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Abstract

The network control theory framework holds great potential to inform neurostimulation
experiments aimed at inducing desired activity states in the brain. However, the current
applicability of the framework is limited by inaccurate modeling of brain dynamics, and
an overly ambitious focus on whole-brain activity control. In this work, we leverage recent
progress in linear modeling of brain dynamics (effective connectivity) and we exploit
the concept of target controllability to focus on the control of a single region or a small
subnetwork of nodes. We discuss when control may be possible with a reasonably low
energy cost and few stimulation loci, and give general predictions on where to stimulate
depending on the subset of regions one wishes to control. Importantly, using the robustly
asymmetric effective connectome instead of the symmetric structural connectome (as in
previous research), we highlight the fundamentally different roles in- and out-hubs have
in the control problem, and the relevance of inhibitory connections. The large degree of
inter-individual variation in the effective connectome implies that the control problem is
best formulated at the individual level, but we discuss to what extent group results may
still prove useful.

Introduction

Brain controllability refers to the possibility of manipulating brain activity in a controlled
way through external perturbations [1, 2], such as those that can be delivered non-
invasively through transcranial magnetic stimulation (TMS). For this goal, one can
exploit control theory, a general mathematical framework to design perturbations of
dynamical systems with a desired effect. In a first approximation, neural dynamics can
be modeled as a linear and time-invariant [3], and one can try to control brain activity
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using the simple framework of of linear network control theory [4]. The activity of the
whole network can be controlled by acting on a subset of “driver nodes”, and theory
predicts which nodes should be selected and which input signal should be applied to
obtain desired activity states. Since the first proposal by Gu et al. [5], this idea has been
extensively explored [1,2] and debated [6,7].

So far, however, there has been limited success in directly applying this framework to
predict the outcomes of neurostimulation experiments [8-10]. In fact, the framework has
been mainly applied in a relatively indirect way, by enriching the analysis of structural
connectomes with a whole new set of tools based on controllability metrics [11]. The
latter are node-wise metrics assessing the difficulty (energy cost) to reach desired states
when specific nodes are selected as driver nodes, and they have proven very effective in
summarizing features of the structural connectomes linked with cognitive function [12-20].
Among the obstacles hindering the practical applicability, and hence the widespread
adoption of network control theory in neuromodulation experiments, a major one is
a nearly exclusive focus on a quite ambitious objective, namely, whole-brain activity
control. While a sufficiently dense network is in principle controllable with a single
driver node, in practice a non-negligible fraction of the total number of nodes should be
used as driver nodes to control the activity of the whole network with a realistic energy
cost [21]. For large networks this means that many driver nodes are required. This is
indeed the case for the brain: even with a coarse parcellation, N > 60 nodes are required
to model the whole brain). However, current neurostimulation techiques such as TMS
allow stimulating at most one (or two [22]) sites at the same time. Thus, a fine-grained
control of whole brain activity is way beyond current experimental capabilities. A second
relevant obstacle is the usage of inaccurate computational models of brain dynamics. The
original proposal [5] assumed that the brain macroscopically follows linear dynamics with
inter-areal couplings given by structural connectivity (SC), i.e., the amount of anatomical
connections between areas estimated from diffusion MRI. This approach, however, was
criticized by Tu et al. [6], who argued that couplings defined by structural connectivity
miss important features of the dynamics. Dynamical coupling between brain areas is
not simply proportional to anatomical connectivity: it can be asymmetric and include
negative connections [23], whereas SC matrices inferred from diffusion imaging are always
symmetric and positive. In fact, many authors have striven to develop powerful ways to
fit functional MRI data at rest with a linear dynamical model and find the underlying
effective connectivity (EC) structure [23-26].

In the present work, we propose a controllability approach relying on a realistic control
objective and a proper dynamical model. On one side, we will focus on a more affordable
goal: target control, which consists in controlling only a selected group of regions [27]
rather than the whole brain. On the other side, we will frame the control problem
using EC matrices rather than SC matrices. EC at the individual level will be inferred
from functional megnetic resonance imaging (fMRI) data through sparse dynamic causal
modeling (spDCM) [26]. This model is a recent improvement over previous DCMs
for resting state fMRI [3,24], allowing for accurate parameter inference by combining
linearization of the hemodynamic response, discretization of the dynamics, and then a
sparsity-inducing prior. Our proposal is illustrated by applying it to fMRI recordings of
N = 76 subjects from a large public database (Leipzig Study for Mind-Body-Emotion
Interactions - LEMON dataset [28]). We will first confirm the main difficulties of
whole-brain controllability already highlighted by previous literature [6,7,29], showing

that the control cost (energy) scales exponentially with the number of target nodes.

Then, we will consider the simplest case of target control, where one wishes to control
a single target region by acting on a remote brain region. Finally, we will move to the
case where one wishes to control interconnected groups of regions defined by canonical
resting state networks (RSNs). In all cases, we will address the problem of selecting
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good driver nodes (yielding a low energy cost) depending on the target, showing that
centrality metrics can assist the choice of drivers, and discussing to what extent an
individualized or a group selection is convenient.

The approach we propose has the potential to inform neurostimulation experiments (e.g.,
with TMS) where one wishes to control the activity of a (small) set of target regions. In
this context, our approahc allows indentifying the optimal driver region (or set of driver
regions) to control the target, and assess the difficulty of the control problem in terms
of control energy (the amplitude of the control signal to be applied).

Materials and methods

Data collection

The resting-state fMRI dataset employed in this study consists of resting-state scans on
a subset of 295 healthy subjects from the publicly available MPI-Leipzig Mind-Brain-
Body dataset (LEMON) [28]. The data selection was performed on the original dataset
(consisting of 318 individuals) by excluding participants with structural images heavily
affected by artefacts or functional images with high head motion (less than 400 volumes
with a mean framewise displacement | 0.4 mm) or affected by pre-processing failures
and/or unavailability of rs-fMRI data [30]. While the first half of the dataset (147
subjects) was employed for clustering purposes (see details in the following sections), a
final age- and gender-balanced sample of 76 individuals (younger: 20-39 M=19, F=19,
older: 40-80 M=19, F=19) was extracted from the second half and then included in the
controllability analysis of EC.

Data acquisition was performed with a 3T Siemens Magnetom Verio scanner, equipped
with a 32-channel head coil. The protocol included a T1-weighted 3D magnetization-
prepared 2 rapid acquisition gradient echoes (MP2RAGE; TR = 5,000 ms, TE = 2.92 ms,
TI1 = 700ms, TI2 = 2,500 ms, first flip angle = 4°, second flip angle = 5°, FOV =
256 x 240 x 176 mm, voxel size = 1 x 1 x 1 mm, multiband acceleration factor [MBAc-
cFactor] = 3), rs-fMRI scans (TR = 1,400ms, TE = 39.4ms, flip angle = 69°, FOV
= 202 x 202 mm, voxel size = 2.3 X 2.3 x 2.3 mm, volumes = 657, MBAccFactor = 4)
and two spin echo acquisitions (TR = 2,200 ms, TE = 52ms, flip angle = 90°, FOV =
202 x 202 mm, voxel size = 2.3 x 2.3 x 2.3 mm). During rs-fMRI scans, the subjects were
asked to keep their eyes opened and to lie down as still as possible.

Data preprocessing

For each control an individual pseudo-T1w image was obtained by multiplying the
Tlw 3D-MP2RAGE image with its second inversion time image and the structural
preprocessing performed on this pseudo-T1lw image included bias field correction
(N4BiasFieldCorrection [31], skull-stripping (MASS [32]) and nonlinear diffeomorphic
registration [33] to the symmetric MNI152 2009c atlas [34]. Pre-processing of rs-
fMRI data consisted of slice timing (Smith et al. 2004), distortion (TOPUP [35])
and motion correction (MCFLIRT [36]) and nonlinear normalization to the symmetric
MNTI atlas [34] passing through the pseudo-T1w image via a boundary-based regis-
tration [37]. As a second step an ICA-based denoising was performed. The GIFT
toolbox (http://trendscenter.org/software/gift/) was used to decompose the functional
pre-processed data into independent components (ICs) by performing a group spatial-
ICA. As detailed in [38]. The ICs were classified into artefactual or resting-state network
related in accordance with Refs. [39,40]. As a result, ICs that were related to banding
artifacts, vascular or noise components were discarded. Then, 10 principal components
related to CSF and white matter signal (5 from WM, 5 from CSF) were regressed out
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from rsfMRI timeseries as well as the 6 standard head motion parameters and their
temporal derivatives. Then the denoised signal was high-passed with a filtering cut-off
equal to 1/128 Hz.

