

1 **Neuronal *Ndst1* depletion accelerates prion protein clearance and slows**
2 **neurodegeneration in prion infection**
3

4 Patricia Aguilar-Calvo^{1#*}, Adela Malik^{1@}, Daniel R. Sandoval^{2&}, Christopher Barback^{3\$}, Christina D.
5 Orrù⁴, Heidi G. Standke⁵, Olivia Thomas⁵, Chrissa A, Dwyer^{2#}, Donald P. Pizzo¹, Jaidev Bapat^{1ε},
6 Katrin Soldau¹, Ryotaro Ogawa³, Mckenzie B. Riley⁶, K. Peter R. Nilsson⁷, Allison Kraus⁵, Byron
7 Caughey⁴, Jeffrey J. Iliff⁸, David Vera³, Jeffrey D. Esko², and Christina J. Sigurdson^{1,9,10*}

8
9 ¹Departments of Pathology and ⁹Medicine, UC San Diego, La Jolla, CA 92093, USA

10 ²Departments of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA

11 ³Department of Radiology, UC San Diego, La Jolla, CA 92093, USA

12 ⁴Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA

13 ⁵Department of Pathology, Case Western University, Cleveland, OH 44106, USA

14 ⁶Department of Neurology, University of Alabama, Birmingham, AL 35243, USA

15 ⁷Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden

16 ⁸VISN 20 NW Mental Illness Research, Education and Clinical Center, VA Puget Sound Health
17 Care System; Department of Psychiatry and Behavioral Science, Department of Neurology,
18 University of Washington School of Medicine, Seattle, WA 98195, USA

19 ¹⁰Department of Pathology, Immunology, and Microbiology, UC Davis, Davis, CA 95616, USA

21 #Current address: Department of Neurology, University of Alabama, Birmingham, AL 35293, USA

22 @Current address: Bristol Myers Squibb, San Diego, CA 92121, USA

23 &Current address: Pfizer, San Diego, CA 92122, USA

24 \$Current address: Fate Therapeutics, San Diego, CA 92131, USA

25 *Current address: GSK, Collegeville, PA 19426, USA

26 εCurrent address: Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical
27 Campus, Aurora, CO, 80045, USA.

29 *Corresponding authors: Dr. Christina J. Sigurdson, Department of Pathology, UC San Diego, 9500
30 Gilman Dr., La Jolla, CA 92093, USA, Phone: +1 (858) 534 0978, e-mail: csigurdson@ucsd.edu
31 Dr. Patricia Aguilar-Calvo, Department of Neurology, University of Alabama at Birmingham, 1717
32 6th Avenue South, Birmingham, AL 35293, USA. Phone: +1 (205) 934 3773, e-mail:
33 paguilarcalvo@uabmc.edu
34
35 Keywords: neurodegeneration, amyloid, co-factors, prion disease, prions, glycosaminoglycans
36
37 Short title: Neuronal HS modulates prion deposition in the ECM
38
39 The authors have declared that no conflict of interest exists.

40 **Abstract**

41 Select prion diseases are characterized by widespread cerebral plaque-like deposits of
42 amyloid fibrils enriched in heparan sulfate (HS), a major extracellular matrix component. HS
43 facilitates fibril formation *in vitro*, yet how HS impacts fibrillar plaque growth within the brain is
44 unclear. Here we found that prion-bound HS chains are highly sulfated, and that the sulfation
45 is essential for HS accelerating prion conversion *in vitro*. Using conditional knockout mice to
46 deplete the HS sulfation enzyme, NdSt1 (N-deacetylase, N-sulfotransferase), from neurons or
47 astrocytes, we investigated how reducing HS sulfation impacts survival and prion aggregate
48 distribution during a prion infection. Neuronal NdSt1-depleted mice survived longer and
49 showed fewer and smaller parenchymal plaques, shorter fibrils, and increased vascular
50 amyloid, consistent with enhanced aggregate transit toward perivascular drainage channels.
51 The prolonged survival was strain-dependent, affecting mice infected with extracellular,
52 plaque-forming, but not membrane bound, prion strains. Live PET imaging revealed rapid
53 clearance of prion protein monomers into the CSF in mice expressing unsulfated HS, further
54 suggesting that HS sulfate groups hinder transit of extracellular prion monomers. Our results
55 directly show how a host cofactor slows the spread of prion protein through the extracellular
56 space and identify an enzyme target to facilitate aggregate clearance.

57 **Author summary**

58 Prions cause a rapidly progressive neurologic disease and death with no curative treatment
59 available. Prion aggregates accumulate exponentially in the brain in affected individuals
60 triggering neuronal loss and neuroinflammation. Yet the additional molecules that facilitate
61 aggregation are largely unknown, and their identification may lead to new therapeutic targets.
62 We have found that prions in the brain preferentially bind to a highly sulfated endogenous
63 polysaccharide, known as heparan sulfate (HS). Here we use genetically modified mice that
64 express poorly sulfated neuron-derived HS, and infect mice with different prions strains. We
65 find that the mice infected with a plaque-forming prion strain show a prolonged survival and
66 fewer plaques compared to the controls. We also found that the prion protein was efficiently

67 transported in the interstitial fluid in mice having poorly sulfated HS, suggesting that the prion
68 protein is more readily cleared from the brain. Our study provides insight into how HS retains
69 prion aggregates in the brain to accelerate disease and indicates the specific HS biosynthetic
70 enzymes to target for enhancing protein clearance.

71 **Introduction**

72 The spread of aberrant protein aggregates through the brain is a key pathogenic mechanism
73 in Alzheimer's, Parkinson's, and prion disease¹⁻⁶. Potential mechanisms for aggregate spread
74 include bulk transport within the extracellular space (ECS)⁷⁻¹¹. The ECS harbors a dynamic
75 reservoir of interstitial fluid (ISF) that flows toward perivascular clearance pathways¹¹.
76 Evidence suggests that bulk ISF flow is enhanced during sleep, fostering the efflux of
77 metabolic waste and proteins, such as amyloid-β (Aβ), from the brain¹²⁻¹⁴. Thus, alterations in
78 the structure or composition of perivascular clearance pathways¹⁵ or the extracellular matrix
79 (ECM)¹⁶ during aging or neurodegenerative disease could hinder the clearance of peptides
80 and oligomers¹⁷.

81 Prion diseases are rapidly progressive neurodegenerative disorders in which prion protein
82 aggregates (PrP^{Sc}) deposit on cell membranes or as plaques embedded in the brain ECM,
83 depending on the prion conformation¹⁸⁻²¹. Similar to Aβ plaques, PrP^{Sc} plaques are highly
84 enriched in a prominent component of the ECM, HS²²⁻²⁵. Tissue HS proteoglycans (HSPGs)
85 consist of long carbohydrate chains (40-300 alternating residues of glucuronic acid and
86 glucosamine residues, also depicted as disaccharides) attached to one or more protein
87 cores^{26, 27}. A large body of evidence implicates HS in fibril formation and in the endocytosis of
88 protein aggregates *in vitro*²⁸⁻³². Moreover, polyanions administered intraventricularly increase
89 survival time in experimental rodent models and in patients, potentially by blocking prion
90 binding to endogenous HS³³⁻⁴⁴. Transgenic expression of mammalian heparanase, an enzyme
91 that degrades HS, delays prion onset and progression⁴⁵.

92 HS chains bind and concentrate proteins, such as growth factors and cytokines, and the level
93 and pattern of sulfation determine the binding affinity^{26, 27}. Here, we show that brain-derived
94 prions selectively bind highly sulfated HS chains. To understand how the sulfation level
95 modifies prion aggregate spread and disease progression, we use conditional *Ndst1* knock-
96 out mice to reduce the sulfation of either neuron or astrocyte generated HS, and challenge
97 mice with diverse prion strains. We found that mice with reduced neuronal HS sulfation

98 survived longer when infected with the extracellular plaque-forming prion strain. The prion
99 conformational properties were largely unaltered except for a reduction in PrP^{Sc} size, as fibrils
100 were shorter and prion aggregates more soluble. Additionally, there were fewer parenchymal
101 plaques, while vascular fibrils accumulated in the meninges. Finally, in positron emission
102 tomography (PET) scan studies, radiolabeled soluble PrP^C underwent faster transport through
103 the brain of mice expressing poorly sulfated neuronal HS, leading to increased PrP^C efflux into
104 the spinal cord. Together, our studies identify how reducing HS sulfation extends survival,
105 reduces parenchymal plaques, increases PrP^{Sc} solubility, and accelerates PrP clearance,
106 demonstrating *NDST1* as a potential therapeutic target.

107 **Results**

108 **Highly sulfated HS binds PrP^{Sc}**

109 To first establish the level and composition of HS molecules bound to PrP^{Sc} as compared to
110 whole brain lysate, we performed liquid chromatography - mass spectrometry (LC/MS)
111 analysis on whole brain lysate, comparing to the HS molecules bound to PrP^{Sc} from the same
112 brain (the latter previously reported)⁴⁶ (Fig 1A). For two prion strains (ME7 and mCWD), HS
113 bound to PrP^{Sc} was 7-9% more sulfated (N-, 2-O-, and 6-O-sulfated) than HS in brain lysate
114 (Fig 1B-D), indicating that more highly sulfated HS selectively binds PrP^{Sc}. Prion-bound HS
115 was particularly enriched in D2S0, which is a disulfated (N- and 2-O-sulfated) disaccharide
116 (Fig 1C, S1 and S2 Tables). We repeated this experiment with cerebral cortex from human
117 sporadic prion disease (sCJD)-affected brain. Consistent with PrP^{Sc} from mouse brain, the HS
118 bound to PrP^{Sc} was more highly sulfated [prion-bound: 63% sulfation versus brain lysate: 53%]
119 (Fig 1E-G). Additionally, PrP^{Sc} from sCJD-affected cortex and from familial prion disease-
120 affected cerebellum (F198S mutation in *PRNP*) selectively bound the D0A6 disaccharide (Fig
121 1F, S1 Fig, S3 and S4 Tables).

122 Heparin is more sulfated than HS and promotes the fibril formation of PrP^{Sc}, A β , tau, and α -
123 synuclein *in vitro*⁴⁷⁻⁵². To determine how the HS sulfate position impacts the interaction with
124 PrP, we tested a library of selectively desulfated heparin molecules lacking the N-, 6-O-, or 2-
125 O-sulfate group in a prion conversion assay known as protein misfolding cyclic amplification
126 (PMCA)⁵³. A PrP^C-expressing cell lysate was seeded with mouse prions (three strains) with
127 and without heparin. Heparin increased prion conversion by 60 - 350% (Fig 1H-I). Notably,
128 eliminating any sulfate group, NS, 6S, or 2S, reduced conversion to baseline, indicating that
129 sulfation *at all three positions* was necessary to accelerate prion conversion (Fig 1H-I).

130 HS binds ligands through electrostatic interactions between the anionic sulfate groups and
131 cationic amino acids in ligands²⁶. To identify the HS binding domain on PrP^C, we performed
132 alanine substitutions in three positively charged domains and an asparagine-rich domain (S2A
133 Fig). Segments 23-27 and 101-110 were critical to PrP^C – HS binding, as lysine and arginine

134 substitutions at either site markedly reduced binding (nearly 3-fold), while asparagine to
135 alanine substitutions (segment 171-174) did not impact binding (S2B-D Fig). Together, these
136 results suggest that the electrostatic interaction between the N-terminal lysine and arginine
137 residues of PrP^C and the HS sulfate groups are essential for PrP - HS binding.

138 **Depleting neuronal HS sulfate groups reduces parenchymal prion plaques and
139 prolongs survival**

140 Given the findings that PrP^{Sc} selectively binds highly sulfated HS and that the sulfate groups
141 enhance PrP conversion *in vitro*, we predicted that reducing HS sulfation would slow PrP
142 conversion kinetics. To determine how less sulfated HS in the brain impacts PrP^{Sc}
143 conformation and disease progression *in vivo*, we used *Ndst1*^{fl/fl} mice to conditionally delete
144 *Ndst1* (gene that encodes for the N-deacetylase/N-sulfotransferase enzyme that catalyzes the
145 deacetylation and sulfation of HS chains at position N) from neurons by crossing mice to a
146 neuron-specific Cre-recombinase line driven by the *synapsin1* promoter (*SynCre*) (S3A Fig).
147 To validate the mouse line, an LC/MS analysis of the *Ndst1*^{fl/fl}*SynCre*^{+/−} and *SynCre*^{−/−}
148 (subsequently referred to as *SynCre*⁺ and *SynCre*[−]) brain was performed and revealed that
149 the *SynCre*⁺ brain had less sulfated HS (33% reduced average sulfation per disaccharide)
150 and less N-, 2-O- and 6-O-sulfated disaccharides, particularly D2S0 and D2S6 disaccharide
151 units (S3B-C Fig, S5 Table). The *SynCre*⁺ mice showed no clinical phenotype, brain lesions,
152 nor change in PrP^C expression in the brain (S3D-H Fig), but showed lower microglial reactivity
153 in cortex, thalamus, and hippocampus as compared to *SynCre*[−] mice (S3E-F Fig).

