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Abstract

Mass spectrometry-based proteomics has been rapidly gaining traction as a powerful analytical
method both in basic research and translation. While the problem of error control in peptide and
protein identification has been addressed extensively, the quality of the resulting quantities
remains challenging to evaluate. Here we introduce QuantUMS (Quantification using an
Uncertainty Minimising Solution), a machine learning-based method which minimises errors and
eliminates bias in peptide and protein quantification by integrating multiple sources of
quantitative information. In combination with data-independent acquisition proteomics,
QuantUMS boosts accuracy and precision of quantities, as well as reports an uncertainty metric,
enabling effective filtering of data for downstream analysis. The algorithm has linear complexity
with respect to the number of mass spectrometry acquisitions in the experiment and is thus
scalable to infinitely large proteomic experiments. For an easy implementation in a proteomics
laboratory, we integrate QuantUMS in our automated DIA-NN software suite.

Introduction

Liquid chromatography coupled to mass spectrometry (LC-MS)-based bottom-up proteomics is a
highly dynamic field, with recent years being marked by rapid technology development, which is
enabling novel applications and empowering existing ones. Faster and more sensitive
instruments, novel acquisition methods and advanced data processing approaches have pushed
the limits of throughput and sensitivity, with concomitant reduction of costs and advances in
reproducibility. This has led to proteomics becoming a powerful and widely used tool for both
discovery of fundamental biology and translational applications, as well as one of potential
pillars of personalised medicine'.

Data-independent acquisition (DIA)** proteomics has become highly popular in recent years, as

the instrumentation and analysis software advances have addressed most of its drawbacks, while
strengthening such advantages of DIA as high proteomic depth and data completeness along with
improved quantitative performance'. Further, a number of recent DIA technologies also
inherently manifest what has been the main benefit of data-dependent acquisition (DDA), a
reliable fragment to precursor mass assignment, promising to expand the applicability of DIA
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even further’®. A range of transformative improvements in the sensitivity of DIA*" combined
with multiplexed DIA'*? further promise an expansion of DIA towards applications that have
previously relied on targeted methods such as selected or parallel reaction monitoring.

Much of the progress in DIA proteomics has been driven by data processing software
improvements®°, with novel algorithms yielding rapid gains in proteomic depth. Advanced
machine learning approaches now enable confident matching of peptides to recorded signals
even if the latter are highly noisy and are affected by signal interferences from co-eluting and co-
fragmenting peptide species. This has raised the question of how quantitative these extra
identifications are, and to what extent they benefit the biological inference from the experiment.
This issue is particularly important given recent interest in workflows that stretch the capabilities
of the instruments and generate challenging to process data by boosting chromatography
throughput up to hundreds of samples per day, including for high-sensitivity applications, such
as single-cell proteomics or spatial tissue proteomics™*'"2"17,

Significant effort has been directed towards developing computational methods that can improve
quantitative reproducibility, precision and accuracy of proteomic experiments. These include

deconvolution of spectra®, selection of peptide fragment ions based on the signal quality?'-**,

as
well as protein quantification through aggregation of multiple parallel sources of quantitative
information, such as peptide-level MaxLFQ for DDA*’ and fragment-level MaxLFQ for DIA* or
directLFQ*. Advanced methods for error control and missing data handling have also been
developed for statistical analysis of proteomics data, as discussed and benchmarked recently**.
However, while peptide identification error rates are well controlled by statistically-justified

target-decoy competition methods, quantification errors are currently impossible to estimate.

Here we introduce QuantUMS (Quantification using an Uncertainty Minimising Solution), a
novel concept for accurate and reliable quantification in proteomics. QuantUMS draws upon the
quality information available for individual signals recorded by the mass spectrometer. This
allows QuantUMS to integrate multiple signals associated with each precursor and protein in a
statistically-justified way by propagating the quantification uncertainty estimates that it obtains
from the quality information. Furthermore, QuantUMS compares multiple parallel sources of
quantitative information present in the data and thus obtains concordance metrics that allow it to
leverage machine learning to optimise its hyperparameters. In addition, QuantUMS generates
quantification accuracy metrics for individual precursor and protein quantities, allowing for
effective filtering of the processed data for better downstream statistical inference. We
implement QuantUMS as a module in our automated and easy to use DIA-NN software suite*
and show that, when applied to DIA data, QuantUMS boosts quantitative precision and enhances
differential expression analyses. We also demonstrate that QuantUMS is capable of eliminating
the ratio compression bias that so far has been inherent to untargeted proteomics data.
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Results

Principle of QuantUMS

In each acquisition, the mass spectrometer records multiple signals for each detected peptide
precursor: the signal from the unfragmented precursor in MS1 mode, as well as the signal from
each of its fragment ions in MS/MS mode. Integrating all of these signals should naturally allow
to achieve higher accuracy and precision than using just one of them. However, all of these
measurements are subject to errors caused by random noise® and ‘interfering’ signals from
precursors with the same mass (MS1) or from precursors that share some of the fragment ions
and are co-isolated for fragmentation®. Ideally, the integration method needs to leverage some
uncertainty measures, calculated for each signal.

