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 2 

ABSTRACT 16 

Many transcription factors (TFs) have been shown to bind at super-enhancers, forming 17 

transcriptional condensates to activate transcription in many cellular systems. Genomic and 18 

epigenomic determinants of phase-separated transcriptional condensates are not well 19 

understood. Here we systematically analyzed DNA sequence motifs and TF binding profiles 20 

across human cell types to identify the molecular features that contribute to the formation of 21 

transcriptional condensates. We found that most DNA sequence motifs are not distributed 22 

randomly in the genome, but exhibiting spatially clustered patterns associated with super-23 

enhancers. TF binding sites are further clustered and enriched at cell-type-specific super-24 

enhancers. TFs exhibiting clustered binding patterns also have high liquid-liquid phase 25 

separation abilities. Compared to regular TF binding, densely clustered TF binding sites are 26 

more enriched at cell-type-specific super-enhancers with higher chromatin accessibility, higher 27 

chromatin interaction, and higher association with cancer outcome. Our results indicate that the 28 

clustered pattern of genomic binding and the phase separation properties of TFs collectively 29 

contribute to the formation of transcriptional condensates. 30 

  31 
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INTRODUCTION 32 

Transcription factors (TFs) play essential roles in driving transcriptional activation by binding at 33 

DNA and inducing cell type-specific promoter-enhancer interactions in the genome1,2. TF 34 

activities are important in numerous biological processes and transcriptional dysregulation has 35 

been found to associate with many diseases such as cancer3. Super-enhancers (SEs) are a 36 

special type of enhancer-like ultra-broad genomic regions which exhibit strong and broad 37 

enrichment of mediator and enhancer-associated histone marks such as H3K27ac4–6. An SE 38 

usually contains multiple cis-regulatory (enhancer) elements and is bound by multiple TFs. The 39 

enhancer sequences, which contain the short DNA motifs recognized by DNA-binding TFs, act 40 

as platforms to recruit gene control machinery including the TFs and co-activators at specific 41 

genomic loci7. SEs as clusters of enhancers that are occupied by high-density of TFs can drive 42 

higher levels of transcription than typical enhancers5. Active SEs have been observed in cancer 43 

cells6,8, stem cells4,9, and normal somatic cells5,10. 44 

 45 

Liquid-liquid phase separation (LLPS) and the formation of transcriptional condensates are 46 

implicated as potential mechanisms of SEs11–13. The activation of functional enhancers/SEs 47 

requires the binding of both cell-type specific factors and sequence-dependent effectors to drive 48 

the formation of localized condensation and promote enhancer activity and transcription14,15. 49 

Multiple TFs including CCCTC-binding factor (CTCF) may involve in this process with either 50 

driving or instrumental functions16. TFs, mediator, and RNA polymerases II have been found to 51 

form clusters in the cell nucleus17,18, indicating the formation of phase-separated condensates. 52 

LLPS and condensate formation usually require a large aggregation of protein molecules with 53 

intrinsic disordered domains (IDRs)19. The LLPS ability of a protein can be quantitatively 54 

characterized by its sensitivity to 1,6-hexanediol (1,6-HD) treatment, which can disrupt the LLPS 55 

condensates in vitro and in vivo20. An anti-1,6-HD index of chromatin-associated proteins 56 

(AICAP)20 has been used to quantify the LLPS ability of thousands of nuclear proteins20. 57 
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Proteins with low AICAP (between 0 and 1) are associated with high content of IDRs and high 58 

LLPS potential. 59 

 60 

TF binding patterns are determined by both DNA sequence21 and cell type-specific chromatin 61 

structure and accessibility. TFs can function to regulate target genes at various spatial ranges in 62 

the genome22. The spatial distribution of TF binding sites across the genome has been briefly 63 

examined using ChIP-chip data but not extensively surveyed with the more recently available 64 

high-throughput sequencing data23. TF hotspots have been observed where many TFs 65 

colocalize in narrow regions in the genome24,25. However, to what extent the genomic 66 

distribution of TF motif-matching DNA sequences and TF binding sites affect the activities of 67 

SEs and the formation of transcriptional condensates globally, and what genomic features can 68 

influence condensate formation at specific genomic loci, are poorly understood. Most existing 69 

nuclear LLPS/condensate studies did not use the rich genomic data, while genomics studies on 70 

SEs are difficult to connect to LLPS/condensate phenomena. There is a pronounced gap 71 

between data-driven predictions from genomics perspective and the experimental studies of 72 

transcriptional condensate formation. 73 

 74 

In this study, we performed a comprehensive survey of 528 human TFs’ known sequence motifs 75 

and 6,650 ChIP-seq datasets in a variety of human cell types, and developed a statistical metric 76 

to quantify the genomic clustering pattern of TF binding. We found that most TFs’ motif 77 

matching sites and in vivo binding sites both exhibit a spatially clustered pattern in the genome. 78 

Clustered motif sites and clustered TF binding sites are enriched at super-enhancers. We found 79 

that the clustering tendency of TF binding is correlated with TF’s LLPS property measured by 80 

AICAP. By integrating the TF binding profiles in colorectal cancer and breast cancer with 81 

molecular genomic profiling data from The Cancer Genome Atlas (TCGA), we identified cancer-82 
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specific clustered TF binding sites and found a significant association with cancer patient 83 

survival, indicating the functional importance of transcriptional condensates in cancer. 84 

 85 

 86 

RESULTS 87 

Clustered TF motif sites are enriched at putative super-enhancers  88 

To get a comprehensive survey of spatial distribution patterns of cis-regulatory elements in the 89 

genome that are potential TF binding sites, we collected 528 human TF sequence motifs from 90 

the Jaspar database26 and 6,650 high-quality ChIP-seq TF binding profiles from the Cistrome 91 

database27. For each TF motif, we used FIMO28 to identify its genome-wide motif matching sites 92 

