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Drug-target interaction (DTI) prediction is a relevant but chal-
lenging task in the drug repurposing field. In-silico approaches
have drawn particular attention as they can reduce associated
costs and time commitment of traditional methodologies. Yet,
current state-of-the-art methods present several limitations: ex-
isting DTI prediction approaches are computationally expen-
sive, thereby hindering the ability to use large networks and
exploit available datasets and, the generalization to unseen
datasets of DTI prediction methods remains unexplored, which
could potentially improve the development processes of DTI in-
ferring approaches in terms of accuracy and robustness. In this
work, we introduce GENNIUS (Graph Embedding Neural Net-
work Interaction Uncovering System), a Graph Neural Network
(GNN)-based method that outperforms state-of-the-art models
in terms of both accuracy and time efficiency across a vari-
ety of datasets. We also demonstrated its prediction power to
uncover new interactions by evaluating not previously known
DTIs for each dataset. We further assessed the generalization
capability of GENNIUS by training and testing it on different
datasets, showing that this framework can potentially improve
the DTI prediction task by training on large datasets and testing
on smaller ones. Finally, we investigated qualitatively the em-
beddings generated by GENNIUS, revealing that the GNN en-
coder maintains biological information after the graph convolu-
tions while diffusing this information through nodes, eventually
distinguishing protein families in the node embedding space.
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1. Introduction

The process of identifying new drugs to treat a specific dis-
ease can be simplified by seeking a chemical compound that
modulates a pharmacological target implicated in that dis-
ease, with the goal of altering its biological activity. Even
though different biological entities can be chosen as targets,
such as RNA or proteins, the latter are the most common
pharmacological targets (1). Targeting proteins allows the
modulation of many biological processes implicated in main-
taining health and potentially preventing or treating diseases.
For example, drugs targeting metabolic enzymes can alter
how cells process nutrients and energy (2).

Although high-throughput wet-lab techniques were devel-
oped to accelerate drug discovery pipelines, both in vitro and
in vivo approaches are time-consuming and can be costly (3).
To address these limitations, computational methods have
arisen as promising tools to reduce the time and resources
required to bring new treatments to market. The field of
drug repurposing involves predicting novel drug-target inter-
actions (DTIs) that will ultimately enable the discovery of
new uses for already approved drugs (4). In recent years, the
availability of large amounts of data has made it possible to
design machine learning models that can assist in these drug
development tasks, through, for example, the identification
of complex molecular patterns that were not previously un-
covered. These models typically leverage multiple types of
data, including amino acid sequences (5) and the 3-D protein
structures (6), as recent advances in protein structure predic-
tion such as AlphaFold (7, 8) have significantly increased the
amount of structural information available.

Specific to DTI prediction, several different machine learning
architectures have been proposed in recent years (see Meth-
ods). While some models utilize simple linear regression
techniques, others contain more complex mechanisms such
as transformers (9). However, most of these technologies do
not consider the global view of how proteins and drugs are
connected, which could be informative towards the discov-
ery of novel relationships. To allow for modeling the net-
work topology, recent works have been proposed to represent
DTI data as a graph (10, 11). Specifically, DTIs can be mod-
eled as a heterogeneous graph connecting drugs and proteins
(both represented as nodes) based on recorded interactions
in wet-lab experiments (edges). This representation can be
augmented by adding additional node types (e.g., diseases),
or edge types (e.g., protein similarity). The DTI prediction
model is then trained to predict whether a drug has the poten-
tial to interact with a protein.

Advances in machine learning for graphs have highlighted
Graph Neural Networks (GNNs) as a powerful tool to
model these complex networks for a wide range of applica-
tions across diverse fields including economics (12), particle
physics (13), and especially biomedicine (14). The defining
characteristic of a GNN is that it uses a form of neural mes-
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sage passing, where at each iteration the hidden embeddings
of the nodes are updated (15). Further, contrary to most pre-
vious node embedding techniques such as Node2Vec (16),
GNNss are able to generalize from a set of training examples
to unseen data points. This capability is of utmost importance
to guarantee the generalization capabilities of the developed
models when facing unseen interactions.

