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Abstract

Imaging platforms for generating highly multiplexed histological images are being continually developed and im-
proved. Significant improvements have also been made in the accuracy of methods for automated cell segmentation
and classification. However, less attention has focussed on the quantification and analysis of the resulting point clouds
which describe the spatial coordinates of individual cells. We focus here on a particular spatial statistical method, the
cross-pair correlation function (cross-PCF), which can identify positive and negative spatial correlation between cells
across a range of length scales. However, limitations of the cross-PCF hinder its widespread application to multiplexed
histology. For example, it can only consider relations between pairs of cells, and cells must be classified using discrete
categorical labels (rather than labelling continuous labels such as stain intensity).

In this paper, we present three extensions to the cross-PCF which address these limitations and permit more detailed
analysis of multiplex images: Topographical Correlation Maps (TCMs) can visualise local clustering and exclusion
between cells; Neighbourhood Correlation Functions (NCFs) can identify colocalisation of two or more cell types; and
weighted-PCFs (wPCFs) describe spatial correlation between points with continuous (rather than discrete) labels. We
apply the extended PCFs to synthetic and biological datasets in order to demonstrate the insight that they can generate.

Impact statement

This paper introduces three methods for performing spatial analysis on multiplex digital pathology images. We apply
the methods to synthetic datasets and regions of interest from a murine colorectal carcinoma, in order to illustrate their
relative strengths and weaknesses. We note that these methods have wider application to marked point pattern data
from other sources.

Introduction

The move to digital pathology is revolutionising the way in which histological samples are processed, viewed and
analysed. Until recently, pathology was restricted to expert manual assessment of hematoxylin and eosin (H&E) and
immunohistochemistry (IHC) slides stained with a small number of coloured dyes. Multiplex modalities now enable
digital visualisation of whole slide images (WSIs), stained with relatively large numbers of markers, at sub-micrometer
resolution. Digital pathology slides can be generated using a variety of methods, including multiplex immunohisto-
chemistry, imaging mass cytometry (IMC), co-detection by indexing (CODEX/Phenocycler), and multiplexed ion
beam imaging (MIBI) (1–4). These platforms can generate images with 50 or more cellular markers (see, e.g., (5)). As
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the number of cell types discernible in a multiplex image increases, simply viewing an image can be challenging be-
cause of the difficulty in choosing a unique colouring for each cell marker. Additionally, existing statistical methods
struggle to exploit the full range of spatial information contained within the data, with analysis dominated by non-
spatial metrics such as cell counts or basic spatial metrics such as mean intercellular distances which do not account
for the wider spatial context within an image. While the methodology underlying different imaging technologies may
vary, the images they generate all encode high resolution information about the spatial location of multiple cell mark-
ers. As such, computational methods developed to analyse cell locations generated from one multiplex modality can
be applied straightforwardly to data generated from another.

State-of-the-art pipelines for the statistical analysis of multiplex images typically involve at least two preprocessing
steps: cell segmentation, in which the boundaries of individual cells are identified, and cell classification, in which
cells are assigned to categories based on the panel of markers used for image generation (6–9). The accuracy of cell
segmentation has improved significantly in recent years, driven primarily by advances in artificial intelligence (AI)
based approaches for cell detection (10,11). Many of these methods can be accessed via open source digital pathology
platforms such as Qupath (12) or MCMICRO (13), commercial tools such as HALO (indicalab.com/halo) and
Visiopharm (visiopharm.com), and standalone software such as Deepcell (10) and Cellpose (11). By contrast, there
are fewer tools for cell classification, due perhaps to variation in the panels used for a given study. Existing tools are
typically iterative and semi-supervised (6,7,14).

The above improvements in preprocessing digital pathology slides are increasing the demand for methods that can de-
scribe and quantify the spatial information contained within multiplex images. Such information is important because
there is increasing evidence that physical contact can alter cell behaviours and drive disease progression. For example,
the formation of tumour microenvironment of metastasis (or ‘TMEM’) doorways is implicated in the metastasis of
cancer stem cells (28,29). TMEMs form when a MenaHi tumour cell, a macrophage, and an endothelial cell come into
physical contact on the surface of a blood vessel (30). This three-way spatial interaction enables tumour cells first to
intravasate and then to metastasise to other parts of the body, and has also been implicated in cancer cell acquisition of
a stem-like phenotype (30). Other biological effects which manifest in altered spatial interactions include clustering of
immune cells and alveolar progenitor cells in the lungs during COVID-19 progression (7), and the formation of distinct
cellular neighbourhoods which drive antitumoral immune responses in the invasive front of colorectal cancer. For ex-
ample, neighbourhoods which are rich in both granuloctyes and PD-1+CD4+ T cells correlate positively with patient
survival (31). While spatially averaged statistics, such as cell counts, can be readily calculated from segmented and
classified images, describing and quantifying the spatial organisation of cell types requires more complex analytical
tools.

One promising approach for exploiting the spatial structure of multiplex images is AI and machine learning, which
learns to identify those regions of an image which are most strongly associated with clinical features such as patient
prognosis and disease status (32,33). Machine learning approaches include convolutional neural networks (CNNs), gen-
erative adversarial networks (GANs) and transformers. They have been used to perform a range of tasks, such as
automatic identification of informative regions in whole slide images (WSIs) (34), segmentation of Ductal Carcinoma
In Situ (DCIS) (35), and prediction of molecular signatures from tissue morphology (36). However, such machine learn-
ing methods typically require large training datasets and it can be difficult to understand or interpret their predictions.
Further, machine learning methods usually require the same marker combinations to be used in each image, with
data ideally collected from the same equipment; otherwise they may require retraining on additional datasets. ‘In-
terpretable’ machine learning models or ‘explainable AI’ provide potential solutions to this, but have yet to achieve
widespread application (32,37,38).

Segmented and classified multiplex images can be viewed as marked point processes, in which (𝑥, 𝑦) coordinates
representing cell centres are labelled with a ‘mark’ describing their cell type. Statistical and mathematical methods
for analysing this data are typically more amenable to interpretation than machine learning approaches, since they
quantify interactions between specific cell populations. For example, statistics such as the mean minimum distance
between two cell types provide an accessible entry point for analysis of spatial data (e.g., (39,40)), and are available
in several software tools (12,44). Statistical approaches based on correlation metrics that were originally developed for
ecological applications can also be used to determine whether pairs of cells are colocated more (or less) frequently than
would be expected through random chance (7,45). By viewing a multiplex image as a network in which two cell centres
are connected if the cells are in physical contact, methods from network science can be used to identify common,
recurring motifs within the cell interactions (7). Notably, many network-based approaches use Graph Neural Networks
to analyse the spatial patterns formed by the different cell populations (see, e.g., (47,48)). Recently, topological data
analysis (TDA), a mathematical field which quantifies the shape of datasets, has emerged as a powerful tool for
characterising histology data across multiple scales of resolution in terms of topological features such as connected
components and ‘loops’ (46,49).
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A range of spatial statistics can be used to analyse point processes. These include the Morisita-Horn index, which
quantifies dissimilarity between two populations (40,41); Ripley’s K function, which describes clustering or exclusion
between points (15,42); and the J-function, which identifies clustering or exclusion by computing nearest-neighbour
distributions (43,50). For points with more complex, continuous marks, such as cell size or marker intensity, methods
such as mark correlation functions (16–19) or mark variograms (20,21) can be used.

While the above methods have been successfully applied to histology data, the complexity of multiplex imaging data
means that there is scope for more detailed statistical and mathematical analyses which surpass what is possible with
existing methods. In this paper, we focus on one spatial statistic - the cross-pair correlation function (cross-PCF) -
which we use as a foundation to show how existing tools can be adapted to create new statistics that provide more
detailed descriptions of multiplex imaging data. The PCF quantifies colocalisation and exclusion between pairs of
points, across multiple length scales. It is closely related to the cross-PCF, which identifies correlation between cells
of different types. PCF approaches are useful, but their limitations restrict their wider applicability to multiplex data:

1. Cross-PCFs cannot easily resolve heterogeneity in spatial clustering within a region of interest (ROI). Variants of the
cross-PCF that account for such heterogeneity do not quantify the contributions of different sub-regions of an ROI to
its overall signal (15).

