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Abstract

Amplicon sequencing of small subunit (SSU) rRNA genes is a foundational method for
studying microbial communities within various environmental, human, and engineered
ecosystems. Currently, short-read platforms are commonly employed for high-
throughput applications of SSU rRNA amplicon sequencing, but at the cost of poor
taxonomic classification. The low-cost Oxford Nanopore Technologies (ONT) platform is
capable of sequencing full-length SSU rRNA genes, but the lower raw-read accuracies
of previous ONT sequencing chemistries have limited accurate taxonomic classification
and de novo generation of operational taxonomic units (OTUs) and amplicon sequence
variants (ASVs). Here, we examine the potential for Nanopore sequencing with newer
(R10.4+) chemistry to provide high-throughput and high-accuracy full-length 16S rRNA
gene amplicon sequencing. We present a sequencing workflow utilizing unique
molecular identifiers (UMIs) for error-correction of SSU rRNA (e.g. 16S rRNA) gene
amplicons, termed ssUMI. Using two synthetic microbial community standards, the
ssUMI workflow generated consensus sequences with 99.99% mean accuracy using a
minimum UMI subread coverage threshold of 3x, and was capable of generating error-
free ASVs and 97% OTUs with no false-positives. Non-corrected Nanopore reads
generated error-free 97% OTUs but with reduced detection sensitivity, and also
generated false-positive ASVs. We showcase the cost-competitive and high-throughput
scalability of the ssUMI workflow by sequencing 90 time-series samples from seven
different wastewater matrices, generating ASVs that were tightly clustered based on

sample matrix type. This work demonstrates that highly accurate full-length 16S rRNA
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gene amplicon sequencing on Nanopore is possible, paving the way to more accessible

microbiome science.

1. Introduction
The amplification and sequencing of small subunit (SSU) ribosomal RNA (rRNA) genes
(e.g. 16S and 18S rRNAS) is a widely used method to study the diversity and taxonomic
composition of microbial communities within a variety of environments. The foundational
work of Fox and Woese (1) utilized the conserved function of rRNA across all self-
replicating cells to establish the first phylogenetic description of the domains of life, and
provided a basis for taxonomically classifying microorganisms based on their
evolutionary divergence. Since then, comparative analysis of SSU rRNA gene
sequences has enabled the discovery of new uncultivated microbial lineages (2, 3),
surveys of microbial community composition in host-associated (4, 5) and natural
environments (6-8), and the design of oligonucleotide hybridization probes for
environmental monitoring of select taxa (9, 10). Within the past decade, the throughput
of SSU rRNA sequence generation has been enhanced by so-called ‘next-generation’
sequencing platforms, such as Roche 454 (8, 11) and Illlumina (12) platforms, which are
capable of sequencing millions of amplicons generated over hundreds of samples (13,
14).

While next-generation sequencing platforms have provided an affordable and
high-throughput approach for generating SSU rRNA gene sequences from multiplexed
environmental samples, the taxonomic resolution of amplicon sequences generated

from such technologies is limited by their short read lengths (e.g. up to ~500 bp in
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paired-end mode (15)). To circumvent this limitation, high-throughput amplicon
sequencing of environmental SSU rRNA genes typically relies on the use of conserved
primers to amplify discrete variable regions (e.g. V1-V9 regions in 16S rRNA). The
selection of the variable region for amplification of 16S rRNA gene fragments can
introduce biases into diversity estimates, as the 16S rRNA gene does not evolve evenly
along its length (16). The accuracy of taxonomic assignment of 16S rRNA sequences
has also been shown to increase with amplicon sequence length, with full-length 16S
rRNA sequences required to capture most taxonomic ranks (17, 18). Moreover, the
taxonomic characterization of SSU rRNA gene fragments from unknown
microorganisms relies on their comparison to reference databases of full-length
sequences. The widespread application of short-read sequencing platforms for SSU
rRNA gene profiling has resulted in a decreased rate of full-length sequence generation,
which is needed for phylogenetic analysis of novel lineages as well as for the
development of new oligonucleotide hybridization probes (19-21). Thus, there is a need
for new high-throughput approaches capable of sequencing full-length SSU rRNA gene
fragments to improve taxonomic classification of microbiomes, as well as increase the
number of full-length SSU rRNA sequences in public databases.

Recently, there have been advancements in single-molecule sequencing
technologies capable of generating long-reads, such as the Pacific Biosciences
(PacBio) and Oxford Nanopore Technologies (ONT) platforms (15). While these long-
read sequencing platforms can alleviate many of the abovementioned problems
associated with classifying short reads, their raw sequence data has been limited by

high error rates (0.5-2%) compared to second-generation sequencers (<1%) (22—-24).
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These high error rates of raw long-read platforms can obfuscate SSU amplicon
sequence clustering and taxonomic assignments (25, 26), impacting the accuracy of
such methods for microbiome profiling. As ONT sequencers (e.g. MinlON) have a
relatively low capital cost (27) and can be used in field settings (28-31), developing
high-throughput and accurate SSU amplicon sequencing with the ONT platform could
help to advance microbiome science in diverse applications worldwide.

To circumvent higher error rates in raw long-reads, previous strategies have
utilized various forms of consensus sequencing approaches for error correction, which
involve redundant sequencing of multiple copies of the sample DNA template molecule
of interest to obtain a consensus sequence with reduced error (22, 32—34). In particular,
it was recently shown that highly accurate (>99.99%) consensus sequences could be
generated on the ONT platform using unique molecular identifiers (UMIs) to tag
individual DNA molecules prior to amplification and sequencing (22). In this UMI-based
sequencing approach, independent reads sharing the same molecular barcodes are
grouped together to enable consensus sequence generation and error correction.
However, a relatively high UMI subread coverage (15-25x) was necessary to reach
accuracies above 99.99% (22), thus requiring a high per-sample read depth and limiting
the throughput of this method for routine microbiome science involving many samples.
Since the development of this UMI-based amplicon sequencing approach, new ONT
sequencing chemistries and pores have been developed (e.g. 2R10.4) with higher raw-
read accuracies (35) that could increase sample throughput by improving UMI detection
as well as requiring a lower sub-read coverage for a desired consensus sequence

accuracy. It could also be possible that the higher raw-read accuracies of newer ONT


https://doi.org/10.1101/2023.06.19.544637
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.19.544637; this version posted June 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

chemistries are sufficient for high-throughput SSU sequencing alone, without the need
for read error-correction.

