

1 **Spatially clustered pattern of transcription factor binding reveals**  
2 **phase-separated transcriptional condensates at super-enhancers**

3

4 Zhenjia Wang<sup>1</sup>, Shengyuan Wang<sup>1</sup>, Chongzhi Zang<sup>1,2,3,4,5,\*</sup>

5

6 <sup>1</sup>Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville,  
7 VA 22908, USA

8 <sup>2</sup>Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA

9 <sup>3</sup>Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA  
10 22908, USA

11 <sup>4</sup>Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA

12 <sup>5</sup>UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA

13

14

15 \* Correspondence should be addressed to: [zang@virginia.edu](mailto:zang@virginia.edu) (C.Z.)

16 **ABSTRACT**

17 Many transcription factors (TFs) have been shown to bind at super-enhancers, forming  
18 transcriptional condensates to activate transcription in many cellular systems. Genomic and  
19 epigenomic determinants of phase-separated transcriptional condensates are not well  
20 understood. Here we systematically analyzed DNA sequence motifs and TF binding profiles  
21 across human cell types to identify the molecular features that contribute to the formation of  
22 transcriptional condensates. We found that most DNA sequence motifs are not distributed  
23 randomly in the genome, but exhibiting spatially clustered patterns associated with super-  
24 enhancers. TF binding sites are further clustered and enriched at cell-type-specific super-  
25 enhancers. TFs exhibiting clustered binding patterns also have high liquid-liquid phase  
26 separation abilities. Compared to regular TF binding, densely clustered TF binding sites are  
27 more enriched at cell-type-specific super-enhancers with higher chromatin accessibility, higher  
28 chromatin interaction, and higher association with cancer outcome. Our results indicate that the  
29 clustered pattern of genomic binding and the phase separation properties of TFs collectively  
30 contribute to the formation of transcriptional condensates.

31

32 **INTRODUCTION**

33 Transcription factors (TFs) play essential roles in driving transcriptional activation by binding at  
34 DNA and inducing cell type-specific promoter-enhancer interactions in the genome<sup>1,2</sup>. TF  
35 activities are important in numerous biological processes and transcriptional dysregulation has  
36 been found to associate with many diseases such as cancer<sup>3</sup>. Super-enhancers (SEs) are a  
37 special type of enhancer-like ultra-broad genomic regions which exhibit strong and broad  
38 enrichment of mediator and enhancer-associated histone marks such as H3K27ac<sup>4-6</sup>. An SE  
39 usually contains multiple cis-regulatory (enhancer) elements and is bound by multiple TFs. The  
40 enhancer sequences, which contain the short DNA motifs recognized by DNA-binding TFs, act  
41 as platforms to recruit gene control machinery including the TFs and co-activators at specific  
42 genomic loci<sup>7</sup>. SEs as clusters of enhancers that are occupied by high-density of TFs can drive  
43 higher levels of transcription than typical enhancers<sup>5</sup>. Active SEs have been observed in cancer  
44 cells<sup>6,8</sup>, stem cells<sup>4,9</sup>, and normal somatic cells<sup>5,10</sup>.

45

46 Liquid-liquid phase separation (LLPS) and the formation of transcriptional condensates are  
47 implicated as potential mechanisms of SEs<sup>11-13</sup>. The activation of functional enhancers/SEs  
48 requires the binding of both cell-type specific factors and sequence-dependent effectors to drive  
49 the formation of localized condensation and promote enhancer activity and transcription<sup>14,15</sup>.  
50 Multiple TFs including CCCTC-binding factor (CTCF) may involve in this process with either  
51 driving or instrumental functions<sup>16</sup>. TFs, mediator, and RNA polymerases II have been found to  
52 form clusters in the cell nucleus<sup>17,18</sup>, indicating the formation of phase-separated condensates.  
53 LLPS and condensate formation usually require a large aggregation of protein molecules with  
54 intrinsic disordered domains (IDRs)<sup>19</sup>. The LLPS ability of a protein can be quantitatively  
55 characterized by its sensitivity to 1,6-hexanediol (1,6-HD) treatment, which can disrupt the LLPS  
56 condensates in vitro and in vivo<sup>20</sup>. An anti-1,6-HD index of chromatin-associated proteins  
57 (AICAP)<sup>20</sup> has been used to quantify the LLPS ability of thousands of nuclear proteins<sup>20</sup>.

