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Abstract

Microbiome analysis is transforming our understanding of biological processes related to
human health, epidemiology (antimicrobial resistance, horizontal gene transfer)
environmental and agricultural studies. At the core of microbiome analysis is the
description of microbial communities based on quantification of microbial taxa and
dynamics. In the study of bacterial abundances, it is becoming more relevant to
consider their relationship, to embed these data in the framework of network theory,
allowing characterization of features like node relevance, pathway and community
structure. In this work we characterize the principal biases in reconstructing networks
from correlation measures, associated with the compositional character of relative
abundance data, the diversity of abundances and the presence of unobserved species
within a single sample, that might lead to wrong correlation estimates. We show how
most of these problems can be overcome by applying typical transformations for
compositional data, that allow the application of simple measures such as Pearson’s
correlation to correctly identify the positive and negative relationships between relative
abundances, when data dimensionality is sufficiently high. Some issues remain, like the
role of data sparsity, that if not properly addressed can lead to imbalances in correlation
coefficient distribution.

Introduction 1

Techniques based on next-generation sequencing (NGS) can elucidate the complex 2

functioning of natural microbial communities directly in their natural environment. New 3

branches of research have been created such as the study of the human microbiota 4

which showed heterogeneity between different anatomical sites and individual 5

variablity [1, 2], or the ability to characterize and monitor the presence of AMR 6

(antimicrobial resistance) worldwide [3]. Together with the analysis on sample 7

microbiome composition, it is also useful to investigate the relationship between the 8

observed species or OTUs (Operational Taxonomic Units, which from now on will be 9

defined as taxa). Network theory provides many essential tools to characterize macro 10

properties of the ecology of a natural environment by defining central elements or 11

communities in the system and allowing visualization of these results by exploiting 12
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network structural properties [4]. Therefore, the first step to reconstruct any network is 13

to identify and quantify relationships between variables, very often in these cases 14

through evaluation of correlations or conditional dependence on each pairwise 15

combination of variables. Taxa abundance is determined by the magnitude of 16

sequencing read counts, which is affected by sequencing depth and varies from sample to 17

sample. Typically a sum constraint is imposed (1 for probability, 100 for percentage or 18

106 for part per million). Thus, data are described as proportions and the sample depth 19

is irrelevant, referred to as compositional data [5]. The only reliable information that 20

can be extracted from these NGS data are the ratio between the parts [6] and, as noted 21

by Pearson at the end of 19th century [7], proportional data can generate spurious 22

correlations between measurements that are in reality uncorrelated. From a purely 23

formal point of view, the data lie on a simplex and it can be extremely dangerous to use 24

Euclidean metrics for proximity and correlation estimations. These compositional biases 25

can be devastating in some datasets, and the heterogeneity (referred to as E, see 26

Materials and Methods) together with the dimensionality D can be good predictors of 27

their strength. The more counts concentrated in a few taxa, the greater the biases and 28

conversely, when counts are more homogeneously distributed over samples the biases 29

decrease. In the extreme case of only two variables, the correlation between the relative 30

abundances will always be −1 , expressing the worst possible scenario. Furthermore, a 31

large part of taxa in the NGS experiments are under the detection limits of the 32

sequencing techniques producing really sparse abundances matrices. It’s really common 33

to find datasets where more than 70− 80% of species are undetected and typically it is 34

assigned the value of 0 and this introduces further bias in the correlation measures. The 35

undetected species are not to be interpreted as the absence of that species but rather as 36

a missing value in which we have no further information. 37

Fig 1. NGS Data Features. Typical characteristics of NGS data as observed in the
HMP2 dataset studied in this paper. On the left the histogram in log10 scale of sample
depths which can range from ≈ 104 to ≈ 106. On the right the image represents the
taxa detected in this dataset, over 87% of whose counts are null, equivalent to not
detected taxa.

