.1 1.4 8.2 0.5
Cluster 2 0.70 0.60 12.2 2.4 1.9 0.5
Cluster 3 0.65 0.62 10.8 3.0 0.6 1.0
Cluster 4 0.58 0.49 9.0 0.6 1.3 2.6

* Uncertainties of back-calculated FRET efficiencies are £0.036 (see Methods 4.4).

The presence of a sizeable cluster resembling the bound-state within the apo-state
ensemble cannot be predicted a priori, as an ensemble could be split/clustered in many ways.
Our results allude to a subclass of extended 4E-BP2 conformations that maximize attractive
interactions with the eIF4E surface and initiate binding. At the same time, a large majority of
conformers (88%) are not compatible with bound-state FRET. This suggests a hybrid model of
binding, where both conformational selection and induced fit play a role, the latter being perhaps
dominant for 4E-BP2. This remains an area of interest in the field, as both binding models have
been proposed for disordered proteins ¢! and combined binding mechanisms have also been

described 2.

For the 5P ensemble, the normalized cutoff distance clearly levels off when increasing the
number of clusters above N = 4 (see SI, Figure S§B). BME reweighting increases the population
of the most expanded cluster from 20.1% to 30.6%, while reducing the population of the most
compact cluster from 41.3% to 30.3% (Table S6). These observations agree with the overall

expansion observed in 4E-BP2 upon hyper-phosphorylation using smFRET 2°.

A more obvious clustering cutoff distance and a more balanced distribution of cluster

fractions for the 5P ensemble compared to the NP ensemble suggest that the former energy
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landscape has fewer and deeper “structural wells” than the latter. The inter-residue distance maps
reveal the complementarity of clusters (Fig. 6B-E). For instance, Cluster 1 mostly consists of
conformers that are expanded throughout the entire chain, while the opposite is true for Cluster

2; similarly, Cluster 3 is compact in regions where Cluster 4 is expanded, and vice-versa.
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Figure 6. Agglomerative hierarchical clustering on the unrestrained 5P 4E-BP2 ensemble. (A)
Dendrogram showing the 4 resulting clusters: Cluster 1 (green), Cluster 2 (purple), Cluster 3 (brown) and
Cluster 4 (pink). Inter-residue distance maps for each cluster normalized by the entire BME-optimized 5P
ensemble: (B) Cluster 1, (C) Cluster 2, (D) Cluster 3, and (E) Cluster 4.

Since interactions of disordered tails with the folded domain in 5P 4E-BP2 are thought to
increase the stability of the fold !°, we then analyzed the abundance of intramolecular contacts at
the cluster level (Fig. 7). Cluster 1 shows prominent contacts between the N-IDR and a segment

around pT46 in the folded domain, while Cluster 2 shows a delocalized contact pattern between
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429  the C-IDR and the folded domain. Conversely, Clusters 3 and 4 contain prominent contacts
430  between the N-IDR and pT46 and pT37 sites in the folded domain, respectively. We refer to
431 Clusters 1 and 2 as C- Interaction Mode (CIM) clusters and Clusters 3 and 4 as N- Interaction
432 Mode (NIM) clusters. To differentiate within the same mode, we denote Cluster 1 as CIM-off
433 and Cluster 2 as CIM-on, while Clusters 3 and 4 are denoted as NIM-pT46 and NIM-pT37,
434 respectively.
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435  Figure 7. Difference contact maps obtained by subtracting the fractional level of inter-residue contacts in
436  the entire BME-optimized 5P ensemble from those in each cluster. (A) Cluster 1 or CIM-off; (B) Cluster
437 2 or CIM-on; (C) Cluster 3 or NIM-pT46; (D) Cluster 4 or NIM-pT37. Representative conformations of
438  cach cluster are shown in the upper region of each panel. Two residues are in contact if their C, atoms are
439 within 8 A.
440
441 These pairs of clusters represent two prominent modes of interaction within the BME-
442  optimized 5P 4E-BP2 ensemble. The CIM-on cluster is enriched in contacts between residues
443  69-73 and 99-103 in the C-IDR with residues 14-19 and 10-13 in the N-IDR, respectively. Such
444  contacts may be stabilized by attractive charge-based interactions as the aforementioned C-IDR
445  residues have negative NCPR values and those within the N-IDR have positive NCPR values
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446  (Fig. S5). To a lesser degree, contacts are formed between pT37 and pT46 of the folded domain
447  and the entire C-IDR. This implies CIM-on conformations exhibit more contacts between the N-
448  IDR and the C-IDR, which also brings the C-IDR in closer proximity to the folded domain for
449  possible interactions. Such contacts are absent in the CIM-off cluster. Instead, CIM-off is

