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Abstract
Mass spectrometry-based proteomics has been rapidly gaining traction as a powerful analytical
method both in basic research and translation. While the problem of error control in peptide and
protein  identification  has  been  addressed  extensively,  the  quality  of  the  resulting  quantities
remains  challenging  to  evaluate.  Here  we  introduce  QuantUMS  (Quantification  using  an
Uncertainty Minimising Solution), a machine learning-based method which minimises errors and
eliminates  bias  in  peptide  and  protein  quantification  by  integrating  multiple  sources  of
quantitative  information.  In  combination  with  data-independent  acquisition  proteomics,
QuantUMS boosts accuracy and precision of quantities, as well as reports an uncertainty metric,
enabling effective filtering of data for downstream analysis. The algorithm has linear complexity
with respect  to the number of  mass spectrometry acquisitions in the experiment  and is  thus
scalable to infinitely large proteomic experiments. For an easy implementation in a proteomics
laboratory, we integrate QuantUMS in our automated DIA-NN software suite.

Introduction

Liquid chromatography coupled to mass spectrometry (LC-MS)-based bottom-up proteomics is a
highly dynamic field, with recent years being marked by rapid technology development, which is
enabling  novel  applications  and  empowering  existing  ones.  Faster  and  more  sensitive
instruments, novel acquisition methods and advanced data processing approaches have pushed
the limits of throughput and sensitivity, with concomitant reduction of costs and advances in
reproducibility. This has led to proteomics becoming a powerful and widely used tool for both
discovery  of  fundamental  biology and translational  applications,  as  well  as  one  of  potential
pillars of personalised medicine1.

Data-independent acquisition (DIA)2–4 proteomics has become highly popular in recent years, as
the instrumentation and analysis software advances have addressed most of its drawbacks, while
strengthening such advantages of DIA as high proteomic depth and data completeness along with
improved  quantitative  performance1.  Further,  a  number  of  recent  DIA  technologies  also
inherently manifest  what  has  been the main benefit  of  data-dependent  acquisition (DDA),  a
reliable fragment to precursor mass assignment, promising to expand the applicability of DIA
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even further5–8. A range of transformative improvements in the sensitivity of DIA9–15 combined
with multiplexed DIA16–22 further promise an expansion of DIA towards applications that have
previously relied on targeted methods such as selected or parallel reaction monitoring. 

Much  of  the  progress  in  DIA  proteomics  has  been  driven  by  data  processing  software
improvements23–30,  with novel  algorithms yielding rapid gains  in  proteomic depth.  Advanced
machine learning approaches now enable confident matching of peptides to recorded signals
even if the latter are highly noisy and are affected by signal interferences from co-eluting and co-
fragmenting  peptide  species.  This  has  raised  the  question  of  how  quantitative  these  extra
identifications are, and to what extent they benefit the biological inference from the experiment.
This issue is particularly important given recent interest in workflows that stretch the capabilities
of  the  instruments  and  generate  challenging  to  process  data  by  boosting  chromatography
throughput up to hundreds of samples per day, including for high-sensitivity applications, such
as single-cell proteomics or spatial tissue proteomics5,9,11,21,31–37.

Significant effort has been directed towards developing computational methods that can improve
quantitative reproducibility,  precision and accuracy of  proteomic experiments.  These include
deconvolution of spectra38, selection of peptide fragment ions based on the signal quality21,26,39, as
well as protein quantification through aggregation of multiple parallel sources of quantitative
information, such as peptide-level MaxLFQ for DDA40 and fragment-level MaxLFQ for DIA41 or
directLFQ42.  Advanced methods for  error  control  and missing data  handling have also  been
developed for statistical analysis of proteomics data, as discussed and benchmarked recently43,44.
However,  while  peptide  identification error  rates  are  well  controlled by statistically-justified
target-decoy competition methods, quantification errors are currently impossible to estimate.

Here we introduce QuantUMS (Quantification using an  Uncertainty  Minimising  Solution),  a
novel concept for accurate and reliable quantification in proteomics. QuantUMS draws upon the
quality  information available  for  individual  signals  recorded by the mass spectrometer.  This
allows QuantUMS to integrate multiple signals associated with each precursor and protein in a
statistically-justified way by propagating the quantification uncertainty estimates that it obtains
from the quality information. Furthermore, QuantUMS compares multiple parallel sources of
quantitative information present in the data and thus obtains concordance metrics that allow it to
leverage machine learning to optimise its hyperparameters. In addition, QuantUMS generates
quantification  accuracy  metrics  for  individual  precursor  and  protein  quantities,  allowing  for
effective  filtering  of  the  processed  data  for  better  downstream  statistical  inference.  We
implement QuantUMS as a module in our automated and easy to use DIA-NN software suite 26

and show that, when applied to DIA data, QuantUMS boosts quantitative precision and enhances
differential expression analyses. We also demonstrate that QuantUMS is capable of eliminating
the ratio compression bias that so far has been inherent to untargeted proteomics data.
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Results