2. Cross-PCFs can identify correlations between pairs of cells in a spatial neighbourhood, but not between 3 or more cell
types.

3. Cross-PCFs require cell marks to be discrete, or categorical. Several alternative methods can accommodate continuous
marks (e.g., (16,20,21)), but are unsuitable for establishing how the spatial association between cells changes as their
continuous marks vary.

In this paper, we discuss three extensions of the cross-PCF that address these limitations. The Topographical Corre-
lation Map (TCM) identifies heterogeneity in the correlation between pairs of cells across an ROI, and has previously
been applied by us to imaging mass cytometry data (7). The Neighbourhood Correlation Function (NCF) extends the
cross-PCF to quantify correlation between 3 or more different cell types. Finally, the weighted Pair Correlation Func-
tion (wPCF) quantifies correlation between two cell populations where one, or both, have a continuous mark, and has
been applied to synthetic data (26). In this paper, we present the first applications of the NCF and the wPCF to multiplex
imaging data.

The remainder of the paper is structured as follows. In the methods section, we define the TCM, NCF and wPCF, and
present motivating examples generated from synthetic data. We also introduce a biological dataset that derives from
multiplex IHC images of a murine model of colorectal cancer (25). In the results section, we apply the TCM, NCF and
wPCF to this ROI, and demonstrate how each statistic identifies different properties of the spatial interactions that exist
between different immune cell populations and cancer cells. We conclude by discussing how these methods expand
the scope of the cross-PCF for analysing multiplex images, and suggest possible directions for further investigation.

Methods

In this section, we introduce the synthetic and experimental datasets which we analyse in this paper. We then define
the PCF and cross-PCF, and their extensions: the Topographical Correlation Map (TCM), Neighbourhood Correlation
Function (NCF), and weighted Pair Correlation Function (wPCF). The definitions are accompanied by illustrative
examples based on the synthetic datasets.

Data

We construct two synthetic datasets, which are used in the Methods section to develop intuition and understanding
of the different spatial statistics. We also introduce a murine colorectal cancer imaging dataset, which is used in the
Results section to illustrate the performance of the methods on multiplex imaging data.

Synthetic data

Synthetic dataset I We consider two cell types, with categorical marks 𝐶1 and 𝐶2. We generate point clouds using
different point processes on the left and right hand sides of a 1000 𝜇m × 1000 𝜇m square domain (see Figure 2A and
Figure 4A). On the left half of the domain (i.e., for 𝑥 ≤ 500), a Thomas point process is used to generate clustered
data (22). This modified Neyman-Scott process samples cluster centres from a Poisson process and samples a fixed
number of points from Gaussian distributions around each cluster centre (23). In Synthetic dataset I, we randomly
position 20 cluster centres in 𝑥 ≤ 500, and sample 10 points of each cell type from a 2D Gaussian distribution, with
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Marker Opal
Ly6G (1:300, 551459; BD Pharmingen) Opal 540

CD4 (1:500, ab183685; Abcam) Opal 520
CD8 (1:800, 98941; Cell Signaling) Opal 570
CD68 (1:1200, ab125212; Abcam) Opal 620

FoxP3 (1:400, 126553; Cell Signaling) Opal 650
E-cadherin (1:500, 3195; Cell Signaling) Opal 690

Table 1: List of markers and Opals used in the multiplex panel.

standard deviation 𝜎 = 20 and mean 𝜇 located at the cluster centre. In 𝑥 > 500, the same process is used, but 10
cluster centres are chosen independently for each cell type, leading to a composite point pattern containing 300 cells
of each type. By construction, synthetic dataset I exhibits strong colocalisation between cells of types 𝐶1 and 𝐶2 in
𝑥 ≤ 500, while each cell type is located in separate clusters in 𝑥 > 500. We assign a second, continuous mark 𝑚 to
cells of type 𝐶2. Those with 𝑥 ≤ 500 are randomly assigned a continuous mark 𝑚 ∈ [0, 0.5] while those with 𝑥 > 500
are assigned a mark 𝑚 ∈ (0.5, 1]. Consequently, when a cluster contains both cell types, cells of type 𝐶2 have low
marks (𝑚 ≤ 0.5), and when it contains only cells of type 𝐶2 high marks (𝑚 ≥ 0.5) are present.

Synthetic dataset II The second synthetic dataset comprises two distinct point patterns, each containing cells
of types, 𝐶1, 𝐶2 and 𝐶3 (see Figure 3). In both patterns, three cluster centres are positioned at (𝑥, 𝑦) =

(200, 200), (500, 800), (800, 200). For the first point cloud, each cluster contains 25 cells from two different cell
types, with locations chosen from a 2D normal distribution (mean 𝜇 at the cluster centre, standard deviation 𝜎 = 50),
so that all three pairwise combinations of cell types are represented (for a total of 50 cells of each type). The same
process is used to generate the second point cloud, except all three cell types are present in each cluster (i.e., a total
of 75 cells of each type). By contrast, in the first pattern, no cluster contains all three cell types but each pairwise
combination of cell types is present in one cluster.

Multiplex Immunohistochemistry

Animals Intestinal tumour tissue from a villinCreERKrasG12D/+Trp53fl/flRosa26N1icd/+ (KPN) mouse was used (25).
Procedures were conducted in accordance with Home Office UK regulations and the Animals (Scientific Procedures)
Act 1986. Mice were housed individually in ventilated cages, in a specific-pathogen-free (SPF) facility, at the Func-
tional Genetics Facility (Wellcome Centre for Human Genetics, University of Oxford) animal unit. All mice had
unrestricted access to food and water, and had not been involved in any previous procedures. The strain used in this
study was maintained on C57BL/6J background for ≥ 6 generations.

Multiplex immune panel and image pre-processing Akoya Biosciences OPAL Protocol (Marlborough, MA) was
employed for multiplex immunofluorescence staining on FFPE tissue sections of 4-𝜇m thickness. The staining was
performed on the Leica BOND RXm auto-stainer (Leica Microsystems, Germany). Six consecutive staining cycles
were conducted using primary antibody-Opal fluorophore pairs. The marker panel used is shown in Table 1.

The tissue sections were incubated with primary antibody for an hour, and the BOND Polymer Refine Detection
System (DS9800, Leica Biosystems, Buffalo Grove, IL) used to detect the antibodies. Epitope Retrieval Solution 1 or 2
was applied to retrieve the antigen for 20 min at 100°C, in accordance with the standard Leica protocol, and, thereafter,
each primary antibody was applied. The tissue sections were subsequently treated with spectral DAPI (FP1490,
Akoya Biosciences) for 10 minutes and mounted with VECTASHIELD Vibrance Antifade Mounting Medium (H-
1700-10; Vector Laboratories) slides. The Vectra Polaris (Akoya Biosciences) was used to obtain whole-slide scans
and multispectral images (MSIs). Batch analysis of the MSIs from each case was performed using inForm 2.4.8
software, and the resultant batch-analysed MSIs were combined in HALO (Indica Labs) to create a spectrally unmixed
reconstructed whole-tissue image. Cell segmentation and phenotypic density analysis was conducted thereafter across
the tissue using HALO.

