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Single-cell RNA sequencing (scRNA-Seq) has emerged as a pow-
erful tool for understanding cellular heterogeneity and function.
However the choice of sample multiplexing reagents can impact
data quality and experimental outcomes. In this study, we com-
pared various multiplexing reagents, including MULTI-Seq,
Hashtag antibody, and CellPlex, across diverse sample types
such as human peripheral blood mononuclear cells (PBMCs),
mouse embryonic brain and patient-derived xenografts (PDXs).
We found that all multiplexing reagents worked well in cell types
robust to ex vivo manipulation but suffered from signal-to-noise
issues in more delicate sample types. We compared multiple
demultiplexing algorithms which differed in performance de-
pending on data quality. We find that minor improvements to
laboratory workflows such as titration and rapid processing are
critical to optimal performance. We also compared the perfor-
mance of fixed scRNA-Seq kits and highlight the advantages
of the Parse Biosciences kit for fragile samples. Highly mul-
tiplexed scRNA-Seq experiments require more sequencing re-
sources, therefore we evaluated CRISPR-based destruction of
non-informative genes to enhance sequencing value. Our com-
prehensive analysis provides insights into the selection of appro-
priate sample multiplexing reagents and protocols for scRNA-
Seq experiments, facilitating more accurate and cost-effective
studies.
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Introduction
Single-cell RNA sequencing (scRNA-Seq) has been powered
by advancements in molecular biology, microfluidics, and
high-throughput sequencing (1). Applications of scRNA-
Seq span cell atlases, pooled screens and clinical studies (2).
Single-cell approaches have expanded to include additional
modalities, such as surface protein measurement, open chro-
matin analysis, and CRISPR perturbation (3). As scRNA-Seq
becomes more accessible, increased sample sizes and biolog-
ical replicates enhance scientific rigor but necessitate larger,
more complex experiments. Although the cost per cell is de-
creasing, overall experimental costs remain high.
Batch effects, which encompass technical variation intro-
duced during sample preparation, library preparation, and se-
quencing, contribute significantly to the complexity of single-

cell data analysis (4). These effects demand increased analyst
time and can potentially attenuate biological signals.
Sample multiplexing has emerged as an elegant solution to
these challenges. The concept was first demonstrated by mix-
ing genetically distinct samples and subsequently deconvo-
luting them using genotypes called in the sequencing data
(5). However, in many studies the absence of natural genetic
variation renders this approach unfeasible. As an alternative,
various methods have been developed to deliver exogenous
sample-identifying DNA barcodes. The first implementation
utilized oligo-tagged antibodies targeting ubiquitous cell sur-
face proteins (6). Subsequent technologies have delivered
DNA barcodes via lipids, concanavalin A, click chemistry,
transfection, or transduction (7–11).
Regardless of the delivery mechanism, sample multiplexing
necessitates additional upfront handling of individual sam-
ples, with the potential to perturb cell states (12) or reduce
viability. Antibody- and lipid-based barcodes have become
the most popular systems, for their broad applicability and
ease of use. Recently, Mylka et al., directly compared these
multiplexing methods, recommending different solutions for
different sample types (13).
The advent of commercial fixed scRNA-Seq kits, such as
the Parse Biosciences Evercode kits and 10x Genomics Flex,
has effectively decoupled sample collection from processing.
Both kits incorporate sample multiplexing into their molecu-
lar biology workflows, eliminating the need for specific label-
ing steps. The Parse Biosciences Evercode kits utilize multi-
well plates, enabling sample multiplexing by dispensing each
sample into a separate well. In contrast, the 10x Genomics
Flex kit employs a ligation probe-based assay, where sample
barcodes are embedded in the probe sequences.
We have conducted an extensive comparison of antibody,
lipid-based, and fixed sample multiplexing reagents across
diverse and broadly representative cell types, including hu-
man peripheral blood mononuclear cells (PBMCs), mouse
embryonic brain, and ovarian carcinosarcoma patient-derived
xenografts (PDX). We evaluate CRISPR-based destruction of
non-informative genes, an important potential adjunct in con-
trolling the cost of larger single-cell experiments. Through
upfront optimization and downstream comparative analyses,
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we propose guidelines for experimental design and the uti-
lization of different protocols in various contexts.

Results

Comparison of multiplexing reagents in human
PBMCs. To evaluate the performance of sample multiplex-
ing reagents (Table S1) in a system where we could obtain
ground truth from SNP genotypes, we analyzed PBMCs from
four human donors (Figure 1A).
We first undertook a round of optimization by flow cytometry,
titrating the Total-Seq hashtag antibody to a concentration of
ten-fold less than the manufacturer’s recommendations (0.1
µg per reaction) (Figure S1A). We next substituted the poly-
A capture sequence of the described MULTI-Seq oligo (7)
with the 10x Genomics feature barcode 2 sequence (Figure
S1B). Titrating the MULTI-Seq lipid modified oligos (LMO)
resulted in a rapid loss of signal, therefore we used a concen-
tration of 200 nM as reported in the original study (Figure
S1C).
Each PBMC donor sample was divided into technical dupli-
cates for the sample multiplexing labeling reaction (Figure
1A) and captured with 10x Genomics v3.1 chemistry at a cell
input of 35,000 cells, for a theoretical output of 20,000 cell-
containing droplets at a 16.11% doublet rate (Satija lab cal-
culator).
After library preparation and sequencing, we examined the
count distributions for each tag and protocol (Figure 1B).
CellPlex had the lowest signal-to-noise and highest propor-
tion of unassigned cells (Figure 1C and D). Of note the
doublet rate is higher for hashtag antibody and MULTI-Seq
than the theoretical 16.11% expected from loading each 10x
Genomics capture with 35,000 cells. We later titrated the
CellPlex reagent ten-fold below the manufacturer’s recom-
mendations without a loss in signal (Figure S3).
The signal-to-noise was most consistent for MULTI-Seq with
hashtag antibody also performing well aside from a single la-
beling reaction, HTO_1, which had a high background and
lower signal indicating an issue with the antibody reagent
rather than an error in sample handling. The HTO_1 sam-
ple’s poor signal to noise negatively impacted other tags. Di-
mension reduction of the hashtag antibody capture revealed
satellite clusters with a subset of cells having a correct domi-
nant tag but contaminated by HTO_1 (Figure S2B).
Examination of the relationship between oligo tag library and
gene expression library size revealed multiplets had a higher
library size than singlets (Figure 1E). In contrast, unassigned
cells had a similar library size to singlets, suggestive of a
failure in oligo tag labeling rather than unassigned cells being
enriched from empty droplets or damaged cells.

Accuracy of sample multiplexing oligos compared to
SNP genotypes. We next compared the accuracy of the
sample multiplexing tag assignments to ground truth SNP
assignments (Figure 2A). Given our experimental design
with four unrelated donors in duplicate, the doublet rate was
lower from SNP calls (12.08%) than from multiplexing tags

(16.56%). The identifiable doublet rate excludes homotypic
doublets.
Table 1. Overall classification accuracy. OCA is the number of matching assign-
ments between sample multiplexing tags and SNP assignments divided by all cell-
containing droplets.

Protocol OCA Unassigned
MULTI-Seq 0.926 0.0153
Hashtag Ab 0.804 0.145
CellPlex 0.761 0.185

The proportions of individual donors recovered when com-
paring SNPs to sample multiplexing oligos was similar aside
from the unassigned category (Figure 2A). This was con-
firmed upon closer inspection of the multiplexing tag calls to
SNP calls in an alluvial plot and heatmap (Figure 2B and C).
The major discordant droplets were non-identifiable doublets
when calling multiplets based on 4 SNPs versus 8 multiplex-
ing oligos. Having used the Cell Ranger multi algorithm for
sample demultiplexing, we next compared other algorithms
available in the cellhashR package (14). The three sample
multiplexing datasets generated had different characteristics
with CellPlex having lower signal to noise, hashtag antibody
having one poorly performing tag and MULTI-Seq being a
high quality dataset (Figure 2D).
Cell Ranger multi performed as well as other algorithms in
hashtag antibody and MULTI-Seq datasets, despite a warn-
ing during runtime that these multiplexing tag oligos are not
supported. In the CellPlex dataset, the Bimodal Flexible Fit-
ting (BFF cluster) algorithm performed best. In contrast,
in the high-quality MULTI-Seq dataset, BFF Cluster called
four-fold more false positives, assigning more multiplets to
singlets (Figure 2D). We computed the overall classification
accuracy, (OCA) the same metric used in Mylka et al., (13),
(Table 1). The OCA is defined as the sum of matching assign-
ments between demultiplexing tags and SNP assignments di-
vided by the count of all cell-containing droplets. Consistent
with the signal-to-noise metrics, MULTI-Seq performed best,
followed by hashtag antibody with CellPlex the poorest per-
forming protocol.
To evaluate the impact of sequencing depth on demultiplex-
ing accuracy, we downsampled the multiplexing tag library
sequencing data and reprocessed the data using Cell Ranger
Multi. The recommended number of reads per cell by 10x
Genomics is 5,000 for hashtag antibodies and CellPlex. Be-
yond 1,000 reads per cell, an increase in the number of reads
per cell exerted a negligible effect on demultiplexing perfor-
mance (Figure 2G). An alternate guideline provided on the
10x Genomics website indicates 1,000 usable oligo tag reads
per cell, which is consistent with our findings. Particularly
for high-quality datasets, a total of 5,000 reads per cell for
sample multiplexing oligos appears excessive.