58 Proteins with low AICAP (between 0 and 1) are associated with high content of IDRs and high  
59 LLPS potential.

60

61 TF binding patterns are determined by both DNA sequence<sup>21</sup> and cell type-specific chromatin  
62 structure and accessibility. TFs can function to regulate target genes at various spatial ranges in  
63 the genome<sup>22</sup>. The spatial distribution of TF binding sites across the genome has been briefly  
64 examined using ChIP-chip data but not extensively surveyed with the more recently available  
65 high-throughput sequencing data<sup>23</sup>. TF hotspots have been observed where many TFs  
66 colocalize in narrow regions in the genome<sup>24,25</sup>. However, to what extent the genomic  
67 distribution of TF motif-matching DNA sequences and TF binding sites affect the activities of  
68 SEs and the formation of transcriptional condensates globally, and what genomic features can  
69 influence condensate formation at specific genomic loci, are poorly understood. Most existing  
70 nuclear LLPS/condensate studies did not use the rich genomic data, while genomics studies on  
71 SEs are difficult to connect to LLPS/condensate phenomena. There is a pronounced gap  
72 between data-driven predictions from genomics perspective and the experimental studies of  
73 transcriptional condensate formation.

74

75 In this study, we performed a comprehensive survey of 528 human TFs' known sequence motifs  
76 and 6,650 ChIP-seq datasets in a variety of human cell types, and developed a statistical metric  
77 to quantify the genomic clustering pattern of TF binding. We found that most TFs' motif  
78 matching sites and in vivo binding sites both exhibit a spatially clustered pattern in the genome.  
79 Clustered motif sites and clustered TF binding sites are enriched at super-enhancers. We found  
80 that the clustering tendency of TF binding is correlated with TF's LLPS property measured by  
81 AICAP. By integrating the TF binding profiles in colorectal cancer and breast cancer with  
82 molecular genomic profiling data from The Cancer Genome Atlas (TCGA), we identified cancer-

83 specific clustered TF binding sites and found a significant association with cancer patient  
84 survival, indicating the functional importance of transcriptional condensates in cancer.

85

86

## 87 RESULTS

### 88 Clustered TF motif sites are enriched at putative super-enhancers

89 To get a comprehensive survey of spatial distribution patterns of cis-regulatory elements in the  
90 genome that are potential TF binding sites, we collected 528 human TF sequence motifs from  
91 the Jaspar database<sup>26</sup> and 6,650 high-quality ChIP-seq TF binding profiles from the Cistrome  
92 database<sup>27</sup>. For each TF motif, we used FIMO<sup>28</sup> to identify its genome-wide motif matching sites  
93 (TFMSs) and examine their location distribution in the genome (Fig. 1a). To quantify the spatial  
94 clustering tendency of the genomic distribution pattern of a TFMS, we generated a control by  
95 placing the same number of genomic loci randomly in the genome, following the Poisson point  
96 process. We define a metric, cluster propensity (CP), as the two-sided Kolmogorov-Smirnov (K-  
97 S) test statistic between the genomic interval distribution of the TFMSs and that of the control, to  
98 quantify the genomic clustering tendency of a TFMS profile (Fig. 1a). Intuitively, a TFMS profile  
99 with a spatially clustered pattern will have a positive CP (Fig. 1b,c). If the TFMS interval  
100 distribution is modeled by the Gamma distribution<sup>23</sup>, the CP is correlated with the shape  
101 parameter  $k$  in the Gamma distribution (Supplementary Fig. 1a). TFMS CP is not correlated with  
102 the total number of motif matching sites in the genome, or the motif sequence length  
103 (Supplementary Fig. 1b-d), indicating the robustness of this metric. Among the 528 TFs  
104 analyzed, 417 (79%) show a positive CP, indicating the TFMSs are more clustered than random  
105 in the genome (Fig. 1d). The motif matching sites of the TFs with high TFMS CP are  
106 significantly enriched at the union of super enhancers (SEs) (Fig. 1d, with examples at Fig. 1e, p  
107  $< 0.05$ , by Fisher's exact test). CENPB, a centromere protein, has the highest TFMS CP across  
108 all TFs (Fig. 1b), and EWSR1-FLI1, which recruits BAF complexes to tumor-specific enhancers

109 and activates transcriptional events of Ewing's sarcoma<sup>29</sup>, also ranks on top with high TFMS CP  
110 (Fig. 1c). These results suggest that most TFs' sequence motif matching sites have a higher  
111 clustering tendency than randomly distributed in the genome.