Region of interest overview We consider a 1mm × 1mm region of interest (ROI) from a KPN mouse intestinal
tumour, shown in Figure 1A (three additional regions from this tumour are included in the supporting information).
Each colour channel corresponds to a different marker (Blue - DAPI; Orange - CD4; Green - CD68; Magenta - Ly6G;
Maroon - FoxP3; Red - CD8; White - E-Cadherin). To obtain a labelled point cloud, individual cell boundaries
were identified via cell segmentation (HALO, panel B). Classification of cell types was achieved by considering the
average pixel intensity within a cell boundary for each marker individually (e.g., CD4 pixel intensity, panel C), with
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Figure 1: Obtaining point cloud data from a multiplex image A: 1mm × 1mm ROI from a multiplex immunohis-
tochemistry image of murine colorectal carcinoma (Blue - DAPI; Orange - CD4; Green - CD68; Magenta - Ly6G;
Maroon - FoxP3; Red - CD8; White - E-Cadherin). The epithelial cells (E-Cadherin+) are cancer cells which form
dense ‘tumour nests’ that are surrounded by stromal regions. Immune cells are largely restricted to the stroma between
tumour nests, so the region shows spatial correlation between immune cell subtypes (particularly macrophage, neu-
trophil and T helper cell) within the stroma, and anti-correlation between immune cells and epithelial cells.
B: Cell segmentation (HALO) for the region in panel A. The edges of E-Cadherin positive cells are shown in pink to
aid comparison with panel A.
C: Pixel intensity from the colour channel corresponding to the CD4 stain only.
D: Composite point cloud formed by classifying each cell type stained in panel A, with points placed at the centroids
of segmented cells.
Lower row: Magnified 500𝜇m × 500𝜇m zoom from the upper panels

Cell type Marker Cell number
Epithelium E-Cadherin 5845

Macrophage CD68 392
T helper cell CD4+ FoxP3- 314
Neutrophil Ly6G 214

Cytotoxic T cell CD8 12
Regulatory T cell CD4+ FoxP3+ 8

Table 2: Cell types present in the ROI, with markers and number of cells present. Note that all cells must also contain
sufficient DAPI staining to be classified as a cell. Due to low numbers of cytotoxic T cells and regulatory T cells, we
exclude them from subsequent analyses.

combinations of cell markers defining different cell types as outlined in Table 2. The final marked point pattern (panel
D) was obtained by assigning cell labels to the centroids associated with each cell boundary.

The ROI in Figure 1 was selected because of the clear separation between the spatial position of immune cell subtypes
and tumour nests (epithelial cells), with immune cells located predominantly in regions between epithelial cell islands.
Table 2 summarises the different cell types, the markers used to define them, and the number of cells of each type in
the ROI.

Spatial statistics

We consider a point pattern in a rectangular domain Ω = [0, 1000𝜇m] × [0, 1000𝜇m]. We note that, with suitable
modifications, the statistical analysis can be applied to more complex regions (e.g., with holes) and higher dimensional
domains. The point pattern comprises 𝑁 points (or cells). Cell 𝑖 (𝑖 ∈ 1, 2, ..., 𝑁) has spatial location xi = (𝑥𝑖 , 𝑦𝑖), and
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a set of marks which may be categorical (e.g., a label for a cell type, or a true/false label indicating whether a cell’s
average stain intensity exceeds a threshold value), or continuous (e.g., the average stain intensity of a particular mark
within a cell). For clarity, we denote categorical and continuous marks by 𝑐 and 𝑚 respectively. We use lowercase for
marks associated with a particular point and uppercase for target values.

We introduce the indicator function I(𝐶, 𝑐) to determine whether a categorical mark associated with a point matches a
target mark:

I(𝐶, 𝑐) =
{
1 if 𝑐 = 𝐶,
0 otherwise

. (1)

When we define correlation functions below, we will need to determine whether two points are separated by a distance
‘close to’ 𝑟. Accordingly, we introduce the following function, 𝐼𝑘 (𝑟):

𝐼𝑘 (𝑟) =
{
1 for 𝑟𝑘 ≤ 𝑟 < 𝑟𝑘 + 𝑑𝑟,

0 otherwise,
(2)

where 𝑟𝑘 is the inner radius of an annulus of width 𝑑𝑟. We consider a sequence of annuli, with 𝑟𝑘+1 = 𝑟𝑘 + 𝑑𝑟, 𝑑𝑟 > 0
and 𝑟0 = 0. We denote by 𝐴𝑘 (x) the area of the annulus with inner radius 𝑟𝑘 centred at the point x. If this annulus lies
wholly inside the domain then 𝐴𝑘 (x) = 𝜋((𝑟𝑘 + 𝑑𝑟)2 − 𝑟2

𝑘
) = 𝜋(2𝑟𝑘 + 𝑑𝑟)𝑑𝑟; otherwise, only the area contained within

the domain is recorded.

Pair Correlation Function (PCF)

Aims The Pair Correlation Function (PCF), 𝑔(𝑟), quantifies spatial clustering or exclusion between pairs of points
separated by a distance 𝑟 within an ROI, compared to a suitably selected null distribution. While a range of null
distributions could be considered (e.g., using a Matérn hard core process to simulate randomly distributed cell centres
separated by a minimum distance to approximate a cell radius (24)), we assume the null distribution is complete spatial
randomness (CSR) as represented by a homogeneous spatial Poisson point process with intensity 𝜆 > 0 chosen to
match the intensity of the point pattern being analysed.

Definition Let 𝑁𝐶 =
∑𝑁

𝑖=1 I(𝐶, 𝑐𝑖) be the number of points in Ω with 𝑐𝑖 = 𝐶, for some categorical mark 𝐶. The
PCF, 𝑔(𝑟), is defined as follows:

𝑔(𝑟) = 1
𝑁𝐶

∑𝑁
𝑖=1 I(𝐶, 𝑐𝑖)

(∑𝑁
𝑗=1 I(𝐶, 𝑐 𝑗 )

𝐼𝑘 ( |x𝑖−x 𝑗 | )
𝐴𝑟𝑘

(x𝑖 ) / 𝑁𝐶

𝐴

)
(3)

where 𝐴 is the total area of the domain Ω. While there are many ways to account for edge effects associated with
points close to the domain boundary, we account for them by adjusting the contribution of each point to account for
the area of annulus 𝑘 contained within the domain, 𝐴𝑟𝑘 (x).
We note from Equation (3) that 𝑔(𝑟) = 1 corresponds to CSR. Further, if 𝑔(𝑟) > 1 then points separated by distance 𝑟
are observed more frequently than expected under CSR and we say that points at this lengthscale are clustered relative
to CSR. Similarly, 𝑔(𝑟) < 1 indicates fewer points than expected and is interpreted as exclusion at lengthscale 𝑟.

The structure of Equation (3) provides the basis for the generalisations of the PCF introduced below.

Cross Pair Correlation Function (Cross-PCF)

Aims The cross-PCF describes correlation between pairs of points separated by distance 𝑟 which may have different
categorical labels.

Definition Consider the categorical marks 𝐶1 and 𝐶2. The cross-PCF, 𝑔𝐶1𝐶2 (𝑟), is defined as follows:

𝑔𝐶1𝐶2 (𝑟) = 1
𝑁𝐶1

∑𝑁
𝑖=1 I(𝐶1, 𝑐𝑖)

(∑𝑁
𝑗=1 I(𝐶2, 𝑐 𝑗 )

𝐼𝑘 ( |x𝑖−x 𝑗 | )
𝐴𝑟𝑘

(x𝑖 ) / 𝑁𝐶2
𝐴

)
, (4)

where 𝑁𝐶𝑖
=
∑𝑁

𝑗=1 I(𝐶𝑖 , 𝑐 𝑗 ) is the number of points with mark 𝐶𝑖 . We note that when 𝐶1 = 𝐶2, Equation (4) reduces
to Equation (3) (i.e., the cross-PCF reduces to the PCF).

Example The interpretation of the cross-PCF is similar to that for the PCF, with 𝑔𝐶1𝐶2 (𝑟) > 1 indicating correlation
between points with marks 𝐶1 and 𝐶2 separated by distance 𝑟 and 𝑔𝐶1𝐶2 (𝑟) < 1 indicating exclusion at distance 𝑟.