Previously, we devised and implemented in our DIA-NN software a straightforward but highly
effective approach for quantification from DIA data, wherein several fragment ions are selected
for each precursor, in a cross-run manner, and then the sum of their respective signals in each
acquisition is used to represent the respective precursor quantity. The selection was performed by
choosing the top three fragments with highest average correlation scores across the experiment,
wherein the correlation score of each fragment is calculated by DIA-NN as part of the precursor
identification process for a particular acquisition and represents how well its extracted elution
profile is aligned with extracted elution profiles of other fragments of the same precursor. This
strategy enabled filtering out signals which are strongly affected by interferences in multiple
runs, thus greatly boosting the quality of quantification®. However, this approach based on
quality scores averaged across runs is still subject to fold-change interference-related errors in
individual acquisitions. Further, it has a significant drawback of discarding much of the
information encoded in the raw data, such as the measured MSI1 signal. In fact, in our later work
on multiplexed DIA proteomics for low sample amounts®', we quantified precursors at the MS1
level instead, as this led to higher quantification accuracy on an Orbitrap setup that used 50%
MSI1 duty cycle. Others have also observed that leveraging both the MS1 and MS2 precursor
quantities empowers downstream statistical analysis*.

We therefore aimed to develop a quantification method that would draw upon all the information
on the precursor that was recorded by the mass spectrometer, as well as to integrate this
information guided by the quality scores available for individual recorded signals, in a
statistically-justified way. Below we outline the concept behind QuantUMS, with a detailed
description of the algorithm provided in Methods.

QuantUMS (Figure 1la) takes as input the set of signal intensities corresponding to the
quantitative features — precursor itself recorded at the MS1 level as well as its fragment ions
recorded at the MS/MS level — for each peptide precursor in each acquisition where it was
identified, as well as a single quality score per signal. While in principle different kinds of
quality scores can be used, the QuantUMS implementation in DIA-NN that we describe here
(Methods) leverages the correlation-based similarity score that DIA-NN calculates when
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comparing an extracted ion chromatogram of a feature with that of the selected ‘best’ fragment
ion it defines for each putative elution peak®®. QuantUMS then models the log-space variance of
the measured signal (‘log-variance’), a proxy for quantification uncertainty, as a function,
defined by the algorithm hyperparameters, of the signal intensity and its quality score. These log-
variance estimates for individual feature signals are then used to construct a formula for the
quantity of each precursor identification that minimises its estimated log-variance.

Essential to QuantUMS is the idea that different quantitative features each can produce an
estimate of a quantity of a precursor in a particular acquisition, relative to other acquisitions.
These estimates can be compared between features, and high concordance between these
estimates is likely to be indicative of their accuracy. QuantUMS uses machine learning to infer
hyperparameters that maximise concordance between precursor quantity estimates obtained
using different features.

Quantitative proteomics data is subject to signal interferences, which tend to cause ratio
compression and hence biased quantification for precursors that are not highly abundant. In this
work we present a solution to this problem: we introduce a mechanism in QuantUMS, which is
capable of effectively eliminating such bias, at the cost of a limited loss of precision. QuantUMS
incorporates a bias correction in its calculations, based on signal quality scores and intensities,
which is controlled by hyperparameters. To tune these, we devise a way to empirically assess
and minimise the degree of bias manifested by interference-affected signals, without requiring
any knowledge of the experiment design. The QuantUMS module in DIA-NN implements a
configurable parameter which allows to control the impact of this mechanism and thus balance
precision and accuracy, as well as implements two pre-configured modes termed high-precision
and high-accuracy, which we benchmark in the present work.