(TFMSs) and examine their location distribution in the genome (Fig. 1a). To quantify the spatial 93 

clustering tendency of the genomic distribution pattern of a TFMS, we generated a control by 94 

placing the same number of genomic loci randomly in the genome, following the Poisson point 95 

process. We define a metric, cluster propensity (CP), as the two-sided Kolmogorov-Smirnov (K-96 

S) test statistic between the genomic interval distribution of the TFMSs and that of the control, to 97 

quantify the genomic clustering tendency of a TFMS profile (Fig. 1a). Intuitively, a TFMS profile 98 

with a spatially clustered pattern will have a positive CP (Fig. 1b,c). If the TFMS interval 99 

distribution is modeled by the Gamma distribution23, the CP is correlated with the shape 100 

parameter k in the Gamma distribution (Supplementary Fig. 1a). TFMS CP is not correlated with 101 

the total number of motif matching sites in the genome, or the motif sequence length 102 

(Supplementary Fig. 1b-d), indicating the robustness of this metric. Among the 528 TFs 103 

analyzed, 417 (79%) show a positive CP, indicating the TFMSs are more clustered than random 104 

in the genome (Fig. 1d). The motif matching sites of the TFs with high TFMS CP are 105 

significantly enriched at the union of super enhancers (SEs) (Fig. 1d, with examples at Fig. 1e, p 106 

< 0.05, by Fisher’s exact test). CENPB, a centromere protein, has the highest TFMS CP across 107 

all TFs (Fig. 1b), and EWSR1-FLI1, which recruits BAF complexes to tumor-specific enhancers 108 
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and activates transcriptional events of Ewing’s sarcoma29, also ranks on top with high TFMS CP 109 

(Fig. 1c). These results suggest that most TFs’ sequence motif matching sites have a higher 110 

clustering tendency than randomly distributed in the genome. 111 

 112 

Clustered TF binding sites are enriched at cell type-specific super-enhancers 113 

DNA sequence only provides the basic anchors of potential TF binding but is not sufficient to 114 

determine the actual binding profile of a TF in a cell type. Therefore, we next examined the 115 

6,650 high-quality ChIP-seq binding profiles to evaluate the clustering tendency of actual TF 116 

binding sites (TFBSs). With the assumption that most TFBSs contain a motif matching 117 

sequence, for a TF binding profile containing a number of binding sites, we randomly sampled 118 

the same number of motif sites from the TFMS profile as the control (Fig. 2a). Similarly, we 119 

defined the TFBS CP as the two-sided K-S test statistic between the genomic interval 120 

distribution of the TFBSs and that of the control, to quantify the genomic clustering tendency of 121 

a TFBS profile (Fig. 2a). The TFBS CP is also a robust metric that is not sensitive to the number 122 

of binding sites called from ChIP-seq data (Supplementary Fig. 2). Interestingly, we found that 123 

all the top 20 TFs mostly shared across 6 cell types exhibit a positive TFBS CP, indicating a 124 

high clustering tendency (Fig. 2b), and these TFBSs are enriched at cell-type specific SEs 125 

compared to genomic control (Fig. 2c). Furthermore, the TFBS CP of a TF profile is highly 126 

correlated with the TF profile’s enrichment level at SEs, demonstrating a strong association 127 

between the spatially clustered TF binding pattern and SEs (Fig. 2d). Considering TFBSs may 128 

occur at genomic regions without sequence motifs, we checked the CP of TFBS with or without 129 

sequence motifs and found that the TFBSs without motifs even have a higher CP and higher 130 

enrichment at cell-type-specific SEs compared to TFBSs with motifs (Supplementary Fig. 3a-c). 131 

We found different TFs show different TFBS CP and different enrichment levels at SEs within 132 

the same cell type (Supplementary Fig. 3d), while the same factor also shows different TFBS 133 
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CPs and different enrichment levels at SEs across different cell types (Supplementary Fig. 4), 134 

indicating the cell-type specificity of TF binding. 135 

 136 

We next used both the absolute and the normalized TFBS CPs to identify potential key factors 137 

with high cell-type specific CPs in each cell type (Fig. 2e). We identified JUND on the top of the 138 

list for several cell types including the colon cancer cell line HCT-116 and the breast cancer cell 139 

line MCF7, while JUND overexpression increases the cell proliferation in prostate cancer30 and 140 

enhanced JunD signaling is responsible for BET inhibition resistance in cancers31. NFIA was 141 

shown as the top ranked TF in the liver cancer cell line HepG2 and was indeed overexpressed 142 

in various cell lines including HepG232. MYC, the top ranked TF in the prostate cancer cell line 143 

LNCaP, is overexpressed and associated with poor survival in human prostate cancer and has 144 

been shown as a major driver of prostate cancer tumorigenesis33,34. ERG, the top ranked TF in 145 

the breast cancer cell line MCF7, can induce a mesenchymal-like signature and is positively 146 

correlated with invasive breast cancer35,36. ETS-1 is the top ranked factor in the pancreatic 147 

cancer cell line PANC-1 and is overexpressed in pancreas37 while its increased binding activity 148 

is critical for PANC-1 cellular invasiveness38. NOTCH1 and GATA3 were shown on top in T-149 

ALL. NOTCH1 is a major oncogenic TF in T-ALL16,39, and GATA3-mediated enhancer 150 

nucleosome eviction was shown as a driver of MYC expression and is strictly required for 151 