154 Sulfated HS enhances the uptake of prion fibrils in cultured cells^{28, 54} and may impact the
155 conversion and spread of cell membrane-bound (GPI-anchored) and extracellular (GPI-
156 anchorless) prions. Therefore, the *SynCre*⁺ and *SynCre*[−] mice were inoculated with prions that
157 form either diffuse (RML; GPI-anchored) or diffuse and small plaque-like deposits (ME7; GPI-
158 anchored and anchorless⁴⁶). Mice infected with RML prions showed no difference in survival
159 time [*SynCre*[−]: 158 ± 9 and *SynCre*⁺: 168 ± 10 days post-inoculation (dpi)] or brain lesions
160 (S4A-C Fig), indicating that neuronal HS (nHS) sulfation level had no impact on the replication

161 or spread of a GPI-anchored, oligomeric prion strain. In contrast, *SynCre*⁺ mice infected with
162 ME7 prions showed a significantly prolonged survival [*SynCre*⁻: 172±4 and *SynCre*⁺:
163 199±11 dpi] (S4A Fig). Notably, the prolonged survival was not associated with differences
164 in the spongiosis, glial activation, or PrP^{Sc} level or distribution in brain, nor in the PrP^{Sc}
165 biochemical properties, including electrophoretic mobility and glycoprofile (S4B-H Fig),
166 suggesting that reducing nHS sulfation primarily affected the kinetics of prion conversion and
167 spread.

168 Since prion fibrils bind 4- to 10-fold more HS than subfibrillar aggregates ($\mu\text{g HS} / \mu\text{g PrP}^{\text{Sc}}$)⁴⁶,
169 we predicted that reducing HS sulfation would substantially prolong survival in mice infected
170 with the plaque-forming, GPI-anchorless prion strain, mCWD⁵⁵. Because the disease course
171 for mCWD prions in WT mice is more than 550 days, we crossed the *Ndst1*^{ff}*SynCre*^{+/−} mice to
172 *tga20*^{+/+} mice, which overexpress PrP^C (4- to 6-fold) and show accelerated disease
173 progression^{55, 56}. Strikingly, mCWD-infected *Ndst1*^{ff}*tga20*^{+/+}*SynCre*^{+/−} mice (hereafter noted as
174 *SynCre*⁺) displayed a markedly prolonged survival, approximately 40% longer than the
175 *SynCre*⁻ mice [*SynCre*⁻: 153±19 and *SynCre*⁺: 206±49 dpi] (Fig 2A-B).

176 Decreasing nHS sulfation had a pronounced effect on the prion plaque distribution in the
177 *SynCre*⁺ brain. While most *SynCre*⁻ mice (83%; n = 5/6 mice) accumulated parenchymal
178 plaques in the corpus callosum (CC), only one-third of the *SynCre*⁺ developed plaques in the
179 CC (33%; n = 3/9 mice) (Fig 2C-D), which were smaller and multicentric (clusters of small
180 plaques) (Fig 2E-F). The *SynCre*⁺ brain also showed an increase in vascular amyloid
181 (*SynCre*⁻: 12±2 versus *SynCre*⁺: 37±2 amyloid-laden vessels), particularly within the velum
182 interpositum and cerebellar meninges (Fig 2C-D, G-H and S5A-B Fig), suggestive of
183 enhanced prion transit toward perivascular drainage pathways. There were no differences in
184 the astrocytic or microglial response to aggregates (S5C-D Fig). Additionally, HS was still
185 detectable in plaques (S5E Fig), and there was no change in plaque morphology in situ by
186 electron microscopy (S5F Fig). Finally, fluorescent lifetime decay (FLIM) of a prion-bound
187 fluorescent probe, heptameric formic thiophene acetic acid (h-FTAA), revealed no differences,

188 suggesting no change in the PrP^{Sc} conformational properties (S6A Fig). Thus, reducing HS
189 sulfation prolongs survival and reduces parenchymal plaques and plaque size in the brain,
190 without detectably altering PrP^{Sc} secondary or tertiary conformation.

191 To further test PrP^{Sc} fibril conformation using biochemical analyses, we measured the
192 biochemical properties of PrP^{Sc}, including the electrophoretic mobility of the proteinase K (PK)-
193 resistant core, glycoprofile, stability in chaotropes, and aggregate solubility (S6B-D Fig and
194 Fig 3A-B). Notably the only difference was in PrP^{Sc} solubility, in which there was an increase
195 (25%) in the *SynCre*⁺ brains (Fig 3A-B) suggesting that the aggregate population was
196 generally smaller. To further assess aggregate size, we next purified prion fibrils from brain
197 homogenate and measured the length of isolated fibrils on electron microscopy grids. We
198 found that fibrils were approximately 20% shorter (on average) in *SynCre*⁺ brains (Fig 3C-D),
199 consistent with a change in aggregate size as suggested by the higher PrP^{Sc} solubility.

200 The increased PrP^{Sc} clearance into the cerebrospinal fluid (CSF) may lead to enhanced
201 deposition in the spinal cord. Thus, we next compared the PrP^{Sc} seeding activity in the spinal
202 cord from *SynCre*⁻ and *SynCre*⁺ using real-time quaking-induced conversion (RT-QuIC) (S6
203 Table). However, there were no differences in the proportion of mice with seeding activity in
204 spinal cord (*SynCre*⁻: 7 of 11 mice, *SynCre*⁺: 14 of 16 mice; Fisher's exact test; $p = 0.19$),
205 suggesting that reducing Nhs sulfation does not lead to increased incidence of PrP^{Sc}
206 deposition in the spinal cord.

207 **Decreasing neuronal HS sulfation enhances PrP^C clearance into the spinal cord**

208 Given that i) HS is a significant component of the brain ECM and ii) decreasing nHS sulfation
209 reduces parenchymal plaque load and prolongs survival in prion-infected mice (Fig 2B- H and
210 S5A Fig), we reasoned that HS may entrap PrP in the ECM, hindering clearance by ISF bulk
211 flow. To investigate how reducing HS sulfation affects soluble PrP^C transit through the ISF, we
212 used PET to track radiolabeled PrP in real time (Fig 4A). Recombinant PrP^C was radiolabelled
213 with zirconium-89 (Zr89) (PrP-Zr89) (radiolabel confirmed in S7A Fig). Zr89-labelled PrP^C was

214 stereotactically injected into the left caudate putamen of *Ndst1^{ff}tga20^{+/+}SynCre^{+/}* and *SynCre^{-/-}* mice in two experiments. Mice were imaged by PET immediately after injection [day 0 (D0)]
215 and at 20 hours post-injection (D1) (Fig 4B and S7 Fig).
216
217 PET imaging immediately after injection revealed intense radioactive signal (more than 100
218 μ Ci) core similarly concentrated at the injection site in *SynCre-* and *SynCre+* brains, with less
219 than 5% in the spinal cord (Fig 4B-D and S7B-C Fig). Strikingly, at D1, the total PrP-Zr89
220 radiolabeled sagittal area had increased by 68% in the *SynCre+* mice, in contrast to minimal
221 change (9%) in the *Cre-* brains (Fig 4B, D and S7D Fig). Moreover, there was a pronounced
222 decrease (30%) in the area occupied by the intense radioactive core (more than 100 μ Ci) in
223 the *SynCre+* mice (versus 9% in *Cre-*) (Fig 4E), suggestive of enhanced PrP-Zr89 diffusion
224 from the injection site. Additionally, there was an approximately 14-fold increase in
225 radioactivity in the spinal cord of *SynCre+* as compared to *SynCre-* mice at D1 (*SynCre-*: 20%
226 versus *SynCre+*: 287% increase compared to D0) (Fig 4C), indicating that more PrP-Zr89 had
227 spread from the brain to the spinal cord in the *SynCre+* mice as compared to *SynCre-* mice.
228 Collectively these studies suggest that decreasing HS sulfation accelerates PrP^C clearance.

229 **Altering astrocytic HS sulfation does not impact prion disease progression**

230 Since the HS in the CNS is secreted by neurons and glial cells⁵⁷⁻⁵⁹, we next tested how
231 reducing astrocytic HS sulfation would affect prion conversion *in vivo*. *Ndst1^{ff}* mice were
232 crossed with mice expressing *GFAPCre* (glial fibrillary acidic protein), as well as to *tga20* mice
233 for mCWD inoculation. Brain lysates from uninfected aged *Ndst1^{ff}GFAPCre+* (hereafter
234 *GFAPCre+*) mice showed modest changes in HS composition (S8A-C Fig, S7 Table). Mice
235 showed no change in PrP^C expression level, and no clinical or neuropathologic phenotype
236 (S8D-F Fig). *GFAPCre+* and *GFAPCre-* littermates were intracerebrally inoculated with RML,
237 ME7, or mCWD prions. Interestingly, the prion-infected *GFAPCre+* and *Cre-* showed similar
238 survival times [*Cre+* and *Cre-*: RML: 160 ± 16 versus 162 ± 5 dpi, ME7: 182 ± 14 versus
239 191 ± 10 dpi, mCWD: 140 ± 20 versus 133 ± 17 dpi, respectively]. Additionally, there were no
240 differences in brain lesions (PrP^{Sc} distribution, vacuolation, or astrocytic gliosis) or biochemical

241 properties of PrP^{Sc} (S8G-P Fig). These results indicate that reducing astrocytic HS sulfation
242 had no detectable impact on prion disease progression, pathologic phenotype, or PrP^{Sc}
243 biochemical properties for mice infected with three distinct strains of prions, in striking contrast
244 to the effect of reducing neuronal HS sulfation.

245 In summary, our study demonstrates a previously unrecognized role for highly sulfated HS
246 chains advancing prion disease progression. We found evidence that HS and PrP bind by
247 electrostatic interaction, with PrP^{Sc} and sulfated HS engaging within the brain parenchyma,
248 enhancing fibril elongation, parenchymal plaque formation, and markedly accelerating
249 disease. Interestingly, this effect was cell source and prion strain dependent, as reducing
250 neuronal, but not astrocytic HS, prolonged survival, and only impacted strains with a GPI-
251 anchorless component. Finally, we systematically identified the more highly sulfated HS
252 molecules concentrated within prion aggregates from mice and human brain by LC/MS, further
253 supporting *NDST1* as a therapeutic target.

254 **Discussion**

255 PrP^{Sc} and A β plaques are enriched in HS^{23, 25, 46, 60}, yet whether HS facilitates fibril formation
256 *in vivo* has been unclear. Here we establish that neuron-generated HS accelerates prion
257 propagation in a strain-dependent manner. We show the importance and specificity of HS
258 sulfate groups in binding PrP, as the HS molecules enriched within prion aggregates were
259 more highly 6-O-, 2-O-, or N-sulfated compared to brain lysate, and sulfation was key to
260 amplifying prion conversion. Notably, depleting nHS sulfation reduced parenchymal plaque
261 load, expanded PrP^{Sc} deposition around meningeal vessels, and dramatically improved
262 survival in mice infected with mCWD, collectively supporting a model of enhanced prion
263 clearance in mice with poorly sulfated HS. Live imaging studies supported this model,
264 revealing accelerated efflux of PrP monomer into the spinal cord. Thus, we propose that
265 reducing sulfation of HS is sufficient to impair HS - PrP interaction and augment extracellular
266 PrP egress into the CSF, prolonging the survival of mice with prion disease.

