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Predicting the impact of rare variants on RNA splicing in CAGI6
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Abstract

Background: Variants which disrupt splicing are a frequent cause of rare disease that have been
under-ascertained clinically. Accurate and efficient methods to predict a variant’s impact on splicing
are needed to interpret the growing number of variants of unknown significance (VUS) identified by
exome and genome sequencing. Here we present the results of the CAGI6 Splicing VUS challenge,
which invited predictions of the splicing impact of 56 variants ascertained clinically and functionally

validated to determine splicing impact.

Results: The performance of 12 prediction methods, along with SpliceAl and CADD, was compared
on the 56 functionally validated variants. The maximum overall accuracy achieved was 82% from two
different approaches, one weighting SpliceAl scores by minor allele frequency, and one applying the
recently published Splicing Prediction Pipeline (SPiP). SPiP performed optimally in terms of
sensitivity, while an ensemble method combining multiple prediction tools and information from

databases exceeded all others for specificity.

Conclusions: Several challenge methods equalled or exceeded the performance of SpliceAl, with
ultimate choice of prediction method likely to depend on experimental or clinical aims. One quarter
of the variants were incorrectly predicted by at least 50% of the methods, highlighting the need for

further improvements to splicing prediction methods for successful clinical application.

Introduction

The diagnosis of rare disorders has been revolutionised in recent years thanks to the availability and
widespread adoption of next generation sequencing technologies capable of detecting disease-
causing variants. With the ever-decreasing prices of whole-exome sequencing (WES) and whole-
genome sequencing (WGS) comes an increased use of these approaches, leading to the detection of
more genetic variants than ever before. This brings with it a major challenge in understanding what
these variants do, since our ability to detect them has far outstripped our ability to meaningfully
interpret their effects, particularly outside of protein coding regions. As a result, even with WGS,
around half of patients with rare disorders do not get a diagnosis (Turro et al. 2020; Stranneheim et

al. 2021).

While estimates vary widely (Lord and Baralle 2021), it is thought somewhere between 15-60% of
disease causing variants affect splicing (Krawczak et al. 1992; Lépez-Bigas et al. 2005). Generally
speaking, in diagnostic and research variant prioritisation pipelines, variants which fall within the

2bp canonical splice acceptor or donor sites will be classed as splice-affecting, while variants outside

2
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79 of those small regions are often not assessed for splicing impact. It is common for intronic and

80 synonymous variants to be filtered out, while missense variants are generally assessed for their

81 impact on protein structure and function without consideration for the role they may play in

82  splicing. All of these variant types, however, can and do impact splicing and cause disease. This

83  approach has led to an under-ascertainment of splice-affecting variants clinically (Lord et al. 2019).
84  What is needed, particularly with the increasing use of WGS over WES enabling the detection of far
85 more intronic variants than before, is a way to effectively triage which variants are splice-affecting

86 and which are not.

87  Currently, under ACMG/AMP guidelines (Richards et al. 2015), in silico splicing prediction

88  approaches may be used as supporting evidence for genetic diagnosis if multiple independent tools
89 predict an impact on splicing. Experimental validation of splicing effects using RT-PCR, mini-genes or
90 RNAseq is often required to confidently establish a variant’s impact on splicing, but such approaches
91 are time-consuming and expensive to perform at scale. Recent years have seen an explosion of

92 innovative new approaches to splicing prediction, with many new tools being generated, often

93 utilising machine learning. If a high degree of accuracy and reliability can be obtained from in silico
94  approaches, we may be able to move away from requiring experimental confirmations, or at the

95 least, have an efficient method to triage variants most in need of validation. This would require

96 highly accurate algorithms and extensive testing in the clinical setting to give sufficient confidence in

97  these optimal approaches.