Controlling for quantification errors has so far been challenging in proteomics. Indeed, the only
widely used solution has been to filter the dataset based on precursor or protein coefficients of
variation (CVs). This approach does not control for interference-caused errors that might
severely impact the accuracy of quantification while preserving precision, nor does it account for
errors that only manifest in some of the acquisitions and thus do not have a significant negative
impact on the CV values. This necessitates the need for laborious, potentially biased and
sometimes technically impossible manual checks of extracted ion chromatograms for each
acquisition and peptide of interest, to ensure confidence of observations pertaining to specific
proteins. With QuantUMS, we address this problem by introducing a precursor- and acquisition-
specific quantity quality metric, which, while not completely eliminating the need for manual
checks aimed at maximum confidence, significantly reduces it in many applications.

In QuantUMS we devised an algorithm that ensures confidence in individual precursor
quantities. The procedure applied by QuantUMS is based on combining multiple signals in a way
to minimise the resulting log-variance, which can then be estimated as a function of the
algorithm hyperparameters. QuantUMS then calculates the bias of these log-variance estimates,
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that is, determines if they are too conservative or too optimistic, by comparing the observed
deviations between precursor quantity estimates obtained using different quantitative features
with the expected log-variances of these quantity estimates. It then reports a ‘quantity quality’
score, for each precursor identification, based on precursor quantity log-variance estimates
calibrated to remove the bias.

We further extend QuantUMS with a protein quantification module, which likewise relies on
quality metrics to weigh multiple channels of quantitative information and likewise reports the
resulting protein quantity quality metric (Methods).
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Figure 1. QuantUMS performs statistically-justified minimisation of quantification uncertainty. a,
QuantUMS takes as input integrated signals of individual quantitative features (MS1 precursor and
MS/MS fragment ions), as well as their quality scores. These allow QuantUMS to correct signal
intensities to remove bias and to estimate their log-variances, in a process controlled by hyperparameters.
The signal log-variance estimates cater for a statistically-justified weighted aggregation of signals, to
obtain precursor quantities, and can also be propagated through weighted aggregation, to obtain log-
variance estimates for these precursor quantities, allowing QuantUMS to report a ‘quantity quality’ metric
for each precursor. QuantUMS also establishes concordance metrics based on comparing parallel
channels of quantitative information, enabling it to optimise the hyperparameters using machine learning.
Precursor quantities and their log-variance estimates are likewise aggregated to obtain protein quantities
and the respective quantity quality metrics for proteins. b, Three mixtures A, B and C of human (K562)
and E.coli tryptic digests with proportions A:B:C being 1:1:1 (human) and 50:33:20 (E.coli) were
recorded’” using a 5-minute analytical flow gradient on timsTOF Pro and analysed using legacy and
QuantUMS quantification methods. Resulting precursor and protein ratios between mixtures A and C are
visualised. On the boxplots, boxes correspond to the interquartile range with the median indicated,
whiskers extend to 5%-95% quantiles. Horizontal lines indicate the expected ratios for each species
digest. Stacked bar plots indicate log2-standard deviations of A:C ratios within three intensity bins, with
the lowest intensity bin at the top. ¢, The effect of run-specific and precursor-specific or protein-specific,
respectively, quality filtering enabled by QuantUMS, data shown for the high-accuracy mode.

QuantUMS improves precision and boosts accuracy by eliminating bias

First, we benchmarked QuantUMS on an LFQbench-type*’ dataset that we had previously
acquired using a 5-minute gradient on an analytical flow liquid chromatography system coupled
to timsTOF Pro operated in dia-PASEF mode®’. In this experiment, wherein human (K562) and
E.coli tryptic digests were mixed in three different proportions A, B and C (A:B:C ratios 1:1:1
for human and 50:33:20 for E.coli, respectively), the ability of the instrument and the data
processing software to accurately and precisely recover those proportions as well as detect the
differential levels of E.coli peptides and proteins is evaluated. We independently verified the
accuracy of E.coli sample dilution used to prepare mixtures A and C by analysing the precursor
identifications with high quality MS1 signals (Supplementary Figure S1). We compared the
high-precision (default) and high-accuracy modes of QuantUMS to the ‘legacy’ DIA-NN mode
(Figure 1b), which represents the default quantification strategy employed by the previous
versions of DIA-NN*. We observed that the high-precision mode of QuantUMS boosted the
precision of inferred ratios between mixtures, yielding a substantial improvement of log2-
standard deviations of precursor and protein quantity ratios, with the greatest effect seen for the
low intensity precursors (over 1.4-times improvement) and proteins (1.3-times, human, and 1.2-
times, E.coli). The high-accuracy mode of QuantUMS did not result in a significant precision
improvement over the legacy DIA-NN mode, however the median inferred ratios in this mode
matched the expected ones, thus eliminating the ratio compression bias that is observed in legacy
and high-precision modes.

