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Adaptation is a universal aspect of neural systems
that changes circuit computations to match pre-
vailing inputs. These changes facilitate efficient
encoding of sensory inputs while avoiding satura-
tion. Conventional artificial neural networks (ANNs)
have limited adaptive capabilities, hindering their
ability to reliably predict neural output under dy-
namic input conditions. Can embedding neural
adaptive mechanisms in ANNs improve their per-
formance? To answer this question, we develop a
new deep learning model of the retina that incorpo-
rates the biophysics of photoreceptor adaptation at
the front-end of conventional convolutional neural
networks (CNNs). These conventional CNNs build
on ’Deep Retina,’ a previously developed model of
retinal ganglion cell (RGC) activity. CNNs that in-
clude this new photoreceptor layer outperform con-
ventional CNN models at predicting primate and rat
RGC responses to naturalistic stimuli that include
dynamic local intensity changes and large changes
in the ambient illumination. These improved predic-
tions result directly from adaptation within the pho-
totransduction cascade. This research underscores
the potential of embedding models of neural adap-
tation in ANNs and using them to determine how
neural circuits manage the complexities of encod-
ing natural inputs that are dynamic and span a large
range of light levels.
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Introduction

Artificial neural networks (ANNs) combined with deep
learning algorithms are useful in modeling the function
of the nervous system and are being used to model
and investigate many brain areas (Doerig et al., 2023).
Under relatively controlled conditions, ANNs perform
well in computer vision tasks such as object recogni-
tion (Chollet, 2017; Simonyan and Zisserman, 2015;
Krizhevsky et al., 2017), and they can successfully pre-
dict the responses of neurons in visual cortex (Kindel
et al., 2019; Cadena et al., 2017; Yamins et al., 2014;
Yamins and Dicarlo, 2016) and retina (McIntosh et al.,
2016; Tanaka et al., 2019; Yan et al., 2022; Goldin et al.,
2022; Maheswaranathan et al., 2018; Batty et al., 2017;
Shah et al., 2022). However, it is less clear how ANNs
perform in more naturalistic settings, where, for exam-
ple, the statistics of sensory input can vary significantly
from moment to moment. A specific concern is that the
static nonlinear functions that ANNs typically employ will
limit their ability to dynamically adapt to changing input
conditions. This is important because adaptation is a
nearly universal feature of individual neurons and neu-
ral circuits (Fain et al., 2001; Benda, 2021).

Sensory systems provide some of the clearest ex-
amples of the importance of adaptation: adaptation
causes the fading of perceived intensity of odors (Zu-
fall and Leinders-Zufall, 2000) and accommodation to
sounds (Willmore and King, 2023). Within the visual
system, adaptation constantly adjusts neural responses
to match the prevailing input conditions. During natu-
ral vision, the amount of light falling on the retina can
change locally and globally by several orders of mag-
nitude on timescales ranging from fractions of a sec-
ond (e.g. eye movements such as saccades), to min-
utes (e.g. movement between sunlight and shade), and
to hours (e.g. the rising and setting sun). The limited
dynamic range of individual neurons makes adaptation
essential to match the range of neural responses to the
current range of inputs. In vision, much of this adapta-
tion occurs in the retina, and as early as the photore-
ceptors. Indeed, phototransduction can adapt rapidly
and dynamically to control the sensitivity and kinetics
with which light inputs are converted into electrical sig-
nals (Fain et al., 2001; Angueyra et al., 2022; Yu et al.,
2022; Clark et al., 2013).

We examined whether incorporating photoreceptor
adaptation into ANNs enhanced their accuracy at pre-
dicting neural responses under varied input conditions.
We tested the ability of a convolutional neural network
(CNN), similar to Deep Retina (McIntosh et al., 2016), to
predict stimulus-evoked retinal ganglion cell (RGC) fir-
ing patterns under lighting conditions that differed from
those under which they were trained. Observing a clear
failure of the CNNs to generalize to new lighting con-
ditions, we created a new type of CNN layer that in-
corporates a biophysical model of photoreceptor adap-
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tation (Angueyra et al., 2022; Chen et al., 2024) that
emulates the transformation of light into electrical sig-
nals. The photoreceptor layer can be used as an in-
put to conventional CNNs, and can be trained end-to-
end along with the other CNN layers. It thus equips
deep learning CNN models of the retina with biorealistic
adaptation mechanisms. We found these biophysical
photoreceptor–CNN hybrid models better generalized
across lighting conditions that were not included in train-
ing. Furthermore, because the photoreceptor adapta-
tion was local, the photoreceptor–CNN model outper-
forms conventional CNN models in tasks involving rapid
changes in local light intensity. These results suggest
that chimeric models blending biophysical realism with
trainable CNNs are better at modeling neural activity.
Moreover they provide a promising direction for investi-
gating how adaptation mechanisms shape neural circuit
function.

Results

Photoreceptor adaptation improves CNN perfor-
mance at predicting RGC responses to natural stim-
uli

We hypothesized that incorporating photoreceptor
adaptation could improve the performance of CNN mod-
els at predicting RGC responses to naturalistic stim-
uli that involve local luminance variations. To test this
hypothesis, we recorded the spiking activity of RGCs
in isolated ex vivo primate (macaque monkey) retina
using a high density multielectrode array (Methods),
and then attempted to predict these visually-evoked re-
sponses using CNN models either with or without pho-
toreceptor adaptation mechanisms. For training CNNs,
we measured responses to a 36-minute checkerboard
noise movie (30 µm pixel edge) and to 9 naturalistic
movies (totaling 9 minutes). The naturalistic movies
were generated by displacing natural images from the
Van Hateren dataset (Van Hateren and Van der Schaaf,
1998) across the retina, incorporating eye movement
trajectories derived from the DOVES dataset (Van
Der Linde et al., 2009) (Fig. 1a). The checkerboard
noise provided responses to statistically stable stimuli,
while the naturalistic movies presented large and rapid
changes in light intensity characteristic of the retinal in-
put during natural vision. Both stimuli were presented at
a mean luminance of 50 R*receptor−1s−1, where rod
photoreceptors are primarily driving RGC responses
and rods are at a light level where their gain is adapt-
ing to the stimulus (Grimes et al., 2018; Griffis et al.,
2023). We selected 57 RGCs (27 ON and 30 OFF para-
sol cells) for modeling purposes based on spike sorting
quality and reliability across experimental conditions.

We constructed a conventional CNN model similar
to the existing state-of-the-art Deep Retina architec-
ture (McIntosh et al., 2016) (i.e., the architecture in

Fig. 1b with the photoreceptor layer removed, Meth-
ods). We re-optimized model hyperparameters – includ-
ing the number of layers and the number of channels in
each layer – for our dataset (see Methods). The re-
sulting model had three CNN layers followed by a fully-
connected layer with 10, 15 and 20 channels in each
of the CNN layers, respectively, and filter pixel sizes
(relative to the stimulus size) of 11x11, 7x7 and 7x7
respectively. Each convolution layer was followed by
Batch Normalization (Batch Norm) followed by a rec-
tifying nonlinearity. (Batch Norm z-scores the outputs
of each unit in the CNN across the set of stimuli in
each input batch.) The output of the fully-connected
layer underwent a softplus operation to generate firing
rates. This architecture resulted in 900,252 parame-
ters, 873,642 of which were trainable. The model takes
as input a movie segment of 80 consecutive frames,
where each frame corresponds to 8 ms after upsam-
pling the original 60 Hz frame rate to 120 Hz. The
model output for the 80 consecutive frames provided
an instantaneous spike rate for each RGC at the end
of that movie segment. In other words, the response at
each time point was based on the previous 80 frames
(640 ms). By shifting the input forward by 1 frame at
a time along the input movie, the model could predict
the entire time series of RGC responses evoked by the
stimulus movie. A Layer Normalization (Layer Norm)
layer at the input standardized each pixel of the input
stimulus segment relative to the values of that pixel in
time. This normalization step removed the mean in-
tensity from each input sample (movie segment) while
preserving spatio-temporal contrast structure. This en-
abled the CNN to compensate for changes in input
magnitude across light levels, ensured stability during
training, and promoted faster convergence (Methods).
Model performance was quantified using the fraction of
explainable variance (FEV; see Methods) in the median-
normalized response of each RGC (Methods) that was
explained by the model. Henceforth, we present FEV
as a percentage for ease of interpretation. A perfect
model, by definition, would yield an FEV value of 100%.
Comparisons between models were facilitated by pre-
senting median FEV values along with 95% confidence
intervals.

