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Abstract

Microbiome analysis is transforming our understanding of biological processes related to
human health, epidemiology (antimicrobial resistance, horizontal gene transfer)
environmental and agricultural studies. At the core of microbiome analysis is the
description of microbial communities based on quantification of microbial taxa and
dynamics. In the study of bacterial abundances, it is becoming more relevant to
consider their relationship, to embed these data in the framework of network theory,
allowing characterization of features like node relevance, pathway and community
structure. In this work we characterize the principal biases in reconstructing networks
from correlation measures, associated with the compositional character of relative
abundance data, the diversity of abundances and the presence of unobserved species
within a single sample, that might lead to wrong correlation estimates. We show how
most of these problems can be overcome by applying typical transformations for
compositional data, that allow the application of simple measures such as Pearson’s
correlation to correctly identify the positive and negative relationships between relative
abundances, when data dimensionality is sufficiently high. Some issues remain, like the
role of data sparsity, that if not properly addressed can lead to imbalances in correlation
coefficient distribution.

Introduction

Techniques based on next-generation sequencing (NGS) can elucidate the complex
functioning of natural microbial communities directly in their natural environment. New
branches of research have been created such as the study of the human microbiota
which showed heterogeneity between different anatomical sites and individual
variablity [1L[2], or the ability to characterize and monitor the presence of AMR
(antimicrobial resistance) worldwide [3]. Together with the analysis on sample
microbiome composition, it is also useful to investigate the relationship between the
observed species or OTUs (Operational Taxonomic Units, which from now on will be
defined as taxa). Network theory provides many essential tools to characterize macro
properties of the ecology of a natural environment by defining central elements or
communities in the system and allowing visualization of these results by exploiting
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network structural properties . Therefore, the first step to reconstruct any network is
to identify and quantify relationships between variables, very often in these cases
through evaluation of correlations or conditional dependence on each pairwise
combination of variables. Taxa abundance is determined by the magnitude of
sequencing read counts, which is affected by sequencing depth and varies from sample to
sample. Typically a sum constraint is imposed (1 for probability, 100 for percentage or
10° for part per million). Thus, data are described as proportions and the sample depth
is irrelevant, referred to as compositional data . The only reliable information that
can be extracted from these NGS data are the ratio between the parts @ and, as noted
by Pearson at the end of 19th century , proportional data can generate spurious
correlations between measurements that are in reality uncorrelated. From a purely
formal point of view, the data lie on a simplex and it can be extremely dangerous to use
Euclidean metrics for proximity and correlation estimations. These compositional biases
can be devastating in some datasets, and the heterogeneity (referred to as E, see
Materials and Methods) together with the dimensionality D can be good predictors of
their strength. The more counts concentrated in a few taxa, the greater the biases and
conversely, when counts are more homogeneously distributed over samples the biases
decrease. In the extreme case of only two variables, the correlation between the relative
abundances will always be —1 ;| expressing the worst possible scenario. Furthermore, a
large part of taxa in the NGS experiments are under the detection limits of the
sequencing techniques producing really sparse abundances matrices. It’s really common
to find datasets where more than 70 — 80% of species are undetected and typically it is
assigned the value of 0 and this introduces further bias in the correlation measures. The
undetected species are not to be interpreted as the absence of that species but rather as
a missing value in which we have no further information.
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Fig 1. NGS Data Features. Typical characteristics of NGS data as observed in the
HMP2 dataset studied in this paper. On the left the histogram in log;, scale of sample
depths which can range from ~ 10* to ~ 105. On the right the image represents the
taxa detected in this dataset, over 87% of whose counts are null, equivalent to not
detected taxa.