In Figure 2, we compute two cross-PCFs for Synthetic Dataset I. In Figure 2A, cells with labels 𝐶1 and 𝐶2 are strongly
spatially correlated on the left half of the domain, while they are clustered separately on the right half. Figure 2B
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Figure 2: Motivating example I: Cross-PCF and Topographical Correlation Map. A: Synthetic Dataset I: a syn-
thetic point pattern involving 2 cell types, with labels 𝐶1 and 𝐶2. For 0 ≤ 𝑥 ≤ 500, points with labels 𝐶1 and 𝐶2 cluster
together; for 500 < 𝑥 ≤ 1000, points of types 𝐶1 and 𝐶2 form distinct, homogeneous clusters.
B: The cross-PCFs 𝑔𝐶1𝐶2 (𝑟) and 𝑔𝐶2𝐶1 (𝑟) for the point pattern in A. The cross-PCF detects the short range clustering
between cells of types 𝐶1 and 𝐶2, which is present for 0 ≤ 𝑥 ≤ 500. The cross-PCFs are almost identical, differing
only for large 𝑟 because of boundary correction terms.
C: Function used to linearise the mark 𝑚𝐶1𝐶2 in Equation (6), used to calculate the TCM, for 𝛼 = 5. Dashed lines rep-
resent 𝑚𝐶1𝐶2 = 1/𝛼, 1, 𝛼, which correspond to the maximum detectable exclusion, CSR, and the maximum detectable
clustering.
D, E: TCMs Γ𝐶1𝐶2 (𝑟 = 50) and Γ𝐶2𝐶1 (𝑟 = 50). The TCM identifies colocalisation between cells of types 𝐶1 and 𝐶2
in 0 ≤ 𝑥 ≤ 500, and distinguishes between the dense cluster in the top left quadrant and smaller clusters in the bottom
left quadrant. The TCM also identifies exclusion between the two cell populations in 500 ≤ 𝑥 ≤ 1000 and shows this
to be less pronounced than the clustering in 0 ≤ 𝑥 ≤ 500. Note that while the regions of positive correlation are similar
between panels D and E, the regions of negative correlation differ

shows the cross-PCFs 𝑔𝐶1𝐶2 (𝑟) and 𝑔𝐶2𝐶1 (𝑟) for this point pattern. Colocalisation between the cell types is identified
for 𝑟 ⪅ 200. The cross-PCFs are almost identical, since the cross-PCF is symmetric up to boundary correction terms.
While the cross-PCF successfully identifies the presence of clustering between the two cell types, it does not provide
information about differences in colocalisation on the left and right hand sides of the domain.

Topographical Correlation Map (TCM)

Aims The Topographical Correlation Map (TCM), Γ𝐶1𝐶2 (𝑟), was introduced by us in (7) to visualise spatial hetero-
geneity in the correlation between pairs of points across an ROI. Motivated by Equation (4), each point with mark 𝐶1
is assigned a value that quantifies its correlation with points with mark 𝐶2. A series of kernels centred at each point
with mark 𝐶1 is summed to produce a spatial map of local correlations between the cell types. We note that, since
these kernels are centred on points marked 𝐶1, the TCM is not symmetric (i.e., Γ𝐶1𝐶2 ≠ Γ𝐶2𝐶1 if 𝐶1 ≠ 𝐶2).

Definition The TCM, Γ𝐶1𝐶2 (𝑟), is visualised at a specific length scale 𝑟. Unless stated otherwise, we fix 𝑟 = 50𝜇m
which corresponds to clustering on the length scale of 2-3 cell diameters. We associate a continuous mark 𝑚𝐶1𝐶2 (𝑟, x𝑖)
with each cell 𝑖 with mark 𝐶1, such that

𝑚𝐶1𝐶2 (𝑟, x𝑖) =
𝑁∑︁
𝑗=1
I(𝐶2, 𝑐 𝑗 )

𝐼[0,𝑟 ) ( |x𝑖 − x 𝑗 |)
𝐴𝑟 (x𝑖)

/
𝑁𝐶2

𝐴
, (5)

where 𝐴𝑟 (x𝑖) is the area of that part of the circle with radius 𝑟𝜇m centred at x𝑖 that falls within the ROI. 𝑚𝐶1𝐶2 (𝑟, x𝑖)
can be viewed as the contribution of each point 𝑖 to the cross-PCF, 𝑔𝐶1𝐶2 (𝑟), for the special case of an annulus with
inner radius 0 and width 𝑑𝑟 = 𝑟 . Thus 𝑚𝐶1𝐶2 (𝑟, x𝑖) is interpreted similarly to the cross-PCF: 𝑚𝐶1𝐶2 (𝑟, x𝑖) < 1 indicates
anti-correlation between cells with marks 𝐶1 and 𝐶2 separated by a distance of at most 𝑟𝜇m, and 𝑚𝐶1𝐶2 (𝑟, x𝑖) > 1
indicates correlation.
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Since 𝑚𝐶1𝐶2 (𝑟, x𝑖) is based on a ratio of observed counts to counts expected under CSR, its interpretation is nonlin-
ear: an observation of three times as many points as expected corresponds to 𝑚𝐶1𝐶2 (𝑟, x𝑖) = 3, while three times
fewer points than expected leads to 𝑚𝐶1𝐶2 (𝑟, x𝑖) = 1/3. To facilitate interpretation, we rescale 𝑚𝐶1𝐶2 (𝑟, x𝑖) to pro-
duce a transformed mark 𝜇𝐶1𝐶2 (𝑟, x𝑖) in which clustering and exclusion can be compared on a linear scale, with
𝜇𝐶1𝐶2 (𝑟, x𝑖) = 0 when 𝑚𝐶1𝐶2 (𝑟, x𝑖) = 1:

𝜇𝐶1𝐶2 (𝑟, x𝑖) =


1 if 𝑚𝐶1𝐶2 (𝑟, x𝑖) ≥ 𝛼,(

1
𝛼−1

) (
𝑚𝐶1𝐶2 (𝑟, x𝑖) − 1

)
if 1 < 𝑚𝐶1𝐶2 (𝑟, x𝑖) ≤ 𝛼,(

1
𝛼−1

) (
1 − 1

𝑚𝐶1𝐶2 (𝑟 ,x𝑖 )

)
if 1

𝛼
< 𝑚𝐶1𝐶2 (𝑟, x𝑖) ≤ 1,

−1 if 𝑚𝐶1𝐶2 (𝑟, x𝑖) ≤ 1
𝛼
.


(6)

In Equation (6), the constant 𝛼 > 1 describes the maximal degree of clustering (or exclusion) which can be resolved
under this transformation. A sketch of Equation (6) is presented in Figure 2C, for 𝛼 = 5 (henceforth, we fix 𝛼 = 5).

After calculating 𝜇𝐶1𝐶2 (𝑟, x𝑖) for each cell with mark 𝐶1, we centre a Gaussian kernel with standard deviation 𝜎 =

𝑟𝜇m and maximum height 𝜇𝐶1𝐶2 , at x𝑖 . The TCM, Γ𝐶1𝐶2 (𝑟), is obtained by summing over all cells with mark 𝐶1 in
the domain:

Γ𝐶1𝐶2 (𝑟) =
𝑁𝐶1∑︁
𝑖=1

𝜇𝐶1𝐶2

𝜎
√

2𝜋
𝑒−

1
2 ( x−x𝑖

𝜎 )2
. (7)

Regions in which the TCM is positive indicate that more points marked 𝐶1 are positively correlated with points marked
𝐶2 in this area than would be expected under CSR, at lengthscales up to 𝑟𝜇m. Similarly, the TCM is negative in regions
where points with mark 𝐶1 are negatively correlated with points with mark 𝐶2.