Recent methods such as Sparse Correlations for Compositional data (SparCC) [8], 38

Sparse and Compositionally Robust Inference of Microbial Ecological Networks 39

(SPIEC-EASI) [9] or Proportionality for Compositional data (Rho) [10] have been 40

developed and all make extensive use of the compositional theory introduced by 41

Aitchison [6]. He provided a family of transformations to treat this kind of data, called 42
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log-ratio transformations. For each sample, the counts are expressed with respect to a 43

reference in order to compare them and then the logarithm is applied. Almost always 44

the choice is the centered log-ratio transformation (CLR) where each element is divided 45

by the geometric mean of the sample in a logarithmic scale. Thanks to this operation, 46

the data are mapped on the Cartesian plane even if there are still limitations: the sum 47

of all the values on each sample is always equal to zero and is equivalent to saying that 48

the points are restricted to a D − 1 dimensional hyperplane, introducing dependencies 49

between data. In the work mentioned above, the study focused on characterizing 50

performance of the measurement on real and synthetic data. We focus on quantification 51

of biases introduced on the correlations due to the CLR transformation or the sum 52

constraint (L1) on each sample. To characterize these biases we generated synthetic 53

data based on the ‘Normal to Anything’ approach: this method allows generation of 54

random variables with arbitrary marginal distributions from multivariate normal 55

variables with desired correlation structure. 56

Materials and methods 57

HMP2 16S Human Gut Data 58

Human Microbiome Project v2 (HMP2) OTU counts and their taxonomic classification 59

were obtained from a project studying the microbiomes of healthy and prediabetic 60

subjects over a period of up to four years [11]. The entire dataset is composed of 1122 61

samples and 1953 OTUs collected from 96 different subjects associated with the healthy 62

information in each sample. To obtain a more homogeneous dataset for the following 63

analyses we chose a subset of 51 samples belonging to a single healthy subject (69-001) 64

with the highest number of samples. 65

Network Reconstruction Methods 66

Many methods were developed in recent years to estimate the relationship structure of 67

metagenomics data. We choose to focus on four among the most recent and commonly 68

used approaches in this field. First, SparCC [8] estimates Pearson’s correlation 69

assuming data have a sparse correlation structure. Rho [10] is based on the 70

proportionality concept to avoid possible spurious correlations between compositional 71

data. Finally, SPIEC-EASI [9] is a graphical model inference framework which again 72

assumes that the underlying ecological associations are sparse and offers two different 73

criteria to reconstruct the network i) sparse neighborhood selection MB [12] and ii) 74

inverse covariance GLASSO [13]. In addition, we use Pearson’s correlation after data 75

transformation (Pearson+CLR) to be compared with these more sophisticated methods. 76

α-Heterogeneity 77

The α-heterogeneity E of a dataset is defined as the mean value of the α-diversity, 78

calculated by the Shannon index, over all the samples normalized with respect to the 79

dimensionality D (i.e. number of taxa). Given a dataset X ∈ NN,D composed of N 80

distinct samples x⃗ of dimension D, we adopt the normalized Shannon index as: 81

H̄(x⃗) =
−
∑D

i=1 pi log(pi)

log(D)
(1)
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with pi corresponding to the i-th taxa relative abundance in the sample, and with the 82

α-heterogeneity of the dataset calculated as: 83

E =
N∑
i=1

H̄(xi)

N
(2)

Synthetic Data Generation 84

To produce artificial datasets with required characteristics (dimensionality D, 85

correlation structure defined by a matrix R, heterogeneity E) we developed a toy model 86

which makes use of the Normal to Anything (NorTA) approach to generate an arbitrary 87

multivariate distribution with the desired correlation structure R as input relying on the 88

copula functions theory [14]. A matrix UN with dimensions N ×D, with N the number 89

of samples and D the dimensionality is generated from a multivariate normal 90

distribution with zero means and D ×D correlation matrix R. On every marginal 91

distribution UNi
the normal cumulative density function (CDF) is applied. The inverse 92

of cumulative function of any distribution is calculated to obtain the data used in the 93

study. The aim is to observe correlation bias due to L1 and CLR normalizations for 94

changes in sample dimensionality and heterogeneity. The choice of dimensionality is 95

inherent in the NorTA method and it depends on the dimension of the input 96

multivariate normal distribution. To tune the sample heterogeneity, we operated by 97

tuning the magnitude of a single variable with a multiplicative factor, since very often 98

in real data the samples are extremely heterogeneous with most of the counts contained 99

