

1 Predicting the impact of rare variants on RNA splicing in CAGI6

2 Authors

3 Jenny Lord¹, Carolina Jaramillo Oquendo¹, Htoo A. Wai¹, Andrew G.L Douglas^{1,2}, David J. Bunyan^{1,3},
4 Yaqiong Wang⁴, Zhiqiang Hu⁵, Zishuo Zeng⁶, Daniel Danis⁷, Panagiotis Katsonis⁸, Amanda Williams⁸,
5 Olivier Lichtarge⁸, Yuchen Chang^{9,10}, Richard D. Bagnall^{9,10}, Stephen M. Mount¹¹, Brynja
6 Matthiasardottir^{12,13}, Chiaofeng Lin¹⁴, Thomas van Overeem Hansen^{15, 16}, Raphael Leman^{17,18},
7 Alexandra Martins¹⁹, Claude Houdayer^{19,20}, Sophie Krieger^{17,18}, Constantina Bakolitsa²¹, Yisu Peng²²,
8 Akash Kamandula²², Predrag Radivojac²², Diana Baralle^{1,23}

9 **Corresponding author:** Diana Baralle, d.baralle@soton.ac.uk

10 Affiliations

- 11 1. Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- 12 2. Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- 13 3. Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
- 14 4. Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical
15 Center, Shanghai, 201102, China
- 16 5. University of California, Berkeley, Berkeley, CA 94720
- 17 6. Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08873, USA
- 18 7. The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
- 19 8. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- 20 9. Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney,
21 Australia
- 22 10. Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- 23 11. Dept. of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
- 24 12. Graduate Program in Biological Sciences and Dept. of Cell Biology and Molecular Genetics, University of
25 Maryland, College Park, Maryland
- 26 13. Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland
- 27 14. DNAexus, Mountain View, CA 94040
- 28 15. Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen,
29 Denmark
- 30 16. Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen,
31 Copenhagen, Denmark
- 32 17. Laboratoire de Biologie et Génétique du Cancer, Centre François Baclesse, Caen, France
- 33 18. Inserm U1245, Cancer Brain and Genomics, Normandie Univ, UNICAEN, FHU G4 génomique, Rouen,
34 France
- 35 19. Inserm U1245, Cancer Brain and Genomics, Normandie Univ, UNIROUEN, FHU G4 génomique, Rouen,
36 France
- 37 20. Univ Rouen Normandie, INSERM U1245, FHU-G4 Génomique and CHU Rouen, Department of Genetics, F-
38 76000 Rouen, France
- 39 21. University of California, Berkeley, Berkeley, CA 94720
- 40 22. Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA
- 41 23. Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton,
42 UK
- 43

44 **Keywords:** Splicing, variant interpretation, *in silico* prediction, CAGI6

45

46

47 **Abstract**

48 **Background:** Variants which disrupt splicing are a frequent cause of rare disease that have been
49 under-ascertained clinically. Accurate and efficient methods to predict a variant's impact on splicing
50 are needed to interpret the growing number of variants of unknown significance (VUS) identified by
51 exome and genome sequencing. Here we present the results of the CAGI6 Splicing VUS challenge,
52 which invited predictions of the splicing impact of 56 variants ascertained clinically and functionally
53 validated to determine splicing impact.

54 **Results:** The performance of 12 prediction methods, along with SpliceAI and CADD, was compared
55 on the 56 functionally validated variants. The maximum overall accuracy achieved was 82% from two
56 different approaches, one weighting SpliceAI scores by minor allele frequency, and one applying the
57 recently published Splicing Prediction Pipeline (SPiP). SPiP performed optimally in terms of
58 sensitivity, while an ensemble method combining multiple prediction tools and information from
59 databases exceeded all others for specificity.

60 **Conclusions:** Several challenge methods equalled or exceeded the performance of SpliceAI, with
61 ultimate choice of prediction method likely to depend on experimental or clinical aims. One quarter
62 of the variants were incorrectly predicted by at least 50% of the methods, highlighting the need for
63 further improvements to splicing prediction methods for successful clinical application.

64

65 **Introduction**

66 The diagnosis of rare disorders has been revolutionised in recent years thanks to the availability and
67 widespread adoption of next generation sequencing technologies capable of detecting disease-
68 causing variants. With the ever-decreasing prices of whole-exome sequencing (WES) and whole-
69 genome sequencing (WGS) comes an increased use of these approaches, leading to the detection of
70 more genetic variants than ever before. This brings with it a major challenge in understanding what
71 these variants do, since our ability to detect them has far outstripped our ability to meaningfully
72 interpret their effects, particularly outside of protein coding regions. As a result, even with WGS,
73 around half of patients with rare disorders do not get a diagnosis (Turro et al. 2020; Stranneheim et
74 al. 2021).

75 While estimates vary widely (Lord and Baralle 2021), it is thought somewhere between 15-60% of
76 disease causing variants affect splicing (Krawczak et al. 1992; López-Bigas et al. 2005). Generally
77 speaking, in diagnostic and research variant prioritisation pipelines, variants which fall within the
78 2bp canonical splice acceptor or donor sites will be classed as splice-affecting, while variants outside

79 of those small regions are often not assessed for splicing impact. It is common for intronic and
80 synonymous variants to be filtered out, while missense variants are generally assessed for their
81 impact on protein structure and function without consideration for the role they may play in
82 splicing. All of these variant types, however, can and do impact splicing and cause disease. This
83 approach has led to an under-ascertainment of splice-affecting variants clinically (Lord et al. 2019).
84 What is needed, particularly with the increasing use of WGS over WES enabling the detection of far
85 more intronic variants than before, is a way to effectively triage which variants are splice-affecting
86 and which are not.