Due to the limited duration of the naturalistic movies in
our dataset, we could not fully train the models on the
naturalistic movie data alone. Instead, we adopted a
two-stage training process. First, we trained the model
to predict RGC responses using the entire white noise
movie dataset, totaling 36 minutes. Second, we fine-
tuned the resulting model using RGC responses to 8
of the 9 naturalistic movies (8 minutes of the data) and
evaluated the model on the held-out movie (6 seconds).
For an example RGC, this conventional CNN model
captured 59% FEV of the recorded (Fig. 2a) response
with a median FEV of 38% ± 8% across the population
(N = 57) of recorded cells (Fig. 3a).
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To test the hypothesis that dynamic photoreceptor adap-
tation improves the CNN predictions, we developed a
new type of CNN layer that builds upon a biophysical
model of the phototransduction cascade by Angueyra
et al. (2022). We then built a new CNN model that
had this photoreceptor layer at its input and tested it
with the same procedure used to test the conventional
CNN (above). This photoreceptor model has previ-
ously been validated for its faithful representation of
photoreceptor adaptation dynamics (Angueyra et al.,
2022). The model is based directly on the signalling
cascade that constitutes the phototransduction process
(Fig. 1c). Rapid adaptation in this model emerges pri-
marily from changes in the rate of cGMP turnover pro-
duced by light intensity-dependent changes in phos-
phodiesterase activity (Nikonov et al., 2000). The bio-
chemical reactions of the phototransduction cascade
were represented by a set of six differential equations
that also incorporate dynamic feedback mechanisms to
the cGMP-gated channels as detailed in the biophysical
model by Angueyra et al. (2022) (reproduced in Supple-
mentary Note 1). By setting the model’s parameter val-
ues to match experimentally-derived values from cone
or rod photoreceptors (Chen et al. (2024); Supplemen-
tary Table. 1), the model can be configured to represent
either photoreceptor type. Here, we configured the pho-
toreceptor model to represent primate rods.

The fully-trainable CNN layer encapsulating the bio-
physical photoreceptor model is characterized by twelve
parameters (Methods) that could be trained together
with the downstream network through backpropoga-
tion. This layer converts time-varying light intensity sig-
nals at each pixel in the input movie – measured in
units of receptor activations per photoreceptor per sec-
ond (R*receptor−1s−1) – into time-varying photocur-
rent values (measured in pA). In the hybrid biophysi-
cal photoreceptor–CNN model, the photoreceptor layer
functions as the input stage of the CNN (Fig. 1b, pho-
toreceptor layer). Following the photoreceptor layer,
Layer Normalization is implemented to normalize the in-
put distribution to the CNN, while preserving the spatio-
temporal structure of the photocurrents. This design
also ensures that the parameters of the biophysical
model, having a different scale than the downstream
CNN weights, can be trained together with the CNN
through backpropogation. Henceforth, we refer to this
hybrid model as the photoreceptor–CNN model. Un-
less explicitly stated, we allow the photoreceptor model
parameters to be learned along with downstream CNN
weights, and hence to deviate from the values to which
they are initialized.

Similar to the conventional CNN, the photoreceptor–
CNN model was trained to predict primate RGC re-
sponses first to a white noise movie and then param-
eters were fined tuned by training to naturalistic movies.
When evaluated on the same held-out movie segment
as the conventional CNN, the predicted responses of

an example RGC generated by the photoreceptor–CNN
model (Fig. 2b) were much more closely matched to the
actual response than the predictions from the conven-
tional CNN (Fig. 2b). Overall, the photoreceptor–CNN
model performed with a median FEV of 49% ± 15%
(Fig. 3a). This performance gain is substantial given
that the photoreceptor layer enhanced the predictive ca-
pability of conventional CNNs by approximately 29% (p
= 0.002, two-tailed Wilcoxon signed-rank test, N = 57
RGCs). The enhanced capability of the photoreceptor–
CNN model was robust when trained and evaluated over
different combinations of naturalistic movies (Supple-
mentary Fig. 1) and underscores the pivotal role played
by the simulated photoreceptor layer.

The superior performance of the photoreceptor–CNN
model can be attributed to its ability to capture and lever-
age dynamic photoreceptor adaptation. At the ambi-
ent light level of this experiment (50 R*receptor−1s−1)
rod photoreceptors are adapting strongly (Grimes et al.,
2018; Griffis et al., 2023) as sufficient numbers of pho-
tons are incident upon the rod outer segment to en-
gage adaptation in phototransduction. Conventional
CNNs, despite incorporating Layer Norm at their input
to accommodate steady-state sensitivity changes asso-
ciated with the mean intensity of the stimuli, struggle to
capture this adaptation. Photoreceptor–CNNs explicitly
model this dynamic adaptation, making them more ef-
fective in predicting RGC responses in this setting.

Nonlinear adaptation in the photoreceptor layer
drives performance gains

What causes the photoreceptor–CNN to outperform the
conventional CNN at predicting RGC responses? No-
tably the superior performance is not attributable to an
increase in model capacity from the addition of 12 train-
able parameters of the photoreceptor layer. In fact,
the photoreceptor–CNN model boasted a lower total
number of trainable parameters (538,107 parameters)
compared to the conventional CNN model (873,642 pa-
rameters). This difference in parameter count resulted
from separately optimizing the hyperparameters of the
photoreceptor–CNN and conventional CNN models via
grid searches.

Given the inherent limitation of CNNs in dynamically
adapting based on the prevailing inputs, we hypoth-
esized that the observed performance gains in the
photoreceptor–CNN model stem from the nonlinear dy-
namic adaptation and explicit feedback mechanisms
embedded in the photoreceptor layer. To test this
hypothesis, we substituted the biophysical photore-
ceptor model with an empirical linear photoreceptor
model (Angueyra et al., 2022) (Methods). This lin-
ear model consists of a linear filter governed by 5
trainable parameters. These parameters were ini-
tialized to experimental estimates of single-photon
responses obtained by measuring photoreceptor re-
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Figure 1. Training and architecture of photoreceptor–CNN / conventional CNN model. a. Naturalistic movie generated by displacing natural scene images
across the retina, to mimic eye movement trajectories (red lines). b. Photoreceptor-CNN Model architecture incorporating a photoreceptor layer at the front-end
(green) followed by Layer Normalization and 3 convolution layers (orange). The model output is a fully-connected layer that has N units based on the number of
RGCs in the dataset followed by a softplus activation function that transforms the outputs into RGC spiking output (blue traces). By traversing through the input movie
80 frames at a time, an entire time series of RGC responses is obtained. When configured as a conventional CNN (without the photoreceptor layer), Layer Norm
before the first convolution layer is the input layer. c. Schematic showing the phototransduction cascade and corresponding components of the biophysical model
(reproduced from Angueyra et al. (2022)). Continuous synthesis of cGMP by guanylate cyclase (GC) opens cGMP-gated channels in the membrane. Activation
of light-sensitive opsin (Opsin*) results in channel closure through the activation of G-protein transducin (Gt*), subsequently activating PDE* and decreasing cGMP
concentration. Calcium ions (Ca2+) enter the photoreceptor outer segment via cGMP-gated channels and are extruded through Na+ / K+ / Ca2+ exchangers in
the membrane. The biophysical model incorporates two distinct calcium-dependent feedback mechanisms influencing the rate of cGMP synthesis (blue line) and the
activity of the cGMP-gated channels (red line). In the experiments presented here, the strength of Ca-dependent feedback to the the cGMP-gated channels was set
to zero, based on observations from rod photoreceptor cells (Chen et al., 2024). See Supplementary Table. 1 for a list of parameters and their values.

Figure 2. Incorporating photoreceptor adaptation improves CNN performance in predicting an example RGC’s response to naturalistic movies. a-b.
Recorded response of an example primate parasol RGC to a held-out naturalistic movie shown as normalized spike rate (gray), and predicted responses by (a)
conventional CNN model (blue) and (b) photoreceptor–CNN model (green). Fraction of Explainable Variance Explained (FEV) values quantify the percentage of
variance in the RGC’s actual responses that could be explained by each model.

sponses (Angueyra et al., 2022). Unlike the biophysical
model, the linear photoreceptor model lacks the ability
to dynamically adjust its sensitivity. In this model, a sin-
gle parameter provides sensitivity adjustment, applied
to the entire linear photoreceptor model output to ac-
count for adaptation.

Following the same procedure as for the conventional
CNN and the photoreceptor–CNN, the hyperparameters
of the linear photoreceptor–CNN model were optimized
via a grid search (Methods). The resulting model was
first trained (including the 5 photoreceptor parameters
that were initialized to experimental values) to predict

RGC responses to the white noise movie and then fine-
tuned using RGC responses to the naturalistic movies.
When evaluated on the held-out segment of naturalistic
movie data, this model performed very similarly to the
conventional CNN model, yielding FEV of 37% ± 12%
(Fig. 3b; p = 0.26, two-tailed Wilcoxon signed-rank test,
N = 57 RGCs). This is expected since the initial linear
filtering stages of the conventional CNN should be able
to capture the linear filtering performed by the simplified
linear photoreceptor model.

Taken together, these experiments underscore the sig-
nificance of nonlinear adaptation as crucial components
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influencing model predictions. Importantly, while the
biophysical photoreceptor model parameters are train-
able, similar performance gains could be achieved in
another experiment where these parameters were set to
non-trainable, thus reflecting true biological rods. In this
experiment, the parameters of the photoreceptor layer
were not learned or updated from their experimental fits
to rods (Supplementary Table. 1) during the training of
the photoreceptor–CNN model. Even with fixed param-
eter values, the resultant photoreceptor–CNN model
exhibited performance comparable to its fully-trainable
counterpart when evaluated on the naturalistic movie
dataset (Fig. 3c; FEV 49% ± 10%; p = 0.07, two-tailed
Wilcoxon signed-rank test, N = 57 RGCs). These find-
ings suggest that the observed performance gains can
indeed be attributed to the nonlinear adaptation in the
photoreceptors.