NOTCH1-induced T-ALL initiation and maintenance40. These results suggest that many TF 152 

binding sites show a further clustering tendency on top of motif sites with an enrichment at cell-153 

type-specific SEs, and that a TF’s high cell type specific CP can be indicative of its important 154 

oncogenic functions in cancer cells.  155 

 156 

Transcription factors with highly clustered binding have high liquid-liquid phase 157 

separation potential 158 
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The association between clustered TF binding and SEs reminded us of the possible phenomena 159 

of transcriptional condensate formation contributed by TF proteins. To determine other potential 160 

factors that contribute to the clustered pattern of TF binding in addition to DNA sequences, we 161 

next examined the liquid-liquid phase separation (LLPS) property of TF proteins. In 16 cell types 162 

with most TF ChIP-seq profiles20, we found a subtle but clear trend that the TFs with higher 163 

TFBS CP tend to have lower AICAP (Fig. 3a), indicating their higher ability to form phase 164 

separated condensates in cells. Remarkably, putting together 300 binding profiles of 30 different 165 

TFs in 154 cell types, we found a significant correlation between TFBS CP and AICAP (Fig. 3b). 166 

If we grouped all TFBSs into four quartiles based on their TFBS CP, we could see that the 167 

negative log-transformed AICAP of the TFs in the third and fourth quartiles with the highest 168 

TFBS CPs are significantly higher than that in the first and second quartiles (Fig. 3c). These 169 

results indicate that the intrinsic LLPS property of TF protein molecules might contribute to the 170 

formation of phase-separated transcriptional condensates at SEs. LLPS of TF proteins that 171 

contain intrinsically disordered regions (IDRs) might be a driver of transcriptional condensate 172 

and super-enhancer formation. 173 

 174 

Clustered TFBSs show active chromatin features and higher enrichment at SEs in cancer 175 

cells compared to non-clustered TFBSs 176 

Besides using the CP metric to quantify the global feature of a TF binding profile, we also 177 

characterized the genomic regions with densely clustered binding sites of a TF and compared 178 

with those binding sites that are not clustered in the genome in cancer. We defined the 179 

clustered TFBSs (C-TFBSs) as those that are significantly closer to its nearest binding site than 180 

expected in the control distribution, and called the remaining sites non-clustered TFBSs (NC-181 

TFBSs) (Fig. 4a). Integrating the genome-wide chromatin accessibility profiling (ATAC-seq) data 182 

from The Cancer Genome Atlas (TCGA)41 with publicly available data such as 3D genome Hi-C 183 

maps and SE annotations from matched cancer types, we compared the chromatin 184 
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accessibility, chromatin interaction and cell-type-specific SE enrichment between C-TFBSs and 185 

NC-TFBSs in breast cancer (BRCA), colon cancer (COAD), cervical cancer (CESC), liver 186 

cancer (LIHC), and prostate cancer (PRAD), where data for the matched cancer cell types exist. 187 

 188 

We found that all TFs’ C-TFBSs are significantly enriched at cell-type specific SEs compared to 189 

NC-TFBSs for all cancer types examined (Fig. 4b,c, Supplementary Fig. 5a) (p < 0.05, by 190 

Fisher's exact test). We quantified the ATAC-seq signal at each TFBS using the regulatory 191 

potential (RP) metric42 for comparison between C-TFBSs and NC-TFBSs, and found that the C-192 

TFBSs show significantly higher (p < 0.05, by two-tailed Student’s t-test) RPs compared to NC-193 

TFBSs for all TFs in all cancer cell types, indicating a higher chromatin accessibility level at C-194 

TFBSs (Fig. 4b,c, Supplementary Fig. 5a). Meanwhile, we calculated the differential ATAC-seq 195 

signals in each cancer type comparing to other samples from all other cancer types as control 196 

and found that the C-TFBSs show significantly higher differential chromatin accessibility 197 

compared to NC-TFBSs for the vast majority of TFs (Fig. 4b,c, Supplementary Fig. 5a) (p < 198 

0.05, by two-tailed Student’s t-test). We also found that the C-TFBSs tend to have significantly 199 

higher chromatin interactions with their surrounding genomic regions compared to NC-TFBSs 200 

(Fig. 4b,c, Supplementary Fig. 5a) (p < 0.05, by two-tailed Student’s t-test). These results 201 

indicate that those genomic regions with highly clustered TF binding are more active with higher 202 

chromatin accessibility, higher chromatin interactions and higher enrichment at SEs compared 203 

to genomic regions with NC-TFBSs.  204 

 205 

The DNA binding TFs are highly specific to the presence of its binding sequence motif and can 206 

be compromised by mutations affecting the consensus motif sequence43. We analyzed the 207 

whole-genome sequencing (WGS) data from BRCA, CRC, CESC, LIHC and PRAD patient 208 

samples from the International Cancer Genome Consortium (ICGC)44, but did not see 209 

significantly higher mutation rate at the sequence motif matching site within C-TFBSs compared 210 
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 10 

to NC-TFBSs across all TFs in any cancer type (p > 0.05, by the two-tailed Student’s t-test), and 211 

very few TFs show a higher mutation rate in their binding motif sites than the average mutation 212 

rate in the genome (Fig. 4d,e, Supplementary Fig. 5b). We next examined whether the 213 

mutations of genes encoding the TFs potentially associate with transcriptional condensates at 214 

the TFBSs. We separated the patient samples in each cancer type into two groups by the 215 

ATAC-seq RPs at the C-TFBSs to mimic those samples that contain transcriptional 216 

condensates and others. However, we did not see any significant difference in TF gene 217 

mutations between the samples with high C-TFBS RP and others with lower RPs 218 

(Supplementary Fig. 6). These results suggest that the majority of cancer patient-specific 219 

clustered TFBSs are not due to DNA mutations altering the consensus binding sequence.  220 