Here, we explore the application of ONT sequencing to high-throughput and
high-accuracy full-length SSU amplicon sequencing for microbiome profiling. We
present a UMI-based full-length SSU amplicon sequencing workflow, termed ssUMI,
that employs accurate quantification of starting template molecules (near full-length 16S
rRNA genes) for library preparation and leverages the higher raw-read accuracy of
newer ONT chemistries for stringent UMI detection and binning. We validate the ssUMI
approach using two synthetic microbial community standards, and show that it improves
amplicon sequence variant (ASV) and species detection compared to quality-filtered
(i.e. non-error-corrected) Nanopore reads. We also demonstrate its high-throughput
scalability by sequencing 90 environmental microbiome samples at a competitive per-
sample cost, thus facilitating the use of ONT long-read sequencing in large-scale

microbiome studies.
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2. Results

2.1 Evaluating ONT raw-read accuracy with a mock microbial community standard
To determine whether raw reads generated with the ONT ‘Q20+’ chemistry (i.e. R10.4+

flow-cell) were sufficient for full-length 16S rRNA gene amplicon sequencing analysis,
we first assessed the error rate distribution for 4.4M amplicon reads sequenced from the
8-species ZymoBIOMICS Microbial Community DNA Standard (Figure 1). Without any
quality filtering, the raw reads had a mean accuracy of 96.5% (Figure 1B), which is
insufficient to resolve species or operational taxonomic units (OTUs) at a 97% cluster
identity. We found a correspondence between the expected error (EE) rate predicted
from the per-base quality (Q) scores and the empirical EE rate of the raw reads (Figure
1A). Therefore, we implemented an EE-filter threshold of 1%, which filtered 93% of the

raw reads and improved the mean read accuracy to 98.8% (Figure 1B).
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Figure 1 (A) Observed versus expected error (EE) rates of length-filtered raw Nanopore reads.
The darker blue color indicates higher density of reads within that plot region. The dashed gray
line represents a 1.1 slope. (B) Density plot of read accuracy distribution of unfiltered and
length+EE-filtered raw Nanopore reads. Mean accuracy values are indicated with vertical lines,
and are provided as text below the lines.

2.2 UMI-based amplicon sequencing of near full-length 16S rRNA genes enables

accurate profiling of mock microbial communities

The above analysis of raw reads motivated us to develop a high-throughput long-read
sequencing workflow for highly-accurate near full-length 16S rRNA genes on the ONT
platform. We built upon the dual-UMI-based amplicon sequencing method described by
Karst et al. (22), with several key modifications made here to the library preparation and
data analysis steps to enable high-throughput 16S rRNA gene sequencing (Figure 2).
Specifically, rather than relying on a trial-and-error approach to determine the number of
starting molecules for UMI-tagging, we developed a droplet digital PCR (ddPCR)
approach to accurately measure near full-length 16S rRNA gene copies within each

sample. Using this approach, we determined an optimum input template molecule
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number of 1x10° copies into the UMI-tagging PCR (Supporting Text 1), which is 10-
times that used by Karst et al. (22) and is intended to increase detection of rare
community members when applied to complex communities. We also developed two
data analysis pipelines, termed ssUMI_rapid (i.e. ‘rapid mode’) and ssUMI_ std (i.e.
‘standard mode’), that perform length filtering, EE-filtering, primer trimming, UMI
detection, and consensus sequence generation using different modes of consensus
read polishing (Figure 2). Due to the higher raw-read accuracy of ONT R10.4 chemistry
used here, it was possible to implement more stringent UMI-based read binning in our
analysis workflow by reducing the allowed UMI hamming distance to prevent erroneous
read-binning. Finally, to improve the throughput of the UMI approach to 16S rRNA gene
amplicon sequencing, we allowed a minimum sub-read coverage of 3x per UMI bin,
rather than 15x-25x used by Karst et al. (22), to reduce the overall sequencing depth

required per sample.


https://doi.org/10.1101/2023.06.19.544637
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.19.544637; this version posted June 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Droplet Digital PCR on i . . .
V1-VO 16S rRNA Dual-end UMI tagging Tagged molecule amplification
—
-~ — - —
25x
D

E - —_
PAN <

NP7~ 7.
100,000 copies

[N 7

PCR with V1-V9 tailed PCR with universal Nanopore sequencing
UMI primers primers (MinlON or PromethION)
DNA (2 cycles) (25 cycles)
B Racon (3x) Medaka (2x) + Racon (1x)

- = }UMIbin‘I f ) } UMI bin 1 } UMI bin 1
- =
—_—

= = = —

* Consensus * Consensus
_—
— — sequence 1 — — sequence 1
— - }mez ) E E } UMI bin 2 () E E :} UMI bin 2
— * — Consensus s * — Consensus
sequence 2 sequence 2
UMI-based read binning Polishing in 'rapid' mode Polishing in 'standard'
and chimera removal mode

Figure 2 Summary of UMI-based small subunit ribosomal RNA gene sequencing (ssUMI)
workflow. (A) The wet-laboratory steps, in which DNA templates are first quantified with droplet
digital PCR (ddPCR) with a near full-length 16S rRNA gene assay. Then DNA containing
100,000 16S rRNA gene copies are added to the first ssUMI PCR for UMI tagging. Following
two cycles of PCR, the UMI-tagged amplicons are further amplified in a second PCR using
universal primers that flank the template and UMis. After PCR amplification, the products are
sample-barcoded, pooled, and sequenced on a Nanopore instrument. (B) Data analysis
workflow following sequencing, in which the reads are analyzed with the ssUMI pipeline for
generation of high-accuracy full-length 16S rRNA consensus sequences. Initially, reads are
quality-filtered and binned based on UMIs from both ends (e.g. UMI-pairs), and chimeras are
removed. Consensus sequences are polished with only Racon (3x) in ‘rapid’ mode of the
workflow, or followed by Medaka (2x) and Racon again (1x) in the ‘standard’ workflow mode.