87 Currently, under ACMG/AMP guidelines (Richards et al. 2015), *in silico* splicing prediction
88 approaches may be used as supporting evidence for genetic diagnosis if multiple independent tools
89 predict an impact on splicing. Experimental validation of splicing effects using RT-PCR, mini-genes or
90 RNAseq is often required to confidently establish a variant's impact on splicing, but such approaches
91 are time-consuming and expensive to perform at scale. Recent years have seen an explosion of
92 innovative new approaches to splicing prediction, with many new tools being generated, often
93 utilising machine learning. If a high degree of accuracy and reliability can be obtained from *in silico*
94 approaches, we may be able to move away from requiring experimental confirmations, or at the
95 least, have an efficient method to triage variants most in need of validation. This would require
96 highly accurate algorithms and extensive testing in the clinical setting to give sufficient confidence in
97 these optimal approaches.

98 The Splicing Variants of Unknown Significance (VUS) challenge in the 6th Critical Assessment of
99 Genome Interpretation (CAGI6) sought to assess splicing prediction accuracy on a set of clinically
100 ascertained, functionally validated variants. This enabled performance comparison of many cutting-
101 edge splicing prediction approaches and gave insights into the types of variants not currently well
102 captured by these methods.

103 **Methods**

104 Variant selection and validation

105 As previously described in Wai et al. 2020 (Wai et al. 2020), a total of 64 variants were ascertained
106 through Wessex Regional Genetics Laboratory in Salisbury (52 variants) or the Splicing and Disease
107 research study (12 variants) at the University of Southampton, ethically approved by the Health
108 Research Authority (IRAS Project ID 49685, REC 11/SC/0269) and by the University of Southampton
109 (ERGO ID 23056). Informed consent was provided for all patients for splicing studies to be
110 conducted. All variants had been, or were undergoing RT-PCR analysis to determine their impact on

111 splicing using RNA from whole blood collected in PAXgene tubes, again as previously described (Wai
112 et al. 2020).

113 Eight variants were excluded from the final analysis (unable to establish splicing impact before
114 analysis period (n=3), incorrect gene/variant annotations given in the dataset distributed (n=3),
115 variant found to impact gene expression rather than splicing (n=2)), giving a total of 56 variants in
116 the final assessment set (**Supplementary Table 1**), which span a wide range of rare disease and
117 cancer predisposition associations, none of which had had their impact on splicing published
118 previously.

119 The Splicing VUS challenge

120 Variants were distributed as a tab delimited text file including the following information: HGNC
121 identifier, chromosome, position, reference allele, alternative allele, gene and strand. Entrants also
122 had access to 256 previously published variants (Wai et al. 2020) obtained and validated by the same
123 approach to aid in method development/testing.

124 Challenge participants submitted their entries in the form of tab delimited text files including the
125 variant information, a binary prediction of whether a variant affected splicing or not (1=yes, 0=no),
126 along with a score for the probability of the variant affecting splicing and the level of confidence in
127 the prediction given. All assessments were based on the binary splice-affecting prediction alone.

128 Challenge assessment

129 The performance of each prediction model was assessed by calculating and comparing a series of
130 metrics: overall accuracy, area under the receiver operating characteristic curve (AUC), sensitivity,
131 specificity, positive predictive value (PPV) and negative predictive value (NPV). AUC and confidence
132 intervals (2000 stratified bootstrap replicates) were calculated using the pROC package (Robin et al.
133 2011) in R v3.5.1 (R Core Team 2018), and plots made with ggplot2 (Wickham 2009). Performance of
134 each method was compared across binned splicing locations – Near Acceptor (acceptor +/- 10bp),
135 Near Donor (donor +/- 10bp), Exonic Distant (exonic, 11bp or more from either splice site), Intronic
136 Distant (intronic, 11bp or more from either splice site. For grouped analyses, exonic distant and
137 intronic distant variants were grouped together due to low numbers). These scores were based on
138 the concordance of the binary classification of the variants provided by each team/model (1=splice-
139 affecting and 0=not splice-affecting) with the experimental validation of the splicing impact.

140 SpliceAI (Jaganathan et al. 2019) and CADD v1.6 (Kircher et al. 2014) (which incorporates SpliceAI
141 predictions) were included in the assessment alongside the challenge models as a comparison to
142 emerging industry standards. CADD-phred scores were obtained by uploading a VCF to the CADD

143 webserver (<https://cadd.gs.washington.edu/score>). SpliceAI scores were obtained from Ensembl's
144 Variant Effect Predictor (VEP) web interface (McLaren et al. 2016) (44 variants scored) or using the
145 SpliceAI webserver from the Broad Institute (<https://spliceailookup.broadinstitute.org/>, 11 variants
146 that were not scored by VEP; options: hg38, masked scores, max distance 50bp). A cut-off of 0.2 was
147 used for SpliceAI scores, and 18 for CADD.

148

149 **Results**

150 Variant characteristics of challenge set

151 Of the 56 variants in the final analysis, the majority (n=49, 87.5%) were SNVs, with 7 indels (12.5%).
152 The variants fell within 42 different genes, broadly representative of clinical genetics referrals in the
153 UK, with the majority of genes having a single variant in the set, and only 7 genes with >1 variant
154 (*BRCA1* n=6, *FBN1* n=4, *MYBPC3* n=3, *BRCA2* n=2, *SCN5A* n=2, *APC* n=2, *USP7* n=2). 37 variants (66%)
155 were found to affect splicing, while 19 (34%) had no observable impact.