Principle of QuantUMS
In each acquisition, the mass spectrometer records multiple signals for each detected peptide
precursor: the signal from the unfragmented precursor in MS1 mode, as well as the signal from
each of its fragment ions in MS/MS mode. Integrating all of these signals should naturally allow
to achieve higher accuracy and precision than using just one of them. However, all  of these
measurements  are  subject  to  errors  caused by random noise45 and  ‘interfering’  signals  from
precursors with the same mass (MS1) or from precursors that share some of the fragment ions
and are co-isolated for fragmentation4. Ideally, the integration method needs to leverage some
uncertainty measures, calculated for each signal.

Previously, we devised and implemented in our DIA-NN software a straightforward but highly
effective approach for quantification from DIA data, wherein several fragment ions are selected
for each precursor, in a cross-run manner, and then the sum of their respective signals in each
acquisition is used to represent the respective precursor quantity. The selection was performed by
choosing the top three fragments with highest average correlation scores across the experiment,
wherein the correlation score of each fragment is calculated by DIA-NN as part of the precursor
identification process for a particular acquisition and represents how well its extracted elution
profile is aligned with extracted elution profiles of other fragments of the same precursor. This
strategy enabled filtering out signals which are strongly affected by interferences in multiple
runs,  thus  greatly  boosting  the  quality  of  quantification26.  However,  this  approach based on
quality scores averaged across runs is still subject to fold-change interference-related errors in
individual  acquisitions.  Further,  it  has  a  significant  drawback  of  discarding  much  of  the
information encoded in the raw data, such as the measured MS1 signal. In fact, in our later work
on multiplexed DIA proteomics for low sample amounts21, we quantified precursors at the MS1
level instead, as this led to higher quantification accuracy on an Orbitrap setup that used 50%
MS1 duty cycle. Others have also observed that leveraging both the MS1 and MS2 precursor
quantities empowers downstream statistical analysis46.

We therefore aimed to develop a quantification method that would draw upon all the information
on  the  precursor  that  was  recorded  by  the  mass  spectrometer,  as  well  as  to  integrate  this
information  guided  by  the  quality  scores  available  for  individual  recorded  signals,  in  a
statistically-justified  way.  Below we outline  the  concept  behind QuantUMS, with  a  detailed
description of the algorithm provided in Methods. 

QuantUMS  (Figure  1a)  takes  as  input  the  set  of  signal  intensities  corresponding  to  the
quantitative features – precursor itself recorded at the MS1 level as well as its fragment ions
recorded at  the MS/MS level  – for  each peptide precursor in each acquisition where it  was
identified,  as  well  as  a  single quality score per  signal.  While in principle different  kinds of
quality scores can be used, the QuantUMS implementation in DIA-NN that we describe here
(Methods)  leverages  the  correlation-based  similarity  score  that  DIA-NN  calculates  when
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comparing an extracted ion chromatogram of a feature with that of the selected ‘best’ fragment
ion it defines for each putative elution peak26. QuantUMS then models the log-space variance of
the  measured  signal  (‘log-variance’),  a  proxy  for  quantification  uncertainty,  as  a  function,
defined by the algorithm hyperparameters, of the signal intensity and its quality score. These log-
variance estimates for individual feature signals are then used to construct a formula for the
quantity of each precursor identification that minimises its estimated log-variance.

Essential  to  QuantUMS is  the  idea  that  different  quantitative  features  each  can  produce  an
estimate of a quantity of a precursor in a particular acquisition, relative to other acquisitions.
These  estimates  can  be  compared  between  features,  and  high  concordance  between  these
estimates is likely to be indicative of their accuracy. QuantUMS uses machine learning to infer
hyperparameters  that  maximise  concordance  between  precursor  quantity  estimates  obtained
using different features.

Quantitative  proteomics  data  is  subject  to  signal  interferences,  which  tend  to  cause  ratio
compression and hence biased quantification for precursors that are not highly abundant. In this
work we present a solution to this problem: we introduce a mechanism in QuantUMS, which is
capable of effectively eliminating such bias, at the cost of a limited loss of precision. QuantUMS
incorporates a bias correction in its calculations, based on signal quality scores and intensities,
which is controlled by hyperparameters. To tune these, we devise a way to empirically assess
and minimise the degree of bias manifested by interference-affected signals, without requiring
any knowledge of the experiment design. The QuantUMS module in DIA-NN implements a
configurable parameter which allows to control the impact of this mechanism and thus balance
precision and accuracy, as well as implements two pre-configured modes termed high-precision
and high-accuracy, which we benchmark in the present work. 