For the library generated with the 8-species ZymoBIOMICS Microbial Community
DNA Standard, 8.1x10* UMI-based consensus sequences (with coverage =3x) were
generated from a single MinlON R10.4 flowcell. Using only three rounds of Racon
polishing, termed ‘rapid’ mode in the ssUMI workflow, the mean accuracy of the UMI
consensus sequences was 99.96% (Figure 3A) and 68.1% of sequences were error-
free. We found a slight increase in consensus sequence accuracy using two rounds of

Medaka after the initial Racon polishing (Figure S1). Applying a final round of Racon
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polishing after Medaka led to a significant reduction in error rate (Figure S1), producing
a mean sequence accuracy of 99.99% (Figure 3A). Interestingly, this final round of
polishing with Racon after Medaka was more effective than simply applying four
sequential rounds of Racon without Medaka (Figure S2). We term the three-step
polishing procedure using Racon and Medaka ‘standard’ mode in the ssUMI workflow
(Figure 3A). The greater consensus accuracy achieved by the ‘standard’ mode was
associated with increased computational requirements compared to ‘rapid’ mode (Table
S1). Notably, the mean accuracies of the UMI-based consensus sequences in both
‘rapid’ and ‘standard’ modes were higher than that of quality-filtered PacBio HiFi
sequences and lllumina short-read sequences from the same Microbial Community
Standard (Figure 3A). The UMI-based consensus sequences from ‘standard’ mode had
a similar mean accuracy to quality-filtered synthetic long reads generated with LoopSeq
(Fig. 3A), with both strategies able to generate 92.5% and 94.6% (36) error-free

sequences, respectively.
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Figure 3 (A) Comparison of sequence accuracies obtained for the ZymoBIOMICS Microbial
Community DNA Standard targeting the full-length 16S rRNA gene (V1-V9 regions) with UMI-
based amplicon sequencing on ONT with ssUMI_ std (‘standard’ mode) and ssUMI rapid
(‘rapid’ mode), LoopSeq (lllumina) synthetic long-reads, and PacBio HiFi sequencing, as well as
short-read 16S rRNA gene amplicons (V4-V5 region) on lllumina. For all sequence data types,
amplicons were quality-filtered, primer-trimmed, and contaminant sequences were removed
(see Methods). Impact of raw-read sequencing depth on distribution of (B) consensus sequence
accuracy distribution and (C) UMI subread coverage, for ssUMI_std applied to full-length 16S
rRNA gene amplicon (V1-V9 regions) from the ZymoBIOMICS Microbial Community DNA
Standard. Subplots B and C share an x-axis. Different colors represent raw read sequencing
depths, circular points represent mean values and the crossbars represent the median values,
while the shaded violin region represents the density distribution of the values at each depth.
For subplot (C), the horizontal dashed line represents the minimum UMI subread coverage of 3x
implemented in this study.

Because the sequencing depth of the ZymoBIOMICS Microbial Community
library was much greater (e.g. 1 sample per MinlON flow-cell) than would be typical in a

high-throughput application with many samples, we explored the effect of per-sample
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raw-read depth on UMI-consensus sequence generation and accuracy. By randomly
subsampling the original sequence library and generating UMI-based consensus
sequences, we found a saturation-like behavior in the number of generated UMI-
consensus sequences as a function of sample raw-read depth (Figure S3). As more
UMI-based consensus sequences are recovered with greater raw-read depth (up to the
saturation-level), this suggests that users can modify per-sample throughput based on
their application and desired sensitivity for detecting rare members. We also observed
that greater per-sample sequencing depth increased the UMI-based consensus
sequence accuracy, which reached a mean of 99.99% above a per-sample throughput
of 2M reads (Fig. 3B). This trend is largely attributed to higher consensus accuracies
achieved at greater UMI-based subread coverage (22), as we also observed that UMI
subread coverages increased with raw read depth (Fig. 3C). Notably, the median UMI-
based consensus sequence accuracy remained at 100% and the fraction of error-free
reads remained above 50% down to a per-sample raw read depth of 0.1M (Fig. 3C). At
a per-sample raw read sequencing depth of 0.25M reads, the median UMI subread
coverage was equal to the minimum threshold of 3x (Fig. 3C). These results indicate
that per-sample raw read depth can be reduced (e.g. for sample multiplexing) while still
preserving adequate UMI detection and coverage to generate highly accurate
consensus sequences.

We then assessed the accuracy of ASVs and OTUs (at 97% identity) generated
for the ZymoBIOMICS Microbial Community DNA Standard using both quality-filtered
Nanopore raw reads and UMI-based consensus sequences. Both ‘rapid’ and ‘standard’

modes of UMI-based consensus sequences generated 100% accurate ASVs and OTUs
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that perfectly matched all expected 27 ASVs and 8 OTUs in the reference community
(Figure 4). Surprisingly to us, quality-filtered Nanopore raw reads were also capable of
generating all ASVs and OTUs perfectly from the mock community, without any false-