450  enriched in contacts between a region near residue pT46 (47-51) and the entire N-IDR.

451 This N-IDR interaction with the folded domain (residues 44-53) is more prominent in the
452  NIM-pT46 cluster, with the highest contact fractions between residues 6 and 48-49, 9-10 and 48,
453  and 10-13 and 49. This cluster has minimal C-IDR contacts, resembling the CIM-off map. The
454  NIM-pT37 cluster also has a high occurrence contact fraction between the N-IDR and the folded
455  domain, except it is centered around residue pT37 and interacts with residues 1-11 of the N-IDR.
456  The opposite sign NCPR values in these regions may aid in driving such contacts (Fig. S5). For
457  these conformers, prominent contacts between the N-IDR and the C-IDR occur between residues
458  4-7 and 77-81, 4-6 and 66-69, and 1-3 and 102-105. This is similar to CIM-on conformers,

459  suggesting that contacts occurring between the N- and C-IDRs facilitate interactions between the
460  folded domain and the C-IDR.

461

462 3. DISCUSSION

463 Ensemble modelling of dynamic and/or disordered proteins is a growing area of research
464 24253163 reflecting the increased awareness of their functional importance. Recently, we

465  assessed the effects of various starting conformer pools and optimization methods for the

466  integrative modelling of the disordered protein Sicl *”. The quality of initial conformer pools had

467  the highest impact in obtaining good agreement of the optimized ensemble with experimental

468  data and is positively correlated with the N, ¢ value for the optimized ensemble. Using MD
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469  priors for the Sicl protein, we found N,sr = 0.75 37 while a study that applied BME to MD

470  simulations of the ACTR protein with CS restraints found N,z = 0.67 64,

471 For 4E-BP2, the N, obtained for the optimized SP ensemble is significantly higher than
472  the value for the optimized NP ensemble, 0.78 vs. 0.40. This result is consistent with the

473  aforementioned studies, as 5P conformers contain a significant folded fraction (residues 18-62).
474  Although we included not one, but 20 different PDB structures to describe the folded domain ?,
475  initial 5P conformers are much more restrained than initial NP conformers. For both

476  phosphoforms, two smFRET efficiencies/distances were the most powerful restraints for the

477  optimization procedure, while chemical shifts had the least impact, reflecting the high

478  uncertainty from back-calculation of these values.

479 Interestingly, the NP ensemble appears to be more expanded overall than the 5P

480  ensemble by R, (experimental, back-calculated) and Ry, (back-calculated) measures, while Ry,
481  measured by FCS and two internal distances measured by smFRET show the opposite trend !*2°,
482  This may be a real effect reflecting different shapes/topologies of the two 4E-BP2 phosphoforms,
483  or it may be an artefact due to limited sampling in the initial pools. Future studies will benefit
484  from more accurate and diverse sampling of the conformational space, e.g., by better sampling
485  at/around the five phosphorylation sites. In addition, more reliable back-calculators for NMR

486  quantities (CS and PRE) and more smFRET distance restraints would significantly increase the

487  confidence of the optimized ensembles.

488 Analysis of the optimized NP ensemble revealed a pronounced concavity in the inter-
489  residue scaling profile for sequence separations on the order of 60-80 residues. This is likely

490  caused by a combination of electrostatic charge mixing, hydrophobic interactions between
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491  residues 20-40 and 80-100, and pi interactions involving tyrosines Y34 and Y54 and C-terminal

492  lysines and arginines.