Parcellation and networks

We then extracted subject-level time series data from a 100-area parcellation scheme
of the cortex provided by the Schaefer atlas [41], which maps to 7 resting-state func-
tional networks: Control network (CON, 10 parcels), Default mode network (DMN, 16
parcels), Dorsal attention network (DAN, 9 parcels), Limbic network (LIM, 5 parcels),
Saliency /Ventral attention network (VAN, 11 parcels), Somatomotor network (SMN, 6
parcels), Visual network (VIS, 5 parcels). We also defined a set of 12 subcortical and
cerebellar regions based on the AAL3 segmentation [42]: for each hemisphere, 6 regions
consisting of thalamus, caudate, putamen, pallidum, hippocampus and cerebellum (SUB,
12 parcels).

In addition, we assigned to each subject a binary temporal mask accounting for brain
volumes corrupted by head motion (FD > 0.4mm) and we applied volume despiking to
the time series by means of the icatb_despike_tc function of the GIFT toolbox. Moreover,
the temporal traces were band-pass filtered (0.008 to 0.1 Hz).

Given the need to keep the computational load of sparse DCM at a reasonable level,
a Consensus Clustering Evidence Accumulation (CCEA) procedure [43] was applied
to reduce the number of cortical parcels derived from the Schaefer atlas. In order to
account for hemodynamic differences across spatially distant parcels, this procedure was
performed selectively for subsets of adjacent cortical regions referring to the same func-
tional network. This additional constraint implied that only functionally homogeneous
and spatially contiguous parcels could be grouped together, ensuring the consistency of
hemodynamic properties of each cluster. The resulting clustering procedure provided
62 cortical clusters, from which demeaned fMRI time courses (i.e., within-cluster mean
BOLD signal) were extracted and supplied as inputs to sparse DCM together with the
BOLD signals from subcortical sources.

Sparse DCM

Dynamical Causal Modelling (DCM) was first introduced by Friston et al. [44]. Tt
is a generative model of measured brain responses, where the output haemodynamic
responses are evoked either by an underlying (unobserved) brain activity arising from
experimental stimuli (during tasks) or spontaneous neural fluctuations (at rest). Here,
we use the sparse DCM approach by Prando et al. [26]. This DCM variant implements
a sparsity inducing mechanism that automatically prunes irrelevant connections, thereby
avoiding the need to perform a selection between competing network structures. The
algorithm has been further adjusted to account for the signal reliability of the temporal
frames, by introducing the binary temporal mask as a weighting measure during the
estimation procedure. The model includes two layers: i) a coupled ODE system modeling
neuronal activation x(¢), and ii) a mapping from neuronal activity z(t) to the BOLD
fMRI signal y(¢t) (hemodynamic response). In formulas:

x(t) = Ax(t) + v(t) (1a)
y(t) = h(x(t); On) + e(t) (1b)

where x(t) = [z1(t)...7,,(t)]" is the hidden neural activity of n brain regions at time ¢,
A is the effective connectivity matrix, v(¢) is a stochastic term driving intrinsic brain
fluctuations, y(t) is the BOLD fMRI response at time ¢, 8}, denotes collectively a set of
biophysical parameters regulating the haemodynamic response (which is modelled with
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the Balloon-Windkessel model [44]), and e(t) ~ N(0, R) is a Gaussian observation noise
with covariance matrix R.
All model parameters, including the effective connectivity matrix A, need to be estimated
by inverting the model on the measured fMRI data. To simplify the estimation procedure,
Prando et al. [26] took two steps. First, in a discretization step, justified by the low
temporal resolution of fMRI scanners with sampling time T ~ 0.5s to 3s, the equation
is integrated in steps of Tr. If we measure time in units of Tk, leading to the finite
difference equation

x(k+1) = ex(k) + w(k) (2)

If we assume that the stochastic term v(t) is a white Gaussian noise with diagonal
covariance matrix oI, then w(k) is also white Gaussian and its corresponding vari-
ance is given by Q = o2 fol eATeA T dr Second, in a linearization step the non-linear
haemodynamic response is linearized by assuming a finite impulse response (FIR) for
brain region ¢

=0

where h; = [h; 0, ..., hm_l]T are the FIR parameters for region i, with s large enough
to maintain temporal dependencies. The combination of these two simplifying moves
reduces the model to a linear stochastic model

xO(k+1) = A9 (k) + wl) (k) (4)
y(k) = H)x* (k) + e(k) (5)

where x®) (k) = [xT(k) xT(k —1) ... xT(k — s+ 1)]T € R™* is the time-delayed
activity signal, A®®) and H(®) are matrices containing the EC parameters (A)and the
FIR parameters (H), respectively, w(®) is a Gaussian noise terms with covariance matrix
Q) (with blocks equal to Q), and e is a Gaussian noise with covariance matrix R.
The parameters 6 = {A, H,Q, R}, are estimated within a Bayesian framework by taking
into account the observed values of the BOLD signal as well as the prior distribution of
the parameters, chosen to be in this factorized form:

p(0) o< py (A)p(Q)p(H)p(R) (6)

Here, p(@) and p(R) are uninformative priors, p(H) is Gaussian (with means and
variances fixed from knowledge of the typical haemodynamic responses [44] ), and p.(A)
is a sparsity inducing prior,

p’Y(A) NN<O’diag(717~--77n2>) (7)

Parameters are estimated by maximum a-posteriori estimates, using the expectation-
maximization algorithm. The hyper-parameters «; are estimated through marginal
likelihood maximization, ensuring that a controlled fraction of the ~; are small and thus
effectively inducing sparsity in A.

Controllability

In our control framework, we neglect noise and assume that input is provided to a set of
driver nodes. The system’s dynamics become

x(t) = Ax(t) + Bu(t) 8)

where u(t) is a time-dependent r x 1 vector representing r external inputs (r < n),
u(t) = (uy(t),...,u.(t))T and B is an n x r input matrix with which identifies the driver
nodes, with B;; = 1 if control input u,;(t) is imposed on node .
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The Kalman’s controllability condition [45] states that the system is controllable if
and only if the controllability Gramian W

vai/ eAtBBTeA"t (9)
0

W is positive definite, W > 0 or Ay (W) > 0 where Ay is the minimum eigenvalue.
Due to numerical inaccuracies, it is impossible to assess whether an eigenvalue value is
exactly 0. Following common practice [46], we consider an eigenvalue to be 0 whenever
is it below a very low numerical threshold € = 10712,

The control energy is defined as the (integrated) amplitude of the control signal used
to steer the system from a given initial state xo to a given final state x;,

B(u) = / G (10)

Note that, if ¢ is measured in units of T, F(u) is adimensional. The magnitude of E(u)
is related to the magnitude of the control signal, as ||u|| & \/E/7 where 7 is the time
for which ||ul| is significantly different from 0. As matrix elements of B are of value
1, the magnitude of the term Bu in Eq.(8) is of order /E /7. This is to be compared
with the magnitude of the initial and final states, ||xoll, ||x¢|| = 1. If F(u) = 10'? and
7 = 102, this means that ||u|| &~ 10°, which means that the external driving must force
the system through trajectories that pass through activity vectors of magnitude 10°
times larger than the initial and final activity vectors.

Let u* be the optimal control input minimizing the control energy for a given pair
(x0,xy). In the limit ¢y — oo, for normalized (x¢,xy), one has

_
/\’min (W)

where the As are simply the eigenvalues of W. A common metric to assess the difficulty
of steering the system is the upper bound &, which gives the control energy required to
steer the system along the worst possible eigendirection of the Gramian W.

In target control [27], one aims to control only a selected subset of target nodes. Let
T = {c1,¢2,c3...cs} be the target node set (of cardinality S) and let

y(t) = Cx(t) (12)
be the output vector describing the activity of the the target nodes we want to control
(y(t) € R¥), with C;; = 1 if and only if i = j and j € C.