Incorporating photoreceptor adaptation enables
CNNs to generalize across light levels

The results so far indicate that the photoreceptor–CNN
model shows superior performance in predicting re-
sponses to naturalistic movies that include dynamic lo-
cal changes in intensity but lack changes in global light
level. In the following sections, we shift our focus to ask-
ing how well the models generalize over global changes
in mean light level, reminiscent of natural vision but oc-
curring at slower time scales. This entails training the
models at two distinct light levels and evaluating their
performance on a third level not encountered during
training.

To generate the experimental data for these compu-
tational studies, we recorded the spiking activity of
RGCs in another isolated ex vivo primate (macaque
monkey) retina using a high density multielectrode
array (Methods). The retina was exposed to a binary
checkerboard noise movie (Methods) with a checker
size of 140 µm, presented at three different light levels.
The checkerboard pattern changed at 15 Hz and neu-
tral density filters in the light path allowed for the mean
intensity of the stimulus to be altered without changing
the stimulus contrast. RGC responses were measured
at mean intensities of 30 R*receptor−1s−1(high),
3 R*receptor−1s−1(medium) and
0.3 R*receptor−1s−1(low). Rod photoreceptors
dominate signaling at all three light levels. At
30 R*receptor−1s−1the gain and kinetics of rod
responses are adapting as sufficient numbers of
photons are incident upon the rod outer segment to
engage adaptation in phototransduction (Grimes
et al., 2018; Griffis et al., 2023). However, at
0.3 R*receptor−1s−1rod responses are not adapt-
ing because individual rods are rarely receiving more
than one photon at a time. RGC responses to the
checkerboard noise were recorded for 60 minutes at
each light level. The analysis focused on 37 RGCs
based on spike sorting quality and reliably tracking

cells across the light levels. These cells included 28
ON midget, 2 ON parasol, 2 OFF midget and 5 OFF
parasol RGC types.

The conventional CNN architecture (same as the one
used above) was re-optimized for the numbers of con-
volutional layers, filters in each layer, and the filter sizes
with a grid search on this new dataset. The resulting
model had three CNN layers followed by a dense layer
with 8, 16 and 18 channels in each of the CNN lay-
ers, respectively, and filter sizes of 9x9, 7x7 and 5x5
respectively. The model takes as input an upsampled
movie segment comprising of 120 consecutive frames,
where each frame corresponds to 8 ms. We chose a
larger segment length in these experiments to account
for longer integration times at the lower light levels.

This CNN model was trained to predict RGC responses
(N = 37 RGCs) (Methods) to a total of 40 minutes of
a checkerboard noise movie presented at the high and
medium light levels. To evaluate the model’s perfor-
mance, we used a test data set that included 5–10 sec-
onds of held-out segments of the checkerboard noise
movie at all light levels (Fig. 4a), including the low test-
ing light level not used during the training. Despite the
same temporal sequence of checkerboard noise being
presented at each light level, RGCs exhibited distinct re-
sponses, indicative of adaptation (Fig. 4b). The model
accurately predicted responses to movies at the two
training light levels (FEV of 93% and 83% for an exam-
ple RGC, Fig. 4c, columns 1-2), with median FEVs of
84% ± 11% for high and 78% ± 3% for the medium light
level (Fig. 5a). However, this model performed poorly
at the low testing light level (Fig. 4c, column 3) with an
FEV of only 24%±15% across cells (Fig. 5a).

Alterations in ambient light levels induce adaptation in
the retina that alters both the sensitivity and kinetics of
RGC responses (Tikidji-Hamburyan et al., 2015; Grimes
et al., 2018; Ruda et al., 2020). CNN models can effec-
tively capture linear sensitivity changes across global
light levels, evident by consistent amplitudes of the pre-
dicted responses across light levels differing by a log
unit (Fig. 4c). This is in part achieved by Layer Norm
at the input to the model that discounts the mean inten-
sity from input stimuli, resulting in a simple gain change
commensurate with Weber adaptation. The failure of
the CNN model at the low test light level (Fig. 5a, col-
umn 3) can therefore be primarily attributed to nonlin-
ear sensitivity changes and shifts in response kinetics
across the light levels, aspects not captured by Layer
Norm alone. This is most prominent at the low test light
level, where RGC responses slow considerably (Fig. 4b
inset) and the inability of conventional CNNs to adap-
tively regulate both response sensitivity and kinetics lim-
its their performance to generalize to this condition.

We next sought to determine whether incorporating the
photoreceptor layer at the input stage could improve the
ability of the CNNs to alter their sensitivity and kinetics
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Figure 3. Incorporating photoreceptor adaptation improves CNN performance in predicting RGC responses to naturalistic movies. a. Comparison between
conventional CNN and photoreceptor–CNN model with the photoreceptor layer parameters trained with the downstream CNN . Y-axis shows the performance of
conventional CNN (left) and photoreceptor–CNN model (right) as FEV values for each RGC (circles). Light gray circles denote ON type RGCs (N = 27), and dark
gray circles denote OFF type RGCs (N = 30). Connecting lines link the FEV values for each RGC across models. Median FEV values across all RGCs (N = 57) are
indicated by red lines, and stated as FEV ± 95% c.i. in red text at the top. P-values were calculated by performing two-sample Wilcoxon signed-rank test on the FEV
distributions from the CNN and photoreceptor-CNN model. An asterisk indicates statistically significant difference (p < 0.01) between performance of the two models.
b. Similar comparisons as in a but between conventional CNN (same as a, left) and photoreceptor-CNN, with the biophysical photoreceptor model being replaced by
a linear empirical photoreceptor model. c. Similar comparison as in a between photoreceptor-CNN models with the biophysical photoreceptor layer parameters fixed
to experimental fits to primate rods (left; Supplementary Table 1) and where the photoreceptor layer parameters were learned along with the downstream CNN (right;
same as a, right).

in a light intensity-dependent manner and better predict
the experimental data. To test this, we subjected the
photoreceptor–CNN to the same test as the conven-
tional CNN (above): we trained the model end-to-end
(including the photoreceptor layer) to predict primate
RGC responses to the binary checkerboard movie at
the high and medium light levels. Similar to the conven-
tional CNN model, the photoreceptor–CNN model reli-
ably predicted responses to held-out stimuli at the two
training light levels (Fig. 4d columns 1-2 and Fig. 5b).
Importantly, the photoreceptor–CNN model could also
explain 54% ± 11% of the variance in responses at
a light level lower than those at which it was trained
(Fig. 4d column 3 and Fig. 5b). This performance was a
two-fold improvement over the conventional CNN model
without the photoreceptor layer (p = 5 × 10−8, Wilcoxon
signed-rank test, N = 37 RGCs), which only explained
24%±15% of the variance (Fig. 5a). We attribute this to
the model’s ability to modulate output properties based
on mean light level (see below).

Although we observed improved performance at the
test light level, such gains were not evident at the
training light levels (Fig. 5a,b). This is unlike our
previously described experiments with the naturalistic
movies (Fig. 3a) where the photoreceptor–CNN out-
performed the conventional CNN even at the training
light level. Noise stimuli have a more limited range of
contrasts than natural scenes and lack temporal cor-

relations. Hence, photoreceptor responses to noise
stimuli at a single mean light level are nearly linear,
with minimal changes in adaptation state. This leads
to similar performance across conventional CNN and
photoreceptor–CNN models (Fig. 5a,b) at the training
light levels.

We also examined the performance of the
photoreceptor–CNN across all different combina-
tions of training and testing light levels: the model was
trained on data from two light levels, and then evaluated
on test data from a different light level (Fig. 5c; Supple-
mentary Figure 2 shows the population data for ON and
OFF RGCs separately). For all combinations of training
and testing light levels, the photoreceptor–CNN model
generalized better to new light levels than the con-
ventional CNN model without the photoreceptor layer.
The difference was smallest for the case where the
testing light level (medium) was intermediate between
the high and low training light levels (Fig. 5c, column
3; p = 0.83, two-tailed Wilcoxon signed-rank test, N =
37 RGCs). This is unsurprising given that conventional
CNN models can interpolate between different sets
of training conditions. Moreover, the similarity in
responses at the high and medium light levels (inset
in Fig. 4b) means that in the interpolation condition,
the model predictions at the testing light level need not
differ much from those at one of the training light levels.
However, in the more challenging extrapolation tests –
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and especially in extrapolation to the low light level at
which the response kinetics are appreciably different –
the photoreceptor–CNN performs much better because
the photoreceptor layer enables the models to adjust
their output in a light-level-dependent manner.