493 Residues 19-28 show increased flexibility when bound to eIF4E 4. Our 2D distance maps
494  point to interactions between these residues and residues in the C-terminal region controlling the
495  non-local compaction of NP 4E-BP2. Binding to the surface of eIF4E may release these intra-
496  molecular interactions, enhancing chain dynamics. This scenario would be consistent with our
497  recent findings, in which we captured the expansion and increased local dynamics of 4E-BP2

498  upon binding to eIF4E ?°. Furthermore, clustering analysis reveals only a minor sub-population
499  (~12%) that is “bound-state like”, also indicating major rearrangements of the chain when 4E-
500 BP2 binds to eIF4E. smFRET experiments are currently under way probing different segments of
501 the chain in the apo vs. the bound state. The new data will add important restraints to our

502  modelling and help define the binding mechanism of this IDP system.

503 Difference distance maps reveal that the residues in the 5P folded domain show fewer

504  contacts with the C-terminal region than they do in the NP state. Previously, we found evidence
505  of a fast exchange between a-helical and B-strand conformations in the 2P state (pT37 and

506 pT46), especially between residues 49 and 67 °. Our results suggest that the addition of three

507  phosphate groups in the C-terminal region may break the residue contacts that stabilize the o.-
508 helix, thus favoring the B-fold. Clustering analysis of the 5P ensemble captured four different

509 modes of non-local interaction that define major topologies of the 5P state. This categorization of
510 the ensemble’s heterogeneity hints at a mechanism for stabilization of the folded domain by the

511  C-IDR in which the N-IDR acts both as a chaperone and an inhibitor.

25


https://doi.org/10.1101/2023.06.20.545775
http://creativecommons.org/licenses/by-nc-nd/4.0/

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.20.545775; this version posted June 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

This mechanism could act as follows: interaction of N-IDR with the folded domain
driven by contacts with pT46 (present in CIM-off and more prominently in NIM-pT46) stabilizes
a pose in which N- and C-IDRs are brought closer to each other. The average conformation then
enters a NIM-pT37 average conformation where the pT46 contact is broken and the N-IDR
forms contacts with the folded domain around pT37. This allows the C-IDR to form contacts
with the starting residues of the N-IDR and permits the C-IDR to loosely interact with the
starting residues of the folded domain. Finally, the N-IDR moves away from the folded domain
as 5P 4E-BP2 enters the CIM-on state. Here, residues throughout the C-IDR form contacts

around residues pT37 and pT46 after being led there by the N-IDR.

Additional ensemble models of the other 4E-BP2 phosphorylation states, in particular the
two-fold phosphorylated state would contribute to unraveling this mechanism. Undoubtedly,
combined efforts in improving the quality of the starting conformers, increasing the accuracy of
back-calculators and obtaining new more restrictive experimental data will be instrumental in

solving the fascinating molecular puzzle that is the 4E-BP2/eIF4E system.

4. METHODS

4.1 Conformer generation

4E-BP2 conformers were generated using the FastFloppyTail (FFT) algorithm, an
optimized version of the Rosetta-based FloppyTail program which is ~10 times faster and has
enhanced accuracy via an improved fragment selection scheme 2° (see SI 1.1) . FFT has been
applied to model inter-domain linkers *¢ and several IDPs such as a-synuclein, Sicl and the

unfolded state of the drkN SH3 domain %°.
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534 For NP 4E-BP2, we generated 20,000 conformers using FFT and a disorder prediction
535 file created by the PsiPred DISOPRED3 web server . For the partially folded 5P 4E-BP2, we
536  used FFT to sample the N- and C-termini (residues 1-17 and 63-121, respectively) with PsiPred
537  DISOPRED3 disorder predictions. The folded domain (residues 18-62) consisted of the 20

538  lowest energy NMR-derived structures ° and were fixed during FFT sampling of the IDRs. Each
539  of'the 20 PDB entries (PDB ID: 2MX4) were used with equal weight in generating the 5P 4E-
540  BP2 ensemble (1000 structures per folded domain for a 20,000-conformer ensemble). The

541  starting 5P structures had N- and C-terminal IDRs concatenated to the folded domain by using

542  the “bond” function between pairs of carbon atoms in PyMOL ¢, To create ideal bond lengths

543  and angles while avoiding steric clashes, the “Idealize” and “Relax” Rosetta algorithms ®7 %8 were
544  applied to the structures.