 221 

Chromatin accessibility levels at clustered TF co-binding sites are predictive of COAD 222 

survival 223 

Assuming the C-TFBSs have higher transcriptional activity with higher chromatin accessibility 224 

and chromatin interactions than NC-TFBSs, we then sought to study whether the C-TFBSs are 225 

functionally important in cancer cells and their potential relevance to clinical outcome. We 226 

focused on two cancer types, COAD and BRCA, considering they have sufficient samples with 227 

clinical data in TCGA. We used the top 3 TFs, JUND, CEBPB, and SRF, with the highest ranked 228 

TFBS CP in HCT-116 cells, to study the potential functions of C-TFBSs in COAD. Interestingly, 229 

among the total of 14,535 union C-TFBSs of the three factors, 3,898 (27%) are co-occupied by 230 

all three TFs (Fig. 5a), and over 19% and 28% of the co-binding sites are in the intronic or 231 

intergenic regions, respectively (Fig. 5b). We next used dynamic Hi-C data in HCT-116 cells 232 

before and after RAD21 degradation, in which promoter-enhancer interactions and chromatin 233 

condensates were disrupted, to characterize the differential chromatin interactions (DCI) in the 234 

genome45. We found that the C-TFBSs of JUND, CEBPB, and SRF and the co-binding regions 235 

exhibited significantly decreased chromatin interactions with their surrounding genomic regions 236 
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(<100kb) after RAD21 degradation (Fig. 5c) (p < 0.05, by two-tailed Student’s t-test). Putting 237 

together, the high co-localization, high occurrence at non-coding regions, and high enrichment 238 

at SEs, suggest that the clustered co-binding regions of the three factors are likely associated 239 

with transcriptional condensates in colon cancer.  240 

 241 

We next accessed how the co-binding regions of the C-TFBSs are associated with patient 242 

survival. We performed univariate survival analysis for each union chromatin accessibility region 243 

using ATAC-seq data from TCGA COAD samples. We found the ATAC-seq peaks overlapped 244 

with the clustered binding sites of JUND, CEBPB, and SRF and their co-binding regions are 245 

significantly more likely to be associated with survival than a random ATAC-seq peak from the 246 

genome (Fig. 5d) (p < 0.05, by Fisher's exact test). At 66% of the co-binding regions a high 247 

chromatin accessibility level would significantly associate with poor survival (p < 0.05, by log-248 

rank test), shown in Fig. 5e as an example. An example of survival-associated ATAC-seq peaks 249 

co-bound by the three TFs in a super-enhancer region is shown in Figure 5f. 250 

 251 

Co-regulated genes of clustered TFs are predictive of BRCA survival 252 

Unlike COAD, the 3 TFs, ERG, KLF9, and KLF4, with the highest CP rank in breast cancer cell 253 

line MCF7 do not co-occupy their C-TFBSs significantly. Among the total of 7,585 union C-254 

TFBSs, only 145 (1.9%) are co-occupied by all three factors (Fig. 6a), most (82%) of which are 255 

at gene promoters (TSS+/-2kb) (Fig. 6b). The survival analysis using the ATAC-seq data from 256 

the TCGA BRCA samples do not show significant association between the chromatin 257 

accessibility level at C-TFBS co-binding regions and patient survival (Supplementary Fig. 7a). 258 

Considering the enrichment of the C-TFBS co-binding regions at gene promoters, we sought to 259 

examine the putative target genes of the three factors. We calculated the RP score of the 260 

ATAC-seq peaks overlapped with a set of TFBSs or co-binding sites to each gene. The target 261 

genes of each TF or co-binding sites were selected as those with RP ≥ 0 (Fig. 6c). We 262 
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performed univariate survival analysis for each gene using ATAC-seq RP, and found the target 263 

genes of KLF9, KLF4 and the co-targets are all significantly associated with survival (Fig. 6d). 264 

For example, the three factors ERG, KLF9 and KLF4 have their binding sites clustered at 265 

ZNF598 promoter and the ZNF598 RP calculated from co-binding sites is significantly 266 

negatively correlated with survival in breast cancer patients (Fig. 6e,f). Similar analysis was 267 

performed in COAD and we also observed a high association between the target genes of 268 

JUND, CEBPB and SRF and the clinical outcomes (Supplementary Fig. 7b). Taken together, 269 

these results suggest that the TFs with high CP in a cancer type might function together to 270 

cooperatively bind at super-enhancers and form transcriptional condensates to regulate their 271 

oncogenic target genes. 272 

 273 

 274 

DISCUSSION 275 

The spatial distribution of non-coding regulatory elements in the genome is associated with 276 

genome organization and gene regulation, but the spacing patterns of cis-regulatory elements 277 

and TF binding sites are rarely studied in a quantitative way. We developed a novel metric, 278 

cluster propensity (CP), to survey a large collection of publicly available genomics data, and 279 

unraveled the association of the clustered patterns of DNA motif elements and TF binding sites 280 

with LLPS transcriptional condensates, which are hypothesized to be the mechanistic basis of 281 

super-enhancers12. Furthermore, we found that TFs with clustered binding patterns have high 282 

liquid-liquid phase separation potentials, directly connecting the genomic pattern to molecular 283 

functions. We also found that clustered TF binding sites in cancer cells are highly active and 284 

predictive of patient survival. In summary, genomic sequence features and biophysical 285 

properties both contribute to the clustered pattern of TF binding, and collectively affect 286 

transcriptional condensate formation. 287 

 288 
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Biomolecular condensates have been a widely studied subject in molecular biology and 289 

biophysics. IDR-containing proteins, including many TFs and chromatin regulators, can form 290 

large biomolecular condensate through LLPS. In cancer cell nucleus, formation of transcriptional 291 

condensates can enhance the genomic targets of oncogenic TFs and induce aberrant 3D 292 

chromatin structure for tumor transformation46,47. Principled computational modeling of DNA 293 