112

### 113 **Clustered TF binding sites are enriched at cell type-specific super-enhancers**

114 DNA sequence only provides the basic anchors of potential TF binding but is not sufficient to  
115 determine the actual binding profile of a TF in a cell type. Therefore, we next examined the  
116 6,650 high-quality ChIP-seq binding profiles to evaluate the clustering tendency of actual TF  
117 binding sites (TFBSs). With the assumption that most TFBSs contain a motif matching  
118 sequence, for a TF binding profile containing a number of binding sites, we randomly sampled  
119 the same number of motif sites from the TFMS profile as the control (Fig. 2a). Similarly, we  
120 defined the TFBS CP as the two-sided K-S test statistic between the genomic interval  
121 distribution of the TFBSs and that of the control, to quantify the genomic clustering tendency of  
122 a TFBS profile (Fig. 2a). The TFBS CP is also a robust metric that is not sensitive to the number  
123 of binding sites called from ChIP-seq data (Supplementary Fig. 2). Interestingly, we found that  
124 all the top 20 TFs mostly shared across 6 cell types exhibit a positive TFBS CP, indicating a  
125 high clustering tendency (Fig. 2b), and these TFBSs are enriched at cell-type specific SEs  
126 compared to genomic control (Fig. 2c). Furthermore, the TFBS CP of a TF profile is highly  
127 correlated with the TF profile's enrichment level at SEs, demonstrating a strong association  
128 between the spatially clustered TF binding pattern and SEs (Fig. 2d). Considering TFBSs may  
129 occur at genomic regions without sequence motifs, we checked the CP of TFBS with or without  
130 sequence motifs and found that the TFBSs without motifs even have a higher CP and higher  
131 enrichment at cell-type-specific SEs compared to TFBSs with motifs (Supplementary Fig. 3a-c).  
132 We found different TFs show different TFBS CP and different enrichment levels at SEs within  
133 the same cell type (Supplementary Fig. 3d), while the same factor also shows different TFBS

134 CPs and different enrichment levels at SEs across different cell types (Supplementary Fig. 4),  
135 indicating the cell-type specificity of TF binding.

136

137 We next used both the absolute and the normalized TFBS CPs to identify potential key factors  
138 with high cell-type specific CPs in each cell type (Fig. 2e). We identified JUND on the top of the  
139 list for several cell types including the colon cancer cell line HCT-116 and the breast cancer cell  
140 line MCF7, while JUND overexpression increases the cell proliferation in prostate cancer<sup>30</sup> and  
141 enhanced JunD signaling is responsible for BET inhibition resistance in cancers<sup>31</sup>. NFIA was  
142 shown as the top ranked TF in the liver cancer cell line HepG2 and was indeed overexpressed  
143 in various cell lines including HepG2<sup>32</sup>. MYC, the top ranked TF in the prostate cancer cell line  
144 LNCaP, is overexpressed and associated with poor survival in human prostate cancer and has  
145 been shown as a major driver of prostate cancer tumorigenesis<sup>33,34</sup>. ERG, the top ranked TF in  
146 the breast cancer cell line MCF7, can induce a mesenchymal-like signature and is positively  
147 correlated with invasive breast cancer<sup>35,36</sup>. ETS-1 is the top ranked factor in the pancreatic  
148 cancer cell line PANC-1 and is overexpressed in pancreas<sup>37</sup> while its increased binding activity  
149 is critical for PANC-1 cellular invasiveness<sup>38</sup>. NOTCH1 and GATA3 were shown on top in T-  
150 ALL. NOTCH1 is a major oncogenic TF in T-ALL<sup>16,39</sup>, and GATA3-mediated enhancer  
151 nucleosome eviction was shown as a driver of MYC expression and is strictly required for  
152 NOTCH1-induced T-ALL initiation and maintenance<sup>40</sup>. These results suggest that many TF  
153 binding sites show a further clustering tendency on top of motif sites with an enrichment at cell-  
154 type-specific SEs, and that a TF's high cell type specific CP can be indicative of its important  
155 oncogenic functions in cancer cells.

156

157 **Transcription factors with highly clustered binding have high liquid-liquid phase  
158 separation potential**

159 The association between clustered TF binding and SEs reminded us of the possible phenomena  
160 of transcriptional condensate formation contributed by TF proteins. To determine other potential  
161 factors that contribute to the clustered pattern of TF binding in addition to DNA sequences, we  
162 next examined the liquid-liquid phase separation (LLPS) property of TF proteins. In 16 cell types  
163 with most TF ChIP-seq profiles<sup>20</sup>, we found a subtle but clear trend that the TFs with higher  
164 TFBS CP tend to have lower AICAP (Fig. 3a), indicating their higher ability to form phase  
165 separated condensates in cells. Remarkably, putting together 300 binding profiles of 30 different  
166 TFs in 154 cell types, we found a significant correlation between TFBS CP and AICAP (Fig. 3b).  
167 If we grouped all TFBSs into four quartiles based on their TFBS CP, we could see that the  
168 negative log-transformed AICAP of the TFs in the third and fourth quartiles with the highest  
169 TFBS CPs are significantly higher than that in the first and second quartiles (Fig. 3c). These  
170 results indicate that the intrinsic LLPS property of TF protein molecules might contribute to the  
171 formation of phase-separated transcriptional condensates at SEs. LLPS of TF proteins that  
172 contain intrinsically disordered regions (IDRs) might be a driver of transcriptional condensate  
173 and super-enhancer formation.