The definition of target controllability follows from that of standard (Kalman)
controllability, where the system is now defined by the triple (A4, B, C) instead of the

pair (A4, B) [27]. The system (A, B, C) is target controllable with respect to target node
set C if the target controllability Gramian

Weo = CWeT (13)

Eu") <&= (11)

is positive definite. Similar to the one we have seen in the case of full controllability, we
have for the control energy

1
If a single driver node ¢ is used, and the target is in turn a single node j, the expression

of the control energy significantly simplifies. We have B = b} and C = b;, where b; is
the ¢-th canonical basis vector. Thus

E(u*) S gta'r'get — (14)

i 1
57,' = Etarget _ (W(z))_l -
-~ fo dt[eAt]?j

min 73

(15)
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To better highlight the controllability properties of each node within a network, we
define two quantities, the driver centrality and the target centrality by summing the
pairwise control energy over all possible targets and all drivers, respectively:

gfl = Zgiﬁj (16&)
J

Sit = Zgjﬁi (16b)
J

Centrality measures and shortest paths

EC Centralities. A possible way to select driver nodes is based on centrality measures
computed on the graph defined by the EC matrix A;;. Nodes of the network are
ranked according to a selected centrality measure, and high-ranking nodes are selected
as driver nodes. A viable set of centrality measures appropriate for this approach is
the following, which includes both on classical and controllability-tailored measures
i) Out-strength (sum of absolute strength of outgoing connections) A7"" = 37| A
and in-strength (sum of absolute strength of incoming connections) A" = Y 1Al
note that A9“! # A in general because EC matrices are non-symmetric, and we take
absolute values since entries of A can have both positive and negative sign ii) Page
rank [47], which determines the nodes centrality based on the number and quality of its
incoming connections (to avoid issues related to the presence of negative weights in the
computation of PageRank, we considered an unweighted version of the network replacing
all nonzero links with ones) iii) The ratio of absolute out-strength and in-strength
ro(i) = Z;\Ll [Ajil/ Zjvzl |A;j|, which was argued to be a good centrality measure to
select driver nodes in the context of controllability [48], iv) the control centrality proposed
by Lindmark et al [49], 7uot = pi/q:- In the last centrality measure, p; = Tr(W ), where

we = [ eAth;bTeA"t is the controllability Gramian corresponding to using node i as a

driver; g; = Tr(M®), where M is the observability Gramian M®) = [ eATtbl-szeAt.

Respectively, p; and ¢; measure the ability to control other nodes from node 4, and the
ability to control node ¢ indirectly from other nodes.

Energy Centralities. Based on the single-driver-single-target energy (15) we define
two quantities, the driver centrality £ = Zj &i—; and the target centrality £ =
> j &j_i, by summing the pairwise control energy over all possible targets and all drivers,
respectively. The driver energy represents the average energy with which we can control
another node, using node ¢ as a driver. The target energy represents the average energy
with which we can control node ¢ using another node as a driver.

Shortest paths. In the graph defined by A;;, we defined the length of a path by
summing the length of each edge, assigning to the edge between nodes k and [ a length
1/ Akl i-e., inversely proportional to the effective connection between k and I. We can
thus compute shortest paths in the graph through Dijkstra’s algorithm [50]. We denote
by ¢;; the length of the shortest path between nodes ¢ and j.

Optimal node placement and rank aggregation

For a given subset of target nodes T, we rank nodes according to different centralities,
and select as driver nodes the ny nodes with lowest rank. Then, we can identify which
centrality allows achieving the lowest value of control energy (‘optimal centrality’), rank
nodes according to the optimal centrality, and select as drivers the ny driver nodes with
lowest rank (‘optimal drivers’). In a fist step, we can identify optimal drivers for each
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subject independently, yielding a subject-dependent set of optimal drivers O(s) where s
is a subject index.

Then, given a certain set of nodes D, non-overlapping with 7 (DN T = (), we can test
whether optimal drivers are preferentially selected from D. This problem is analogous
to the problem where one has balls of two colors (blue/red) divided in two urns (A/B),
and wants to test whether urn A contains an anomalous proportion of blue balls (i.e.,
statistically unlikely if balls are randomly placed in the two urns regardless of color). This
problem can be solved performing a Fisher exact test [51]. Here, we have optimal/non-
optimal nodes (belonging respectively to O and its complement O), divided in two sets
. Two know whether optimal nodes are preferentially selected from D, we perform a
Fisher exact test on the quantities

n =Y _[0(s)ND], ny=Y |0(s)ND|, nz=»_ |0(s)ND|, na=Y»_|O(s)ND],

which correspond to the number of optimal/non-optimal that belong/not belong to D.
One can use rank aggregation to obtain a group-wise set of optimal nodes. Among the
possible approaches to rank aggregation [52], we used the most basic approach, namely,
computing the average rank (other common criteria such as Borda and Dowdall [52]
give very similar results). For each subject, we rank nodes according to the optimal
centrality, produce a group ranking using rank aggregation, and and select as drivers
the ng driver nodes with lowest rank.

Results

Effective connectivity matrices

We considered resting state fMRI data of N = 76 participants, parcellated into n = 74
regions (58 cortical regions + 16 subcortical regions). Applying sparse DCM [26] to the
regional time series, we obtained individual effective connectivity matrices A4;;. The
linear model given by DCM obtained a very good fit of the data, with a correlation
between the functional connectivity (FC, standard Pearson correlation matrix between
the BOLD signals of all areas) of the model and the actual FC of 0.78 (on average over
subjects). Example matrices are shown in Supplementary Fig. 7. The EC matrices have
nonzero, negative diagonal entries, A;; < 0, as required for dynamic stability. Effective
connections are sparse: on average over all subjects, the link density was 0.39 (61% of
matrix entries are zero). On average 59.9% of links were positive (“excitatory”), and
40.1% negative (“inhibitory”). The EC matrices exhibit a large inter-subject variability.
To assess the degree of inter-subject consistency, we evaluated the Pearson correlation
between the EC matrices of all pairs of subjects: on average over all pairs, the correlation
was 0.49 (s.d. 0.03). This figure is comparable with the inter-subject consistency of FC
matrices (average 0.49, s.d. 0.08).
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Fig 1. Dependence of the control energy on the number of driver and target nodes. (a)
Energy to control the whole brain network (median over subjects) as a function of the
number of driver nodes ngy. For each ng, nodes were selected based on a ranking of
centrality measures. (b) Energy to control the whole brain network (distribution over
subjects), for three values of ng. For each subject, energy values were z-scored with
respect to the mean of the random node selection. (c) Energy to control a varying
number of target nodes, using ng = 5 driver nodes selected according to different
centrality measures as well as randomly. Lines represent the average control energy over
subjects (over both subjects and realizations for the random curve) (d) Energy to
control target nodes, using ny = 10 driver nodes (distribution over subjects). For each
subject, energy values were z-scored with respect to the mean of the random node
selection. (e) Energy to control a varying number of target nodes within each of 8
RSN, using ng = 10 driver nodes selected according to a ranking based on the
out-strength. In (a-d), all random curves were obtained by averaging over M = 100
random selections of driver nodes.
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Scaling of control energy with the number of driver and target
nodes

Two key parameters determining the control energy (Eq.11) are the number of driver
nodes, ng, and the number of target nodes, n;. In the literature, the case n; = n is
usually considered, where one tries to control the whole network. We thus first fix n, = n
and analyze the control energy £ as a function of the number of driver nodes n, (Fig.
la). For each value of ng4, we selected driver nodes as high-ranking nodes according to
different centrality measures ( Methods). Results for a random selection of nodes are also
presented. The control energy is exceedingly high (> 10'2) unless a significant (= 15%)
fraction of the nodes are used as driver nodes. This result is fully in agreement with the
previous results of Tu et al. [6] and resonates with previous theoretical controllability
studies. On one side, since the matrix A has nonzero diagonal entries, the maximum
matching theorem ensures that the system is controllable by applying a single external
input jointly to all nodes, i.e. B = [1,1,1,....,1]T [21,53]. However, when computing the
minimum eigenvalue of the corresponding Gramian matrix, we systematically obtain
very small values (of the order 107!3). Therefore, this simple control solution is not
applicable in practice. In fact, as highlighted in Ref. [21], unless a considerable fraction of
the nodes are controlled, control energy is astronomically large, and control trajectories
extremely long and numerically unstable. Fig. 1b shows the distribution (over subjects)
of control energies obtained with different (centrality-based) choices of driver nodes,
with energies z-scored to the mean of the distribution obtained with a random choice of
driver nodes. The control energy depends quite weakly on the choice of driver nodes,
with centrality measures not affording any significant advantage over a random choice of
nodes.