positives (Figure 4).
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Figure 4 Accuracy of de novo near full-length 16S rRNA (V1-V9) sequence features generated
for two mock microbial community standards, the 8 bacterial species ZymoBIOMICS Microbial
Community DNA Standard and the 14 bacterial species ZymoBIOMICS Gut Microbiome
Standard, using either quality-filtered Nanopore raw reads or Nanopore reads processed with
the ssUMI pipeline in ‘rapid’ (e.g. ssUMI rapid) and ‘standard’ (e.g. ssUMI std) modes. The
generated sequence features include amplicon sequence variants (ASVs) and operational
taxonomic units (OTUs) at a 97% identity threshold. The results of the ZymoBIOMICS Microbial
Community DNA Standard were generated with a single sample on a single R10.4 MinlON
flowcell, and that of the ZymoBIOMICS Gut Microbiome Standard were generated with 6
technical replicates of two different DNA extractions (see Methods) on two R10.4 MinlON
flowcells. The number of sequence errors in features are indicated with the fill colors. The
dashed gray line indicates the expected number of bacterial full-length 16S rRNA features in the
reference community. The lack of a dashed gray line for ASVs in the ZymoBIOMICS Gut
Microbiome Standard is due to uncertainty on the true number (see Methods).
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To better assess the reproducibility and capability of our ssUMI approach on a
complex microbiome sample, we sequenced two DNA extracts in triplicate from the log-
distributed ZymoBIOMICS Gut Microbiome Standard cell mixture containing 14 bacterial
species. One DNA extract was obtained using the Qiagen MagAttract PowerSoil Pro kit
and the other with a phenol:chloroform based extraction. Each extraction set was
sequenced in triplicate on one R10.4 MinlON flowcell, yielding 8.4 + 1.7 x 10° raw reads
and 3.8 + 0.64 x 10* UMI-based consensus sequences per sequencing replicate. The
measured relative abundance values in the UMI-based consensus sequences were
consistent among technical replicates, and generally matched well with the theoretical
abundance for community members that were more abundant than 0.01% (Figure 5A).
An exception was Lactobacillus fermentum and Bifidobacterium adolescentis in the
phenol:chloroform extraction, which showed a clear abundance skew that was
consistent within all replicates (Figure 5A). We attribute this aberration to DNA
extraction bias, rather than an artifact of the ssUMI pipeline, as this abundance skew
was not observed in the replicates extracted with MagAttract PowerSoil Pro (Figure 5A).
Reads from rare community members that were less than 0.01% abundance were
identified sporadically with UMI-based consensus sequences. Salmonella enterica
(0.009% theoretical abundance) was detected in all replicates of the phenol:chloroform
extraction, but was only detected in the single replicate of the MagAttract PowerSoil Pro
extract that had the highest number of raw reads (Figure 5A). Similarly, Enterococcus
faecalis (0.0009% theoretical abundance) was only identified in a single technical

replicate from both DNA extracts (Figure 5A).
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Figure 5 (A) Composition of ZymoBIOMICS Gut Microbiome Standard based on near full-length
16S rRNA (V1-V9 region) consensus sequences processed with the ssUMI std pipeline
(‘standard’ mode), in comparison to the theoretical abundances provided by the vendor.
Technical PCR and sequencing replicates are shown for two different DNA extractions of the
same cell mixture, phenol.chloroform and MagAttract PowerSoil Pro. (B) The impact of sample
raw-read depth on the resulting microbial community composition of the ZymoBIOMICS Gut
Microbiome Standard (phenol:chloroform DNA extraction) obtained with 16S rRNA consensus
sequences processed with the ssUMI_std pipeline (‘standard’ mode). To perform this analysis,
raw reads were randomly subsampled from the original sequence libraries to given depths, and
UMI-based consensus sequences were generated with the ssUMI pipeline (see Methods). The
text values shown in the sub-plots represent the numbers of UMI-based consensus sequences
generated (+/- standard deviation of triplicates).

As increasing the sample-throughput of the ssUMI approach (i.e. more samples
multiplexed in a single run) requires a reduction in the per-sample raw-read count, we

investigated the effect of sample read depth on the relative abundance distribution
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obtained from UMI-based consensus sequences by randomly subsampling the original
sequence libraries from the ZymoBIOMICS Gut Microbiome Standard
phenol:chloroform DNA extraction. Reducing the raw-read depth from 1M to 0.25M did
not greatly impact the observed distribution of taxa in the UMI-based consensus
sequences, with the exception that detection of rare species was impacted at lower raw-
read depths (Figure 5B).

For the more complex ZymoBIOMICS Gut Microbiome Standard, we recovered
65, 64, and 65 perfect ASVs from quality-filtered Nanopore raw reads, ssUMI rapid
consensus sequences, and ssUMI_std consensus sequences, respectively, by pooling
sequences from all six extraction replicates (Figure 4). No errors were observed in any
ASVs generated from UMI-based consensus sequences, regardless of the data
analysis mode (e.g. ‘rapid’ or ‘standard’), while 5 erroneous ASVs containing one or
more errors were generated with quality-filtered Nanopore raw reads (Figure 4; Tables
S2-S4). No sequence type was able to recover ASVs corresponding to Enterococcus
faecalis (0.0009% theoretical abundance) (Tables S2-S4). Only ssUMI std was able
to recover an ASV from Salmonella enterica (0.009% theoretical abundance), while this
organism was missed with ssUMI rapid and quality-filtered raw Nanopore reads
(Tables S2-S4). After clustering into 97% OTUs, we recovered 12, 13, and 13 error-free
OTUs from quality-filtered Nanopore raw reads, ssUMI_ rapid consensus sequences,
and ssUMI_ std consensus sequences, respectively (Figure 4; Tables S5-S7). For
OTUs generated with both ssUMI rapid and ssUMI std sequences, all bacterial
species in the ZymoBIOMICS Gut Microbiome Standard were detected except for

Clostridium perfringens (0.0002% theoretical abundance) (Tables S5 and S6). For
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OTUs generated with quality-filtered Nanopore raw reads, all 12 bacterial species at or

above 0.01% were detected (Table S7).

2.3 Application of UMI based 16S rRNA amplicon sequencing for high-throughput

microbiome profiling

We further demonstrated the scalability of the ssUMI workflow by applying it to 90
wastewater samples collected bi-weekly from a nearby wastewater treatment facility. A
total of seven wastewater sample matrices were collected and prepared with the ssUMI
workflow, and the products were sequenced on the ONT PromethlON platform,
generating a total of 103.8 Gb raw read data (Table S8). On average, each sample
yielded 4.3 + 1.6 x 10° raw reads, with exception for three samples that were not
sufficiently barcoded (Figure S4). The number of UMI-based consensus sequences
increased with sequencing depth (Pearson’s r = 0.73) for all wastewater sample types
(Figure S5), which is in accordance with the above-mentioned observations obtained by
in silico subsampling of mock community libraries. Wastewater samples generated
significantly more UMI-based consensus sequences than the mock community at the
same sequencing depth (Student’s t-Test, p<0.05), indicating that the UMI-tagging and
PCR was not inhibited by the complex wastewater matrices. No significant difference
(ANOVA, p=0.135) was observed for the number of UMI-based consensus sequences
generated in ‘standard’ mode from different sample types, with an average of 3.6 £ 1.1
x 10* consensus sequences per sample (Fig. 6A).