Controlling for quantification errors has so far been challenging in proteomics. Indeed, the only
widely used solution has been to filter the dataset based on precursor or protein coefficients of
variation  (CVs).  This  approach  does  not  control  for  interference-caused  errors  that  might
severely impact the accuracy of quantification while preserving precision, nor does it account for
errors that only manifest in some of the acquisitions and thus do not have a significant negative
impact  on  the  CV  values.  This  necessitates  the  need  for  laborious,  potentially  biased  and
sometimes  technically  impossible  manual  checks  of  extracted  ion  chromatograms  for  each
acquisition and peptide of interest, to ensure confidence of observations pertaining to specific
proteins. With QuantUMS, we address this problem by introducing a precursor- and acquisition-
specific quantity quality metric, which, while not completely eliminating the need for manual
checks aimed at maximum confidence, significantly reduces it in many applications.

In  QuantUMS  we  devised  an  algorithm  that  ensures  confidence  in  individual  precursor
quantities. The procedure applied by QuantUMS is based on combining multiple signals in a way
to  minimise  the  resulting  log-variance,  which  can  then  be  estimated  as  a  function  of  the
algorithm hyperparameters. QuantUMS then calculates the bias of these log-variance estimates,

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2023. ; https://doi.org/10.1101/2023.06.20.545604doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.20.545604
http://creativecommons.org/licenses/by/4.0/


that is,  determines if they are too conservative or too optimistic, by comparing the observed
deviations between precursor quantity estimates obtained using different quantitative features
with the expected log-variances of these quantity estimates. It then reports a ‘quantity quality’
score,  for  each  precursor  identification,  based  on  precursor  quantity  log-variance  estimates
calibrated to remove the bias.

We further extend QuantUMS with a protein quantification module, which likewise relies on
quality metrics to weigh multiple channels of quantitative information and likewise reports the
resulting protein quantity quality metric (Methods).
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Figure 1.  QuantUMS performs statistically-justified minimisation of quantification uncertainty.  a,
QuantUMS takes  as  input  integrated  signals  of  individual  quantitative  features  (MS1 precursor  and
MS/MS  fragment  ions),  as  well  as  their  quality  scores.  These  allow  QuantUMS  to  correct  signal
intensities to remove bias and to estimate their log-variances, in a process controlled by hyperparameters.
The signal log-variance estimates cater for a statistically-justified weighted aggregation of signals,  to
obtain precursor quantities,  and can also be propagated through weighted aggregation, to obtain log-
variance estimates for these precursor quantities, allowing QuantUMS to report a ‘quantity quality’ metric
for  each  precursor.  QuantUMS  also  establishes  concordance  metrics  based  on  comparing  parallel
channels of quantitative information, enabling it to optimise the hyperparameters using machine learning.
Precursor quantities and their log-variance estimates are likewise aggregated to obtain protein quantities
and the respective quantity quality metrics for proteins. b, Three mixtures A, B and C of human (K562)
and  E.coli tryptic  digests  with  proportions  A:B:C  being  1:1:1  (human)  and  50:33:20  (E.coli)  were
recorded37 using a 5-minute analytical  flow gradient on timsTOF Pro and analysed using legacy and
QuantUMS quantification methods. Resulting precursor and protein ratios between mixtures A and C are
visualised.  On  the  boxplots,  boxes  correspond  to  the  interquartile  range  with  the  median  indicated,
whiskers  extend to  5%-95% quantiles.  Horizontal  lines  indicate  the  expected ratios  for  each species
digest. Stacked bar plots indicate log2-standard deviations of A:C ratios within three intensity bins, with
the lowest intensity bin at the top. c, The effect of run-specific and precursor-specific or protein-specific,
respectively, quality filtering enabled by QuantUMS, data shown for the high-accuracy mode.