267 Previous studies report heparin and HS promote fibril formation *in vitro*^{50, 61}, and prion-infected
268 mice and vCJD patients treated with HS mimetics survive longer^{33-35, 39-44}. Using genetic
269 models, we and others recently found that shortening HS chains reduces plaque numbers as
270 well as extends survival and improves behavior in prion-infected and Alzheimer's mouse
271 models, respectively^{46, 62}, implicating HS in both prion and A β plaque formation *in vivo*. Our
272 studies now demonstrate the highly sulfated nature of HS bound to prions using LC/MS, and
273 the feasibility of manipulating HS biosynthetic pathways to enhance PrP clearance, increasing
274 the resistance of mice to extracellular plaque formation. Notably, the few parenchymal plaques
275 present in mice expressing less sulfated nHS were small and the isolated fibrils shorter and
276 aggregates more soluble, together providing strong evidence to support that sulfated HS
277 recruits prion subfibrillar aggregates, facilitating fibril elongation and plaque formation in the
278 brain parenchyma. Whether other reported co-factors, such as lipids or nucleic acids⁶³⁻⁶⁵, also
279 promote PrP conversion *in vivo* is unclear and would be important to address in future studies.
280 Nevertheless, manipulating HS polymerase or sulfotransferase expression to reduce HS

281 length or sulfation, respectively, may be a viable therapeutic strategy to promote the clearance
282 of prions, A β , and other extracellular aggregates into the CSF.

283 Reducing nHS sulfation did not affect the disease progression of *Ndst1^{ff}SynCre^{+/−}* mice
284 infected with GPI-anchored prions (RML), despite PrP C and PrP Sc being embedded within an
285 extensive meshwork of cell surface HSPGs. In vitro, HS reportedly promotes the endocytosis
286 of PrP Sc , as well as tau and α -synuclein^{28-31, 66, 67}, yet reducing nHS sulfation did not detectably
287 alter RML prion propagation, astrocyte reactivity, or neurotoxicity. Although we found that
288 heparin binds with high affinity and promotes GPI-anchored prion conversion *in vitro*, minimal
289 HS was bound to GPI-anchored prions isolated from brain⁴⁶, suggesting that the PrP Sc
290 membrane location limits access to HS, and HS may not enhance neurotoxicity *in vivo*. Given
291 that GPI-anchored prions concentrate within lipid rafts, the membrane curvature or phosphate
292 head groups, lipid raft size, or HS location and spatial orientation may hinder HS-PrP binding
293 and constrain fibril elongation for membrane-bound prions, abrogating any major scaffolding
294 effect by HS⁶⁸. In contrast, extracellular GPI-anchorless PrP C and PrP Sc are unconstrained in
295 the parenchyma and may more readily bind extracellular HS chains, consistent with our
296 previous finding of abundant HS bound to extracellular prions⁴⁶. That said, we cannot exclude
297 that HS promotes the endocytosis, neuronal toxicity, or propagation of different prion
298 conformers than used here, as prions propagating in different brain regions may access HS
299 chains with a sulfation code better suited for binding.

300 Notably, only reducing nHS sulfation impacted disease progression; reducing astrocytic HS
301 sulfation had no effect. Although both neurons and astrocytes produce and secrete HS^{57, 58, 69},
302 PrP may selectively bind nHS due to the level and pattern of sulfation, or astrocytes may
303 simply synthesize less HS. Alternatively, considering that only neuronal PrP C is essential for
304 PrP-linked toxicity⁷⁰, it is conceivable that membrane-bound HSPGs such as syndecans or
305 glypicans, facilitate extracellular PrP Sc (GPI-anchorless) binding to PrP C or neuronal surface
306 receptor complexes in trans, potentiating neurotoxic signaling pathways. In this case, reducing

307 nHS sulfation may decrease PrP^{Sc} interactions with cell surface receptors. Future studies may
308 further elucidate the mechanism underlying the prolonged survival.

309 Our studies support a broader role of HS and the ECM in retaining proteins and promoting
310 aggregation in the aging brain, with implications beyond prion disease. Given that HS also
311 binds lipids and chemokines, this work suggests that increases in HS levels or sulfation may
312 slow protein efflux and increase neuroinflammation, particularly in the presence of protein
313 aggregates. Similar to PrP, the N-terminus of A β also binds to HS⁷¹ and HS sulfate groups are
314 required for A β binding⁷². Given the similarities of our prion disease model to AD, future studies
315 to (i) characterize how HS levels and composition change with age and disease in the human
316 brain, (ii) determine whether HS enhances neuroinflammation, (iii) define the structure of HS
317 concentrated within A β plaques, and (iv) devise strategies to enhance the clearance of A β in
318 AD models by reducing HS sulfation would be of high priority.

319 We demonstrate a significant increase in the lifespan of prion-infected, nHS-depleted mice,
320 which suggests that HS biosynthetic enzymes, such as Ndst1, may be therapeutic targets for
321 select neurodegenerative diseases. Reducing HS sulfation in early disease would be expected
322 to enhance aggregate transport toward perivascular clearance pathways. However, a caveat
323 is a possible increase in meningeal vascular amyloid, as observed in prion-infected mice with
324 reduced HS sulfation as shown here or with shortened HS chains⁴⁶. Given that these results
325 highlight the importance of HS sulfation in plaque formation, future work may define and inhibit
326 PrP^{Sc} and A β binding to vessel-associated molecules to further promote prion clearance into
327 the CSF.

328 In conclusion, our data provide evidence that PrP selectively binds highly sulfated neuronal
329 HS, thereby identifying HS as the first integral *in vivo* co-factor in prion fibril formation and
330 plaque assembly. Reducing HS sulfation decreased the parenchymal plaque burden and
331 prolonged survival, suggesting that *in vivo*, PrP and HS electrostatic interactions are critical
332 for binding. We also directly demonstrate how sulfated HS slows PrP^C clearance from the ISF

333 in real time, indicating that GPI-anchorless PrP^C transits through the brain by bulk flow, and
334 that clearance may be increased by manipulating HS chemical properties. Importantly, our
335 data strongly supports the pursuit of therapeutic strategies targeting HS biosynthetic enzymes
336 to facilitate protein aggregate clearance.

337 **Materials and Methods**

338 **Prion transmission studies in mice**

339 *Ndst1^{ff}* mice⁷³ were bred to mice that express the Cre-recombinase under the neuron and astrocyte
340 specific promoters, *synapsin1* and *glial fibrillary acidic protein* (*SynCre* and *GFAPCre*), respectively,
341 and to *tga20* mice, which overexpress mouse PrP^{C56}. Homozygosity for *tga20* was determined by
342 quantitative real time PCR using the PureLink™ Genomic Purification Kit, and the Taqman™
343 Master Mix, Copy Number Assay (*Prnp*) and Copy Number Reference Assay, mouse, Tfrc (Thermo
344 Fisher Scientific). Mice were maintained under specific pathogen-free conditions on a 12:12
345 light/dark cycle. All animal studies were approved by the Institutional Animal Care and Use
346 Committee at UC San Diego. Protocols were performed in strict accordance with good animal
347 practices, as described in the Guide for the Use and Care of Laboratory Animals published by the
348 National Institutes of Health.

349 Male and female *Ndst1^{ff}SynCre+* or *GFAPCre+* and *Ndst1^{ff}tga20^{+/+}SynCre+* or *GFAPCre+* (6-8
350 weeks old), and *Cre-* littermate control mice, were anesthetized with ketamine and xylazine and
351 inoculated into the left parietal cortex with 30 µl of 1% prion-infected brain homogenate prepared
352 from terminally ill mice (n= 7 – 17 mice/group) or with 1% mock brain homogenate (n= 3 – 4
353 mice/group). Prion-inoculated mice were monitored three times weekly for the development of
354 terminal prion disease, including ataxia, hyperactivity, kyphosis, stiff tail, hind leg clasp, and hind
355 leg paresis, and were euthanized at the onset of terminal disease. During necropsy, the brain was
356 halved, and the left hemisphere was immediately fixed in formalin. Fixed brains were treated for 1
357 hour in 96% formic acid, post-fixed in formalin, cut into 2 mm transverse sections, and paraffin-
358 embedded for histological analysis. A 2-3 mm transverse section was removed from the left
359 hemisphere at the level of the hippocampus/thalamus, embedded in optimal cutting temperature
360 (OCT) compound and immediately frozen on dry ice. The remaining brain tissue was frozen for
361 biochemical studies. Survival time was calculated from the day of inoculation to the day of terminal
362 clinical disease.

363

364 **Histopathology and immunohistochemical stains**

365 Five-micron sections were cut onto positively charged silanized glass slides and stained with
366 hematoxylin and eosin (HE), or immunostained using antibodies for PrP (SAF84, epitope in the
367 globular domain at the amino acids 160–170 of the mouse PrP), astrocytes (glial fibrillary acidic
368 protein, GFAP), and microglia (Iba1). GFAP (DAKO; 1:6000), Iba1 (Wako; 1:3000), and PrP
369 (Cayman Chemical; 1:1200) immunohistochemistry were performed on an automated tissue
370 immunostainer (Ventana Discovery Ultra, Ventana Medical Systems, Inc). Each epitope had
371 independently optimized retrieval parameters to yield the maximal signal to noise ratio. For PrP,
372 slides were incubated in protease 2 for 20 minutes followed by antigen retrieval in CC1 (tris-based;
373 pH 8.5; Ventana) for 64 minutes at 95 °C. For GFAP only the protease P2 was used (Ventana) for
374 16 minutes. Iba1 retrieval consisted of CC1 for 40 minutes at 95 °C. Following retrieval, antibodies
375 were incubated on the tissue for 32 minutes at 37 °C. The secondary antibody (HRP-coupled goat
376 anti-rabbit or anti-mouse; OmniMap system; Ventana) was incubated on the sections for 12 minutes
377 at 37 °C. The primary antibody was visualized using DAB as a chromogen followed by hematoxylin
378 as a counterstain. Slides were rinsed, dehydrated through alcohol and xylene and cover slipped.
379 For the PrP and CD31 (endothelial cells) dual immunolabelling, tissue sections were stained
380 sequentially using anti-PrP SAF84 (1:150) and CD31 antibodies (Dianova; 1:150) using the
381 tyramide signal amplification system (TSA; ThermoFisher). Slides were stained on a Ventana
382 Discovery Ultra (Ventana Medical Systems, Tucson, AZ, USA). Antigen retrieval was performed
383 using a slightly basic treatment solution (CC1; pH 8.5, Ventana) for 92 minutes at 95 °C. Sections
384 then were incubated in anti-PrP antibody for 32 minutes at 37 °C, followed by anti-mouse-HRP
385 (UltraMap Detection Kit, Ventana) and TSA-Alexa 594. The antibodies were denatured by treatment
386 in a citric acid-based solution, pH 6 (CC2, Ventana) for 24 minutes at 95 °C. Subsequently, the
387 slides were incubated with anti-CD31 antibody (rat) for 32 minutes at 37 °C followed by rabbit anti-
388 rat (1:500; Jackson ImmunoResearch) and detected using the OmniMap system (Ventana) to
389 fluorescently label CD31-expressing cells with TSA-Alexa 488.

390 The PrP and HS dual immunolabelling was performed as previously described but with minor
391 changes⁴⁶. Briefly, tissue sections were deparaffinized, and epitope exposure was performed using
392 formic acid, PK, and heated citrate buffer (pH 6). Sections were blocked and incubated with anti-
393 PrP SAF-84 (1:400) antibody for 1 hour followed by IgG –CY3 (Jackson Immunolabs; 1:200) for 30
394 minutes. Sections were next incubated with anti-HS 10E4 antibody (AMS Bioscience; 1:300), anti-
395 mouse IgM biotin (Jackson Immunolabs; 1:500) for 30 minutes, streptavidin-HRP (Jackson
396 Immunoresearch; 1:2000) for 45 minutes and tyramide-Alexa488 (Invitrogen) for 10 minutes. Nuclei
397 were labeled with DAPI, and slides were mounted with fluorescent mounting medium (ProLongTM
398 Gold antifade reagent). As controls for the HS stain, a subset of duplicate slides was treated with 8
399 milliunits of heparin lyases I, II and III for one hour prior immunostaining. Isotype immunoglobulin
400 controls, single sections immunostained for PrP or HS, and prion negative (uninfected) cases were
401 also included.

402 **Lesion profile**

403 Brain lesions from prion-infected mice were scored for the level of PrP immunological reactivity,
404 spongiosis, and gliosis on a scale of 0–3 (0= not detectable, 1= mild, 2= moderate, 3= severe) in 9
405 regions: (1) dorsal medulla, (2) cerebellum, (3) hypothalamus, (4) medial thalamus, (5)
406 hippocampus, (6) septum, (7) medial cerebral cortex dorsal to hippocampus, (8) cerebral peduncle,
407 and (9) cerebellar peduncle. A sum of the three scores resulted in the value obtained for the lesion
408 profile for the individual animal in a specific brain area and was depicted in the ‘radar plots’. Two
409 investigators blinded to animal identification performed the histological analyses.