156 Variants were divided into 5 groups by their positions relative to intron-exon boundaries. There were
157 16 variants within 10bp of a splice acceptor site (NearAcc), and 23 within 10bp of a splice donor site
158 (NearDon). 10 exonic variants >10bp from either splice site were classed as Exonic>10. Intronic
159 variants >10bp from their nearest splice site were termed Intronic Distant (six upstream of the
160 acceptor, one downstream of the donor). The locations of all variants relative to the intron-exon
161 boundary and whether the variants were determined to be splice disrupting or not are given in **Fig1**.

162 Challenge participants

163 Eight teams submitted predictions for the challenge, with two teams submitting predictions from
164 multiple models, giving 12 models altogether. **Table 1** gives a summary of the approach taken by
165 each model, which was provided by the challenge entrants upon submission of their predictions, but
166 blinded to the assessors until after the assessment period.

167 Model performance across 56 variants

168 **Table 2** summarises the performance metrics of the 12 models, along with CADD and SpliceAI. Full
169 variant information, scores and binary predictions for the 12 models, SpliceAI and CADD and
170 experimental outcome of splicing status are given in **Supplementary Table 1**. The ROC plots for each
171 model are shown in **Fig2**, and **Supplementary Fig1** shows the performance of each method on each
172 variant across the splicing region.

173 **Table 1** – Summary of the prediction approaches of the 12 models from 8 entrants. Additional information on Teams 4 and 5 given in the **Supplementary**
 174 **Methods**.

Team	Authors	Prediction approach
1	YW, ZH	<p>Models were built based on reported pathogenic splicing variants from the literature and benign variants from ClinVar(Landrum et al. 2018). The models were trained and tuned using Gradient Boosting Machine (GBM) with R package “caret” and “gbm”, considering 80 annotation features, including conservation, distance to exon-junctions, population allele frequencies, epigenetic states and prediction scores from SpliceAI(Jaganathan et al. 2019), CADD(Kircher et al. 2014), SCAP(Jagadeesh et al. 2019) and dbSCNV(Jian et al. 2014).</p> <p>Model 1 - Full model which uses all 80 features</p> <p>Model 2 - Five existing prediction scores as features</p> <p>Model 3 - As Model 2, plus distance to splice site and the splice site type as two additional features.</p>
2	ZZ	Positive predictions from CADD-Splice(Rentzsch et al. 2021) (>15), SpliceAI(Jaganathan et al. 2019) (>0.5), MMsplice(Cheng et al. 2019) (>2), and Ensembl Variant Effect Predictor(McLaren et al. 2016) variant consequence (splice region) ranked as “1”, negative predictions as “0”. Mean of the four ranks calculated, and mean ≥ 0.5 classed as positive overall.
3	DD	Super Quick Information-content Random-forest Learning of Splice variants (SQUIRLS)(Danis et al. 2021) applied to data using default thresholds
4	PK, AW, OL	SpliceAI(Jaganathan et al. 2019) adjusted with minor allele frequency(Karczewski et al. 2020), with scores >0.25 classified as splice affecting
5	YC, RDB	<p>Combined information from ClinVar(Landrum et al. 2018), gnomAD(Karczewski et al. 2020), established splicing tools (SpliceAI(Jaganathan et al. 2019) (>0.5), MaxEntScan(Yeo and Burge 2004) (>4)), branchpoint/enhancer locations, distance to exon, splice site database.</p> <p>Model 1 – Base model for prediction</p> <p>Model 2 – Same as Model 1 but using different in-silico prediction score thresholds (SpliceAI(Jaganathan et al. 2019) (>0.5), MaxEntScan(Yeo and Burge 2004) (>6), MMsplice(Cheng et al. 2019) (>2))</p> <p>Model 3 - Required well-scoring compatible site (e.g. for donor loss, a well-scored donor within 300bp of the existing acceptor), adding branchpoint/enhancer locations as extra features</p>
6	SMM, BM, CL	SpliceAI(Jaganathan et al. 2019) applied, with scores ≥ 0.21 classified as splice affecting
7	TvOH	Alamut splicing software (Sophia Genetics) utilised – consensus of 3 programs with at least 10% difference between reference and alternative score predicted to be splice affecting and ACMG splicing guidelines (BRCA1/BRCA2 – ENIGMA).
8	RL, AM, CH, SK	Splicing Prediction Pipeline (SPiP)(Leman et al. 2022) applied (>0.18 for exonic variants, >0.035 for intronic variants)

175 **Table 2** – Summary statistics on predictive performance of the 12 competition entrants plus SpliceAI and CADD on the 56 challenge variants. Maximum
176 value for each metric indicated in bold.