QuantUMS improves precision and boosts accuracy by eliminating bias
First,  we  benchmarked  QuantUMS  on  an  LFQbench-type47 dataset  that  we  had  previously
acquired using a 5-minute gradient on an analytical flow liquid chromatography system coupled
to timsTOF Pro operated in dia-PASEF mode37. In this experiment, wherein human (K562) and
E.coli tryptic digests were mixed in three different proportions A, B and C (A:B:C ratios 1:1:1
for  human and 50:33:20 for  E.coli,  respectively),  the  ability  of  the  instrument  and the  data
processing software to accurately and precisely recover those proportions as well as detect the
differential levels of  E.coli peptides and proteins is evaluated. We independently verified the
accuracy of E.coli sample dilution used to prepare mixtures A and C by analysing the precursor
identifications with high quality  MS1 signals  (Supplementary Figure S1).  We compared the
high-precision (default) and high-accuracy modes of QuantUMS to the ‘legacy’ DIA-NN mode
(Figure  1b),  which  represents  the  default  quantification  strategy  employed  by  the  previous
versions of DIA-NN26.  We observed that the high-precision mode of QuantUMS boosted the
precision  of  inferred  ratios  between  mixtures,  yielding  a  substantial  improvement  of  log2-
standard deviations of precursor and protein quantity ratios, with the greatest effect seen for the
low intensity precursors (over 1.4-times improvement) and proteins (1.3-times, human, and 1.2-
times,  E.coli). The high-accuracy mode of QuantUMS did not result in a significant precision
improvement over the legacy DIA-NN mode, however the median inferred ratios in this mode
matched the expected ones, thus eliminating the ratio compression bias that is observed in legacy
and high-precision modes.

We  further  examined  the  effect  of  filtering  the  dataset  based  on  the  acquisition-specific
precursor- and protein-level quantity quality metrics introduced in QuantUMS (Figure 1c). As
expected, we observed that such filtering tends to retain only accurately quantified precursors
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and proteins, with 0.75 quality quantile protein-level filtering resulting in almost perfect protein
ratios (Figure 1c, bottom right panel). 

Although QuantUMS contains a hyperparameter tuning step, it can also be instructed to use a
particular set  of hyperparameters,  potentially trained on a different data set.  Using the same
experiment, we examined the effect of the training data set on QuantUMS performance in the
high-accuracy  mode,  by  optimising  the  hyperparameters  only  on  samples  A+C,  A  or  C
separately, and then applying them to the whole data set A+B+C (Supplementary Figure S2). In
each  scenario,  we  observed  a  performance  similar  to  the  one  demonstrated  when  training
hyperparameters  on A+B+C (Figure 1b,  rightmost  panels).  This  indicates  that  the optimised
hyperparameters  of  QuantUMS reflect  the  inherent  properties  of  the  LC-MS setup  and  the
sample matrix, but do not reflect the experiment design.

We  investigated  what  effect  the  enhanced  performance  of  QuantUMS  has  on  differential
expression analyses. First, we examined the same mixed species dataset, in which the ground
truth  is  known  and  can  be  used  to  determine  the  effective  false  discovery  rate  (FDR).
Specifically, we applied Welch t-test to each precursor or protein, and plotted the numbers of
true hits (E.coli) against the FDR represented by the ratio of human to  E.coli hits (Figure 2a).
Here we consciously went for the simplest statistical test, as our goal is to benchmark the quality
of precursor and protein quantities rather than the statistical approach.

Both QuantUMS methods performed superior  to  the legacy method,  with the high-precision
mode  showing  somewhat  better  performance  than  high-accuracy.  We  also  observed  greater
advantage  of  QuantUMS at  the  precursor  level  than  the  protein  level.  This  is  in  line  with
expectations,  as  protein  quantities,  obtained with  either  method,  integrate  multiple  precursor
quantities and are, therefore, inherently more precise. Thus, it is less challenging for the method
to detect differential expression of proteins. Indeed, we see that the QuantUMS high-precision
mode reports 871 differentially expressed proteins at 5% FDR for the A:C comparison, which is
close to the total number of E.coli proteins (1078) detected in at least two replicates in both A
and C. Likewise, the advantage of QuantUMS methods over the legacy method appeared even
more significant for the A:B comparison, which features a tighter (50:33 as opposed to 50:20)
ratio  between  the  E.coli  fractions  and  is  thus  more  demanding  with  regards  to  quantitative
precision. In either case, the relative advantage of QuantUMS was greater at higher confidence
levels.  Examining  the  rate  of  differential  expression  detection  depending  on  the  respective
intensity rank, we see that the advantage of QuantUMS over the legacy method originates in its
better ability to detect differential expression of low-abundant and hence more challenging to
quantify precursors and proteins (Figure 2b).
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Figure 2.  QuantUMS boosts the sensitivity of differential expression analysis. Three mixtures A, B
and C of human (K562) and  E.coli tryptic  digests  with proportions A:B:C being 1:1:1 (human) and
50:33:20 (E.coli) were recorded37 using a 5-minute analytical flow gradient on timsTOF Pro and analysed
using legacy and QuantUMS quantification methods.  a, Numbers of differentially expressed precursors
and proteins plotted against the effective false discovery rate (true hits: E.coli, false hits: human) for A:C
and A:B comparisons.  b, Differential expression detection rate depending on the intensity rank for the
E.coli 50:20 comparison (Methods).  c,  A comparison between legacy and QuantUMS analyses using
DIA-NN, as well as to the originally published48 analysis using Spectronaut, on a dataset of 50 chronic
lymphocytic  leukaemia (CLL) samples  recorded using a  100-min nanoLC gradient  on timsTOF Pro.
Numbers of differentially expressed proteins when testing against four phenotypic characteristics (limma,
Methods) are shown.  d, The effect  of filtering the protein list  using the QuantUMS protein quantity
quality metric averaged across acquisitions on the number of differentially expressed proteins at a given
FDR in selected tests. 