410 **Quantitative analysis of astrocytic and microglial inflammation**

411 To measure astrocytic gliosis and microglial activation in *Ndst1^{ff}SynCre*, *Ndst1^{ff}tga20^{+/+}SynCre*,
412 *Ndst1^{ff}GFAPCre* and *Ndst1^{ff}tga20^{+/+}GFAPCre* mice, slides containing cerebral cortex, corpus
413 callosum, hippocampus, thalamus, hypothalamus, and cerebellum were imaged using the Olympus
414 EX41 microscope with DP Controller. Images were converted to grayscale, and FIJI (an ImageJ
415 based image processing software) was used to measure the total brain area and quantify astrocyte
416 and microglia reactivity using the “Measure” function. Astrocyte and microglia were demarcated

417 using the “Find the edges” function and particle analysis was used to measure the area occupied.
418 The total area covered by astrocyte and microglia was divided by the total area for each brain
419 region.

420 **Western blot and glycoprofile analyses**

421 For ME7 strain in WT mice, PrP^{Sc} was concentrated from 10% brain homogenate in phosphate
422 buffered saline (PBS) (w/v) by performing sodium phosphotungstic acid (NaPTA) precipitation prior
423 to western blotting⁷⁴. Briefly, 20 μ l of 10% brain homogenate in an equal volume of 4% sarkosyl in
424 PBS was nuclease digested (benzonaseTM, Sigma) followed by digestion with 20 μ g/ml PK at 37 °C
425 for 30 minutes. After addition of 4% sodium phosphotungstic acid in 170 mM MgCl₂ and protease
426 inhibitors (Complete-TM, Roche), extracts were incubated at 37 °C for 30 minutes and centrifuged
427 at 18,000 \times g for 30 minutes at 25 °C. Pellets were resuspended in 2% sarkosyl prior to
428 electrophoresis and immunoblotting. Samples were electrophoresed in 10% Bis-Tris gel (Invitrogen)
429 and transferred to nitrocellulose by wet blotting. Membranes were incubated with monoclonal
430 antibody POM19 [discontinuous epitope at C-terminal domain, amino acids 201–225 of the mouse
431 PrP⁷⁵] followed by incubation with an HRP-conjugated IgG secondary antibody. The blots were
432 developed using a chemiluminescent substrate (Supersignal West Dura ECL, ThermoFisher
433 Scientific) and visualized on a Fuji LAS 4000 imager. Quantification of PrP^{Sc} glycoforms was
434 performed using Multigauge V3 software (Fujifilm). For mCWD, 100 μ l of 10% brain homogenate
435 was concentrated using NaPTA as described above and digested with 100 μ g/ml PK at 37 °C for
436 45 minutes.

437 **Conformation stability assay**

438 To measure prion strain stability in guanidine chloride (GdnHCl), 10% brain homogenates were
439 denatured for 1 hour in increasing concentrations of GdnHCl from 0 to 6 M. Samples were then
440 diluted with a Tris-based lysis buffer (10 mM Tris-HCl, 150 mM NaCl, 10 mM EDTA, 2% sarkosyl,
441 pH 7.5) to 0.15 M GdnHCl and digested with PK at a ratio of 1:500 (1 μ g PK: 500 μ g total protein)
442 for 1 hour at 37 °C. The digestion was stopped with 2 mM phenylmethylsulfonyl fluoride (PMSF) and
443 protease inhibitors (Complete-TM, Roche) followed by centrifugation at 18,000 \times g for 1 hour. Pellets

444 were washed in 0.1 M NaHCO₃ (pH 9.8) and centrifuged at 18,000 x g for 20 minutes. Pellets were
445 then denatured in 6 M guanidine isothiocyanate, diluted with 0.1 M NaHCO₃, and coated passively
446 onto an ELISA plate. PrP was detected with biotinylated-POM1 antibody (epitope in the globular
447 domain, amino acids 121–231 of the mouse PrP⁷⁵), a streptavidin HRP-conjugated secondary
448 antibody, and a chemiluminescent substrate. Stability was measured in a minimum of 3 independent
449 experiments, comparing *Ndst1^{ff}tga20^{+/+}SynCre+* with *SynCre-* mice (3 – 4 mice per group).

450 **PrP^{Sc} solubility assay**

451 Brain homogenates were solubilized in 10% sarcosyl in PBS and digested with 50 µg/ml of PK (final
452 concentration) at 37 °C for 30 minutes. Protease inhibitors were added (Complete-TM, Roche), and
453 samples were layered over 15% Optiprep™ and centrifuged at 18,000 x g for 30 minutes at 4 °C.
454 Supernatants were removed and pellets were resuspended in PBS in a volume equivalent to the
455 supernatant. Supernatant and pellet fractions were immunoblotted using anti-PrP antibody POM19.
456 PrP signals were captured and quantified using the Fuji LAS 4000 imager and Multigauge V3.0
457 software. Brain samples were measured from 3-4 mice per genotype.

458 **Cell-lysate protein misfolding cyclic amplification (cIPMCA)**

459 The pcDNA3.1 vector (Invitrogen) with the mouse *Prnp* encoding the 3F4 epitope (109M, 112M
460 human numbering) was used as a template for site-directed mutagenesis (QuikChange Site
461 Directed Mutagenesis kit™) (Agilent). PrP-deficient RK13 cells (ATCC) were transfected with 5-10
462 µg of plasmid DNA using lipofectamine 3000 (Invitrogen). At 24 hours post-transfection, cells were
463 washed twice in PBS, harvested in 1 ml PBS, and centrifuged for 1 minute at 1,000 x g. The pellet
464 was resuspended in PMCA buffer (PBS containing 1% triton X-100, 150 mM NaCl, and 5 mM EDTA
465 plus Complete-TM protease inhibitors), passed repeatedly through a 27-gauge needle, and clarified
466 by centrifuging at 2000 x g for 1 minute.

467 RML, ME7, and mCWD prions were used to seed mouse PrP^C (no heparin reactions). The PrP^C
468 was newly prepared for each independent experiment. The prion seeds were derived from brain
469 homogenate that was pooled from mice inoculated with the same prion strain. The brain

470 homogenate samples pooled to generate the seeds were consistent between the experiments.
471 Prion-infected brain homogenate (10% w/v) was added to PrP^C-expressing RK13 cell lysate (1:10,
472 PrP^{Sc} : PrP^C by volume) and subjected to repeated 5 seconds sonication pulses (S4000, QSonica)
473 with 10 minutes of incubation between each pulse, over a total period of 24 hours. Sonication power
474 was maintained at 50-60% and samples were continuously rotated in a water bath at 37 °C.
475 Samples were then digested with 200 µg/ml PK for 30 minutes at 37 °C and analyzed by western
476 blot using the anti-PrP monoclonal antibody 3F4⁷⁶. PrP^C levels were measured by blotting 1-2 µl
477 from unseeded lysates. Signals were quantified using a Fujifilm LAS-4000 imager and Multi Gauge
478 software and compared by percent conversion to control samples (considered 100%). PK-digested
479 unseeded lysates were included in all experiments to exclude PrP^{Sc} contamination of the PMCA
480 substrates and spontaneous assembly of mutant PrP^C protein. At least three independent
481 experimental replicates were performed for each mutant and each prion strain used as seed. For
482 the PCR assays with heparin (Scientific Protein Laboratories) and desulfated heparin (Tega), 1 µl
483 of 225 µg/ml or 2,225 µg/ml sulfated heparin, or 1 µl of 225 µg/ml desulfated heparin (N-, 6-O-, or
484 2-O-desulfated) were added to the PMCA reactions. The level of PrP^{Sc} formed in the presence and
485 absence of heparin was measured by western blot.

486 **h-FTAA staining and fluorescence life time imaging**

487 Sections (10 µm) of OCT-embedded brain samples were cut onto positively charged silanized glass
488 slides, dried for 1 hour and fixed in 100% then 70% ethanol for 10 minutes each. After washing with
489 deionized water, sections were equilibrated in PBS, pH 7.4, for 10 minutes. Heptamer-formyl
490 thiophene acetic acid (h-FTAA; 1.5 mM in de-ionized water) was diluted in PBS to a final
491 concentration of 1.5 µM and added to the sections. The sections were incubated with h-FTAA for
492 30 minutes at room temperature, washed with PBS, and mounted using Dako fluorescence
493 mounting medium. The fluorescence decay of h-FTAA bound to PrP aggregates was collected using
494 an inverted Zeiss (Axio Observer.Z1) LSM 780 microscope (Carl Zeiss MicroImaging GmbH)
495 equipped with a modular FLIM system from Becker and Hickl. In this setup, the emitted photons
496 were routed through the direct coupling confocal port of the Zeiss LSM 780 scanning unit and

497 detected by a Becker and Hickl HPM-100-40 hybrid detector. Data was recorded by a Becker and
498 Hickl Simple-Tau 152 system (SPC-150 TCSPC FLIM module) with the instrument recording
499 software SPCM version 9.42 in the FIFO image mode, 256 × 256 pixels, using 256 time channels
500 (Becker and Hickl GmbH). For all acquisitions, a T80R20 main beam splitter was used, and the
501 pinhole was set to 20.2 μm . A 490 nm laser line from a pulsed tunable In Tune laser (Carl Zeiss
502 MicroImaging GmbH) with a repetition rate of 40 MHz was used for excitation. Data was
503 subsequently analyzed in SPCImage version 3.9.4 (Becker and Hickl GmbH), fitting each of the
504 acquired decay curves to a tri-exponential function and color-coded images, as well as distribution
505 histograms, showing the intensity-weighted mean lifetimes generated with the same software. The
506 procedure of staining and FLIM imaging protein aggregates with h-FTAA is described in detail in
507 reference {Nyström, 2017 #15836}.

508 **Purification of PrP^{Sc} for mass spectrometry and electron microscopy**

509 To analyze HS bound to PrP^{Sc}, PrP^{Sc} was first purified from mouse brains as previously
510 described^{46,77}. Briefly, one ml of 10% brain homogenate was mixed with an equal volume of TEN(D)
511 buffer (5% sarkosyl in 50 mM Tris-HCl, 5 mM EDTA, 665 mM NaCl, 0.2 mM dithiothreitol, pH 8.0),
512 containing complete TM protease inhibitors (Roche). Samples were incubated on ice for 1 hour and
513 centrifuged at 18,000 \times g for 30 minutes at 4 °C. All but 100 μl of supernatant was removed, and the
514 pellet was resuspended in 100 μl of residual supernatant and diluted to 1 ml with 10% sarkosyl
515 TEN(D). Each supernatant and pellet was incubated for 30 minutes on ice and then centrifuged at
516 18,000 \times g for 30 minutes at 4 °C. Supernatants were recovered while pellets were held on ice.
517 Supernatants were added separately into ultracentrifuge tubes with 10% sarcosyl TEN(D) buffer
518 containing protease inhibitors and centrifuged at 150,000 \times g for 2.5 hours at 4 °C. Supernatants
519 were discarded while pellets were rinsed with 100 μl of 0.25 M NaCl in TEN(D) buffer with 1%
520 sulfobetaine (SB 3–14) and protease inhibitors and then combined and centrifuged at 200,000 \times g
521 for 2 hours at 20 °C. The supernatant was discarded, and pellet was washed and then resuspended
522 in 200 μl of ice cold TMS buffer (10 mM Tris-HCl, 5 mM MgCl₂, 100 mM NaCl, pH 7.0) with protease
523 inhibitors. Samples were incubated on ice overnight at 4 °C. Using syringe and blunt needles,

524 samples were homogenized and then incubated with 25 units/ml nuclease (benzonaseTM, Sigma-
525 Aldrich) and 50 mM MgCl₂ for 30 minutes at 37 °C at 120 x g followed by a digestion with 1 mg/ml
526 PK (final concentration) for 1 hour at 37 °C at 120 x g. PK digestion was stopped by incubating
527 samples with 2 mM PMSF on ice for 15 minutes. Samples were incubated with 2 mM EDTA for
528 15 minutes at 37 °C at 120 x g. NaCl (0.25 M final) was added to all tubes followed by an equal
529 volume of 2% SB 3–14 buffer. For the sucrose gradient, a layer of 0.5 M sucrose, 100 mM NaCl,
530 10 mM Tris-HCl, and 0.5% SB 3–14, pH 7.4 was added to ultracentrifuge tubes. Samples were then
531 carefully transferred, and the tubes topped with TMS buffer. Samples were centrifuged at 200,000 x
532 g for 2 hours at 20 °C. The pellet was rinsed with 0.5% SB 3–14 in PBS. Pellets were resuspended
533 in 50 µl of 0.5% SB 3–14 in PBS and stored at –80 °C. Gel electrophoresis and silver staining were
534 performed to assess the purity of PrP^{Sc}.