Given the difficulties with whole-brain network controllability, we next consider the
dependence of the control energy on the total number of target nodes n;. In Fig.1lc we
plot the energy required to control a varying number of target nodes. Here, target nodes
were chosen randomly (nodes were randomly sorted and an increasing number of nodes
was included in the set of target nodes following the ranking). We used ngy = 5 driver
nodes selected according to 4 different centrality measures, as well as randomly. The
control energy scales exponentially with n;. Since current techniques allow perturbing
only one or a few nodes simultaneously, this implies that the control problem is feasibile
only for a low number of target nodes. The strictly exponential scaling depends on the
fact that target nodes were chosen randomly: therefore, target nodes were on average
not strongly connected to driver nodes. If one restricts attention to groups of strongly
connected nodes, such as those belonging to the same resting state network (RSN), we
observe a deviation from the exponential scaling (Fig. le). In particular, the scaling of
log & with ng is weakly sublinear, showing a weak “saturation effect” whereby adding
new nodes to the set of target nodes is progressively less costly. Fig. 1c also shows
that selection of driver nodes has an effect on the control energy. In particular, the
random choice systematically yields larger energies than centrality-based choices. In
Fig.1d we show the distribution (over subjects) of the (log-)control energies, z-scored
to the mean of the distribution obtained with a random choice of driver nodes. For all
values of ny, a centrality-based choice of driver nodes affords a significant advantage over
a random choice of driver nodes (T-test, T(75) < —8, p < 1071 corrected for 5 multiple
comparisons). The effect is more pronounced for low n;. These results do not depend
either on the specific ng used (analogous results are obtained with ng = 5,ng = 20). In
summary, the control energy scales exponentially with the number of target nodes. When
the number of target nodes is large, the enerqgy is exceedingly large unless a significant
fraction of the nodes is used as driver nodes. These results imply that whole-brain
controllability is unfeasible with current techniques. The dependence of the control energy

on the choice of driver nodes is appreciable for a low number of driver and target nodes.
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Fig 2. Relation between single-driver single-target centrality and effective connectivity.
(a) Control energy &;_,; (energy required to control a single node j using a single node ¢
as driver) vs. the effective connectivity between ¢ and j, A;; for a single representative
subject. Positive (A4;; > 0) and negative (A;; < 0) effective connections are highlighted
in blue and red respectively. The value of Spearman correlation between A;; and

log &, is shown for positive (R(*)) and negative (R(~)) connections respectively. (b)
Control energy &;_,; vs. the absolute value of the 7, j matrix element of the propagator
eAT for T = 10 for a single representative subject. Positive ([e47];; > 0) and negative
(eij < 0) effective connections are highlighted in blue and red respectively, along with
the corresponding values of Spearman correlation with log &;—,;. (c) Control energy
Ei—j vs. the length of the shortest path ¢;; connecting ¢ and j using effective
connections for a single representative subject. (d) Control energy &;_,; vs. the i, j
matrix element of the functional connectivity F' for a single representative subject. (e)
Distribution (over subjects) of the absolute value of Spearman correlation |R| between
&i—; and A;; (positive and negative connections), [eA7];; (positive and negative
connections), ¢;;

y and Fij

Single-node target Controllability

Given the unfeasibility of whole-brain controllability, in the remainder we concentrate on
target controllabilty of selected brain regions or gorups of regions. We first consider the
simplest, and experimentally most accessible target controllability problem: controlling
a single target node by using a single driver node. This case corresponds to the typical
experimental setting where one wishes to activate/deactivate a specific brain region by
stimulating a (single) remote region. Furthermore, it allows clarifying general relations
between effective connections matrices and controllability.

Which connections contribute to control. The control energy for the single-driver-
single-target case is given by Eq. (15), which determines the energy &;_,; required to
control node j through node 7. In Fig.2a we plot &;_,; against A;; for a single subject.
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Unsurprisingly, for positive links (A;; > 0, blue) &_,; is negatively correlated with
A;j (Spearman R ~ —0.39 for this subject). This means is there is a large effective
connection between ¢ and j, it is less costly to control j through i (control energy
decreases). However, for negative connections (A4;; < 0) &, is positively correlated
with A;; (Spearman R ~ 0.44 for this subject). Thus, negative connections have a
positive, not a detrimental effect for controllability: if there is a large, negative effective
connection between i and j, it is less costly to control j through i. Stated otherwise,
effective connections reduce the required control energy with a contribution dependent on
their strength, but independent of their sign. Group results confirm this finding (Fig. 2e).
The average Spearman correlation between EC and control energy is R = —0.40 £ 0.03
(mean + s.d.) for positive connections and R = 0.41 £ 0.05 for negative connections.
From Fig.2a we also see that large effective connections are a sufficient, yet not necessary
condition to have low control energy. We hypothesized that this is due to indirect
connections. Indeed, mathematically, the influence of node i onto j over a time scale ¢ is
exerted though the propagator e/?, rather than A. The matrix element [e??];; effectively
integrates the effect of direct and indirect paths between 4 and j. In Fig. 2b we plot &;_,;
against [eAT]ij for a single subject, where T' = 10 (corresponding to a typical time scale
of duration of a control signal), obtaining stronger correlations (R = —0.70,R = 0.71 for
positive and negative connections respectively). Over all subjects (Fig. 2e), we obtain
R = 0.67 £ 0.08 for positive connections and R = 0.69 & 0.06 for negative connections.
To strengthen the conjecture that the value of the control energy &;_,; is related to
the presence of direct and indirect connections between i and j, in Fig.2c we plot &;_,;
against {;;, the length of the shortest path between ¢ and j in the graph defined by
A;;. We observe a strong positive correlation (R ~ 0.58): if nodes ¢ and j are “near”
(i-e., linked by strong direct or indirect connections), the control energy is lower. Over
all subjects (Fig.2e), the average correlation coefficient is 0.56 & 0.04. Finally, we note
that the value of the control energy &;_,; is poorly predicted by the standard functional
connectivity Fj; between between nodes i and j (Fig.2d), as we observe only a weak
negative correlation (R & —0.23). Over all subjects (Fig.2e), the average correlation
coefficient is —0.16£0.06. In summary, the presence of large (direct and indirect, positive
or negative) connections between i and j determines a low control energy &;;.

Optimal driver and target nodes. Based on the results of the previous section, we
assumed that nodes with strong incoming connections would require a low energy to be
controlled, and nodes with strrong outgoing connections would require low energy to
control onther nodes. We verified this hypothesis by computing the link between the
driver/target centrality £¢, £} of a node (Methods), representing the average energy when
using a node as a driver or target, and the in- and out-strength of that node A", A%t
On average over subjects (Supplementary Fig. 8a), Ef is strongly negatively correlated
with A9t (R = —0.7140.05, mean =+ s.d.) but uncorrelated with A" (R = 0.00 £ 0.15).
Conversely, &! is strongly negatively correlated with A (R = —0.72 4+ 0.07) but
weakly correlated with A% (R = —0.10+0.17). This implies that asymmetries between
incoming and outgoing connections have large significance for control. These asymmetries
can be appreciated when considering EC (which is non- symmetric), but not standard
functional connectivity, FC (which is by definition symmetric). In fact, when considering
the FC strength (F; = > ; Fij where I is the functional connectivity matrix), we we
did not find any relation with either the driver centrality (R = —0.02 £ 0.12), or the
target centrality (R = 0.17 £ 0.13).

The above result suggest that “in-hubs” of effective connectivity are the easiest nodes to
control, while “out-hubs” of effective connectivity are the best nodes to use to control
other nodes, and should possibly chosen as driver nodes. However, an important caveat
to this result is that out-hubs are poorly consistent across subjects. In fact, we assessed
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Fig 3. Driver nodes and target nodes (a) We show a rendering of the brain, with each
dot representing the center of one of the 74 regions. Node size is inversely proportional
to the node driver centrality £¢, while nodes color corresponds to resting state network
affiliation. (b) as in (a), but node size is inversely proportional to the node target
centrality E.

the consistency of in- and out-strength over subject by computing the coefficient of
variation ¢y (standard deviation/mean; small values imply high consistency and vice
versa). We obtained and for out-strength ¢y = 0.31 £ 0.07 (mean =+ st. dev. over nodes)
and for in-strength(cy = 0.17 £ 0.03 (Supplementary Fig. 8b). Thus, the in-strength
is much more consistent than the out-strength (T test, T(73) = —19.2, p < 1073°).
Correspondingly, the target centrality (cy = 0.10 £ 0.02) is much more consistent than
the driver centrality (cy = 0.19 +0.03; T test, T(73) = —19.5, p < 1073°). Thus, the
easy-to-control nodes are more consistent across subjects, than the good “input nodes’
by which one can control other nodes.