To evaluate the performance of QuantUMS in an experiment that is also subject to biological
variation and variation due to sample preparation in addition to quantitative variation introduced
by the LC-MS, and thus should benefit less from the advantages of QuantUMS than a synthetic
LFQbench-type benchmark, we re-processed a data set of 50 chronic lymphocytic leukaemia
(CLL) samples acquired with a 100-minute nanoLC gradient on timsTOF Pro using dia-PASEF,
which  was  analysed  with  Spectronaut  in  the  original  publication48.  Testing  for  differential
expression  with  respect  to  the  phenotypic  information  available  (Figure  2c;  Methods),  we
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observed greater numbers of proteins identified as differentially expressed by the QuantUMS
methods in comparison to the legacy DIA-NN quantification, which in turn outperformed the
original analysis with Spectronaut. The advantage of QuantUMS over legacy quantification was
most  prominent  in case of  the more challenging tests  against  leukocyte count  and treatment
status.  We further observed that  filtering the protein lists  based on the averaged across-runs
protein quantity quality metric is capable of improving the numbers of significant proteins at a
given FDR in those tests (Figure 2d), by reducing the number of proteins considered and hence
reducing the number of statistical tests to which Benjamini-Hochberg multiple testing correction
is applied.

Discussion

With QuantUMS, we address a long-standing problem of untargeted proteomics, that is the lack
of quality control for peptide and protein quantities obtained in an experiment. We show that
taking into account the quality information available for individual signals recorded by the mass
spectrometer not only allows to improve quantitative performance per se, but to also produce
effective quality metrics to ensure confidence in the data and further empower the subsequent
statistical analysis. 

So far, we have benchmarked the new method on DIA proteomics data, with the quality scores
for recorded signals being calculated by our DIA-NN software. As opposed to relying on hand-
picked thresholds like many legacy methods26, which usually can only be optimal for a narrow
range of data sets, QuantUMS is driven by automatic optimisation using machine learning, and is
hence highly flexible in terms of the input information it can accept. We therefore envision a
potential for further improvements of QuantUMS through the introduction of multiple thorough
signal quality metrics.

Furthermore,  other  kinds  of  proteomic  acquisition  approaches  likewise  generate  multiple
channels of quantitative information that can be leveraged by QuantUMS. These include selected
and parallel reaction monitoring as well as other experiments that involve recording multiplexed
MS/MS spectra, and application of QuantUMS to these can be explored in a follow-up work. We
further envision significant potential for future improvements in quantitative proteomics to be
achieved by integrating QuantUMS with downstream statistical  analysis  approaches,  such as
MSStats43 or  Triqler44,  to  enable  biological  inference  that  is  fully  aware  of  all  kinds  of
uncertainty, missingness and normalisation issues in the raw proteomics data.

Proteomics has a potential to significantly enhance personalised medicine, both for biomarker
discovery and clinical decision-making. At the same time, reliable quantitative quality control is
of particular importance for clinical applications49–52, while manual validation of LC-MS data in
this  setting might  not  be technically  feasible  and poses a  risk of  introducing a  human bias.
Automated  peptide-  and  protein-level  quality  control,  as  enabled  by  QuantUMS,  presents,
therefore, a step towards reliable clinical proteomics.
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Methods

QuantUMS algorithm
We first outline the core ideas behind the method and then discuss the enhancements implemented
in QuantUMS. The QuantUMS algorithm is based on estimating the log-variance and log-bias
of the measured signal intensity of a quantitative feature (either the MS1 precursor signal or an
MS/MS fragment ion signal) using its value and a quality score. Specifically, given the integrated
signal intensity S and a quality score C, it calculates transformed values TS = S−1, TC = 1−

√
C

and TS,C =
√

TSTC. The implementation of QuantUMS in DIA-NN obtains the score C as the
product of Pearson correlation and cosine similarity measures between the extracted elution profile
of the feature in question and the smoothed elution profile of the fragment DIA-NN has labelled
as ‘best’ during the identification process26. QuantUMS then models the log-variance of the signal
as the linear combination of these transformed values, with coefficients corresponding to trainable
hyperparameters. To enforce non-negativity of the coefficients, they are represented as squared
values of hyperparameters. Likewise, QuantUMS models the log-bias as the linear combination
of the square roots of the transformed values, and corrects signal intensities of features for their
estimated bias when calculating precursor quantities. In total, this yields six hyperparameters.