Photoreceptor-CNN model captures light-level-
dependent changes in response kinetics

Normalization layers like Layer Norm allowed both the
conventional CNN and photoreceptor–CNN models to
capture steady-state sensitivity changes across light
levels (Fig. 4c,d). But the inability of these normaliza-
tion layers to adjust kinetics of the predicted responses
suggested that the observed performance gains with
the photoreceptor–CNN model resulted from its in-
trinsic ability to capture light-dependent changes in
RGC response kinetics. For instance, RGC responses
were faster (Fig. 6a) and temporal receptive fields had
shorter latencies at the higher light level (Fig. 6b; es-
timated by reverse correlation). The response la-
tency was consistently lower for the higher light level
across the population of RGCs (Fig. 6e, left column).
We then asked whether receptive fields of RGCs in
the trained photoreceptor–CNN and conventional CNN
models showed differences like those observed exper-
imentally (Fig. 6b, Fig. 6e, left column). The tempo-
ral receptive fields of model RGCs (see Fig. 6c,d for
an example RGC) were calculated by averaging the in-
stantaneous temporal receptive fields (Supplementary
Fig. 4a) across all movie segments. These instanta-
neous receptive fields were estimated by computing the
gradients of the predicted RGC firing rates with respect
to each input pixel value to yield instantaneous spa-
tiotemporal receptive fields (Maheswaranathan et al.,
2018; Goldin et al., 2022), which were then decom-
posed into spatial- and temporal components (Meth-
ods). We restricted this analysis to a subset of 22 RGCs
that displayed FEV values greater than 50% at the train-
ing light levels (high and medium light levels) for both
models (models of Figs. 4,5a,b). Thus, these were the
RGCs for which the predictions from both models were
most reliable, facilitating estimates of receptive fields
from model RGC gradients with respect to input stim-
uli.

Consistent with our hypothesis, the temporal recep-
tive fields of photoreceptor–CNN model RGCs exhibited
intensity-dependent changes in response kinetics, with
shorter latencies at the higher light level (Fig. 6c). This
latency difference was statistically significant at the pop-
ulation level (Fig. 6e; p = 1 × 10−4, two-tailed Wilcoxon
rank-sum test, N = 22 RGCs). This change in response
latency could already be observed at the output of the
photoreceptor layer (Fig. 6f), simply as a function of in-
put light intensity. In contrast, the conventional CNN
model showed no changes in latencies across the two
light levels at which the models were trained (Fig. 6d;
right column in Fig. 6e). This analysis underscores

the effectiveness of the photoreceptor layer in captur-
ing and adapting to dynamic changes in response ki-
netics associated with varying light conditions. In ad-
dition, photoreceptor–CNN models can also better cap-
ture sensitivity changes across light levels (see Supple-
mentary Note 2).

Incorporating photoreceptor adaptation enables
generalization across photopic and scotopic light
levels

Having observed that the photoreceptor–CNN model
generalizes well across light levels that differ by 1-2 or-
ders of magnitude (Fig. 5c), we wondered whether it
could also generalize across more extreme variations
in lighting. To answer this question, we trained con-
ventional CNN and photoreceptor–CNN models to pre-
dict rat RGC responses to noise stimuli at a relatively
bright photopic light level (10,000 R*receptor−1s−1)
where cone photoreceptors predominantly contribute
to vision, and evaluated the ability of the model to
generalize to the much dimmer (scotopic) light level
(1 R*receptor−1s−1) where rod (and not cone) photore-
ceptors are active (Fig. 7a). For this analysis, we used
rat RGC recordings that we previously published (Ruda
et al., 2020).

The conventional CNN model trained at the photopic
light level could reliably predict RGC responses to held-
out data at the photopic light level (example RGC re-
sponses in Fig. 7b, left; population data in Fig. 7d).
However this model badly failed (FEV of −52% ± 9%;
N = 55 RGCs) to predict responses at the scotopic
light level (Fig. 7b, right and Fig. 7e). The proposed
photoreceptor–CNN model, however, did surprisingly
well (Fig. 7c, right), achieving FEV of 54% ± 8% on this
task (Fig. 7e). For this experiment, we first trained the
photoreceptor–CNN model at high light level and then
replaced that model’s photoreceptor parameters (which
correspond to cone cells at this light level) with those
corresponding to rod cells (as explained in Fig. 7f and
Supplementary Note 3). The remaining CNN param-
eters were unchanged by this procedure. This finding
demonstrates that the changes in photoreceptor layer
parameters alone can account for much of the differ-
ence in how the photoreceptor–CNN model predicts
steady-state RGC responses at these two light levels.

Discussion

We introduced a new CNN layer for vision models
that builds upon a biophysical model of phototransduc-
tion (Angueyra et al., 2022). When used as a front-
end to CNNs, this photoreceptor layer allows the CNN
outputs to adapt to the prevailing inputs in a manner
that more accurately mimics the retina. Consequently,
the photoreceptor–CNN models surpass conventional
CNN models at predicting RGC responses to natural-
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Figure 4. Incorporating photoreceptor adaptation enables CNN to predict responses of an example RGC at a light level different from those at which it
was trained. a. White noise movie at three different light levels (columns). b. Recorded response (normalized spike rate) of an example RGC (gray lines) to white
noise movie at the three different light levels in a (columns). Inset above the right column overlays a segment of the responses at the three light levels to directly
compare response kinetics. c. Responses predicted by a conventional CNN model (colored) at each light level in a (columns). FEV values above each trace quantify
the performance of the model for this RGC at the corresponding light levels. d. Same as in c but for the proposed photoreceptor–CNN model. Models were trained on
data at high 30 R*receptor−1s−1(column 1) and medium 3 R*receptor−1s−1(column 2) and evaluated at low 0.3 R*receptor−1s−1(column 3) light level.

Figure 5. Incorporating photoreceptor adaptation enables CNNs to generalize across light levels. a-b. Performance of (a) a conventional CNN model,
and (b) the photoreceptor–CNN model. Each model was evaluated at three light levels (labelled below each box plot): high (30 R*receptor−1s−1) and
medium(3 R*receptor−1s−1), at which the models were trained, and low (0.3R*receptor−1s−1) which the models did not see during the training. The box plot
at each light level shows the distribution of FEVs across 37 primate RGCs. Numbers at the top of each box plot are the median FEVs ± 95%c.i.. c. Performance of
the conventional CNN model (blue color; same model as in a), and the photoreceptor–CNN model (green color; same model as in b) at all combinations of training
and test light levels. For each column, the legend below the box plot panel shows the two light levels the models were trained at and the third light level at which it
was tested (black outline). The box plots show the distribution of FEVs at this testing light level. Testing light levels were low (column 1), high (column 2), and medium
(column 3). p-values were calculated by performing two-sample Wilcoxon signed-rank test on the FEV distributions from the CNN and photoreceptor–CNN model at
each testing light level.
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Figure 6. Photoreceptor layer enables CNNs to adjust their response kinetics in a light-level-dependent manner. a. Normalized recorded spiking activity of an
example RGC in response to a white noise stimulus at two light levels used in model training: high (30 R*receptor−1s−1; yellow), and medium (3 R*receptor−1s−1;
orange). b. Temporal receptive field of the same RGC calculated using reverse correlation of a white noise movie (55 minutes) at the two different light levels. c.
Temporal receptive fields of the same RGC obtained by averaging across multiple instantaneous temporal receptive fields from photoreceptor–CNN output gradients
with respect to multiple input movie segments. d. Same as in c but for the conventional CNN model. e. Mean response latency (N = 22 RGCs), calculated as the
number of frames (1 frame = 8 ms) between the time of spike and peak of the temporal receptive field. Error bars indicate 95% confidence interval of the mean. Colors
(legend in a) represent the light level at which temporal receptive fields were calculated from reverse correlation of experimental data (left column), photoreceptor–
CNN model gradients (middle column) and conventional CNN model gradients (right column). An asterisk indicates a statistically significant difference in response
latencies between two light levels (p < 0.001, N = 22 RGCs, two-tailed Wilcoxon rank-sum test). f. Top. Intensity changes over time for a single pixel in the binary
checkerboard white noise movie at the two different mean light levels. Bottom. The output of the photoreceptor layer from the photoreceptor–CNN model after the
Layer Normalization layer that immediately follows the photoreceptor layer. This output is fed into subsequent CNNs. Inset zooms the lag in photocurrents at medium
light level (compare orange and yellow lines). Legend in a is valid for all panels (line style varies for clarity).

istic movies that simulate rapid local changes in light
intensity due to eye movements, and at predicting re-
sponses across steady-state changes in mean light lev-
els. The improved performance could not be repli-
cated by replacing the biophysical photoreceptor model
with a linearized photoreceptor model. Thus, the suc-
cess of the biophysical photoreceptor–CNN model is at-
tributable to nonlinear processes governing adaptation
within the biophysical photoreceptor model.

