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Abstract

The network control theory framework holds great potential to inform neurostimulation
experiments aimed at inducing desired activity states in the brain. However, the current
applicability of the framework is limited by inaccurate modeling of brain dynamics, and
an overly ambitious focus on whole-brain activity control. In this work, we leverage recent
progress in linear modeling of brain dynamics (effective connectivity) and we exploit
the concept of target controllability to focus on the control of a single region or a small
subnetwork of nodes. We discuss when control may be possible with a reasonably low
energy cost and few stimulation loci, and give general predictions on where to stimulate
depending on the subset of regions one wishes to control. Importantly, using the robustly
asymmetric effective connectome instead of the symmetric structural connectome (as in
previous research), we highlight the fundamentally different roles in- and out-hubs have
in the control problem, and the relevance of inhibitory connections. The large degree of
inter-individual variation in the effective connectome implies that the control problem is
best formulated at the individual level, but we discuss to what extent group results may
still prove useful.

Introduction 1

Brain controllability refers to the possibility of manipulating brain activity in a controlled 2

way through external perturbations [1, 2], such as those that can be delivered non- 3

invasively through transcranial magnetic stimulation (TMS). For this goal, one can 4

exploit control theory, a general mathematical framework to design perturbations of 5

dynamical systems with a desired effect. In a first approximation, neural dynamics can 6

be modeled as a linear and time-invariant [3], and one can try to control brain activity 7
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using the simple framework of of linear network control theory [4]. The activity of the 8

whole network can be controlled by acting on a subset of “driver nodes”, and theory 9

predicts which nodes should be selected and which input signal should be applied to 10

obtain desired activity states. Since the first proposal by Gu et al. [5], this idea has been 11

extensively explored [1, 2] and debated [6, 7]. 12

So far, however, there has been limited success in directly applying this framework to 13

predict the outcomes of neurostimulation experiments [8–10]. In fact, the framework has 14

been mainly applied in a relatively indirect way, by enriching the analysis of structural 15

connectomes with a whole new set of tools based on controllability metrics [11]. The 16

latter are node-wise metrics assessing the difficulty (energy cost) to reach desired states 17

when specific nodes are selected as driver nodes, and they have proven very effective in 18

summarizing features of the structural connectomes linked with cognitive function [12–20]. 19

Among the obstacles hindering the practical applicability, and hence the widespread 20

adoption of network control theory in neuromodulation experiments, a major one is 21

a nearly exclusive focus on a quite ambitious objective, namely, whole-brain activity 22

control. While a sufficiently dense network is in principle controllable with a single 23

driver node, in practice a non-negligible fraction of the total number of nodes should be 24

used as driver nodes to control the activity of the whole network with a realistic energy 25

cost [21]. For large networks this means that many driver nodes are required. This is 26

indeed the case for the brain: even with a coarse parcellation, N ≥ 60 nodes are required 27

to model the whole brain). However, current neurostimulation techiques such as TMS 28

allow stimulating at most one (or two [22]) sites at the same time. Thus, a fine-grained 29

control of whole brain activity is way beyond current experimental capabilities. A second 30

relevant obstacle is the usage of inaccurate computational models of brain dynamics. The 31

original proposal [5] assumed that the brain macroscopically follows linear dynamics with 32

inter-areal couplings given by structural connectivity (SC), i.e., the amount of anatomical 33

connections between areas estimated from diffusion MRI. This approach, however, was 34

criticized by Tu et al. [6], who argued that couplings defined by structural connectivity 35

miss important features of the dynamics. Dynamical coupling between brain areas is 36

not simply proportional to anatomical connectivity: it can be asymmetric and include 37

negative connections [23], whereas SC matrices inferred from diffusion imaging are always 38

symmetric and positive. In fact, many authors have striven to develop powerful ways to 39

fit functional MRI data at rest with a linear dynamical model and find the underlying 40

effective connectivity (EC) structure [23–26]. 41

In the present work, we propose a controllability approach relying on a realistic control 42

objective and a proper dynamical model. On one side, we will focus on a more affordable 43

goal: target control, which consists in controlling only a selected group of regions [27] 44

rather than the whole brain. On the other side, we will frame the control problem 45

using EC matrices rather than SC matrices. EC at the individual level will be inferred 46

from functional megnetic resonance imaging (fMRI) data through sparse dynamic causal 47

modeling (spDCM) [26]. This model is a recent improvement over previous DCMs 48

for resting state fMRI [3,24], allowing for accurate parameter inference by combining 49

linearization of the hemodynamic response, discretization of the dynamics, and then a 50

sparsity-inducing prior. Our proposal is illustrated by applying it to fMRI recordings of 51

N = 76 subjects from a large public database (Leipzig Study for Mind-Body-Emotion 52

Interactions - LEMON dataset [28]). We will first confirm the main difficulties of 53

whole-brain controllability already highlighted by previous literature [6,7, 29], showing 54

that the control cost (energy) scales exponentially with the number of target nodes. 55

Then, we will consider the simplest case of target control, where one wishes to control 56

a single target region by acting on a remote brain region. Finally, we will move to the 57

case where one wishes to control interconnected groups of regions defined by canonical 58

resting state networks (RSNs). In all cases, we will address the problem of selecting 59
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good driver nodes (yielding a low energy cost) depending on the target, showing that 60

centrality metrics can assist the choice of drivers, and discussing to what extent an 61

individualized or a group selection is convenient. 62

The approach we propose has the potential to inform neurostimulation experiments (e.g., 63

with TMS) where one wishes to control the activity of a (small) set of target regions. In 64

this context, our approahc allows indentifying the optimal driver region (or set of driver 65

regions) to control the target, and assess the difficulty of the control problem in terms 66

of control energy (the amplitude of the control signal to be applied). 67

Materials and methods 68

Data collection 69

The resting-state fMRI dataset employed in this study consists of resting-state scans on 70

a subset of 295 healthy subjects from the publicly available MPI-Leipzig Mind-Brain- 71

Body dataset (LEMON) [28]. The data selection was performed on the original dataset 72

(consisting of 318 individuals) by excluding participants with structural images heavily 73

affected by artefacts or functional images with high head motion (less than 400 volumes 74

with a mean framewise displacement ¡ 0.4 mm) or affected by pre-processing failures 75

and/or unavailability of rs-fMRI data [30]. While the first half of the dataset (147 76

subjects) was employed for clustering purposes (see details in the following sections), a 77

final age- and gender-balanced sample of 76 individuals (younger: 20-39 M=19, F=19, 78

older: 40-80 M=19, F=19) was extracted from the second half and then included in the 79

controllability analysis of EC. 80

Data acquisition was performed with a 3T Siemens Magnetom Verio scanner, equipped 81

with a 32-channel head coil. The protocol included a T1-weighted 3D magnetization- 82

prepared 2 rapid acquisition gradient echoes (MP2RAGE; TR = 5,000ms, TE = 2.92ms, 83

TI1 = 700ms, TI2 = 2,500ms, first flip angle = 4°, second flip angle = 5°, FOV = 84

256× 240× 176mm, voxel size = 1× 1× 1mm, multiband acceleration factor [MBAc- 85

cFactor] = 3), rs-fMRI scans (TR = 1,400ms, TE = 39.4ms, flip angle = 69°, FOV 86

= 202× 202mm, voxel size = 2.3× 2.3× 2.3mm, volumes = 657, MBAccFactor = 4) 87

and two spin echo acquisitions (TR = 2,200ms, TE = 52ms, flip angle = 90°, FOV = 88

202× 202mm, voxel size = 2.3× 2.3× 2.3mm). During rs-fMRI scans, the subjects were 89

asked to keep their eyes opened and to lie down as still as possible. 90

Data preprocessing 91

For each control an individual pseudo-T1w image was obtained by multiplying the 92

T1w 3D-MP2RAGE image with its second inversion time image and the structural 93

preprocessing performed on this pseudo-T1w image included bias field correction 94

(N4BiasFieldCorrection [31], skull-stripping (MASS [32]) and nonlinear diffeomorphic 95

registration [33] to the symmetric MNI152 2009c atlas [34]. Pre-processing of rs- 96

fMRI data consisted of slice timing (Smith et al. 2004), distortion (TOPUP [35]) 97

and motion correction (MCFLIRT [36]) and nonlinear normalization to the symmetric 98

MNI atlas [34] passing through the pseudo-T1w image via a boundary-based regis- 99

tration [37]. As a second step an ICA-based denoising was performed. The GIFT 100

toolbox (http://trendscenter.org/software/gift/) was used to decompose the functional 101

pre-processed data into independent components (ICs) by performing a group spatial- 102

ICA. As detailed in [38]. The ICs were classified into artefactual or resting-state network 103

related in accordance with Refs. [39, 40]. As a result, ICs that were related to banding 104

artifacts, vascular or noise components were discarded. Then, 10 principal components 105

related to CSF and white matter signal (5 from WM, 5 from CSF) were regressed out 106
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from rsfMRI timeseries as well as the 6 standard head motion parameters and their 107

temporal derivatives. Then the denoised signal was high-passed with a filtering cut-off 108

equal to 1/128 Hz. 109

Parcellation and networks 110

We then extracted subject-level time series data from a 100-area parcellation scheme 111

of the cortex provided by the Schaefer atlas [41], which maps to 7 resting-state func- 112

tional networks: Control network (CON, 10 parcels), Default mode network (DMN, 16 113

parcels), Dorsal attention network (DAN, 9 parcels), Limbic network (LIM, 5 parcels), 114