Example Figure 2D and E show TCMs associated with Synthetic Dataset I (the point pattern in Figure 2A) for
𝑟 = 50. Panel D shows Γ𝐶1𝐶2 (𝑟 = 50) and panel E shows Γ𝐶2𝐶1 (𝑟 = 50). Both TCMs identify differences in the
colocalisation of the two cell types on the left and right sides of the domain. In particular, Γ𝐶1𝐶2 (𝑟 = 50) ≈ 40 in
the upper left quadrant of panels D and E, indicating strong positive correlation, with weak association in the lower
left (Γ𝐶1𝐶2 (𝑟 = 50) ≈ 10). For 𝑥 ≥ 500 both TCMs correctly identify weak anti-correlation (Γ𝐶1𝐶2 (𝑟 = 50) ≈ −10)
between cells of types 𝐶1 and 𝐶2. The cross-PCFs in panel B are dominated by the correlation on the left hand side
of the domain, and are unable to resolve the heterogeneity in clustering between the left and right sides of the domain.
We note that Γ𝐶1𝐶2 (𝑟) ≠ Γ𝐶2𝐶1 (𝑟), since the kernels used to construct the TCM are centred on cells with label 𝐶1 (and
vice versa). While areas in which cells with mark 𝐶1 and mark 𝐶2 are co-located are identified by positive values of
both Γ𝐶1𝐶2 (𝑟) and Γ𝐶2𝐶1 (𝑟), their values differ in regions where one or other TCM is negative, as in these regions the
cell densities vary (e.g., on the right hand side of panels D and E). We, therefore, emphasise that Γ𝐶1𝐶2 (𝑟) provides
a spatial map of subregions in which cells with mark 𝐶1 are correlated (or anti-correlated) with cells with mark 𝐶2.
Finally, we note that the TCM is not a density map showing the presence (or absence) of the cell types individually;
for example, when Γ𝐶1𝐶2 (𝑟) ≈ 0, either cells of type 𝐶1 are absent, or cells of both types are present in numbers
consistent with CSR.

Neighbourhood Correlation Function (NCF)

Aims The neighbourhood correlation function (NCF(𝑟)) extends the PCF to quantify spatial colocation between
3 or more cell types with different categorical marks. We compare the observed number of triplets of points with
marks 𝐶1, 𝐶2 and 𝐶3 within a neighbourhood of size 𝑟 against the number of triplets expected under CSR. Selecting
an appropriate definition for such a neighbourhood is non-trivial: while it is straightforward to calculate the Euclidean
distance between 2 points, many metrics can be used to calculate the proximity of 3 or more points. We require a
metric which is interpretable and extends naturally to more than 3 points. Metrics such as the area of the polygon
spanning the points are unsuitable (the area of the polygon is identically zero when all points fall on a straight line,
even though the points could be far apart). We consider the minimum enclosing circle (details below) as it requires all
cells to lie within a ‘neighbourhood’ of each other (with the distance between any two points at most 2𝑟 , where 𝑟 is
the radius of the minimum enclosing circle).

Definition Consider a point pattern for which there are 𝑁𝐶1 , 𝑁𝐶2 , and 𝑁𝐶3 points with categorical marks 𝐶1, 𝐶2 and
𝐶3 respectively. We say that three points from this pattern fall within a ‘neighbourhood’ of radius 𝑟 if there is a circle
of radius 𝑟 which encloses all three points. For a given set of three points 𝜁 = {x1, x2, x3}, let 𝑅(𝜁) be the radius of
the smallest circle enclosing every point in 𝜁 (the ‘minimum enclosing circle’).
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There are 𝑁𝐶1 × 𝑁𝐶2 × 𝑁𝐶3 possible triplets containing one point with each mark. We calculate 𝑅 for each of these,
and then determine the number of circles of radius 𝑟 containing a unique grouping of cells with each mark (as for the
PCF, these values are grouped into discrete bins of width 𝑑𝑟).

As for the PCF, we compare the number of minimum enclosing circles with radius 𝑟 with the number expected under
CSR. The probability of three points lying within a neighbourhood of radius 𝑟 , 𝑝3 (𝑟), is:

𝑝3 (𝑟) = lim
𝑀→∞

∑𝑀
𝑖=1 𝐼𝑘 (𝑅({x1

𝑖
, x2

𝑖
, x3

𝑖
}))

𝑀
, (8)

where x1
𝑖
, x2

𝑖
and x3

𝑖
are three points within the domain, sampled under CSR. Since sampling such points is computa-

tionally cheap, 𝑝3 (𝑟) can practically be approximated for an arbitrary domain by sampling a large number of random
triplets (in this section, we use 𝑀 = 107) and calculating their minimum enclosing circles.

For a point pattern containing 𝑁 points, the NCF is defined as the ratio of the observed number of smallest neighbour-
hoods of radius 𝑟 to the number of such neighbourhoods expected under CSR, 𝑁1 × 𝑁2 × 𝑁3 × 𝑝3 (𝑟):

𝑁𝐶𝐹𝐶1𝐶2𝐶3 (𝑟) =
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1
I(𝐶1, 𝑐𝑖)I(𝐶2, 𝑐 𝑗 )I(𝐶3, 𝑐𝑘)

𝐼𝑘 (𝑅({x𝑖 , x 𝑗 , x𝑘}))
(𝑁1 × 𝑁2 × 𝑁3)𝑝3 (𝑟).

(9)

We note that it is straightforward to extend the NCF for 𝑛 categorical marks:

𝑁𝐶𝐹𝐶1...𝐶𝑛
(𝑟) =

𝑁∑︁
𝑖1=1

...

𝑁∑︁
𝑖𝑛=1
I(𝐶𝑖1 , 𝑐𝑖) × ... × I(𝐶𝑖𝑛 , 𝑐𝑖)

𝐼𝑘 (𝑅({x𝑖1 , ..., x𝑖𝑛 }))
(𝑁1 × ... × 𝑁𝑛)𝑝𝑛 (𝑟)

, (10)

where 𝑝𝑛 (𝑟) is the probability that 𝑛 points sampled under CSR fall within a minimum enclosing circle of radius 𝑟 .

Example As for the PCF, 𝑁𝐶𝐹 (𝑟) > 1 indicates clustering and 𝑁𝐶𝐹 (𝑟) < 1 indicates exclusion. We interpret the
length scale 𝑟 associated with the NCF as the neighbourhood radius within which the points are contained.

In Figure 3 we compare the cross-PCFs and 𝑁𝐶𝐹𝐶1𝐶2𝐶3 for the two point patterns from Synthetic Dataset II. In
Figure 3A, each cluster consists of only two cell types, so that any pairwise combination of cell types can be found in
close proximity while all three cell types are never in close proximity. In Figure 3E each cluster contains all three cell
types.

Figures 3B and F show that, for Synthetic Dataset II, all cross-PCFs 𝑔𝐶1𝐶2 , 𝑔𝐶1𝐶3 and 𝑔𝐶2𝐶3 have the same shape and,
hence, that pairwise correlation is insufficient to distinguish the two point patterns in this dataset. Figures 3C and G
show all minimum enclosing circles (with radius up to 300 𝜇m) for these point patterns, coloured according to the
radius of the circle; note that when all three cell types are present within the same cluster, there are a large number of
small (purple) circles present. Figure 3D shows that, in this point pattern, all three cell types are never observed within
a circle of radius 𝑟 < 100𝜇m. The peak at 𝑟 ≈ 200𝜇m indicates that approximately as many triplets of cells of type
𝐶1, 𝐶2 and 𝐶3 can be enclosed by a circle of radius 200𝜇m as expected under CSR; this corresponds approximately
with the distance between the edges of neighbouring clusters. In contrast, Figure 3H shows that the NCF distinguishes
the two point patterns, by identifying strong correlation between the three cell types in neighbourhoods with radii of at
most 100𝜇m for the three-way correlation point pattern, which corresponds to the approximate radius of the clusters.

Weighted Pair Correlation Function (wPCF)

Aims The weighted Pair Correlation Function (wPCF) extends the cross-PCF to describe correlation and exclusion
between cells marked with labels that may be categorical or continuous. Here, we focus on pairwise comparisons
between points marked with a categorical label (e.g., points of type 𝐶1) and those marked with a continuous label
(e.g., points with mark 𝑚 ∈ [0, 1]. The wPCF can also compute correlations between points labelled with two
continuous marks (see (26) for an example of this).

Definition Consider a set of points labelled with categorical marks (𝐶1) and continuous marks (𝑚 ∈ [𝑎, 𝑏] for some
𝑎, 𝑏 ∈ R). The wPCF describes the correlation between points with a given target mark 𝑀 ∈ [𝑎, 𝑏] and those with a
categorical mark 𝐶1, at a range of lengthscales 𝑟 .