174

175 **Clustered TFBSs show active chromatin features and higher enrichment at SEs in cancer  
176 cells compared to non-clustered TFBSs**

177 Besides using the CP metric to quantify the global feature of a TF binding profile, we also  
178 characterized the genomic regions with densely clustered binding sites of a TF and compared  
179 with those binding sites that are not clustered in the genome in cancer. We defined the  
180 clustered TFBSs (C-TFBSs) as those that are significantly closer to its nearest binding site than  
181 expected in the control distribution, and called the remaining sites non-clustered TFBSs (NC-  
182 TFBSs) (Fig. 4a). Integrating the genome-wide chromatin accessibility profiling (ATAC-seq) data  
183 from The Cancer Genome Atlas (TCGA)<sup>41</sup> with publicly available data such as 3D genome Hi-C  
184 maps and SE annotations from matched cancer types, we compared the chromatin

185 accessibility, chromatin interaction and cell-type-specific SE enrichment between C-TFBSs and  
186 NC-TFBSs in breast cancer (BRCA), colon cancer (COAD), cervical cancer (CESC), liver  
187 cancer (LIHC), and prostate cancer (PRAD), where data for the matched cancer cell types exist.

188

189 We found that all TFs' C-TFBSs are significantly enriched at cell-type specific SEs compared to  
190 NC-TFBSs for all cancer types examined (Fig. 4b,c, Supplementary Fig. 5a) ( $p < 0.05$ , by  
191 Fisher's exact test). We quantified the ATAC-seq signal at each TFBS using the regulatory  
192 potential (RP) metric<sup>42</sup> for comparison between C-TFBSs and NC-TFBSs, and found that the C-  
193 TFBSs show significantly higher ( $p < 0.05$ , by two-tailed Student's t-test) RPs compared to NC-  
194 TFBSs for all TFs in all cancer cell types, indicating a higher chromatin accessibility level at C-  
195 TFBSs (Fig. 4b,c, Supplementary Fig. 5a). Meanwhile, we calculated the differential ATAC-seq  
196 signals in each cancer type comparing to other samples from all other cancer types as control  
197 and found that the C-TFBSs show significantly higher differential chromatin accessibility  
198 compared to NC-TFBSs for the vast majority of TFs (Fig. 4b,c, Supplementary Fig. 5a) ( $p <$   
199 0.05, by two-tailed Student's t-test). We also found that the C-TFBSs tend to have significantly  
200 higher chromatin interactions with their surrounding genomic regions compared to NC-TFBSs  
201 (Fig. 4b,c, Supplementary Fig. 5a) ( $p < 0.05$ , by two-tailed Student's t-test). These results  
202 indicate that those genomic regions with highly clustered TF binding are more active with higher  
203 chromatin accessibility, higher chromatin interactions and higher enrichment at SEs compared  
204 to genomic regions with NC-TFBSs.

205

206 The DNA binding TFs are highly specific to the presence of its binding sequence motif and can  
207 be compromised by mutations affecting the consensus motif sequence<sup>43</sup>. We analyzed the  
208 whole-genome sequencing (WGS) data from BRCA, CRC, CESC, LIHC and PRAD patient  
209 samples from the International Cancer Genome Consortium (ICGC)<sup>44</sup>, but did not see  
210 significantly higher mutation rate at the sequence motif matching site within C-TFBSs compared

211 to NC-TFBSs across all TFs in any cancer type ( $p > 0.05$ , by the two-tailed Student's t-test), and  
212 very few TFs show a higher mutation rate in their binding motif sites than the average mutation  
213 rate in the genome (Fig. 4d,e, Supplementary Fig. 5b). We next examined whether the  
214 mutations of genes encoding the TFs potentially associate with transcriptional condensates at  
215 the TFBSs. We separated the patient samples in each cancer type into two groups by the  
216 ATAC-seq RPs at the C-TFBSs to mimic those samples that contain transcriptional  
217 condensates and others. However, we did not see any significant difference in TF gene  
218 mutations between the samples with high C-TFBS RP and others with lower RPs  
219 (Supplementary Fig. 6). These results suggest that the majority of cancer patient-specific  
220 clustered TFBSs are not due to DNA mutations altering the consensus binding sequence.

221  
222 **Chromatin accessibility levels at clustered TF co-binding sites are predictive of COAD  
223 survival**  
224 Assuming the C-TFBSs have higher transcriptional activity with higher chromatin accessibility  
225 and chromatin interactions than NC-TFBSs, we then sought to study whether the C-TFBSs are  
226 functionally important in cancer cells and their potential relevance to clinical outcome. We  
227 focused on two cancer types, COAD and BRCA, considering they have sufficient samples with  
228 clinical data in TCGA. We used the top 3 TFs, JUND, CEBPB, and SRF, with the highest ranked  
229 TFBS CP in HCT-116 cells, to study the potential functions of C-TFBSs in COAD. Interestingly,  
230 among the total of 14,535 union C-TFBSs of the three factors, 3,898 (27%) are co-occupied by  
231 all three TFs (Fig. 5a), and over 19% and 28% of the co-binding sites are in the intronic or  
232 intergenic regions, respectively (Fig. 5b). We next used dynamic Hi-C data in HCT-116 cells  
233 before and after RAD21 degradation, in which promoter-enhancer interactions and chromatin  
234 condensates were disrupted, to characterize the differential chromatin interactions (DCI) in the  
235 genome<sup>45</sup>. We found that the C-TFBSs of JUND, CEBPB, and SRF and the co-binding regions  
236 exhibited significantly decreased chromatin interactions with their surrounding genomic regions