QuantUMS iteratively optimises the precursor quantities, starting with the preliminary quantities
calculated by summing selected fragment signals, as described for DIA-NN previously26. For
a given precursor and an acquisition i, let qi be the precursor log-quantity estimate obtained at
the previous iteration and s f ,i – the logarithm of the bias-corrected signal intensity of quantitative
feature f , in acquisition i. Then x f , j,i = qi + s f , j − s f ,i estimates the log-quantity of the precursor
in any acquisition j. To obtain the next-iteration estimate x j of the precursor log-quantity in
acquisition j, QuantUMS first takes a weighted average of x f , j,i across acquisitions i, obtaining
estimates x f , j based on individual quantitative features, and then across features f , obtaining a
single estimate. The principle of aggregation via weighted averaging implemented in QuantUMS
is derived from the following statistical property. Given a set of uncorrelated random variables Zi
with equal means µ and variances vari, the estimate

(
∑i var

−1
i Zi

)
/
(
∑i var

−1
i
)

has the mean µ and
the minimal, across all such linear combinations, variance equal to 1/∑i var

−1
i , thus yielding the

optimal estimate for µ . QuantUMS applies the same formula when it needs to aggregate multiple
quantities given their estimated variances, thus obtaining both an estimate of their mean and the
estimated variance of this aggregated value.

The above quantification method effectively implements a particular formula, which calculates the
quantity of a precursor in each acquisition, based on the respective feature signal measurements
in all acquisitions and their quality scores, as well as precursor quantity estimates obtained
at the previous iteration. While this calculation is statistically justified given the assumptions
of variances being known and of measurement errors being independent, variances cannot be
precisely estimated in practice and the independence assumption likely does not hold strictly. We
alleviate this drawback by having the formula depend on hyperparameters that are then tuned
by machine learning. The idea here is that since each feature produces, for each acquisition,
an estimate of the precursor quantity, the deviations between these estimates corresponding to
different features are indicative of how accurate the quantity estimates are. QuantUMS hence tunes
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hyperparameters to minimise the empirically measured differences between quantity estimates
obtained using different features.

This idea would perform poorly in practice, if the loss function for hyperparameter optimisation
were calculated using all precursor identifications and all feature pairs without regard for their
quality scores, and QuantUMS hence incorporates a more complex implementation. Specifically,
for each precursor, QuantUMS selects a quantitative feature with the best average quality
score across acquisitions in which the precursor has been identified confidently. Choosing this
feature only across fragment ions or always selecting MS1 signal makes little difference in our
benchmarks, so for better applicability of the method in case the experiment has poor quality
MS1 information the selected feature fsel is currently chosen only among fragments. QuantUMS
then selects acquisitions in which this feature has a quality score above a certain margin (0.9
in the current implementation), that is, in these acquisitions it is likely to be almost free from
signal noise or interference. The aggregation procedure via weighted averaging is then repeated
only considering the selected acquisitions and considering the respective signal intensity of the
selected feature instead of the previous-iteration quantity estimates qi, thus aggregating y f , j,i =
s fsel ,i+ s f , j − s f ,i and yielding y f , j estimates of s fsel , j. The first loss metric lprec for hyperparameter
optimisation, which drives optimisation towards minimising variance and hence maximising
precision, is then calculated as the average of

(
y f ,i − s fsel ,i

)2 across acquisitions i, features f and all
precursors for which such calculation is possible given the quality filtering margins. Another loss
metric lacc is designed to eliminate bias. Weighted average µsel and variance varsel are calculated
for the s fsel ,i values considered across all precursors, using weights wi = exp{−s fsel ,i}, that is wi is
the inverse of the measured signal for the selected feature. QuantUMS then defines

lacc =

[(
∑
f ,i
(y f ,i − s fsel ,i)(s fsel ,i −µsel)wi

)
/∑

f ,i
wi

]2

/varsel.

The intuition behind this formula is that ratio compression due to interfering signals occurs
for low-abundant precursors. Minimising the lacc loss therefore decorrelates the observed bias
y f ,i − s fsel ,i from s fsel ,i − µsel , which serves as a proxy for precursor abundance. The final
concordance metric is calculated as a linear combination of lprec and lacc, with coefficients based
on a user-defined balance between precision and accuracy. The pre-configured high-precision and
high-accuracy modes of the QuantUMS module in DIA-NN give 50% and 10% weight to precision,
respectively.