535 **Heparan sulfate purification and analysis by mass spectrometry**

536 Heparan sulfate (HS) was extracted from whole brain homogenates and purified by anion exchange
537 chromatography, as previously described⁴⁶. For depolymerization, HS chains were extensively
538 digested with 1 milliunit each of heparin lyases I, II, and III (AMS Biotechnology). The disaccharides
539 resulting from enzymatic depolymerization were tagged by reductive amination with [¹²C₆] aniline
540 and mixed with [¹³C₆] aniline-tagged disaccharide standards. Samples were analyzed by liquid
541 chromatography-mass spectrometry (LC-MS) using an LTQ Orbitrap Discovery electrospray
542 ionization mass spectrometer (ThermoFisher Scientific). The disaccharides measured were: D0H0,
543 D0A0, D0H6, D2H0, D0S0, D0A6, D2A0, D2H6, D0S6, D2S0, D2A6 and D2S6.

544 **Negative stain electron microscopy**

545 400 mesh lacey carbon grids (Ted Pella) were glow discharged, placed on a 7 µl droplet of purified
546 PrP^{Sc} sample, and incubated for 20 minutes in a humidified chamber. Grids were then blotted on
547 filter paper, immersed briefly in Nano-W stain (Nanoprobe) and blotted again before incubating
548 on a droplet of Nano-W for 1 minute. Grids were then blotted dry and imaged on a FEI Tecnai
549 TF20 (200kV, FEG) with a 4k x 4k CMOS-based Tietz TemCam-F416 camera. Fibrils purified
550 from terminally ill mCWD-infected *Ndst1^{fl/fl}tga20^{+/+}SynCre-* and *SynCre+* brains were distributed

551 on the electron microscopy grids as single filaments as well as clusters of fibrils. Fibril lengths
552 were assessed by three blinded investigators, and lengths recorded using Image J or iMOD
553 software packages when both ends of a non-overlapping filament were readily visualized. [

554 **PrP^C mutant generation and heparin sepharose chromatography**

555 To identify the HS-binding domains, three clusters of lysine- and arginine- residues and one cluster
556 of asparagine residues were exchanged for alanine within mouse *Prnp* in a pcDNA3.1 vector by
557 site-directed mutagenesis (QuikChange site-directed mutagenesis kit; Agilent). PrP-deficient RK13
558 cells (ATCC) were transfected with 10 µg of plasmid DNA using Lipofectamine 3000 (Invitrogen).
559 At 24 hours post-transfection, cells were washed twice in PBS and digested with 0.75 milliunits of
560 phospholipase C from *Bacillus cereus* (Sigma Aldrich) in 1.5 ml of Opti-MEM media in PBS (1:2
561 dilution) (ThermoFisherScientific) for one hour at 37 °C. The media was recovered and clarified by
562 centrifugation at 2000 x g for 1 minute. Supernatants from the duplicate plates were pooled and
563 saved for chromatography analysis.

564 For affinity chromatography, Heparin Sepharose 6 Fast Flow beads (Healthcare Life Sciences)
565 were loaded into Bio-Spin® chromatography columns (Bio-Rad) and packed with 2 ml of
566 equilibration buffer (0.15 M NaCl in 25 mM HEPES, pH 7.4). Supernatants containing GPI-cleaved
567 proteins, including WT and mutant PrP^C, were applied onto the columns. The flow through was
568 recovered, recirculated onto the column two times, and saved. The column was next washed with
569 2 ml of 0.15 M NaCl in 25 mM HEPES buffer (pH 7.4) and the unbound proteins were recovered in
570 a clean tube. The bound PrP^C was step-eluted with 1 ml of elution buffer containing increasing
571 concentrations of NaCl (300 mM – 2 M) in 25 mM HEPES. The unbound PrP^C in the 0.15 M wash
572 and PrP^C in all eluates were analyzed for PrP^C level by immunoblot using POM19 antibody. At least
573 three experimental replicates were performed for each PrP^C construct.

574 **RT-QuIC analysis of mCWD-inoculated mice**

575 The RT-QuIC reaction mix was composed of 10 mM phosphate buffer (pH 7.4), 130 mM NaCl, 0.1
576 mg/ml recombinant Syrian golden hamster prion protein (residues 90-231; rPrP^{Sen}), 10 µM thioflavin

577 T (ThT), 1 mM ethylenediaminetetraacetic acid tetrasodium salt (EDTA), and 0.002% SDS. Each
578 well of a black 96-well plate with a clear bottom (Nunc) was loaded with aliquots of reaction mix (98
579 μ l) and seeded with 2 μ l of a 10⁻² to 10⁻⁴ dilution of 10% mCWD spinal cord homogenate. The plate
580 was sealed (plate sealer film, Nalgene Nunc International), incubated at 50°C in a BMG FLUOstar
581 Omega plate reader and subjected to cycles of 1 min shaking (700 rpm double orbital) and 1 min
582 rest with ThT fluorescence measurements (450 +/- 10 nm excitation and 480 +/- 10 nm emission;
583 bottom read) taken every 45 minutes. Reactions were classified as RT-QuIC positive based on a
584 threshold set at 10% of the maximum ThT fluorescence value on each plate.

585 **PrP^C conjugation to deferoxamine-maleimide**

586 To label PrP with zirconium-89, full length recombinant mouse PrP (23-230) generated in *E.coli* was
587 first conjugated to deferoxamine-maleimide (Macrocyclics) to produce deferoxamine-conjugated
588 PrP^C (DFO-PrP^C). To ensure that linker was not conjugated to the lysine-rich heparin binding
589 domain, PrP was bound to heparin sepharose beads to block the heparin binding sites. To do this,
590 Heparin Sepharose 6 Fast Flow beads (1 ml) (Healthcare Life Sciences) were loaded into
591 disposable Bio-Spin® chromatography columns (Bio-Rad) and packed with 2 ml of equilibration
592 buffer (0.15 M NaCl in 25 mM HEPES, pH 7.4). Recombinant PrP (200 μ g) was mixed with 1 ml of
593 wash buffer [0.15 M NaCl, 25 mM HEPES] and applied onto the columns. The columns were
594 washed with 3 ml of wash buffer. The beads were then transferred to a 1.5 ml eppendorf
595 polypropylene tube and incubated with 200 μ l of DFM for 24 hours at room temperature with
596 rotation. The bead slurry was transferred to a chromatography column and the PrP conjugation was
597 stopped after 24 hours by adding 600 μ l PBS with 0.1 M glycine (pH 7). The beads were washed
598 with 2 ml equilibration buffer, and the conjugated PrP (PrP-DFM) was eluted with 1 ml of elution
599 buffer (0.7 M NaCl, 25 mM HEPES, pH 7.2). PrP-DFM was concentrated using Zeba spin desalting
600 columns.

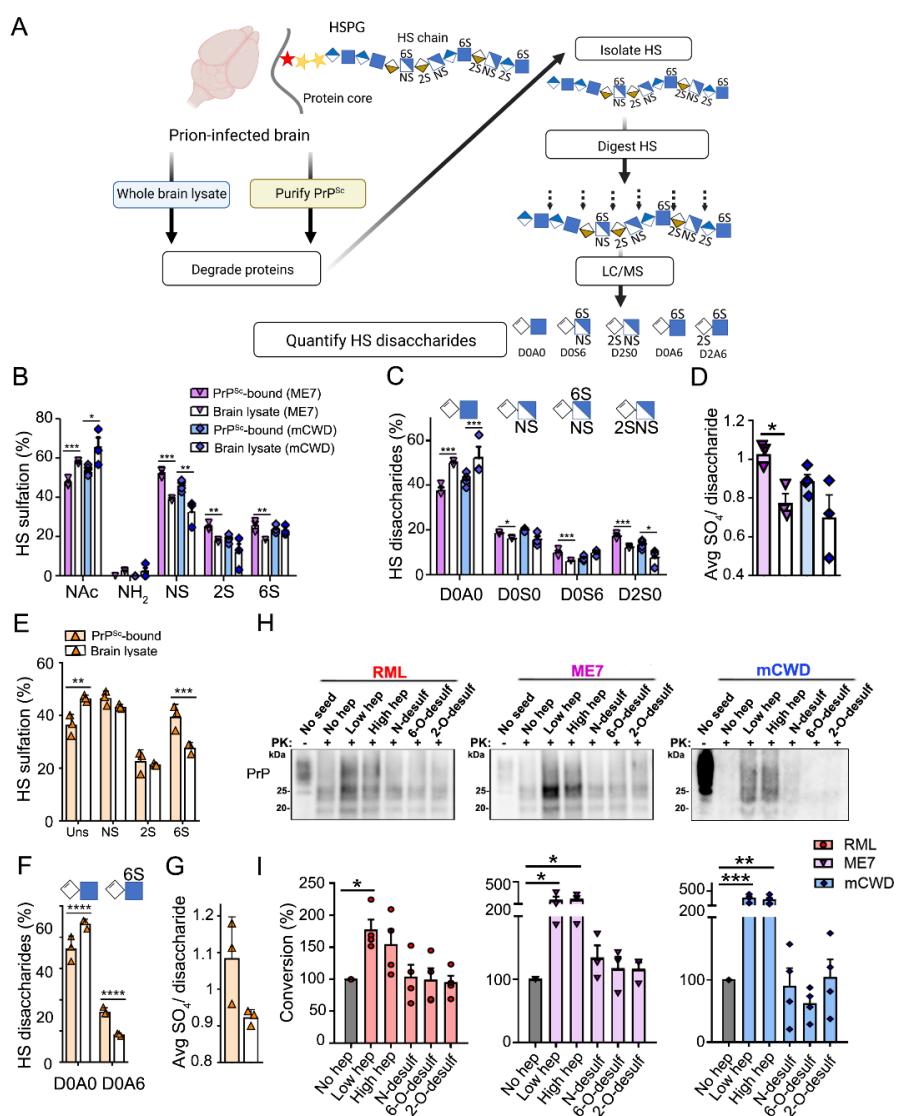
601 **DFO-PrP radiolabeling with zirconium-89**

602 Zirconium-89 (Zr89) oxalate (Washington University) adjusted to pH 7.5 with 0.5 M HEPES/ Na₂CO₃
603 (2 M) solution was incubated with 30 μ g deferoxamine-conjugated PrP at room temperature for 60

604 minutes and diluted to approximately 100 μ Ci per injection following previously published
605 procedures⁷⁸. To measure the free Zr89 that has not been chelated, quality control was performed
606 by instant thin layer chromatography (silica gel; 0.1 M citrate buffer pH 4.5); typical radiochemical
607 purities (RF = 0.8) of 95 – 99 % were achieved. Typical specific volume was 25 μ Ci/ μ l. To confirm
608 that PrP remained radiolabeled, Zr89-PrP^C at different dilutions was loaded in 10% Bis-Tris gel
609 (Invitrogen) and electrophoresed four days after radiolabeling. Zr89 was added to the protein ladder
610 (Precision Plus Protein Standard, Dual Color, Bio-Rad) at the expected size for recPrP, 25 kDa,
611 and the gel was scanned in a phosphoimager (Typhoon).

612 **Stereotaxic injection of conjugated PrP**

613 Mice (14-16 weeks old) (n = 3 - 4 mice/genotype/experiment) were anesthetized with isoflurane.
614 Mice were weighed and placed in a three-point stereotaxic apparatus (Stoelting). A 2 cm midline
615 incision was made in the skin over the sagittal suture to expose bregma, and a burr hole was drilled
616 in the left parietal bone (0.62 mm caudal, -1.75 mm lateral to bregma) using an Ideal Micro-drill. A
617 22-gauge needle (Hamilton) was inserted to a depth of 3.5 mm and 1 μ l of Zr89-PrP^C was injected
618 at a rate of 75 nl/minute over 15 minutes using a Quintessential Stereotaxic Injector (Stoelting). The
619 needle remained in the injection site for 10 minutes post-injection prior to removal from the brain to
620 prevent backflow. Animals were next removed from the stereotaxic device and placed on the PET
621 scanner (G.E. Vista), and radioactivity measurements were collected as dynamic scans using list
622 mode over 30 minutes. Scans were repeated 20 hours later. PET images were reconstructed using
623 Vista DR (G.E. Healthcare) software and the area and volume covered by radioactivity as well as
624 the signal intensity were assessed with FIJI (an ImageJ based image processing software).