The cross-PCF cannot be calculated for such points since, for a continuous mark, I(𝑀,𝑚) is zero almost everywhere.
As such, we replace I(𝐶, 𝑐) with a generalised version, the ‘weighting function’ 𝑤𝑚 (𝑀,𝑚), to account for values of
continuous marks 𝑚 that are ‘close to’ a target mark 𝑀 in the following way:
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Figure 3: Motivating example II: Neighbourhood Correlation Function. A, E: Synthetic Dataset II: point patterns
in which three cell types are spatially correlated pairwise (A) or in triplets (D). In A, each cluster contains only two
cell types, do that all three cell types are never in close proximity. In D, all three cell types are in close proximity in
each cluster. Hence, in both point patterns there is positive correlation between pairwise combinations of cell types,
but the three-way correlations differ between the panels.
B, F: Cross-PCFs for the point patterns in panels A and D respectively. These cross-PCFs appear identical, showing
strong short-range correlation between the cell types (inside a cluster), exclusion from 𝑟 = 0.2 to 𝑟 = 0.4, and a second
peak of correlation around 𝑟 = 0.6 (between clusters).
C, G: Minimum enclosing circle for every combination of three points with marks 𝐶1, 𝐶2 and 𝐶3 (up to circles with a
radius of 𝑟 = 0.3). Circles with small radii arise when all three cell types are in close proximity (panel G). Circles are
coloured according to their radius.
D, H: NCFs for the point patterns in A, D respectively. The NCF in panel C correctly identifies short-range exclusion
between the three cell types in A, while the NCF in F identifies strong short-range correlation between the three cell
types
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𝑤𝑚 (𝑀,𝑚) = max
(
1 − |𝑀 − 𝑚 |

Δ𝑀
, 0
)
, (11)

where the positive parameter Δ𝑀 determines the width of the function’s support. Many other functional forms could
be used, provided that they have compact support, 𝑤𝑚 (𝑀, 𝑀) = 1 and 𝑤𝑚 (𝑀,𝑚) ∈ [0, 1] (see (26) for details of
alternative functional forms and a detailed analysis of how the choice of weighting function influences the signal to
noise ratio in the resulting wPCF).

The wPCF is defined as follows:

𝑤𝑃𝐶𝐹 (𝑟, 𝑀,𝐶1) =
1

𝑁𝐶1

𝑁∑︁
𝑖=1
I(𝐶1, 𝑐𝑖)

©­«
𝑁∑︁
𝑗=1

𝑤𝑚 (𝑀,𝑚 𝑗 )𝐼𝑘 ( |x𝑖 − x 𝑗 |)
𝐴𝑟𝑘 (x𝑖)

/𝑊𝑀

𝐴

ª®¬ , (12)

where 𝑊𝑀 =
∑𝑁

𝑖=1 𝑤𝑚 (𝑀,𝑚𝑖) is the total ‘weight’ associated with the target label 𝑀 across all points. The wPCF
extends the cross-PCF by weighting the contribution of each point based on how closely its continuous mark matches
the target mark.

We note that the wPCF can be used to compare point clouds with two continuous marks by replacing the categorical
target mark 𝐶1 with a second continuous mark (say, 𝑀1):

𝑤𝑃𝐶𝐹 (𝑟, 𝑀1, 𝑀2) =
1

𝑊𝑀1

𝑁∑︁
𝑖=1

𝑤𝑚1 (𝑀1, 𝑚1𝑖 )
©­«

𝑁∑︁
𝑗=1

𝑤𝑚2 (𝑀2, 𝑚2 𝑗
)𝐼𝑘 ( |x𝑖 − x 𝑗 |)

𝐴𝑟𝑘 (x𝑖)
/
𝑊𝑀2

𝐴

ª®¬ . (13)

In Equation (13) the weighting functions 𝑤𝑚1 and 𝑤𝑚2 quantify proximity to target marks 𝑀1 and 𝑀2 respectively.
Note that since the ranges of the marks 𝑚1 and 𝑚2 may differ substantially, the functions 𝑤𝑚1 and 𝑤𝑚2 may not
necessarily use the same value of Δ𝑀 in Equation (11) (for an example, see (26)).

Example We again use Synthetic Dataset I, where points with 𝑚 < 0.5 are on the left hand side of the domain, and
have been placed in clusters with the 𝐶1 cells. In contrast, points on the right hand side have 𝑚 > 0.5 and cluster
independently from the 𝐶1 clusters.

Figure 4B shows 𝑤𝑃𝐶𝐹 (𝑟, 𝐶1, 𝑀) for the point pattern in Figure 4A, with cross-sections of the wPCF shown in
Figure 4C. For a given target value 𝑀 , the cross-sections of the wPCF can be interpreted in the same manner as the
cross-PCF or PCF. Figure 4B identifies two types of correlation in the data, each associated with different values of
𝑚. For 0 < 𝑟 ≈ 150, there is strong short-range clustering between cells of type 𝐶1 and cells of type 𝐶2 with 𝑚 < 0.5,
with weak short-range exclusion up to this length scale for 𝑚 > 0.5. Since cells on left hand side of the domain have
0 ≤ 𝑚 < 0.5, and those on the right hand side have 0.5 ≤ 𝑚 ≤ 1, this effect is consistent with the information from
the cross-PCF and TCM above. One advantage of visualising the wPCF as a heatmap (Figure 4B) is that it identifies
threshold values of 𝑀 at which the nature of the cell-cell correlations changes, as demonstrated in (26).

Results

In this section, we illustrate the utility of the TCM, NCF and wPCF through their application to an ROI from a
multiplex immunohistochemistry image of a murine colorectal carcinoma (see methods for details, and Section S1
of the supplementary information for similar analyses of three additional ROIs). Figure 5 shows the cross-PCFs
which describe pairwise correlations between all cell types present in the data. Due to the low numbers of cytotoxic
and regulatory T cells, we focus subsequent analyses on relationships between epithelium and T helper cells (two
abundant cell types which are spatially anti-correlated) and on T helper cells and macrophages (the most abundant
immune cell subtypes, which are spatially correlated). When applying the NCF, we include neutrophils as a third
immune cell subtype which colocalises with T helper cells and macrophages.

Cross-PCFs and TCMs identify colocalisation and exclusion in cell centre data

We first consider T helper cells (Th) and macrophages (M), which are shown to be colocalised from the cross-PCFs
in Figure 5. Figure 6A shows the channels of the multiplex image that correspond approximately with T helper cells
(CD4+, orange) and macrophages (CD68+, green); the cell centres of these cell populations within the ROI are shown
in Figure 6B (see Figure 1 for other cell locations). In this ROI, both T helper cells and macrophages are predominantly
found in the stromal tissue between islands of (cancerous) epithelial cells, leading to positive spatial correlation on
short length scales (0 ⪅ 𝑟 ⪅ 75𝜇𝑚).
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Figure 4: Motivating example III: weighted PCF A: Synthetic Dataset I: the same point pattern from Figure 2, now
shown with the continuous mark 𝑚 associated with cells of type 𝐶2. Recall cells of type 𝐶2 with 0 ≤ 𝑥 ≤ 500 have
0 ≤ 𝑚 <0.5, while those with 500 < 𝑥 ≤ 1000 have 0.5 ≤ 𝑚 ≤ 1.
B: The wPCF, 𝑤𝑃𝐶𝐹 (𝑟, 𝐶1, 𝑚), for the point pattern in panel A identifies differences in clustering between cells of
type 𝐶1 and cells of type 𝐶2 with marks above or below 𝑚 = 0.5.
C: Cross-sections of the wPCF in panel B. These plots distinguish the strong clustering of cells of type 𝐶1with cells of
type 𝐶2 that have 𝑚 < 0.5 and their weak exclusion from cells of type 𝐶2 that have 𝑚 > 0.5.

Colocalisation is clearly identified by the cross-PCF in Figure 6C: for 0 ≤ 𝑟 ⪅ 75, 𝑔𝑇ℎ𝑀 (𝑟) > 1, indicating clustering
between the cells of up to 2.75 times greater than expected under CSR, on length scales up to approximately 75 𝜇m (a
distance approximating the width of the stromal region that separates epithelial clusters).