Recently, entire libraries have been developed to work with
GNNs. Special mention should be made to PyTorch Geo-
metric (PyG), a geometric deep learning library built on top
of PyTorch (17). Among other functions and layers, PyG
implements the SAGEConv layer, which corresponds to the
GraphSAGE operator that was originally designed to allow
the training of GNNss in large networks (18). SAGEConv si-
multaneously learns the topological structure of the neighbor-
hood of each node, as well as the distribution of the features
of the nodes in the neighborhood.

In this work, we present a novel DTI prediction method,
termed GENNIUS (Graph Embedding Neural Network In-
teraction Uncovering System), built upon SAGEConv layers
followed by a neural network (NN)-based classifier. GEN-
Ni1US outperforms state-of-the-art DTI prediction methods
across several datasets, not only in AUROC and AUPRC,
but also in execution time. Since ensuring the capabilities
of in silico drug repurposing approaches to find new interac-
tions is of utmost importance, we also evaluated the ability
of GENNIUS to predict true interactions reported as negative
in a given dataset, yielding promising results. We further as-
sessed the generalization capability of our model by training
in one dataset and testing in a different one. This procedure
mimics more realistically how the model would behave in a
real-world setting.

Finally, while drug repurposing approaches based on com-
plex machine learning models have eased the discovery of
new targets, they often lack explainability. We analyzed qual-
itatively how drug features (such as commonly-used molecu-
lar descriptors) and protein features (such as the amino acid
ratio of protein sequences) are combined in a non-linear man-
ner while solving the DTI prediction task. This analysis re-
vealed that the GNN encoder maintains biological informa-
tion while diffusing this information through nodes, eventu-
ally distinguishing protein families in the node embeddings.

Overall, the results of our evaluation provide strong support
for the effectiveness of GENNIUS, and introduce relevant
guidelines to build GNN-based drug repurposing approaches.

2. Materials and Methods
2.1. Methods

2.1.1. Model architecture

GeNNius architecture is composed of a Graph Neural Net-
work (GNN) encoder that generates node embeddings and a
Neural Network (NN)-based classifier that aims to learn the
existence of an edge (i.e., an interaction) given the concate-
nation of a drug and protein node embeddings (Figure 1).
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In GNNSs, nodes in the graph exchange messages with their
neighbors to update their feature representation, which is for-
mulated with two fundamental functions: the message and
the update functions.(19):

mf= > Mg(h} " hy ). 1)
u€N (v)
h} = Uy (hy =" my), ¢)

where k € {1,..., K} represents the layer, m, the aggre-
gated message vector for node v, N(v) the neighbor nodes
of v, and h, € R the node v embedding, of dimension d.
M (h,,hy, e,,,) defines the message between node v and its
neighbor node u, which depends on the edge information
eyy- Finally, Uy is the node update function, which com-
bines aggregated messages from the node’s neighbors with
the node’s own representation.

GENNIUS’s encoder is composed of four SAGEConv lay-
ers, which are responsible for generating network-preserving
node embeddings h € R¢ (d = 17 in our case) by aggregating
information from the embeddings of each node’s local neigh-
borhood. Thus, in GENNIUS, the embedding of node v at
SAGEConv layer k is given by:

hy = f(WEhy ™' + AGG(Wi{h, ™ u e N(v)}),  (3)

where f is the activation function (Tanh in our case) and
AGG represents the aggregation function (SUM in our case).
W§ and W’f are the learnable weight matrices; since we are
working with heterogeneous graphs, where a drug is only
connected to proteins and vice versa, if W(l) € R4*4P then
W% € R4¥dN  or the other way around, being dp (dy) the
initial dimension of proteins (drugs) node features. For k > 1,
both matrices have dimension d x d.
The NN-based classifier is composed of two dense layers,
both using ReLu as the activation function, followed by the
output layer, which is composed of a single neuron with a
sigmoid activation function. The input to the classifier is a
vector of dimension 2d (corresponding to the concatenation
of a drug and protein embeddings), and the output is the esti-
mated probability of having an interaction (positive edge).
GENNIUS architecture (depicted in Figure 1) and hyperpa-
rameters were chosen through a grid search with ten indepen-
dent runs, using different types and number (/') of GNN lay-
ers, different embedding dimension d, activation functions,
aggregation functions, and different number of heads for lay-
ers with attention. This approach helped us to fine-tune the
model (see Supplementary Material 1 for a detailed descrip-
tion of the process and hyperparameters).