in a few species. In summary, the model works as follows: 100

1. Generation of the Gaussian multivariate distribution UN with dimension D and 101

correlation matrix R as input. 102

2. Transformation of the data into the desired distribution UNorTA and the 103

calculation of the new correlation structure RNortTA. It should be noted that the 104

correlation structure can be totally modified when strongly non-Gaussian 105

distributions are chosen. 106

3. Tuning the heterogeneity of the resulting dataset applying a specific multiplicative 107

factor to a single variable. 108

4. Normalization and calculation of the correlation matrix for the two normalizations 109

L1 and CLR. 110
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Fig 2. Bivariate Illustration of the ”Normal to Anything” Approach.
Example of Normal to Anything method on a simply bivariate case. First column:
normal generate variables with different values of correlation ≈ −0.8, 0, and 0.8. Second
column: non parametric remapping over quantiles. Third and fourth columns: marginal
distributions for zero inflated negative binomial and hurdle truncated log-normal
distributions, respectively.

Hurdle Truncated Log-Normal Distribution 111

A crucial aspect in the generation of plausible synthetic data is the choice of the 112

marginal distribution that best describes the trend of the real data. We adopt an hurdle 113

model that splits into different processes the zero and non-zero values [15]. It is 114

assumed that the distribution of non-zero values in logarithmic scale follows a Gaussian 115

with values left-censored in zero (htrlnorm): 116

f(log(x+ 1), µ, σ, a, b) =

{ N (x|µ,σ)
Φ( b−µ

σ )−Φ( a−µ
σ )

with probability 1− ϕ

0 with probability ϕ
(3)

where ϕ is the percentage of zeros, µ and σ the mean and the standard deviation, a and 117

b are the left and right interval limits always fixed for a = 0, N (x|µ, σ) is the Gaussian 118

probability density function and Φ its cumulative distribution. Generally the negative 119

binomial zero inflated distribution (zinegbin) is used to model the abundances [16] even 120

if it does not replicate very well the overdispersion and skewness of real distributions [17]. 121

We show the comparison between them in the supplementary section S1 Appendix. 122
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Results 123

Methods Comparison 124

We compared the results obtained with SPIEC-EASI (both the GLASSO and MB 125

criteria), SparCC and Rho with respect to the Pearson’s correlation on CLR 126

transformed data. For this purpose, we selected 51 samples of subject 69-001 in healthy 127

condition from HMP2. We filtered the data in order to remove the rarest OTUs keeping 128

those with a prevalence greater than 33% and the taxa with the median of the non-zero 129

values greater or equal to 5. The comparison between the Pearson+CLR with SparCC 130

and Rho is direct, since these three methods produce values between -1 and 1: the 131

scatter plot of the respective correlation values is ≈ 0.99 for both, in very good 132

accordance to a y = x linear relationship (Fig. 3). Since SPIEC-EASI produces a binary 133

output in terms of conditional independence between each pair of variables, we consider 134

the histogram of Pearson+CLR values and overlap bins corresponding to couples of 135

variables significantly associated by SPIEC-EASI imposing a threshold on overall 136

stability equal to 5%. Most of the significant links for SPIEC-EASI are associated to 137

high absolute values of Pearson+CLR, with a more marked similarity for GLASSO 138

criteria (Fig. 3). We also compared the resulting networks of the two SPIEC-EASI 139

methods with the one obtained using the Pearson+CLR method. We get the significant 140

links making a threshold on the p-value associated to the Pearson correlations adjusted 141

with the Bonferroni multiple testing set to 0.05. We can observe the similarities between 142

networks as quantified by the links shared between them (Fig. 4). The Pearson+CLR 143

and the GLASSO criteria return almost identical results, with more visible differences 144

for the MB method. Finally, we observe that all the obtained networks are more skewed 145

towards positive links (Fig. 4). 146
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Fig 3. Methods Comparison. Comparison of SparCC, Rho, SPIEC-EASI MB and
SPIEC-EASI GLASSO with respect to the Pearson Correlation on CLR transformed
data. The scatterplot in subfigures 1 and 2 clearly show the high similarity of the two
methods with Pearson correlation. Subfigures 3 and 4 are histograms of the Pearson
correlation coefficients (blue bins) overlapped with the SPIEC-EASI significant links
(red for MB and green for GLASSO).
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Fig 4. Network Comparison. Top: networks obtained with SPIEC-EASI MB,
SPIEC-EASI GLASSO and Pearson+CLR methods, respectively. Vertices represent
taxa, with sizes proportional to the mean abundance and colors associated to the family
they belong to. Blue and red links: significant positive and negative correlations,
respectively. Bottom: Venn diagram of shared links (left); legend of families represented
in the above networks (centre); number of links and percentage of positive and negative
links (right).