Saliency/Ventral attention network (VAN, 11 parcels), Somatomotor network (SMN, 6 115

parcels), Visual network (VIS, 5 parcels). We also defined a set of 12 subcortical and 116

cerebellar regions based on the AAL3 segmentation [42]: for each hemisphere, 6 regions 117

consisting of thalamus, caudate, putamen, pallidum, hippocampus and cerebellum (SUB, 118

12 parcels). 119

In addition, we assigned to each subject a binary temporal mask accounting for brain 120

volumes corrupted by head motion (FD > 0.4mm) and we applied volume despiking to 121

the time series by means of the icatb despike tc function of the GIFT toolbox. Moreover, 122

the temporal traces were band-pass filtered (0.008 to 0.1 Hz). 123

Given the need to keep the computational load of sparse DCM at a reasonable level, 124

a Consensus Clustering Evidence Accumulation (CCEA) procedure [43] was applied 125

to reduce the number of cortical parcels derived from the Schaefer atlas. In order to 126

account for hemodynamic differences across spatially distant parcels, this procedure was 127

performed selectively for subsets of adjacent cortical regions referring to the same func- 128

tional network. This additional constraint implied that only functionally homogeneous 129

and spatially contiguous parcels could be grouped together, ensuring the consistency of 130

hemodynamic properties of each cluster. The resulting clustering procedure provided 131

62 cortical clusters, from which demeaned fMRI time courses (i.e., within-cluster mean 132

BOLD signal) were extracted and supplied as inputs to sparse DCM together with the 133

BOLD signals from subcortical sources. 134

Sparse DCM 135

Dynamical Causal Modelling (DCM) was first introduced by Friston et al. [44]. It
is a generative model of measured brain responses, where the output haemodynamic
responses are evoked either by an underlying (unobserved) brain activity arising from
experimental stimuli (during tasks) or spontaneous neural fluctuations (at rest). Here,
we use the sparse DCM approach by Prando et al. [26]. This DCM variant implements
a sparsity inducing mechanism that automatically prunes irrelevant connections, thereby
avoiding the need to perform a selection between competing network structures. The
algorithm has been further adjusted to account for the signal reliability of the temporal
frames, by introducing the binary temporal mask as a weighting measure during the
estimation procedure. The model includes two layers: i) a coupled ODE system modeling
neuronal activation x(t), and ii) a mapping from neuronal activity x(t) to the BOLD
fMRI signal y(t) (hemodynamic response). In formulas:

ẋ(t) = Ax(t) + ν(t) (1a)

y(t) = h(x(t); θh) + e(t) (1b)

where x(t) = [x1(t)...xn(t)]
T is the hidden neural activity of n brain regions at time t, 136

A is the effective connectivity matrix, ν(t) is a stochastic term driving intrinsic brain 137

fluctuations, y(t) is the BOLD fMRI response at time t, θh denotes collectively a set of 138

biophysical parameters regulating the haemodynamic response (which is modelled with 139
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the Balloon-Windkessel model [44]), and e(t) ∼ N (0, R) is a Gaussian observation noise 140

with covariance matrix R. 141

All model parameters, including the effective connectivity matrix A, need to be estimated 142

by inverting the model on the measured fMRI data. To simplify the estimation procedure, 143

Prando et al. [26] took two steps. First, in a discretization step, justified by the low 144

temporal resolution of fMRI scanners with sampling time TR ∼ 0.5s to 3s, the equation 145

is integrated in steps of TR. If we measure time in units of TR, leading to the finite 146

difference equation 147

x(k + 1) = eAx(k) +w(k) (2)

If we assume that the stochastic term ν(t) is a white Gaussian noise with diagonal 148

covariance matrix σ2In, then w(k) is also white Gaussian and its corresponding vari- 149

ance is given by Q = σ2
∫ 1

0
eAτeA

T τdτ . Second, in a linearization step the non-linear 150

haemodynamic response is linearized by assuming a finite impulse response (FIR) for 151

brain region i 152

yi(k) =
s−1∑
l=0

hi,lxi(k − l) (3)

where hi = [hi,0, ..., hi,s−1]
T are the FIR parameters for region i, with s large enough

to maintain temporal dependencies. The combination of these two simplifying moves
reduces the model to a linear stochastic model

x(s)(k + 1) = A(s)x(s)(k) +w(s)(k) (4)

y(k) = H(s)xs(k) + e(k) (5)

where x(s)(k) = [xT (k) xT (k − 1) ... xT (k − s + 1)]T ∈ Rn×s is the time-delayed 153

activity signal, A(s) and H(s) are matrices containing the EC parameters (A)and the 154

FIR parameters (H), respectively, w(s) is a Gaussian noise terms with covariance matrix 155

Q(s) (with blocks equal to Q), and e is a Gaussian noise with covariance matrix R. 156

The parameters θ = {A,H,Q,R}, are estimated within a Bayesian framework by taking 157

into account the observed values of the BOLD signal as well as the prior distribution of 158

the parameters, chosen to be in this factorized form: 159

p(θ) ∝ pγ(A)p(Q)p(H)p(R) (6)

Here, p(Q) and p(R) are uninformative priors, p(H) is Gaussian (with means and 160

variances fixed from knowledge of the typical haemodynamic responses [44] ), and pγ(A) 161

is a sparsity inducing prior, 162

pγ(A) ∼ N (0, diag(γ1, ..., γn2)) (7)

Parameters are estimated by maximum a-posteriori estimates, using the expectation- 163

maximization algorithm. The hyper-parameters γi are estimated through marginal 164

likelihood maximization, ensuring that a controlled fraction of the γi are small and thus 165

effectively inducing sparsity in A. 166

Controllability 167

In our control framework, we neglect noise and assume that input is provided to a set of 168

driver nodes. The system’s dynamics become 169

ẋ(t) = Ax(t) + Bu(t) (8)

where u(t) is a time-dependent r × 1 vector representing r external inputs (r ≤ n), 170

u(t) = (u1(t), ..., ur(t))
T and B is an n× r input matrix with which identifies the driver 171

nodes, with Bij = 1 if control input uj(t) is imposed on node i. 172
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The Kalman’s controllability condition [45] states that the system is controllable if 173

and only if the controllability Gramian W 174

W =

∫ ∞

0

eAtBBT eA
T t (9)

W is positive definite, W > 0 or λmin(W ) > 0 where λmin is the minimum eigenvalue. 175

Due to numerical inaccuracies, it is impossible to assess whether an eigenvalue value is 176

exactly 0. Following common practice [46], we consider an eigenvalue to be 0 whenever 177

is it below a very low numerical threshold ϵ = 10−12. 178

The control energy is defined as the (integrated) amplitude of the control signal used 179

to steer the system from a given initial state x0 to a given final state xf , 180

E(u) =

∫ tf

0

dt||u(t)||2 (10)

Note that, if t is measured in units of TR, E(u) is adimensional. The magnitude of E(u) 181

is related to the magnitude of the control signal, as ||u|| ≈
√

E/τ where τ is the time 182

for which ||u|| is significantly different from 0. As matrix elements of B are of value 183

1, the magnitude of the term Bu in Eq.(8) is of order
√
E/τ . This is to be compared 184

with the magnitude of the initial and final states, ||x0||, ||xf || = 1. If E(u) = 1012 and 185

τ = 102, this means that ||u|| ≈ 105, which means that the external driving must force 186

the system through trajectories that pass through activity vectors of magnitude 105 187

times larger than the initial and final activity vectors. 188

Let u∗ be the optimal control input minimizing the control energy for a given pair 189

(x0,xf ). In the limit tf → ∞, for normalized (x0,xf ), one has 190

E(u∗) ≤ E ≡ 1

λmin(W )
(11)

where the λs are simply the eigenvalues of W . A common metric to assess the difficulty
of steering the system is the upper bound E , which gives the control energy required to
steer the system along the worst possible eigendirection of the Gramian W .
In target control [27], one aims to control only a selected subset of target nodes. Let
T = {c1, c2, c3...cS} be the target node set (of cardinality S) and let

y(t) = Cx(t) (12)

be the output vector describing the activity of the the target nodes we want to control 191

(y(t) ∈ RS), with Cij = 1 if and only if i = j and j ∈ C. 192

The definition of target controllability follows from that of standard (Kalman) 193

controllability, where the system is now defined by the triple (A,B,C) instead of the 194

pair (A,B) [27]. The system (A,B,C) is target controllable with respect to target node 195

set C if the target controllability Gramian 196

WC = CWCT (13)

is positive definite. Similar to the one we have seen in the case of full controllability, we 197

have for the control energy 198

E(u∗) ≤ Etarget =
1

λmin(WC)
(14)