Comparison of sample multiplexing reagents in
mouse embryonic brain. PBMCs are a robust sample type
that do not require dissociation and can be maintained as a
single-cell suspension for a prolonged period on ice with only
minor effects on viability or phenotype (15). We next aimed
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Fig. 1. Benchmarking sample multiplexing reagents in human PBMCs. (A) Experimental design. PBMCs isolated from four unrelated healthy donors were divided into
technical duplicate prior to labeling. Each protocol was captured in a separate 10x Genomics v3.1 reaction. (B) Log10 transformed oligo tag counts for each multiplexing
protocol with a summary of signal-to-noise. Signal-to-noise is defined as the difference between the mean background (left) and foreground (right) oligo tag counts on a log
scale divided by variance. (C) UMAP dimension reduction visualisation of multiplexing oligo tag counts for each protocol. Cells are coloured by Cell Ranger multi call. (D)
Summary of multiplexing tag calls per protocol as reported by Cell Ranger multi. Blanks and unassigned are both reported as unassigned. (E) Relationship between oligo
tag and gene expression library size for each protocol tested.

to benchmark sample multiplexing reagents in mouse em-
bryonic brain E18.5, a more challenging tissue (Figure 3A).

In contrast to PBMCs, which were processed using a low-
throughput labeling protocol in 1.5mL tubes, we utilized a
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Fig. 2. Comparison of cell demultiplexing software (A) Comparison of oligo tag calls with Cell Ranger multi versus SNP calls. The white horizontal dashed line represents
the theoretical doublet rate based on 4 SNP donors.The black line represents doublet rate based on eight multiplexed samples. (B) Alluvial plot for MULTI-Seq LMO comparing
demultiplexing on a tag basis (left), donor basis (middle) and corresponding SNP calls (right). (C) Heatmap of the sample multiplexing oligo-snp assignment contingency
table. (D) Comparison of droplet calls from multiple demultiplexing algorithms implemented in cellhashR. (E) Donor misclassification rate by algorithm, based on SNP ground
truth. Unassigned droplets and multiplets were removed. (F) Immune subset composition by donor and protocol. Automated annotation is shown with Level 1 granularity. (G)
Downsampling analysis of oligo tag libraries. Oligo tag libraries were downsampled to a fixed number of reads per cell and each dataset was demultiplexed with Cell Ranger
multi.

high-throughput labeling protocol in a 96 well plate. We also
adjusted the FACS sort step as per 10x Genomics guidelines
to conduct the sort after labeling with multiplexing oligos,
rather than sorting after thawing and before labeling as in the
PBMC experiment.

However, in a pilot experiment, we were unable to detect
any signal using mouse hashtag antibodies with this sample
type (Figure S5A). Thus, as a substitute for the hashtag an-
tibody we evaluated a cholesterol modified custom MULTI-

Seq oligo, composed of the CellPlex oligo sequence grafted
onto the MULTI-Seq lipid (Figure S5B).

Evaluation of the sequencing counts of the multiplexing tag
libraries revealed a good separation of signal and background
for diluted CellPlex (Figure 3B). In contrast the two MULTI-
Seq designs had poorer signal to background. During labora-
tory processing there was incomplete removal of supernatants
due to concern over loss of cell pellets. With a cell input of
100,000 per well, pellets were invisible. The remaining dis-

4 | bioRχiv Brown DV et al. | Sample Multiplexing Oligo Comparison

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2023.06.20.544880doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.20.544880
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT

sociation media may have inhibited MULTI-Seq LMO, as it
is quenched by proteins (7). In line with this observation,
MULTI-Seq CMO which is not quenched by culture media
performed comparatively better (Figure 3C).
A further logistical issue related to shifting the sorting step
until after multiplexing oligo labeling to conform to 10x Ge-
nomics supported protocols. This change necessitated a se-
quential sort of sample pools in the order MULTI-Seq LMO,
MULTI-Seq CMO and CellPlex. Viability measurements
dropped from 93% to 76% live cells between MULTI-Seq
LMO and CellPlex for this reason (Figure S5H). The num-
ber of cell-containing droplets retrieved was consistent with
a drop in viability over time (Table S2).
Since CellPlex performed the best in this experiment and had
the shortest time between cell sorting and single-cell capture,
we later assessed if prolonged storage on ice had any effect
on signal-to-noise metrics (Figure S6). Indeed 30 minutes
storage on ice increased background and reduced signal for
the lipid based CellPlex reagent.
In the mouse embryo experiment, the MULTI-Seq reagents
yielded low signal-to-noise ratios and a high proportion of
unassigned droplets (Figure 3D). As BFF cluster performed
well in the low quality CellPlex PBMC dataset, we also as-
sessed its performance in the E18.5 mouse embryo cells. In-
deed, the proportion of droplets assigned to multiplets and
singlet samples also increased.
As a single sample from an inbred mouse strain was used for
this experiment, we were unable to use SNP genotypes as a
ground truth. We therefore utilized a doublet detection soft-
ware package, Demuxafy, based on gene expression as an
alternative source of droplet identity information. Demux-
afy is a wrapper program around many common algorithms
(16). Comparison of droplet calls from demultiplexing algo-
rithms based on multiplexing tags with calls based on gene
expression (Figure 3E) showed little difference in gene ex-
pression library size between concordant multiplets and sin-
glets. More singlets were recovered from the overlap of De-
muxafy and BFF Cluster compared to the number recovered
from the overlap of Demuxafy and Cell Ranger Multi.

Comparison of sample multiplexing reagents in hu-
man tumour nuclei. Having evaluated sample multiplex-
ing reagents in intact cells, we next compared the reagents
in single-nucleus preparations. Nuclei more faithfully rep-
resent cell type composition in tissues that are difficult to
dissociate enzymatically than whole-cell preparations (17,
18). Here, we used human ovarian carcinosarcoma patient-
derived xenograft (PDX) tissue that was snap frozen as tissue
pieces according to 10x Genomics best practices. Due to the
differing growth rates of the different PDX models it was im-
practical to process all samples fresh on the same day. We
prepared nuclei with a 10x Genomics isolation kit and imme-
diately performed a capture of unlabelled nuclei to identify
the effect of prolonged sample handling required by labeling
steps on the quality of the transcriptome. We subsequently la-
belled the remaining nuclei with three different multiplexing
reagents (Figure 4A).

The quality of the nuclei preparation immediately after isola-
tion was good but visually deteriorated after the multiplexing
oligo labeling step (Figure S7A). The CellPlex sample expe-
rienced a clog resulting in a wetting failure and low recov-
ery volume. While Souporcell estimated an ambient RNA
content of 29.97% for droplets from the unlabelled sample,
it could not generate an estimate for samples labelled with
sample multiplexing oligos. In the labelled samples, the ma-
jority of cells could not be assigned to a SNP donor, likely
due to a low molecular complexity and fraction of reads in
cells (Figure S7B).
The corresponding signal-to-noise ratio of the oligo tag li-
braries was poor with low separation from background (Fig-
ure 4B). Cell ranger multi failed to assign the majority of
nuclei to samples (Figure 4C), (Figure S7D). We used the
cellhashR package to compare droplet assignment method-
ologies; Seurat (srt) HTODemux performed the best under
the theoretical expectation that samples would be in equal
proportions (Figure 4D).
Since each microfluidic capture contained cells from four
PDX models, we next checked the gene expression data for
separation by sample of origin after dimension reduction
(Figure 4E). The unlabelled sample showed four major clus-
ters reflecting the SNP donors with minor satellite clusters
reflecting cell doublets. Overlaying these gene expression
cluster labels with the oligo tag calls provided confirmation
HTODemux calls were largely sample specific (Figure S7E).