237 (<100kb) after RAD21 degradation (Fig. 5c) ( $p < 0.05$ , by two-tailed Student's t-test). Putting  
238 together, the high co-localization, high occurrence at non-coding regions, and high enrichment  
239 at SEs, suggest that the clustered co-binding regions of the three factors are likely associated  
240 with transcriptional condensates in colon cancer.

241

242 We next accessed how the co-binding regions of the C-TFBSs are associated with patient  
243 survival. We performed univariate survival analysis for each union chromatin accessibility region  
244 using ATAC-seq data from TCGA COAD samples. We found the ATAC-seq peaks overlapped  
245 with the clustered binding sites of JUND, CEBPB, and SRF and their co-binding regions are  
246 significantly more likely to be associated with survival than a random ATAC-seq peak from the  
247 genome (Fig. 5d) ( $p < 0.05$ , by Fisher's exact test). At 66% of the co-binding regions a high  
248 chromatin accessibility level would significantly associate with poor survival ( $p < 0.05$ , by log-  
249 rank test), shown in Fig. 5e as an example. An example of survival-associated ATAC-seq peaks  
250 co-bound by the three TFs in a super-enhancer region is shown in Figure 5f.

251

## 252 **Co-regulated genes of clustered TFs are predictive of BRCA survival**

253 Unlike COAD, the 3 TFs, ERG, KLF9, and KLF4, with the highest CP rank in breast cancer cell  
254 line MCF7 do not co-occupy their C-TFBSs significantly. Among the total of 7,585 union C-  
255 TFBSs, only 145 (1.9%) are co-occupied by all three factors (Fig. 6a), most (82%) of which are  
256 at gene promoters (TSS+/-2kb) (Fig. 6b). The survival analysis using the ATAC-seq data from  
257 the TCGA BRCA samples do not show significant association between the chromatin  
258 accessibility level at C-TFBS co-binding regions and patient survival (Supplementary Fig. 7a).  
259 Considering the enrichment of the C-TFBS co-binding regions at gene promoters, we sought to  
260 examine the putative target genes of the three factors. We calculated the RP score of the  
261 ATAC-seq peaks overlapped with a set of TFBSs or co-binding sites to each gene. The target  
262 genes of each TF or co-binding sites were selected as those with  $RP \geq 0$  (Fig. 6c). We

263 performed univariate survival analysis for each gene using ATAC-seq RP, and found the target  
264 genes of KLF9, KLF4 and the co-targets are all significantly associated with survival (Fig. 6d).  
265 For example, the three factors ERG, KLF9 and KLF4 have their binding sites clustered at  
266 ZNF598 promoter and the ZNF598 RP calculated from co-binding sites is significantly  
267 negatively correlated with survival in breast cancer patients (Fig. 6e,f). Similar analysis was  
268 performed in COAD and we also observed a high association between the target genes of  
269 JUND, CEBPB and SRF and the clinical outcomes (Supplementary Fig. 7b). Taken together,  
270 these results suggest that the TFs with high CP in a cancer type might function together to  
271 cooperatively bind at super-enhancers and form transcriptional condensates to regulate their  
272 oncogenic target genes.

273

274

## 275 **DISCUSSION**

276 The spatial distribution of non-coding regulatory elements in the genome is associated with  
277 genome organization and gene regulation, but the spacing patterns of cis-regulatory elements  
278 and TF binding sites are rarely studied in a quantitative way. We developed a novel metric,  
279 cluster propensity (CP), to survey a large collection of publicly available genomics data, and  
280 unraveled the association of the clustered patterns of DNA motif elements and TF binding sites  
281 with LLPS transcriptional condensates, which are hypothesized to be the mechanistic basis of  
282 super-enhancers<sup>12</sup>. Furthermore, we found that TFs with clustered binding patterns have high  
283 liquid-liquid phase separation potentials, directly connecting the genomic pattern to molecular  
284 functions. We also found that clustered TF binding sites in cancer cells are highly active and  
285 predictive of patient survival. In summary, genomic sequence features and biophysical  
286 properties both contribute to the clustered pattern of TF binding, and collectively affect  
287 transcriptional condensate formation.