To identify good driver nodes, we ranked nodes based on 5{1. Fig. 3a shows a rendering
of the brain, with node size inversely proportional to the average node rank (average over
subjects) based on £Z. The average £ tends to decrease along the posterior /anterior axis,
with posterior nodes generally corresponding to larger target energies (the correlation
between ! and the sagittal coordinate y of the nodes is significant, R = —0.34, p = 0.003).
Nodes with low rank (low 5;1), on average over subjects, include portions of the anterior
DMN (ventrolateral prefrontal cortex/bad7 and dorsomedial prefrontal cortex/ba8), the
anterior portion of the VAN (dorsolateral prefrontal cortex), the anterior portion of DAN
(frontal eye field), primary motor cortex, putamen, left cerebellum, right hippocampus.
Nodes with low rank (high £%) include thalamus, caudate, the temporal portion of DMN,
primary visual cortex, the posterior portion of the DAN. However, in agreement with
the above states caveat, the distribution (over subjects) of node ranks is quite broad for
all nodes, with a st. dev. of = 20 for all nodes, implying that ranks are not consistent
across subject (Supplementary Fig. 9a). Therefore, while we can identify nodes that tend
to be better/worse as driver nodes across subjects, no nodes are consistently good/bad
for all subjects. Supplementary Fig. 9a also shows node affiliation to one of eight resting
state networks (RSN). The node ranking does not clearly correlate with RSNs affiliation:
no networks are consistently associated with low/high ranks.

To identify nodes that are easy to control, we ranked nodes based on &!. Fig. 3b shows
a rendering of the brain, with node size size inversely proportional to the average node

i
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Fig 4. Target RSN controllability. For each of the eight RSNs, we computed the control
energy required to control all nodes belonging to that RSN, when ng = 5 driver nodes
are selected among all remote nodes (not belonging to that RSN) according to rankings
based on centrality measures. For all RSNs and all choices of driver nodes, we plot the
distribution over subjects of the average (log) energy per node.

single node &
out_degree
" P
= ratio_degree

= pagerank

random

log,o(& (Z score)

rank. The average & tends to decrease along the ventral/dorsal axis, and to increase
along the posterior /anterior axis, with ventral and anterior nodes generally corresponding
to larger target energies (we found a significant correlation between £ and the axial
coordinate z of the nodes, R = —0.63, p = 4- 109, and a significant correlation between
E! and the sagittal coordinate y of the nodes, R = —0.32, p = 0.005). Nodes with low
E! include primary visual cortex, posterior nodes of the DAN, posterior nodes of the
CON, right anterior nodes of the CON, and the medial prefrontal cortex portion of the
DMN. In terms of RSN affiliartion, nodes of the Limbic network and subcortical nodes
are generally associated with very high ranks. On the contrary, nodes of the control
and the sensorimotor network are generally associated to low ranks. The distribution
(across subjects) of node ranks, for each node, is shown in Supplementary Fig. 9b. In
agremeement with the above discussion of consistency, the rank distribution is much
sharper than that obtained with 5{1, with a st. dev. of < 10 for many nodes, Therefore,
not only can we identify nodes that tend to be better/worse as target nodes (in terms of
control energy) across subjects, but we find nodes that are consistently good/bad for all
subjects.

In summary, in-hubs of EC are easy to control, out-hubs of EC are the best nodes to
use as driver nodes; In-hubs are consistent over subjects, and generally located dorsally;
out-hubs are poorly consistent over subjects, and mostly locate frontally.

RSN target Controllability

We have showed that the control energy needed to control a target node depends on
the choice of the driver node, and we linked this variability to the structure of effective
couplings. Here, we address the general problem of selecting driver nodes when wishing
to control more than one target nodes. Due to the general findings in the “scaling”
subsection, we consider only small sets of target nodes. A natural choice is to consider
as targets groups of nodes belonging to the same resting state network (RSNs). RSNs
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correspond to integrated neurocognitive systems [54-57] and are jointly affected in major
brain disorders [58,59].

Driver node selection. We computed the control energy required to control each of
eight RSNs, using a fixed number of driver nodes ng. We systematically analyzed the
effect of driver node selection, by comparing results obtained selecting driver nodes: i)
based on a driver energy rank ii) based on EC centrality iii) randomly. Nodes belonging to
the target RSN where excluded from the set of possible driver nodes. Results for ng =5
are shown in Fig. 4, where we show the average (log)energy to control each RSN with
different driver node selection. For each RSN, energies were z-scored to the mean energy
(over subjects and driver node selection). Performing a two-way repeated measures
ANOVA on the z-scored energy values, with RSN and driver nodes selection criterion as
factors, we obtained a significant effect of selection criterion (F'(5,375) = 195,p < 10719),
and a significant criterion x RSN interaction (F(35,2625) = 5.2,p < 1071%). Post-hoc
T-tests comparing different criteria to select control nodes show that selecting nodes
based on driver centrality or EC centralities except page-rank (pq, ratio degree and out
degree centralities) systematically yields lower energies than random (7(75) < —21.6,
p < 10719). The strongest effects of node selection are felt in the small networks (LIM,
VIS and SMN networks). For each target RSN, we identified the centrality yielding the
lowest energy (“optimal centrality”), shown in Tab. 1.

Energy to control a target RSN We computed the control energy required to
control each of eight RSNs, using a fixed number of driver nodes ngy. Nodes were selected
according to the optimal centrality. In supplementary Fig. 10 we show how the energy
scales as a function of ny. Note that each RSN includes a different number of nodes,
hence we cannot directly compare &£ for different RSNs (the DMN, which comprises
16 nodes, is generally more difficult to control than the VIS and LIM, that comprise 5
nodes). For ng = 2, energies are > 103 for all RSNs (103 — 108). For ng = 5, energies
are in the range 10%° — 10*®. With ng = 10, energies are in the range 102 — 103-5. Thus,
5 to 10 driver nodes would generally be required to control a target RSN with fairly low
energy.

Controlling a RSN from another RSN. For each target RSN, we ranked nodes
based on the optimal centrality and identified a set of ‘optimal driver nodes’ ngy = 10
nodes with lowest rank (at the individual level). We asked whether the optimal nodes to
control a given target RSN preferentially belong to specific driver RSNs. In Fig.5a we
show, for each target RSN, the average percentage of optimal nodes belonging to each
driver RSN. For each pair driver RSN /target RSN, we we tested whether this fraction
was higher or lower than expected randomly. Intuitively, if optimal nodes were selected
randomly from any driver RSN, the fraction of optimal nodes from a given RSN should
approximately match the fraction of nodes belonging to that RSN. More formally, a
Fisher exact test (Methods) can be performed to identify when the fraction of nodes
from a given driver RSN is lower /higher than chance (marked with **, *~ in Fig.5a).
Notably, the DMN is overrepresented among good drivers of nearly all networks. The

VAN and DAN are overrepresented in the control of each other and the DMN and CON.

Conversely, the LIM is systematically underrepresented.