Evaluation of fixed single-nucleus RNA-Seq in human
tumour nuclei. In the light of the poor performance of sam-
ple multiplexing oligos in nuclei from solid tumour sam-
ples, we evaluated fixed snRNA-Seq kits from Parse Bio-
sciences (mini Evercode v2) and 10x Genomics (Flex v1, 4
barcodes) (Figure 5A). Immediately after fixation the single
nucleus suspension appeared free of debris and clumps (Fig-
ure S8A). Following probe hybridization and sample pooling
multiple washes are required for 10x Genomics Flex. With
each centrifugation and resuspension step, the sample be-
came increasingly more clumpy (Figure S8B), resulting in a
clogged microfluidics chip and failed capture. For the Parse
Biosciences experiment, 2 of the 4 samples suffered exces-
sive clumping and were omitted (Figure S8D).
Since the 10x Genomics Flex capture was unsuccessful, we
compared Parse Biosciences data to the unlabelled 10x Ge-
nomics v3.1 fresh nucleus dataset. Parse Biosciences had
more reads in cells (Table S4) reflecting a more efficient
use of sequencing resources. Accordingly, the library sizes
and number of detected genes were approximately five fold
higher in Parse Biosciences when downsampling to an equiv-
alent number of reads per library (Figure 5D and E). Consis-
tent with the manufacturer’s specifications, the cell doublet
rate was an order of magnitude lower for Parse Biosciences.
There was a high concordance (Pearson correlation 0.918)
in gene expression between technologies (Figure 5F). Given
that the sample were nuclei, the relatively high mitochondrial
transcript content in the 10x Genomics v3.1 data was unex-
pected.
Importantly, the Parse Biosciences v2 dataset exhibited

Brown DV et al. | Sample Multiplexing Oligo Comparison bioRχiv | 5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2023.06.20.544880doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.20.544880
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT

CellPlex

A B

C

D E

F G

MULTI-Seq LMO MULTI-Seq CMO

CellPlex 1:10 MULTI-Seq LMO

Custom MULTI-Seq CMO

Fig. 3. Benchmarking sample multiplexing reagents in mouse embryonic brain. (A) Experimental design. Embryonic day 18.5 mouse brain from a single animal was
used. The single cell suspension was split into 12 partitions for each reagent tested. A high throughput labeling protocol in 96 well plates was used. Cells were pooled prior
to FACS sorting. (B) Log10 transformed oligo tag counts for each multiplexing protocol with a summary of signal-to-noise. (C) Heatmaps of oligo tag counts annotated by
BFF Cluster call and Demuxafy consensus call. (D) Identity of cell containing droplets from BFF Cluster and Cell Ranger multi algorithms. (E) Library size of gene expression
library based on Cell Ranger demultiplexing calls. (F) Library size of gene expression library based on BFF Cluster demultiplexing calls. (G) Cell annotations recovered from
each protocol. Seurat map query level 1 granularity is shown.

greater biological variation compared to the 10x Genomics
v3.1 dataset. In the latter, an outlier cluster containing a high

proportion of the lncRNA MALAT1 distorted the dimension
reduction results (Figure 5H). These cells persisted even af-
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Fig. 4. Benchmarking sample multiplexing reagents in ovarian carcinosarcoma xenograft nuclei. (A) Experimental design. Nuclei were isolated from four PDX donor
samples, performing an immediate microfluidics capture, followed by labeling the remaining nuclei with multiplexing oligos. (B) Log10-transformed oligo tag counts for each
multiplexing protocol with a summary of signal-to-noise ratios. (C) Heatmaps of oligo tag counts annotated by cellhashR consensus call, Seurat HTODemux call, and cluster
identity from parallel gene expression data. Cells (columns) are ordered by HTODemux call. (D) Comparison of droplet calls made by demultiplexing algorithms. Calls were
generated with cellhashR. (E) UMAP dimension reduction visualization of gene expression data for each protocol. Cells are colored by gene expression cluster identity.

ter excluding cells with low library sizes and high mitochon-
drial gene percentages. In contrast, the Parse Biosciences
dataset captured biologically meaningful variation, revealing
a distinct cluster expressing the NRXN1 gene (Figure 5I and
Figure S8F). Neurexin-1-alpha is a cell adhesion protein and
may represent a more epithelial-like subpopulation within the
tumor (19, 20).

Evaluation of CRISPRclean destruction of abundant
genes. Multiplexing tags reduce per-cell costs for cell cap-
ture and library preparation by increasing the yield of single-
cell partitioning. However, superloading does not decrease
the cost of sequencing. Instead, it can increase required se-
quencing volumes due to higher doublet rates and the need
to sequence the sample multiplexing tag library. Thus meth-
ods that can reduce sequencing requirements are arguably of
enhanced value for multiplexed experiments.
We evaluated the Jumpcode Genomics CRISPRclean Single

Cell RNA Boost Kit in reducing the amount of uninforma-
tive sequence data by using a guide RNA library targeting
unaligned reads, ribosomal, mitochondrial, and non-variable
genes (21). CRISPRclean lowered the proportion of riboso-
mal and mitochondrial genes in the PBMC library by over
30% (Figure 6A).
Following CRISPRclean treatment, ribosomal and mitochon-
drial genes were eliminated from the list of most highly ex-
pressed genes, and MALAT1 was considerably depleted (Fig-
ure 6B). The enhancement in gene detection was moderate
(Figure 6C), while off-target depletion of genes remained
minimal (Figure 6D). Interestingly, unlisted ribosomal genes
in the CRISPRclean panel were also degraded, potentially
due to homology.
The per-cell percentage of counts for mitochondrial genes is a
common quality control metric in scRNA-Seq analysis (22).
We investigated whether this metric remains reliable for re-
moving low-quality cells in CRISPRclean-depleted samples
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Fig. 5. Benchmarking fixed scRNA-Seq in Ovarian carcinosarcoma xenografts. (A) Experimental design. (B) PCA of 10x Genomics v3.1 fresh nuclei prior to sample
demultiplexing. Cells coloured by number of detected genes and SNP donor or origin.Percentage of variance explained by the first two principal components is indicated. (C)
PCA of Pase Biosciences v2 fixed nuclei prior to sample demultiplexing. Cells coloured by number of detected genes and reverse transcription barcode.. (D) Library size
comparison between scRNA-Seq protocols. Sequencing reads were downsampled to an equivalent number per cell. (E) Gene detection comparison between protocols. (F)
Gene expression comparison between scRNA-Seq protocols, each dot is the sum of counts across all single cells for a gene. (G) PCA of 10x Genomics v3.1 data for PDX
donor 1 coloured by cluster. (H) UMAP of 10x Genomics v3.1 data for PDX donor 1. (I) PCA of 10x Genomics v3.1 data for PDX donor 1 coloured by MALAT1 expression.
(J) PCA of Parse Biosciences v2 data for PDX donor 1 coloured by cluster. (K) UMAP of Parse Biosciences v2 data for PDX donor 1. (L) UMAP of Parse Biosciences v2 data
for PDX donor 1 coloured by NRXN1 expression.

(Figure 6E and F). Although a positive correlation between
untreated and depleted mitochondrial gene percentages was
observed, a distinct subset of cells was removed based on
data-driven outlier-based quality control. Apart from mito-
chondrial gene expression, no apparent patterns in the ex-
pression of other genes distinguished untreated and depleted
cells.

We next confirmed that cell type recovery remained unaf-
fected by the depletion of ribosomal and mitochondrial genes
(Figure 6G). We also examined whether cluster resolution
improved or if the ability to annotate immune subsets was
enhanced. Following clustering and annotation, no differ-
ence in the composition of CRISPRclean-depleted libraries
was observed (Figure 6H).

Discussion

Our study compared various sample multiplexing reagents
for scRNA-Seq experiments. We limited our comparison to
commercially available technologies that do not require ge-
netic manipulation of cells. For PBMCs, we found MULTI-
Seq LMO to be the superior reagent. Hashtag antibodies
also performed well, with the exception of a single tag oligo
HTO_1 in this particular experiment. Potential explanations
include the formation of antibody aggregates, which is men-
tioned on the frequently asked questions page of the 10x Ge-
nomics website. Reduced signal-to-noise ratios might also be
attributed to incomplete removal of supernatants during wash
steps.
CellPlex at the manufacturer’s recommended concentration,
exhibited the poorest performance due to high background.
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Fig. 6. Evaluation of Jumpcode CRISPRclean Single Cell RNA Boost Kit in MULTI-Seq LMO PBMCs. (A) Percentage of counts on genes in the CRISPRclean panel.
The gene expression library was sequenced with and without CRISPRclean treatment. (B) Top 20 highly expressed genes in CRISPRclean treated and untreated libraries.
Genes prefixed as "RP" or "MT-" represent ribosomal or mitochondrial genes, respectively. (C) Relationship between library size and number of detected genes per cell. (D)
Gene expression comparison, each dot represents the sum of counts across all single cells for a gene. (E) Correlation of mitochondrial gene percentages. The trend line is
a linear fit. (F) Relationship between library size and mitochondrial gene percentage. (G) UMAP dimension reduction based on gene expression data. The CRISPRclean
library was additionally downsampled to 50% of the untreated library. (H) Summary of immune subsets recovered from untreated, CRISPRclean treated, and downsampled
CRISPRclean treated gene expression data.