ANNs, of which CNNs are a sub-class, are universal
function approximators (Hornik et al., 1989) and there-
fore in principle they are capable of implementing any
transformation with simple nonlinear units. This sug-
gests that, in principle, a sufficiently large ANN can
accurately model neural responses to stimuli with the
same statistics as the training set, without the need
for any bio-inspired adaptive mechanisms. Nonethe-
less, ANNs can benefit from having the right induc-
tive biases that represent prior knowledge about the
underlying data, as demonstrated by the benefits of
CNNs in computer vision over non-convolutional forms
of ANN (LeCun et al., 1989, 1998; Alzubaidi et al.,

2021). In the same way, our results demonstrate that
equipping CNN-based deep learning models with pho-
toreceptor adaptive mechanisms improves their ability
to capture retinal responses to stimuli with local lumi-
nance fluctuations, and enables them to better gen-
eralize to out-of-distribution tasks, such as extrapo-
lating to new lighting conditions (Fig. 5c columns1-2,
7e). The new photoreceptor–CNN is much better at
this challenging task as the photoreceptor layer en-
ables the CNN to learn response properties such as
the dependence of kinetics on light intensity (Dunn
et al., 2006; Angueyra et al., 2022; Yu et al., 2022;
Clark et al., 2013); Fig. 6c). This capability is demon-
strated by the difference in kinetics of the responses
at 3 R*receptor−1s−1and 30 R*receptor−1s−1(Fig. 6f,
bottom); a fully linear model predicts identical kinetics
at different mean light levels.

In addition to improving generalization between light
levels, the photoreceptor–CNN model also substan-
tially improves performance for predicting responses to
high-resolution naturalistic stimuli at a single light level.
Despite these improvements, the photoreceptor–CNN
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Figure 7. Incorporating photoreceptor adaptation enables CNN to generalize across extremely different light levels. a. Recorded responses shown as
normalized spike rate (gray line) of Rat Retina B example RGC responses to held-out white noise at photopic light level (left) and scotopic light level (right). Inset
shows an overlay of a segment of the responses at the two light levels. b. Responses predicted by a conventional CNN model (colored lines) at the two light levels
in a when the model was trained at photopic light level only. FEV values above each trace quantifies the performance of the model for this RGC at the corresponding
light levels. c. Same as in b but for the proposed photoreceptor–CNN model in which the CNN was only trained at photopic light level. The photoreceptor model was
switched from cone to rod phototransduction model. d-e. Performance of conventional CNN model (left) and the photoreceptor–CNN model (right) when trained at
photopic light level and evaluated at (d) photopic light level and (e) scotopic light level. The box plots shows the distribution of FEVs across RGCs (N = 55 RGCs,
Retina B). Numbers at the top of each box plot are the median FEVs ± 95%c.i.. f. Schematic for training across extremely different light levels. Step 1: PR-CNN
model was trained end-to-end to predict Rat Retina ’A’ RGC responses at photopic light level. This led to an estimate for cone photoreceptor parameters and a model
for the inner retina circuit (the CNN layers). Step 2: The model was re-trained at scotopic light level but the CNN layers were set to non-trainable and fixed to weights
learnt in Step 1. In this case, the photoreceptor model learnt parameters reflecting rods. Step 3: The model was trained to predict Rat Retina ’B’ responses at
photopic light level. Photoreceptor layer was set to non-trainable with parameters fixed to cone parameters learnt in Step 1. Step 4 (testing step): Model was tested
to predict Rat Retina ’B’ responses at scotopic light level. Here, we used the rod photoreceptor parameters learnt in Step 2 and rest of the model representing inner
retina pathways of Retina B learnt in Step 3.

model is still far from a perfect predictor of retinal out-
put. This is apparent in its inability to approach 100%
FEV, or to achieve the same level of performance at
held-out test light levels as it did at the light levels used
for training (Fig. 5b). This limitation could be because
the network lacks other adaptive mechanisms in the
retina found downstream of the photoreceptors, such
as spike frequency adaptation in RGCs (Chang et al.,
2022; Brien et al., 2002). Introducing adaptive recurrent
units (ARU; developed by (Geadah et al., 2022)) to the
output layer of the photoreceptor-CNN , which imple-
ment spike frequency adaption through dynamic control
of a nonlinearity, is a potential solution. ARUs at the

output layer would also enable the network to have out-
put units with diverse properties, similar to the diversity
of RGCs (Wong et al., 2012; Goetz et al., 2022). Ad-
ditionally, our current model does not explicitly capture
the intricacies of adaptation in the intervening circuitry
between photoreceptors and RGCs (i.e., in bipolar and
amacrine cells). These include changes in gap junction
coupling and switching between linear and nonlinear
spatial summation (i.e., subunit rectification) (Grimes
et al., 2014; Bloomfield et al., 1997; Bloomfield and Völ-
gyi, 2004). To capture this adaptation, an adaptive-
convolution layer based on a model for divisive gain
control (Clark et al., 2013; Cui et al., 2016) could be
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used. This trainable layer would incorporate two path-
ways with distinct kinetics, with the output of one path-
way controlling the sensitivity of the other, allowing for
greater adaptability to changes in stimuli. Another lim-
itation of the current approach is that Layer Norm was
retained at the inputs of CNN in the photoreceptor–CNN
model, normalizing the photoreceptor output. While this
may inadvertently mitigate sensitivity changes across
light levels, typically managed by the photoreceptor
layer, it serves a crucial role in compensating for dispar-
ities in scale between the parameters of the biophysical
model and the downstream CNN weights. The absence
of Layer Norm negatively impacts the convergence of
the photoreceptor–CNN model. Here, Layer Norm can,
in principle, account for linear sensitivity changes linked
to the mean intensity of a training sample (80-frame
movie), but will have minimal impact on mitigating dy-
namic sensitivity changes triggered by fluctuations in
pixel intensities within a training sample.

ANNs offer the potential to simulate networks of bio-
logical neurons, including those in the retina or visual
cortex, making them highly relevant for visual neuro-
science. These models are capable of automatically
learning meaningful representations through multiple
layers of abstraction. Establishing correspondence be-
tween ANN layers and neural layers (McIntosh et al.,
2016; Maheswaranathan et al., 2018; Cowley et al.,
2022; Yamins and Dicarlo, 2016; Mano et al., 2021)
is increasingly providing insight into biological circuits.
One challenge in using current ANNs to elucidate bio-
logical circuits is that ANNs are primarily designed to
optimize performance on specific tasks rather than to
mimic biological circuits. As a result, the structure and
function of ANNs may not accurately reflect the com-
plexity and organization of biological circuits which of-
ten include feedback loops and dynamic interactions
between neurons. Moreover, ANNs typically consist of
homogeneous units repeated throughout the network,
which oversimplifies real neurons and neural circuitry
and may fail to capture their full complexity. In contrast,
the biophysical phototransduction model we use in the
photoreceptor layer has parameters that map directly
onto the biology, providing an opportunity for investigat-
ing the role of photoreceptor adaptation in the retina.
For example, slower rod-mediated RGC responses at
dim conditions compared to cone-mediated responses
at brighter light levels (Ruda et al., 2020; Baylor and
Fettiplace, 1977) may explain the temporal lag between
predicted and actual response at dim light level (Fig. 7b,
right): the conventional CNN model trained at bright
light levels (10,000 R*receptor−1s−1) learned the faster
kinetics of the cone pathway. While some of the dif-
ferences in RGC responses may arise due to faster
cone response kinetics (Cao et al., 2007; Baylor and
Hodgkin, 1973; Ingram et al., 2016; Schneeweis and
Schnapf, 1995), the relative contribution of photorecep-
tors and downstream retinal adaptation are not well un-
derstood. Fixing the photoreceptor layer parameters

to empirically measured values, (like in Fig. 3c), can
help in distinguishing photoreceptor from circuit mech-
anisms. Similarly, such biologically plausible models
could provide insights into mechanisms underlying neu-
ral adaptation in other areas of the brain.

While our current findings indicate that the photorecep-
tor model we used offers superior performance (Fig. 3a)
vs simpler photoreceptor models (like the linearized
model shown in Fig. 3b), we acknowledge that other
empirical models capturing similar dynamics may per-
form similarly well on the retinal prediction task. It is
also possible that recurrent artificial units like the long
short-term memory (LSTM) may partially capture pho-
toreceptor adaptation effects by keeping track of arbi-
trary long-term dependencies in the input sequences.
However, these units demand significantly more train-
ing data and introduce tens of thousands of parameters
to the neural network. In stark contrast, the proposed
biophysical photoreceptor layer only adds 12 parame-
ters. Further, these parameters could be fixed based on
direct photoreceptor recordings with minimal changes
in CNN performance (Fig. 3c). In addition, the overar-
ching goal is to integrate neural biophysics into ANNs to
develop biologically interpretable computational models
that surpass the limitations of conventional ANNs, offer-
ing a comprehensive framework for understanding com-
plex biological phenomena.

In a similar vein, other neural predictor architectures,
such as Generalized Linear Models (GLMs) could be
used instead of CNNs, in conjunction with the pho-
toreceptor model. Notably, we do not consider the
CNN stages to be essential to our approach: rather,
we consider the CNN to be the flexible scaffolding for
incorporating the photoreceptor model into a trainable
retina model. In future, this will allow incorporating fully-
trainable biophysics models of downstream retinal com-
ponents into this scaffolding. The result will be models
with biologically-interpretable components that can pre-
dict retinal responses with high accuracy under varied
conditions. We anticipate that these models could have
substantial benefits for mechanistic investigations of vi-
sual function.