If a single driver node i is used, and the target is in turn a single node j, the expression 199

of the control energy significantly simplifies. We have B = bT
i and C = bj , where bi is 200

the i-th canonical basis vector. Thus 201

Ei→j ≡ Etarget
min = (W

(i)
jj )−1 =

1∫∞
0

dt[eAt]2ij
(15)
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To better highlight the controllability properties of each node within a network, we
define two quantities, the driver centrality and the target centrality by summing the
pairwise control energy over all possible targets and all drivers, respectively:

Ed
i =

∑
j

Ei→j (16a)

Et
i =

∑
j

Ej→i (16b)

Centrality measures and shortest paths 202

EC Centralities. A possible way to select driver nodes is based on centrality measures 203

computed on the graph defined by the EC matrix Aij . Nodes of the network are 204

ranked according to a selected centrality measure, and high-ranking nodes are selected 205

as driver nodes. A viable set of centrality measures appropriate for this approach is 206

the following, which includes both on classical and controllability-tailored measures 207

i) Out-strength (sum of absolute strength of outgoing connections) Aout
i =

∑
j |Aij | 208

and in-strength (sum of absolute strength of incoming connections) Ain
i =

∑
j |Aji|; 209

note that Aout
i ̸= Ain

i in general because EC matrices are non-symmetric, and we take 210

absolute values since entries of A can have both positive and negative sign ii) Page 211

rank [47], which determines the nodes centrality based on the number and quality of its 212

incoming connections (to avoid issues related to the presence of negative weights in the 213

computation of PageRank, we considered an unweighted version of the network replacing 214

all nonzero links with ones) iii) The ratio of absolute out-strength and in-strength 215

rw(i) =
∑N

j=1 |Aji|/
∑N

j=1 |Aij |, which was argued to be a good centrality measure to 216

select driver nodes in the context of controllability [48], iv) the control centrality proposed 217

by Lindmark et al [49], rquot = pi/qi. In the last centrality measure, pi = Tr(W (i)), where 218

W (i) =
∫∞
0

eAtbib
T
i e

AT t is the controllability Gramian corresponding to using node i as a 219

driver; qi = Tr(M (i)), where M (i) is the observability Gramian M (i) =
∫∞
0

eA
T tbib

T
i e

At. 220

Respectively, pi and qi measure the ability to control other nodes from node i, and the 221

ability to control node i indirectly from other nodes. 222

Energy Centralities. Based on the single-driver-single-target energy (15) we define 223

two quantities, the driver centrality Ed
i =

∑
j Ei→j and the target centrality Et

i = 224∑
j Ej→i, by summing the pairwise control energy over all possible targets and all drivers, 225

respectively. The driver energy represents the average energy with which we can control 226

another node, using node i as a driver. The target energy represents the average energy 227

with which we can control node i using another node as a driver. 228

Shortest paths. In the graph defined by Aij , we defined the length of a path by 229

summing the length of each edge, assigning to the edge between nodes k and l a length 230

1/|Akl|, i.e., inversely proportional to the effective connection between k and l. We can 231

thus compute shortest paths in the graph through Dijkstra’s algorithm [50]. We denote 232

by ℓij the length of the shortest path between nodes i and j. 233

Optimal node placement and rank aggregation 234

For a given subset of target nodes T , we rank nodes according to different centralities,
and select as driver nodes the nd nodes with lowest rank. Then, we can identify which
centrality allows achieving the lowest value of control energy (‘optimal centrality’), rank
nodes according to the optimal centrality, and select as drivers the nd driver nodes with
lowest rank (‘optimal drivers’). In a fist step, we can identify optimal drivers for each
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subject independently, yielding a subject-dependent set of optimal drivers O(s) where s
is a subject index.
Then, given a certain set of nodes D, non-overlapping with T (D ∩ T = ∅), we can test
whether optimal drivers are preferentially selected from D. This problem is analogous
to the problem where one has balls of two colors (blue/red) divided in two urns (A/B),
and wants to test whether urn A contains an anomalous proportion of blue balls (i.e.,
statistically unlikely if balls are randomly placed in the two urns regardless of color). This
problem can be solved performing a Fisher exact test [51]. Here, we have optimal/non-
optimal nodes (belonging respectively to O and its complement Ō), divided in two sets
. Two know whether optimal nodes are preferentially selected from D, we perform a
Fisher exact test on the quantities

n1 =
∑
s

|O(s)∩D|, n2 =
∑
s

|O(s)∩D̄|, n3 =
∑
s

| ¯O(s)∩D|, n4 =
∑
s

| ¯O(s)∩D̄|,

which correspond to the number of optimal/non-optimal that belong/not belong to D. 235

One can use rank aggregation to obtain a group-wise set of optimal nodes. Among the 236

possible approaches to rank aggregation [52], we used the most basic approach, namely, 237

computing the average rank (other common criteria such as Borda and Dowdall [52] 238

give very similar results). For each subject, we rank nodes according to the optimal 239

centrality, produce a group ranking using rank aggregation, and and select as drivers 240

the nd driver nodes with lowest rank. 241

Results 242

Effective connectivity matrices 243

We considered resting state fMRI data of N = 76 participants, parcellated into n = 74 244

regions (58 cortical regions + 16 subcortical regions). Applying sparse DCM [26] to the 245

regional time series, we obtained individual effective connectivity matrices Aij . The 246

linear model given by DCM obtained a very good fit of the data, with a correlation 247

between the functional connectivity (FC, standard Pearson correlation matrix between 248

the BOLD signals of all areas) of the model and the actual FC of 0.78 (on average over 249

subjects). Example matrices are shown in Supplementary Fig. 7. The EC matrices have 250

nonzero, negative diagonal entries, Aii < 0, as required for dynamic stability. Effective 251

connections are sparse: on average over all subjects, the link density was 0.39 (61% of 252

matrix entries are zero). On average 59.9% of links were positive (“excitatory”), and 253

40.1% negative (“inhibitory”). The EC matrices exhibit a large inter-subject variability. 254

To assess the degree of inter-subject consistency, we evaluated the Pearson correlation 255

between the EC matrices of all pairs of subjects: on average over all pairs, the correlation 256

was 0.49 (s.d. 0.03). This figure is comparable with the inter-subject consistency of FC 257

matrices (average 0.49, s.d. 0.08). 258
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Fig 1. Dependence of the control energy on the number of driver and target nodes. (a)
Energy to control the whole brain network (median over subjects) as a function of the
number of driver nodes nd. For each nd, nodes were selected based on a ranking of
centrality measures. (b) Energy to control the whole brain network (distribution over
subjects), for three values of nd. For each subject, energy values were z-scored with
respect to the mean of the random node selection. (c) Energy to control a varying
number of target nodes, using nd = 5 driver nodes selected according to different
centrality measures as well as randomly. Lines represent the average control energy over
subjects (over both subjects and realizations for the random curve) (d) Energy to
control target nodes, using nd = 10 driver nodes (distribution over subjects). For each
subject, energy values were z-scored with respect to the mean of the random node
selection. (e) Energy to control a varying number of target nodes within each of 8
RSNs, using nd = 10 driver nodes selected according to a ranking based on the
out-strength. In (a-d), all random curves were obtained by averaging over M = 100
random selections of driver nodes.
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Scaling of control energy with the number of driver and target 259

nodes 260

Two key parameters determining the control energy (Eq.11) are the number of driver 261

nodes, nd, and the number of target nodes, nt. In the literature, the case nt = n is 262

usually considered, where one tries to control the whole network. We thus first fix nt = n 263

and analyze the control energy E as a function of the number of driver nodes nd (Fig. 264

1a). For each value of nd, we selected driver nodes as high-ranking nodes according to 265

different centrality measures ( Methods). Results for a random selection of nodes are also 266

presented. The control energy is exceedingly high (> 1012) unless a significant (≳ 15%) 267

fraction of the nodes are used as driver nodes. This result is fully in agreement with the 268

previous results of Tu et al. [6] and resonates with previous theoretical controllability 269

studies. On one side, since the matrix A has nonzero diagonal entries, the maximum 270

matching theorem ensures that the system is controllable by applying a single external 271

input jointly to all nodes, i.e. B = [1, 1, 1, ...., 1]T [21,53]. However, when computing the 272

minimum eigenvalue of the corresponding Gramian matrix, we systematically obtain 273

very small values (of the order 10−13). Therefore, this simple control solution is not 274

applicable in practice. In fact, as highlighted in Ref. [21], unless a considerable fraction of 275

the nodes are controlled, control energy is astronomically large, and control trajectories 276

extremely long and numerically unstable. Fig. 1b shows the distribution (over subjects) 277

of control energies obtained with different (centrality-based) choices of driver nodes, 278

with energies z-scored to the mean of the distribution obtained with a random choice of 279

driver nodes. The control energy depends quite weakly on the choice of driver nodes, 280

with centrality measures not affording any significant advantage over a random choice of 281

nodes. 282

Given the difficulties with whole-brain network controllability, we next consider the 283

dependence of the control energy on the total number of target nodes nt. In Fig.1c we 284

plot the energy required to control a varying number of target nodes. Here, target nodes 285

were chosen randomly (nodes were randomly sorted and an increasing number of nodes 286

was included in the set of target nodes following the ranking). We used nd = 5 driver 287

nodes selected according to 4 different centrality measures, as well as randomly. The 288

control energy scales exponentially with nt. Since current techniques allow perturbing 289

only one or a few nodes simultaneously, this implies that the control problem is feasibile 290

only for a low number of target nodes. The strictly exponential scaling depends on the 291

fact that target nodes were chosen randomly: therefore, target nodes were on average 292

not strongly connected to driver nodes. If one restricts attention to groups of strongly 293

connected nodes, such as those belonging to the same resting state network (RSN), we 294

observe a deviation from the exponential scaling (Fig. 1e). In particular, the scaling of 295

log E with nd is weakly sublinear, showing a weak “saturation effect” whereby adding 296

new nodes to the set of target nodes is progressively less costly. Fig. 1c also shows 297

that selection of driver nodes has an effect on the control energy. In particular, the 298

random choice systematically yields larger energies than centrality-based choices. In 299