2.1.2. Model configuration

The model was trained with the Adam optimizer (20) and a
learning rate of 0.01. We use a loss that combines the sigmoid
of the output layer and the binary cross entropy in a single
function. This combination takes advantage of the log-sum-
exp trick for numerical stability (21). Given a dataset divided
into batches of size N, the loss [,, for sample n in the batch is
computed as follows:

In = —[yn-logo (zn) + (1 =yn) log(1 -0 (zn))], 4
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Fig. 1. Schematic of GENNIus architecture. GENNIUS inputs a graph contain-
ing drug (red) and protein (blue) nodes, where N4 and N, represent the number
of drugs and proteins, respectively. First, a GNN generates node representations
with an embedding of dimension d = 17. Second, a NN-based classifier aims at
learning the existence of an edge given a set of concatenations of drug and protein
embeddings. Note that at this stage a negative set of edges is generated.

Embeddings

where y,, € {0,1} is the associated label for sample n, 9, =
o(zy,) the estimated probability of the sample belonging to
the positive class (i.e., existence of an interaction), and x,, the
output of the last linear layer (before the activation function).
The final batch loss L is then computed as the average of
(l1,...,1n). Finally, a dropout of 0.2 is used at the encoder
stage (the GNN) to address potential collinearities of node
features (22) (dropout rate chosen through hyperparameter-
tuning, see Supplementary Material Section 1).

The model is implemented with early stopping, calcu-
lated on validation data, with a minimum of 40 training
epochs. The latter is especially useful for small datasets
where an early stop may occur during the first epochs,
eventually causing underfitting. The model was built with
the latest version of PyTorch Geometric (2.3.0), with Py-
Torch 2.0.0-cudall.7, and the following packages: pyg-
lib (0.2.0+pt20cul17), torch-scatter (2.1.1+pt20cull7) and
torch-sparse (0.6.17+pt20cull7). A Dockerfile for run-
ning the model is available at https://github.com/
ubioinformat/GeNNius.

2.1.3. Model training and evaluation

In the standard setting in which a single dataset (graph in our
case) is used to evaluate model performance, the input graph
is randomly split into a 70:10:20 ratio for train, validation,
and test, respectively, via the random link split function of
PyG. This function also randomly selects the negative edges
needed for training and testing the NN-based classifier for a
1:1 positive/negative ratio. The training set requires further
shuffling of positive and negative edges. Only 70% of train
edges is used for training the encoder, while the rest are kept
apart for the edge prediction part (i.e., the edge classifier).
To assess the performance of the models in the edge classi-
fication task on test data, we use the area under the Receiver
Operating Characteristic curve (AUROC), as well as the area
under the precision-recall curve (AUPRC), both widely used
for evaluating DTT prediction models. We refer to Supple-
mentary Material Section 2 for a more extended description
of these metrics.

2.1.4. Node features

Due to the different nature of drugs and proteins, we choose
a vastly different set and dimension of features for drug and
protein nodes. The protein node features are encoded as a
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20-dimensional vector, accounting for the 20 different amino
acids, where each feature indicates the proportion of the cor-
responding amino acid in the protein sequence associated
to the node. Drug node features are chosen to be well-
known molecular descriptors, calculated with RDKit (23),
from their SMILES. Specifically, the 12 selected features for
drug nodes are: LogP value, molecular weight, number of
hydrogen bond acceptors, number of hydrogen bond donors,
number of heteroatoms (i.e., any atom that is not carbon
or hydrogen), number of rotatable bonds, topological polar
surface area (surface sum over all polar atoms, primarily O
and N, also including their attached H atoms), number of
rings and aromatic rings, number of NHs and OHs, num-
ber of nitrogen and oxygen atoms, number of heavy atoms a
molecule (atomic number > 1), and number of valence elec-
trons. While some of the above-mentioned features are re-
lated, model learning and performance is not expected to de-
teriorate as a dropout layer was introduced to reduce the po-
tential effect of features’ collinearity (the correlation matrices
of drug/protein features are provided in Supplementary Ma-
terial Section 3). While other node features could be consid-
ered, such as protein pre-computed embeddings, training the
model with those features showed almost no increase in per-
formance (Supplementary Material Section 4). In addition,
the pre-computed protein embeddings were not available for
all proteins, which led to a decrease in nodes, hindering the
training process and making it impossible for the model to
generalize when trained in small networks (Supplementary
Material Section 4).