We further examined the effect of filtering the dataset based on the acquisition-specific
precursor- and protein-level quantity quality metrics introduced in QuantUMS (Figure 1c). As
expected, we observed that such filtering tends to retain only accurately quantified precursors
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and proteins, with 0.75 quality quantile protein-level filtering resulting in almost perfect protein
ratios (Figure 1c, bottom right panel).

Although QuantUMS contains a hyperparameter tuning step, it can also be instructed to use a
particular set of hyperparameters, potentially trained on a different data set. Using the same
experiment, we examined the effect of the training data set on QuantUMS performance in the
high-accuracy mode, by optimising the hyperparameters only on samples A+C, A or C
separately, and then applying them to the whole data set A+B+C (Supplementary Figure S2). In
each scenario, we observed a performance similar to the one demonstrated when training
hyperparameters on A+B+C (Figure 1b, rightmost panels). This indicates that the optimised
hyperparameters of QuantUMS reflect the inherent properties of the LC-MS setup and the
sample matrix, but do not reflect the experiment design.

We investigated what effect the enhanced performance of QuantUMS has on differential
expression analyses. First, we examined the same mixed species dataset, in which the ground
truth is known and can be used to determine the effective false discovery rate (FDR).
Specifically, we applied Welch t-test to each precursor or protein, and plotted the numbers of
true hits (E.coli) against the FDR represented by the ratio of human to E.coli hits (Figure 2a).
Here we consciously went for the simplest statistical test, as our goal is to benchmark the quality
of precursor and protein quantities rather than the statistical approach.

Both QuantUMS methods performed superior to the legacy method, with the high-precision
mode showing somewhat better performance than high-accuracy. We also observed greater
advantage of QuantUMS at the precursor level than the protein level. This is in line with
expectations, as protein quantities, obtained with either method, integrate multiple precursor
quantities and are, therefore, inherently more precise. Thus, it is less challenging for the method
to detect differential expression of proteins. Indeed, we see that the QuantUMS high-precision
mode reports 871 differentially expressed proteins at 5% FDR for the A:C comparison, which is
close to the total number of E.coli proteins (1078) detected in at least two replicates in both A
and C. Likewise, the advantage of QuantUMS methods over the legacy method appeared even
more significant for the A:B comparison, which features a tighter (50:33 as opposed to 50:20)
ratio between the E.coli fractions and is thus more demanding with regards to quantitative
precision. In either case, the relative advantage of QuantUMS was greater at higher confidence
levels. Examining the rate of differential expression detection depending on the respective
intensity rank, we see that the advantage of QuantUMS over the legacy method originates in its
better ability to detect differential expression of low-abundant and hence more challenging to
quantify precursors and proteins (Figure 2b).
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Figure 2. QuantUMS boosts the sensitivity of differential expression analysis. Three mixtures A, B
and C of human (K562) and E.coli tryptic digests with proportions A:B:C being 1:1:1 (human) and
50:33:20 (E.coli) were recorded®” using a 5-minute analytical flow gradient on timsTOF Pro and analysed
using legacy and QuantUMS quantification methods. a, Numbers of differentially expressed precursors
and proteins plotted against the effective false discovery rate (true hits: E.coli, false hits: human) for A:C
and A:B comparisons. b, Differential expression detection rate depending on the intensity rank for the
E.coli 50:20 comparison (Methods). ¢, A comparison between legacy and QuantUMS analyses using
DIA-NN, as well as to the originally published* analysis using Spectronaut, on a dataset of 50 chronic
lymphocytic leukaemia (CLL) samples recorded using a 100-min nanoLC gradient on timsTOF Pro.
Numbers of differentially expressed proteins when testing against four phenotypic characteristics (limma,
Methods) are shown. d, The effect of filtering the protein list using the QuantUMS protein quantity
quality metric averaged across acquisitions on the number of differentially expressed proteins at a given
FDR in selected tests.