By titrating and diluting the CellPlex reagent ten-fold, the
signal-to-noise ratio was improved. The additional back-
ground was likely introduced during storage of the pooled
sample prior to single-cell capture, as the concentration of

the CellPlex reagent is higher than for MULTI-Seq or hash-
tag antibody. Any passive transfer of multiplexing oligo tags
by diffusion would be more pronounced for a concentrated
reagent. The mechanism of tag oligo exchange between cells
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or between nuclei remains unclear. In our observations, it oc-
curred in both high-quality cell lines and lower-quality dis-
sociated tissues in a time dependent fashion. Based on 10x
Genomics guidelines to maintain samples on ice after pool-
ing, passive diffusion is the likely cause. This phenomenon
could be further investigated using live cell fluorescent mi-
croscopy.

We caution against the use of sample multiplexing reagents
particularly for fragile samples. labeling of cells with multi-
plexing oligos necessitates additional sample incubation and
washing steps. These additional manipulations can compro-
mise the viability of fragile cell types such as mouse embry-
onic brain and tumour nuclei. The benefits of sample mul-
tiplexing with respect to cost and batch effect minimization
should be assessed against the risk of reductions in data qual-
ity. Large-scale experiments involving upwards of 96 sam-
ples multiplexed together have only been demonstrated using
cell lines (7); However, our results suggest that it would be
challenging to achieve such a scale with primary cells or tis-
sues.

Comparing the assignments based on sample multiplexing
oligos with SNP assignments confirmed the accuracy of all
labeling strategies. Fewer than 2% of cells were misclassi-
fied to the wrong donor in the PBMC experiment. Never-
theless, SNP assignments operated with higher cell recovery
with fewer cells being lost to an unassigned category. We rec-
ommend the use of SNPs over sample multiplexing reagents
where applicable. In our algorithmic comparison, we found
that all methods performed similarly when data quality is
high as was the case in the PBMC experiment. This is consis-
tent with other studies (23). Where the algorithms diverge in
terms of performance is on lower quality data. Here we found
BFF_Cluster could be used to rescue more cells, at the ex-
pense of an elevated false positive rate. Combining demulti-
plexing algorithms with orthogonal information, such as SNP
genotypes or endogenous gene expression, may be a use-
ful strategy to rescue poorly performing datasets, particularly
with fragile samples where signal-to-noise is sub-optimal. It
is important to note that we only tested algorithms available
within the cellhashR package (14). As new algorithms are
constantly emerging (24, 25), dedicated benchmarking stud-
ies focusing exclusively on bioinformatics analysis will be
necessary (23). Our primary focus was on laboratory ele-
ments that can enhance demultiplexing performance.

An advantage of the fixed scRNA-Seq kits from 10x Ge-
nomics and Parse Biosciences is that sample multiplexing
is embedded in the molecular biology, with no additional
sample handling required as for sample multiplexing oligos.
While the Parse Biosciences kit has a lower doublet rate, the
doublets in the 10x Genomics product are usable. For large
experiments where gene expression is the sole readout, we
expect that fixed RNA kits will become dominant. For PDX
nuclei, we found that the Parse Biosciences kit was more re-
liable, whereas 10x Genomics Flex suffered from recurrent
wetting failures. The greater propensity of nuclei for aggre-
gation and clumping compared to intact cells may explain
these failures encountered by the microfluidics-reliant 10x

Genomics technology. It is also possible that the higher nu-
clei input may have also contributed to the formation of wet-
ting failures. In the multiplexing configuration of 10x Ge-
nomics Flex, droplets containing heterotypic doublets are us-
able, therefore we input a higher number of nuclei into the
microfluidics device compared to conventional 3’ chemistry.
This overloading feature is built into the pricing structure,
where Flex is more expensive than 5’ and 3’ kits, if overload-
ing is not utilized.
CRISPRclean offers a promising approach to focusing se-
quencing resources on specific genes of interest. In our as-
sessment of PBMCs, which represent the sample type used
in the manufacturer’s demonstration, we found that the tech-
nology is consistent with the manufacturer’s claims. How-
ever, when applied to PDX samples, we observed a less pro-
nounced re-focusing of sequencing effort. This discrepancy
can be ascribed to the diminished expression of genes con-
tained within the gRNA panel in PDX samples compared to
PBMCs. While we conducted a comparison of cell type re-
covery, we did not perform an in-depth analysis on the im-
pact of normalization, which typically relies on non-variable
genes. In our data, we identified off-target depletion of genes,
some of which have been previously reported (21). The re-
maining off-target effects could be attributed to statistical
noise and additional replicate experiments are necessary to
evaluate their reproducibility. Following our assessment of
CRISPRclean, a new version of gRNAs has been introduced,
addressing known off-target effects and potentially enhanc-
ing the specificity of this technology.
In conclusion, our findings indicate that the choice and extent
of multiplexing for scRNA-Seq should be contingent on the
type of sample under investigation. Samples composed of
cells that withstand ex vivo manipulation can accommodate
a high degree of multiplexing. Conversely for delicate sam-
ples, it is more prudent to minimize multiplexing and instead
invest in additional consumable costs. This approach ensures
the preservation of high data quality.

Methods

All oligonucleotides were purchased from Integrated DNA
Technologies. Sequences are provided in Table S5.

Ethical statement. PBMCs were isolated from unrelated
healthy control donor samples obtained from the Volunteer
Blood Donor Registry (VBDR, WEHI). Informed consent
was obtained from all individual participants prior to inclu-
sion in the study. The study was performed according to
the principles of the 1964 Helsinki declaration and its later
amendments and was approved by local Human Research
Ethics Committee (WEHI Approved project 10/02). All ex-
periments involving animals were performed according to the
animal ethics guidelines and were approved by the WEHI
Animal Ethics Committee (2019.024).

PBMC sample multiplexing labeling. CellPlex. Label-
ing was performed according to 10x Genomics demonstrated
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protocol CG000391 Rev A "Cell Multiplexing Oligo Label-
ing for Single Cell RNA Sequencing Protocol" with an input
of 250,000 cells. Library preparation was performed accord-
ing to CG000388 Rev A "Chromium Next GEM Single Cell
3’ Reagent Kits v3.1 (Dual Index) with Feature Barcode tech-
nology for Cell Multiplexing".
MULTI-Seq. The MULTI-Seq protocol (7) was followed with
200nM of each anchor-barcode complex being used in the la-
beling step. The poly-A capture sequence was replaced with
the 10x Genomics feature barcode capture 2 sequence. This
required the library preparation PCR to be performed with the
Nextera read 1 primer instead of the TruSeq read 1 primer.
PCR conditions otherwise remained the same.
Total-Seq A Hashtag antibody. The Biolegend protocol for
Total-Seq A hashtag labeling was followed with the excep-
tion that ten-fold less antibody was used, 0.1 µg per labeling
reaction. Each multiplexing protocol was captured on a sep-
arate 10x Genomics lane to avoid ambient oligo effects.

Mouse embryonic brain sample preparation.
RosaERT2Cre/RosaERT2Cre mice were intercrossed
with Loxcode/Loxcode mice (26, 27). Presence of a vaginal
plug was used to determine day of conception. Pregnant
dam was induced with 50µg of 4 hydroxytamoxifen in-
jected intravenously at day 7.5 of pregnancy. Embryos
were collected at E18.5. After decapitation, the brain
was dissected and processed for enzymatic dissociation.
Embryos were dissected with the 10x Genomics protocol
CG00055 Rev C "Dissociation of Mouse Embryonic Neural
Tissue for Single Cell RNA Sequencing" with the following
modifications: Embryos were dissected in Hibernate-E
Medium media (ThermoFisher A1247601), supplemented
with 1% B27 (ThermoFisher 17504044) and 1x GlutaMAX
(ThermoFisher 35050061). Benzonase Nuclease (Millipore
E1014) was added to Papain (Millipore P4762) at a dilution
of 1:5000 during dissociation.