In general, models of retina that can leverage deep
learning to model multiple ganglion cells simultane-
ously, together with biologically interpretable compo-
nents, could be used to dissect the relative contribu-
tions by different cell types in the retina. They could
also serve as an input stage to visual-cortical models
to investigate higher visual processing under dynamic
conditions. From a wider neuroscience perspective, this
approach demonstrates the power of integrating neu-
ral dynamics in ANNs modeling brain functions where
biophysical layers match the sensitivity to changing in-
put conditions, while the downstream layers extract rel-
evant features from dynamically adapting input stages.
In summary, this approach establishes a framework to
test which biological components are required to repli-
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cate brain function. Beyond neuroscience, these mod-
els could also pave the way for medical interventions,
such as prosthetic devices that restore sight to the blind
(Bosking et al., 2017).

Methods

Retina electrophysiology

Retina electrophysiology experiments were performed
in two different labs. In the Manookin Lab, electro-
physiological experiments were performed using ex vivo
macaque retina (M. nemestrina) obtained through the
tissue distribution program at the University of Wash-
ington National Primate Research Center and in accor-
dance with the Institutional Animal Care and Use Com-
mittee at the University of Washington. Additional pri-
mate (Macaca mulatta) and rat retina electrophysiology
experiments were performed in the Field Lab at Duke
University, in accordance with Duke University’s Institu-
tional Animal Care and Use Committee.

Electrophysiology experiments followed similar proce-
dures in both the labs. For primate electrophyiology ex-
periments, eyes were enucleated from terminally anes-
thetized macaque monkey and hemisected, and the vit-
reous humor was removed. Immediately after enucle-
ation, the anterior portion of the eye and the vitreous
were removed in room light. The eye cup was placed
in a dark sealed container with Ames’ solution (Sigma,
St. Louis, MO) at room temperature. Under infrared illu-
mination, segments of peripheral retina 6-15 mm (25-70
deg, 200 µm/deg) from the fovea and 3-5 mm in diame-
ter were dissected and isolated from the retinal pigment
epithelium. Preparation for the rat retinae was similar
and described in detail in Ruda et al. (2020). Briefly,
the retina of an euthanized animal was extracted and
dissections were performed in darkness with the as-
sistance of infrared converters. We dissected dorsal
pieces of the retina that were 3 x 2 mm large. For
recording, the retina was kept at 32-35◦C and was per-
fused with Ames’ solution bubbled with 95% O2 and 5%
CO2, pH 7.4.

The segment of retina was then placed flat, RGC layer
down, on a planar multielectrode array (MEA) covering
an area 2000 µm x 1000 µm. The MEA consisted of
512 electrodes with 60 µm or 30 µm spacing. Spikes on
each electrode were identified by thresholding the volt-
age traces at 4 s.d. of a robust-estimate of the voltage
s.d. For retina experiment involving naturalistic stimuli
(Manookin Lab), spike sorting was performed using the
Kilosort software package (version 2.5) Steinmetz et al.
(2021). Spike waveform clusters were identified as neu-
rons only if they exhibited a refractory period (1.5 ms)
with <1% estimated contamination. For retina experi-
ments across light levels (Field Lab), spike sorting was
performed by an automated PCA algorithm and verified

by hand with a custom software (Shlens et al., 2006;
Field et al., 2007). Spike waveform clusters were iden-
tified as neurons only if they exhibited a refractory pe-
riod (1.5 ms) with <10% estimated contamination. Most
sorted units from the primate retina had 0% spike con-
tamination based on refractory period violations. Other
units had contamination in the range of 0.05%–0.09%
with one unit at 0.8%. Only units that could be reliably
tracked across all recording conditions were considered
for further analysis.

For each retinal segment, a Retinal Reliability Index was
computed to assess tissue quality. This involved an-
alyzing the responses of individual sorted retinal gan-
glion cells (RGCs) to multiple trials using either white
noise or naturalistic movies. We first estimated the trial-
averaged noise by categorizing trials into two groups,
averaging responses within each subgroup, and deter-
mining the mean squared error as

σ2
noise = Et[(yA

t −yB
t )2] (1)

where, yA and yB are the observed spike rates of an
RGC calculated as an average across set of trials A and
set of trials B respectively. The sets A and B were ob-
tained by randomly splitting the total number of repeats
into two. We then computed the fraction of explainable
variance which is the fraction of variance of each RGC
attributable to the stimulus as

Fraction Explainable Variance = V ar[yA]−σ2
noise

V ar[yA]
(2)

where,

V ar[yA] = 1
T

T∑
t=1

(yA
t − ȳA)2 (3)

and ȳA is the observed spike rate and yA average
across time. A higher fraction indicates recordings
with low noise, where most of the variance in RGC re-
sponses is stimulus-driven. The retinal reliability index
was determined by computing the median of the frac-
tion of explainable variance across all sorted RGCs in
each experiment. These values are presented in Ta-
ble. 1 for each retina used in this study. Intuitively, higher
the value (maximum 1), better the quality of recordings.

Visual stimulation and data acquisition for pri-
mate retina experiment using naturalistic movies
(Figs. 2–3)

Visual stimuli were created with custom Matlab code.
Stimuli were presented with a gamma-corrected OLED
display (Emagin, Santa Clara, CA) refreshing at 60.32
Hz. The display had a resolution of 800 x 600 pixels
covering 3.0 x 2.3 mm on the retinal surface.

Spectral intensity profile (in µWcm−2nm−1) of the light
stimuli was measured with a calibrated CCS100 spec-

Idrees et al. | Biophysical neural adaptation mechanisms enable artificial neural networks to capture dynamic retinal computation | 12

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 27, 2024. ; https://doi.org/10.1101/2023.06.20.545728doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.20.545728
http://creativecommons.org/licenses/by-nc-nd/4.0/


Retina
Retinal
Reliabil-
ity Index

Sorted
RGCs

Macaque retina 1: Nat-
ural stimuli experiments
(Figs. 2, 3)

0.90 57

Macaque retina 2: Across
light levels (Figs. 4, 5)

0.96 37

Rat retina 1: Across light
levels (Figs. 7)

0.99 61

Rat retina 2: Across light
levels (Figs. 7)

0.99 58

Table 1. Table of retinal reliability index for each retina used in this study.

trometer (Thorlabs). We transformed the stimulus inten-
sity into equivalents of photoisomerizations per receptor
per second (R*receptor−1s−1). The spectrum was con-
verted to photons cm−2 s−1 nm−1, convolved with the
normalized spectrum of macaque cones and rods, and
multiplied with the effective collection area of these pho-
toreceptors. The ambient light level (i.e. mean stimulus
intensity) was set using neutral density filters in the light
path. The attenuation of each neutral density filter was
measured for the red, green, and blue LEDs using a
calibrated UDT 268R radiometric sensor (Gamma Sci-
entific).

We recorded RGC activity to 36-minutes of binary
checkerboard white noise stimuli and 9-minutes of
gray scale naturalistic movies at mean light level of
50R*receptor−1s−1. The checkerboard stimuli in this
experiment had 100 x 75 pixels, where each pixel edge
corresponded to 30 µm on the retina surface. The re-
fresh rate of the stimulus was set to 60.32 Hz (∼ 16.6
ms per frame). The naturalistic movies were created
by displacing natural scene images from Van Hateren
dataset (Van Hateren and Van der Schaaf, 1998) across
the retina, incorporating eye movement trajectories de-
rived from the DOVES dataset (Van Der Linde et al.,
2009) (Fig. 1a). We used 9 different natural scene im-
ages leading to 9 naturalistic movies. Each movie was
6-seconds long where the image remained stationary
for the first 1-second to allow time to adapt to the spa-
tial contrast before the motion began, which lasted for
5-seconds. The 9 movies were played in sequence and
the entire sequence was repeated 10 times, totaling a
duration of 9 minutes for naturalistic movies. These
movies were presented to the retina at a resolution of
800 x 600 pixels where each pixel edge corresponded
to approximately 3.8 µm on the retina surface. We se-
lected 57 RGCs (27 ON and 30 OFF parasol cells) for
modeling purposes based on spike sorting quality and
reliability across experimental conditions.

At the model training stage, each repeat of the movie
was treated as an individual movie, i.e., 9 movies with
10 trials were treated as 90 movies. 80 of which (8
unique movies and 10 trials) were used for training the
model and the held-out movie was used to validate the

model against trial averaged responses. Additionally,
naturalistic movies were spatially down-sampled by a
factor of 8 to 100 x 75 pixels to match the resolution of
checkerboard white noise stimuli. This was necessary
as we first trained the models on checkerboard movie
and then fine-tuned the same model with naturalistic
movies.

Visual stimulation and data acquisition for primate
and rat retina experiment at different light levels
(Figs. 4–7)

Visual stimuli were created with custom Matlab code.
Stimuli were presented with a gamma-corrected OLED
display (SVGA + XL Rev3, Emagin, Santa Clara, CA)
refreshing at 60.35 Hz. The image from the display was
focused onto the photoreceptors using an inverted mi-
croscope (Ti-E, Nikon Instruments) with a x4 objective
(CFI Super Fluor x4, Nikon Instruments). The optimal
focus was confirmed by presenting a high spatial res-
olution checkerboard noise stimulus (20 x 20 µm, re-
freshing at 15 Hz) and adjusting the focus to maximize
the spike rate of RGCs over the MEA. The display had
a resolution of 800 x 600 pixels covering 4 x 3 mm on
the retinal surface.