98  The Splicing Variants of Unknown Significance (VUS) challenge in the 6™ Critical Assessment of

99 Genome Interpretation (CAGI6) sought to assess splicing prediction accuracy on a set of clinically
100 ascertained, functionally validated variants. This enabled performance comparison of many cutting-
101 edge splicing prediction approaches and gave insights into the types of variants not currently well

102 captured by these methods.
103 Methods

104 Variant selection and validation

105  As previously described in Wai et al. 2020 (Wai et al. 2020), a total of 64 variants were ascertained
106  through Wessex Regional Genetics Laboratory in Salisbury (52 variants) or the Splicing and Disease
107 research study (12 variants) at the University of Southampton, ethically approved by the Health
108 Research Authority (IRAS Project ID 49685, REC 11/SC/0269) and by the University of Southampton
109 (ERGO ID 23056). Informed consent was provided for all patients for splicing studies to be

110 conducted. All variants had been, or were undergoing RT-PCR analysis to determine their impact on
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111 splicing using RNA from whole blood collected in PAXgene tubes, again as previously described (Wai

112 et al. 2020).

113 Eight variants were excluded from the final analysis (unable to establish splicing impact before
114  analysis period (n=3), incorrect gene/variant annotations given in the dataset distributed (n=3),
115  variant found to impact gene expression rather than splicing (n=2)), giving a total of 56 variants in
116  the final assessment set (Supplementary Table 1), which span a wide range of rare disease and
117  cancer predisposition associations, none of which had had their impact on splicing published

118  previously.

119 The Splicing VUS challenge

120  Variants were distributed as a tab delimited text file including the following information: HGNC
121 identifier, chromosome, position, reference allele, alternative allele, gene and strand. Entrants also
122 had access to 256 previously published variants (Wai et al. 2020) obtained and validated by the same

123 approach to aid in method development/testing.

124  Challenge participants submitted their entries in the form of tab delimited text files including the
125 variant information, a binary prediction of whether a variant affected splicing or not (1=yes, 0=no),
126 along with a score for the probability of the variant affecting splicing and the level of confidence in

127  the prediction given. All assessments were based on the binary splice-affecting prediction alone.

128 Challenge assessment

129  The performance of each prediction model was assessed by calculating and comparing a series of
130 metrics: overall accuracy, area under the receiver operating characteristic curve (AUC), sensitivity,
131 specificity, positive predictive value (PPV) and negative predictive value (NPV). AUC and confidence
132 intervals (2000 stratified bootstrap replicates) were calculated using the pROC package (Robin et al.
133 2011) in Rv3.5.1 (R Core Team 2018), and plots made with ggplot2 (Wickham 2009). Performance of
134  each method was compared across binned splicing locations — Near Acceptor (acceptor +/- 10bp),
135 Near Donor (donor +/- 10bp), Exonic Distant (exonic, 11bp or more from either splice site), Intronic
136 Distant (intronic, 11bp or more from either splice site. For grouped analyses, exonic distant and

137 intronic distant variants were grouped together due to low numbers). These scores were based on
138  the concordance of the binary classification of the variants provided by each team/model (1=splice-

139  affecting and O=not splice-affecting) with the experimental validation of the splicing impact.

140  SpliceAl (Jaganathan et al. 2019) and CADD v1.6 (Kircher et al. 2014) (which incorporates SpliceAl
141 predictions) were included in the assessment alongside the challenge models as a comparison to

142 emerging industry standards. CADD-phred scores were obtained by uploading a VCF to the CADD
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143 webserver (https://cadd.gs.washington.edu/score). SpliceAl scores were obtained from Ensembl’s

144  Variant Effect Predictor (VEP) web interface (McLaren et al. 2016) (44 variants scored) or using the

145  SpliceAl webserver from the Broad Institute (https://spliceailookup.broadinstitute.org/, 11 variants

146  that were not scored by VEP; options: hg38, masked scores, max distance 50bp). A cut-off of 0.2 was
147 used for SpliceAl scores, and 18 for CADD.