To enable hyperparameter optimisation, QuantUMS implements automatic differentiation. That is,
all steps of aggregation via weighted averaging as well as the loss calculation are represented as
differentiable arithmetic operations on hyperparameter vectors, and each calculation produces not
only the output value but also the propagated gradient with respect to the hyperparameters. The
latter can hence be optimised towards loss minimisation via a gradient descent. For QuantUMS it
is essential to guarantee that optimised hyperparameters are better than their initial values, and thus
the standard gradient descent procedure, which can lead to loss value spikes during optimisation, is
not suitable. We therefore opted for backtracking gradient descent with Armijo line-search, which
guarantees strict decrease of the loss function during optimisation, with a backtracking version of
momentum applied53.
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The algorithms described above produce not only quantity estimates but also log-variance
estimates for each precursor identification. Given that assumptions of the statistical model
used by QuantUMS are idealised and are not fully met by the empirical data, QuantUMS
calibrates these log-variances by comparing the empirically calculated ∑i(xMS1,i − xMS2,i)

2 with
its mathematical expectation based on the estimated variances of xMS1,i and xMS2,i, where xMS2,i is
the quantity aggregated from x f ,i across all fragment features f . Given the calibrated log-variance
estimate cal.vari, QuantUMS reports for the respective precursor the quantity quality metric as(
1+

√
cal.vari

)−1 for acquisition i.

QuantUMS implements a range of enhancements to the core algorithms described above. First,
we found the benefit of applying asymmetric quality filters to precursor identifications in runs i
and j when calculating x f , j,i = qi + s f , j − s f ,i. Specifically, both the average quality score and the
quality score in acquisition i must be above certain margins for the feature f , for it to be used
in this calculation. In contrast, applying a similar filter in acquisition j too appears detrimental.
Enabling this asymmetry in quality filtering is one of the reasons for opting for the weighted
averaging procedure as described for QuantUMS, as opposed to using weighted MaxLFQ. The
other reason is the quadratic or cubic, depending on the implementation, computational complexity
of MaxLFQ40 with respect to the number of acquisitions and the resulting challenges in scaling
precursor-level MaxLFQ quantification to large experiments, as opposed to the linear complexity
of QuantUMS. Second, quantities produced by QuantUMS are obtained via weighted averaging
and QuantUMS also calculates the expected log-variances of these. Thus, QuantUMS also takes
into account the variance of qi in the formula x f , j,i = qi + s f , j − s f ,i, when propagating variance
estimates through weighted averaging. Furthermore, the calculation of the variance of s f ,i in the
above formula also incorporates TC (defined above) that is multiplied by a tunable coefficient,
adding an extra hyperparameter, where C is the average quality score for feature f across all
acquisitions. In addition, QuantUMS adds an extra small value to all estimated variances for
regularisation. It further adds log(10) · PEP to the estimated log-variance of a feature signal,
where PEP is the posterior error probability of the respective precursor identification, ensuring
that precursors identified with marginal identification confidence cannot be reported as having high
quantitative confidence. Finally, QuantUMS also tracks how significantly the averaged expected
variance of y f ,i deviates from the averaged empirically estimated one, by comparing y f ,i to s fsel ,i,
and adds extra regularisation to the loss function that places bounds on this deviation.

Protein quantification in QuantUMS
We also incorporate a protein quantification algorithm in QuantUMS, derived from the MaxLFQ
idea40, but implemented in a way that is variance-aware and enables protein quantity quality
control. In MaxLFQ, protein quantities are found as a solution of a least squares problem that
minimises the deviations between protein quantity log-ratios between acquisitions and empirical
estimates of these log-ratios, obtained by taking the median of log-ratios between precursors
mutually identified in the respective pair of acquisitions. QuantUMS here takes advantage of
having estimated log-variance of each precursor quantity. Hence, a weighted median of precursor
log-ratios is taken instead of a regular median, when estimating the log-ratio of protein quantities
between two acquisitions. The respective least squares summand for the pair of acquisitions i and
j in the MaxLFQ procedure is then assigned a weight equal to

(
∑k vark,i + vark, j

)−1, where vark,i
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is the estimated log-variance for the quantity of precursor k in acquisition i, thus giving higher
weights to high quality precursor quantity ratios. Finally, QuantUMS also produces a quality

metric for protein quantities, calculated as
(
1+

√
vari
)−1, where vari =

(
∑k var

−1
k,i

)−1
. We note

that protein quantification in bottom-up mass spectrometry has a significant limitation in that it
currently struggles to reliably distinguish between differential regulation of a protein itself and
its differential post-translational modification. The protein quantity quality score implemented
in QuantUMS is not meant to address this problem. Nevertheless, we expect it to be a highly
useful metric that can be used to improve downstream analysis by filtering out protein quantities
significantly affected by MS-associated signal noise.
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 Raw data processing 
 In-silico  spectral  libraries  were  generated  from  the  sequence  databases  and  refined  on  DIA  data 
 using  DIA-NN  1.8.1.  The  PXD040205  data  set  (mixed  species)  was  analysed  with  MS1  and 
 MS2  mass  accuracies  fixed  to  15  ppm  and  a  scan  window  size  of  6.  The  PXD022216  data  set 
 (leukaemia)  was  analysed  with  mass  accuracies  at  10  ppm,  the  window  size  was  automatically 
 inferred.  Spectral  libraries,  DIA-NN  pipeline  files,  logs  and  output  reports  have  been  deposited 
 to the OSF repository  https://osf.io/q8kfc/?view_only=5e77d3c62563468280fd09265583dbbd  . 