Spectral intensity profile (in µWcm−2nm−1) of the light
stimuli was measured with a calibrated Thorlabs spec-
trophotometer (CCS100). We transformed the stimu-
lus intensity into equivalents R*receptor−1s−1by con-
verting the power and the emission spectra of the dis-
play to an equivalent photon flux by Planck’s equation.
This converted the emission spectrum to photons cm−2

s−1 nm−1, which was then convolved with the normal-
ized spectral sensitive of rods Baylor et al. (1984), and
multiplied with the effective collection area of rods (0.5
µm2). The ambient light level (i.e. mean stimulus in-
tensity) was set using neutral density filters in the light
path. In each recording, stimuli were first presented at
the darker light level. For every subsequent higher light
level, the retina tissue was first adapted to that light level
before continuing the recordings.

Stimuli consisted of non-repeated, binary checkerboard
white noise interleaved with repeated (N = 126 or
225 trials), binary white noise segments (5 or 10 s)
to estimate noise. The total duration of stimulation
was 60 minutes. We recorded primate RGC activity
to the same 60 minute white noise sequence at three
different mean light levels, each differing by 1 log
unit: 0.3 R*receptor−1s−1, 3 R*receptor−1s−1and
30 R*receptor−1s−1. These light levels fall under
the scotopic regime, where mostly rod photore-
ceptors contribute to vision. The movies across
the three light levels only differed in their mean
pixel values which were 0.3 R*receptor−1s−1(low
light level), 3 R*receptor−1s−1(medium) and
30 R*receptor−1s−1(high). The checkerboard stimuli in
this experiment had 39 pixels x 30 pixels, where each
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pixel edge corresponded to approximately 140 µm on
the retina surface. The refresh rate of the stimulus
was set to 15 Hz which means that each checkerboard
pattern was exposed on to the retina for ∼ 67 ms. In
this work, we used a subset of 37 recorded RGCs that
could be reliably tracked across light levels and were
classified as high quality units after spike sorting. This
subset contained 2 ON parasol, 28 ON midget, 5 OFF
parasol and 2 OFF midget RGC types).

The rat experiments of Ruda et al. (2020) were
performed at two light levels differing by 4 log
units: 1 R*receptor−1s−1(scotopic light level where
mostly rod photoreceptors contribute to vision) and
10,000 R*receptor−1s−1(photopic light level where
cone photoreceptors predominantly contribute to vi-
sion). The white noise checkerboard movie in these
experiments had 10 pixels x 11 pixels, with each pixel
edge corresponding to approximately 252 µm on the
retina. The refresh rate of the stimulus was 60 Hz and
30 Hz at the photopic and scotopic light levels, respec-
tively. In this work, we used data from two rat experi-
ments: a subset of 61 RGCs from Retina A and a subset
of 55 RGCs from Retina B that could be reliably tracked
across light levels and were classified as high quality
units after spike sorting. This subset contained OFF
brisk sustained and OFF brisk transient RGC subtypes.

Data preparation for models

Both white noise and naturalistic movies were up-
sampled to 120Hz by repeating each frame so that each
frame had a duration of 8 ms. This up-sampling was
necessary for the photoreceptor layer in which differen-
tial equations are solved using the Euler method.

Spikes were grouped in 8 ms time bins spanning the du-
ration of the movie. Firing rates were then estimated by
convolving the binned spike counts with a Gaussian of
σ = 32 ms (4 frames/bins) standard deviation and ampli-
tude of 0.25σ−1e1/2. The resulting firing rates for each
RGC were normalized by the median firing rate of that
RGC over the course of the experiment. This was done
to ensure that responses of all output units of the model
(i.e. the modeled RGCs) were at the same scale.

Conventional CNN architecture

The general architecture of the conventional convo-
lutional neural network (CNN) we used was similar
to Deep Retina (McIntosh et al., 2016). The model
(Fig. 1b) had 3 convolution layers (orange color), fol-
lowed by a fully-connected output layer (black arrows).
The model takes as input a movie (80 frames per train-
ing example where each frame corresponds to 8 ms)
and outputs an instantaneous spike rate for each RGC
at the end of that movie segment. The first convolu-
tion layer is a 3D convolutional layer operating in both
the spatial and temporal dimensions. The output of the

3D convolutional layer is a 2D image which is normal-
ized using Batch Normalization (BatchNorm) and then
passed through a rectifying (ReLU) nonlinearity. All the
temporal information from the movie is extracted by this
layer as the temporal dimension of the convolutional fil-
ter is the same as the temporal dimension of the movie.
To down sample the spatial dimensions, we applied a
2D max pool operation (blue color) that took the maxi-
mum value over 2x2 patches of the previous layer’s out-
put. The subsequent 2D CNN layers are followed by a
final, fully connected layer with softplus activation func-
tion that outputs the predicted spike rate for each RGC
in the dataset.

To obtain the time series of RGC responses to longer
movie stimuli, we feed into the model many 80-frame
video samples taken from that longer movie, that cor-
respond to 1-frame shifts. I.e., the model receives as
inputs frames 1–80, 2–81, 3–82, etc., and outputs RGC
responses at the times of movie frames 80, 81, 82, etc.

A Layer Normalization (Layer Norm) at the input of the
first convolutional layer was applied to z-score each
frame of a movie segment. Layer Norm computes nor-
malization statistics for each pixel over its temporal his-
tory within a single training example i.e. a single movie
segment comprising 80 frames. This step removes
the mean luminance from each training example, miti-
gating sensitivity changes associated with global lumi-
nance changes while preserving spatio-temporal struc-
ture within each movie segment.

Each convolution operation is followed by Batch Nor-
malization which contributes to stable training and faster
convergence of the model (Ioffe and Szegedy, 2015).
During model training, the distribution of inputs to a layer
undergoes changes as the network’s parameters are
updated, leading to what is known as the internal covari-
ate shift – a phenomenon that hampers model conver-
gence and introduces instabilities. These Batch Norm
layers address the internal covariate shift during train-
ing by z-scoring the input, using normalization statis-
tics computed based on batch statistics from batches
comprising over 100 movie segments. This process en-
forces a 0 mean and unit variance for the data, intro-
ducing two trainable parameters – shift and scale – that
systematically adjust weights and biases in the CNN
layer. Additionally, the running average and variance
of the training data serve as non-trainable parameters
saved for later use during the test phase. This nor-
malization process mitigates extreme parameter values,
preventing issues such as exploding or vanishing gradi-
ents. The scale and shift parameters enable the model
to adapt to variations in feature magnitudes across lay-
ers and activations, facilitating improved and faster con-
vergence. During the test phase, Batch Norm uses the
non-trainable moving average and variance saved dur-
ing the training to normalize its inputs i.e., the outputs
of the convolutional layer. Batch Norm then scales and
shifts the normalized input using the scale and shift pa-
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rameters learned during the training phase. Notably, in
the current setup, Batch Norm parameters are not in-
fluenced by the mean light level as Layer Norm at the
model’s input removes mean luminance from each train-
ing sample.

For modeling RGC responses across light levels (exper-
iments of Figs. 4–7), the input to the model was a movie
segment of 120 frames instead of 80 frames. The longer
movie segment allowed for longer integration times at
the lowest light level of 0.3 R*receptor−1s−1.

Biophysical photoreceptor–CNN architecture

The proposed photoreceptor convolution layer builds
upon a biophysical model of the phototransduction
cascade by Angueyra et al. (2022) (Fig. 1c). The
model incorporates the various feedforward and feed-
back molecular processes that convert photons into
electrical signals, and therefore faithfully captures the
photoreceptors’ adaptation mechanisms. The biophys-
ical model is reproduced in Supplementary Note 1 and
described in brief below.

The biophysical model was represented by a set of six
differential equations that mimics the enzymatic reac-
tions of the phototransduction cascade. Rapid adapta-
tion in this model emerges from changes in the rate of
cGMP turnover produced by light intensity-dependent
changes in phosphodiesterase activity and by calcium
feedback to the rate of cGMP production. The model is
governed by twelve parameters. By setting the model’s
parameter values to match experimentally-derived val-
ues from cone or rod photoreceptors, the model can be
configured to represent either photoreceptor type. For
all primate retina modeling in this manuscript, we config-
ured the photoreceptor model to represent primate rods
by setting the initial values of the model parameters to
those that were derived from separate patch-clamp ex-
periments on primate rod photoreceptors (Chen et al.
(2024); Supplementary Table. 1). For rat retina model-
ing, we configured the photoreceptor model as a cone
photoreceptor for modeling responses at photopic light
levels, and as a rod photoreceptor for modeling re-
sponses at scotopic light levels. The parameter values
here were obtained from fitting the model to mouse cone
and rod photoreceptors as part of patch-clamp experi-
ments for other studies Chen et al. (2024). The corre-
sponding values are stated in Supplementary Table. 1.