Fig.1d we show the distribution (over subjects) of the (log-)control energies, z-scored 300

to the mean of the distribution obtained with a random choice of driver nodes. For all 301

values of nt, a centrality-based choice of driver nodes affords a significant advantage over 302

a random choice of driver nodes (T-test, T (75) < −8, p < 10−10 corrected for 5 multiple 303

comparisons). The effect is more pronounced for low nt. These results do not depend 304

either on the specific nd used (analogous results are obtained with nd = 5, nd = 20). In 305

summary, the control energy scales exponentially with the number of target nodes. When 306

the number of target nodes is large, the energy is exceedingly large unless a significant 307

fraction of the nodes is used as driver nodes. These results imply that whole-brain 308

controllability is unfeasible with current techniques. The dependence of the control energy 309

on the choice of driver nodes is appreciable for a low number of driver and target nodes. 310
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Fig 2. Relation between single-driver single-target centrality and effective connectivity.
(a) Control energy Ei→j (energy required to control a single node j using a single node i
as driver) vs. the effective connectivity between i and j, Aij for a single representative
subject. Positive (Aij > 0) and negative (Aij < 0) effective connections are highlighted
in blue and red respectively. The value of Spearman correlation between Aij and
log Ei→j is shown for positive (R(+)) and negative (R(−)) connections respectively. (b)
Control energy Ei→j vs. the absolute value of the i, j matrix element of the propagator
eAT for T = 10 for a single representative subject. Positive ([eAT ]ij > 0) and negative
(eAT

ij < 0) effective connections are highlighted in blue and red respectively, along with
the corresponding values of Spearman correlation with log Ei→j . (c) Control energy
Ei→j vs. the length of the shortest path ℓij connecting i and j using effective
connections for a single representative subject. (d) Control energy Ei→j vs. the i, j
matrix element of the functional connectivity F for a single representative subject. (e)
Distribution (over subjects) of the absolute value of Spearman correlation |R| between
Ei→j and Aij (positive and negative connections), [eAT ]ij (positive and negative
connections), ℓij
, and Fij

Single-node target Controllability 311

Given the unfeasibility of whole-brain controllability, in the remainder we concentrate on 312

target controllabilty of selected brain regions or gorups of regions. We first consider the 313

simplest, and experimentally most accessible target controllability problem: controlling 314

a single target node by using a single driver node. This case corresponds to the typical 315

experimental setting where one wishes to activate/deactivate a specific brain region by 316

stimulating a (single) remote region. Furthermore, it allows clarifying general relations 317

between effective connections matrices and controllability. 318

Which connections contribute to control. The control energy for the single-driver- 319

single-target case is given by Eq. (15), which determines the energy Ei→j required to 320

control node j through node i. In Fig.2a we plot Ei→j against Aij for a single subject. 321
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Unsurprisingly, for positive links (Aij > 0, blue) Ei→j is negatively correlated with 322

Aij (Spearman R ≈ −0.39 for this subject). This means is there is a large effective 323

connection between i and j, it is less costly to control j through i (control energy 324

decreases). However, for negative connections (Aij < 0) Ei→j is positively correlated 325

with Aij (Spearman R ≈ 0.44 for this subject). Thus, negative connections have a 326

positive, not a detrimental effect for controllability: if there is a large, negative effective 327

connection between i and j, it is less costly to control j through i. Stated otherwise, 328

effective connections reduce the required control energy with a contribution dependent on 329

their strength, but independent of their sign. Group results confirm this finding (Fig. 2e). 330

The average Spearman correlation between EC and control energy is R = −0.40± 0.03 331

(mean ± s.d.) for positive connections and R = 0.41 ± 0.05 for negative connections. 332

From Fig.2a we also see that large effective connections are a sufficient, yet not necessary 333

condition to have low control energy. We hypothesized that this is due to indirect 334

connections. Indeed, mathematically, the influence of node i onto j over a time scale t is 335

exerted though the propagator eAt, rather than A. The matrix element [eAt]ij effectively 336

integrates the effect of direct and indirect paths between i and j. In Fig. 2b we plot Ei→j 337

against [eAT ]ij for a single subject, where T = 10 (corresponding to a typical time scale 338

of duration of a control signal), obtaining stronger correlations (R ≈ −0.70,R ≈ 0.71 for 339

positive and negative connections respectively). Over all subjects (Fig. 2e), we obtain 340

R = 0.67± 0.08 for positive connections and R = 0.69± 0.06 for negative connections. 341

To strengthen the conjecture that the value of the control energy Ei→j is related to 342

the presence of direct and indirect connections between i and j, in Fig.2c we plot Ei→j 343

against ℓij , the length of the shortest path between i and j in the graph defined by 344

Aij . We observe a strong positive correlation (R ≈ 0.58): if nodes i and j are “near” 345

(i.e., linked by strong direct or indirect connections), the control energy is lower. Over 346

all subjects (Fig.2e), the average correlation coefficient is 0.56± 0.04. Finally, we note 347

that the value of the control energy Ei→j is poorly predicted by the standard functional 348

connectivity Fij between between nodes i and j (Fig.2d), as we observe only a weak 349

negative correlation (R ≈ −0.23). Over all subjects (Fig.2e), the average correlation 350

coefficient is −0.16±0.06. In summary, the presence of large (direct and indirect, positive 351

or negative) connections between i and j determines a low control energy Eij . 352

Optimal driver and target nodes. Based on the results of the previous section, we 353

assumed that nodes with strong incoming connections would require a low energy to be 354

controlled, and nodes with strrong outgoing connections would require low energy to 355

control onther nodes. We verified this hypothesis by computing the link between the 356

driver/target centrality Ed
i , Et

i of a node (Methods), representing the average energy when 357

using a node as a driver or target, and the in- and out-strength of that node Ain
i ,Aout

i . 358

On average over subjects (Supplementary Fig. 8a), Ed
i is strongly negatively correlated 359

with Aout
i (R = −0.71± 0.05, mean ± s.d.) but uncorrelated with Ain

i (R = 0.00± 0.15). 360

Conversely, Et
i is strongly negatively correlated with Ain

i (R = −0.72 ± 0.07) but 361

weakly correlated with Aout
i (R = −0.10± 0.17). This implies that asymmetries between 362

incoming and outgoing connections have large significance for control. These asymmetries 363

can be appreciated when considering EC (which is non- symmetric), but not standard 364

functional connectivity, FC (which is by definition symmetric). In fact, when considering 365

the FC strength (Fi =
∑

j Fij where F is the functional connectivity matrix), we we 366

did not find any relation with either the driver centrality (R = −0.02 ± 0.12), or the 367

target centrality (R = 0.17± 0.13). 368

The above result suggest that “in-hubs” of effective connectivity are the easiest nodes to 369

control, while “out-hubs” of effective connectivity are the best nodes to use to control 370

other nodes, and should possibly chosen as driver nodes. However, an important caveat 371

to this result is that out-hubs are poorly consistent across subjects. In fact, we assessed 372
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Fig 3. Driver nodes and target nodes (a) We show a rendering of the brain, with each
dot representing the center of one of the 74 regions. Node size is inversely proportional
to the node driver centrality Ed

i , while nodes color corresponds to resting state network
affiliation. (b) as in (a), but node size is inversely proportional to the node target
centrality Et

i .

the consistency of in- and out-strength over subject by computing the coefficient of 373

variation cV (standard deviation/mean; small values imply high consistency and vice 374

versa). We obtained and for out-strength cV = 0.31± 0.07 (mean ± st. dev. over nodes) 375

and for in-strength(cV = 0.17 ± 0.03 (Supplementary Fig. 8b). Thus, the in-strength 376

is much more consistent than the out-strength (T test, T (73) = −19.2, p < 10−30). 377