625 **Statistics**

626 Log-rank (Mantel-Cox) tests were performed to assess survival differences between groups. A
627 Student's t-test (two-tailed, unpaired) with Bonferroni's post test was used to determine the
628 statistical significance between the *Ndst1^{fl/fl}SynCre^{+/−}* and *SynCre^{−/−}* and *Ndst1^{fl/fl}GFAPCre^{+/−}* and
629 *GFAPCre^{−/−}* mouse groups for the PrP^C level of expression, lesion profiles, activated microglia, PrP^{Sc}
630 glycoprofiles, PrP^{Sc} conformation stability and PrP^{Sc} fibril structure. One-way ANOVA with Tukey's

631 post test was performed to determine statistical significance in the levels of prion conversion by
632 PMCA. Two-way ANOVA with Bonferroni's post test was used to compare the composition of HS
633 associated with different prion strains, the number of vascular versus parenchymal plaques, the
634 binding affinity of PrP^C mutants with heparin, the levels of PrP in the spinal cord, and the area
635 covered by high PET intensity signal (signal > 100 μ Ci). Unpaired two-tailed t-test with Bonferroni's
636 post test was used to compare the average sulfate groups per disaccharide as well as the plaque
637 length and the mCWD fibril length and solubility in *Ndst1^{ff}SynCre^{+/+}* and *SynCre^{-/-}* brain. The
638 proportion of *Ndst1^{ff}SynCre^{+/+}* versus *SynCre^{-/-}* mice with prion seeding in spinal cord was compared
639 using non-parametric Fisher's exact tests. For all analyses, $p < 0.05$ was considered significant.

640 **Acknowledgements**

641 We thank Biswa Choudhury and Mousumi Paulchakrabarti at the UC San Diego
642 GlycoAnalytics Core for outstanding technical support and mass spectrometry analysis, and
643 the animal care staff at UC San Diego for excellent animal care. We thank Daniel Ojeda-
644 Juárez for critical review of the manuscript. This study was supported by the National Institutes
645 of Health grants NS069566 (CJS), NS076896 (CJS), AG061251 (PAC), the CJD Foundation
646 (CJS), and the Ramón Areces Foundation (PAC). This work was supported in part by the
647 Intramural Research Program of the NIAID (BC and CDO), the Swedish Research Council
648 grant 2016-00748 (KPRN); Project 3 of NHLBI grant HL131474 (JDE) and NSF grant IOS-
649 2031989 (JDE).

Figure 1

650

651 **Fig 1. Mouse and human PrP^{Sc} bind highly sulfated HS.** (A) Schematic of HS isolation from
652 brain lysate or purified PrP^{Sc} for mass spectrometry analysis (a subset of the latter samples
653 was previously published^{46, 79}). (B) Quantification of unsulfated (NAc and NH₂) and sulfated
654 (NS, 2S, and 6S) HS, (C) individual HS disaccharides, and (D) average sulfation per
655 disaccharide of HS bound to PrP^{Sc} as compared to brain lysates (same brain) (*n* = 3 per strain).
656 (E) Quantification of unsulfated and sulfated HS from sCJD-affected brain, (F) individual HS
657 disaccharides, and (G) average sulfation per disaccharide of HS bound to PrP^{Sc} as compared
658 to brain lysates (same brain). *N* = 3 per group (occipital cortex). (H) Representative western
659 blots of PrP^{Sc}-seeded PMCA in the presence or absence of heparin or heparin desulfated at
660 positions N-, 2-O, or 6-O (No seed: no PrP^{Sc}, No hep: no heparin, Low hep: 225 µg/ml of

661 heparin, High hep: 2.225 mg/ml of heparin, N-, 6-O-, or 2-O-desulfated heparin: 225 μ g/ml).

662 (I) Quantification of PrP^{Sc} in PrP^{Sc}-seeded PMCA experiments. N = 3 - 4 experimental
663 replicates. Note for panels C and F, other disaccharides were not significantly different (shown
664 in S1 - S3 Tables). * P < 0.05, ** P < 0.01, *** P < 0.005 and **** P < 0.001, two-way ANOVA with
665 Bonferroni's post test comparing within a single strain (panels B, C, E, and F), unpaired two-
666 tailed t-test with Bonferroni's post test (panels D and G), and one-way ANOVA with Tukey's
667 post test (panel I). NAc: N-acetylglucosamine (GlcNAc); NH₂: glucosamine (GlcNH₂); NS: N-
668 sulfated glucosamine (GlcNS); 2S: 2-O-sulfated glucuronic or iduronic acids (2-O-S); 6S: 6-
669 O-sulfated glucosamine (6-O-S); PK : proteinase K.

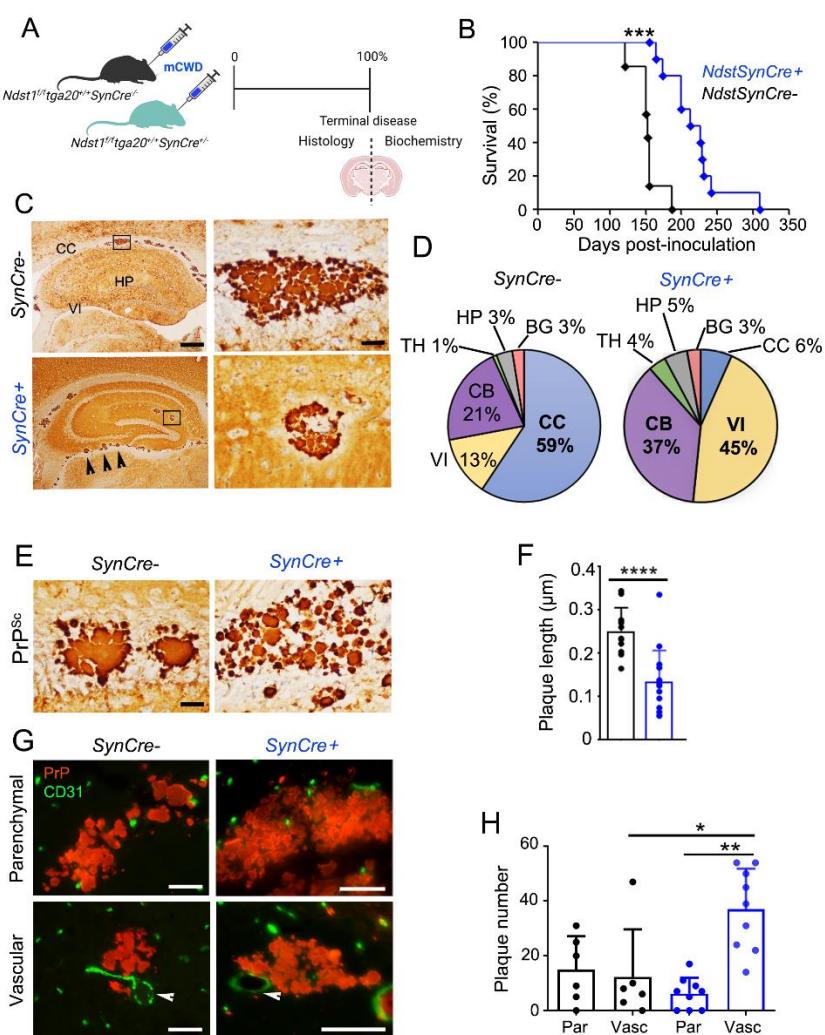
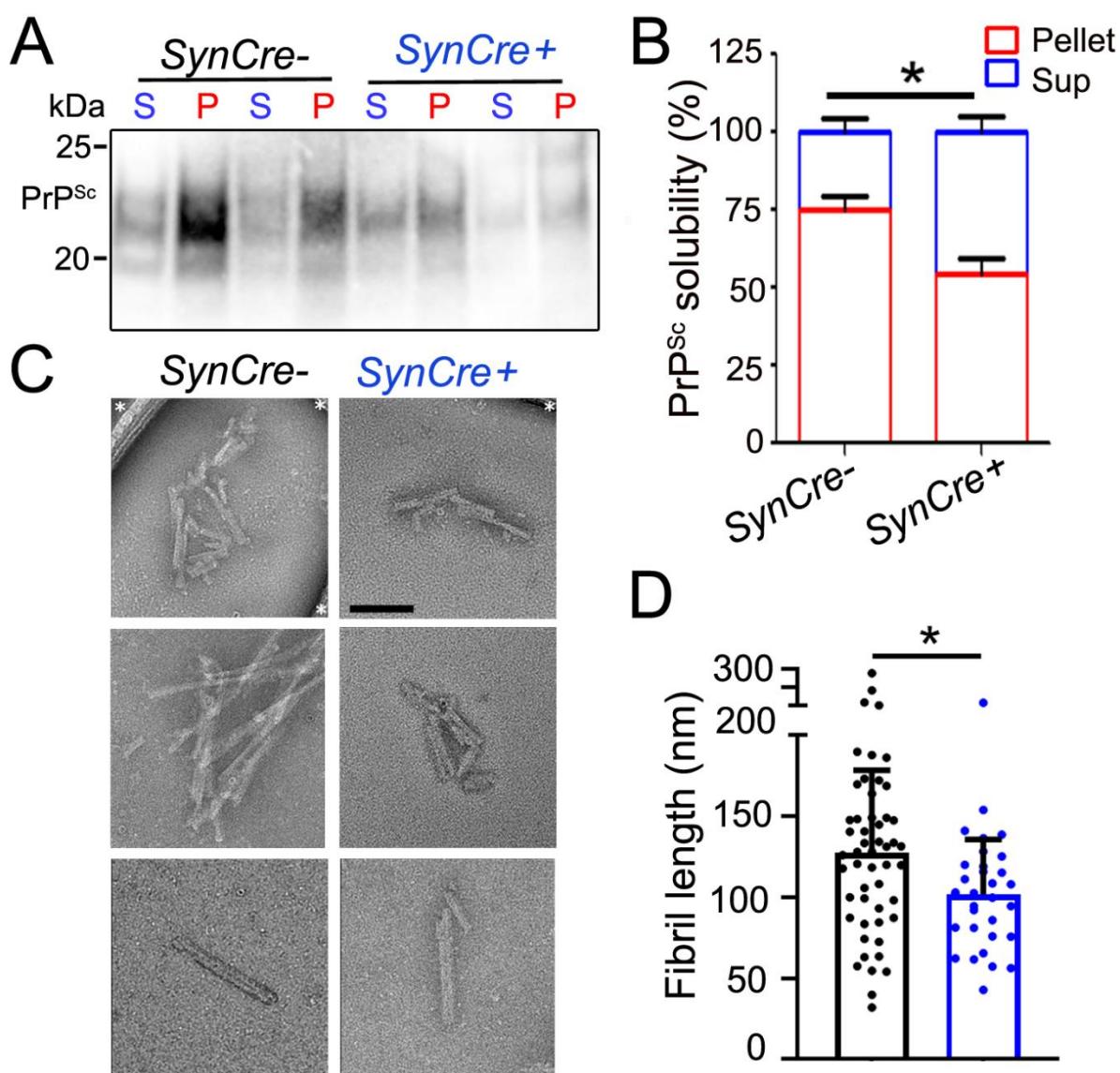


Figure 2

670

671 **Fig 2. Reducing neuronal HS sulfation prolongs survival and lessens plaque load in**
672 **prion-affected mice.** (A) Schematic illustrates mCWD prion inoculation and tissue collection.