To evaluate the performance of QuantUMS in an experiment that is also subject to biological
variation and variation due to sample preparation in addition to quantitative variation introduced
by the LC-MS, and thus should benefit less from the advantages of QuantUMS than a synthetic
LFQbench-type benchmark, we re-processed a data set of 50 chronic lymphocytic leukaemia
(CLL) samples acquired with a 100-minute nanoLC gradient on timsTOF Pro using dia-PASEF,
which was analysed with Spectronaut in the original publication®’. Testing for differential
expression with respect to the phenotypic information available (Figure 2c; Methods), we


https://doi.org/10.1101/2023.06.20.545604
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.20.545604; this version posted June 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

observed greater numbers of proteins identified as differentially expressed by the QuantUMS
methods in comparison to the legacy DIA-NN quantification, which in turn outperformed the
original analysis with Spectronaut. The advantage of QuantUMS over legacy quantification was
most prominent in case of the more challenging tests against leukocyte count and treatment
status. We further observed that filtering the protein lists based on the averaged across-runs
protein quantity quality metric is capable of improving the numbers of significant proteins at a
given FDR in those tests (Figure 2d), by reducing the number of proteins considered and hence
reducing the number of statistical tests to which Benjamini-Hochberg multiple testing correction
is applied.

Discussion

With QuantUMS, we address a long-standing problem of untargeted proteomics, that is the lack
of quality control for peptide and protein quantities obtained in an experiment. We show that
taking into account the quality information available for individual signals recorded by the mass
spectrometer not only allows to improve quantitative performance per se, but to also produce
effective quality metrics to ensure confidence in the data and further empower the subsequent
statistical analysis.

So far, we have benchmarked the new method on DIA proteomics data, with the quality scores
for recorded signals being calculated by our DIA-NN software. As opposed to relying on hand-
picked thresholds like many legacy methods®®, which usually can only be optimal for a narrow
range of data sets, QuantUMS is driven by automatic optimisation using machine learning, and is
hence highly flexible in terms of the input information it can accept. We therefore envision a
potential for further improvements of QuantUMS through the introduction of multiple thorough
signal quality metrics.

Furthermore, other kinds of proteomic acquisition approaches likewise generate multiple
channels of quantitative information that can be leveraged by QuantUMS. These include selected
and parallel reaction monitoring as well as other experiments that involve recording multiplexed
MS/MS spectra, and application of QuantUMS to these can be explored in a follow-up work. We
further envision significant potential for future improvements in quantitative proteomics to be
achieved by integrating QuantUMS with downstream statistical analysis approaches, such as
MSStats® or Trigler®, to enable biological inference that is fully aware of all kinds of
uncertainty, missingness and normalisation issues in the raw proteomics data.

Proteomics has a potential to significantly enhance personalised medicine, both for biomarker
discovery and clinical decision-making. At the same time, reliable quantitative quality control is
of particular importance for clinical applications***, while manual validation of LC-MS data in
this setting might not be technically feasible and poses a risk of introducing a human bias.
Automated peptide- and protein-level quality control, as enabled by QuantUMS, presents,
therefore, a step towards reliable clinical proteomics.
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Methods

QuantUMS algorithm

We first outline the core ideas behind the method and then discuss the enhancements implemented
in QuantUMS. The QuantUMS algorithm is based on estimating the log-variance and log-bias
of the measured signal intensity of a quantitative feature (either the MS1 precursor signal or an
MS/MS fragment ion signal) using its value and a quality score. Specifically, given the integrated
signal intensity S and a quality score C, it calculates transformed values Ts = S~!, Te = 1 —+/C
and Tsc = /TsTe. The implementation of QuantUMS in DIA-NN obtains the score C as the
product of Pearson correlation and cosine similarity measures between the extracted elution profile
of the feature in question and the smoothed elution profile of the fragment DIA-NN has labelled
as ‘best” during the identification process?®. QuantUMS then models the log-variance of the signal
as the linear combination of these transformed values, with coefficients corresponding to trainable
hyperparameters. To enforce non-negativity of the coefficients, they are represented as squared
values of hyperparameters. Likewise, QuantUMS models the log-bias as the linear combination
of the square roots of the transformed values, and corrects signal intensities of features for their
estimated bias when calculating precursor quantities. In total, this yields six hyperparameters.