We implemented this biophysical model as a fully-
trainable neural network layer, called the photorecep-
tor layer, using the Keras (Chollet et al., 2015) pack-
age in Python. All twelve parameters of the photore-
ceptor layer can be trained through backpropagation us-
ing the Keras and TensorFlow package in Python – al-
though the user can also set some or all of these pa-
rameters to be non-trainable and hence held fixed at
their initial value. Photoreceptor parameters were initial-
ized to their known values (Supplementary Table 1). For

the experiments presented herein, 7 of the parameters
were set to be non-trainable. Some of these parameters
like the concentration of cyclic guanosine monophos-
phate (cGMP) in darkness vary across rod and cone
photoreceptor types (rods and cones). Other parame-
ters governing cGMP conversion into current, calcium
concentration in the dark, affinity for Ca2+, and hills
coefficient are comparable across photoreceptor types.
The remaining 5 parameters, set to be trainable or non-
trainable depending on the model configuration, con-
sisted of the photopigment decay rate σ, the phospho-
diesterase (PDE) activation rate η, the PDE decay rate
ϕ, the rate of Ca2+ extrusion β and γ that controls the
overall sensitivity of the model to light inputs. These
trainable parameters also differ across photoreceptor
types. In the current version of the model, the pho-
toreceptor parameters are shared by all the input pixels,
and each pixel acts as an independent photoreceptor:
I.e., the conversion of each pixel into photocurrents only
depends on that pixel’s previous values and not on the
values of the other pixels.

The photoreceptor layer converts each pixel of the input
movie in units of receptor activations per photoreceptor
per second (R*receptor−1s−1) into photocurrents (pA)
by solving the differential equations using the Euler’s
method. Similar to the conventional CNN model, the
photoreceptor layer takes as input 80 frames, where
each frame corresponds to 8 ms. The output of this
layer is a movie that is 80 frames long, and the same
spatial dimensions as the input visual stimuli. The first
20 frames of the photoreceptor layer output are trun-
cated to account for edge effects. The photocurrents
movie is then z-scored using Layer Norm. This nor-
malization step is crucial due to substantial differences
in scale between the biophysical model’s parameters
and the downstream CNN weights. The absence of
these normalization layers hinders the photoreceptor–
CNN model’s convergence. The resulting movie is then
passed through the downstream CNN layers, where
the size of the first convolution layer filter representing
the temporal dimension is 60 frames instead of the 80
frames in the case of conventional CNN model.

For modeling RGC responses across light levels (ex-
periments of Figs. 4–7), the input to the photoreceptor
layer was a movie segment of 180 frames. The first 60
frames were then discarded to account for edge effects.
The longer movie segment allowed for longer integration
times at the lowest light level of 0.3 R*receptor−1s−1.

Linear photoreceptor–CNN architecture

The linear photoreceptor model consists of a linear con-
volutional filter given by Eq. (4), and described previ-
ously in Angueyra et al. (2022).

Idrees et al. | Biophysical neural adaptation mechanisms enable artificial neural networks to capture dynamic retinal computation | 15

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 27, 2024. ; https://doi.org/10.1101/2023.06.20.545728doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.20.545728
http://creativecommons.org/licenses/by-nc-nd/4.0/


f(t) = α


(

t
τrise

)4

1+
(

t
τrise

)4

×e−
(

t

τdecay

)
×cos

(
2πt

τosc
+ω

)
(4)

The parameters for this model were initialized to the
following values: α = 631 pA/R*/s, τrise = 28.1 ms,
τdecay = 24.3 ms, τosc = 2 × 103 s, and ω = 89.97deg.
These values corresponded to estimates of the single-
photon response, obtained by recording cone photore-
ceptor responses (Angueyra et al., 2022). However, all
the parameters were set to trainable and could therefore
be learned along with the downstream CNN weights.

Similar to the other models, the hyperparameters of the
linear photoreceptor–CNN model were optimized via a
grid search.

Model training

Model weights were optimized using Adam (Kingma and
Ba, 2015), where the loss function was given by the
negative log-likelihood under Poisson spike generation.
The network layers were regularized with a L2 weight
penalty at each layer, to prevent loss of information and
be more robust to outliers. In addition, a L1 penalty
was applied to the output of the fully-connected layer
because the neural activity itself is relatively sparse and
L1 penalties are known to induce sparsity. Learning
rates were initially set to 0.001. A learning rate sched-
uler reduced the learning rate by a factor of 10 at epoch
3, 30 and 100.

The number of channels in each CNN layer and the fil-
ter sizes were optimized by a grid search for each model
type and dataset. Grid search for each experiment and
model type was conducted using the full training data
for that experiment. During the grid search procedure,
models were trained for 50 epochs. Optimal hyperpa-
rameters were selected by evaluating the model on val-
idation data that was neither used during the training
phase, or during the model evaluations of predicted re-
sponses. Models with these optimal hyperparameters
were then re-trained for at least a 100 epochs.

Model evaluation

Trained models were evaluated using the held out test
dataset not seen during the training. We quantified
the model performance with the fraction of explainable
variance in each RGC’s response that was explained
by the model (FEV). This quantity (Eq. (5)) was calcu-
lated as the ratio between the variance accounted for by
the model and the explainable variance (denominator in
Eq. (5)). Such metrics to quantify how well a model pre-
dicts neural data have been used in previous studies

like Cadena et al. (2017). We calculate FEV as

FEV = 1−
1
T

∑T
t=1(yA

t − ŷt)2 −σ2
noise

V ar[yA]−σ2
noise

(5)

where,
σ2

noise = Et[(yA
t −yB

t )2] (6)

yA and yB are the observed spike rate of an RGC cal-
culated as an average across set of repeats A and set
of repeats B respectively. The sets A and B were ob-
tained by randomly splitting the total number of repeats
into two. ŷt represents the predicted spike rate by the
model at time bin t. The explainable variance (denomi-
nator in Eq. (5)) is the variance of each RGC attributable
to the stimulus, computed by subtracting an estimate
of the observed noise from the variance across time
(Eq. (7)) in the actual RGC’s responses, calculated as

V ar[yA] = 1
T

T∑
t=1

(yA
t − ȳA)2 (7)

where ȳA is the the observed spike rate yA averaged
across time. In all neural data sets we considered, the
number of trials was sufficient (N = 10 for naturalistic
movies, N = 225 for white noise movies) and hence the
estimated noise variance was quite low. As a result, our
FEV values are quite similar to what is obtained using
the usual fraction explained variance calculation, which
does not correct for unexplainable noise. By definition,
FEV can be negative if the prediction error is larger than
the variance in the actual responses. We report each
model’s performance across all RGCs as the median
FEV across the set of RGCs. For ease in interpretation,
we present FEV as a percentage throughout our results.

Model RGC temporal receptive fields (Fig. 6)

For a given model RGC, we computed the gradient of
its output spiking rate with respect to the pixel values in
the input movie segments, similar to Maheswaranathan
et al. (2018); Goldin et al. (2022). These gradients were
evaluated for different binary white noise movie seg-
ments from the primate retina experiment across light
levels (Figs. 4,5). In total we had 400,000 input movie
segments, generated by incrementing the white noise
movie that was shown to the retina forward by one frame
at a time (where 1 frame corresponds to 8 ms). These
input movie segments spanned a total duration of 54
minutes. Since all the models were implemented with
TensorFlow (Abadi et al., 2016), we calculated the gra-
dients using automatic differentiation.

The resulting gradients matrix representing spatio-
temporal receptive field were decomposed into spatial
and temporal components (Supplementary Fig. 3) us-
ing Singular Value Decomposition (SVD), similar to the
way the spatial and temporal receptive fields are com-
puted from the spike triggered average (STA) analysis
applied directly to experimental data.
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We normalized the spatial component to have unit
mean. By doing so, our process of decomposing the
instantaneous spatio-temporal RF into spatial and tem-
poral components assigned any variations in the recep-
tive field’s amplitude only to the temporal component.
The average of all the instantaneous temporal receptive
fields was taken as the model RGC’s temporal recep-
tive field. In Figs. 6c,d, the temporal receptive field was
normalized by the maximum peak.

Statistics and reproducibility

We used the SciPy package in Python to perform a
two-tailed Wilcoxon signed-rank test to compare perfor-
mance across models (Figs. 3, 5). This non-parametric
test was chosen due to its appropriateness for paired
samples (in this case the same RGCs being modeled
by different architectures) and its robustness against po-
tential violations of normality assumptions. The null hy-
pothesis tested was that the difference between the me-
dian fraction of explainable variance explained (FEV) by
the two models for the population of RGCs modeled was
0. In comparing response latencies between two differ-
ent light levels obtained by different methods (Fig. 6e),
we performed a two-tailed Wilcoxon rank sum test of the
null hypothesis that there was no difference between the
distributions (N = 22 RGCs) of latencies at the two dif-
ferent light levels.

Data availability

All retina electrophysiology data used in this study can
be made available upon reasonable request.

Code availability

Codes for the proposed photoreceptor–CNN model and
for the conventional CNN model used in this study
are available at https://github.com/saadidrees/
dynret.
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