sequence features has shown that the densely clusters of TF binding sites above sharply 294 

defined thresholds can drive the formation of localized condensates to promote enhancer 295 

activity and transcription14. However, how this sequence pattern occurs in the human genome 296 

and how different TFs can induce transcriptional condensates in different cell types are still 297 

largely unknown. Our results directly connect genomic information with TFs’ LLPS property, two 298 

distinct perspectives that have never been associated before. These results provide quantitative 299 

evidence of potential mechanisms of transcriptional condensate formation and super-enhancer 300 

activity. In practice, characterization of TF CP and clustered TF binding sites could provide a 301 

new approach of studying oncogenic gene regulation and identifying oncogenic drivers in each 302 

different cancer type.  303 

 304 

We used a data-driven computational approach to reveal the connection between genomic TF 305 

binding patterns and LLPS properties. While it provides evidence supporting the hypothesis that 306 

transcriptional condensate formation is the mechanism of super-enhancers, we do not have 307 

direct experimental data to demonstrate the existence of transcriptional condensate phenomena 308 

at super-enhancers, and their dynamic relations with TF binding patterns. Further experiments 309 

are needed to validate the formation of transcriptional condensates under the perturbation of 310 

identified TFs. Meanwhile, there are other factors missing this work that possibly contribute to 311 

the formation of cell type-specific transcriptional condensates, such as long non-coding RNAs, 312 

RNA-binding proteins, and genomic DNA and chromatin structure factors that facilitate the 313 

chromatin context of condensates. Incorporating these factors in a future updated model will 314 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2023. ; https://doi.org/10.1101/2023.06.18.545510doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.18.545510
http://creativecommons.org/licenses/by-nc/4.0/


 14 

likely improve the characterization of transcriptional condensates’ determinants. Furthermore, in 315 

colon cancer and breast cancer case studies, the effects of putative condensate-derived 316 

survival predictors are quite different in different cancer types, indicating the complexity of 317 

cancer transcriptional regulation and epigenetic mechanisms. Further experiments are required 318 

to unravel the cancer type-specific drivers in each individual patient, and to provide translational 319 

insights into therapeutic target identification as part of precision medicine practice. 320 

Nevertheless, this work can set a stepstone of future investigations of biomolecular 321 

condensates from a genomics perspective. 322 

 323 

 324 

METHODS 325 

Identification of the TF sequence motifs in human genome 326 

DNA sequence motifs in the human genome were searched by FIMO28 (v4.12.0) with Jaspar26 327 

database (v2018), with a p-value threshold of 1e-4. As a result, 528 TF motifs were included, 328 

with a total of 288,687,458 motif sites in the genome, and a median of 551,421 motif sites per 329 

motif.  330 

 331 

Public data collection 332 

Super-enhancers (SEs) in 86 samples were collected from the public domain5, the chromosomal 333 

coordinates were transferred from hg19/GRCh37 to hg38/ GRCh38 using LiftOver48. Public 334 

ChIP-seq and bigwig profiles were collected from Cistrome Data Browser (DB)27. For any TF, 335 

only the high-quality peak profiles were used for the subsequent analysis. The quality control 336 

thresholds include: FastQC >15, uniquely mapped ratio >0.3, PBC >0.3, FRiP >0.005, 10-fold 337 

confident peaks >500, total peaks >2000, and the union DNase I hypersensitive site 338 

overlap >0.3, all determined by Cistrome DB. 339 

 340 
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Find the nearest site of TFMS/TFBS 341 

The command ‘bedtools closest -D ref -fd -io -t first’ was used to find the distance to the nearest 342 

downstream site for each TFMS/TFBS.  343 

 344 

Determination of TFMS CP 345 

For a profile with N TF sequence motif matching sites in the human genome, the Poisson point 346 

process was used to model the background distribution of the N sites randomly occurring in the 347 

genome. as 1) the distance of a motif to its downstream motif is independent of the distance of 348 

this motif to its upstream motif, 2) the average distance between two motifs is L/(N+1), where L 349 

is the total length of the human genome, 3) the two motifs cannot occur at the same location. 350 

The TFMS CP is derived from the statistic of two-sided Kolmogorov-Smirnov (K-S) test by 351 

comparing distribution of log10 distances to the down-stream motif for a TF sequence motif 352 

profile (T) and genomic background control (C) as follows:  353 

1， A is defined as the statistic of K-S test following the null hypothesis that 354 

Log!"Distance	(T) < Log!"Distance	(C). 355 

2， B is defined as the statistic of K-S test following the null hypothesis that 356 

Log!"Distance	(T) > Log!"Distance	(C).. 357 

3， CP is determined as  358 

CP = 5 A, A ≥ B
−B, A < B 359 

 360 

Fitting of TFMS with Gamma distribution 361 

For each TF motif profile, the Gamma(k, q) distribution, where k is shape parameter and q is the 362 

scale parameter were used to fit the distribution of TFMS in the genome. q is determined as the 363 

genome length divided by the number of motifs. The estimated k from all TFs were displayed in 364 

Supplementary Fig. 1d.  365 
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 366 

Determination of TFBS CP 367 

For a TF ChIP-seq profile with N peaks, the same number of N motif sites for the same factor 368 

were randomly selected in the genome as the background control. As described in the 369 

Determination of TFMS CP section, a CP is derived from the two-sided K-S test by comparing 370 

the distribution of log10 distances to the down-stream site from a TF ChIP-seq binding profile 371 

(T) and the control (C). The random selection of the background control was performed 100 372 

times and the average of 100 CPs was use for the TFBS CP of the ChIP-seq profile, i.e., the 373 

TFBS CP of the factor in the corresponding cell type. For a factor with multiple ChIP-seq profiles 374 

from the same cell type, the average of TFBS CPs across all ChIP-seq profiles was used as the 375 