Mouse E18.5 brain sample multiplexing experiment.
100,000 cells were aliquotted per well across 12 wells of a
round bottom 96 well plate (Falcon 353077). To label cells
at high throughput, a combination of 10x Genomics proto-
cols CG000391 Rev B "Cell Multiplexing Oligo Labeling for
Single Cell RNA Sequencing Protocols with Feature Barcode
technology" and CG000426 Rev A "High Throughput Sam-
ple Preparation for Single Cell RNA Sequencing" were uti-
lized.
CellPlex. CellPlex oligos were diluted 1:10 in PBS prior
to incubation with 100,000 cells at room temperature. Af-
ter 5 min, 200 µL of PBS + 1% BSA was added and sam-
ples centrifuged at 300g for 4min at 4 °C. The supernatant
was aspirated with a multichannel pipette, leaving approxi-
mately 10 µL of supernatant. A single wash of 200 µL PBS +
1% BSA was performed prior to pooling and sorting by flow
cytometry. Library preparation followed the 10x Genomics
CG000388 Rev A protocol with no alternation of PCR cycle
number.
MULTI-Seq lipid modified oligo (LMO). labeling was per-
formed at half volume (100 µL total) to avoid overflow of

the round bottom 96 well plate. 200nM of anchor-barcode
complex was used in the labeling step with 100,000 cells for
5 minutes on ice. Co-anchor oligo was then added for a fur-
ther 5 minutes on ice prior to quenching with 200 µL PBS. A
single wash was performed prior to flow cytometry. Library
preparation followed the same workflow as for the PBMC
experiment.
Custom MULTI-Seq cholesterol modified oligo (CMO). The
MULTI-Seq LMO process was followed, substituting an-
chor and co-anchor oligos with a custom cholesterol modi-
fied oligo (CMO) containing the Nextera read 2 PCR handle
(Supplementary table 5). Since the oligo was designed for
compatibility with the CellPlex workflow, library preparation
followed the 10x Genomics CG000388 Rev A protocol with-
out PCR cycle alterations.
10x Genomics capture After labeling with multiplexing tag
oligos, individual samples were pooled at equal volumes
without a cell count. The pooled single-cell suspension was
counted and diluted to a final concentration of 812 cells per
µL, aiming to load 35,000 cells into each lane and obtain
20,000 barcode-containing droplets at a 16% theoretical dou-
blet rate. 10x Genomics v3.1 dual index kits were used. Each
multiplexing protocol was captured on a separate 10x Ge-
nomics lane to avoid ambient oligo effects.

Ovarian carcinosarcoma xenograft fresh nuclei exper-
iments. PDX models were established through transplanting
fragments of tumor tissue obtained from patients consented
to the WEHI Stafford Fox Rare Cancer Program (28). Fol-
lowing ethical endpoint and tumor dissection, rice-sized tis-
sue pieces were snap-frozen on dry ice and stored at -80°C
until processing. Single nucleus suspensions were generated
from frozen tissue pieces using the Chromium Nuclei Isola-
tion Kit with RNase inhibitor (PN-1000494), following user
guide CG000505 Rev A. As input tissue pieces weighed over
50mg, the four tumor pieces from each donor were cut in
half, and the nucleus preparation was performed in duplicate.
10x Genomics unlabelled capture. To examine the effects
of extended storage time on nuclei integrity a capture was
performed prior to any multiplexing labeling step, approxi-
mately 90 minutes before the labelled samples were captured.
The single nuclei suspensions from each PDX donor were
counted and pooled to a final concentration of 692 nuclei per
µL to load 30,000 nuclei and obtain 17,177 barcode contain-
ing droplets at 13.82% theoretical doublet rate.
CellPlex. CellPlex oligos were diluted 1:10 in PBS prior to
incubation with 250,000 cells at room temperature. After 5
minutes of labeling time at room temperature, 200 µL of PBS
+ 1% BSA was added and samples centrifuged at 300 g for
4min at 4 °C. The supernatant was aspirated with a multi-
channel pipette, leaving approximately 10 µL of supernatant.
A single wash of 200uL PBS + 1% BSA was performed prior
to pooling and sorting by flow cytometry. Library preparation
followed the 10x Genomics CG000388 Rev A protocol with
no alternation of PCR cycle number.
Custom MULTI-Seq custom cholesterol modified oligo
(CMO). The same process for MULTI-Seq LMO was per-
formed, except for the substitution of the anchor and co-
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anchor oligos for a custom cholesterol modified oligo (CMO)
bearing the Nextera read 2 PCR handle. As the oligo was de-
signed to be compatible with the CellPlex workflow, library
preparation followed the 10x Genomics CG000388 Rev A
protocol with no alteration of PCR cycles.
TotalSeq A anti-Nuclear Pore Complex Antibody. The Biole-
gend Protocol for Total-Seq A hashtags was followed with
1 µg of antibody per labeling reaction (accessed 22 August
2022).

Ovarian carcinosarcoma xenograft fixed RNA experi-
ments. To obtain sufficient nuclei to run the same suspen-
sion across both fixed kits we used EZ lysis buffer (Sigma
NUC101), at the expense of greater debris. 500 µL of lysis
buffer was added to approximately 50µg frozen tissue pieces.
Sample was titruated with wide bore p1000 tips until homog-
enized. Nuclei were incubated on ice for 5 minutes followed
by centrifugation at 500 g for 5min at 4°C. The supernatant
was removed followed by two washes in 1 mL PBS + 1%
BSA. Nuclei samples were then divided in half and fixed with
manufacturer specific protocols and reagents.
Parse Biosciences Evercode version 2 on PDX nuclei. Be-
tween 150,000 and 500,000 nuclei were fixed and stored at
-80°C for 6 weeks prior to processing using the Parse Bio-
sciences Evercode WT Mini v2 kit (ECW02010) version
2.0.0 protocol. After visual inspection of the nuclei following
fixation, 2 of the 4 samples exceeded the maximum clumping
parameters and were omitted, leaving 2 remaining samples.
Each sample was then processed in 2 wells of a version 2
mini kit following the manufacturer’s guidelines. Two sub-
libraries of 5,000 cells underwent the downstream cell lysis
and PCR amplification steps.

Jumpcode CRISPRclean depletion. The MULTI-Seq
LMO library from the PBMC experiment and unlabelled
library from the ovarian PDX experiment were treated
with Jumpcode CRISPRclean Single Cell RNA Boost Kit,
(KIT1018) according to the manufacturer’s instructions.

Bioinformatics analysis. All downstream analysis was
performed in R version 4.2.1 (29). The code, data and anal-
yses used to generate these figures is available from GitHub.
Each multiplexing labeling protocol evaluated was treated as
a separate dataset without integration. Tabular data was ma-
nipulated with the tidyverse package (30).
Cell annotation was performed with Seurat version 4.0.6,
TransferData function (31). The reference for human PBMCs
was provided with Seurat multimodal reference mapping vi-
gnette. The reference for mouse E18.5 brain was (32), sub-
setting cells for the E18.5 timepoint.
Doublet detection based on gene expression was performed
with demuxafy version 1.0.3 (16). The majority vote from
the output of DoubletFinder, scDblFinder, scds and scrublet
was used to assign multiplets and singlets. Ambient RNA
estimation was performed with Souporcell version 2.0 (33).

Statistical analysis. Differential cell type abundance anal-
ysis was performed by summarising the number of cells la-

belled with a given cell type annotation for each sample of
origin, followed by testing for differences in the abundance
of cell types between cell demultiplexing protocols with the
edgeR package (34).
For differential gene expression analysis single-cells were
first aggregated to pseudobulks based on CRISPRclean treat-
ment with the aggregateAcrossCells function from the scuttle
package (35). The edgeR package was then used to compute
differentially expressed genes.

Data statement. The count matrices and metadata are
available as SingleCellExperiment objects at Zenodo, DOI:
10.5281/zenodo.8031078

Supplementary Information. Supplementary information
includes additional results, methods and discussion. Supple-
mentary tables 1 - 5 and supplementary figures 1 - 10.
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Supplementary Results
Immune lineage and subset analysis. After annotating
the singlet-containing droplets, we noticed a difference in
oligo tag library size between lymphoid and myleoid immune
subsets especially for CellPlex (Figure S4E). This difference
was not statistically significant and there was no difference in
immune subset recovery across broad (Figure 2F) and finer
(Figure S4F) cell annotations. This effect is likely to be due
to differences in cell size between lymphoid and myleoid
cells.