Correspondingly, the target centrality (cV = 0.10± 0.02) is much more consistent than 378

the driver centrality (cV = 0.19± 0.03; T test, T (73) = −19.5, p < 10−30). Thus, the 379

easy-to-control nodes are more consistent across subjects, than the good “input nodes” 380

by which one can control other nodes. 381

To identify good driver nodes, we ranked nodes based on Ed
i . Fig. 3a shows a rendering 382

of the brain, with node size inversely proportional to the average node rank (average over 383

subjects) based on Ed
i . The average Et

i tends to decrease along the posterior/anterior axis, 384

with posterior nodes generally corresponding to larger target energies (the correlation 385

between Et
i and the sagittal coordinate y of the nodes is significant, R = −0.34, p = 0.003). 386

Nodes with low rank (low Ed
i ), on average over subjects, include portions of the anterior 387

DMN (ventrolateral prefrontal cortex/ba47 and dorsomedial prefrontal cortex/ba8), the 388

anterior portion of the VAN (dorsolateral prefrontal cortex), the anterior portion of DAN 389

(frontal eye field), primary motor cortex, putamen, left cerebellum, right hippocampus. 390

Nodes with low rank (high Ed
i ) include thalamus, caudate, the temporal portion of DMN, 391

primary visual cortex, the posterior portion of the DAN. However, in agreement with 392

the above states caveat, the distribution (over subjects) of node ranks is quite broad for 393

all nodes, with a st. dev. of ≈ 20 for all nodes, implying that ranks are not consistent 394

across subject (Supplementary Fig. 9a). Therefore, while we can identify nodes that tend 395

to be better/worse as driver nodes across subjects, no nodes are consistently good/bad 396

for all subjects. Supplementary Fig. 9a also shows node affiliation to one of eight resting 397

state networks (RSN). The node ranking does not clearly correlate with RSNs affiliation: 398

no networks are consistently associated with low/high ranks. 399

To identify nodes that are easy to control, we ranked nodes based on Et
i . Fig. 3b shows 400

a rendering of the brain, with node size size inversely proportional to the average node 401
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Fig 4. Target RSN controllability. For each of the eight RSNs, we computed the control
energy required to control all nodes belonging to that RSN, when nd = 5 driver nodes
are selected among all remote nodes (not belonging to that RSN) according to rankings
based on centrality measures. For all RSNs and all choices of driver nodes, we plot the
distribution over subjects of the average (log) energy per node.

rank. The average Et
i tends to decrease along the ventral/dorsal axis, and to increase 402

along the posterior/anterior axis, with ventral and anterior nodes generally corresponding 403

to larger target energies (we found a significant correlation between Et
i and the axial 404

coordinate z of the nodes, R = −0.63, p = 4 · 10−9, and a significant correlation between 405

Et
i and the sagittal coordinate y of the nodes, R = −0.32, p = 0.005). Nodes with low 406

Et
i include primary visual cortex, posterior nodes of the DAN, posterior nodes of the 407

CON, right anterior nodes of the CON, and the medial prefrontal cortex portion of the 408

DMN. In terms of RSN affiliartion, nodes of the Limbic network and subcortical nodes 409

are generally associated with very high ranks. On the contrary, nodes of the control 410

and the sensorimotor network are generally associated to low ranks. The distribution 411

(across subjects) of node ranks, for each node, is shown in Supplementary Fig. 9b. In 412

agremeement with the above discussion of consistency, the rank distribution is much 413

sharper than that obtained with Ed
i , with a st. dev. of < 10 for many nodes, Therefore, 414

not only can we identify nodes that tend to be better/worse as target nodes (in terms of 415

control energy) across subjects, but we find nodes that are consistently good/bad for all 416

subjects. 417

In summary, in-hubs of EC are easy to control, out-hubs of EC are the best nodes to 418

use as driver nodes; In-hubs are consistent over subjects, and generally located dorsally; 419

out-hubs are poorly consistent over subjects, and mostly locate frontally. 420

RSN target Controllability 421

We have showed that the control energy needed to control a target node depends on 422

the choice of the driver node, and we linked this variability to the structure of effective 423

couplings. Here, we address the general problem of selecting driver nodes when wishing 424

to control more than one target nodes. Due to the general findings in the “scaling” 425

subsection, we consider only small sets of target nodes. A natural choice is to consider 426

as targets groups of nodes belonging to the same resting state network (RSNs). RSNs 427
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correspond to integrated neurocognitive systems [54–57] and are jointly affected in major 428

brain disorders [58,59]. 429

Driver node selection. We computed the control energy required to control each of 430

eight RSNs, using a fixed number of driver nodes nd. We systematically analyzed the 431

effect of driver node selection, by comparing results obtained selecting driver nodes: i) 432

based on a driver energy rank ii) based on EC centrality iii) randomly. Nodes belonging to 433

the target RSN where excluded from the set of possible driver nodes. Results for nd = 5 434

are shown in Fig. 4, where we show the average (log)energy to control each RSN with 435

different driver node selection. For each RSN, energies were z-scored to the mean energy 436

(over subjects and driver node selection). Performing a two-way repeated measures 437

ANOVA on the z-scored energy values, with RSN and driver nodes selection criterion as 438

factors, we obtained a significant effect of selection criterion (F (5, 375) = 195, p < 10−10), 439

and a significant criterion × RSN interaction (F (35, 2625) = 5.2, p < 10−10). Post-hoc 440

T-tests comparing different criteria to select control nodes show that selecting nodes 441

based on driver centrality or EC centralities except page-rank (pq, ratio degree and out 442

degree centralities) systematically yields lower energies than random (T (75) < −21.6, 443

p < 10−10). The strongest effects of node selection are felt in the small networks (LIM, 444

VIS and SMN networks). For each target RSN, we identified the centrality yielding the 445

lowest energy (“optimal centrality”), shown in Tab. 1. 446

Energy to control a target RSN We computed the control energy required to 447

control each of eight RSNs, using a fixed number of driver nodes nd. Nodes were selected 448

according to the optimal centrality. In supplementary Fig. 10 we show how the energy 449

scales as a function of nd. Note that each RSN includes a different number of nodes, 450

hence we cannot directly compare E for different RSNs (the DMN, which comprises 451

16 nodes, is generally more difficult to control than the VIS and LIM, that comprise 5 452

nodes). For nd = 2, energies are > 103 for all RSNs (103 − 108). For nd = 5, energies 453

are in the range 102.5 − 104.5. With nd = 10, energies are in the range 102 − 103.5. Thus, 454

5 to 10 driver nodes would generally be required to control a target RSN with fairly low 455

energy. 456

Controlling a RSN from another RSN. For each target RSN, we ranked nodes 457

based on the optimal centrality and identified a set of ‘optimal driver nodes’ nd = 10 458

nodes with lowest rank (at the individual level). We asked whether the optimal nodes to 459

control a given target RSN preferentially belong to specific driver RSNs. In Fig.5a we 460

show, for each target RSN, the average percentage of optimal nodes belonging to each 461

driver RSN. For each pair driver RSN/target RSN, we we tested whether this fraction 462

was higher or lower than expected randomly. Intuitively, if optimal nodes were selected 463

randomly from any driver RSN, the fraction of optimal nodes from a given RSN should 464

approximately match the fraction of nodes belonging to that RSN. More formally, a 465

Fisher exact test (Methods) can be performed to identify when the fraction of nodes 466

from a given driver RSN is lower/higher than chance (marked with ∗+, ∗− in Fig.5a). 467

Notably, the DMN is overrepresented among good drivers of nearly all networks. The 468

VAN and DAN are overrepresented in the control of each other and the DMN and CON. 469

Conversely, the LIM is systematically underrepresented. 470

Individual vs. group selection of driver nodes. For each target RSN, we used rank 471

aggregation to combine individual rankings in a unique ranking (Methods), obtaining 472

a group-wise set of optimal driver nodes. In Fig. 5b we show, for each target RSN, 473

the average percentage of group-optimal nodes belonging to each driver RSN. Results 474

are very similar to Fig. 5a, but rank aggregation tends to sparsify the matrix. We 475

June 18, 2023 15/34

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.19.545527doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.19.545527
http://creativecommons.org/licenses/by/4.0/


Fig 5. Relation between driver and target RSNs. For each target RSN and each subject,
we obtained a ranking of driver nodes based on the centrality measure yielding the least
average energy to control the target network. a For each RSN and subject, we
considered the top 10 driver nodes according to the ranking . We plot the number of
the top 10 driver nodes belonging to each RSN, on average over subjects. We mark with
∗+, ∗− nodes that significantly more/less represented among the top 10 driver nodes
than expected by chance (Fisher exact test, P < 0.05, false-discovery-rate corrected for
multiple comparisons (as we have 8 RSNs, we have 8× 8− 8 = 56 comparisons, as we
consider all possible pairs of driver RSN - target RSN excluding identical pairs). b
Using rank aggregation, for each target RSN we obtained a single ranking for all
subjects and considered the top 10 driver nodes. We plot the number of the top 10
driver nodes belonging to each RSN

observe that the SMN is very underrepresented among top-ranking driver nodes. This 476

is probably a consequence of the fact that effective connections of the SMN are highly 477

variable among subjects, so that no nodes of the SMN consistently appear among the 478

top-ranking for many subjects. In Fig. 6 we show the 10 top-ranking nodes according to 479

the aggregated ranking, for two example target RSNs (CON and SUB). In supplementary 480