148

149  Results

150 Variant characteristics of challenge set

151 Of the 56 variants in the final analysis, the majority (n=49, 87.5%) were SNVs, with 7 indels (12.5%).
152  The variants fell within 42 different genes, broadly representative of clinical genetics referrals in the
153 UK, with the majority of genes having a single variant in the set, and only 7 genes with >1 variant
154 (BRCA1 n=6, FBN1 n=4, MYBPC3 n=3, BRCA2 n=2, SCN5A n=2, APC n=2, USP7 n=2). 37 variants (66%)

155 were found to affect splicing, while 19 (34%) had no observable impact.

156  Variants were divided into 5 groups by their positions relative to intron-exon boundaries. There were
157 16 variants within 10bp of a splice acceptor site (NearAcc), and 23 within 10bp of a splice donor site
158  (NearDon). 10 exonic variants >10bp from either splice site were classed as Exonic>10. Intronic

159  variants >10bp from their nearest splice site were termed Intronic Distant (six upstream of the

160 acceptor, one downstream of the donor). The locations of all variants relative to the intron-exon

161 boundary and whether the variants were determined to be splice disrupting or not are given in Figl.

162 Challenge participants

163 Eight teams submitted predictions for the challenge, with two teams submitting predictions from
164 multiple models, giving 12 models altogether. Table 1 gives a summary of the approach taken by
165 each model, which was provided by the challenge entrants upon submission of their predictions, but

166 blinded to the assessors until after the assessment period.

167 Model performance across 56 variants

168  Table 2 summarises the performance metrics of the 12 models, along with CADD and SpliceAl. Full
169  variant information, scores and binary predictions for the 12 models, SpliceAl and CADD and

170  experimental outcome of splicing status are given in Supplementary Table 1. The ROC plots for each
171  model are shown in Fig2, and Supplementary Figl shows the performance of each method on each

172  variant across the splicing region.
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173  Table 1 — Summary of the prediction approaches of the 12 models from 8 entrants. Additional information on Teams 4 and 5 given in the Supplementary
174  Methods.

Team | Authors | Prediction approach

1 YW, ZH Models were built based on reported pathogenic splicing variants from the literature and benign variants from
ClinVar(Landrum et al. 2018). The models were trained and tuned using Gradient Boosting Machine (GBM) with R package
“caret” and “gbm”, considering 80 annotation features, including conservation, distance to exon-junctions, population allele
frequencies, epigenetic states and prediction scores from SpliceAl(Jaganathan et al. 2019), CADD(Kircher et al. 2014),
SCAP(Jagadeesh et al. 2019) and dbscSNV(Jian et al. 2014).

Model 1 - Full model which uses all 80 features

Model 2 - Five existing prediction scores as features

Model 3 - As Model 2, plus distance to splice site and the splice site type as two additional features.

2 77 Positive predictions from CADD-Splice(Rentzsch et al. 2021) (>15), SpliceAl(Jaganathan et al. 2019) (>0.5), MMsplice(Cheng et
al. 2019) (>2), and Ensembl Variant Effect Predictor(McLaren et al. 2016) variant consequence (splice region) ranked as “1”,
negative predictions as “0”. Mean of the four ranks calculated, and mean >=0.5 classed as positive overall.

3 DD Super Quick Information-content Random-forest Learning of Splice variants (SQUIRLS)(Danis et al. 2021) applied to data using
default thresholds
4 PK, AW, | SpliceAl(Jaganathan et al. 2019) adjusted with minor allele frequency(Karczewski et al. 2020), with scores >0.25 classified as
oL splice affecting
5 YC, RDB | Combined information from ClinVar(Landrum et al. 2018), gnomAD(Karczewski et al. 2020), established splicing tools

(SpliceAl(Jaganathan et al. 2019) (>0.5), MaxEntScan(Yeo and Burge 2004) (>4)), branchpoint/enhancer locations, distance to
exon, splice site database.