 Statistical analysis 
 Statistical  analyses  were  performed  in  R  4.1.  Differential  expression  analysis  for  the  mixed 
 species  benchmark  dataset  was  performed  by  applying  the  Welch’s  t-test  to  each  log-transformed 
 feature  (precursor  or  protein).  After  ranking  the  features  by  their  p-values,  the  effective  false 
 discovery  rate  (FDR)  of  each  E.coli  feature  was  calculated  as  the  proportion  of  false  (human)  hits 
 among  all  hits  with  a  p-value  lower  than  that  of  the  considered  E.coli  feature.  To  calculate  the 
 differential  expression  detection  rate,  features  were  binned  by  their  rank  intensity  and  for  each 
 bin,  the  proportion  of  E.coli  features  with  an  effective  FDR  lower  than  a  predefined  threshold 
 (0.05)  was  calculated.  Differential  abundance  analysis  for  the  CLL  dataset  was  performed  using 
 the  lmfit  and  eBayes  functions  of  limma  (v  3.50.3)  54  ,  fitting  models  on  the  log-transformed 
 precursor  or  protein  quantities  separately  for  each  of  the  patient  characteristics  in  the  supplied 
 metadata. 

 Data availability 
 The  DIA-NN  analysis  reports  and  logs  have  been  deposited  to  the  OSF  repository 
 https://osf.io/q8kfc/?view_only=5e77d3c62563468280fd09265583dbbd  .  The  raw  proteomics 
 data sets were downloaded from the repositories PXD040205 and PXD022216. 

 Code availability 
 The  scripts  used  to  create  the  figures  have  been  deposited  to  the  OSF  repository 
 https://osf.io/q8kfc/?view_only=5e77d3c62563468280fd09265583dbbd  .  The  DIA-NN  version 
 (1.8.2  beta  22)  that  implements  QuantUMS  is  available  by  the  same  link.  An  open  source  release 
 of QuantUMS, independent of the raw data processing software, is in preparation. 
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 Conception:  V.D.,  F.K.,  J.G.,  L.R.S.,  algorithm  design:  F.K.,  software  implementation:  V.D., 
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Supplementary information

Supplementary Figure S1.  Validation of the  E.coli dilution ratios.  Mixtures A, B and C of human
(K562) and E.coli tryptic digests with proportions A:B:C being 1:1:1 (human) and 50:33:20 (E.coli) were
recorded37 using a 5-minute analytical flow gradient on timsTOF Pro and analysed with QuantUMS in
high-accuracy mode. The DIA-NN output report was filtered for Lib.PG.Q.Value <= 0.01, PEP <= 0.01.
Further, a stringent filter for MS1-based quantification was applied: Ms1.Profile.Corr > 0.95. The matrix
of normalised MS1 precursor quantities was further filtered to only include precursors with median log2-
quantities  across  samples  A  and  C  being  between  log2-transformed  0.85  and  0.99  quantiles  of  the
Ms1.Area quantity reported by DIA-NN. Observed A:C ratios between thus filtered precursor MS1-level
quantities were visualised. On the boxplots, boxes correspond to the interquartile range with the median
indicated, whiskers extend to 5%-95% quantiles. Horizontal lines indicate the expected ratios for each
species digest.
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Supplementary  Figure  S2.  QuantUMS hyperparameter  tuning  performance  does  not  depend on
experimental design. Mixtures A, B and C of human (K562) and E.coli tryptic digests with proportions
A:B:C being  1:1:1  (human)  and  50:33:20  (E.coli)  were  recorded37 using  a  5-minute  analytical  flow
gradient  on timsTOF Pro and analysed using DIA-NN. QuantUMS hyperparameters  were trained on
A+C, A and C subsets of the dataset separately, in high-accuracy mode, and then applied to the whole
experiment.  On the boxplots,  boxes correspond to the interquartile  range with the median indicated,
whiskers  extend to  5%-95% quantiles.  Horizontal  lines  indicate  the  expected ratios  for  each species
digest. Stacked bar plots indicate log2-standard deviations of A:C ratios within three intensity bins, with
the lowest intensity bin at the top.
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