We then generated full-length 16S rRNA gene ASVs with the UMI-based

consensus sequences from all wastewater samples, yielding a total of 8349 bacterial
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ASVs from all sequenced samples. Based on a principal coordinate analysis (PCoA) of
Bray-Curtis dissimilarity, there was a clear impact of wastewater sample type on the
bacterial community structure (Figure 6B). The lowest richness (mean 1165 + 271) was
observed in anaerobic digester samples, while the highest richness (mean 3260 + 524)
was observed in mixed-sludge samples (Figure S6). Based on ASV abundance profiles,
the bacterial community structures were relatively stable for each sample type over the
study period (Fig. 6B; Figure S7). Influent, trickling filter, mixed sludge, and anaerobic
digester samples were each tightly clustered in the PCoA, while activated sludge, waste

activated sludge and effluent samples formed a relatively loose cluster (Fig. 6B).
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Figure 6: (A) Number of UMI-based consensus sequences generated with ssUMI_std mode
for samples representing wastewater matrix types. Each colored point represents one
sequenced sample, the black dots represent the mean number of consensus sequences and
the bars show standard deviation. The shaded region represents the density distribution of all
samples within that matrix type. (B) Principal coordinate analysis (PCoA) of ASV Bray-Curtis
dissimilarity, showing the clustering of the different wastewater sample types collected over two
months. Each colored point within the PCoA represents one sequenced sample.
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3. Discussion
Numerous studies have shown the benefits of full-length 16S rRNA amplicon

sequencing for taxonomic classification compared to short-read amplicon sequencing
(18, 19, 37-40). However, previous approaches for high-throughput full-length 16S
rRNA gene amplicon sequencing with ONT typically relied solely on alignment to
reference databases (29, 41), rather than de novo generation of sequence features (e.qg.
ASVs or OTUs). NanoCLUST (42) uses k-mer based clustering of 16S rRNA gene
amplicons to de novo generate species-level consensus sequences, but the error-profile
of the consensus sequences has not been characterized and ASVs cannot be resolved
with that approach. Accurate full-length 16S rRNA gene sequence features are critical
for developing ecosystem specific databases (20, 43), designing organism-specific
primers or probes (10, 44), and for cross-study analyses (45). In this study, we explored
the potential for Nanopore sequencing to provide high-throughput and high-accuracy
microbial community profiles and de novo generated sequence features with near full-
length 16S rRNA gene amplicon sequencing. We utilized two mock microbial
community standards to assess sequencing accuracy and sensitivity of non-error-
corrected Nanopore reads (R10.4) alongside UMI-based consensus sequences using
the ssUMI workflow.

Surprisingly, even though the mean accuracy of non-error-corrected quality
filtered Nanopore raw reads was below 99%, it was still possible to generate perfect
ASVs and 97% OTUs for the simpler ZymoBIOMICS Microbial Community DNA
Standard. When applied to the more complex ZymoBIOMICS Gut Microbiome
Standard, the non-error-corrected Nanopore reads generated false-positive (i.e.

erroneous) ASVs, and the generated 97% OTUs had the poorest sensitivity of species
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detection among the read-types tested. The poorer sensitivity of sequence feature
detection using raw Nanopore reads is likely caused by the requirement of denoising
and clustering algorithms to observe a unique sequence multiple times (46), which was
limited by the higher average sequence error rate. Sensitivity was also likely impacted
by the large (93%) fraction of raw reads falling below the quality filter. Based on these
findings, it may be appropriate to use quality filtered Nanopore raw reads for microbial
profiling only if the community is known to be relatively simple with few rare members
(e.g. all members >0.1% relative abundance). Future improvements in Nanopore read
accuracy, such as via improved base-calling models that convert raw signal into
predicted DNA sequence data (47) or by revised nanopore chemistry (48), could soon
enable Nanopore reads to be used without read error-correction in diverse applications
of 16S rRNA gene amplicon sequencing of complex microbiomes.

The incorporation of UMI-based error correction of 16S rRNA gene long-read
amplicons via the ssUMI workflow provided higher sequence accuracy than was
observed for PacBio HiFi long-reads and lllumina short-reads, and reached a similar
accuracy to synthetic long-reads sequenced on lllumina. The UMI-based amplicon
sequencing approach also improved the sensitivity of sequence feature detection over
non-error-corrected Nanopore raw reads. The ssUMI workflow in ‘standard’ mode
(ssUMI_std) achieved the greatest sequence accuracy, and consequently ASVs
generated with these sequences had the highest sensitivity for species detection. That
is, ASVs produced from ssUMI_ std sequences included Salmonella enterica that was
present at less than 0.01% theoretical abundance, whereas ASVs from this species

were missed with ssUMI rapid sequences due to residual errors reducing unique
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sequence counts. We therefore introduced both ‘standard’ and ‘rapid’ modes here
depending on use-cases: ‘standard’ mode being more appropriate if computational
resources are not limiting and/or high-sensitivity is required, and ‘rapid’ mode being
more appropriate for analysis where detection of rare species is not a priority and/or
when compute resources are limited. With either approach, the use of UMI-tags on both
ends of the amplicons enables precise removal of chimeras (22), which are otherwise
difficult to detect without molecular identifiers (49). The abundance distributions
obtained by UMI-tagged 16S rRNA gene amplicons should also have reduced effects of
PCR amplification bias, as UMI-based abundances are based on single molecule
counting (50). Finally, by using the same full-length 16S rRNA primers for quantification
by ddPCR and UMI-based amplicon sequencing, the ssUMI workflow can enable
guantitative microbiome profiling using estimates of absolute microbial load, which has
been shown to capture ecological trends not revealed by relative abundance values
alone (51, 52).