	T1_1	T1_2	T1_3	T2	T3	T4	T5_1	T5_2	T5_3	T6	T7	T8	SpliceAI	CADD
AUC (binary)	0.813	0.826	0.786	0.720	0.708	0.839	0.718	0.717	0.731	0.813	0.731	0.775	0.826	0.537
AUC (score)	0.883	0.903	0.883	0.780	0.788	0.912	0.770	0.770	0.770	0.910	0.801	0.874	0.919	0.543
95% CI (bootstrap n=2000)	0.771- 0.969	0.805- 0.976	0.771- 0.970	0.658- 0.891	0.652- 0.909	0.827- 0.977	0.637- 0.891	0.648- 0.883	0.642- 0.883	0.819- 0.974	0.693- 0.907	0.754- 0.964	0.841- 0.964	0.386- 0.706
Accuracy	0.804	0.804	0.768	0.714	0.732	0.821	0.661	0.643	0.679	0.804	0.679	0.821	0.804	0.625
Sens	0.784	0.757	0.730	0.703	0.784	0.784	0.541	0.486	0.568	0.784	0.568	0.919	0.757	0.811
Spec	0.842	0.895	0.842	0.737	0.632	0.895	0.895	0.947	0.895	0.842	0.895	0.632	0.895	0.263
PPV	0.906	0.933	0.900	0.839	0.806	0.935	0.909	0.947	0.913	0.906	0.913	0.829	0.933	0.682
NPV	0.667	0.654	0.615	0.560	0.600	0.680	0.500	0.486	0.515	0.667	0.515	0.800	0.654	0.417

177 AUC = Area Under the Curve; CI = Confidence Interval; Sens = Sensitivity; Spec = Specificity; PPV = Positive Predictive Value; NPV = Negative Predictive Value

178 No single approach performed optimally on all assessment metrics (**Table 2**). Overall accuracy was
179 joint highest in Teams 4 and 8 at 0.82, with Team 4 also achieving the highest binary outcome AUC
180 at 0.839 (**Fig2**). Team 8 ranked highest on the related metrics for sensitivity (0.919) and NPV (0.800),
181 indicating its permissive prediction approach. Conversely, Team 5's Model 2 performed the best in
182 terms of specificity (0.947) and PPV (0.947), with the lowest proportion of false positive findings. All
183 three models by Team 1, plus Team 4 and Team 6 achieved over 70% in both sensitivity and
184 specificity, indicating more balanced performance.

185 Included as comparators were SpliceAI with a cut-off of 0.2 and CADD with a cut-off of 18. SpliceAI
186 was competitive with the challenge entrants, ranking near-top but not top on all metrics, and indeed
187 top in the AUC when measured using prediction score rather than binary prediction outcome. CADD,
188 however, performed poorly on the challenge set with specificity in particular being very low (0.263).

189 Performance comparison by variant type

190 In order to get an overall impression of the performance of the methods on different types of
191 variants, variants were grouped by location relative to their nearest splice site (**Fig3**), as described in
192 Methods. All methods performed better on exonic distant variants than intronic distant variants,
193 with the exception of SpliceAI, which correctly predicted all seven intronic distant variants. Across
194 methods, there was a high degree of consistency in the proportion of variants correctly predicted in
195 the near acceptor region, and a high degree of variance in performance in the intronic distant set.
196 The types of error differed across regions, with the near acceptor region and exonic distant region
197 having very few false positive predictions across all methods, while almost all methods gave false
198 positive predictions in the near donor and intronic distant regions (**Supplementary Fig2**).

199 We also compared the performance of the approaches on SNVs vs indels, and found all methods
200 except CADD had higher accuracy on SNVs than indels (**Supplementary Fig3**).

201 Some variants are consistently mispredicted

202 21 of the variants (37.5%) were correctly predicted by all 12 submitted prediction methods. None of
203 the variants were incorrectly predicted by all methods, but 14 variants (25%) were predicted
204 correctly by <=50% of the methods, with two variants only being correctly predicted by a single
205 method. These were a splice-affecting single nucleotide deletion 4bp from a splice acceptor site in
206 *KANSL1* (correctly predicted by Team 3) and an SNV in the last base of an exon in *TRPM6* which
207 despite altering the conserved last G nucleotide did not affect splicing in functional testing (correctly
208 predicted by Team 4).

209

210 **Discussion**

211 The CAGI6 Splicing VUS challenge assessed the performance of 14 prediction approaches on a set of
212 56 clinically relevant variants whose impact on splicing had been functionally tested using RT-PCR. A
213 variety of approaches were adopted, and several methods equalled or exceeded the performance of
214 the emergent field leader, SpliceAI.

215 While Teams 4 and 8 had joint highest overall accuracy, there was no single optimal method for the
216 Splicing VUS challenge, since several different models performed optimally on different metrics.

217 Choice of approach may therefore be dependent on the specific nature of the predictions required.

218 Seeking a molecular diagnosis for a particular family may favour sensitivity over specificity, since
219 overlooking a causal variant would prevent this aim, so Team 8's approach with almost 92%
220 sensitivity may be preferred. Seeking confident splice disrupting candidates for functional validation
221 or mechanistic research may call for greater specificity than sensitivity to avoid wasting resources on
222 false positive variants that do not have an impact, in which case Team 5's model 2 with almost 95%
223 specificity may be the strategy of choice.

224 SpliceAI and CADDv1.6 were chosen as comparators for the entrants to the Splicing VUS challenge
225 and were run by the assessors on the 56 challenge variants. SpliceAI has been emerging as a field
226 leader in recent years, with accuracies >90% attained in several studies (Wai et al. 2020; Ha et al.
227 2021; Strauch et al. 2022), although variable performance reported by some (Riepe 2020) which is
228 more consistent with our observed 80.4% overall accuracy in this study.