545

546 4.2 Ensemble refinement

547 We used the BME method *? to refine the starting FFT conformational ensembles based

548  on information supplied by experimental data. BME accounts for the uncertainty in estimating
549 the confidence in the unrestrained FFT ensemble versus the experimental data by means of a
550 tunable hyperparameter (6). Given certain restraints, it holds that the most probable distribution
551  compatible with the experimental data is the distribution of maximal entropy, % %. As such,

552  conformer weights are tuned to minimize the following objective function:

1
553 L= E}?Z((Ul, ey (UM) - HSREL(O‘)I’ ey O)M) (1)

554  where w; is the weight for conformer i in the reweighted ensemble, M is the number of
555  conformers, 8 is a hyperparameter which represents the degree of ensemble refinement and 72 is
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556  the non-reduced chi-squared. Note that we refer to reduced chi-squared values (normalized by
557  the number of degrees of freedom) without a tilde (y?) and the non-reduced variant with a tilde

558  (7?). For more details, see SI section 2.1.

559 In the absence of a clear minimum on the optimization curve, L-curve analysis was

560 applied to find the “knee” point using the kneed package in Python 7°. The value of N, s for both
561 NP and 5P 4E-BP2 ensembles were determined by first removing concave down portions of the
562  PRE RMSD curve plotted as a function of N, (see Fig. 1), and then sampling the spline

563 interpolated plot at 1000 points uniformly throughout the curve. The “knee” point was then

564  determined from the resulting discrete data to obtain the point of maximum curvature.

565 The points determined by the kneedle algorithm corresponds to the solid dashed lines in
566  Fig. 1 and the associated gray regions account for the variance across 5000-conformer replicate
567  ensemble calculations of the same optimization (see SI, Tables S7, S8). More specifically, the
568  gray region (on both sides of the dashed grey line) is the largest absolute difference between the
569  point obtained via the above procedure for the 20,000-conformer ensemble analyzed in the main

570  text and across the 5000-conformer replicates. This results in an N, ¢ uncertainty of +0.03 and

571  £0.05 for the NP and 5P 4E-BP2 ensembles, respectively. The 5000-conformer replicate
572 ensembles were generated by splitting the 20,000-conformer ensemble into four equally sized

573  ensembles.

574 Upon refining ensembles with BME, the difficulty of fitting the mean FRET efficiency
575  for NP 4E-BP2 labelled at residues 32 and 91 ((E)3,_9,) became apparent. Indeed, a large

576  fraction of the prior ensemble must be discarded (N,rs = 0.03) to obtain good agreement with

577  the experimental averages (yZggr = 1.0). The reason for this behavior is due to the BME
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578  protocol minimizing the sum: ¥2,.q; = Xéaxs + Xés + XErpr> Where each term in the sum is a
579  non-reduced chi-squared. This means that experiments with many experimental datapoints,

580 although not all independent (e.g., SAXS and CS), contribute much more to the total than

581  smFRET. Hence, the optimization will be heavily biased towards reducing their ¥? values. To
582  correct this, a hyperparameter controlling the weight of 725z in the BME optimization was

583 introduced (Q), modifying ¥Z,,,; to the following form: ¥2,.,; = ¥éaxs + X2s + Q¥ 2rer, as
584  implemented in our previous study *’. The hyperparameter Q was tuned such that FRET was in
585  good agreement with experimental values with negligible changes to the other restraints (see SI,

586  Fig. S10).

587 Due to inaccuracies in both prior ensemble and experimental data, it is not clear what 6
588  value should be selected for the most probable ensemble that fits all restraints. To resolve this
589 issue, PRE data were not integrated as a restraint and were used instead to determine an optimal
590  Ngsr by choosing the “knee” point on the PRE RMSD curve that is uniformly sampled 1000
591  times for the full range of N, ¢ after spline interpolation. For comparison of experimental and
592  back-calculated PRE NMR data, we have opted to compare ratios of intensities of peaks in the
593  oxidized and reduced samples to back-calculated data using DEERPREdict ’'; see below. We
594  prefer comparing intensity ratios in contrast to a generally utilized strategy which converts PRE
595  intensity ratios to distances 7*. Such estimates are highly imprecise and, due to the required r~°