Individual vs. group selection of driver nodes. For each target RSN, we used rank
aggregation to combine individual rankings in a unique ranking (Methods), obtaining
a group-wise set of optimal driver nodes. In Fig. 5b we show, for each target RSN,
the average percentage of group-optimal nodes belonging to each driver RSN. Results
are very similar to Fig. 5a, but rank aggregation tends to sparsify the matrix. We
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Fig 5. Relation between driver and target RSNs. For each target RSN and each subject,
we obtained a ranking of driver nodes based on the centrality measure yielding the least
average energy to control the target network. a For each RSN and subject, we
considered the top 10 driver nodes according to the ranking . We plot the number of
the top 10 driver nodes belonging to each RSN, on average over subjects. We mark with
*+, *— nodes that significantly more/less represented among the top 10 driver nodes
than expected by chance (Fisher exact test, P < 0.05, false-discovery-rate corrected for
multiple comparisons (as we have 8 RSNs, we have 8 x 8 — 8 = 56 comparisons, as we
consider all possible pairs of driver RSN - target RSN excluding identical pairs). b
Using rank aggregation, for each target RSN we obtained a single ranking for all
subjects and considered the top 10 driver nodes. We plot the number of the top 10
driver nodes belonging to each RSN

observe that the SMN is very underrepresented among top-ranking driver nodes. This
is probably a consequence of the fact that effective connections of the SMN are highly
variable among subjects, so that no nodes of the SMN consistently appear among the
top-ranking for many subjects. In Fig. 6 we show the 10 top-ranking nodes according to
the aggregated ranking, for two example target RSNs (CON and SUB). In supplementary
Fig. 11 we show results for all target RSNs. Among the nodes frequently represented we
find: the ventrolateral prefrontal cortex nodes of the DMN and VAN (which among the
top-10 ranking nodes for nearly all target networks), the frontal nodes of the DAN, the
dorsomedial nodes of the DMN, the precuneus, the striatum and the left cerebellum. We
asked to what extent group results, i.e., the aggregated ranking, can be used to select
driver nodes. Therefore, we compared the energy to control each target RSN, averaged
over subjects, when nodes were selected based on an individual node ranking ({logyo &))
or the aggregated ranking (log;y €)agqe- Results are shown in Table 1. Obviously, the
individual ranking is more efficient (AE = (log;( €) — (logiy E)agg > 0). However, the
difference is small, ranking from a AE = 0.075 for DAN (corresponding to a factor 1.3
in energy) to AE = 0.205 for VAN (corresponding to a factor 1.6 in energy). Therefore,
the group results can be used to inform the node selection.

Discussion

Effective-connectivity-based controllability. We proposed an approach to brain
controllability based on effective connectivity (EC) inferred from fMRI, instead of
structural connectivity (SC) as in the standard approach. To what extent EC depends
on the underlying SC is an open question [60]. The EC model is in principle better suited
to represent activity propagation, but we are not aware previous studies presenting a
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Fig 6. Optimal driver nodes for RSN). Two example RSNs with the corresponding
target nodes(small blue markers) and top 10 aggregate driver nodes(orange markers) are
shown

Table 1
region centrality ny ng  (logio(€))  (10g19(E))agg AE
CON  out_degree 10 10 2.446 2.536 0.090
DMN  out_degree 16 10 3.521 3.698 0.177
DAN  singlenode 9 10 2.602 2.677 0.075
LIM singlenode 5 10 2.145 2.350 0.205
VAN  out_degree 11 10 2.797 2.992  0.195
SMN  singlenode 6 10 2.608 2.760 0.152
SUB pa 1210 3.298 3.472 0.174
VIS singlenode 5 10 2.252 2.401 0.151

thorough analysis of controllability properties of whole-brain EC networks. Ref. [17]
computed controllability metrics on EC networks, but the entire analysis focused on
a small subset regions involved in cognitive control. Recent work [61,62] assessed
controllability properties of functional rather than structural networks, but used standard

functional connectivity (FC) networks, rather than effective connectivity (EC) networks.

We stress that standard FC just measures correlations between the signals of two areas,
and it is not in principle suited to model activity propagation. A key trait of EC networks
is that they are asymmetric, contrary to FC networks (symmetric by definition) and SC
networks (symmetric due to limitations of dMRI). Consistently with other works [23],
we observed substantial asymmetries in EC connections. We showed that asymmetries
are important for control, as incoming and outgoing connections, and correspondingly
in- and out-hubs, play a different role (Fig. 8a). This differences cannot be detected
with an SC- or FC-based analysis. In future work, it is certainly of interest to compare
SC- and EC-based predictions of activity propagation following neuromodulation in a
TMS-EEG experiment (a recent study [63] compared SC- and FC- based prediction, but
FC cannot adequately predict propagation patterns).

Impracticability of whole-brain control. Based on Kalman’s criterion, Gu et
al. [5] originally argued that the whole brain could be controlled by acting on a single
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driver node. However, Kalman’s criterion does not ensure practical controllability.
The latter requires a reasonably low power of the control signal, i.e., a reasonably
low control energy. Very large values of the control energy are problematic for the
following reasons: i) experimentally, control signals are subjected to bandwidth and
power constraints ii) control trajectories become highly non-local and extremely long,
and, consequently, numerically unstable; small numerical errors in the Gramian W (of
magnitude comparable to machine precision) imply very large deviations in the final state,
and one is not practically able to reach the desired target [21] iii) numerical instabilities
can be exacerbated by noise and model inaccuracies. Focusing on SC controllability,
Tu et al. [6] showed that control energies are astronomically large unless an important
fraction of the network nodes (2 20%) are used as driver nodes. Here, we replicate
Tu et al.’s findings with EC controllability, showing that whole-brain control implies
exceedingly high control energies unless 15 — 20% of the nodes are used as driver nodes
(Fig. 1a). In fact, huge control energies should be expected whenever the ratio between
number of driver nodes and the number of target nodes is small, irrespective of details of
the system or model at hand. Indeed, the control energy scales (roughly) exponentially
with the number of target nodes to be controlled (Fig. 1c).

Target controllability of brain networks. Currently available techniques for non-
invasive brain stimulation, such as transcranial magnetic stimulation (TMS), do not
allow for stimulation of multiple sites. Standard TMS allows stimulation of one site,
and recent experiments with dual coil TMS stimulation (also known as cortico-cortical
paired associative stimulation [22,64]) allow stimulating two cortical sites. Proposals to
implement multi-site stimulation are currently under development [65], but formidable
technical difficulties must be surpassed before stimulation of more than a few sites
simultaneously becomes possible. Therefore, we decided to focus our analysis on control
of one or a few target nodes, adopting the framework of target controllability [27,66].
While recent work considered target controllability of whole-brain brain networks [67,68],
we are not aware of a systematic study of target controllability on EC networks. We
first analysed the case where a single driver node is used to control a single target nodes
(corresponding to experiments where one tries to activate a chosen brain region by acting
on a remote region). Controlling a single target region is feasible with limited control
energy (< 10%). We then considered the case of controlling a subset of nodes belonging
to the same resting state network (RSN). Control of target RSNs demands large control
energies unless at least ng ~ 5 driver nodes are used. Therefore, the control objective is
not easily accomplished with current technology. We stress, however, that controlling a
subnetwork (in the sense of target controllability) is equivalent to being able to generate
an arbitrary activity pattern in the subnetwork. This is considerably more difficult than
producing a generic overall activation of the subnetwork (as in [69]).

Criteria for selection of driver nodes. When considering targets of small size,
it becomes relevant to properly select driver nodes, ensuring a low control energy. A
random selection of nodes is generally inefficient (Fig. 1). In the single-driver-single-
target case, control energies span 3 orders of magnitude depending on which node is
selected (Fig. 2a). Good driver nodes should be connected to the target: owing to
network effects, both direct and indirect connections count (Figs. 2a-b), such that there
is a general relation between control energy and network distance between driver and
target (Fig. 2¢). Negative (inhibitory) connections appear to have the same effectiveness
for control as positive (excitatory) connections (Fig. 2e). To identified node that are
generally “good drivers” or “good targets”, we defined two control metrics, a driver
centrality and target centrality”, averaging, respectively, the energy required to control
other nodes of the network from a given driver node and the energy required to control

June 18, 2023

18/34

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566


https://doi.org/10.1101/2023.06.19.545527
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.19.545527; this version posted June 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

a given target node from other nodes. The driver and target centralities are strongly
related to EC graph centralities. In particular, out-hubs of EC (nodes with a large
weight of outgoing connections) serve as good control drivers, while in-hubs of EC (nodes
with a large weight of incoming connections) are easy target nodes. We thus replicate
qualitatively a major finding of previous studies on brain controllability [1,5], namely,
that hubs correspond to optimal driver nodes. However, within our picture there is a
clear distinction between in-hubs and out-hubs - a difference that can be appreciated only
when considering asymmetric effective connections. When using several driver nodes
(e.g., to control a target RSN), it is impossible to perform an exhaustive search of the
optimal subset driver nodes. However, node centralities can assist the choice of drivers.
Selecting driver nodes from a ranking based on driver centrality or EC graph centralities
(pg, ratio-degree or out-strength centrality) yields a significant energy advantage over a
random selection of driver nodes (Fig. 4). All these metrics largely correlate with the
out-strength centrality.