TFBS CP of the factor in the cell type. To get the normalized cell-type-specific CP of a factor in 376 

a cell type, the TFBS CP scores of the factor in all cell types were collected for z-score 377 

normalization, and the normalized TFBS CP of the factor in the corresponding cell type was 378 

shown in the x-axis of Fig. 2e. For each cell type, the TFs were ranked by the average rank of 379 

CP and z-score normalized CP. The top5 TFs were highlighted in Fig. 2e, and the rankings 380 

were displayed in Fig. 4b-e.  381 

 382 

Enrichment of TFMS at union SEs 383 

For each TFMS profile, the two-tailed Fisher’s exact test was applied to test the enrichment of 384 

TFMS at the union of SEs from 86 samples using the randomly selected genomic loci as 385 

control. Odds ratio (OR) >1 (log2 OR >0) indicating the TFMS are more enriched at union SEs 386 

compared to the genomic background control (Fig. 1d). P-values were calculated using the 387 

Fisher’s exact test. 388 

 389 

Identification of clustered and non-clustered TFBS  390 
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To identify the clustered- and non-clustered (C-/NC-) TFBS from a TF ChIP-seq profile, the 391 

genomic background control is first selected as randomly selected the same number of 392 

sequence motifs from the same factor. The distribution of distances to the down-stream 393 

sequence motif were collected from the control and the 5-th percentile distance/score was kept. 394 

All the 5-th percentile scores from 100 random samples of background control were averaged 395 

as the cutoff for C-TFBS and NC-TFBS. TFBS with a neighbor less than the cutoff were 396 

grouped into C-TFBS as the binding sites are significantly close to each other compared to the 397 

randomly selected control, while other TFBS were groups into NC-TFBS as those sites do not 398 

have significantly closed neighbors. C-TFBS for each TF ChIP-seq profile were merged as 399 

“bedtools merge -d 5-th-cutoff”. For TFs with multiple ChIP-seq profiles in a same cell type, the 400 

C-TFBSs were further merged across all ChIP-seq profiles as the C-TFBSs of the TF in the cell 401 

type, and all NC-TFBS excluding C-TFBS were merged across all ChIP-seq profiles as NC-402 

TFBS.  403 

 404 

Enrichment of C-TFBS at cell-type-specific SEs 405 

For each TF and each cell type, the two-tailed Fisher’s exact test was applied for the enrichment 406 

of C-TFBS at the cell-type-specific SEs using the NC-TFBS as control. Odds ratio (OR) >1 (log2 407 

OR >0) indicating the C-TFBSs are more enriched at cell type-specific SEs compared to NC-408 

TFBS (Fig. 4b,c, Supplementary Fig. 5a).  409 

 410 

ATAC-seq regulatory potential on TFBS 411 

We use the TCGA ATAC-seq bigwig profiles from primary patients41 to calculate the chromatin 412 

accessibility regulatory potential (RP)42 at TFBSs (Fig. 4a). For each TFBS, the chromatin 413 

accessibility RP was calculated as the sum of ATAC -seq levels weighted by the genomic 414 

distance from the peak center. Specifically, ATAC-seq levels surrounding peak i were collected 415 
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and weighted by an exponential decay function for the total chromatin accessibility 𝑅𝑃# on this 416 

peak: 417 

𝑅𝑃# ==
2𝑒$%&!"

1 + 𝑒$%&!"
𝑆'

'

	, 418 

Where 𝑆' is the chromatin accessibility level surrounding peak i (peak center +/-100kb), and 𝑥#' 419 

is the distance between the center of peak i and 𝑆'. The parameter u determines the decay rate 420 

and is set so that the half-life of the decay function is 10kb. The ATAC-seq RPs comparing C-421 

TFBSs and NC-TFBSs were assessed using two-sided t-test and the statistics and p-values 422 

were shown in Fig. 4b,c, Supplementary Fig. 5a.  423 

 424 

Differential ATAC-seq analysis 425 

We used the processed data from Ref.41 that include a matrix of normalized ATAC-seq insertion 426 

counts within the TCGA pan-cancer peak set to assess the differential chromatin accessibility at 427 

each ATAC-seq peak. The differential ATAC-seq score at each peak was defined as the two-428 

sided t-test statistics comparing ATAC-seq levels from patients in the corresponding cancer type 429 

vs. patients from other cancers (Fig. 4a). The differential ATAC-seq scores comparing C-TFBSs 430 

and NC-TFBSs were assessed using two-sided t-test and the statistics and p-values were 431 

shown in Fig. 4b,c, Supplementary Fig. 5a.  432 

 433 

Chromatin interactions  434 

Hi-C data were processed using HiC-Pro49. Contact maps were generated at a resolution of 5kb 435 

and BART3D45 was applied on the raw count matrices for normalization. The chromatin 436 

interactions with surrounding genomic loci (<100 kb) were collected at each TFBS. The 437 

interactions scores comparing C-TFBSs and NC-TFBSs were assessed using two-sided t-test 438 

and the statistics and p-values were shown in Fig. 4b,c, Supplementary Fig. 5a.  439 

 440 
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Identification of differential chromatin interactions  441 

Hi-C data were first processed using HiC-Pro49. Contact maps were generated at a resolution of 442 

5kb. BART3D45 was applied on raw count matrices between samples before and after RAD21 443 

degradation in HCT-116 cells to generate genome wide differential chromatin interaction (DCI) 444 

profiles (--genomicDistance 100000). DCI score at each 5kb bin was then mapped to the TFBS 445 

to infer the differential chromatin interactions at the binding site (Fig. 4b,c, Supplementary Fig. 446 

5a).  447 

 448 

Detection of mutation at TFBS and genes encoding the TFs 449 

We use the whole genome sequencing (WGS) data from the International Cancer Genome 450 