QuantUMS iteratively optimises the precursor quantities, starting with the preliminary quantities
calculated by summing selected fragment signals, as described for DIA-NN previously?®. For
a given precursor and an acquisition i, let g; be the precursor log-quantity estimate obtained at
the previous iteration and sy ; — the logarithm of the bias-corrected signal intensity of quantitative
feature f, in acquisition i. Then xy ;; = g; +s7 j — sy, estimates the log-quantity of the precursor
in any acquisition j. To obtain the next-iteration estimate x; of the precursor log-quantity in
acquisition j, QuantUMS first takes a weighted average of xy ;; across acquisitions i, obtaining
estimates xy ; based on individual quantitative features, and then across features f, obtaining a
single estimate. The principle of aggregation via weighted averaging implemented in QuantUMS
is derived from the following statistical property. Given a set of uncorrelated random variables Z;
with equal means p and variances var;, the estimate (¥;var; 'Z;) / (¥;var; ') has the mean y and
the minimal, across all such linear combinations, variance equal to 1/Y; var;l, thus yielding the
optimal estimate for . QuantUMS applies the same formula when it needs to aggregate multiple
quantities given their estimated variances, thus obtaining both an estimate of their mean and the
estimated variance of this aggregated value.

The above quantification method effectively implements a particular formula, which calculates the
quantity of a precursor in each acquisition, based on the respective feature signal measurements
in all acquisitions and their quality scores, as well as precursor quantity estimates obtained
at the previous iteration. While this calculation is statistically justified given the assumptions
of variances being known and of measurement errors being independent, variances cannot be
precisely estimated in practice and the independence assumption likely does not hold strictly. We
alleviate this drawback by having the formula depend on hyperparameters that are then tuned
by machine learning. The idea here is that since each feature produces, for each acquisition,
an estimate of the precursor quantity, the deviations between these estimates corresponding to
different features are indicative of how accurate the quantity estimates are. QuantUMS hence tunes
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hyperparameters to minimise the empirically measured differences between quantity estimates
obtained using different features.

This idea would perform poorly in practice, if the loss function for hyperparameter optimisation
were calculated using all precursor identifications and all feature pairs without regard for their
quality scores, and QuantUMS hence incorporates a more complex implementation. Specifically,
for each precursor, QuantUMS selects a quantitative feature with the best average quality
score across acquisitions in which the precursor has been identified confidently. Choosing this
feature only across fragment ions or always selecting MS1 signal makes little difference in our
benchmarks, so for better applicability of the method in case the experiment has poor quality
MSI1 information the selected feature f;,; is currently chosen only among fragments. QuantUMS
then selects acquisitions in which this feature has a quality score above a certain margin (0.9
in the current implementation), that is, in these acquisitions it is likely to be almost free from
signal noise or interference. The aggregation procedure via weighted averaging is then repeated
only considering the selected acquisitions and considering the respective signal intensity of the
selected feature instead of the previous-iteration quantity estimates g;, thus aggregating yy ;; =
StoiT8fj—sriand yielding yy ; estimates of sz, , ;. The first loss metric /.. for hyperparameter
optimisation, which drives optimisation towards minimising variance and hence maximising
precision, is then calculated as the average of (yf,i —s f:selai) ? across acquisitions i, features f and all
precursors for which such calculation is possible given the quality filtering margins. Another loss
metric [, is designed to eliminate bias. Weighted average u,; and variance varg,; are calculated
for the sy, ; values considered across all precursors, using weights w; = exp{—sy,, ;}, that is w; is
the inverse of the measured signal for the selected feature. QuantUMS then defines

2

lacc - Z(yf,i - sfse[,i) <ste17i - ,usel)wi /Zwi /Varsel-
S S

The intuition behind this formula is that ratio compression due to interfering signals occurs
for low-abundant precursors. Minimising the [, loss therefore decorrelates the observed bias
Vi = Sf,i from sz i — U, which serves as a proxy for precursor abundance. The final
concordance metric is calculated as a linear combination of /.. and 4., with coefficients based
on a user-defined balance between precision and accuracy. The pre-configured high-precision and
high-accuracy modes of the QuantUMS module in DIA-NN give 50% and 10% weight to precision,
respectively.

To enable hyperparameter optimisation, QuantUMS implements automatic differentiation. That is,
all steps of aggregation via weighted averaging as well as the loss calculation are represented as
differentiable arithmetic operations on hyperparameter vectors, and each calculation produces not
only the output value but also the propagated gradient with respect to the hyperparameters. The
latter can hence be optimised towards loss minimisation via a gradient descent. For QuantUMS it
is essential to guarantee that optimised hyperparameters are better than their initial values, and thus
the standard gradient descent procedure, which can lead to loss value spikes during optimisation, is
not suitable. We therefore opted for backtracking gradient descent with Armijo line-search, which
guarantees strict decrease of the loss function during optimisation, with a backtracking version of
momentum applied’>.
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The algorithms described above produce not only quantity estimates but also log-variance
estimates for each precursor identification. Given that assumptions of the statistical model
used by QuantUMS are idealised and are not fully met by the empirical data, QuantUMS
calibrates these log-variances by comparing the empirically calculated Y;(xass1,; — xMSz’i)z with
its mathematical expectation based on the estimated variances of x5 ; and xpzs2 ;, Where xpzs ; 18
the quantity aggregated from xz; across all fragment features f. Given the calibrated log-variance
estimate cal.var;, QuantUMS reports for the respective precursor the quantity quality metric as

(1 + \/cal.var,-) ! for acquisition i.