Individual vs. group selection of drivers. While in-hubs of EC were consistent
over subjects, out-hubs exhibited a much larger inter-subject variability. Therefore, the
location of a single “optimal driver node” may strongly vary among different individuals.
This finding strengthens the case for an individual optimization of the stimulation targets,
as advocated by recent contributions [69,70]. However, when using multiple driver nodes,
selecting nodes based on a group-averaged node ranking does not entail a significant
additional energy cost with respect to using a subject-dependent ranking. Possibly,
the usage of multiple nodes may partially offset fine-grained individual differences in
the connectome profiles. This result is interesting in the light of the development of
multiple-site neurostimulation paradigms: it implies that using a standardized protocol
over different subjects, that is certainly convenient especially in a development stage,
may not determine severe efficiency trade-offs.

Optimal driver regions. Nodes with low driver centrality (good drivers) are pre-
dominantly located frontally (Fig-3a). This finding is in agreement with a previously
reported anterior-to-posterior information flow in the slow frequency range [71]. Good
drivers include dorsolateral and ventrolateral prefrontal nodes of the CON, DAN and
DMN, primary motor areas, and left cerebellum. The driver centrality, being an average
measure, is not sensistive to different targets. By using rank aggregation, we found
nodes that are frequently ranked among good driver nodes for several target RSNs. The
most recurring nodes are DAN and DMN nodes located in the ventrolateral prefrontal
cortex, the frontal eye field (DAN), and hubs of the DMN ( dorsomedial nodes of the
DMN and precuneus), the cerebellum and the striatum. Dorsolateral and ventrolateral
prefrontal regions are among the key regions involved in cognitive control [72-77]. The
frontal eye field is a key region mediating attentional control [78]. Primary motor
regions, that are involved not only in motor control but also a wide array of top-down
processes [79,80], have been previously associated to a high control centrality [5,68]. The
left cerebellum is strongly involved in motor control of the dominant hemisphere [81]).
The striatum is widely implicated in learning and reward [82]. The topography of good
driver nodes generally aligns with the cortical hierarchy [83]. Areas from attentional and
association networks high in the cortical hierarchy (DAN, DMN, VAN) are consistently
identified as good driver ndoes, contrary to areas low in the cortical hierarchy (including
somatomotor, visual and limbic areas). This trend culminates with the DMN, which sits
on top of the cortical hierarchy and is overrepresented among driver nodes of all target
networks, coherently with a hypothesized central integrative role of the DMN in the
brain [84]. We note that these findings do not fully align with those of Ref. [68], which
indicated only motor regions as optimal driver regions. However, Ref. [68] based the

June 18, 2023

19/34

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616


https://doi.org/10.1101/2023.06.19.545527
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.19.545527; this version posted June 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

controllability analysis on a “directed structural connectome” obtained by normalizing
outgoing connections by node degree, assuming a diffusive process on the network ( [85]).
The ensuing network considerably differs from EC network empirically observed in fMRI,
and implies robust outgoing connections for nodes with low degree, which are mainly
located in the somatomotor cortex.

Optimal targets. Target centrality is organized along the axial direction, with ventral
nodes being generally associated with higher target centrality (Fig. 3b). In particular,
subcortical nodes and nodes of the limbic network correspond to particularly large
control energies, implying that they are much less easy to activate and control from
remote regions, in agreement with previous findings [70]. Among the nodes with lowest
target centrality (hence, among the nodes that are most easy to perturb remotely) are
frontoparietal nodes belonging to the control network, which integrate input from several
regions and plays a central role in cognitive control [73].

Limitations. We finally discuss possible limitations of the present work. Cohort and
recordings. The sample used (N = 76) was not large enough to split our analysis into a
training and a validation cohort. Furthermore, the relatively short fMRI time-series (here,
657 time points) are not optimal for the stability of individual-level EC matrices. Thus,
a replication in a different data set involving a larger cohort and longer recordings may
considerably strengthen our analysis. A larger cohort would possibly allow linking control
properties (such as driver and target energies) with individual traits, e.g., demographic
data, allowing to look for age-, sex- and parenthood-related effects ( [68,86]). Parcellation.
The general findings of our manuscript do not depend on the specific parcellation used,
but some of the more specific findings may not be parcellation-invariant. For instance,
while the relation between out-degree and driver centrality is expected to be general,
the specific identity of the optimal driver nodes may depend on the parcellation, as
the in- and out-degree of different nodes may slightly vary in different parcellations.
We also warn the reader that the specific values of control energy obtained depend on
the parcellation used: more fine-grained parcellations imply a larger number of nodes,
and hence an increased difficulty of the control problem. Control cost. In the present
work we used the control energy as general measure of control cost. Control energy is a
worst-case-scenario metric, as it measures the maximal square amplitude of the control
signal required to generate a desired activity pattern in the target region (maximum
over all possible patterns). Therefore, our estimates of controllability are generally quite
conservative. Controllability framework. Here, we used the standard framework of linear
controllability. Obviously, a limitation of this framework is the assumption that the
dynamics is linear. However, we acknowledge two additional, potentially more relevant
limitations. First, the framework is not fault-tolerant, as it neglects noise and aims at
inducing an exact target pattern. In a recent publication, Kamiya et al. [87] frameed the
control problem probabilistically: the system’s state is not a specific activity pattern,
but a distribution, and the control objective is to reach a target distribution centered
around a specific pattern. In principle, one could use this approach in combination
with spDCM to achieve a fault-tolerant control approach, but this would require some
advances: in its current formulation, Kamiya et al’s approach assumes that one can
control all network nodes, and we should therefore adapt it to embed stronger constraints
on the driver nodes that can be used. A second limitation is the framework allows for
arbitrary control signals u: in practice, there are often constraints in the control signals
that can be generated, e.g., in terms of bandwidth. Finally, in terms of applications,
the control approach we are using is suitable for a “single shot” application where
one temporarily induces a desired activity state. For clinical applications, it would be
relevant to understand how repeated stimulation can leverage plasticity mechanisms
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inducing long-term changes [88]. Rapid effects of brain stimulation. EC inferred from
fMRI is represents infraslow activity (which mostly represents slow modulations of
gamma activity [89]), and hence it can captures a slow activity propagation following
local activity increases induced by stimulation. It cannot, however, account fora rapid
non-local effect of neurostimulation, which induce local spiking and hence also a fast
activity spread along anatomical pathways [90]. How to model this effect remains an
open challenge.
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Supporting information

Linear controllability A continuous linear time-invariant(LTT) system has a state
equation of the form:

(t) = Ax(t) + Bu(t) (17)

Here, x(t) is a n x 1 state vector of the form (x1(t),...,z,(t))T, n being the number of
nodes in the system. A is an n X n matrix describing the interaction strength between
the system components. The system is stable if and only if all the eigenvalues of A have
negative real part. B is an n X input matrix (r < n) which identifies the nodes controlled
by an outside controller, or driver nodes, with B;; = 1 if control input u;(¢) is imposed on
node 7; u(t) is a time-dependent 7 x 1 input vector of the form u(t) = (u1(t), ..., u,(t))7
with r external inputs.

The system defined by continuous LTI Eq. 8 is said to be controllable if for a suitable
choice of input signal vector u(t),¢ € [0,ts], it can be driven from any initial state
xo = x(0) to any final state xy = x(¢s), where ¢ is a finite time. Kalman’s controllability
rank condition states that a system is controllable if and only if the controllability matrixz

C=[B,AB,A’B, ..., A" 'B] (18)
which is of dimension N X (N -r), has full rank [45]:

rank(C) =n (19)
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An equivalent condition can be formulated in terms of the controllability Gramian W,
implicitly defined by the (continuous) Lyapunov equation

AW + WAT = -BB” (20)

Eq. (20) has unique solution
W = /0 e BBT A" (21)

Then the system is controllable if and only if W is positive definite,
W >0 (22)

Here, following standard notation, W > 0 means min(eig(W)) > 0), i.e., the minimum
eigenvalue of W is strictly positive. The conditions (19) and (22) are algebraically
equivalent. The two conditions can be numerically verified by computing the minimum
singular values of C and W, respectively. Note that, due to numerical inaccuracies,
it is impossible to assess whether a singular value is exactly 0. Therefore, following
common practice [46], we consider an eigenvalue to be 0 whenever is it below a very low
numerical threshold e = 10~!* (note that fixing a threshold can lead to seeming incon-
sistencies between the two conditions whenever the minimum eigenvalues are small) [6,29].