2.1.5. Related work

In order to benchmark our proposed method GENNIUS, we
focus on the latest DTI prediction models that have been
shown to outperform previously developed models in their
respective publications.

* DTINet (10). It considers a heterogeneous graph with
four node types (drugs, proteins, side effects and dis-
eases) and six edge types (DTIs, protein-protein in-
teraction, drug-drug interaction, drug-disease associ-
ation, protein-disease association, drug-side-effect as-
sociation, plus similarity edges between drugs and pro-
teins). After compact feature learning on each network
drugs/proteins, it calculates the best projection of one
space onto another using a matrix completion method,
and then infers interactions according to the proximity
criterion. We note that the large quantity of data re-
quired to run the method hampered its reproducibility,
as the code for generating all these matrices was not
available.

e EEG-DTI (11). EEG-DTI, which stands for end-
to-end heterogeneous graph representation learning-
based method, also considers a heterogeneous net-
work, where nodes and edges are the same as in
DTINet (see above). The model first generates a low-
dimensional embedding for drugs and proteins with
three Graph Convolutional Networks (GCN) layers,
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and then concatenates these layers for drugs and pro-
teins separately. Finally, it calculates the inner product
to get the protein-drug score.

* HyperAttentionDTI (5). This method only requires
the SMILES string for drugs and the amino acid se-
quence for proteins. Then, it embeds each character
of the different sequences into vectors. The model is
based on the attention mechanism and Convolutional
Neural Networks (CNNs), in order to make DTI pre-
dictions.

¢ Moltrans (9). Its name stands for Molecular Interac-
tion Transformer for predicting DTIs. As HyperAt-
tentionDTI above, it needs the SMILES for drugs and
amino acid sequences for proteins. Then, it makes use
of unlabeled data to decompose both drug and nodes
into high-quality substructures, to later create an aug-
mented embedding using transformers. Due to this ar-
chitecture, the model is able to identify which substruc-
tures are contributing more to the overall interaction
between a protein and a drug.

2.2. Materials

2.2.1. Datasets
In this work we selected various datasets that have been
widely used for DTI prediction tasks:

* DrugBank (24). Drug-Target interactions collected
from DrugBank Database Release 5.1.9. Its first re-
lease was in 2006, although it has had significant up-
grades during the following years.

* BioSNAP (25). Dataset created by Stanford Biomed-
ical Network Dataset Collection. It contains proteins
targeted by drugs on the U.S. market from DrugBank
release 5.0.0 using MINER (26).

* BindingDB (27). Database that consists of measured
binding affinities, focusing on protein interactions with
small molecules. The binarization of the dataset was
done by considering interactions positive if their K
was lower than 30. Data downloaded from Therapeu-
tics Data Commons (TDC) (28).

e Davis (29). Dataset of kinase inhibitors with kinases
covering >80% of the human catalytic protein kinome.
The binarization of the dataset has been done consid-
ering as positive interactions with a K; lower than 30.
Data downloaded from Therapeutics Data Commons
(TDC) (28).

* Yamanishi et al. (30). It is composed of four sub-
sets of different protein families: Enzymes (E), Ion-
Channels (IC), G-protein-coupled receptors (GPCR)
and nuclear receptors (NR). Yamanishi dataset has
been considered the golden standard dataset for DTI
prediction and has been used in several published mod-
els (11, 31, 32). DTIs in this dataset come from KEGG
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BRITE (33), BRENDA (34), SuperTarget (35) and
DrugBank.