288

289 Biomolecular condensates have been a widely studied subject in molecular biology and  
290 biophysics. IDR-containing proteins, including many TFs and chromatin regulators, can form  
291 large biomolecular condensate through LLPS. In cancer cell nucleus, formation of transcriptional  
292 condensates can enhance the genomic targets of oncogenic TFs and induce aberrant 3D  
293 chromatin structure for tumor transformation<sup>46,47</sup>. Principled computational modeling of DNA  
294 sequence features has shown that the densely clusters of TF binding sites above sharply  
295 defined thresholds can drive the formation of localized condensates to promote enhancer  
296 activity and transcription<sup>14</sup>. However, how this sequence pattern occurs in the human genome  
297 and how different TFs can induce transcriptional condensates in different cell types are still  
298 largely unknown. Our results directly connect genomic information with TFs' LLPS property, two  
299 distinct perspectives that have never been associated before. These results provide quantitative  
300 evidence of potential mechanisms of transcriptional condensate formation and super-enhancer  
301 activity. In practice, characterization of TF CP and clustered TF binding sites could provide a  
302 new approach of studying oncogenic gene regulation and identifying oncogenic drivers in each  
303 different cancer type.

304  
305 We used a data-driven computational approach to reveal the connection between genomic TF  
306 binding patterns and LLPS properties. While it provides evidence supporting the hypothesis that  
307 transcriptional condensate formation is the mechanism of super-enhancers, we do not have  
308 direct experimental data to demonstrate the existence of transcriptional condensate phenomena  
309 at super-enhancers, and their dynamic relations with TF binding patterns. Further experiments  
310 are needed to validate the formation of transcriptional condensates under the perturbation of  
311 identified TFs. Meanwhile, there are other factors missing this work that possibly contribute to  
312 the formation of cell type-specific transcriptional condensates, such as long non-coding RNAs,  
313 RNA-binding proteins, and genomic DNA and chromatin structure factors that facilitate the  
314 chromatin context of condensates. Incorporating these factors in a future updated model will

315 likely improve the characterization of transcriptional condensates' determinants. Furthermore, in  
316 colon cancer and breast cancer case studies, the effects of putative condensate-derived  
317 survival predictors are quite different in different cancer types, indicating the complexity of  
318 cancer transcriptional regulation and epigenetic mechanisms. Further experiments are required  
319 to unravel the cancer type-specific drivers in each individual patient, and to provide translational  
320 insights into therapeutic target identification as part of precision medicine practice.  
321 Nevertheless, this work can set a stepstone of future investigations of biomolecular  
322 condensates from a genomics perspective.

323

324

325 **METHODS**

326 **Identification of the TF sequence motifs in human genome**

327 DNA sequence motifs in the human genome were searched by FIMO<sup>28</sup> (v4.12.0) with Jaspar<sup>26</sup>  
328 database (v2018), with a p-value threshold of 1e-4. As a result, 528 TF motifs were included,  
329 with a total of 288,687,458 motif sites in the genome, and a median of 551,421 motif sites per  
330 motif.

331

332 **Public data collection**

333 Super-enhancers (SEs) in 86 samples were collected from the public domain<sup>5</sup>, the chromosomal  
334 coordinates were transferred from hg19/GRCh37 to hg38/ GRCh38 using LiftOver<sup>48</sup>. Public  
335 ChIP-seq and bigwig profiles were collected from Cistrome Data Browser (DB)<sup>27</sup>. For any TF,  
336 only the high-quality peak profiles were used for the subsequent analysis. The quality control  
337 thresholds include: FastQC >15, uniquely mapped ratio >0.3, PBC >0.3, FRiP >0.005, 10-fold  
338 confident peaks >500, total peaks >2000, and the union DNase I hypersensitive site  
339 overlap >0.3, all determined by Cistrome DB.

340

341 **Find the nearest site of TFMS/TFBS**

342 The command 'bedtools closest -D ref -fd -io -t first' was used to find the distance to the nearest  
343 downstream site for each TFMS/TFBS.

344

345 **Determination of TFMS CP**

346 For a profile with  $N$  TF sequence motif matching sites in the human genome, the Poisson point  
347 process was used to model the background distribution of the  $N$  sites randomly occurring in the  
348 genome. as 1) the distance of a motif to its downstream motif is independent of the distance of  
349 this motif to its upstream motif, 2) the average distance between two motifs is  $L/(N+1)$ , where  $L$   
350 is the total length of the human genome, 3) the two motifs cannot occur at the same location.

351 The TFMS CP is derived from the statistic of two-sided Kolmogorov-Smirnov (K-S) test by  
352 comparing distribution of  $\log_{10}$  distances to the down-stream motif for a TF sequence motif  
353 profile (T) and genomic background control (C) as follows:

354 1, A is defined as the statistic of K-S test following the null hypothesis that

355  $\log_{10}\text{Distance (T)} < \log_{10}\text{Distance (C)}.$

356 2, B is defined as the statistic of K-S test following the null hypothesis that

357  $\log_{10}\text{Distance (T)} > \log_{10}\text{Distance (C)}..$

358 3, CP is determined as

$$359 \quad CP = \begin{cases} A, & A \geq B \\ -B, & A < B \end{cases}$$

360

361 **Fitting of TFMS with Gamma distribution**

362 For each TF motif profile, the  $\text{Gamma}(k, \theta)$  distribution, where  $k$  is shape parameter and  $\theta$  is the  
363 scale parameter were used to fit the distribution of TFMS in the genome.  $\theta$  is determined as the  
364 genome length divided by the number of motifs. The estimated  $k$  from all TFs were displayed in  
365 [Supplementary Fig. 1d](#).