Model 1 — Base model for prediction

Model 2 — Same as Model 1 but using different in-silico prediction score thresholds (SpliceAl(Jaganathan et al. 2019) (>0.5),
MaxEntScan(Yeo and Burge 2004) (>6), MMsplice(Cheng et al. 2019) (>2))

Model 3 - Required well-scoring compatible site (e.g. for donor loss, a well-scored donor within 300bp of the existing
acceptor), adding branchpoint/enhancer locations as extra features

6 SMM, SpliceAl(Jaganathan et al. 2019) applied, with scores >=0.21 classified as splice affecting
BM, CL
7 TvOH Alamut splicing software (Sophia Genetics) utilised — consensus of 3 programs with at least 10% difference between reference
and alternative score predicted to be splice affecting and ACMG splicing guidelines (BRCA1/BRCA2 — ENIGMA).
8 RL, AM, | Splicing Prediction Pipeline (SPiP)(Leman et al. 2022) applied (>0.18 for exonic variants, >0.035 for intronic variants)

CH, SK
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175  Table 2 — Summary statistics on predictive performance of the 12 competition entrants plus SpliceAl and CADD on the 56 challenge variants. Maximum
176  value for each metric indicated in bold.

T1.1 [T12 [T13 [T2 T3 T4 5.1 [T5.2 |T53 |76 T7 T8 SpliceAl | CADD
AUC (binary) 0.813 | 0.826 | 0.786| 0.720| 0.708 | 0.839 | 0.718 | 0.717 | 0.731| 0.813| 0.731| 0.775| 0.826 0.537
AUC (score) 0.883 | 0.903 | 0.883| 0.780| 0.788 | 0.912 | 0.770 | 0.770 | 0.770 | 0.910| 0.801| 0.874 | 0.919 0.543
95% Cl (bootstrap | 0.771- | 0.805- | 0.771- | 0.658- | 0.652- | 0.827- | 0.637- | 0.648- | 0.642- | 0.819- | 0.693- | 0.754- | 0.841-| 0.386-
n=2000) 0.969 | 0.976 | 0.970 | 0.891 | 0.909 | 0.977 | 0.891 | 0.883 | 0.883 | 0.974 | 0.907 | 0.964 | 0.964 0.706
Accuracy 0.804 | 0.804 | 0.768 | 0.714| 0.732 | 0.821 | 0.661 | 0.643 | 0.679 | 0.804 | 0679 | 0.821| 0.804 0.625
Sens 0.784 | 0.757 | 0.730| 0.703 | 0.784 | 0.784 | 0.541 | 0.486 | 0.568 | 0.784 | 0.568 | 0.919 | 0.757 0.811
Spec 0.842 | 0.895| 0.842| 0.737| 0.632 | 0.895 | 0.895 | 0.947 | 0.895| 0.842 | 0.895| 0.632| 0.895 0.263
PPV 0.906 | 0.933 | 0.900 | 0.839 | 0.806 | 0.935 | 0.909 | 0.947 | 0.913 | 0.906 | 0.913 | 0.829 | 0.933 0.682
NPV 0.667 | 0.654 | 0.615| 0.560 | 0.600 | 0.680 | 0.500 | 0.486 | 0.515 | 0.667 | 0.515| 0.800 | 0.654 0.417

177  AUC = Area Under the Curve; Cl = Confidence Interval; Sens = Sensitivity; Spec = Specificity; PPV = Positive Predictive Value; NPV = Negative Predictive Value
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178 No single approach performed optimally on all assessment metrics (Table 2). Overall accuracy was
179  joint highest in Teams 4 and 8 at 0.82, with Team 4 also achieving the highest binary outcome AUC
180 at 0.839 (Fig2). Team 8 ranked highest on the related metrics for sensitivity (0.919) and NPV (0.800),
181 indicating its permissive prediction approach. Conversely, Team 5’s Model 2 performed the best in
182  terms of specificity (0.947) and PPV (0.947), with the lowest proportion of false positive findings. All
183 three models by Team 1, plus Team 4 and Team 6 achieved over 70% in both sensitivity and

184  specificity, indicating more balanced performance.

185 Included as comparators were SpliceAl with a cut-off of 0.2 and CADD with a cut-off of 18. SpliceAl
186  was competitive with the challenge entrants, ranking near-top but not top on all metrics, and indeed
187  topin the AUC when measured using prediction score rather than binary prediction outcome. CADD,

188 however, performed poorly on the challenge set with specificity in particular being very low (0.263).