596  averaging, PRE distances act as a weak restraint where only a few conformers are needed to fit

597  the data in order to achieve good agreement .
598

599

29


https://doi.org/10.1101/2023.06.20.545775
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.20.545775; this version posted June 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

600 4.3 Hierarchical clustering

601 The NP and 5P 4E-BP2 ensembles were divided into sub-ensembles using hierarchical
602  clustering using the Ward variance minimization algorithm "*. The distance metric for conformer
603  (di)similarity is computed as the Euclidean distance in the 7260 — dimensional space where

604  conformers are represented as matrices containing all non-degenerate pairwise inter-residue Co-

605  Cq distances. The distance D; ; between two conformers i and j is:

N(N-1)/2
606 Dy = Z

a=1

. N2
r(l) _ ra(j)| (2)

a

607  where N is the number of residues (121 in this case) and ra(i) is the distance between Cq atoms of

608  the a'™ residue pair for the it" conformer.

609 The dendrogram distance axis does not have a simple biophysical interpretation (see SI
610  2.4); we therefore transformed the dendrogram distance axis to a Euclidean distance between
611  cluster means (Dy) using the relation given by eq. S8 in SI, section 2.5 7. We then divide this
612  value by the square root of the number of non-degenerate inter-residue distance combinations to
613  obtain an RMSD value of inter-residue Cq distances. We name this quantity, which is analogous

614  to the atomic RMSD for protein structures (eq. S4), “normalized variance”.

615 To determine a cutoff for clustering, the number of clusters was plotted against the

616  normalized variance (see Fig. S5), and L-curve analysis was applied to find the optimum number
617  of clusters. This corresponds to 6 clusters for NP and 4 clusters for 5P. However, the three lowest
618  populated clusters in the optimized NP ensemble (1.3%, 2.9%, and 7.3%) were combined into a

619  single cluster to which these states are agglomerated.

620
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621 4.4 FRET calculations
622 Back-calculated FRET efficiency, (E), values of the IDP ensembles were computed via

7677 using the AvTraj ® and MDTraj ™ Python packages. We

623  accessible volume simulations
624 utilize dye parameters for Alexa488 and Alexa647 dye-linker systems documented previously
625 8. The back-calculated uncertainty was calculated by taking the difference between the mean
626  FRET efficiencies in an ensemble computed using the lower and upper bounds of the Forster

627  radius, respectively 2. A back-calculated uncertainty of 025, = 0.03 was computed for all

628  ensembles. For use in BME, we added this uncertainty in quadrature with the experimental

. . . . 2
629  uncertainty (65%;; = 0.02), resulting in a combined uncertainty of \/ oBE..° + oEXP % = 0.036

630 used for BME calculations.
631

632 4.5 SAXS data and calculations

633 The cloning, expression, purification and phosphorylation of 4E-BP2 was performed as
634  previously described > 4 1°. A SAXSpace instrument with ASX autosampler (Anton-Paar

635 GmbH, Austria) was used to conduct small-angle X-Ray scattering experiments. The SAXSpace
636  was equipped with a long fine focus glass sealed copper tube using line collimation focus (40
637  kV/50 mA, Ka = 0.1542 nm), TCStage 150 sample holder and a 1D CMOS Mythen2 R 1K

638  detector. 4E-BP2 protein samples at concentrations of 2-20 mg/mL were loaded into a 1 mm
639  diameter quartz flow cell using the autosampler and six, 10-minute exposure frames were

640  collected at 20°C under vacuum. Data was corrected for background scattering using sample
641  buffer alone analyzed under the same conditions. SAXStreat software (Anton-Paar GmbH,

642  Austria) was used to define the origin of the scattering curve, correct image distortion and
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643  convert the data to 1D scattering profiles. SAXSQuant (Anton-Paar GmbH, Austria) was then

644  used to desmear the data.