We further explored the capacity of this highly accurate UMI-based sequencing
method for high-throughput profiling of microbial communities in 90 complex
environmental (e.g. wastewater) samples collected from seven different sampling
locations over two months. The abundance profiles of full-length 16S rRNA ASVs
generated with the ssUMI workflow were clustered according to sample matrices,
providing insights into microbial community composition and colonization patterns within
the treatment plant. For instance, the trickling filter process received flow from the
treatment plant influent, and the bacterial communities in those sample types were

closely clustered in the PCoA of ASV Bray-Curtis dissimilarity. Similarly, waste activated
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sludge samples represent activated sludge biomass collected from the recycle stream,
and thus the co-clustering of communities from these sample types in the PCoA was
also expected. The relatively high similarity between the microbial community in
activated sludge and secondary clarifier effluent was likely the result of the carry-over of
activated sludge microbes into treatment plant effluent. These results align with
previous efforts using short-read sequencing that observed microbial immigration can
impact spatial variation in microbial diversity and community structure across transects
of full-scale wastewater treatment plants (53, 54). Overall, our results showcase that the
UMI-based ONT 16S rRNA gene consensus sequences can be used for multi-sample
experiments to gather ecological insights into microbial dynamics.

At a target per-sample sequencing depth of 0.5M raw reads, sufficient to
generate ~40x10° UMI-based consensus sequences, we find that 16S rRNA gene
amplicon sequencing with the ssUMI workflow on ONT is cost-competitive with other
current sequencing platforms (Table S9). However, this cost landscape will inevitably
change as long-read and short-read platforms continue to progress in terms of accuracy
and throughput. Regardless, unlike other existing sequencing platforms, 16S rRNA
gene amplicon sequencing on ONT platforms (e.g. PromethION P2 or MinlON) can
easily be performed in a typical laboratory, thus providing more flexibility and faster data
turnaround. Overall, the findings of this study indicate that UMI-based 16S rRNA gene
sequencing on the Nanopore platform can be applied in a high-throughput manner to
sensitively and accurately measure microbial community structures in complex
microbiomes. This development should help to democratize microbiome science in

laboratories and field settings worldwide.
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4. Materials and Methods

4.1 Sources of DNA

Escherichia coli, Strain 83972 (BEIl Resources, Manassas, VA, USA) and two mock
community products (Zymo Research, Irvine, CA, USA) were used for validation of the
ssUMI pipeline. DNA from E. coli was extracted with the MagAttract HMW DNA kit
(Qiagen, Hilden, Germany) following the manufacturer's protocol for DNA extraction
from Gram-negative bacteria. The ZymoBIOMICS Microbial Community DNA Standard
(cat. no.: D6306, lot no: 213089; Zymo Research, USA) is a DNA standard consisting of
eight evenly distributed bacteria (3 gram-negative and 5 gram-positive) species. The
ZymoBIOMICS Gut Microbiome Standard (cat. no: D6331, lot no: ZRC194753; Zymo
Research, USA) is a cell standard comprising 18 bacterial strains (14 species), 2 fungal
strains, and 1 archaeal strain mixed at log-distributed cell concentrations. DNA was
extracted from 125 ul of fully resuspended ZymoBIOMICS Gut Microbiome Standard
cell mixture with a phenol:chloroform extraction protocol (55, 56) and the MagAttract
PowerSoil Pro DNA kit (Qiagen, USA), following the published protocol or
manufacturer's instructions, except for the following modifications: 1) MetaPolyzyme
treatment (57) was used for cell lysis for the phenol:.chloroform extraction; and 2) the
volume of MagAttract Suspension G beads and Buffer QSB1 were doubled for the
MagAttract PowerSoil Pro DNA Kit.

Primary clarifier effluent (referred to herein as “influent”), trickling filter effluent,
activated sludge mixed liquor, waste activated sludge, mixed primary and secondary
sludge (“mixed sludge”), anaerobic digester sludge, and secondary clarifier effluent

(“effluent”) samples were collected from a wastewater treatment facility in the
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Vancouver area (British Columbia, Canada) from June to August 2022. Wastewater
samples were shipped to the University of British Columbia (British Columbia, Canada)
on ice, aliquoted, and concentrated via flocculation (influent, trickling filter, activated
sludge, waste activated sludge, and effluent) or centrifugation (mixed sludge and
anaerobic digester sludge) within 24 hr (see Supporting Text), and stored at -20°C
before extraction. The preserved wastewater samples were thawed at 4°C, and DNA
was extracted with the MagAttract PowerSoil Pro DNA kit (Qiagen, Hilden, Germany)
using an Opentrons-2 (Opentrons Labworks, Queens, NY, USA) automated liquid
handler (Supporting Text). Extracted DNA samples were quantified with Qubit™ dsDNA

HS Assay Kit using a Qubit 4 fluorometer (Invitrogen, Waltham, MA, USA).

4.2 Molecule tagging and PCR amplification
DNA templates were first quantified with a droplet digital PCR full-length 16S rRNA

assay (see Supporting Text). The UMI-tagging and PCR amplification were conducted
with DNA containing 100000 16S rRNA gene copies per reaction (based on ddPCR
guantification), using a modified PCR program and conditions from ONT (Custom PCR
UMI protocol) (58). In brief, 16S rRNA genes were dual-tagged with UMIs in 2 cycles of
PCR (ssUMI-PCR1), then amplified with two additional PCR runs (ssUMI-EarlyPCR2
and ssUMI-LatePCR2) consisting of 10 and 15 cycles, respectively. Each ssUMI-PCR1
reaction contained 5 ul diluted DNA template (100000 16S rRNA copies by ddPCR),
500 nM UMI-containing forward (8F) and reverse (1391R) primers (Integrated DNA
Technologies, Coralville, IA, USA) targeting the 16S rRNA gene (see Table S10), and
25 ul 2x Platinum™ SuperFi™ Il Green PCR Master Mix (Thermo Fisher Scientific,

Waltham, MA, USA) in a 50 ul total volume. The two secondary rounds of PCR (i.e.
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ssUMI-EarlyPCR2 and ssUMI-LatePCR2) were comprised of 18 ul cleaned PCR
products from the previous step, 100 nM forward and reverse universal primers, 1mM
MgCl,, and 25 ul 2x Platinum™ SuperFi™ Il Green PCR Master Mix in 50 ul total
reaction volumes. The ssUMI PCR thermocycling conditions were optimized for the full-
length 16S rRNA gene to reduce non-specific amplification and chimeras by keeping a
low PCR cycle number and using a longer extension time (Table S11). All primer
sequences and detailed thermocycling conditions for each PCR are summarized in
Tables S10 and S11. After each PCR step, PCR products were cleaned with Mag-
Bind® TotalPure NGS beads (0.6x beads/sample ratio, Omega Bio-tek, Norcross, GA,

USA) following the manufacturer's instructions.