For all considered datasets, we dropped those drugs and pro-
teins from which SMILES or amino acid sequences could not
be generated, yielding slightly smaller networks (see Supple-
mentary Material Section 5).

Note that the above-mentioned datasets, with the exception
of BindingDB and Davis, contain only positive samples, i.e.,
positive links in the network. Nevertheless, when choosing
negative samples, we performed random subsampling to have
a balanced dataset prior to training the model.

Datasets statistics are summarized in Table 1. These datasets
were released in different years, and thus some drug-target
interactions can be shared across datasets (See Supplemen-

tary Material Section 6).
Table 1. Dataset Statistics.

Yamanishi
DrugBank BIOSNAP BindingDB Davis E  GPCR IC NR

Number of drugs 6823 4499 3084 59 444 222 210 53
Number of proteins 4652 2113 718 218 660 94 203 25
Total number of nodes 11475 6612 3802 271 1104 316 413 78
Total number of edges 23708 13838 5937 673 2920 634 1471 86
Sparsity (%) 0.07 0.15 0.27 552 1.01 313 357 694
# Connected components 412 174 231 1 44 18 3 10
Avg degree drug nodes 3.47 3.08 1.93 1141  6.58 286  7.00 1.62
Avg degree protein nodes 5.10 6.55 8.27 3.09 442 6.74 725 344
2.2.2. Dataset configuration for inferring unknown posi-

tives

DTI datasets contain information from diverse sources, have
been released in different years, and may be curated in vari-
ous ways. As a result, negatively labeled edges in one dataset
may be reported as positive in other datasets. We evaluate
these unknown positive edges for each dataset to asses if
GENNIUS can predict them (see Supplementary Section 6
for details on the number of these edges for each dataset).
Importantly, we ensured that testing edges do not appear as
negatives during training to asses how well GENNIUS pre-
dicts these specific interactions; we repeated the process ten
independent times, enabling us to investigate the variability
of the prediction depending on training edges, which is often
not reported in DTI prediction models.

2.2.3. Data leakage prevention during evaluation on unseen
datasets

Contrary to previously proposed models, we assess the gen-
eralization capability of GENNIUS by training it on one
dataset and testing it on another. For a fair assessment, it
is necessary to ensure that there is no data leakage of DTIs
between training and testing.

Let us consider two nodes that are present both in the train-
ing and test datasets. There are four possible scenarios for an
edge connecting these nodes. A positive edge in both datasets
is a clear example of data leakage from the train to the test set,
as we already informed the model about that positive edge
during training. Hence those repeated DTIs are removed dur-
ing training. On the other hand, edges that appear in one
dataset but not on the other one are kept. Keeping the neg-
ative edges in the training data makes sense from a usabil-
ity perspective since a non-reported DTI in a given dataset
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does not necessarily mean that that pair does not interact, and
we would like to test the capabilities of the model under this
general scenario. Further, a negative edge may be shared in
both datasets; however, since negative edges are randomly se-
lected when generating the training and testing sets, the prob-
ability of picking the same edge in both datasets is very low.
As an illustrative example, when using DrugBank for train-
ing and NR for testing, the probability of selecting the same
negative edge is approximately 3e 6.

We performed five independent training runs on each dataset,
i.e., randomly selecting each time a different set of edges for
training the model. Next, for each trained model, we per-
formed five independent testing runs. We report the average
and standard deviation of the AUROC and AUPRC metrics,
of the test set, across the total 25 runs per training-testing
dataset pair.

2.2.4. Protein and Drug Annotation

Protein family and enzyme annotation was retrieved from
the ChEMBL database (release 31), as its family hierarchy is
manually curated and according to commonly used nomen-
clature (36). Drug chemical annotation was generated using
ClassyFire, an automated structural classifier of chemical en-
tities (37). Annotation was used for coloring t-SNEs.