645 The Pepsi-SAXS method 32 with default solvation parameters was used to back-calculate
646  SAXS curves from IDP ensembles. Pepsi-SAXS is an efficient method which utilizes the

647  multipole expansion scheme for scattering intensities and has been validated on more than 50
648  experimental SAXS scattering profiles. Only the experimental SAXS scattering intensity

649  uncertainties were utilized in the BME optimization.
650

651 4.6 NMR data and calculations

652 The ShiftX program ** was used to back-calculate secondary structure Chemical Shifts
653  (CS) from the IDP ensembles. The ShiftX method can quickly compute backbone and sidechain
654 'H, °C and "N chemical shifts in for a single ~100-residue conformer. All experimentally

655  measured chemical shifts were employed in our BME calculations except in the 5P 4E-BP2

656  ensemble where phosphosites (65, 70, 83) and immediately subsequent residues (66, 71, 84)

657  were excluded due to lack of functionality and inaccurate predictions indicated in the ShiftX

658  output files, respectively. We also excluded 5P 4E-BP2 CS values assigned to residues within the
659  folded domain (residues 19-61) since BME would not be able to refine the disordered conformer
660  ensemble otherwise. Only back-calculation uncertainties of 0.98 and 1.10 were used for Cq and

661  Cp chemical shifts, respectively for BME calculations.

662 To generate PRE data for NP 4E-BP2, we first generated single-cysteine mutant
663  constructs using a cysteineless version with C35 and C73 mutated to serines. Single cysteines

664  were then introduced at positions 35, 65, 73,91, 110 and 121 in order to attach a paramagnetic
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665  spin label at these positions. Proteins, that were labelled isotopically with 15N, were purified and
666 ~a TEMPOL-maleimide (Toronto Research Chemicals) spin label was covalently linked as

667  previously described . Two matched samples were made for each protein with the spin label in
668 either an oxidized or a reduced state. Samples were oxidized or reduced by addition of either

669  five-fold excess of TEMPOL (Toronto Research Chemicals) or 1 mM ascorbic acid,

670  respectively. Prior to NMR experiments, the samples were buffer exchanged into a buffer

671  containing 30 mM sodium phosphate, 100 mM sodium chloride, ] mM EDTA, 1 mM

672  benzamidine, pH 6 using argon purged buffers to maintain the oxidation state of the spin label.

673 For all samples, sensitivity-enhanced HSQC experiments * and unenhanced-NH-T2
674  experiments % were recorded at 20 °C on an 800 MHz Bruker spectrometer equipped with a
675 triple-resonance cryoprobe. Relaxation delays for the T2 experiment were 7, 9, 14, 20, 26, 33,
676 41, 49,59, 70, 82 and 95 ms, with the 14 and 59 ms points repeated for error estimation. A

677  comparison of the T2 data and the ratios of the oxidized and reduced samples revealed highly
678  similar trends. Though less rigorously quantitative, the peak intensities from the HSQC

679  experiments were used as input for DEERPREdict (see below), because the T2 data and HSQC
680  shared highly similar trends. PRE data for NP 4E-BP2 is included in the supplementary

681  information, and the PRE data for 5P 4E-BP2 has been published previously '°.

682 The DEERPREdict program was used to back-calculate PRE intensity ratios ’'. The
683  parameters used were the same for both phosphoforms: total correlation time 7, = 0.5 ns, spin
684 label effective correlation time 7. = 4 ns, total INEPT time t; = 10 ms, reduced transverse

685  relaxation time R, = 6 Hz and proton Larmor frequency wy /2m = 800.14. PRE data points for
686  which both the spin label residue and residue to which it transfers were both in the folded

687  domain were excluded in the analysis as they experienced little or no change. The metric chosen

33


https://doi.org/10.1101/2023.06.20.545775
http://creativecommons.org/licenses/by-nc-nd/4.0/

688

689

690

691

692

693

694

695

696

697

698

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.20.545775; this version posted June 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

to quantify agreement is the root-mean-squared average over the root-mean-squared deviations

between back-calculated and experimental PRE intensity ratios (PRE RMSD) (see SI 2.8).
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