QuantUMS implements a range of enhancements to the core algorithms described above. First,
we found the benefit of applying asymmetric quality filters to precursor identifications in runs i
and j when calculating x¢ ;; = q; + s ;j — s7;. Specifically, both the average quality score and the
quality score in acquisition i must be above certain margins for the feature f, for it to be used
in this calculation. In contrast, applying a similar filter in acquisition j too appears detrimental.
Enabling this asymmetry in quality filtering is one of the reasons for opting for the weighted
averaging procedure as described for QuantUMS, as opposed to using weighted MaxLFQ. The
other reason is the quadratic or cubic, depending on the implementation, computational complexity
of MaxLFQ*" with respect to the number of acquisitions and the resulting challenges in scaling
precursor-level MaxLLFQ quantification to large experiments, as opposed to the linear complexity
of QuantUMS. Second, quantities produced by QuantUMS are obtained via weighted averaging
and QuantUMS also calculates the expected log-variances of these. Thus, QuantUMS also takes
into account the variance of g; in the formula x¢ ;; = g; +s¢,j — s¢,;, when propagating variance
estimates through weighted averaging. Furthermore, the calculation of the variance of sy ; in the
above formula also incorporates 7¢ (defined above) that is multiplied by a tunable coefficient,
adding an extra hyperparameter, where C is the average quality score for feature f across all
acquisitions. In addition, QuantUMS adds an extra small value to all estimated variances for
regularisation. It further adds log(10) - PEP to the estimated log-variance of a feature signal,
where PEP is the posterior error probability of the respective precursor identification, ensuring
that precursors identified with marginal identification confidence cannot be reported as having high
quantitative confidence. Finally, QuantUMS also tracks how significantly the averaged expected
variance of yy; deviates from the averaged empirically estimated one, by comparing y; to sy, , i,
and adds extra regularisation to the loss function that places bounds on this deviation.

Protein quantification in QuantUMS

We also incorporate a protein quantification algorithm in QuantUMS, derived from the MaxLFQ
idea®®, but implemented in a way that is variance-aware and enables protein quantity quality
control. In MaxLFQ, protein quantities are found as a solution of a least squares problem that
minimises the deviations between protein quantity log-ratios between acquisitions and empirical
estimates of these log-ratios, obtained by taking the median of log-ratios between precursors
mutually identified in the respective pair of acquisitions. QuantUMS here takes advantage of
having estimated log-variance of each precursor quantity. Hence, a weighted median of precursor
log-ratios is taken instead of a regular median, when estimating the log-ratio of protein quantities
between two acquisitions. The respective least squares summand for the pair of acquisitions i and

Jj in the MaxLLFQ procedure is then assigned a weight equal to (Zk vary ; +vary, j) _l, where vary ;
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is the estimated log-variance for the quantity of precursor k in acquisition i, thus giving higher
weights to high quality precursor quantity ratios. Finally, QuantUMS also produces a quality

metric for protein quantities, calculated as (1 + \/Wr,-)fl, where var; = (Zk var];l.l) . We note
that protein quantification in bottom-up mass spectrometry has a significant limitation in that it
currently struggles to reliably distinguish between differential regulation of a protein itself and
its differential post-translational modification. The protein quantity quality score implemented
in QuantUMS is not meant to address this problem. Nevertheless, we expect it to be a highly
useful metric that can be used to improve downstream analysis by filtering out protein quantities
significantly affected by MS-associated signal noise.
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Raw data processing

In-silico spectral libraries were generated from the sequence databases and refined on DIA data
using DIA-NN 1.8.1. The PXD040205 data set (mixed species) was analysed with MS1 and
MS2 mass accuracies fixed to 15 ppm and a scan window size of 6. The PXD022216 data set
(leukaemia) was analysed with mass accuracies at 10 ppm, the window size was automatically
inferred. Spectral libraries, DIA-NN pipeline files, logs and output reports have been deposited
to the OSF repository https://osf.io/q8kfc/?view_only=5e¢77d3¢62563468280fd09265583dbbd.