Figure 6D shows Γ𝑇ℎ𝑀 (𝑟) for 𝑟 = 50𝜇m. This permits the clustering identified by the cross-PCF to be mapped onto
the ROI, revealing subregions in which T helper cells are spatially colocated with, or excluded from, macrophages.
We observe strong clustering in stromal regions, with islands of weak exclusion where isolated T helper cells are
present. We conclude that, while T helper cells typically colocalise with macrophages, certain subregions of the ROI
that contain T helper cells have low numbers of macrophages within a 50 𝜇m radius. Further, these subregions do not
contribute significantly to the overall correlation of T helper cells with macrophages in the cross-PCF.

In Figure 7 we focus on T helper (Th) and epithelial cells (E), which are shown to be anti-correlated by the cross-PCFs
in Figure 5. In Figure 7C, the cross-PCF 𝑔𝑇ℎ𝐸 (𝑟) shows exclusion for 0 ≤ 𝑟 ⪅ 75, with the strongest exclusion
occurring on small length scales. This exclusion is also identified by Γ𝑇ℎ𝐸 (𝑟) in Figure 7D, which shows that the
cross-PCF is dominated by strong exclusion from T helper cells in the stromal islands between epithelial cells as
expected. The contributions from T helper cells outside the stromal regions (e.g., those in the lower right quadrant of
the ROI) are negligible compared to those in the lower left quadrant, due to the large number of T helper cells in that
subregion.

Neighbourhood Correlation Functions identify spatial correlations between 3 cell types simultaneously

Figure 8 shows the NCF for macrophages, T helper cells, and neutrophils (spatial locations shown in Figure 8A).
We calculate the smallest circles enclosing each triplet containing one of each cell type, and note their radii. Fig-
ure 8B compares the number of circles with radius 𝑟 observed in the data, with the expected number if macrophages,
neutrophils and T helper cells are randomly distributed (obtained via bootstrapping as described in the methods, for
𝑀 = 108). More circles are observed than expected under CSR. By taking the ratio of the curves in Figure 8B we
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Figure 5: Cross-PCFs for all pairwise combinations of cell types in the ROI Cross-PCFs for all pairs of cell types
from the ROI. We observe exclusion between epithelium and all immune cell subtypes, and strong pairwise correlation
with macrophages, neutrophils, and T Helper Cells on short lengthscales. Results involving regulatory and cytotoxic
T Cells are noisy as their cell counts are low in this ROI

generate the NCF in Figure 8C. The NCF shows that triplets comprising a macrophage, a neutrophil and a T helper
cell are up to 35 times more likely to cluster within a neighbourhood of radius 0-20𝜇m than would be expected if the
cells were randomly distributed. We conclude that these cell types are frequently found together.

The Weighted Pair Correlation Function identifies correlations without classification or segmentation

Recall that in order to apply the PCF, cross-PCF, TCM, and NCF, the multiplex imaging data must be segmented and
then classified to identify cell centres and assign them categorical labels (or cell types). We now show how the wPCF
can be applied directly to multiplex imaging data to identify spatial correlations, without segmentation or classification.

Figure 9 demonstrates that the wPCF can identify correlations when some cells are not classified. Rather than speci-
fying a threshold value of the CD4 marker intensity to identify CD4+ cells, we instead view the average CD4 intensity
of each cell as a continuous mark. Figure 9A shows epithelial cells determined by specifying a threshold, while Fig-
ure 9B shows all cells labelled according to their average CD4 intensity. The wPCF calculated in panel C shows that
the spatial positions of cells with low CD4 intensity differ from those with high CD4 expression (with Δ𝑀 = 2 in
Equation (11)). Figures 9C and D show that cells with mean CD4 intensity below approximately 4 are not strongly
correlated with epithelial cells. However, for larger values of CD4 intensity, the profiles of the wPCF are in good
agreement with the cross-PCF 𝑔𝑇ℎ𝐸 (𝑟) (shown as a red dashed line in Figure 9D).

Finally, in Figure 10 we show that application of the wPCF to multiplex images, without cell segmentation or classifi-
cation, can identify spatial correlation. Panels A and B show points from a regular lattice sampled from the multiplex
image of the ROI, at a resolution of 1 point every 5𝜇m. In panel A points are labelled according to a thresholded
value of the epithelial cell marker, while in panel B they are labelled according to the CD4 intensity at that pixel. The
wPCF which compares these marks is shown in panel C, and is in good qualitative and quantitative agreement with
the wPCF from Figure 9 (with Δ𝑀 = 20 in Equation (11)). We conclude that applying the wPCF directly to pixels and
stain intensities can identify the same spatial patterns of clustering and exclusion as those identified by the cross-PCF,
without cell segmentation or classification.
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Figure 6: PCF and TCM for positively correlated cell types A: Locations of T helper cells (CD4+, orange) and
macrophages (CD68+, green) in the ROI (with DAPI, blue). These cell types colocalise in the tissue between epithelial
cell islands.
B: Cell centres identified as T helper cells (orange) and macrophages (green).
C: PCF for T helper cells to macrophages, 𝑔𝑇ℎ𝑀 (𝑟). These cell types are spatially colocated over a wide range of
distances, i.e., 𝑔𝑇ℎ𝑀 (𝑟) > 1 for 0 ⪅ 𝑟 ⪅ 75𝜇m.
D: TCM for T helper cells to macrophages, Γ𝑇ℎ𝑀 , for 𝑟 = 50𝜇m. Red regions indicate colocalisation of the cell types
in stromal regions, while blue regions correspond to isolated T helper cells

Discussion

Multiplex images contain a wealth of spatial information, and have the potential to greatly increase the information
that can be extracted from histological samples. Each image provides a high resolution map of cell locations across
tissue samples which may contain millions of cells, together with detailed information about their phenotypes and
morphology. As multiplex images become more widespread and as digital tools for their visualisation and analysis
improve, the demand for automated methods which can extract detailed spatial information from them is increasing.
Such methods should be agnostic to the technology used to generate the images, the disease under investigation, and
the particular markers with which the sample has been stained.

Many existing methods can extract information from multiplex images. One popular approach involves using artificial
intelligence or machine learning approaches to identify correlations between features extracted from multiplex images
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Figure 7: PCF and TCM for negatively correlated cell types A: Locations of T helper (CD4+, orange) and epithelial
cells (E-Cadherin+, white) in the ROI (with DAPI, blue). Epithelial cells exist in clumped ‘nests’, with T helper cells
restricted to the stromal regions between them.
B: Cell centres of T helper cells (orange) and epithelial cells (blue).
C: PCF for T helper cells to epithelial cells, 𝑔𝑇ℎ𝐸 (𝑟). We observe strong spatial exclusion, as 𝑔𝑇ℎ𝐸 (𝑟) < 1 for 𝑟 ⪅ 75.
D: TCM for T helper cells to epithelial cells, Γ𝑇ℎ𝐸 (𝑟), for 𝑟 = 50𝜇m. The blue regions showing strong exclusion
indicate subregions of the ROI which are devoid of epithelial cells. The strongest signals occur where T helper cells
are organised in large clusters, while regions with few T helper cells do not contribute significantly to the cross-PCF

and clinically relevant features such as disease progression. AI methods can be extremely powerful, but are not ideally
suited to all situations. In particular, an AI algorithm may require vast numbers of images for use as training data.
Further, the tissue type and panel of markers chosen for staining should be consistent across the training data, thereby
reducing the applicability of the algorithm to samples from different diseases (for example, an algorithm trained on
multiplex images of immune cells in colorectal cancer cannot reliably be applied to images of immune cells in prostate
cancer, or to images of stromal cells in colorectal cancer). AI methods can sometimes lack interpretability, making it
difficult to understand which features of an image an algorithm is using and to understand when errors are likely to
arise.