Comparison of diluted and undiluted Cellplex in
mouse embryonic brain experiment. We adopted the
same experimental setup as the Cellplex Demonstration Data
(v3.1 Chemistry) from 10x Genomics to facilitate a compar-
ison with undiluted CellPlex (Figure S??B). The signal-to-
noise ratio remained comparable, although a slightly superior
assignment of cell-containing droplets to tags was observed
in the undiluted CellPlex dataset (Figure S5C). As these two
datasets were generated using different samples and in dis-
tinct laboratories, it is challenging to ascertain whether this
effect is attributable to reagent dilution. Notably, given the
significantly lower background in the diluted CellPlex li-
brary, fewer resources would be expended on sequencing
through background multiplexing oligos.

10x Genomics Flex on intact Ovarian PDX single-cell
suspension. Following the experiment conducted on PDX
tumor nuclei, we carried out an additional 10x Genomics Flex
experiment utilizing intact cells. We hypothesized that nu-
clear leakage contributed to cell clumping, and that this issue
could be mitigated by working with cells. Two methods of
preparing single-cell suspensions were evaluated: firstly, fix-
ing a freshly prepared single-cell suspension created through
enzymatic tissue dissociation, and secondly, fixing the tissue
prior to dissociation.
While both methods successfully yielded single-cell suspen-
sions with minimal clumps, microfluidic clogs occurred in
two independent captures, resulting in a final Cell Ranger
multi estimate of 1,200 cells rather than the theoretical
80,000. The quality of data acquired from tissue fixation
prior to dissociation was significantly inferior to that obtained
by fixing a freshly generated cell suspension (Figure S8L),
exhibiting poor gene expression correlation (Figure S8N).

Further CRISPRclean evaluation in PBMCs. As reported
in Jumpcode advertising materials, CRISPRclean treatment
may enhance the detection of additional sub-populations
that could be otherwise obscured by the presence of non-
variable genes. Contrary to the manufacturer’s claims, we
observed no difference in the abundance of classical and non-
classical monocytes (Figure S9A). In both libraries, a clear
distinction was noted between cells expressing FCGR3A and
CD14 (Figure S9C). We compared gene expression between
CRISPRclean-treated and untreated samples and identified
fewer than 50 differentially expressed genes (Figure S9B).
A subset of these genes overlapped with known off-target

genes, as reported by Pandey et al., which are attributed to
gRNA homology (21).

CRISPRclean evaluation in Ovarian PDX. We also eval-
uated the CRISPRclean kit in ovarian carcinosarcoma PDX
nuclei, where its effects were diminished, likely due to the
lower baseline expression of ribosomal and mitochondrial
genes in this sample (Figure S10A). We analysed differen-
tial gene expression between CRISPRclean-treated and un-
treated samples in both experiments and identified fewer than
60 (Figure S10F). Approximately half of these overlapped
with known off-target genes reported in Pandey et al., result-
ing from gRNA homology (21).

Supplementary Discussion
Choice of high throughput labeling protocol for mouse
embryonic brain experiment. The decision to sort the
mouse embryo experiment post-labeling was influenced by
the guidelines provided by 10x Genomics and a direct com-
parative study of pre- and post-label sorting by Mylka et al.
(13). Given the contrived nature of our experiment, which en-
tailed a comparison of different multiplexing reagents on the
same sample within a single day, sequential FACS sorts for
varying protocols were necessary. This arrangement, how-
ever, resulted in MULTI-Seq samples being kept on ice for a
longer duration than CellPlex.
In a more typical experimental setup, only a single sorting
step would be required post-pooling of samples. Our find-
ings suggest that swift cell capture is crucial to prevent loss
of viability and to minimize multiplexing oligo tag exchange.
We recommend having all the necessary reagents for 10x Ge-
nomics captures prepared during the sorting process, thus en-
abling single-cell partitioning to occur as promptly as possi-
ble.

Cell demultiplexing algorithm comparisons.
BFF_Cluster demonstrated variable performance across
the different datasets in our study. This tool utilizes a
non-parametric, quantile-based normalization procedure,
which assumes a bimodal distribution in the oligo tag count
data (14). The primary goal is to enhance the signal-to-noise
ratio in under-performing datasets. Notably, in the CellPlex
PBMC dataset and mouse embryo datasets, BFF_Cluster
identified the highest number of cells. However, in the
PBMC dataset, where we had SNP ground truth as reference,
BFF_Cluster produced the most false positives (Figure 2E).
The majority of these incorrect assignments were multiplet-
to-singlet errors. These could potentially be mitigated
through additional filtering using gene expression-based
doublet detection software like Demuxafy. We implemented
this strategy in the mouse embryonic brain experiment
where the signal-to-noise ratio was low, yet some signal
was detectable. The aim of this experiment was to overload
the 10x Genomics capture process to maximize the number
of cells captured. In contrast, in the Ovarian PDX nuclei
experiment, BFF_Cluster did not yield any droplet calls
for either the Hashtag antibody or MULTI-Seq CMO. This
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conservative behaviour is more desirable in instances of
experimental failure.
In the Ovarian PDX experiment, Seurat HTO_Demux()
yielded the highest number of cells, with an even distribu-
tion of cells recovered per multiplexing tag. This might be
attributable to the k-medoids mediated clustering step that
explicitly models 1 plus the number of tags used (23). Con-
versely, the alternative demultiplexing algorithms, which did
not implicitly account for the number of tags used in the ex-
periment, were more conservative, labeling the majority of
nuclei as unassigned. It is worth noting that HTO_Demux()
is a heuristic algorithm and its sensitivity is subject to the
user-defined quantile threshold, which in our study was left
at the default value of 0.99 (36).

Fixed snRNA-Seq experiments. Our experiments suggest
Parse Biosciences Evercode is particularly well suited for
fragile samples, with a higher number of reads in cells and
molecules and genes detected overall. The multiple washing
steps between split pool rounds likely remove ambient RNA
plus the split pool strategy also makes it unlikely that ambient
RNA will follow the same barcoding path as intact nuclei.The
lack of microfluidics may also reduce shear stress on nuclei
during sample handling.
The disadvantage of Parse Biosciences is a more labour in-
tensive workflow than 10x Genomics Flex with an entire day
in the laboratory to generate barcoded single-cells compared
to less than half this time for 10x Genomics Flex in our expe-
rience.Handling multichannel pipettes across many microw-
ell plates may also contribute to high inter-operator variabil-
ity compared to an automated microfluidic instrument. Cur-
rently both multiplexed Fixed RNA kit are not compatible
with antibodies and Flex is incompatible with CRISPR ex-
periments. Where these modalities are required, sample mul-
tiplexing oligos will continue to be useful.Through a splint
oligo or gap filling reaction we anticipate that these additional
modalities will be enabled in the future.

CRISPRclean experiments. It is crucial to consider that
CRISPRclean treatment adds time and expense to library
preparation and sequencing. In our PBMC experiment we
did not observe an obvious benefit in cluster identification,
though the claimed cost reduction was achieved. While the
PBMC sample benefited from CRISPRclean depletion, in the
PDX sample, the cost of the CRISPRclean treatment out-
weighed the reduction in sequencing cost (approx $350 cost
vs $210 AUD saved).We anticipate that for samples where
non-variable genes make up a high proportion of the sequenc-
ing library, CRISPRclean will be integrated into a routine lab-
oratory workflow.
The choice of scRNA-Seq chemistry should also be factored
in when deciding to use CRISPRclean. We observed a lower
proportion of ribosomal and mitochondrial genes in the Parse
Biosciences library compared to the 10x Genomics v3.1 li-
brary and would not have recovered the cost of CRISPRClean
treatment in the Parse Biosciences experiment.

Supplementary Methods
Titration of multiplexing reagents by flow cytome-
try. K562 cells were used for flow cytometry experiments.
Single-cell suspensions were labeled with the relevant mul-
tiplexing reagents, with the addition of 200nM of fluores-
cent detection oligo during the labeling step. These detec-
tion oligos have the same sequence present on the 10x Ge-
nomics 3’ v3.1 gel bead, comprising either the poly-A or fea-
ture barcode 2 capture sequence with a 5’ Alexa 647 mod-
ification (Table S5). Following washing steps, the single-
cell suspensions were resuspended in 500 µL PBS 1% BSA,
supplemented with 0.1µg/mL 4’,6-diamidino-2-phenylindole
(DAPI, ThermoFisher 62248) as a viability dye. Cells were
analyzed on a BD LSR II flow cytometer. Data analysis was
performed using the ggCyto package in R (37).

PBMC isolation and cryopreservation. PBMCs were iso-
lated from fresh whole blood by density gradient Ficoll-
Leucosep centrifugation. Cells were cryopreserved in liquid
nitrogen in FCS containing 10% DMSO and placed in -80°C
freezer for a short-term storage. Vials were then transferred
to liquid nitrogen vapour phase tanks for long-term storage
(38).