Statistical analysis

Statistical analyses were performed in R 4.1. Differential expression analysis for the mixed
species benchmark dataset was performed by applying the Welch’s t-test to each log-transformed
feature (precursor or protein). After ranking the features by their p-values, the effective false
discovery rate (FDR) of each E.coli feature was calculated as the proportion of false (human) hits
among all hits with a p-value lower than that of the considered E.coli feature. To calculate the
differential expression detection rate, features were binned by their rank intensity and for each
bin, the proportion of E.coli features with an effective FDR lower than a predefined threshold
(0.05) was calculated. Differential abundance analysis for the CLL dataset was performed using
the Imfit and eBayes functions of limma (v 3.50.3)%, fitting models on the log-transformed
precursor or protein quantities separately for each of the patient characteristics in the supplied
metadata.

Data availability

The DIA-NN analysis reports and logs have been deposited to the OSF repository
https://ost.io/q8kfc/?view only=5e77d3c62563468280fd09265583dbbd. The raw proteomics
data sets were downloaded from the repositories PXD040205 and PXD022216.

Code availability

The scripts used to create the figures have been deposited to the OSF repository
https://osf.io/q8kfc/?view _only=5e77d3c62563468280fd09265583dbbd. The DIA-NN version
(1.8.2 beta 22) that implements QuantUMS is available by the same link. An open source release
of QuantUMS, independent of the raw data processing software, is in preparation.

Author contributions
Conception: V.D., FK., J.G., L.R.S., algorithm design: F.K., software implementation: V.D.,
benchmarking: J.G., F.K., supervision: V.D.. All authors contributed to writing the manuscript.

Acknowledgements

This work was supported by the German Ministry of Education and Research (BMBF), as part of
the National Research Node “Mass spectrometry in Systems Medicine” (MSCoreSys), under
grant agreement 161L0221.


https://osf.io/q8kfc/?view_only=5e77d3c62563468280fd09265583dbbd
https://paperpile.com/c/bkGPTZ/eXhk
https://osf.io/q8kfc/?view_only=5e77d3c62563468280fd09265583dbbd
https://osf.io/q8kfc/?view_only=5e77d3c62563468280fd09265583dbbd
https://doi.org/10.1101/2023.06.20.545604
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.20.545604; this version posted June 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplementary information

Log2 (A/C)
Q
|
<
)
1
.’
!
:
I
-

[ | I ! [ [ |

human ecoli
16.5 17.0 175 18.0 18.5 19.0 19.5 n=1658 n=393

Log2 (C)

Supplementary Figure S1. Validation of the E.coli dilution ratios. Mixtures A, B and C of human
(K562) and E.coli tryptic digests with proportions A:B:C being 1:1:1 (human) and 50:33:20 (E.coli) were
recorded” using a 5-minute analytical flow gradient on timsTOF Pro and analysed with QuantUMS in
high-accuracy mode. The DIA-NN output report was filtered for Lib.PG.Q.Value <= 0.01, PEP <= 0.01.
Further, a stringent filter for MS1-based quantification was applied: Ms1.Profile.Corr > 0.95. The matrix
of normalised MS1 precursor quantities was further filtered to only include precursors with median log2-
quantities across samples A and C being between log2-transformed 0.85 and 0.99 quantiles of the
Ms1.Area quantity reported by DIA-NN. Observed A:C ratios between thus filtered precursor MS1-level
quantities were visualised. On the boxplots, boxes correspond to the interquartile range with the median
indicated, whiskers extend to 5%-95% quantiles. Horizontal lines indicate the expected ratios for each
species digest.
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Supplementary Figure S2. QuantUMS hyperparameter tuning performance does not depend on
experimental design. Mixtures A, B and C of human (K562) and E.coli tryptic digests with proportions
A:B:C being 1:1:1 (human) and 50:33:20 (E.coli) were recorded®” using a 5-minute analytical flow
gradient on timsTOF Pro and analysed using DIA-NN. QuantUMS hyperparameters were trained on
A+C, A and C subsets of the dataset separately, in high-accuracy mode, and then applied to the whole
experiment. On the boxplots, boxes correspond to the interquartile range with the median indicated,
whiskers extend to 5%-95% quantiles. Horizontal lines indicate the expected ratios for each species
digest. Stacked bar plots indicate log2-standard deviations of A:C ratios within three intensity bins, with
the lowest intensity bin at the top.
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