229 CADD did not perform well on the challenge variants, achieving an overall accuracy of 62.5%.
230 However, this was predominantly driven by a very low specificity, which is to be expected from
231 CADD, since it is not only the impact on splicing being assessed by the tool, but overall
232 deleteriousness. For example, missense variants which were not found to affect splicing in the
233 challenge set may still have been pathogenic through impact on protein structure and/or function.
234 For such variants, CADD would accurately classify them as deleterious in general, but in our
235 assessment solely of splicing impact, this would appear as a false positive, lowering CADD's
236 specificity. Notably, the version of CADD included in the assessment (v1.6) includes SpliceAI and
237 additional splicing prediction tools in its underlying model (Rentzsch et al. 2021). Scoring the
238 challenge variants with CADD v1.5 which did not include these splicing metrics resulted in an overall
239 accuracy around 44.6% (data not shown). From these values it is clear that the explicit inclusion of
240 splicing prediction methods within CADD's underlying model has improved its ability to predict
241 variants that impact splicing. CADD's broad approach makes it a versatile tool for prediction of

242 deleteriousness for many different variant types. At present, however, if predicting a variant's
243 splicing impact is the sole aim, the use of more specialised splicing tools is more appropriate.

244 Of note, SpliceAI featured heavily across the predictive strategies, being the sole predictive method
245 for Team 6 and contributing heavily to the predictions of Team 4, which were weighted by MAF, as
246 well as being run as a comparator by the assessors. Differences in the performance of these
247 approaches highlight that even with the same nominal method, there can be variance in predictions
248 depending on how the scores are obtained, and the thresholds that are used to determine positive
249 predictions. There were just three approaches that did not include SpliceAI as part of their
250 predictions, two utilising instead recent machine learning based prediction tools SQUIRLS (Danis et
251 al. 2021) and SPiP (Leman et al. 2022), and one based on the splicing prediction tools available
252 within the Alamut software, which has been widely used in clinical practice. Of the three, SPiP was
253 the only method to achieve greater accuracy than SpliceAI.

254 A major strength of the challenge in terms of providing a real-world assessment of the performance
255 of these tools is the ascertainment of the challenge variants from genuine clinical practice, where
256 potential splice altering variants in genes relevant to the patient's presentation were referred for
257 validation. This is precisely the type of variant splicing prediction models should be tested on when
258 assessing their suitability for clinical application in rare disorders. It highlights that even in
259 exceptionally well-studied genes, such as the BRCA genes, challenges in variant interpretation
260 remain, since 3 of 8 variants across *BRCA1* and *BRCA2* were incorrectly predicted by over half of
261 challenge methods, and only two of these were accurately predicted by all methods. However, the
262 relatively small sample size makes it difficult to draw any major inferences and is a significant
263 limitation of the study. Apparent variance in performance may be stochastic at such a sample size,
264 and may not be fully reflective of overall performance in a wider context. It also made drawing firm
265 conclusions about performance in subsets of the data, e.g. split by location, variant type, or disease
266 group challenging. However, ascertaining a large body of clinical variants, validating the splicing
267 impact and keeping that private, as is needed for a blinded challenge such as the CAGI6 Splicing VUS
268 challenge, raises ethical concerns. Accurate and timely variant interpretation is reliant on sharing of
269 data, and withholding a large body of functionally validated variants from resources such as ClinVar
270 (Landrum et al. 2018) which are heavily used in clinical assessment of variants does not represent
271 good practice.

272 This small but highly clinically relevant challenge assessed the performance of 12 prediction methods
273 plus SpliceAI and CADD on 56 clinically ascertained variants and found SpliceAI weighted by allele
274 frequency and SPiP to be the most accurate overall, while other methods had particular strengths in

275 their sensitivity or specificity. A quarter of variants were incorrectly predicted by half or more of the
276 methods, showing there is still improvement to be made. Furthermore, this challenge was limited to
277 a binary outcome – whether or not splicing was disrupted, but did not address the nature of that
278 disruption, which may present an even greater challenge. A larger assessment set that would enable
279 further investigation of the types of variants that are consistently incorrectly predicted may help
280 direct efforts for refinement of models moving forwards.

281 **Acknowledgements**

282 We thank the CAGI organisers for their commitment to improving variant interpretation and for
283 making this challenge happen. The CAGI experiment is supported by NIH U24 HG007346.

284 We acknowledge the NIHR Clinical Research Network (CRN) in recruiting the participants and the
285 Musketeers Memorandum, as well as support from the NIHR UK Rare Genetic Disease Consortium.
286 The authors acknowledge the use of the IRIDIS High Performance Computing Facility, and associated
287 support services at the University of Southampton, in the completion of this work.

288 For the purpose of open access, the author has applied a CC BY public copyright licence to any
289 Author Accepted Manuscript version arising from this submission.

290 **Funding**

291 The Baralle Lab is supported by the NIHR Research Professorship awarded to D.B. (RP-2016-07-011).
292 JL is supported by an Anniversary Fellowship from the University of Southampton. Some of the
293 functional validations of variants were funded by a Wessex Medical Research Innovation Grant
294 awarded to JL. RDB is supported by a New South Wales Health Cardiovascular Disease Senior
295 Scientist Grant.

296 **Author contributions**

297 DB and JL conceived of the challenge. AGLD, DJB and JL selected variants to include in the set, which
298 had been functionally validated by HAW and DJB. JL assessed challenge entrants and conducted data
299 analysis. CJO conducted additional analyses and presented the findings at the CAGI6 conference. All
300 further authors submitted prediction methods in response to the challenge. JL drafted the
301 manuscript, with revision suggestions and final approval from all other authors.