4.3 Sequencing Library Preparation and Sequencing

Nanopore sequencing libraries of UMI-tagged full-length 16S rRNA amplicons from the
ZymoBIOMICS Microbial Community DNA Standard, ZymoBIOMICS Gut Microbiome
Standard, and wastewater samples were prepared using the ONT Ligation Sequencing
Kit 12 and Native Barcoding Kit (SQK-LSK112, SQK-LSK112.24, and SQK-LSK112.96,
respectively) following the manufacturer’s instructions, and sequenced in three different
runs for 72 hours: 1) ZymoBIOMICS Microbial Community DNA Standard was
sequenced on a MinlON R10.4 flowcell; 2) the three technical replicates of
ZymoBIOMICS Gut Microbiome Standard extracted with phenol:chloroform extraction
and MagAttract PowerSoil Pro were barcoded and sequenced on two MinlON R10.4
flowcells; 3) wastewater samples (90 in total) and a no-template control were barcoded

and sequenced on two PromethlON R10.4 flowcells.
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The ZymoBIOMICS Microbial Community DNA Standard was also prepared for
lllumina sequencing of V4-V5 regions of the 16S rRNA gene (non-UMI-tagged) with

primers S515F-Y 5'-GTGYCAGCMGCCGCGGTAA-3', and 926R 5'-

CCGYCAATTYMTTTRAGTTT-3" (59), following the Earth Microbiome Project 16S
lllumina Amplicon Protocol (13) at the Biofactorial (Bio!) high-throughput facility
(University of British Columbia, BC, Canada) using an lllumina MiSeq in 2x300 paired

end mode.

4.4 Nanopore read basecalling and processing

Nanopore sequencing raw data was first base-called with guppy v6.3.8 using the super
high accuracy model (dna r10.4 e8.1 sup.cfg), and then demultiplexed using guppy
v6.3.8 with default settings.

For assessment of Nanopore raw reads (i.e. without UMI-based error correction)
for microbial profiling of the ZymoBIOMICS Microbial Community DNA Standard and
ZymoBIOMICS Gut Microbiome Standard, raw reads were length-filtered (1200 - 2000
bp) and quality filtered based on a maximum expected-error (EE) rate of 1% with
VSEARCH v11 (60) using the "--fastg filter command (60). Nanopore
sequencing adapters and 16S rRNA primers (8F/1391R) were removed from the
unfiltered and quality  filtered raw reads  with Porechop  v0.2.4

(https://github.com/rrwick/Porechop) and cutadapt v2.7 (61), as previously described

(22). Sequences not containing both primers were discarded.
Quality filtered raw reads were de-replicated using USEARCH (v11.0) (64) with
the ‘-fastx uniques’ command and a minimum number of sequence observations of

2. Amplicon sequence variants (ASVs) were generated with the de-replicated
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sequences using the UNOISE3 algorithm (65) in USEARCH (v11.0), with a minimum
unique size of 10. Operational taxonomic units (OTUSs) clustered at 97% identities were
generated from size-sorted sequences de-replicated with the "-cluster otus’

command in USEARCH (v11.0).

4.5 ssUMI data processing pipeline

Raw reads from each sample were analyzed with the ssUMI data-analysis pipeline for
generation of high-accuracy consensus sequences. The ssUMI pipeline was derived
from the longread umi package developed by Karst et al. (22), which identifies UMI
sequences in raw reads, bins raw reads by shared UMI-pairs (e.g. UMIs from both
ends), and generates consensus sequences for each UMI bin. We made several key
modifications to adapt the workflow for the newer ONT sequence chemistry applied to
16S rRNA gene amplicon sequencing. Specifically, a new EE-rate based quality filtering
was applied to the raw reads using VSEARCH v11 with the --fastg filter
command and an EE threshold of 10%. Length filtering for our near full-length 16S
rRNA target was modified to 1200 to 2000 bp. Due to the lower raw-read error rates for
Nanopore reads generated with the R10.4 chemistry, the allowed error rate in a 36 bp
UMI-pair (e.g. 18 bp UMIs from each end) was reduced from 6 bp to 4 bp, the maximum
mean errors per UMI-pair in a bin was set to 2, and the minimum allowed UMI cluster
size was reduced to 3. We also implemented two modes of consensus sequence
generation, termed ‘ssUMI_rapid' for fast analysis and ‘ssUMI_std' for high-accuracy
analysis. In ssUMI_rapid mode, sequences were polished with a 3 rounds of Racon v.
1.4.10 (62); while in ssuMI std mode, sequences were polished with a three-step

method, consisting of 3 rounds of Racon, followed with 2 rounds of Medaka v.1.7.2, and
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a final round of Racon. The *r104 e81 sup g610’ model was used for polishing with
Medaka. Minimap2 v2.17 (63) was used for mapping raw reads during polishing steps,
with the -ax map-ont™ flag. Scripts associated with the ssUMI data processing

pipeline are available at: https://github.com/ZielsLab/ssUMI.

ASVs and 97% OTUs were generated with UMI-based consensus sequences
following the same procedure described above for quality filtered raw Nanopore reads.

To investigate the effects of sequencing depth, we randomly subsampled raw
reads from mock community samples using seqtk (66) to specified read counts. We
then processed the sub-sampled reads with the ssUMI analysis workflows described

above.

4.6 PacBio, LoopSeq, and lllumina read processing

PacBio HiFi (CCS) reads of amplicons targeting the full rRNA operon of the
ZymoBIOMICS Microbial Community DNA Standard (cat. D6306, lot no: ZRC190811)
(22) were downloaded from the European Nucleotide Archive under accession
ERR3813246. PacBio HiFi sequences were quality-filtered using VSEARCH v11 with
the "--fastq filter command and an EE-rate threshold of 1%. Sequences were
trimmed to the same length as the 16S rRNA amplicons generated in this study by
truncating the reads at the 8F and 1391R primer sequences using cutadapt v2.7, as
described above.