Recent methods such as Sparse Correlations for Compositional data (SparCC) [§],
Sparse and Compositionally Robust Inference of Microbial Ecological Networks
(SPIEC-EASI) [9] or Proportionality for Compositional data (Rho) have been
developed and all make extensive use of the compositional theory introduced by
Ajitchison @ He provided a family of transformations to treat this kind of data, called
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log-ratio transformations. For each sample, the counts are expressed with respect to a
reference in order to compare them and then the logarithm is applied. Almost always
the choice is the centered log-ratio transformation (CLR) where each element is divided
by the geometric mean of the sample in a logarithmic scale. Thanks to this operation,
the data are mapped on the Cartesian plane even if there are still limitations: the sum
of all the values on each sample is always equal to zero and is equivalent to saying that
the points are restricted to a D — 1 dimensional hyperplane, introducing dependencies
between data. In the work mentioned above, the study focused on characterizing
performance of the measurement on real and synthetic data. We focus on quantification
of biases introduced on the correlations due to the CLR transformation or the sum
constraint (L1) on each sample. To characterize these biases we generated synthetic
data based on the ‘Normal to Anything’ approach: this method allows generation of
random variables with arbitrary marginal distributions from multivariate normal
variables with desired correlation structure.

Materials and methods

HMP2 16S Human Gut Data

Human Microbiome Project v2 (HMP2) OTU counts and their taxonomic classification
were obtained from a project studying the microbiomes of healthy and prediabetic
subjects over a period of up to four years [11]. The entire dataset is composed of 1122
samples and 1953 OTUs collected from 96 different subjects associated with the healthy
information in each sample. To obtain a more homogeneous dataset for the following
analyses we chose a subset of 51 samples belonging to a single healthy subject (69-001)
with the highest number of samples.

Network Reconstruction Methods

Many methods were developed in recent years to estimate the relationship structure of
metagenomics data. We choose to focus on four among the most recent and commonly
used approaches in this field. First, SparCC [§] estimates Pearson’s correlation
assuming data have a sparse correlation structure. Rho [10] is based on the
proportionality concept to avoid possible spurious correlations between compositional
data. Finally, SPIEC-EASI [9] is a graphical model inference framework which again
assumes that the underlying ecological associations are sparse and offers two different
criteria to reconstruct the network i) sparse neighborhood selection MB [12] and ii)
inverse covariance GLASSO [13|. In addition, we use Pearson’s correlation after data
transformation (Pearson+CLR) to be compared with these more sophisticated methods.

a-Heterogeneity

The a-heterogeneity E of a dataset is defined as the mean value of the a-diversity,
calculated by the Shannon index, over all the samples normalized with respect to the
dimensionality D (i.e. number of taxa). Given a dataset X € N'NV'P composed of N
distinct samples & of dimension D, we adopt the normalized Shannon index as:

[7(7) — 721'[):1pi10g(p11)
A O E)

(1)
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with p; corresponding to the i-th taxa relative abundance in the sample, and with the
a-heterogeneity of the dataset calculated as:

i=1

Synthetic Data Generation

To produce artificial datasets with required characteristics (dimensionality D,
correlation structure defined by a matrix R, heterogeneity E) we developed a toy model
which makes use of the Normal to Anything (NorTA) approach to generate an arbitrary
multivariate distribution with the desired correlation structure R as input relying on the
copula functions theory [14]. A matrix Uy with dimensions N x D, with N the number
of samples and D the dimensionality is generated from a multivariate normal
distribution with zero means and D x D correlation matrix R. On every marginal
distribution Uy, the normal cumulative density function (CDF) is applied. The inverse
of cumulative function of any distribution is calculated to obtain the data used in the
study. The aim is to observe correlation bias due to L1 and CLR normalizations for
changes in sample dimensionality and heterogeneity. The choice of dimensionality is
inherent in the NorTA method and it depends on the dimension of the input
multivariate normal distribution. To tune the sample heterogeneity, we operated by
tuning the magnitude of a single variable with a multiplicative factor, since very often
in real data the samples are extremely heterogeneous with most of the counts contained
in a few species. In summary, the model works as follows:

1. Generation of the Gaussian multivariate distribution Uy with dimension D and
correlation matrix R as input.

2. Transformation of the data into the desired distribution Uyorra and the
calculation of the new correlation structure RnoriTa. It should be noted that the
correlation structure can be totally modified when strongly non-Gaussian
distributions are chosen.