302 **Data availability**

303 All data generated or analysed during this study are included in this published article [and its
304 supplementary information files].

305 **References**

306 Cheng J, Nguyen TYD, Cygan KJ, Celik MH, Fairbrother WG, Avsec Z, Gagneur J. 2019. MMSplice:
307 modular modeling improves the predictions of genetic variant effects on splicing. *Genome
308 Biol* **20**: 48.

309 Danis D, Jacobsen JOB, Carmody LC, Gargano MA, McMurry JA, Hegde A, Haendel MA, Valentini G,
310 Smedley D, Robinson PN. 2021. Interpretable prioritization of splice variants in diagnostic
311 next-generation sequencing. *Am J Hum Genet* **108**: 1564-1577.

312 Ha C, Kim JW, Jang JH. 2021. Performance Evaluation of SpliceAI for the Prediction of Splicing of NF1
313 Variants. *Genes (Basel)* **12**.

314 Jagadeesh KA, Paggi JM, Ye JS, Stenson PD, Cooper DN, Bernstein JA, Bejerano G. 2019. S-CAP
315 extends pathogenicity prediction to genetic variants that affect RNA splicing. *Nat Genet* **51**:
316 755-763.

317 Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, Kosmicki
318 JA, Arbelaez J, Cui W, Schwartz GB et al. 2019. Predicting Splicing from Primary Sequence
319 with Deep Learning. *Cell* **176**: 535-548 e524.

320 Jian X, Boerwinkle E, Liu X. 2014. In silico prediction of splice-altering single nucleotide variants in the
321 human genome. *Nucleic Acids Res* **42**: 13534-13544.

322 Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, Collins RL, Laricchia KM, Ganna
323 A, Birnbaum DP et al. 2020. The mutational constraint spectrum quantified from variation in
324 141,456 humans. *Nature* **581**: 434-443.

325 Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. 2014. A general framework for
326 estimating the relative pathogenicity of human genetic variants. *Nat Genet* **46**: 310-315.

327 Krawczak M, Reiss J, Cooper DN. 1992. The mutational spectrum of single base-pair substitutions in
328 mRNA splice junctions of human genes: causes and consequences. *Hum Genet* **90**: 41-54.

329 Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Jang W et
330 al. 2018. ClinVar: improving access to variant interpretations and supporting evidence.
331 *Nucleic Acids Res* **46**: D1062-D1067.

332 Leman R, Parfait B, Vidaud D, Girodon E, Pacot L, Le Gac G, Ka C, Ferec C, Fichou Y, Quesnelle C et al.
333 2022. SPiP: Splicing Prediction Pipeline, a machine learning tool for massive detection of
334 exonic and intronic variant effects on mRNA splicing. *Hum Mutat* **43**: 2308-2323.

335 López-Bigas N, Audit B, Ouzounis C, Parra G, Guigó R. 2005. Are splicing mutations the most frequent
336 cause of hereditary disease? *FEBS Lett* **579**: 1900-1903.

337 Lord J, Baralle D. 2021. Splicing in the Diagnosis of Rare Disease: Advances and Challenges. *Front
338 Genet* **12**: 689892.

339 Lord J, Gallone G, Short PJ, McRae JF, Ironfield H, Wynn EH, Gerety SS, He L, Kerr B, Johnson DS et al.
340 2019. Pathogenicity and selective constraint on variation near splice sites. *Genome Res* **29**:
341 159-170.

342 McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flliceck P, Cunningham F. 2016. The
343 Ensembl Variant Effect Predictor. *Genome Biol* **17**: 122.

344 R Core Team. 2018. A language and environment for statistical computing.

345 Rentzsch P, Schubach M, Shendure J, Kircher M. 2021. CADD-Splice-improving genome-wide variant
346 effect prediction using deep learning-derived splice scores. *Genome Med* **13**: 31.

347 Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E et
348 al. 2015. Standards and guidelines for the interpretation of sequence variants: a joint
349 consensus recommendation of the American College of Medical Genetics and Genomics and
350 the Association for Molecular Pathology. *Genet Med* **17**: 405-424.

351 Riepe TK, M.; Roosing, S.; Cremers, F.; 't Hoen, P. 2020. Benchmarking deep learning splice
352 prediction tools using functional splice assays. *Authorea* doi:DOI:
353 10.22541/au.160081230.07101269.

354 Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Muller M. 2011. pROC: an open-source
355 package for R and S+ to analyze and compare ROC curves. *BMC Bioinformatics* **12**: 77.

356 Stranneheim H, Lagerstedt-Robinson K, Magnusson M, Kvarnung M, Nilsson D, Lesko N, Engvall M,
357 Anderlid BM, Arnell H, Johansson CB et al. 2021. Integration of whole genome sequencing
358 into a healthcare setting: high diagnostic rates across multiple clinical entities in 3219 rare
359 disease patients. *Genome Med* **13**: 40.

360 Strauch Y, Lord J, Niranjan M, Baralle D. 2022. Cl-SpliceAI-Improving machine learning predictions of
361 disease causing splicing variants using curated alternative splice sites. *PLoS One* **17**:
362 e0269159.

363 Turro E, Astle WJ, Megy K, Graf S, Greene D, Shamardina O, Allen HL, Sanchis-Juan A, Frontini M,
364 Thys C et al. 2020. Whole-genome sequencing of patients with rare diseases in a national
365 health system. *Nature* **583**: 96-102.