2.2.5. Hardware

All simulations were performed on a server with 64 intel
xeon gold 6130 2.1Ghz cores with 754Gb of RAM and a
NVIDIA GeForce RTX 3080, driver version 515.43.04, with
cuda 11.7. version

3. Results

3.1. GENNIus outperforms state-of-the-art methods
The proposed model was run on the eight selected datasets
with five independent runs. The resulting AUROC and
AUPRC metrics on the test sets across all datasets, as well
as running times (corresponding to train, validation and test),
are presented in Figure 2 (see also Supplementary Mate-
rial Section 7). GENNIUS returned AUROC and AUPCR
performance close to 1 (>0.9) for large datasets, and while
smaller datasets reported worse results, they are still com-
pelling (>0.8 in almost all runs). NR, being the smallest
one, achieved the worst results (>0.7). Additionally, the large
datasets showed stable results, with a low standard deviation,
across the five independent runs. Further, the model execu-
tion time was ultrafast for all datasets (less than a minute for
the largest dataset). Note that the time variance in the large
datasets is due to early stopping.

Next, we compared the performance of GENNIUS with pre-
viously proposed methods. Table 2 shows the performance
results of GENNIUS and the state-of-the-art methods for both
DrugBank and BIOSNAP, the largest standard DTI datasets.
We focus on these datasets as they better characterize the
current size of testable available drugs. GENNIUS outper-
formed all benchmarked methods in terms of AUROC and
AUPRC. Importantly, the execution time is significantly re-
duced, even when executed without GPU (see Supplemen-
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Fig. 2. Boxplots of AUROC and AUPRC metrics on test data for five independent
runs of GeNNius for the eight selected datasets. Upper. AUROC results. Middle.
AUPRC results. Lower. Time results in minutes.

tary Material Section 8). Previous methods’ running time
was in the order of tens of minutes (except DTINet, which
took 4.23 min), while GENNIUS took less than 0.6 minutes
to perform the training, validation, and testing. The clos-
est performance in AUROC and AUPRC to GENNIUS was
achieved by EEG-DTI. However, EGG-DTI took four or-
ders of magnitude more time to run (917.39 min versus 0.58
min in DrugBank). Finally, we also compared GENNIUS to
off-the-shelf machine learning baselines Logistic Regression
(LR) and Random Forest (RF), to assess the actual improve-
ment in accuracy using the same features (see Supplemen-
tary Material Section 9 for further details on those baselines).
Comparing our model with LR and RF, we observed an in-
crease in AUROC of 31.75% and 16.73%, respectively, indi-
cating that GENNTIUS is superior due to its architecture: it not
only uses node features but also incorporates network topo-
logical information.

3.2. GENNIus prediction capabilities for inferring pre-
viously unreported drug-target interactions

To analyze the capability of GENNIUS to detect unknown
interactions, we first identified those target-protein pairs lack-
ing an edge in one dataset (negative label) but connected
in the other datasets (positive label). = Then, we assessed
whether GENNTUS was able to annotate these edges as posi-
tive. We trained the model ensuring that the edges for testing
were not seen during the training process and repeated the
process ten times. Further details of experiment set-up in
Methods (Section 2.2.2).

The ratio of correctly predicted edges for each dataset is pre-
sented in Figure 3. When trained with large datasets, GEN-
N1US returned good prediction capabilities, detecting more
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Table 2. Benchmarking results of GENNIUS against four state-of-the-art DTl methods and two off-the-self machine learning baselines, for BIOSNAP and DrugBank
datasets. Best values are highlighted in bold, excluding baseline results. All AUROC and AUPRC reported results correspond to test set, execution time correspond to
train/validation/test. SOTA models were run in their default configuration, i.e., Moltrans correspond to 5 independent runs, while DTINet and EEG-DTI correspond to a 10-Fold

Cross Validation, and HyperAttentionDTI to 10-times repeated 5-fold Cross-Validation.