The control energy is defined as the (integrated) amplitude of the control signal used
to steer the system from a given initial state xo to a given final state x¢,

E(u) = / "t fu(t)|? (23)

Among infinitely many solutions for u which can drive the system xq to final state x; in
time ¢, the optimal control input

u(xo, X, t5) = BT@AT(tf*t)W(tf)il(Xf — etrxg)
minimizes the control energy [91], i.e.,

min{m x(tf):wf}E(u) = E(u*(xo,xf,tf)) = (24)
= (xp — Mx0) W (ty) " (xg — eMx0) = (x4) W (ty) " xs

where W (ty) = fotf dte’* BBTeA"t and we assumed that the final state is normalized,
|[x¢]|3 = 1. The energy cost can be thus bounded as follows:

1
Amas (W(tf)) Amin (W(tf ))

Since for a stable system the real parts of the eigenvalues of A are negative, the
optimal control energy E(u*(xo,Xs,tf)) quickly decays to a (nonzero) asymptotic
value E*(xg,Xy) = limg, 00 E£(u*(x0,Xy,tr)). In this limit, W(ts) coincides with the
controllability Gramian, lim;, ., W (ty) = W [92]. Hence, the bounds on the energy
given by Eq. 25 can be expressed as

1 1
75Emzn§E* X0,X SEmazzi 26
Amax(W) ( 0 f) >\7nin(W) ( )

= Epin(ty) < E(u*(x0,%x7,tf)) < Epas(ty) = (25)

The typical metric to assess the difficulty of steering the system from one state to
another is given by the upper bound of Eq. 11. This upper bound gives us control energy
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cost required to steer the brain system to worst possible eigen direction of controllability
gramian W and henceforth we consider this quantity as control energy.

E=1/Amin(W) (27)

where the As are simply the eigenvalues of W.

In target control, one aims to control only a selected subset of target nodes [27]. The
framework is the same, with the only difference that we focus on the final state of a
subset of nodes y:

x(t) = Ax(t) + Bu(t) (28)
y=0Cx (29)

where y € R? is the output vector describing the activity of the the target nodes
we want to control. Given a network with n nodes, we can define a target node set
T ={mn,72,73...79} of size S = |T|, where 7; can be any node from {1,2,3...,n}. The
output matrix C is defined as: C' = [IZ,I7 ..., 1117 € RSN where I, is 7;-th row of
the identity matrix I.
The definition of target controllability follows from that of standard (Kalman) controlla-
bility, where the system is now defined by the triple (A, B, C) instead of the pair (A, B)
[27]. The system (A, B, C) is said to be target controllable with respect to target node
set C if there exists a time-dependent input vector u which can drive the state of the
target nodes to any desired final state in finite time. It can be shown that the system is
target controllable if and only if

rankl[C] = S (30)
where C = [CB,CAB,CA?B, ....,CA" ' B] is the target controllability matrix. The
Gramian for target controllability is given by [93]:

We =CcwoT (31)

where W is the standard Gramian, Eq. (9) for system (A, B). Analogously to the case
of full controllability, the optimal control input [27]

u; = BTeA G0 (CW (t,)CT) ! (y; — CAYx()

which minimizes the control energy and drives the subsystem from initial state yg = Cxq
to final output state y is substituted into Eq. (10) and we obtain the optimal target
control energy:

E(a*(ys,y0,t5) =y (CW(tr)CT) lyy (32)
where we have assumed that the initial state is xg = 0. The energy can be bounded as
follows:

1 1
= E’min ty) < E(u* ’ 7t < Em(u‘ tf) = A 7
)\maz(CW(tf)CT) ( f) (u (Yf Yo f) ( f) )\mzn(CWthT)
Asymptotically, as t; — 0o, we can rewrite the above bounds as:
1
——— < E*(yy, < — 33
}\77lclw ( L1/kj ) — ()f.f 3’0 ) }\771i71 (Id/kj ) ( )

The upper bound gives the energy required to steer the subsystem along the worst
possible direction:

EI =1/ Xpin(We) (34)
If a single driver node 7 is used, and the target is in turn a single node j, the expression
of the control energy significantly simplifies. We have B = b and C' = b;. Thus

1

57,' = Etarget _ (W(z))_l -
-~ fo dt[eAt]?j

min

(35)
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Optimal nodes to control RSNs according to rank aggregation For each
target RSN, we have ranked nodes according to the centrality measure yielding the
lowest average energy, when driver nodes are selected among the nodes with largest
centrality. After rankings were estimated separately for each subject, we have used
rank aggregation (average rank) to obtain a group ranking. Here, we focus on the 10
top-ranking nodes for each target RSN (Fig. 11). The top nodes to control the CON
are located in ventrolateral prefrontal cortex (DMN and VAN), precuneus and right
parietal (DMN), frontal eye fields (DAN), right dorsal frontal (DMN). The top nodes
to control the DMN are located in left cerebellum, right parietal (DAN), left parietal
(CON), frontal eye fields (DAN), ventrolateral PFC (VAN), dorsomedial prfrontal cortex
(DMN/VAN). The top nodes to control the DAN are located in right parietal (DMN),
right precentral (SMN), left striatum, ventrolateral PFC (VAN/DMN), dorsomedial
frontal (VAN), right dorsal frontal (DMN). The top nodes to control the limbic nodes
are located in right cerebellum, right temporal cortex (VIS), right precentral (SMN),
right frontal eye field (DAN), right dorsal frontal (DMN), ventrolateral prefrontal cortex
(DMN and VAN), left dorsolateral preforntal cortex (VAN). The top nodes to control the
VAN are located in precuneus (DMN), right parietal (DMN), medial prefrontal cortex
(DMN), ventrolateral prefrontal cortex (DMN), frontal eye fields (DAN), right dorsal
frontal (DMN and CON). The top nodes to control the SMN are located in striatum,
frontal eye fields (DAN), ventrolateral prefrontal cortex (VAN and DMN), dorsomedial
frontal (CON), right precentral (DAN). The top nodes to control subcortical regions
are located in ventral temporal cortex (limbic), temporal (VIS), ventrolateral prefrontal
cortex (DMN and VAN), orbitofrontal cortex (limbic), frontal eye fields (DAN). The top
nodes do control the VIS are located in left cerebellum, precuneus (DMN), striatum, right
ventral temporal (limbic), ventrolateral prefrontal cortex (DMN/VAN), right frontal eye
field (DAN), medial parietal (CON). In general, we observe a large prevalence of anterior
nodes, in particular from ventrolateral prefrontal cortex.
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Fig 7. Examples of effective connectivity matrices.. The 74 brain areas are divided in
left cortical, right cortical and subcortical areas. The figure in panel (c) represents the
asymmetry in A, defined as §4 = A — AT
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Fig 8. Relation of driver and target control energy and effective connectivity. (a) For
each subject, we computed the Pearson correlation R between the node driver and
target centrality &7, £ (average energy to control other nodes from node i vs average
energy to control node i from other nodes) and and the in-strength A" and
out-strength A“! of effective connections, as well as the strength of functional
connections F;. We show the distribution of |R| over subjects. (b) For each node, we
computed the coefficient of variation (s.d./mean) over subjects of £4 ,£f, A4t A™n. We

show the distribution of the coefficient of variation over nodes.
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Fig 9. Node ranks based on driver/target control energy. (a) For each subject, we
ranked all nodes based on the value of driver centrality £¢. We show the rank
distribution for all nodes, with nodes ordered according to the average rank, from lowest
to highest. Nodes are colored according to the resting state network they belong to. (b)
Same as (a), but ranks are based on target centrality &/.
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Fig 10. Dependence of the RSN control energy on the number of driver nodes. Energy
to control RSN with a varying number of driver nodes, selecting driver nodes according

to the driver centrality
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Fig 11. Optimal driver nodes for RSN). For each RSN we show the corresponding
target nodes(small blue markers) and top 10 aggregate driver nodes(orange markers) are
shown
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