366 Wai HA, Lord J, Lyon M, Gunning A, Kelly H, Cibin P, Seaby EG, Spiers-Fitzgerald K, Lye J, Ellard S et al.
367 2020. Blood RNA analysis can increase clinical diagnostic rate and resolve variants of
368 uncertain significance. *Genet Med* **22**: 1005-1014.

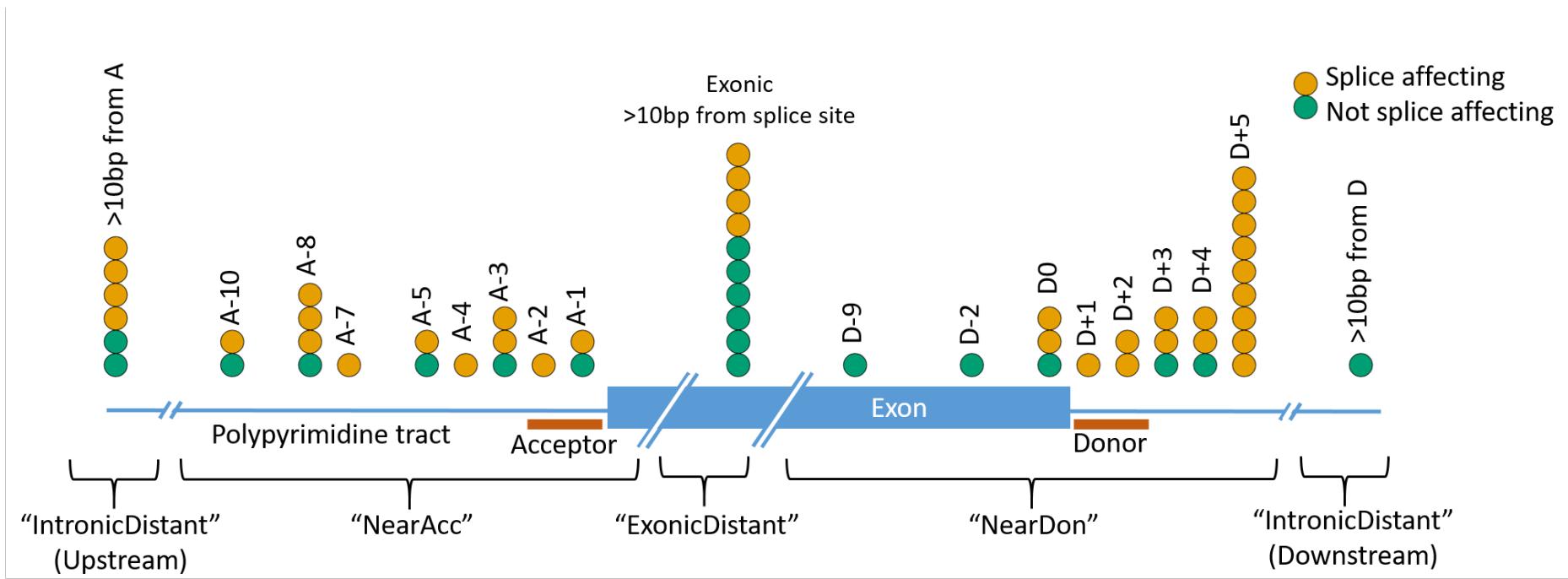
369 Wickham H. 2009. *ggplot2* Elegant Graphics for Data Analysis Introduction. *Use R* doi:10.1007/978-0-
370 387-98141-3_1: 1-+.

371 Yeo G, Burge CB. 2004. Maximum entropy modeling of short sequence motifs with applications to
372 RNA splicing signals. *J Comput Biol* **11**: 377-394.

373 **Figures**

374 **Fig1.** Schematic diagram showing locations of the 56 challenge variants in relation to their nearest splice site, with colour indicating whether (yellow) or not
375 (green) each variant was determined experimentally to impact splicing.