Consortium (ICGC)44 to check the mutations at TFBS and genes that encoding the TFs. For 451 

each TFBS in a cell type, the mutation rate at the sequence motif within the TFBS was 452 

calculated as the occurrence of mutation events across all patient samples from the matched 453 

cancer type divided by the total patient numbers. The mutation rates for C-TFBS and NC-TFBS 454 

were then averaged over the number of binding sites and shown in Fig. 4d,e, Supplementary 455 

Fig. 5b.  456 

 457 

For each TF, the mutation rate at the gene that encoding the TF were assessed the same way 458 

as the TFBS. The patient samples were separated into two groups by the ATAC-seq RPs at C-459 

TFBS from the corresponding TF for each cancer type, and the mutation rate of the genes 460 

encoding the TF were compared between patients with higher RP and lower RP and were 461 

shown in Supplementary Fig. 6a. 462 

 463 

Determination of TFBS target genes 464 

For a set of TFBSs, either selected as the C-TFBS from a TF or the co-binding sites shown in 465 

Fig. 6a, the ATAC-seq peaks that overlapped with the TFBSs were used to calculate the 466 
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regulatory potential (RP)42 on each gene. The ATAC-seq peak levels surrounding gene i (TSS 467 

+/-100kb) were collected and weighted by an exponential decay function as shown above, e.g., 468 

for the 𝑅𝑃# on gene i, 𝑆' is the ATAC-seq peak level and 𝑥#' is the distance between TSS of 469 

gene i and ATAC-seq peak j. The parameter u determines the decay rate and is set so that the 470 

half-life of the decay function is 10kb (Fig. 6c).  471 

 472 

Survival analysis 473 

Univariate survival analysis at each ATAC-seq peak in each cancer type was applied using 474 

patient samples with both supported TCGA clinical data and ATAC-seq profiles41,50. For each 475 

selected cancer type and each identified ATAC-seq peak, the primary patients were separated 476 

into two equal-sized groups based on the chromatin accessibility at the ATAC-seq peaks (top 477 

50% and bottom 50%). The Kaplan-Meier (K-M) method was used to create the survival plots 478 

and log-rank test was used to compare the differences of survival curves.  479 

 480 

Univariate survival analysis at each gene for each cancer type was applied using patient 481 

samples with TCGA clinical data and ATAC-seq profiles. For each selected cancer type and 482 

each gene, the patient samples were separated into two equal-sized groups based on the RP 483 

calculated from TFBS overlapped ATAC-seq peaks. The K-M method was used for the survival 484 

plots and log-rank test was used to compare the differences of survival curves for the p-values.  485 

 486 

 487 

DATA AND CODE AVAILABILITY 488 

Re-analyzed data results, software packages developed for Cluster Propensity calculation, and 489 

all codes and scripts to produce the results are available at: https://github.com/zang-490 

lab/transcriptional_condensates  491 

 492 
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Figure 1. Clustered transcription factor motif sites (TFMS) are enriched at super-enhancers (SEs). 
(a) Schematic of TFMS cluster propensity (CP). K-S test is used to compare the cumulative distributions 
of distance to the the nearest downstream site between the TFMS profile (Observed) and the random 
control (Expected). (b,c) Cumulative distributions of distance to the nearest downstream motif site for
CENPB (b) and EWSR1-FLI1 (c) and their corresponding control (expected random distribution). (d)
Association of TFMS CP with their enrichment at union SEs. Top: Rank of 528 TF motifs by TFMS CP. 
Middle: Enrichment (log2 odds ratio) of each TFMS profile at union SEs compared to genomic control. 
Bottom: The 528 motifs were divided into 20 equal-size groups. The boxplots show the enrichment (log2 
odds ratio) of TFMS at union SE compared to genomic control. * p<0.05, by one-sample one-sided t-test.
(e) Genome browser snapshots of NRF1 motifs and the surrounding SEs.
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a e