Fig. 11 we show results for all target RSNs. Among the nodes frequently represented we 481

find: the ventrolateral prefrontal cortex nodes of the DMN and VAN (which among the 482

top-10 ranking nodes for nearly all target networks), the frontal nodes of the DAN, the 483

dorsomedial nodes of the DMN, the precuneus, the striatum and the left cerebellum. We 484

asked to what extent group results, i.e., the aggregated ranking, can be used to select 485

driver nodes. Therefore, we compared the energy to control each target RSN, averaged 486

over subjects, when nodes were selected based on an individual node ranking (⟨log10 E⟩) 487

or the aggregated ranking ⟨log10 E⟩agg. Results are shown in Table 1. Obviously, the 488

individual ranking is more efficient (∆E = ⟨log10 E⟩ − ⟨log10 E⟩agg > 0). However, the 489

difference is small, ranking from a ∆E = 0.075 for DAN (corresponding to a factor 1.3 490

in energy) to ∆E = 0.205 for VAN (corresponding to a factor 1.6 in energy). Therefore, 491

the group results can be used to inform the node selection. 492

Discussion 493

Effective-connectivity-based controllability. We proposed an approach to brain 494

controllability based on effective connectivity (EC) inferred from fMRI, instead of 495

structural connectivity (SC) as in the standard approach. To what extent EC depends 496

on the underlying SC is an open question [60]. The EC model is in principle better suited 497

to represent activity propagation, but we are not aware previous studies presenting a 498
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Fig 6. Optimal driver nodes for RSN ). Two example RSNs with the corresponding
target nodes(small blue markers) and top 10 aggregate driver nodes(orange markers) are
shown

Table 1

region centrality nt nd ⟨log10(E)⟩ ⟨log10(E)⟩agg ∆E
CON out degree 10 10 2.446 2.536 0.090
DMN out degree 16 10 3.521 3.698 0.177
DAN singlenode 9 10 2.602 2.677 0.075
LIM singlenode 5 10 2.145 2.350 0.205
VAN out degree 11 10 2.797 2.992 0.195
SMN singlenode 6 10 2.608 2.760 0.152
SUB pq 12 10 3.298 3.472 0.174
VIS singlenode 5 10 2.252 2.401 0.151

thorough analysis of controllability properties of whole-brain EC networks. Ref. [17] 499

computed controllability metrics on EC networks, but the entire analysis focused on 500

a small subset regions involved in cognitive control. Recent work [61, 62] assessed 501

controllability properties of functional rather than structural networks, but used standard 502

functional connectivity (FC) networks, rather than effective connectivity (EC) networks. 503

We stress that standard FC just measures correlations between the signals of two areas, 504

and it is not in principle suited to model activity propagation. A key trait of EC networks 505

is that they are asymmetric, contrary to FC networks (symmetric by definition) and SC 506

networks (symmetric due to limitations of dMRI). Consistently with other works [23], 507

we observed substantial asymmetries in EC connections. We showed that asymmetries 508

are important for control, as incoming and outgoing connections, and correspondingly 509

in- and out-hubs, play a different role (Fig. 8a). This differences cannot be detected 510

with an SC- or FC-based analysis. In future work, it is certainly of interest to compare 511

SC- and EC-based predictions of activity propagation following neuromodulation in a 512

TMS-EEG experiment (a recent study [63] compared SC- and FC- based prediction, but 513

FC cannot adequately predict propagation patterns). 514

Impracticability of whole-brain control. Based on Kalman’s criterion, Gu et 515

al. [5] originally argued that the whole brain could be controlled by acting on a single 516
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driver node. However, Kalman’s criterion does not ensure practical controllability. 517

The latter requires a reasonably low power of the control signal, i.e., a reasonably 518

low control energy. Very large values of the control energy are problematic for the 519

following reasons: i) experimentally, control signals are subjected to bandwidth and 520

power constraints ii) control trajectories become highly non-local and extremely long, 521

and, consequently, numerically unstable; small numerical errors in the Gramian W (of 522

magnitude comparable to machine precision) imply very large deviations in the final state, 523

and one is not practically able to reach the desired target [21] iii) numerical instabilities 524

can be exacerbated by noise and model inaccuracies. Focusing on SC controllability, 525

Tu et al. [6] showed that control energies are astronomically large unless an important 526

fraction of the network nodes (≳ 20%) are used as driver nodes. Here, we replicate 527

Tu et al.’s findings with EC controllability, showing that whole-brain control implies 528

exceedingly high control energies unless 15− 20% of the nodes are used as driver nodes 529

(Fig. 1a). In fact, huge control energies should be expected whenever the ratio between 530

number of driver nodes and the number of target nodes is small, irrespective of details of 531

the system or model at hand. Indeed, the control energy scales (roughly) exponentially 532

with the number of target nodes to be controlled (Fig. 1c). 533

Target controllability of brain networks. Currently available techniques for non- 534

invasive brain stimulation, such as transcranial magnetic stimulation (TMS), do not 535

allow for stimulation of multiple sites. Standard TMS allows stimulation of one site, 536

and recent experiments with dual coil TMS stimulation (also known as cortico-cortical 537

paired associative stimulation [22,64]) allow stimulating two cortical sites. Proposals to 538

implement multi-site stimulation are currently under development [65], but formidable 539

technical difficulties must be surpassed before stimulation of more than a few sites 540

simultaneously becomes possible. Therefore, we decided to focus our analysis on control 541

of one or a few target nodes, adopting the framework of target controllability [27,66]. 542

While recent work considered target controllability of whole-brain brain networks [67,68], 543

we are not aware of a systematic study of target controllability on EC networks. We 544

first analysed the case where a single driver node is used to control a single target nodes 545

(corresponding to experiments where one tries to activate a chosen brain region by acting 546

on a remote region). Controlling a single target region is feasible with limited control 547

energy (≲ 101). We then considered the case of controlling a subset of nodes belonging 548

to the same resting state network (RSN). Control of target RSNs demands large control 549

energies unless at least nd ≈ 5 driver nodes are used. Therefore, the control objective is 550

not easily accomplished with current technology. We stress, however, that controlling a 551

subnetwork (in the sense of target controllability) is equivalent to being able to generate 552

an arbitrary activity pattern in the subnetwork. This is considerably more difficult than 553

producing a generic overall activation of the subnetwork (as in [69]). 554

Criteria for selection of driver nodes. When considering targets of small size, 555

it becomes relevant to properly select driver nodes, ensuring a low control energy. A 556

random selection of nodes is generally inefficient (Fig. 1). In the single-driver-single- 557

target case, control energies span 3 orders of magnitude depending on which node is 558

selected (Fig. 2a). Good driver nodes should be connected to the target: owing to 559

network effects, both direct and indirect connections count (Figs. 2a-b), such that there 560

is a general relation between control energy and network distance between driver and 561

target (Fig. 2c). Negative (inhibitory) connections appear to have the same effectiveness 562

for control as positive (excitatory) connections (Fig. 2e). To identified node that are 563

generally “good drivers” or “good targets”, we defined two control metrics, a driver 564

centrality and target centrality”, averaging, respectively, the energy required to control 565

other nodes of the network from a given driver node and the energy required to control 566
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a given target node from other nodes. The driver and target centralities are strongly 567

related to EC graph centralities. In particular, out-hubs of EC (nodes with a large 568

weight of outgoing connections) serve as good control drivers, while in-hubs of EC (nodes 569

with a large weight of incoming connections) are easy target nodes. We thus replicate 570

qualitatively a major finding of previous studies on brain controllability [1,5], namely, 571

that hubs correspond to optimal driver nodes. However, within our picture there is a 572

clear distinction between in-hubs and out-hubs - a difference that can be appreciated only 573

when considering asymmetric effective connections. When using several driver nodes 574

(e.g., to control a target RSN), it is impossible to perform an exhaustive search of the 575

optimal subset driver nodes. However, node centralities can assist the choice of drivers. 576

Selecting driver nodes from a ranking based on driver centrality or EC graph centralities 577

(pq, ratio-degree or out-strength centrality) yields a significant energy advantage over a 578

random selection of driver nodes (Fig. 4). All these metrics largely correlate with the 579

out-strength centrality. 580

Individual vs. group selection of drivers. While in-hubs of EC were consistent 581

over subjects, out-hubs exhibited a much larger inter-subject variability. Therefore, the 582

location of a single “optimal driver node” may strongly vary among different individuals. 583

This finding strengthens the case for an individual optimization of the stimulation targets, 584

as advocated by recent contributions [69,70]. However, when using multiple driver nodes, 585

selecting nodes based on a group-averaged node ranking does not entail a significant 586

additional energy cost with respect to using a subject-dependent ranking. Possibly, 587

the usage of multiple nodes may partially offset fine-grained individual differences in 588

the connectome profiles. This result is interesting in the light of the development of 589

multiple-site neurostimulation paradigms: it implies that using a standardized protocol 590

over different subjects, that is certainly convenient especially in a development stage, 591

may not determine severe efficiency trade-offs. 592

Optimal driver regions. Nodes with low driver centrality (good drivers) are pre- 593

dominantly located frontally (Fig-3a). This finding is in agreement with a previously 594

reported anterior-to-posterior information flow in the slow frequency range [71]. Good 595

drivers include dorsolateral and ventrolateral prefrontal nodes of the CON, DAN and 596