673 (B) Survival curves for mCWD-infected *SynCre-* ($n = 10$) and *SynCre+* mice ($n = 15$). (C)

674 Representative images reveal mCWD prion plaques in the corpus callosum (CC) of *SynCre-*
675 mice and within vessels of the velum interpositum (VI) and hippocampus (HP) of *SynCre+*
676 mice. Higher magnification depicted in right panels. Scale bars represent 500 μm (left) and 50
677 μm (right). (D) Pie charts show the plaque distribution in brain. VI and cerebellar (CB)
678 aggregates were primarily vascular (meninges) ($n = 6$ *SynCre-* and 9 *SynCre+* mice). (E)

679 Representative images of PrP^{Sc} immunolabelled plaques in CC. Scale bar = 50 μm . (F)

680 Quantification of the plaque length in CC (from $n = 33$ and 38 plaques in *SynCre-* and *SynCre+*,

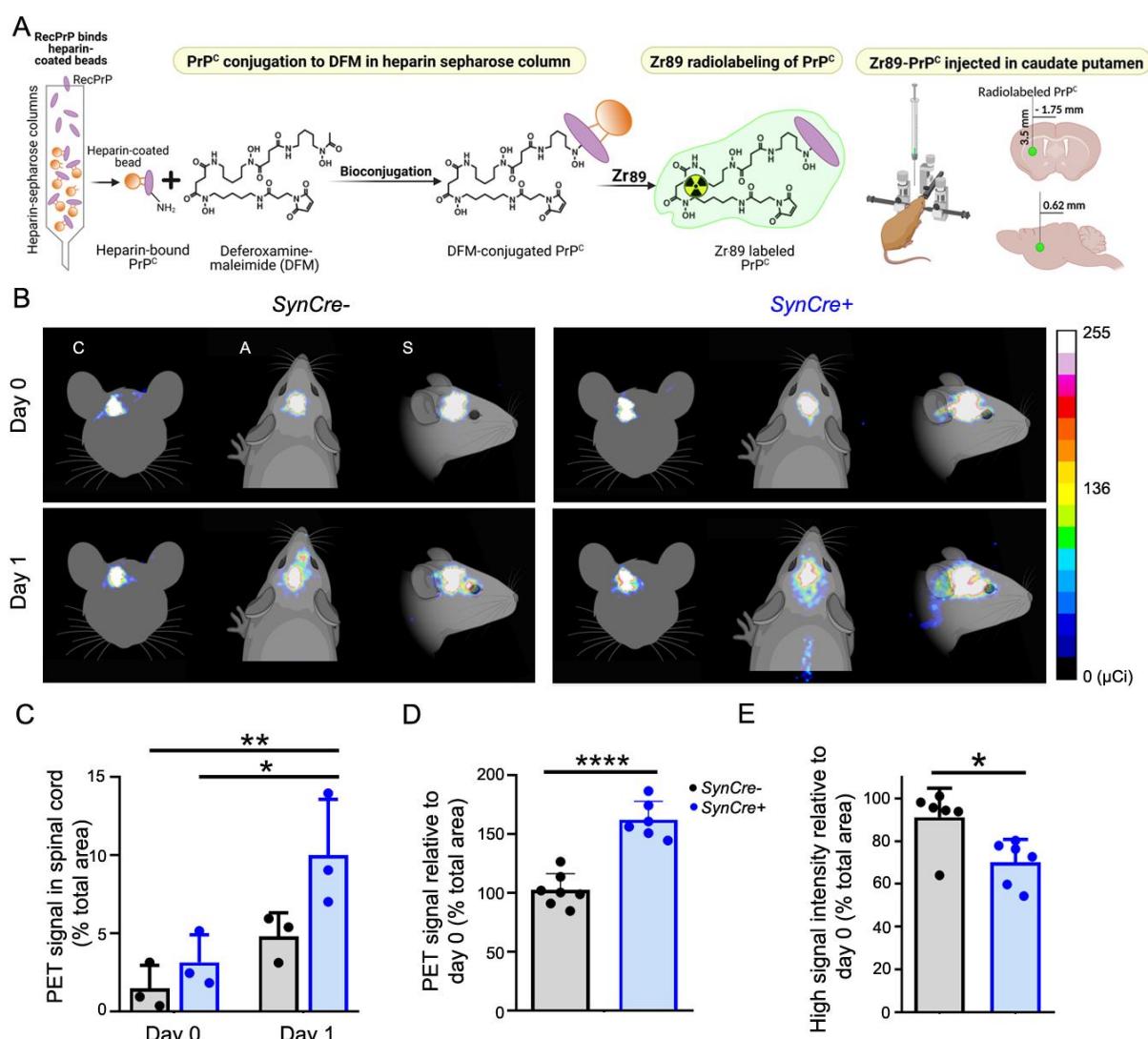

681 respectively) ($n = 4$ mice per genotype). (G) Dual immunostaining of mCWD-infected brain
682 sections for PrP^{Sc} and endothelial cells (CD31) (parenchymal plaques: corpus callosum;
683 *SynCre*- vascular plaque: basal ganglia; *SynCre*+ vascular plaque: thalamus). Scale bar
684 represents 50 μ m. (H) Quantification of parenchymal (par) and vascular (vasc) plaques
685 throughout the brain. $N = 6$ *SynCre*- and 9 *SynCre*+ mice. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.005$,
686 and **** $P < 0.001$, Log-rank (Mantel-Cox) test (panel B), unpaired two-tailed t-test with
687 Bonferroni's post test (panel F), and two-way ANOVA with Bonferroni's post test (panel H).
688 TH thalamus, HT: hypothalamus, BG: basal ganglia, and CT: cerebral cortex.

Figure 3

689

690 **Fig 3. Reducing neuronal HS sulfation increases mCWD solubility.** (A) Representative
691 western blot of mCWD aggregates after PK digestion and centrifugation over an Optiprep layer
692 (P = pellet, S = supernatant). (B) Quantification of PrP^{Sc} in pellet and supernatant fractions. N
693 = 6 samples per genotype. (C) Representative electron microscopy images of purified PrP^{Sc}
694 fibrils from mCWD-infected mice. Scale bar represents 100 nm. Asterisks indicate grid support
695 film. (D) Quantification of the fibril lengths. N = 52 and 32 fibrils measured from *SynCre-* and
696 *SynCre+* brains, respectively (n = 6 mice per genotype). * P < 0.05, unpaired two-tailed t-test
697 with Bonferroni's post test (panels B and D).

Figure 4

698

699 **Fig 4. Rapid transit of Zr89-PrP^C through the brain and spinal cord of live**
700 ***Ndst1^{ff}tga20^{+/+}SyncCre+* mice.** (A) Schematic shows the conjugation, radiolabeling, and
701 stereotaxic injection of recPrP into anesthetized *Ndst1^{ff}tga20^{+/+}SyncCre+* and *SyncCre-* mice.
702 (B) Representative PET scan images (coronal (C), axial (A) and sagittal (S) sections) of Zr89-
703 PrP in *SyncCre-* and *SyncCre+* mice immediately after PrP injection into the caudate putamen
704 (day 0) and 20 hours later (day 1) in $n = 6$ animals per genotype. Graphs show (C) radioactive
705 PrP in the spinal cord at day 0 and day 1 relative to the total PET signal area, as well as (D)
706 the total PET signal area at day 1 relative to day 0 (sagittal) (experiments combined) and (E)
707 the high PET intensity signal area (signal > 100 μ Ci) at day 1 relative to day 0 (panel C shows

708 only Expt 1). * $P< 0.05$, ** $P< 0.01$, and **** $P< 0.001$, two-way ANOVA with Bonferroni's post
709 test (panel C), and unpaired two-tailed t-test with Bonferroni's post test (panels D and E).

References

1. Henderson MX, Cornblath EJ, Darwich A, et al. Spread of α -synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. *Nat Neurosci* 2019; 22: 1248-1257. 2019/07/28. DOI: 10.1038/s41593-019-0457-5.
2. Jucker M and Walker LC. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. *Nature* 2013; 501: 45-51. 2013/09/06. DOI: 10.1038/nature12481.
3. Thal DR, Rüb U, Orantes M, et al. Phases of A beta-deposition in the human brain and its relevance for the development of AD. *Neurology* 2002; 58: 1791-1800. 2002/06/27. DOI: 10.1212/wnl.58.12.1791.
4. Raj A, LoCastro E, Kuceyeski A, et al. Network Diffusion Model of Progression Predicts Longitudinal Patterns of Atrophy and Metabolism in Alzheimer's Disease. *Cell reports* 2015; 10: 359-369. 2015/01/21. DOI: 10.1016/j.celrep.2014.12.034.
5. Aguzzi A and Rajendran L. The transcellular spread of cytosolic amyloids, prions, and prionoids. *Neuron* 2009; 64: 783-790. Research Support, Non-U.S. Gov't Review 2010/01/13. DOI: 10.1016/j.neuron.2009.12.016.
6. Beekes M, McBride PA and Baldauf E. Cerebral targeting indicates vagal spread of infection in hamsters fed with scrapie. *J Gen Virol* 1998; 79 Part 3: 601-607.
7. Iliff JJ, Wang M, Zeppenfeld DM, et al. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. *J Neurosci* 2013; 33: 18190-18199. 2013/11/15. DOI: 10.1523/jneurosci.1592-13.2013.
8. Carare RO, Bernardes-Silva M, Newman TA, et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. *Neuropathol Appl Neurobiol* 2008; 34: 131-144. 2008/01/23. DOI: 10.1111/j.1365-2990.2007.00926.x.

9. Iliff JJ, Chen MJ, Plog BA, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. *J Neurosci* 2014; 34: 16180-16193. 2014/12/05. DOI: 10.1523/jneurosci.3020-14.2014.
10. Iliff JJ, Lee H, Yu M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. *J Clin Invest* 2013; 123: 1299-1309. 2013/02/26. DOI: 10.1172/jci67677.
11. Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. *Sci Transl Med* 2012; 4: 147ra111. 2012/08/17. DOI: 10.1126/scitranslmed.3003748.
12. Hawkes CA, Härtig W, Kacza J, et al. Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. *Acta Neuropathol* 2011; 121: 431-443. 2011/01/25. DOI: 10.1007/s00401-011-0801-7.
13. Kang JE, Lim MM, Bateman RJ, et al. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. *Science* 2009; 326: 1005-1007. 2009/09/26. DOI: 10.1126/science.1180962.
14. Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. *Science* 2013; 342: 373-377. 2013/10/19. DOI: 10.1126/science.1241224.
15. Kress BT, Iliff JJ, Xia M, et al. Impairment of paravascular clearance pathways in the aging brain. *Ann Neurol* 2014; 76: 845-861. 2014/09/11. DOI: 10.1002/ana.24271.
16. Sun Y, Xu S, Jiang M, et al. Role of the Extracellular Matrix in Alzheimer's Disease. *Front Aging Neurosci* 2021; 13: 707466. 2021/09/14. DOI: 10.3389/fnagi.2021.707466.
17. Nicholson C and Hrabětová S. Brain Extracellular Space: The Final Frontier of Neuroscience. *Biophys J* 2017; 113: 2133-2142. 2017/08/02. DOI: 10.1016/j.bpj.2017.06.052.
18. Prusiner SB. Novel proteinaceous infectious particles cause scrapie. *Science* 1982; 216: 136-144. 1982/04/09. DOI: 10.1126/science.6801762.

19. Spraker TR, Zink RR, Cummings BA, et al. Distribution of protease-resistant prion protein and spongiform encephalopathy in free-ranging mule deer (*Odocoileus hemionus*) with chronic wasting disease. *Vet Pathol* 2002; 39: 546-556.
20. Bruce ME. TSE strain variation. *Br Med Bull* 2003; 66: 99-108.
21. Gambetti P, Kong Q, Zou W, et al. Sporadic and familial CJD: classification and characterisation. *Br Med Bull* 2003; 66: 213-239. 2003/10/03. DOI: 10.1093/bmb/66.1.213.
22. Su JH, Cummings BJ and Cotman CW. Localization of heparan sulfate glycosaminoglycan and proteoglycan core protein in aged brain and Alzheimer's disease. *Neuroscience* 1992; 51: 801-813. 1992/12/01.
23. Snow AD, Mar H, Nochlin D, et al. The presence of heparan sulfate proteoglycans in the neuritic plaques and congophilic angiopathy in Alzheimer's disease. *Am J Pathol* 1988; 133: 456-463. 1988/12/01.
24. Snow AD, Kisilevsky R, Willmer J, et al. Sulfated glycosaminoglycans in amyloid plaques of prion diseases. *Acta Neuropathol Berl* 1989; 77: 337-342.
25. McBride PA, Wilson MI, Eikelenboom P, et al. Heparan sulfate proteoglycan is associated with amyloid plaques and neuroanatomically targeted PrP pathology throughout the incubation period of scrapie-infected mice. *Exp Neurol* 1998; 149: 447-454.
26. Sarrazin S, Lamanna WC and Esko JD. Heparan sulfate proteoglycans. *Cold Spring Harb Perspect Biol* 2011; 3 2011/06/22. DOI: cshperspect.a004952 [pii] 10.1101/cshperspect.a004952.
27. Xu D and Esko JD. Demystifying heparan sulfate-protein interactions. *Annu Rev Biochem* 2014; 83: 129-157. 2014/03/13. DOI: 10.1146/annurev-biochem-060713-035314.
28. Horonchik L, Tzaban S, Ben-Zaken O, et al. Heparan sulfate is a cellular receptor for purified infectious prions. *J Biol Chem* 2005; 280: 17062-17067.
29. Kanekiyo T, Zhang J, Liu Q, et al. Heparan sulphate proteoglycan and the low-density lipoprotein receptor-related protein 1 constitute major pathways for neuronal amyloid-beta

uptake. *J Neurosci* 2011; 31: 1644-1651. 2011/02/04. DOI: 10.1523/JNEUROSCI.5491-10.2011.