BIOSNAP DrugBank
Method AUROC AUPRC Time (min) AUROC AUPR Time (min)
DTINet 0.8557 +0.0011  0.8856 + 0.0009 4.23 0.8154 +0.0004  0.8569 + 0.0005 7.99
HyperAttentionDTI  0.8616 &+ 0.0026  0.7716 4+ 0.0627 66.57 0.8624 + 0.0034  0.7756 4 0.0456 610.45
Moltrans 0.7921 4+ 0.0084 0.6452 + 0.0037 43.35 0.7982 + 0.0079  0.6622 4 0.0053 122.09
EEG-DTI 0.9021 4+ 0.0094  0.9046 + 0.0098 41.39 0.8886 4+ 0.0049  0.8795 4+ 0.0066 917.39
GENNIUS 0.9340 + 0.0032  0.9349 + 0.0021 0.34 0.9371 + 0.0033  0.9392 + 0.0041 0.58
Logistic Regression  0.6173 +0.0026 0.5731 £0.0020  0.02  0.6196 £0.0048 0.5747 £0.0035 0.06
Random Forest 0.7910 4+ 0.0050 0.7519 4 0.0056 0.05 0.7698 + 0.0032  0.7212 4+ 0.0031 0.09
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Fig. 3. Boxplot of the ratio of correctly identified positive edges in 10 independent
runs trained and tested on the same dataset. Note that e is the number of edges to
be evaluated.

than 80% of edges in almost all cases. It is worth noting
that with DrugBank GENNIUS successfully predicted more
than 90% of these edges across all runs. Further, when us-
ing Yamanishi datasets (E, GPCR, IC, and NR), GENNIUS
returned satisfactory results, predicting 70% of DTIs on av-
erage across different runs, although with higher variability
than when using large datasets. This suggests that training
on a small dataset hinders the inference of new interactions,
as the random choice of edges for training has larger impact
on the predictive power in these cases. We note that the ob-
served outliers could be due to a non-informative random se-
lection of training edges. Finally, the Davis dataset yielded
significantly worst results than the other datasets. At first
sight, this behavior could be due to the origin of the Davis
dataset, as it is generated from affinity experiments. How-
ever, BindingDB, which is also generated from affinity data,
does not yield such low performance. Hence, this may indi-
cate that the problem comes from the significant difference
in the topology of Davis versus all the other datasets. Davis
is the only dataset formed as a uniquely connected network,
while other datasets have more than one connected compo-
nent. It also presents significantly different average degree
values in drug nodes (see Table 1).

3.3. GENNIus generalization capabilities

We evaluated GENNIUS performance when training and
testing on different datasets. In order to ensure that there
is no data leakage that might oversimplify the prediction
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task, DTIs that were common to train and test datasets were
discarded prior to applying the model (see Methods, Sec-
tion 2.2.3, for a more detailed description of the set-up).
AUROC results are presented in Figure 4 (obtained AUPRC
results are similar, see Supplementary Material Section 10),
where each entry of the heatmap shows the performance of
GENNIUS on the row dataset when trained on the column
dataset. The reported values correspond to 25 runs, where
statistical deviation in AUROC and AUPRC arise from the
random selection of edges.

In general terms, GENNIUS returned compelling results in its
generalization capabilities; however, there was a strong de-
pendence on the training dataset. GENNTUS reported the best
generalization capabilities when trained on larger datasets,
such as DrugBank, BIOSNAP, and E. On the other hand,
when the model is trained on the smallest dataset, NR, it
cannot generalize, resulting in lower AUROC/AUPRC values
compared to others (whiter colors in the NR column). Ad-
ditionally, despite the Davis dataset being similar in size to
other Yamanishi datasets, it returned the second-to-worst re-
sults for both training and testing. As mentioned previously,
Davis’ topology is different from the rest of the networks. In
addition, Davis and BindingDB, unlike other datasets, come
from affinity experiments. However, the latter seems to per-
form similarly, albeit slightly worse, than DrugBank when
used for training.

We also found that, for smaller networks, our method ob-
tains better results when trained on large datasets and tested
on smaller ones compared to when trained and tested on the
same small dataset (see results Section 3.1). For instance,
GENNIUS obtained an AUROC of 0.86 when trained on
DrugBank and tested on NR (lower left corner of heatmap),
while it achieved an AUROC of 0.73, using NR for training
and testing. This suggests that training on large networks
helps the model learn and generalize to unseen and smaller
datasets.

In addition, to assess how much these results depend on the
node features, we compared them with a random forest model
that has no information on network topology. RF showed in-
capability to generalize, contrasting with the results obtained
when training and testing on the same dataset (Table 2). The
presented results indicate that GENNIUS is capable of gener-
alizing by employing both features and the network’s topol-
ogy without overfitting to the training network (see Supple-
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mentary Material Section 10).