366

367 **Determination of TFBS CP**

368 For a TF ChIP-seq profile with  $N$  peaks, the same number of  $N$  motif sites for the same factor

369 were randomly selected in the genome as the background control. As described in the

370 **Determination of TFMS CP** section, a CP is derived from the two-sided K-S test by comparing

371 the distribution of  $\log_{10}$  distances to the down-stream site from a TF ChIP-seq binding profile

372 (T) and the control (C). The random selection of the background control was performed 100

373 times and the average of 100 CPs was used for the TFBS CP of the ChIP-seq profile, i.e., the

374 TFBS CP of the factor in the corresponding cell type. For a factor with multiple ChIP-seq profiles

375 from the same cell type, the average of TFBS CPs across all ChIP-seq profiles was used as the

376 TFBS CP of the factor in the cell type. To get the normalized cell-type-specific CP of a factor in

377 a cell type, the TFBS CP scores of the factor in all cell types were collected for z-score

378 normalization, and the normalized TFBS CP of the factor in the corresponding cell type was

379 shown in the x-axis of [Fig. 2e](#). For each cell type, the TFs were ranked by the average rank of

380 CP and z-score normalized CP. The top5 TFs were highlighted in [Fig. 2e](#), and the rankings

381 were displayed in [Fig. 4b-e](#).

382

383 **Enrichment of TFMS at union SEs**

384 For each TFMS profile, the two-tailed Fisher's exact test was applied to test the enrichment of

385 TFMS at the union of SEs from 86 samples using the randomly selected genomic loci as

386 control. Odds ratio (OR)  $>1$  ( $\log_2$  OR  $>0$ ) indicating the TFMS are more enriched at union SEs

387 compared to the genomic background control ([Fig. 1d](#)). P-values were calculated using the

388 Fisher's exact test.

389

390 **Identification of clustered and non-clustered TFBS**

391 To identify the clustered- and non-clustered (C-/NC-) TFBS from a TF ChIP-seq profile, the  
392 genomic background control is first selected as randomly selected the same number of  
393 sequence motifs from the same factor. The distribution of distances to the down-stream  
394 sequence motif were collected from the control and the 5-th percentile distance/score was kept.  
395 All the 5-th percentile scores from 100 random samples of background control were averaged  
396 as the cutoff for C-TFBS and NC-TFBS. TFBS with a neighbor less than the cutoff were  
397 grouped into C-TFBS as the binding sites are significantly close to each other compared to the  
398 randomly selected control, while other TFBS were groups into NC-TFBS as those sites do not  
399 have significantly closed neighbors. C-TFBS for each TF ChIP-seq profile were merged as  
400 “bedtools merge -d 5-th-cutoff”. For TFs with multiple ChIP-seq profiles in a same cell type, the  
401 C-TFBSs were further merged across all ChIP-seq profiles as the C-TFBSs of the TF in the cell  
402 type, and all NC-TFBS excluding C-TFBS were merged across all ChIP-seq profiles as NC-  
403 TFBS.

404

#### 405 **Enrichment of C-TFBS at cell-type-specific SEs**

406 For each TF and each cell type, the two-tailed Fisher’s exact test was applied for the enrichment  
407 of C-TFBS at the cell-type-specific SEs using the NC-TFBS as control. Odds ratio (OR)  $>1$  ( $\log_2$   
408 OR  $>0$ ) indicating the C-TFBSs are more enriched at cell type-specific SEs compared to NC-  
409 TFBS ([Fig. 4b,c](#), [Supplementary Fig. 5a](#)).

410

#### 411 **ATAC-seq regulatory potential on TFBS**

412 We use the TCGA ATAC-seq bigwig profiles from primary patients<sup>41</sup> to calculate the chromatin  
413 accessibility regulatory potential (RP)<sup>42</sup> at TFBSs ([Fig. 4a](#)). For each TFBS, the chromatin  
414 accessibility RP was calculated as the sum of ATAC -seq levels weighted by the genomic  
415 distance from the peak center. Specifically, ATAC-seq levels surrounding peak  $i$  were collected

416 and weighted by an exponential decay function for the total chromatin accessibility  $RP_i$  on this  
417 peak:

418

$$RP_i = \sum_j \frac{2e^{-ux_{ij}}}{1 + e^{-ux_{ij}}} S_j ,$$

419 Where  $S_j$  is the chromatin accessibility level surrounding peak  $i$  (peak center +/-100kb), and  $x_{ij}$   
420 is the distance between the center of peak  $i$  and  $S_j$ . The parameter  $u$  determines the decay rate  
421 and is set so that the half-life of the decay function is 10kb. The ATAC-seq RPs comparing C-  
422 TFBSs and NC-TFBSs were assessed using two-sided t-test and the statistics and p-values  
423 were shown in [Fig. 4b,c, Supplementary Fig. 5a](#).