189 Performance comparison by variant type

190 In order to get an overall impression of the performance of the methods on different types of

191 variants, variants were grouped by location relative to their nearest splice site (Fig3), as described in
192 Methods. All methods performed better on exonic distant variants than intronic distant variants,
193  with the exception of SpliceAl, which correctly predicted all seven intronic distant variants. Across
194  methods, there was a high degree of consistency in the proportion of variants correctly predicted in
195  the near acceptor region, and a high degree of variance in performance in the intronic distant set.
196  The types of error differed across regions, with the near acceptor region and exonic distant region
197  having very few false positive predictions across all methods, while almost all methods gave false

198  positive predictions in the near donor and intronic distant regions (Supplementary Fig2).

199  We also compared the performance of the approaches on SNVs vs indels, and found all methods

200  except CADD had higher accuracy on SNVs than indels (Supplementary Fig3).

201 Some variants are consistently mispredicted

202 21 of the variants (37.5%) were correctly predicted by all 12 submitted prediction methods. None of
203 the variants were incorrectly predicted by all methods, but 14 variants (25%) were predicted

204  correctly by <=50% of the methods, with two variants only being correctly predicted by a single

205 method. These were a splice-affecting single nucleotide deletion 4bp from a splice acceptor site in
206  KANSL1 (correctly predicted by Team 3) and an SNV in the last base of an exon in TRPM6 which

207  despite altering the conserved last G nucleotide did not affect splicing in functional testing (correctly

208  predicted by Team 4).

209
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210 Discussion

211  The CAGI6 Splicing VUS challenge assessed the performance of 14 prediction approaches on a set of
212 56 clinically relevant variants whose impact on splicing had been functionally tested using RT-PCR. A
213 variety of approaches were adopted, and several methods equalled or exceeded the performance of

214  the emergent field leader, SpliceAl.

215 While Teams 4 and 8 had joint highest overall accuracy, there was no single optimal method for the
216  Splicing VUS challenge, since several different models performed optimally on different metrics.

217 Choice of approach may therefore be dependent on the specific nature of the predictions required.
218 Seeking a molecular diagnosis for a particular family may favour sensitivity over specificity, since

219  overlooking a causal variant would prevent this aim, so Team 8’s approach with almost 92%

220  sensitivity may be preferred. Seeking confident splice disrupting candidates for functional validation
221  or mechanistic research may call for greater specificity than sensitivity to avoid wasting resources on
222 false positive variants that do not have an impact, in which case Team 5’s model 2 with almost 95%

223 specificity may be the strategy of choice.

224  SpliceAl and CADDv1.6 were chosen as comparators for the entrants to the Splicing VUS challenge
225  and were run by the assessors on the 56 challenge variants. SpliceAl has been emerging as a field
226 leader in recent years, with accuracies >90% attained in several studies (Wai et al. 2020; Ha et al.
227 2021; Strauch et al. 2022), although variable performance reported by some (Riepe 2020) which is

228 more consistent with our observed 80.4% overall accuracy in this study.

229  CADD did not perform well on the challenge variants, achieving an overall accuracy of 62.5%.

230 However, this was predominantly driven by a very low specificity, which is to be expected from
231  CADD, since it is not only the impact on splicing being assessed by the tool, but overall

232 deleteriousness. For example, missense variants which were not found to affect splicing in the

233 challenge set may still have been pathogenic through impact on protein structure and/or function.
234 For such variants, CADD would accurately classify them as deleterious in general, but in our

235 assessment solely of splicing impact, this would appear as a false positive, lowering CADD’s

236 specificity. Notably, the version of CADD included in the assessment (v1.6) includes SpliceAl and
237 additional splicing prediction tools in its underlying model (Rentzsch et al. 2021). Scoring the

238 challenge variants with CADD v1.5 which did not include these splicing metrics resulted in an overall
239 accuracy around 44.6% (data not shown). From these values it is clear that the explicit inclusion of
240 splicing prediction methods within CADD’s underlying model has improved its ability to predict

241  variants that impact splicing. CADD’s broad approach makes it a versatile tool for prediction of
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242  deleteriousness for many different variant types. At present, however, if predicting a variant’s

243 splicing impact is the sole aim, the use of more specialised splicing tools is more appropriate.