Transformation Effects 147

To understand and quantify the biases caused by L1 and CLR transformations, we 148

generate data with varying α-heterogeneity E and dimensionality D. We quantify the 149

difference between the correlation matrix R generated from normally distributed data 150

and the resulting correlation matrices RL1 and RCLR as follows: 151

Err(Ri) = ⟨ |Ri −R| ⟩ i = L1 or CLR (4)

averaged over all matrix values (Err ∈ [0, 2]). The behaviour of the two normalization 152

procedures is significantly different (Fig 5): L1 data are mainly affected by dataset 153

heterogeneity, while CLR data are independent of dataset heterogeneity and the 154

distortions decrease rapidly with dimensionality D. We can thus state that as the 155

number of taxa increases, the compositional effects decrease becoming negligible for 156

D > 80. 157
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Fig 5. Heatmap of Err as a function of α-heterogeneity and dimensionality for L1
normalization (left) and CLR normalization (right).

Effects of data sparsity 158

To describe the effects of a large number of below-threshold abundance taxa (zero-value 159

measurements) we study a simulated dataset of 100 taxa, in order to minimize 160

normalization biases due to low dimensionality D as described in previous section, 161

generated from the hurdle truncated log-normal distribution, varying the correlation 162

strength between two taxa (both positive and negative correlations) and the percentage 163

of below-threshold observations (Fig. 6). 164

Fig 6. Absolute error on correlation as a function of initial correlation values before
NorTA transform and of zero count percentage: left L1 normalization, right CLR
normalization.

We observe a very different behaviour with respect to the sign of the correlation: the 165

largest errors are associated to negative correlations in general, and mostly for the L1 166

normalization case. On the other hand, CLR normalization is more successful in 167

retrieving negative correlations values when the amount of zero values does not exceed 168

30%, while for positive correlations, up to 60% of zero values is tolerable. 169
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Conclusion 170

The network analysis framework can help to gain deeper insight in metagenomic studies, 171

for example to characterize community structure in different conditions. A very simple 172

and common approach is to reconstruct networks based on measurement correlation, 173

but the compositional nature of metagenomics data poses some challenges, and specific 174

methods have been developed to overcome this issue. In this work we thoroughly 175

explore the behaviour of different available methods, as a function of several factors, 176

such as the dimensionality and heterogeneity of the dataset, including the data sparsity, 177

very common features of these type of data obtained from NGS sequencing 178

independently of the technique (eg 16S or whole-genome approaches). We observe that 179

for relatively high-dimensional data, as is the case for NGS metagenomics, many biases 180

are easily removed or attenuated by simply applying compositional data normalization 181

procedures, and after this proceduree the classical Pearson’s correlation can provide 182

results very similar to other existing algorithms specifically developed to deal with 183

metagenomics data. Data heterogeneity (ie the disproportion of abundances within one 184

sample) can affect correlation, but this effect is negligible for CLR normalization. The 185

percentage of zero measures in the dataset, related to low-abundance taxa, can 186

significantly affect correlations, producing a bigger distortion on negative correlations 187

that can result underestimated. Since the bias introduced by zero measures cannot be 188

completely removed, in general a tradeoff will be necessary between minimizing 189

correlation distortions and keeping low-abundance species in the analysis. 190

Supporting information 191

Data and codes are available at 192

https://github.com/Fuschi/Correlation-Biases-on-Metagenomics-Data. We 193

also developed a lightweight R package to generate synthetic metagenomic data as 194

explained in the Materials and Methods section available at 195

https://github.com/Fuschi/ToyModel. 196

S1 Appendix. Hurdle Truncated Log-Normal Distribution Benchmark. 197

Comparison between zero-inflated negative binonial and hurdle truncated log-normal 198

distribution to model real NGS data from HMP2 dataset. 199
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