b Enrichment at SE

Figure 2. Clustered transcription factor binding sites (TFBS) are enriched at cell type-specific 
super-enhancers (SEs). (a) Schematic of TFBS CP. K-S test is used to compare the cumulative 
distributions of distance to the the nearest downstream site between a TFBS profile (Observed) and the 
random control (Expected), generated by randomly selecting the same number of motif sites. (b) TFBS 
CP of 20 TFs in 6 cell types. The color indicates TFBS CP and the circle size indicates p-value 
calculated by K-S test. (c) Enrichment of TFBS at cell type-specific SE compared with random control 
(expected). The color indicates the enrichment at SE (log2 odds ratio) and the circle size indicates p-
value calculated by the Fisher’s exact test. (d) Scatter plots of profiles for 20 TFs in 6 cell types for TFBS 
CP (x-axis) and their enrichment at cell type-specific SEs compared with random control (y-axis). (e)
Scatter plots of TFs showing their TFBS CP (y-axis) and z-scaled TFBS CP (x-axis) in each of the 12 cell 
types with at least 3 TFs having ChIP-seq data.
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Figure 3. Clustered transcription factors are associated with LLPS potential. (a) Scatter plots of 
TFBS CP (y-axis) against -log2 AICAP score (x-axis) in 9 cell types, each of which has at least 3 TFs 
with both ChIP-seq and AICAP data available. A lower AICAP score (higher –log2 AICAP) indicates a 
higher potential of liquid-liquid phase separation (LLPS). (b) Scatter plots of TFBS CP (y-axis) against 
log2 AICAP score (x-axis) of all TFs across all cell types with both ChIP-seq and AICAP data available. 
(c) Box plots of -log2 AICAP scores for 4 quartiles of TFs grouped by TFBS CP. Numbers in the plot are 
the p-values comparing the -log2 AICAP scores in the corresponding quartile with the first quartile, 
calculated by the one-sided Student’s t-test.
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Figure 4. Clustered TFBS show higher SE enrichment and higher chromatin activities in 
cancer cells. (a) Schematic of the epigenomic features comparing between clustered (C-) and 
non-clustered (NC-) TFBS. (b,c) C-TFBS and NC-TFBS comparison in cell-type-specific SE 
enrichment, ATAC-seq RP, differential ATAC-seq score, and Hi-C interactions, in BRCA (b) and 
COAD (c). TFs were ranked along the x-axis by CP rank (average rank of TFBS CP and z-
scaled CP) as shown in Fig. 2e. (d,e) Mutation rate at motif loci within the binding sites 
comparing C-TFBS and NC-TFBS in BRCA (d) and COAD (e). TFs were ranked along the x-axis
by CP rank (average rank of TFBS CP and z-scaled CP) as shown in Fig. 2e.
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a b c
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Figure 5. Chromatin accessibility at clustered TF co-binding sites is predictive of COAD survival. 
(a) Numbers of co-binding of clustered sites of JUND, CEBPB and SRF, the 3 factors with the highest 
ranked CP in COAD. (b) Genomic distributions of binding and co-binding of of the 3 factors’ clustered 
sites. (c) Differential chromatin interaction (DCI) levels at binding and co-binding of the 3 factors’ 
clustered sites. DCI were calculated comparing before and after RAD21 degradation in HCT-116 cells. *
p<0.05, by two-sided Student’s t-test. (d) Percentage of ATAC-seq peaks overlapping with each category 
that are significantly associated with COAD survival. * p<0.05, by two-sided Student’s t-test. (e)
Univariate survival analysis comparing patients with high (red) and low (black) chromatin accessibility at 
the clinical-associated ATAC-seq peaks. P-value by log-rank test. (f) Example ChIP-seq and ATAC-seq 
signals surrounding an ATAC-seq peak. 
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Figure 6. Co-regulated genes of clustered TFBSs are predictive of BRCA survival. (a) Venn 
diagram of co-binding of clustered sites of ERG, KLF9, and KLF4, the 3 factors with the highest ranked 
CP rank (average rank of TFBS CP and z-scored CP) in BRCA. (b) Genomic distributions of binding and 
co-binding of the 3 factors’ clustered sites. (c) Schematic of TF regulatory potential (RP) on target genes. 
Identified TFBSs overlapped ATAC-seq peaks surrounding a gene locus (TSS+/-100KB) were collected 
and the weighted sum was calculated as the RP for this gene. (d) Percentage of the target genes of each 
category that are significantly associated with BRCA survival. * p<0.05, by two-sided Student’s t-test. (e)
Univariate survival analysis at gene ZNF598 comparing patients with high (red) and low (black) ATAC-
seq RP. P-value was identified by log-rank test. (f) Example of ChIP-seq and ATAC-seq signals 
surrounding the gene ZNF598. 
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a b c

Supplementary Fig 1. Different TFs show different TFMS CPs. (a) Association of Gamma k with 

TFMS CP. (b-d) Scatter plots of correlation among TFBS CP, number and length of TF motifs.
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Supplementary Fig 2. TFBS CPs are not correlated with the number of peaks in the ChIP-seq 
profiles. Scatter plots of TFBS CP (y-axis) against the number of binding sites (log10) in ChIP-seq

profile in each of the 8 cell types with at least 5 TFs having ChIP-seq data.
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Supplementary Fig 3. TFs show different TFBS CPs in different cell types. (a,b) TFBS CP (left) and

enrichment of TFBS at cell type-specific SE compared with random control (right) of 20 TFs in 6 cell 

types for TFBS with motif (a) and without motif(b). (c) Scatter plots of correlation of TFBS CP (x-axis) and

enrichment of TFBS at cell type-specific SE compared with random control (y-axis) of 20 TFs in 6 cell 

types. (d) Scatter plots of TFBS CP (y-axis) against the enrichment of TFBS at cell type-specific SE (x-

axis) in each of the 12 cell types with at least 3 TFs having ChIP-seq data.
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Supplementary Fig 4. The same factor has different TFBS CPs across different cell types. Scatter 

plots of TFBS CP (y-axis) against the enrichment of TFBS at cell type-specific SE (x-axis) in each of the 

21 factors with at least 5 cell types having ChIP-seq data. 
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Supplementary Fig 5. Chromatin activity and mutations of C-TFBS and NC-TFBS in different
cancer cells. (a) The comparison of enrichment at cell-type-specific SEs, ATAC-seq RP, differential 

ATAC-seq score and Hi-C chromatin interactions between C-TFBS and NC-TFBS in LIHC, CESC and

PRAD. TFs were ranked on x-axis by CP rank as shown in Fig. 2e. (b) Mutation rate at motif loci within 

the binding sites comparing C-TFBS and NC-TFBS in LIHC, CESC and PRAD. TFs were ranked on x-

axis by CP rank as shown in Fig. 2e.
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Supplementary Fig 6. Mutations at genes encoding TFs in different cancer cells. The mutation rate

of genes encoding the TFs in LIHC, CESC and PRAD. For each factor and in each cell type, the patients

were evenly separated into two groups by their averaged ATAC-seq RP at the C-TFBSs from the

corresponding TF. TFs were ranked on x-axis by CP rank as shown in Fig. 2e.
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Supplementary Fig 7. Association of chromatin accessibility levels at clustered TFBSs and
clinical outcome. (a) Bar plot of percentage of clinical associated ATAC-seq peaks overlapping binding 

and co-binding of C-TFBS of the 3 factors with the highest CP rank in BRCA. (b) Bar plot of percentage 

of clinical associated target genes of the 3 factors with the highest CP rank in in COAD. 
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