3. Tuning the heterogeneity of the resulting dataset applying a specific multiplicative
factor to a single variable.

4. Normalization and calculation of the correlation matrix for the two normalizations

L1 and CLR.
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Fig 2. Bivariate Illustration of the ”Normal to Anything” Approach.
Example of Normal to Anything method on a simply bivariate case. First column:
normal generate variables with different values of correlation ~ —0.8, 0, and 0.8. Second
column: non parametric remapping over quantiles. Third and fourth columns: marginal
distributions for zero inflated negative binomial and hurdle truncated log-normal
distributions, respectively.

Hurdle Truncated Log-Normal Distribution

A crucial aspect in the generation of plausible synthetic data is the choice of the
marginal distribution that best describes the trend of the real data. We adopt an hurdle
model that splits into different processes the zero and non-zero values [15]. It is
assumed that the distribution of non-zero values in logarithmic scale follows a Gaussian
with values left-censored in zero (htrlnorm):

N (z|p,0)

v AN aTETaY ith probability 1 —
flog(z + 1), u,0,a,b) = @(%)sz( i) with probability ¢

with probability ¢

3)

where ¢ is the percentage of zeros, i and ¢ the mean and the standard deviation, a and
b are the left and right interval limits always fixed for a = 0, N (z|y, o) is the Gaussian
probability density function and @ its cumulative distribution. Generally the negative
binomial zero inflated distribution (zinegbin) is used to model the abundances [16] even

if it does not replicate very well the overdispersion and skewness of real distributions [17].

We show the comparison between them in the supplementary section
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Results

Methods Comparison

We compared the results obtained with SPIEC-EAST (both the GLASSO and MB
criteria), SparCC and Rho with respect to the Pearson’s correlation on CLR
transformed data. For this purpose, we selected 51 samples of subject 69-001 in healthy
condition from HMP2. We filtered the data in order to remove the rarest OTUs keeping
those with a prevalence greater than 33% and the taxa with the median of the non-zero
values greater or equal to 5. The comparison between the Pearson+CLR with SparCC
and Rho is direct, since these three methods produce values between -1 and 1: the
scatter plot of the respective correlation values is ~ 0.99 for both, in very good
accordance to a y = x linear relationship (Fig. . Since SPIEC-EASI produces a binary
output in terms of conditional independence between each pair of variables, we consider
the histogram of Pearson+CLR values and overlap bins corresponding to couples of
variables significantly associated by SPIEC-EASI imposing a threshold on overall
stability equal to 5%. Most of the significant links for SPTEC-EASI are associated to
high absolute values of Pearson+CLR, with a more marked similarity for GLASSO
criteria (Fig. . We also compared the resulting networks of the two SPIEC-EASI
methods with the one obtained using the Pearson+CLR method. We get the significant
links making a threshold on the p-value associated to the Pearson correlations adjusted
with the Bonferroni multiple testing set to 0.05. We can observe the similarities between
networks as quantified by the links shared between them (Fig. . The Pearson+CLR
and the GLASSO criteria return almost identical results, with more visible differences
for the MB method. Finally, we observe that all the obtained networks are more skewed
towards positive links (Fig. [4)).
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Fig 3. Methods Comparison. Comparison of SparCC, Rho, SPIEC-EAST MB and
SPIEC-EASIT GLASSO with respect to the Pearson Correlation on CLR transformed
data. The scatterplot in subfigures 1 and 2 clearly show the high similarity of the two
methods with Pearson correlation. Subfigures 3 and 4 are histograms of the Pearson
correlation coefficients (blue bins) overlapped with the SPTEC-EASI significant links

(red for MB and green for GLASSO).
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Links O unclassified_Bacteria B unclassified_Clostridiales — =
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Fig 4. Network Comparison. Top: networks obtained with SPIEC-EASI MB,
SPIEC-EASI GLASSO and Pearson+CLR methods, respectively. Vertices represent
taxa, with sizes proportional to the mean abundance and colors associated to the family
they belong to. Blue and red links: significant positive and negative correlations,
respectively. Bottom: Venn diagram of shared links (left); legend of families represented

in the above networks (centre); number of links and percentage of positive and negative
links (right).