Synthetic long-reads of amplicons targeting the V1-V9 region of 16S rRNA genes
from the ZymoBIOMICS Microbial Community DNA Standard (cat. D6306, Lot
ZRC190811) generated with the LoopSeq 16S rRNA Kit and Illumina 2x150 bp

sequencing (36) were downloaded from NCBI under BioProject PRINA644197.
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LoopSeq amplicons were quality-filtered using VSEARCH v11 with the °--
fastqg filter command and an EE-rate threshold of 1%. Sequences were trimmed
at the primers used for their generation (forward: “AGAGTTTGATCMTGGC”; reverse:
“TACCTTGTTACGACTT") (36) using cutadapt v2.7, as described above.

lllumina V4-V5 amplicons were processed using DADA2 pipeline (67). Only
forward reads were included in the analysis. Quality filtering of forward reads were
conducted with the “filterAndTrim  function using ‘trimLeft=15,
truncLen=230, maxN=0, maxEE=1" arguments.

4.7 Characterizing sequence accuracy and abundances with microbial community
standards

For the ZymoBIOMICS Microbial Community DNA Standard, curated reference rRNA
operon sequences (16S-23S rRNA) were obtained from Karst et al. (22). Reference 16S
rRNA gene sequences were retrieved using barrnap
(https://github.com/tseemann/barrnap), trimmed to the 8F/1391R primer sequences
using cutadapt v2.7, and were de-replicated using USEARCH (v11.0) with the °

fastx uniques’ command. For the ZymoBIOMICS Gut Microbiome Standard, the
genome assembly and polishing approaches were not adequately described by the
vendor, and therefore we downloaded their provided reference genome assemblies for
prokaryotic members [RefSeq Accessions: GCA _028743295.1, GCA_028743435.1,
GCA_028743335.1, GCA_028743755.1, GCA_028743555.1, GCA_028743355.1,
GCA_028743375.1, GCA_028743635.1, GCA_028743535.1, GCA_028743315.1,
GCA_028743095.1, GCA_028743735.1, GCA _028743275.1, GCA_028743415.1,
GCA_028743255.1, GCA_028743395.1, GCA_028743455.1, GCA_028743775.1,

GCA _028743475.1], concatenated the scaffolds, and polished the assembly using
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PacBio HiFi reads from three metagenomes of the same mock community (NCBI
Accession: PRINA680590) using one round of Racon. Reference 16S rRNA gene
sequences were retrieved and de-replicated as described above. Based on this
workflow, we detected 66 unique bacterial 16S rRNA gene sequences in the
ZymoBIOMICS Gut Microbiome Standard. However, ssUMI std sequences generated
65 error-free ASVs without the detection of two low-abundant bacterial species (Figure
4; Table S1); therefore the true number of bacterial 16S rRNA ASVs in this community
is uncertain (Figure 4).

To assess sequence accuracy of different datasets, reads were mapped to their
corresponding 16S rRNA gene reference databases using minimap2 v2.17 with the "- -
cs flag, and the mapping statistics were filtered using samtools (68) with "view -F
2,308 . The minimap2 flag -ax sr was used for mapping lllumina short-reads, -ax
map-ont  for mapping raw and UMI-corrected Nanopore reads, and -ax map-pb
was used for mapping PacBio HiFi reads. Mapping files were parsed in R v4.2.1 as
previously described (22), and error rates were calculated as the sum of mismatches,
insertions, and deletions divided by the alignment length. Reads mapping to
contaminants (see below) were filtered before summarizing sequence accuracies. Read
mapping files were also parsed to investigate the relative read abundances based on
total sum scaling of species within the ZymoBIOMICS Gut Microbiome Standard using
UMI-based consensus sequences (Figure 5).

Following previous guidelines used for characterizing sequence accuracy of
mock communities with ambiguous reference genomes and closely-related strains (38),

we manually confirmed the sequence accuracy of ASVs and 97% OTUs generated with
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the ZymoBIOMICS Gut Microbiome Standard that did not match our reference
sequences by querying them with BLASTn against the NCBI nr database. If an ASV or
OTU sequence matched a 16S rRNA gene with 100% identity and 100% query cover
from a species that is present in the Microbiome Standard, it was considered a true
positive sequence (Table S12). Otherwise, the sequence feature was assigned the error
rate observed via read mapping above. If an ASV or OTU sequence matched a species
from a different genus than was present in the Microbiome Standard at >97% identity
and 100% query cover, this was considered a contaminant (Table S13). Reads that
mapped to contaminant ASVs or OTUs were filtered when characterizing the error rate
profiles of Nanopore raw reads, UMI-based consensus sequences, PacBio HiFi reads,

and lllumina short-reads.

4.9 Wastewater sample analysis
Reads from wastewater samples were processed with the ssUMI workflow in ‘standard’
mode. To compare the ssUMI PCR efficiencies for wastewater samples and mock
communities, a Student’s t-Test was performed on the number of ssUMI consensus
sequences generated with wastewater samples and ZymoBIOMICS Microbial
Community DNA Standard with the same sequencing depth. Wastewater samples were
binned into four group based on the sequencing depths (e.g. 0.1-0.2M, 0.2-0.3M, 0.3-
0.7M, 0.7-1.3M raw reads), and the average number of ssUMI consensus sequences in
each group was compared to the ones generated for the mock community with 0.1M,
0.25M, 0.5M, and 1.0M raw reads, respectively. The overall performance of ssUMI
workflow for different wastewater sample matrices were further examined with ANOVA

on the number of Nanopore raw reads and ssUMI consensus sequences.
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Microbial community analysis of wastewater near full-length 16S rRNA ASVs was
conducted using the vegan package in R v4.2.1 (69). The alpha diversity was assessed
with species richness and Shannon index. Beta diversity was estimated using principal

coordinate analysis (PCoA) with Bray-Curtis dissimilarity.

4.10 Data availability
The sequencing data for this project, including both ZymoBIOMICS mock microbial
community standards, are available in the NCBI under BioProject PRINA974480.

Accessions for individual wastewater samples are provided in Table S8.
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