Finally, we confirmed that GENNIUS’s generalization capa-
bility is not dependent on the embedding dimension by exper-
imenting with different values (see Supplementary Material
Section 11).

DrugBank BIOSNAP BindingDB  Davis E GPCR Ic NR

0.9243 0.8896 0.6578
i i *
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Fig. 4. Performance of GENNIUs in terms of AUROC when training in one dataset
(column) and testing in other (row). Train datasets do not contain positive edges
that appear in the test dataset.

3.4. GENNIus encoder preserves biological informa-
tion in edges and diffuses it in nodes

To qualitatively interpret the generated embeddings by
GENNIUS’s GNN encoder, we computed the t-SNE of both
the input features and the computed embeddings for all nodes
and DTI edges. We focused on the DrugBank dataset, since
as shown in previous sections, it reports one of the best AU-
ROC/AUPRC results (Sections 3.1 and 3.3) and yields one
of the lowest variability during DTI evaluation (Section 3.2).
We aimed at shedding some light on whether the embeddings
generated by GENNIUS carry meaningful biological infor-
mation beyond the ability to uncover new DTlIs.

Firstly, we observe that the edge space with the input features
contains information about drug chemical categories and pro-
tein families (see Supplementary Material Section 12 Fig-
ures 8a,8b,8c). Using the generated embeddings instead, we
observe that despite the new shapes in the t-SNE, the biolog-
ical information is conserved after graph convolutions, i.e.,
we can still distinguish groups by drug chemical classifica-
tion but especially by protein families (see Supplementary
Material Section 12 Figures 8d, 8e, 8f).

Secondly, we analyzed the nodes, and found that node input
features contain almost no information about protein fami-
lies, i.e., nodes do not form groups by protein families or
by sub-classification of enzymes, conversely to drug nodes
grouped by chemical categories (see Supplementary Material

Veleiro etal. | GENNIUS: An ultrafast DTI inference method based on GNNs

Section 12 Figures 9a, 9b, 9c). The next emerging question
we wanted to answer is whether the network diffuses edge
biological information during encoding such that the embed-
ding of protein nodes reflects it. We found that the grouping
of drug nodes concerning their chemical classification spread
after applying the encoder; this is an awaited result, as we
desire drugs in a DTI prediction model to be promiscuous
(Supplementary Material Section 12 Figure 9d). However,
protein node embeddings displayed better identifiable groups
than before (Supplementary Material Section 12 Figure 9e).
Protein families, such as membrane receptors (orange) and
ion channels (violet), revealed some grouping at the top of
the figure, despite not forming evident groups. Moreover,
enzymes now gather in separate groups across the embed-
ding space and, further, upon its annotation, we found a more
clear grouping, e.g., kinases (fuchsia) formed a small group
on the right of the t-SNE (Supplementary Material Section
12 Figure 9f).

Ultimately, the encoder maintains biological information in
edge space while spreading biological information through
nodes, such as protein family classification in protein nodes
and sub-classification of enzymes.

Additionally, we visualized the embedding space of negative
and positive edges, adding those DTI used for validation in
Section 3.2. The edges embedding space differentiates areas
of positive and negative edges, vastly facilitating the task to
the NN-classifier (Supplementary Section 12 Figure 10).

4. Conclusions

We introduced a novel Drug-Target Interaction (DTT) model,
termed GENNIUS, composed of a GNN encoder followed
by an NN-edge classifier. GENNIUS outperformed state-of-
the-art models in terms of AUROC and AUPRC while be-
ing several orders of magnitude faster. Further, we showed
that the generalization capabilities of GENNIUS and demon-
strated its ability to infer previously unreported drug-target
interactions. In addition, we showed that GENNIUS GNN
encoder exploits both node features and graph topology to
maintain biological information in edge space while spread-
ing biological information through nodes. Ultimately, GEN-
NIUS ’s ability to generalize and predict novel DTIs reveals
its suitability for drug repurposing. Additionally, its remark-
able speed is key in its usability as it enables fast validation
of multiple drug-target pairs.
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