Transformation Effects 147

To understand and quantify the biases caused by L1 and CLR transformations, we 148
generate data with varying a-heterogeneity E' and dimensionality D. We quantify the 1o
difference between the correlation matrix R generated from normally distributed data s

and the resulting correlation matrices Ry, and Rop i as follows: 151
Err(R;) = (|R; — R|) i=L1lor CLR (4)
averaged over all matrix values (Err € [0,2]). The behaviour of the two normalization s
procedures is significantly different (Fig : L1 data are mainly affected by dataset 153
heterogeneity, while CLR data are independent of dataset heterogeneity and the 154
distortions decrease rapidly with dimensionality D. We can thus state that as the 155
number of taxa increases, the compositional effects decrease becoming negligible for 156
D > 80. 157
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Fig 5. Heatmap of Err as a function of a-heterogeneity and dimensionality for L1
normalization (left) and CLR normalization (right).

Effects of data sparsity

To describe the effects of a large number of below-threshold abundance taxa (zero-value
measurements) we study a simulated dataset of 100 taxa, in order to minimize
normalization biases due to low dimensionality D as described in previous section,
generated from the hurdle truncated log-normal distribution, varying the correlation
strength between two taxa (both positive and negative correlations) and the percentage
of below-threshold observations (Fig. [6).

L1 Normalization CLR Normalization
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0.6+ 1 . 1
X 05- . BN .
< o
N 04- 0.1 N 0.1
0.3~ .
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O O CIJ O =] o o o CII t? CI) OI o o o o
Correlation Correlation

Fig 6. Absolute error on correlation as a function of initial correlation values before
NorTA transform and of zero count percentage: left L1 normalization, right CLR
normalization.

We observe a very different behaviour with respect to the sign of the correlation: the
largest errors are associated to negative correlations in general, and mostly for the L1
normalization case. On the other hand, CLR normalization is more successful in
retrieving negative correlations values when the amount of zero values does not exceed
30%, while for positive correlations, up to 60% of zero values is tolerable.
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Conclusion

The network analysis framework can help to gain deeper insight in metagenomic studies,
for example to characterize community structure in different conditions. A very simple
and common approach is to reconstruct networks based on measurement correlation,
but the compositional nature of metagenomics data poses some challenges, and specific
methods have been developed to overcome this issue. In this work we thoroughly
explore the behaviour of different available methods, as a function of several factors,
such as the dimensionality and heterogeneity of the dataset, including the data sparsity,
very common features of these type of data obtained from NGS sequencing
independently of the technique (eg 16S or whole-genome approaches). We observe that
for relatively high-dimensional data, as is the case for NGS metagenomics, many biases
are easily removed or attenuated by simply applying compositional data normalization
procedures, and after this proceduree the classical Pearson’s correlation can provide
results very similar to other existing algorithms specifically developed to deal with
metagenomics data. Data heterogeneity (ie the disproportion of abundances within one
sample) can affect correlation, but this effect is negligible for CLR normalization. The
percentage of zero measures in the dataset, related to low-abundance taxa, can
significantly affect correlations, producing a bigger distortion on negative correlations
that can result underestimated. Since the bias introduced by zero measures cannot be
completely removed, in general a tradeoff will be necessary between minimizing
correlation distortions and keeping low-abundance species in the analysis.

Supporting information

Data and codes are available at
https://github.com/Fuschi/Correlation-Biases-on-Metagenomics-Data. We
also developed a lightweight R package to generate synthetic metagenomic data as
explained in the Materials and Methods section available at
https://github.com/Fuschi/ToyModell

S1 Appendix. Hurdle Truncated Log-Normal Distribution Benchmark.
Comparison between zero-inflated negative binonial and hurdle truncated log-normal
distribution to model real NGS data from HMP2 dataset.
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