30. Hudak A, Kusz E, Domonkos I, et al. Contribution of syndecans to cellular uptake and fibrillation of alpha-synuclein and tau. *Sci Rep* 2019; 9: 16543. 2019/11/14. DOI: 10.1038/s41598-019-53038-z.

31. Letoha T, Hudak A, Kusz E, et al. Contribution of syndecans to cellular internalization and fibrillation of amyloid-beta(1-42). *Sci Rep* 2019; 9: 1393. 2019/02/06. DOI: 10.1038/s41598-018-37476-9.

32. Holmes BB, DeVos SL, Kfouri N, et al. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. *Proc Natl Acad Sci U S A* 2013; 110: E3138-3147. DOI: 10.1073/pnas.1301440110.

33. Farquhar CF and Dickinson AG. Prolongation of scrapie incubation period by an injection of dextran sulphate 500 within the month before or after infection. *J Gen Virol* 1986; 67: 463-473.

34. Ehlers B and Diringer H. Dextran sulphate 500 delays and prevents mouse scrapie by impairment of agent replication in spleen. *J Gen Virol* 1984; 65: 1325-1330.

35. Ladogana A, Casaccia P, Ingrosso L, et al. Sulphate polyanions prolong the incubation period of scrapie-infected hamsters. *J Gen Virol* 1992; 73: 661-665.

36. Caughey B and Raymond GJ. Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. *J Virol* 1993; 67: 643-650.

37. Caughey B, Brown K, Raymond GJ, et al. Binding of the protease-sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and congo red [corrected] [published erratum appears in *J Virol* 1994 Jun;68(6):4107]. *J Virol* 1994; 68: 2135-2141.

38. Wong C, Xiong LW, Horiuchi M, et al. Sulfated glycans and elevated temperature stimulate PrP(Sc)-dependent cell-free formation of protease-resistant prion protein. *EMBO J* 2001; 20: 377-386. 2001/02/07. DOI: 10.1093/emboj/20.3.377.

39. Adjou KT, Simoneau S, Sales N, et al. A novel generation of heparan sulfate mimetics for the treatment of prion diseases. *J Gen Virol* 2003; 84: 2595-2603.

40. Doh-ura K, Ishikawa K, Murakami-Kubo I, et al. Treatment of transmissible spongiform encephalopathy by intraventricular drug infusion in animal models. *J Virol* 2004; 78: 4999-5006.
41. Todd NV, Morrow J, Doh-ura K, et al. Cerebroventricular infusion of pentosan polysulphate in human variant Creutzfeldt-Jakob disease. *J Infect* 2005; 50: 394-396.
42. Parry A, Baker I, Stacey R, et al. Long term survival in a patient with variant Creutzfeldt-Jakob disease treated with intraventricular pentosan polysulphate. *J Neurol Neurosurg Psychiatry* 2007; 78: 733-734. DOI: 10.1136/jnnp.2006.104505.
43. Larramendy-Gozalo C, Barret A, Daudigeos E, et al. Comparison of CR36, a new heparan mimetic, and pentosan polysulfate in the treatment of prion diseases. *J Gen Virol* 2007; 88: 1062-1067. 2007/02/28. DOI: 10.1099/vir.0.82286-0.
44. Newman PK, Todd NV, Scoones D, et al. Postmortem findings in a case of variant Creutzfeldt-Jakob disease treated with intraventricular pentosan polysulfate. *J Neurol Neurosurg Psychiatry* 2014; 85: 921-924. DOI: 10.1136/jnnp-2013-305590.
45. Kovalchuk Ben-Zaken O, Nissan I, Tzaban S, et al. Transgenic over-expression of mammalian heparanase delays prion disease onset and progression. *Biochem Biophys Res Commun* 2015; 464: 698-704. 2015/07/15. DOI: 10.1016/j.bbrc.2015.06.170.
46. Aguilar-Calvo P, Sevillano AM, Bapat J, et al. Shortening heparan sulfate chains prolongs survival and reduces parenchymal plaques in prion disease caused by mobile, ADAM10-cleaved prions. *Acta Neuropathol* 2019 2019/11/02. DOI: 10.1007/s00401-019-02085-x.
47. Castillo GM, Lukito W, Wight TN, et al. The sulfate moieties of glycosaminoglycans are critical for the enhancement of beta-amyloid protein fibril formation. *J Neurochem* 1999; 72: 1681-1687. 1999/03/31.
48. Cotman SL, Halfter W and Cole GJ. Agrin binds to beta-amyloid (Abeta), accelerates abeta fibril formation, and is localized to Abeta deposits in Alzheimer's disease brain. *Mol Cell Neurosci* 2000; 15: 183-198. 2000/02/16. DOI: 10.1006/mcne.1999.0816.

49. Cohlberg JA, Li J, Uversky VN, et al. Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from alpha-synuclein in vitro. *Biochemistry* 2002; 41: 1502-1511.

50. Bazar E and Jelinek R. Divergent heparin-induced fibrillation pathways of a prion amyloidogenic determinant. *ChemBioChem* 2010; 11: 1997-2002. 2010/08/28. DOI: 10.1002/cbic.201000207.

51. Zhu HL, Fernandez C, Fan JB, et al. Quantitative characterization of heparin binding to Tau protein: implication for inducer-mediated Tau filament formation. *J Biol Chem* 2010; 285: 3592-3599. 2009/12/05. DOI: 10.1074/jbc.M109.035691.

52. Ellett LJ, Coleman BM, Shambrook MC, et al. Glycosaminoglycan sulfation determines the biochemical properties of prion protein aggregates. *Glycobiology* 2015; 25: 745-755. 2015/02/24. DOI: 10.1093/glycob/cwv014.

53. Saborio GP, Permanne B and Soto C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. *Nature* 2001; 411: 810-813.

54. Wadia JS, Schaller M, Williamson RA, et al. Pathologic prion protein infects cells by lipid-raft dependent macropinocytosis. *PLoS One* 2008; 3: e3314. 2008/01/01. DOI: 10.1371/journal.pone.0003314.

55. Sigurdson CJ, Manco G, Schwarz P, et al. Strain fidelity of chronic wasting disease upon murine adaptation. *J Virol* 2006; 80: 12303-12311.

56. Fischer M, Rulicke T, Raeber A, et al. Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. *EMBO J* 1996; 15: 1255-1264. 1996/03/15.

57. Allen NJ, Bennett ML, Foo LC, et al. Astrocyte glycans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. *Nature* 2012; 486: 410-414. 2012/06/23. DOI: 10.1038/nature11059.

58. Condomitti G and de Wit J. Heparan Sulfate Proteoglycans as Emerging Players in Synaptic Specificity. *Front Mol Neurosci* 2018; 11: 14. 2018/02/13. DOI: 10.3389/fnmol.2018.00014.

59. O'Callaghan P, Li JP, Lannfelt L, et al. Microglial Heparan Sulfate Proteoglycans Facilitate the Cluster-of-Differentiation 14 (CD14)/Toll-like Receptor 4 (TLR4)-Dependent Inflammatory Response. *J Biol Chem* 2015; 290: 14904-14914. 2015/04/15. DOI: 10.1074/jbc.M114.634337.

60. Snow AD, Wight TN, Nochlin D, et al. Immunolocalization of heparan sulfate proteoglycans to the prion protein amyloid plaques of Gerstmann-Straussler syndrome, Creutzfeldt-Jakob disease and scrapie. *Lab Invest* 1990; 63: 601-611.

61. Wong C, Xiong LW, Horiuchi M, et al. Sulfated glycans and elevated temperature stimulate PrP(Sc)-dependent cell-free formation of protease-resistant prion protein. *EMBO J* 2001; 20: 377-386.

62. Liu CC, Zhao N, Yamaguchi Y, et al. Neuronal heparan sulfates promote amyloid pathology by modulating brain amyloid-beta clearance and aggregation in Alzheimer's disease. *Sci Transl Med* 2016; 8: 332ra344. 2016/04/01. DOI: 10.1126/scitranslmed.aad3650.

63. Deleault NR, Harris BT, Rees JR, et al. Formation of native prions from minimal components in vitro. *Proc Natl Acad Sci U S A* 2007; 104: 9741-9746.

64. Deleault NR, Piro JR, Walsh DJ, et al. Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. *Proc Natl Acad Sci U S A* 2012; 109: 8546-8551. DOI: 10.1073/pnas.1204498109.

65. Wang F, Wang X, Yuan CG, et al. Generating a prion with bacterially expressed recombinant prion protein. *Science* 2010; 327: 1132-1135. 2010/01/30. DOI: science.1183748 [pii]10.1126/science.1183748.

66. Fichou Y, Oberholtzer ZR, Ngo H, et al. Tau-Cofactor Complexes as Building Blocks of Tau Fibrils. *Front Neurosci* 2019; 13: 1339. 2020/01/11. DOI: 10.3389/fnins.2019.01339.

67. Ihse E, Yamakado H, van Wijk XM, et al. Cellular internalization of alpha-synuclein aggregates by cell surface heparan sulfate depends on aggregate conformation and cell type. *Sci Rep* 2017; 7: 9008. 2017/08/23. DOI: 10.1038/s41598-017-08720-5.

68. Kraus A, Hoyt F, Schwartz CL, et al. High-resolution structure and strain comparison of infectious mammalian prions. *Mol Cell* 2021; 81: 4540-4551.e4546. 2021/08/26. DOI: 10.1016/j.molcel.2021.08.011.
69. Kamimura K and Maeda N. Glycans and Heparan Sulfate in Synaptic Development, Neural Plasticity, and Neurological Disorders. *Frontiers in neural circuits* 2021; 15: 595596. 2021/03/09. DOI: 10.3389/fncir.2021.595596.
70. Mallucci G, Dickinson A, Linehan J, et al. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. *Science* 2003; 302: 871-874.
71. Julian D, Haverkamp LJ, Yu J, et al. The HHQK domain of beta-amyloid provides a structural basis for the immunopathology of Alzheimer's disease. *J Biol Chem* 1998; 273: 29719-29726. 1998/10/29. DOI: 10.1074/jbc.273.45.29719.
72. Lindahl B, Westling C, Giménez-Gallego G, et al. Common binding sites for beta-amyloid fibrils and fibroblast growth factor-2 in heparan sulfate from human cerebral cortex. *J Biol Chem* 1999; 274: 30631-30635. 1999/10/16. DOI: 10.1074/jbc.274.43.30631.
73. Grobe K, Inatani M, Pallerla SR, et al. Cerebral hypoplasia and craniofacial defects in mice lacking heparan sulfate Ndst1 gene function. *Development* 2005; 132: 3777-3786. DOI: 10.1242/dev.01935.
74. Wadsworth JDF, Joiner, S., Hill, A.F., Campbell, T.A., Desbruslais, M., Luthert, P.J., Collinge, J. Tissue distribution of protease resistant prion protein in variant CJD using a highly sensitive immuno-blotting assay. *Lancet* 2001; 358: 171-180.
75. Polymenidou M, Moos R, Scott M, et al. The POM monoclonals: a comprehensive set of antibodies to non-overlapping prion protein epitopes. *PLoS One* 2008; 3: e3872. 2008/12/09. DOI: 10.1371/journal.pone.0003872.
76. Kacsak RJ, Rubenstein R, Merz PA, et al. Mouse polyclonal and monoclonal antibody to scrapie-associated fibril proteins. *J Virol* 1987; 61: 3688-3693.
77. Raymond GJ and Chabry J. Methods and Tools in Biosciences and Medicine. In: Lehmann S and Grassi J (eds) *Techniques in Prion Research*. Birkhäuser, Basel, 2004, pp.16-26.

78. Bailly C, Gouard S, Guérard F, et al. What is the Best Radionuclide for Immuno-PET of Multiple Myeloma? A Comparison Study Between (89)Zr- and (64)Cu-Labeled Anti-CD138 in a Preclinical Syngeneic Model. *Int J Mol Sci* 2019; 20 2019/05/30. DOI: 10.3390/ijms20102564.

79. Sevillano AM, Aguilar-Calvo P, Kurt TD, et al. Prion protein glycans reduce intracerebral fibril formation and spongiosis in prion disease. *J Clin Invest* 2020 2020/01/28. DOI: 10.1172/jci131564.