244  Of note, SpliceAl featured heavily across the predictive strategies, being the sole predictive method
245 for Team 6 and contributing heavily to the predictions of Team 4, which were weighted by MAF, as
246  well as being run as a comparator by the assessors. Differences in the performance of these

247 approaches highlight that even with the same nominal method, there can be variance in predictions
248  depending on how the scores are obtained, and the thresholds that are used to determine positive
249  predictions. There were just three approaches that did not include SpliceAl as part of their

250  predictions, two utilising instead recent machine learning based prediction tools SQUIRLS (Danis et
251  al. 2021) and SPiP (Leman et al. 2022), and one based on the splicing prediction tools available

252 within the Alamut software, which has been widely used in clinical practice. Of the three, SPiP was

253  the only method to achieve greater accuracy than SpliceAl.

254 A major strength of the challenge in terms of providing a real-world assessment of the performance
255  of these tools is the ascertainment of the challenge variants from genuine clinical practice, where
256  potential splice altering variants in genes relevant to the patient’s presentation were referred for
257  validation. This is precisely the type of variant splicing prediction models should be tested on when
258 assessing their suitability for clinical application in rare disorders. It highlights that even in

259 exceptionally well-studied genes, such as the BRCA genes, challenges in variant interpretation

260 remain, since 3 of 8 variants across BRCA1 and BRCA2 were incorrectly predicted by over half of
261 challenge methods, and only two of these were accurately predicted by all methods. However, the
262 relatively small sample size makes it difficult to draw any major inferences and is a significant

263 limitation of the study. Apparent variance in performance may be stochastic at such a sample size,
264  and may not be fully reflective of overall performance in a wider context. It also made drawing firm
265 conclusions about performance in subsets of the data, e.g. split by location, variant type, or disease
266  group challenging. However, ascertaining a large body of clinical variants, validating the splicing
267  impact and keeping that private, as is needed for a blinded challenge such as the CAGI6 Splicing VUS
268  challenge, raises ethical concerns. Accurate and timely variant interpretation is reliant on sharing of
269  data, and withholding a large body of functionally validated variants from resources such as ClinVar
270  (Landrum et al. 2018) which are heavily used in clinical assessment of variants does not represent

271  good practice.

272 This small but highly clinically relevant challenge assessed the performance of 12 prediction methods
273 plus SpliceAl and CADD on 56 clinically ascertained variants and found SpliceAl weighted by allele

274  frequency and SPiP to be the most accurate overall, while other methods had particular strengths in
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275 their sensitivity or specificity. A quarter of variants were incorrectly predicted by half or more of the
276 methods, showing there is still improvement to be made. Furthermore, this challenge was limited to
277  abinary outcome — whether or not splicing was disrupted, but did not address the nature of that
278  disruption, which may present an even greater challenge. A larger assessment set that would enable
279  further investigation of the types of variants that are consistently incorrectly predicted may help

280 direct efforts for refinement of models moving forwards.
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373 Figures

374 Figl. Schematic diagram showing locations of the 56 challenge variants in relation to their nearest splice site, with colour indicating whether (yellow) or not

375 (green) each variant was determined experimentally to impact splicing.
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380

381

382

Fig2. Receiver operating characteristic (ROC) curves of model performance based on prediction scores. For Area Under Curve (AUC), see Table 2.
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383 Fig3. Proportion of variants correctly predicted by each method in the different regions (near acceptor, near donor, exonic and intronic distant).
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387
388

389

Figd. Variants across the splicing region coloured by the number of prediction methods (out of the 12 challenge entrants) that correctly predicted the

splicing outcome.
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