PBMC thawing sample preparation. Cryopreserved
PBMC samples were rapidly thawed in a 37°C water bath.
Each sample was transferred into a 15-ml tube using a p1000
µl tip without mixing by pipetting. Next, 1 ml of 37°C
pre-warmed media (RPMI supplemented with 10% FCS)
was added dropwise with gentle swirling of the sample.
After 1 min, an equal volume of media was added; this
process of adding an equal volume of media was repeated a
further 3 times. The samples were then centrifuged at 400g
for 5 min at 4°C. Pellets were resuspended in 1mL of RPMI
supplemented with 10% FCS, and filtered with a 40 µM
strainer (Falcon Cat 352340). DAPI was added to a final
concentration of 0.1 µg/mL prior to the sorting of viable
(DAPI negative) cells. Cells were collected in cell staining
buffer (Biolegend 420201) and counted with Countess III FL
(ThermoFisher AMQAX1000). Each of the PBMC donor
samples was split into aliquots of 250,000 cells each prior to
sample multiplexing oligo labeling.

Mouse E18.5 brain sample multiplexing experiment.
To compare CellPlex reagent diluted ten-fold versus undi-
luted, Cellplex Demonstration Data (v3.1 Chemistry) "30k
Mouse E18 Combined Cortex, Hippocampus and Subven-
tricular Zone Cells Multiplexed, 12 CMOs" was downloaded
from the 10x Genomics website.

Ovarian carcinosarcoma xenograft fixed RNA experi-
ments. 10x Genomics Flex on PDX nuclei: The same nu-
cleus suspension used for Parse Biosciences was fixed with
10x Genomics Flex-specific fixative. Between 150,000 to
500,000 nuclei were fixed and stored at -80°C for 2 weeks
prior to processing with 10x Genomics Flex kit, CG000527
Rev B. Initially, the nuclei were observed to be in a sin-
gle suspension. However, following probe hybridisation and
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multiple wash steps, the clumping rate increased. The sam-
ple was filtered twice with a 30µm pre-separation filter (130-
041-407, Miltenyi Biotech) prior to the final cell count. Af-
ter capture with the Chromium X controller, the volume of
GEMs was lower than expected, indicating a wetting failure.
The library was sequenced, yielding 30M reads and a dataset
of 303 cells with a reads-in-cells metric of 29%. Due to the
low cell yield, the dataset was not analysed further.
10x Genomics Flex on PDX intact cells and tissue. To obtain
fixed cells, tumour pieces were dissociated with collagenase,
dispase, and DNase, and two million cells were fixed with the
10x Genomics-specific fixative. At the same time, approxi-
mately 50 mg of rice-sized tissue pieces were fixed directly
and stored at 4°C for 5 days according to the manufacturer’s
instructions. Fixed tumour pieces were then thawed and dis-
sociated with collagenase, dispase, and DNase. Single cells
were immediately processed, along with cells that had been
dissociated and then fixed with the 10x Genomics Flex kit
CG000527 Rev B. A minor wetting failure was noted, with
approximately 90 µL recovery of GEMs (80% of expected
volume). The remaining cell suspension was used for a sec-
ond Chromium X run performed with another microfluidics
chip, yielding the same outcome.

Sequencing. Sequencing for PBMC samples was per-
formed on a NextSeq500 targeting 5,000 reads per cell for
the multiplexing oligos and 20,000 reads per cell for the
gene expression. An initial sequencing run of 28 bp (read
1), 10 bp (index read 1), 10bp (index read 2), 90b p (read
2) was performed, followed by a second run of 28 bp,10
bp,10 bp,44 bp for the multiplexing oligos only. A fur-
ther aliquot of PBMC gene expression libraries were se-
quenced with MGI DNBSEQ-G400 instrument. Standard
10x Genomics libraries were converted with MGIEasy Uni-
versal Library Conversion kit (App-A, 1000004155). 25
ng of standard gene expression library was used as in-
put to the conversion step. 8 PCR cycles were performed
prior to circulisation. Sequencing was performed with the
DNBSEQ-G400RS High-Throughput Sequencing Kit: FCL
PE100, (1000016949), with MGISEQ-2000RS Sequencing
Flow Cell v3, (000008403).
Mouse E18.5 brain samples were sequenced on a
NextSeq2000 P3 flow cell targeting 2,000 reads per
cell for the multiplexing oligos and 16,500 reads per cell
for the gene expression. The ovarian carcinosarcoma
nuclei 10x Genomics v3.1 experiment was sequenced on a
NextSeq2000 P3 flow cell. For the unlabelled sample a mean
of 20,000 reads per nucleus were targeted (12,000 reads in
cells). For the samples labelled with multiplexing oligos
3,500 reads per cell for oligos and 5,000 reads per cell for the
gene expression were targeted. Given the poor performance
of the labelled nuclei further sequencing was not performed.
The ovarian carcinosarcoma fixed nuclei Parse Bioscience v2
experiment was sequenced on a MGI DNBSEQ-G400 instru-
ment following library conversion with App-A.300,000 reads
per cell were targeted. Reads were then downsampled to
a comparable level to the 10x Genomics unlabelled sample
(16,500 reads per cell). The ovarian carcinosarcoma 10x Ge-

nomics Flex v1 experiment was sequenced on a NextSeq2000
P2 flow cell. We targeted 40,000 cells at 10,000 reads per
cell. Given the sample clog, only 12,000 cells were recov-
ered, at 430,000 reads per cell.

Bioinformatics preprocessing. PBMC and mouse embryo
experiment Sequencing data was demultiplexed with Cell
Ranger v6.0.0 mkfastq. MGI sequencing data was demul-
tiplexed with splitBarcode v2.0.0 from MGI. Production of
count matrices and demultiplexing of samples was performed
with Cell Ranger multi v6.0.0 using 10x Genomics pre-built
GRCh38 reference genome and transcriptome for PBMCs
and mm10 for mouse embryo (2020-A July 7, 2020 version).
Demultiplexing of PBMC samples by genotype was per-
formed with cellsnp-lite v1.2.0 (39), with 36.6M SNPs with
minor allele frequency (MAF) > 0.0005 in the 1000 Genomes
Project. SNP vcf file. Then vireo was used to assign each cell
barcode to 1 of 8 donors, doublets, or unassigned based on
SNP genotypes (40). This was performed separately for each
multiplexing protocol followed by global donor matching in
aggregate based on the genotype profile of each donor.
Ovarian carcinosarcoma nuclei 10x Genomics v3.1 Sequenc-
ing data was demultiplexed with Cell Ranger v7.0.0 mkfastq.
Production of count matrices and demultiplexing of samples
was performed with Cell Ranger multi v 7.0.0 using 10x
Genomics pre-built GRCh38 and mm10-2020-A reference
genome and transcriptome (2020-A (July 7, 2020)). Demulti-
plexing of samples was performed with cellsnp-lite and vireo
as for the PBMC dataset.
Ovarian carcinosarcoma nuclei Parse Biosciences mini v2
Data was processed with Parse Biosciences spilt-pipe v1.0.3
using a mixed GRCh38 and mm10 reference genome and
transcriptome with default parameters.
Ovarian carcinosarcoma nuclei 10x Genomics Flex Data was
processed with Cell Ranger multi v7.0.0.
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Supplementary Tables

Supplementary Table 1. Summary of sample multiplexing reagents

Name Composition Compatibility Plexing Cost per sample
Total-Seq hashtag Antibody Cells OR nuclei 15 $$
MULTI-Seq Lipid Cells OR nuclei Unlimited $
CellPlex Lipid Cells AND nuclei 12 $$$

Supplementary Table 2. Metrics from the mouse E18.5 brain multiplexing experiment.

CellPlex MULTI-Seq CMO MULTI-Seq LMO
Cell containing droplets 27,125 19,494 9,745
Theoretical Doublets 5,886 3,040 759
Theoretical doublets % 21.70% 15.60% 7.80%

Supplementary Table 3. Metrics from the fresh Ovarian carcinosarcoma PDX experiment.

CellPlex Hashtag Ab MULTI-seq CMO
Estimated Number of Cells 5,509 7,971 5,156
Mean Reads per Cell 5,746 7,320 11,235
Median UMI Counts per Cell 157 352 650
Sequencing Saturation 48.40% 52.40% 50.30%
Median Genes per Cell 148 321 558
Reads Mapped Confidently to Transcriptome 34.30% 49.80% 42.70%

Supplementary Table 4. Metrics from the fixed Ovarian carcinosarcoma PDX experiment.