DMN, primary motor areas, and left cerebellum. The driver centrality, being an average 597

measure, is not sensistive to different targets. By using rank aggregation, we found 598

nodes that are frequently ranked among good driver nodes for several target RSNs. The 599

most recurring nodes are DAN and DMN nodes located in the ventrolateral prefrontal 600

cortex, the frontal eye field (DAN), and hubs of the DMN ( dorsomedial nodes of the 601

DMN and precuneus), the cerebellum and the striatum. Dorsolateral and ventrolateral 602

prefrontal regions are among the key regions involved in cognitive control [72–77]. The 603

frontal eye field is a key region mediating attentional control [78]. Primary motor 604

regions, that are involved not only in motor control but also a wide array of top-down 605

processes [79,80], have been previously associated to a high control centrality [5,68]. The 606

left cerebellum is strongly involved in motor control of the dominant hemisphere [81]). 607

The striatum is widely implicated in learning and reward [82]. The topography of good 608

driver nodes generally aligns with the cortical hierarchy [83]. Areas from attentional and 609

association networks high in the cortical hierarchy (DAN, DMN, VAN) are consistently 610

identified as good driver ndoes, contrary to areas low in the cortical hierarchy (including 611

somatomotor, visual and limbic areas). This trend culminates with the DMN, which sits 612

on top of the cortical hierarchy and is overrepresented among driver nodes of all target 613

networks, coherently with a hypothesized central integrative role of the DMN in the 614

brain [84]. We note that these findings do not fully align with those of Ref. [68], which 615

indicated only motor regions as optimal driver regions. However, Ref. [68] based the 616
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controllability analysis on a “directed structural connectome” obtained by normalizing 617

outgoing connections by node degree, assuming a diffusive process on the network ( [85]). 618

The ensuing network considerably differs from EC network empirically observed in fMRI, 619

and implies robust outgoing connections for nodes with low degree, which are mainly 620

located in the somatomotor cortex. 621

Optimal targets. Target centrality is organized along the axial direction, with ventral 622

nodes being generally associated with higher target centrality (Fig. 3b). In particular, 623

subcortical nodes and nodes of the limbic network correspond to particularly large 624

control energies, implying that they are much less easy to activate and control from 625

remote regions, in agreement with previous findings [70]. Among the nodes with lowest 626

target centrality (hence, among the nodes that are most easy to perturb remotely) are 627

frontoparietal nodes belonging to the control network, which integrate input from several 628

regions and plays a central role in cognitive control [73]. 629

Limitations. We finally discuss possible limitations of the present work. Cohort and 630

recordings. The sample used (N = 76) was not large enough to split our analysis into a 631

training and a validation cohort. Furthermore, the relatively short fMRI time-series (here, 632

657 time points) are not optimal for the stability of individual-level EC matrices. Thus, 633

a replication in a different data set involving a larger cohort and longer recordings may 634

considerably strengthen our analysis. A larger cohort would possibly allow linking control 635

properties (such as driver and target energies) with individual traits, e.g., demographic 636

data, allowing to look for age-, sex- and parenthood-related effects ( [68,86]). Parcellation. 637

The general findings of our manuscript do not depend on the specific parcellation used, 638

but some of the more specific findings may not be parcellation-invariant. For instance, 639

while the relation between out-degree and driver centrality is expected to be general, 640

the specific identity of the optimal driver nodes may depend on the parcellation, as 641

the in- and out-degree of different nodes may slightly vary in different parcellations. 642

We also warn the reader that the specific values of control energy obtained depend on 643

the parcellation used: more fine-grained parcellations imply a larger number of nodes, 644

and hence an increased difficulty of the control problem. Control cost. In the present 645

work we used the control energy as general measure of control cost. Control energy is a 646

worst-case-scenario metric, as it measures the maximal square amplitude of the control 647

signal required to generate a desired activity pattern in the target region (maximum 648

over all possible patterns). Therefore, our estimates of controllability are generally quite 649

conservative. Controllability framework. Here, we used the standard framework of linear 650

controllability. Obviously, a limitation of this framework is the assumption that the 651

dynamics is linear. However, we acknowledge two additional, potentially more relevant 652

limitations. First, the framework is not fault-tolerant, as it neglects noise and aims at 653

inducing an exact target pattern. In a recent publication, Kamiya et al. [87] frameed the 654

control problem probabilistically: the system’s state is not a specific activity pattern, 655

but a distribution, and the control objective is to reach a target distribution centered 656

around a specific pattern. In principle, one could use this approach in combination 657

with spDCM to achieve a fault-tolerant control approach, but this would require some 658

advances: in its current formulation, Kamiya et al’s approach assumes that one can 659

control all network nodes, and we should therefore adapt it to embed stronger constraints 660

on the driver nodes that can be used. A second limitation is the framework allows for 661

arbitrary control signals u: in practice, there are often constraints in the control signals 662

that can be generated, e.g., in terms of bandwidth. Finally, in terms of applications, 663

the control approach we are using is suitable for a “single shot” application where 664

one temporarily induces a desired activity state. For clinical applications, it would be 665

relevant to understand how repeated stimulation can leverage plasticity mechanisms 666
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inducing long-term changes [88]. Rapid effects of brain stimulation. EC inferred from 667

fMRI is represents infraslow activity (which mostly represents slow modulations of 668

gamma activity [89]), and hence it can captures a slow activity propagation following 669

local activity increases induced by stimulation. It cannot, however, account fora rapid 670

non-local effect of neurostimulation, which induce local spiking and hence also a fast 671

activity spread along anatomical pathways [90]. How to model this effect remains an 672

open challenge. 673
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20. Zöller D, Sandini C, Schaer M, Eliez S, Bassett DS, Van De Ville D. Structural 747

control energy of resting-state functional brain states reveals less cost-effective 748

brain dynamics in psychosis vulnerability. Human brain mapping. 2021;42(7):2181– 749

2200. 750

June 18, 2023 22/34

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.19.545527doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.19.545527
http://creativecommons.org/licenses/by/4.0/


21. Sun J, Motter AE. Controllability Transition and Nonlocality in Network Control. 751

Physical Review Letters. 2013;110(20). doi:10.1103/physrevlett.110.208701. 752

22. Momi D, Neri F, Coiro G, Smeralda C, Veniero D, Sprugnoli G, et al. Cognitive 753

enhancement via network-targeted cortico-cortical associative brain stimulation. 754

Cerebral Cortex. 2020;30(3):1516–1527. 755

23. Gilson M, Moreno-Bote R, Ponce-Alvarez A, Ritter P, Deco G. Estimation of 756

directed effective connectivity from fMRI functional connectivity hints at asymme- 757

tries of cortical connectome. PLoS computational biology. 2016;12(3):e1004762. 758

24. Razi A, Kahan J, Rees G, Friston KJ. Construct validation of a DCM for resting 759

state fMRI. Neuroimage. 2015;106:1–14. 760
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Supporting information 943

Linear controllability A continuous linear time-invariant(LTI) system has a state 944

equation of the form: 945

ẋ(t) = Ax(t) + Bu(t) (17)

Here, x(t) is a n× 1 state vector of the form (x1(t), ..., xn(t))
T , n being the number of 946

nodes in the system. A is an n× n matrix describing the interaction strength between 947

the system components. The system is stable if and only if all the eigenvalues of A have 948

negative real part. B is an n×r input matrix (r ≤ n) which identifies the nodes controlled 949

by an outside controller, or driver nodes, with Bij = 1 if control input uj(t) is imposed on 950

node i; u(t) is a time-dependent r × 1 input vector of the form u(t) = (u1(t), ..., ur(t))
T

951

with r external inputs. 952

The system defined by continuous LTI Eq. 8 is said to be controllable if for a suitable 953

choice of input signal vector u(t), t ∈ [0, tf ], it can be driven from any initial state 954

x0 = x(0) to any final state xf = x(tf ), where tf is a finite time. Kalman’s controllability 955

rank condition states that a system is controllable if and only if the controllability matrix 956

C = [B,AB,A2B, ...., An−1B] (18)

which is of dimension N × (N · r), has full rank [45]: 957

rank(C) = n (19)
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An equivalent condition can be formulated in terms of the controllability Gramian W , 958

implicitly defined by the (continuous) Lyapunov equation 959

AW +WAT = −BBT (20)

Eq. (20) has unique solution 960

W =

∫ ∞

0

eAtBBT eA
T t (21)

Then the system is controllable if and only if W is positive definite, 961

W > 0 (22)

Here, following standard notation, W > 0 means min(eig(W )) > 0), i.e., the minimum 962

eigenvalue of W is strictly positive. The conditions (19) and (22) are algebraically 963

equivalent. The two conditions can be numerically verified by computing the minimum 964

singular values of C and W , respectively. Note that, due to numerical inaccuracies, 965

it is impossible to assess whether a singular value is exactly 0. Therefore, following 966

common practice [46], we consider an eigenvalue to be 0 whenever is it below a very low 967

numerical threshold ϵ = 10−14 (note that fixing a threshold can lead to seeming incon- 968

sistencies between the two conditions whenever the minimum eigenvalues are small) [6,29]. 969