On the other hand, a range of statistical and mathematical methods can also describe features of multiplex images in
an interpretable way. These methods may derive from a range of disciplines, such as network science, topological
data analysis, and spatial statistics. They provide quantitative descriptions of specific spatial features of an image; for
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Figure 8: The NCF identifies spatial colocalisation between 3 cell types A: Locations of T helper cells (orange),
macrophages (green) and neutrophils (purple) extracted from the ROI. All three cell types are found in stromal regions,
while macrophages and neutrophils are more likely to be observed within the epithelial islands (e.g., in the top left
corner).
B: Expected and observed numbers of circles of radius 𝑟 .
C: NCF obtained by computing the ratio of the curves in panel C, NCF𝑇ℎ𝑀𝑁 (𝑟). For 𝑟 ⪅ 75𝜇m, neutrophils,
macrophages and T helper cells are colocalised within a circle of radius 𝑟 more often than would be expected un-
der CSR.

example, ecological analyses may describe correlations in cell counts across subregions of an ROI with a fixed area,
quantifying the strength of local correlations (45). Existing metrics have typically been developed to address a specific
problem. As a result, multiple methods may be used to describe the same features of a point pattern. For instance,
the field of spatial statistics encompasses a range of methods designed to identify correlations in point patterns, with
specialised tools to address specific use cases. The PCF has been specialised to account for interactions between mul-
tiple classes of point (the cross-PCF), points generated from processes which vary across a region (inhomogeneous-
PCF (15)), or points labelled with continuous marks (mark correlation functions, weighted-PCFs). Such metrics can
provide detailed information about the spatial structure of multiplex images, even though they may have been de-
veloped for other types of data. In order to understand multiplex images using quantitative metrics, we propose the
application of multiple statistics (which may derive from different mathematical fields), designed to quantify specific
properties of the image.

In this paper, we have focussed on three methods for extending the PCF that have been specifically designed for appli-
cation to multiplex medical images. Each is applied here for the first time to multiplex immunohistochemistry images
from the Vectra Polaris system, in order to illustrate how they address limitations in the PCF. We now summarise each
method in turn, focussing on their strengths and weaknesses.

Topographical Correlation Map (TCM)

The TCM can visualise spatial correlations between pairs of cell populations across an ROI, highlighting subregions of
strong positive or negative correlation that can be difficult to identify by visual inspection. Unlike the inhomogeneous-
PCF, the TCM does not require prior assumptions about the homogeneity of the point process from which points are
derived; rather, it identifies subregions in which local interactions between the point patterns differ from those that
would be obtained under complete spatial randomness. While we have used the TCM for visualisation, it generates
quantitative information which can be used for subsequent analysis. For example, the number and size of the local
minima and maxima could be used as summary statistics to compare and classify images. The TCM can also be
analysed via a sub/super level-set filtration (51). This method from Topological Data Analysis can quantify spatial
heterogeneity in heatmaps.

We note that, by design, the TCM is asymmetric (i.e., Γ𝑎𝑏 (𝑟) ≠ Γ𝑏𝑎 (𝑟)). As such, care is needed when interpreting
the TCM. In particular, while Γ𝑎𝑏 (𝑟) and Γ𝑏𝑎 (𝑟) should coincide in regions of positive correlation, they may differ in
regions of negative correlation. Further, regions where Γ𝑎𝑏 (𝑟) ≈ 0 can not be used to infer the presence (or absence)
of either cell type without consideration of other metrics (e.g., local cell densities).
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Figure 9: The wPCF identifies correlation between epithelial cells and cells with different CD4 expression levels
A: Epithelial cell centres.
B: Cell centres labelled according to the average CD4 stain intensity within each cell.
C: wPCF(𝑟, 𝐸 , CD4), showing clear qualitative and quantitative differences in colocalisation with epithelial cells as
CD4 expression levels vary.
D: Cross-sections of the wPCF in panel C. Points with low CD4 expression have a different pattern of correlation than
those with higher expression. The profile for cells with high CD4 expression corresponds to the cross-PCF 𝑔𝑇ℎ𝐸 (𝑟),
calculated for cells which have been manually classified as T helper cells (red dashed line). Cells with low CD4
intensity colocalise with epithelial cells, likely due to many epithelial cells having low CD4 expression. Cells with
higher expression of CD4 are anti-correlated with epithelial cells for 0 ≤ 𝑟 ⪅ 75.

Neighbourhood Correlation Function (NCF)

The NCF identifies whether groups of three or more cells are found in a circular neighbourhood of radius 𝑟 more or less
frequently than expected under CSR. Since it requires distance calculations between 𝑛 cell types, the computational
complexity of the NCF is at least 𝑂 (𝑁𝑛). This limits its potential application to whole-slide images or to identifying
correlations between a large number of cell types simultaneously: although calculating each enclosing circle is fast (27),
as the maximum number of circles which must be calculated is 𝑁1 × ... × 𝑁𝑛 (where 𝑁𝑖 is the number of cells
of type 𝑖) the computational effort involved increases rapidly as the total number of cells and number of cell types
increase. As for the PCF, the runtime performance of the algorithm can be improved by calculating the NCF up to
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Figure 10: wPCF identifies correlation between epithelial cells and pixels with varying CD4 expression The
results from Figure 9 are recovered when the wPCF is calculated from points sampled from the original multiplex
image using a regular 5𝜇m lattice, showing that the spatial correlation between T Helper Cells and epithelial cells can
be identified without segmentation or classification.
A: Pixel intensities of the Opal 520 marker (associated with CD4), sampled across the ROI on a regular 5𝜇m lattice.
B: Pixels marked as Opal 780 positive (associated with epithelial cells), determined via thresholding, sampled across
the ROI on a regular 5𝜇m lattice.
C: wPCF describing correlation between pixels positive for Opal 780 and the pixel intensity of Opal 520.
D: Cross sections of the wPCF in panel C have the same shape as the cross-PCF in panel D for pixels with high CD4
intensity

a maximal neighbourhood size of interest 𝑟; this reduces the number of 𝑛-wise maximum enclosing circles that must
be calculated (any combination of points containing a pair separated by more than the lengthscale of interest can be
immediately discarded). The NCF also relies on repeated sampling of random data to identify the expected number of
neighbourhoods that would be observed under CSR. For a given region this probability can be calculated in advance
to an arbitrary level of precision, and becomes more accurate with more samples. However, more research is needed
to determine the minimum number of samples needed to achieve a given accuracy.
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Weighted PCF (wPCF)

The wPCF generalises the cross-PCF to data with continuous labels (e.g., cell centres which have not been classified
into discrete categories, or to pixels which have not been segmented to find cell centres). As such it can be calculated
without classification or cell segmentation pre-processing steps. However, this also increases the number of ‘param-
eters’ required. In particular, the choice of weighting function determines the ratio of signal/noise identified by the
wPCF and must be considered in advance (see (26) for a detailed examination of the impact of varying the weighting
function on the wPCF). The tuning parameters used to construct the wPCF are in some ways similar to those used to
perform cell classification (e.g. threshold values for stain intensities).

There is considerable scope for developing approaches to interpret the wPCF. The heatmap which it generates can be
analysed using techniques similar to those discussed for the TCM above.

It is also possible to use the outputs from the wPCF to create a vectorised ‘spatial signature’ which can be used to
cluster regions which have similar spatial structures (26). Such an approach could be used to automatically identify
regions with similar spatial cellular interactions, or which contain spatial patterns associated with, for example, cancer
progression or disease severity. Indeed, by vectorising the spatial descriptors described within this paper the approach
described in (26) to identify such ‘spatial biomarkers’ could be extended.

Conclusions

Multiplex images contain vast amounts of spatial information which can be exploited using quantitative techniques.
The spatial statistics considered in this paper represent one approach to analysing this data, and benchmarking studies
that compare the efficiency and insight of different methods are needed.

The methods described in this paper were designed to exploit the spatial information contained in multiplex images.
We note, however, that they can be applied to multiple imaging modalities and multiple diseases. Equally, each method
can be applied to generic point cloud data from contexts outside of biology.

We have previously shown that combining spatial statistics can generate more comprehensive descriptions of point
data than individual metrics alone (26,50). In future work, we will determine how complementary methods from math-
ematical fields such as spatial statistics, network science, and topology, can build upon this to provide a rigorous
quantitative description of how data is spatially distributed.
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