Parse v2 mini 10x Genomics v3.1
Cells recovered 3,683 (1/3 kit) 16,181 (1 capture)
Doublet rate (Heterotypic) 0.73% 7%
Reads per cell 16,587 12,817
Sequencing saturation 5.5% 54.3%
Reads in cells 84.2% 50.8%
Transcriptome mapping 72.8% 47.3%

Supplementary Table 5 which contains oligonucleotide sequences is provided as an Excel file.

Brown DV et al. | Sample Multiplexing Oligo Comparison bioRχiv | 17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2023.06.20.544880doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.20.544880
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT

Supplementary Figures
Supp figure 1. Optimisation of the sample multiplexing tag oligos by flow cytometry.

Supp figure 2. Related to Figure 1. Additional metrics on the performance of multiplexing tag oligo reagents in PBMC
experiment.

Supp figure 3. Related to Figure 1. Titration of CellPlex lipid modified oligo by flow cytometry.

Supp figure 4. Related to Figure 2. Additional quality control plots comparing sample multiplexing tag and SNP assignments.

Supp figure 5. Related to Figure 3. Additional metrics on the performance of multiplexing tag oligo reagents in mouse embryo
E18.5 brain experiment.

Supp figure 6. Related to Figure 3. Effect of prolonged incubation on ice to oligo tag specificity.

Supp figure 7. Related to Figure 4. Ovarian carcinosarcoma xenograft sample multiplexing experiment.

Supp figure 8. Related to Figure 5. Fixed ovarian carcinosarcoma xenograft experiment.

Supp figure 9. Related to Figure 6. Additional metrics on the Jumpcode CRISPRclean human gRNAs on PBMCs.

Supp figure 10. Related to Figure 6. Performance of Jumpcode CRISPRclean human gRNAs on the Ovarian patient derived
xenograft experiment.

A B

C

Supplementary Figure 1. Optimisation of sample multiplexing tag oligo labelling by flow cytometry. (A) FACS comparison of
original MULTI-Seq oligo poly-T capture oligo sequence with feature barcode 2 capture sequence. (B) Titration of hashtag antibody
oligos. (C) Titration of MULTI-Seq LMO oligos. The detection oligo only control is shown separately for clarity.
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Supplementary Figure 2. Additional metrics on the performance of sample multiplexing reagents in the PBMC experiment.
(A) Parwise scatter plots of two oligo tags. Note all doublets for all tags are shown in red. (B) UMAP of hashtag antibody tag counts
coloured by detection of HTO-1. (C) Heatmap of hashtag antibody tag counts. (D) Heatmap of CellPlex tag counts. (E) Heatmap of
MULTI-Seq LMO tag counts.
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Supplementary Figure 3. Titration of CellPlex lipid modified oligo by flow cytometry. K562 cells were labelled with a serial dilution
of CellPlex. Cells were analysed by FACS after adding a feature barcode 2 fluorescent detection oligo.
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Supplementary Figure 4. Multiplexing tag oligo and SNP assignments for PBMCs. (A) Alluvial plots for CellPlex demultiplexed
with Cell Ranger multi. Left, tag oligo identity, middle donor identity based on oligo tags, right donor identity based on SNPs. (B) Alluvial
plots for Total-Seq A hashtag antibody demultiplexed with Cell Ranger multi. (C) Gene expression library size comparison between
oligo tags and SNP call. M = Multiplet, S = Singlet, N = number of cells in category. (D) Alluvial plots for MULTI-Seq demultiplexed
with BFF Cluster. Left, tag oligo identity called by BFF Cluster, middle donor identity based on oligo tags, right donor identity based on
SNPs. (E) Oligo tag library size by immune lineage. (F) Immune subset composition by donor and protocol. Automated annotation is
shown with Level 2 granularity.
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Supplementary Figure 5. Performance of multiplexing oligo tag reagents in mouse embryo E18.5 brain experiment (A) Com-
parison of mouse Total-Seq A hashtag antibody with CellPlex 1:10 dilution on mouse E18.5 brain. Signal was read out by FACS. (B)
Comparison of MULTI-Seq LMO with custom MULTI-Seq cholesterol modified oligo (CMO). The Illumina small RNA read 2 sequencing
handle was substituted with Nextera read 2 handle. (C) Comparison of undiluted CellPlex oligo from 10x Genomics demonstration
dataset with the ten-fold dilution used in the mouse E18.5 brain experiment. (D) Droplet identity generated with Cell Ranger multi of
undiluted CellPlex oligo from 10x Genomics demonstration dataset compared to the ten-fold dilution used in the mouse E18.5 brain
experiment. (E) Mitochondrial count percentage for each protocol. (F) UMAP dimension reduction visualisation of multiplexing oligo
tag counts for each multiplexing protocol. (G) Multiplexing oligo tag library size for each droplet assignment category and protocol. (H)
Images from countess III of leftover CellPlex and MULTI-Seq LMO labelled samples taken during 10x Genomics capture.
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Supplementary Figure 6. Comparison of CellPlex signal with prolonged incubation after pooling. Two distinct samples were
labelled individually with CellPlex and fluorescent detection reagents and pooled immediately prior to FACS analysis (bottom) or after
30 minutes on ice (top). Experiment was performed in triplicate.
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Supplementary Figure 7. Performance of multiplexing tag oligo reagents in Ovarian carcinosarcoma xenograft experiment
(A) Countess images taken immediately after nuclei extraction with 10x Genomics kit and after multiplex oligo labelling and pooling.2x
zoomed image from Countess for a total 4.5x magnification (B) Reads in cells estimate for each sample multiplexing protocol. (C) 10x
Genomics Cell Ranger multi assignment scores for the three oligo tag protocols. The majority of nuclei failed the 90% threshold for
assignment to a tag. (D) UMAP dimension reduction visualisation of multiplexing tag counts for each protocol. Nuclei are coloured
by BFF_cluster call. (E) UMAP dimension reduction visualisation of gene expression data for each protocol. Nuclei are coloured by
BFF_cluster call. (F) Oligo tag library size for distinct categorises called by Seurat HTODemux.
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Supplementary Figure 8. Fixed RNA-Seq ovarian carcinosarcoma xenograft experiment. (A) 10x Genomics Flex nuclei post
probe hybridisation and before sample pooling. 2x zoomed image from Countess for a total 4.5x magnification. Nuclei are visualised
with propidium iodide and images collected in the RFP channel. (B) Pooled 10x Genomics Flex nuclei prior to microfluidics capture.
(C) Retained Parse Biosciences v2 sample prior to reverse transcription. (D) Omitted Parse Biosciences v2 sample prior to reverse
transcription. (E) PCA of Parse Bioscience at full sequencing amount, coloured by number of genes detected. (F) UMAP of Parse
Bioscience at full sequencing amount, coloured by cluster number. (G) 10x Genomics Flex fixed cells, post probe hybridisation and
before sample pooling. (H) 10x Genomics Flex fixed tissue dissociated to cells, post probe hybridisation and before sample pooling.
(I) Pooled 10x Genomics Flex experiment on cells prior to microfluidics capture.2x zoomed image from Countess for a total 4.5x
magnification. Cells are visualised with propidium iodide and images collected in the RFP channel. (J) Comparison of mitochondrial
gene percentage from 10x Genomics Flex experiment in cells and tissues. (K) Comparison of library size from 10x Genomics Flex
experiment in cells and tissues. (L) Comparison of number of genes detected from 10x Genomics Flex experiment in cells and tissues.
(M) Gene expression comparison of fixed cells versus fixed tissue for 10x Genomics Flex experiment. Each dot is the sum of counts
across all single cells for a gene.
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Supplementary Figure 9. Additional metrics on the Jumpcode CRISPRclean human gRNAs on PBMCs. (A) Summary of immune
subsets recovered from untreated, CRISPRclean treated, and downsampled CRISPRclean treated gene expression data. (B) Venn
diagram listing off target genes differentially decreased in PBMC experiment with the list of genes from Pandey et al., 2022. (C)
Expression of FCGR3A, (CD16, non-classical monocytes) and CD14 (classical monocytes) in untreated, CRISPRclean treated and
50% downsampled CRISPRclean treated libraries.
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Supplementary Figure 10. Performance of Jumpcode CRISPRclean human gRNAs on the Ovarian patient derived xenograft
experiment (A)Relationship between library size and number of detected genes per cell. (B) Top 20 highly expressed genes in
CRISPRclean treated and untreated libraries. Genes prefixed as "RP" or "MT-" represent ribosomal or mitochondrial genes, respec-
tively. (C) Relationship between library size and number of detected genes per cell. (D) Gene expression comparison, each dot
represents the sum of counts across all single cells for a gene. (E) Correlation of mitochondrial gene percentages. The trend line is a
linear fit. (F) Venn diagram listing off target genes differentially decreased in Ovarian carcinosarcoma PDX experiment.
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