970

The control energy is defined as the (integrated) amplitude of the control signal used 971

to steer the system from a given initial state x0 to a given final state xf , 972

E(u) =

∫ tf

0

dt||u(t)||2 (23)

Among infinitely many solutions for u which can drive the system x0 to final state xf in
time tf , the optimal control input

u∗(x0,xf , tf ) = BT eA
T (tf−t)W (tf )

−1(xf − eAtfx0)

minimizes the control energy [91], i.e.,

min{u, x(tf )=xf}E(u) = E(u∗(x0,xf , tf )) = (24)

= (xf − eAtfx0)
TW (tf )

−1(xf − eAtfx0) = (xf )
TW (tf )

−1xf

where W (tf ) =
∫ tf
0

dteAtBBT eA
T t and we assumed that the final state is normalized, 973

||xf ||22 = 1. The energy cost can be thus bounded as follows: 974

1

λmax(W (tf ))
≡ Emin(tf ) ≤ E(u∗(x0,xf , tf )) ≤ Emax(tf ) ≡

1

λmin(W (tf ))
(25)

Since for a stable system the real parts of the eigenvalues of A are negative, the 975

optimal control energy E(u∗(x0,xf , tf )) quickly decays to a (nonzero) asymptotic 976

value E∗(x0,xf ) ≡ limtf→∞ E(u∗(x0,xf , tf )). In this limit, W (tf ) coincides with the 977

controllability Gramian, limtf→∞ W (tf ) = W [92]. Hence, the bounds on the energy 978

given by Eq. 25 can be expressed as 979

1

λmax(W )
≡ Emin ≤ E∗(x0,xf ) ≤ Emax ≡ 1

λmin(W )
(26)

The typical metric to assess the difficulty of steering the system from one state to 980

another is given by the upper bound of Eq. 11. This upper bound gives us control energy 981
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cost required to steer the brain system to worst possible eigen direction of controllability 982

gramian W and henceforth we consider this quantity as control energy. 983

E = 1/λmin(W ) (27)

where the λs are simply the eigenvalues of W . 984

985

In target control, one aims to control only a selected subset of target nodes [27]. The
framework is the same, with the only difference that we focus on the final state of a
subset of nodes y:

ẋ(t) = Ax(t) + Bu(t) (28)

y = Cx (29)

where y ∈ RS is the output vector describing the activity of the the target nodes 986

we want to control. Given a network with n nodes, we can define a target node set 987

T = {τ1, τ2, τ3...τS} of size S = |T |, where τi can be any node from {1, 2, 3..., n}. The 988

output matrix C is defined as: C = [ITτ1 , I
T
τ2 , ...., I

T
τS ]

T ∈ RS×N where Iτi is τi-th row of 989

the identity matrix I. 990

The definition of target controllability follows from that of standard (Kalman) controlla- 991

bility, where the system is now defined by the triple (A,B,C) instead of the pair (A,B) 992

[27]. The system (A,B,C) is said to be target controllable with respect to target node 993

set C if there exists a time-dependent input vector u which can drive the state of the 994

target nodes to any desired final state in finite time. It can be shown that the system is 995

target controllable if and only if 996

rank[C] = S (30)

where C ≡ [CB,CAB,CA2B, ...., CAn−1B] is the target controllability matrix. The 997

Gramian for target controllability is given by [93]: 998

WC = CWCT (31)

where W is the standard Gramian, Eq. (9) for system (A,B). Analogously to the case
of full controllability, the optimal control input [27]

u∗
t = BT eA

T (tf−t)CT (CW (tf )C
T )−1 (yf − CAtfx0)

which minimizes the control energy and drives the subsystem from initial state y0 = Cx0 999

to final output state yf is substituted into Eq. (10) and we obtain the optimal target 1000

control energy: 1001

E(u∗(yf ,y0, tf ) = yT
f (CW (tf )C

T )−1yf (32)

where we have assumed that the initial state is x0 = 0. The energy can be bounded as
follows:

1

λmax(CW (tf )CT )
≡ Emin(tf ) ≤ E(u∗(yf ,y0, tf ) ≤ Emax(tf ) ≡

1

λmin(CWtfC
T )

Asymptotically, as tf → ∞, we can rewrite the above bounds as: 1002

1

λmax(WC)
≤ E∗(yf ,y0) ≤

1

λmin(WC)
(33)

The upper bound gives the energy required to steer the subsystem along the worst 1003

possible direction: 1004

Etarget = 1/λmin(WC) (34)

If a single driver node i is used, and the target is in turn a single node j, the expression 1005

of the control energy significantly simplifies. We have B = bTi and C = bj . Thus 1006

Ei→j ≡ Etarget
min = (W

(i)
jj )−1 =

1∫∞
0

dt[eAt]2ij
(35)
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Optimal nodes to control RSNs according to rank aggregation For each 1007

target RSN, we have ranked nodes according to the centrality measure yielding the 1008

lowest average energy, when driver nodes are selected among the nodes with largest 1009

centrality. After rankings were estimated separately for each subject, we have used 1010

rank aggregation (average rank) to obtain a group ranking. Here, we focus on the 10 1011

top-ranking nodes for each target RSN (Fig. 11). The top nodes to control the CON 1012

are located in ventrolateral prefrontal cortex (DMN and VAN), precuneus and right 1013

parietal (DMN), frontal eye fields (DAN), right dorsal frontal (DMN). The top nodes 1014

to control the DMN are located in left cerebellum, right parietal (DAN), left parietal 1015

(CON), frontal eye fields (DAN), ventrolateral PFC (VAN), dorsomedial prfrontal cortex 1016

(DMN/VAN). The top nodes to control the DAN are located in right parietal (DMN), 1017

right precentral (SMN), left striatum, ventrolateral PFC (VAN/DMN), dorsomedial 1018

frontal (VAN), right dorsal frontal (DMN). The top nodes to control the limbic nodes 1019

are located in right cerebellum, right temporal cortex (VIS), right precentral (SMN), 1020

right frontal eye field (DAN), right dorsal frontal (DMN), ventrolateral prefrontal cortex 1021

(DMN and VAN), left dorsolateral preforntal cortex (VAN). The top nodes to control the 1022

VAN are located in precuneus (DMN), right parietal (DMN), medial prefrontal cortex 1023

(DMN), ventrolateral prefrontal cortex (DMN), frontal eye fields (DAN), right dorsal 1024

frontal (DMN and CON). The top nodes to control the SMN are located in striatum, 1025

frontal eye fields (DAN), ventrolateral prefrontal cortex (VAN and DMN), dorsomedial 1026

frontal (CON), right precentral (DAN). The top nodes to control subcortical regions 1027

are located in ventral temporal cortex (limbic), temporal (VIS), ventrolateral prefrontal 1028

cortex (DMN and VAN), orbitofrontal cortex (limbic), frontal eye fields (DAN). The top 1029

nodes do control the VIS are located in left cerebellum, precuneus (DMN), striatum, right 1030

ventral temporal (limbic), ventrolateral prefrontal cortex (DMN/VAN), right frontal eye 1031

field (DAN), medial parietal (CON). In general, we observe a large prevalence of anterior 1032

nodes, in particular from ventrolateral prefrontal cortex. 1033
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Fig 7. Examples of effective connectivity matrices.. The 74 brain areas are divided in
left cortical, right cortical and subcortical areas. The figure in panel (c) represents the
asymmetry in A, defined as δA = A−AT .

Fig 8. Relation of driver and target control energy and effective connectivity. (a) For
each subject, we computed the Pearson correlation R between the node driver and
target centrality Ed

i , Et
i (average energy to control other nodes from node i vs average

energy to control node i from other nodes) and and the in-strength Ain
i and

out-strength Aout
i of effective connections, as well as the strength of functional

connections Fi. We show the distribution of |R| over subjects. (b) For each node, we
computed the coefficient of variation (s.d./mean) over subjects of Ed

i ,Et
i , A

out
i Ain

i . We
show the distribution of the coefficient of variation over nodes.
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(a) node ranks based on Ed
i

(b) node ranks based on Et
i

Fig 9. Node ranks based on driver/target control energy. (a) For each subject, we
ranked all nodes based on the value of driver centrality Ed

i . We show the rank
distribution for all nodes, with nodes ordered according to the average rank, from lowest
to highest. Nodes are colored according to the resting state network they belong to. (b)
Same as (a), but ranks are based on target centrality Et

i .
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Fig 10. Dependence of the RSN control energy on the number of driver nodes. Energy
to control RSN with a varying number of driver nodes, selecting driver nodes according
to the driver centrality

June 18, 2023 33/34

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.19.545527doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.19.545527
http://creativecommons.org/licenses/by/4.0/


Fig 11. Optimal driver nodes for RSN ). For each RSN we show the corresponding
target nodes(small blue markers) and top 10 aggregate driver nodes(orange markers) are
shown
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