376



377

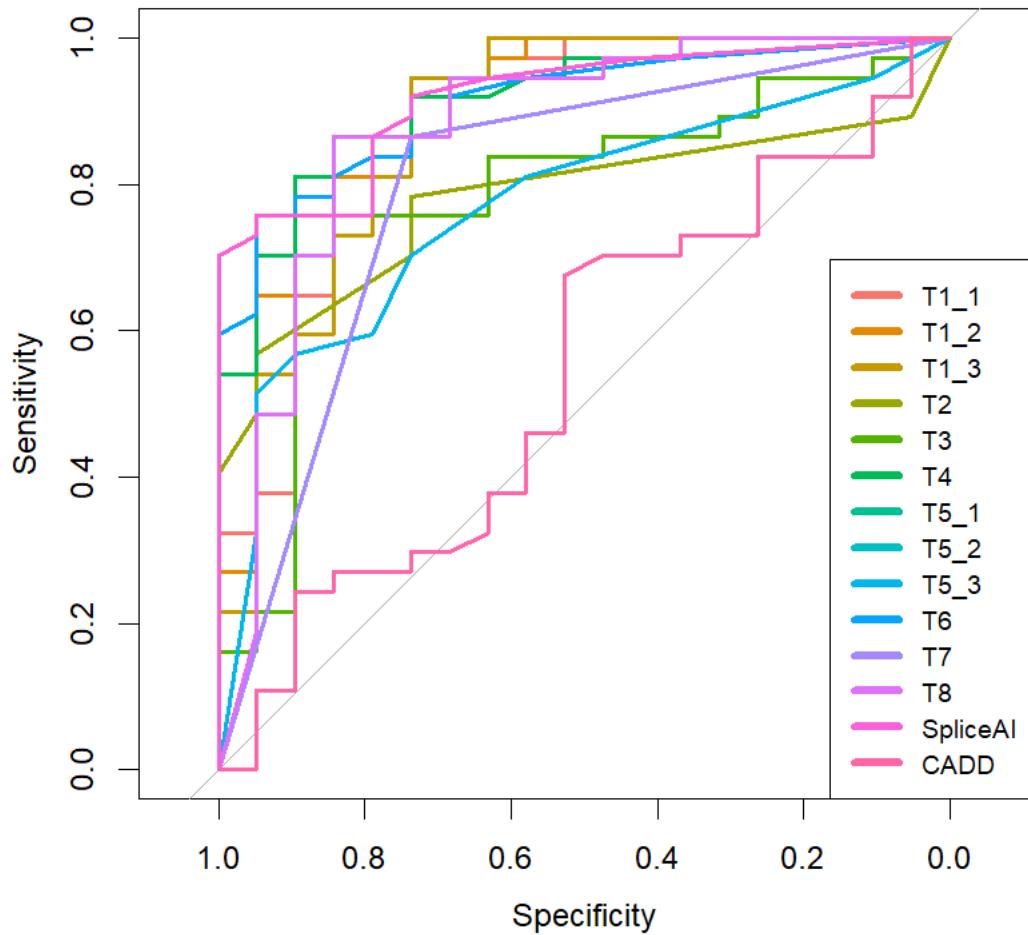
378

379

380

Fig2. Receiver operating characteristic (ROC) curves of model performance based on prediction scores. For Area Under Curve (AUC), see **Table 2**.

381

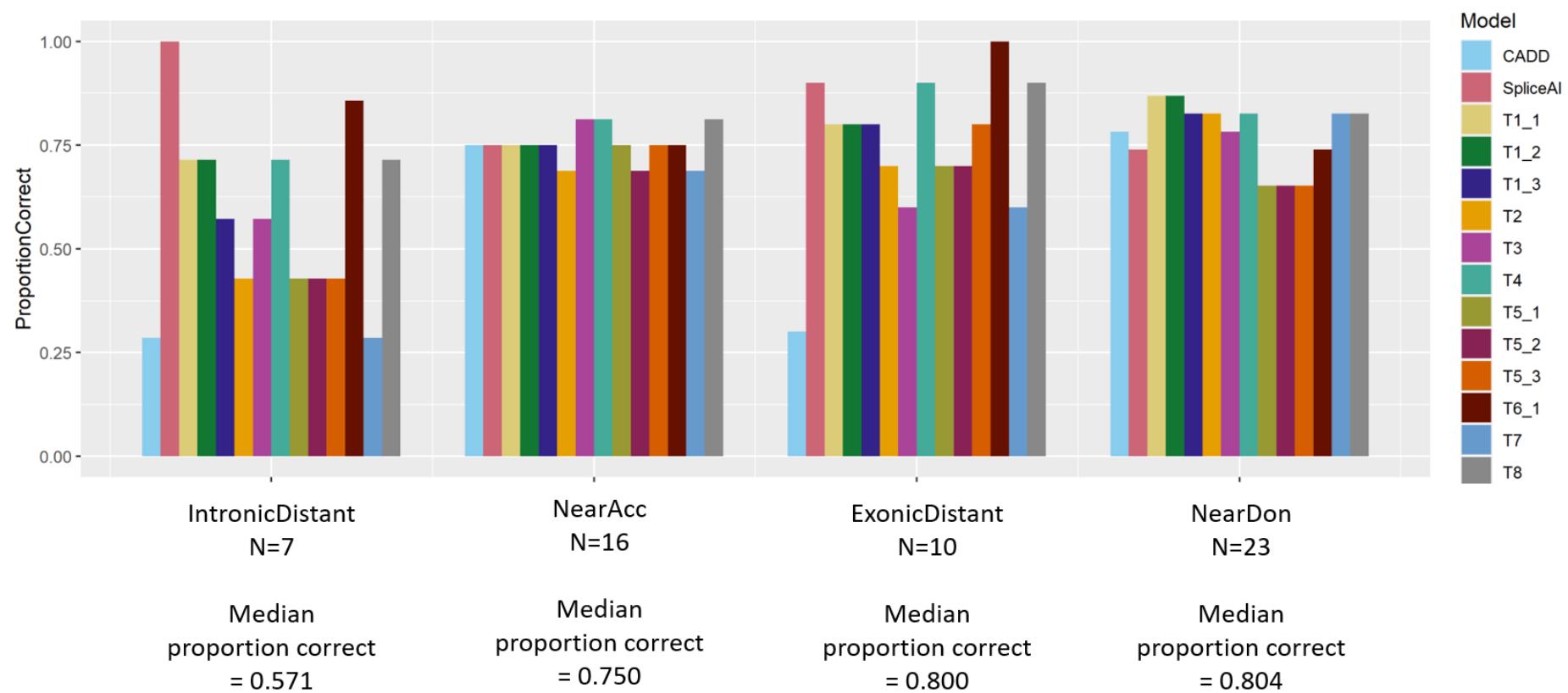


382

383 **Fig3.** Proportion of variants correctly predicted by each method in the different regions (near acceptor, near donor, exonic and intronic distant).

384

385



386

387 **Fig4.** Variants across the splicing region coloured by the number of prediction methods (out of the 12 challenge entrants) that correctly predicted the
388 splicing outcome.