424

#### 425 **Differential ATAC-seq analysis**

426 We used the processed data from Ref.<sup>41</sup> that include a matrix of normalized ATAC-seq insertion  
427 counts within the TCGA pan-cancer peak set to assess the differential chromatin accessibility at  
428 each ATAC-seq peak. The differential ATAC-seq score at each peak was defined as the two-  
429 sided t-test statistics comparing ATAC-seq levels from patients in the corresponding cancer type  
430 vs. patients from other cancers ([Fig. 4a](#)). The differential ATAC-seq scores comparing C-TFBSs  
431 and NC-TFBSs were assessed using two-sided t-test and the statistics and p-values were  
432 shown in [Fig. 4b,c, Supplementary Fig. 5a](#).

433

#### 434 **Chromatin interactions**

435 Hi-C data were processed using HiC-Pro<sup>49</sup>. Contact maps were generated at a resolution of 5kb  
436 and BART3D<sup>45</sup> was applied on the raw count matrices for normalization. The chromatin  
437 interactions with surrounding genomic loci (<100 kb) were collected at each TFBS. The  
438 interactions scores comparing C-TFBSs and NC-TFBSs were assessed using two-sided t-test  
439 and the statistics and p-values were shown in [Fig. 4b,c, Supplementary Fig. 5a](#).

440

441 **Identification of differential chromatin interactions**

442 Hi-C data were first processed using HiC-Pro<sup>49</sup>. Contact maps were generated at a resolution of  
443 5kb. BART3D<sup>45</sup> was applied on raw count matrices between samples before and after RAD21  
444 degradation in HCT-116 cells to generate genome wide differential chromatin interaction (DCI)  
445 profiles (--genomicDistance 100000). DCI score at each 5kb bin was then mapped to the TFBS  
446 to infer the differential chromatin interactions at the binding site (Fig. 4b,c, [Supplementary Fig.](#)  
447 [5a](#)).

448

449 **Detection of mutation at TFBS and genes encoding the TFs**

450 We use the whole genome sequencing (WGS) data from the International Cancer Genome  
451 Consortium (ICGC)<sup>44</sup> to check the mutations at TFBS and genes that encoding the TFs. For  
452 each TFBS in a cell type, the mutation rate at the sequence motif within the TFBS was  
453 calculated as the occurrence of mutation events across all patient samples from the matched  
454 cancer type divided by the total patient numbers. The mutation rates for C-TFBS and NC-TFBS  
455 were then averaged over the number of binding sites and shown in [Fig. 4d,e, Supplementary](#)  
456 [Fig. 5b](#).

457

458 For each TF, the mutation rate at the gene that encoding the TF were assessed the same way  
459 as the TFBS. The patient samples were separated into two groups by the ATAC-seq RPs at C-  
460 TFBS from the corresponding TF for each cancer type, and the mutation rate of the genes  
461 encoding the TF were compared between patients with higher RP and lower RP and were  
462 shown in [Supplementary Fig. 6a](#).

463

464 **Determination of TFBS target genes**

465 For a set of TFBSs, either selected as the C-TFBS from a TF or the co-binding sites shown in  
466 [Fig. 6a](#), the ATAC-seq peaks that overlapped with the TFBSs were used to calculate the

467 regulatory potential (RP)<sup>42</sup> on each gene. The ATAC-seq peak levels surrounding gene  $i$  (TSS  
468  $\pm 100\text{kb}$ ) were collected and weighted by an exponential decay function as shown above, e.g.,  
469 for the  $RP_i$  on gene  $i$ ,  $S_j$  is the ATAC-seq peak level and  $x_{ij}$  is the distance between TSS of  
470 gene  $i$  and ATAC-seq peak  $j$ . The parameter  $u$  determines the decay rate and is set so that the  
471 half-life of the decay function is 10kb (Fig. 6c).

472

### 473 **Survival analysis**

474 Univariate survival analysis at each ATAC-seq peak in each cancer type was applied using  
475 patient samples with both supported TCGA clinical data and ATAC-seq profiles<sup>41,50</sup>. For each  
476 selected cancer type and each identified ATAC-seq peak, the primary patients were separated  
477 into two equal-sized groups based on the chromatin accessibility at the ATAC-seq peaks (top  
478 50% and bottom 50%). The Kaplan-Meier (K-M) method was used to create the survival plots  
479 and log-rank test was used to compare the differences of survival curves.

480

481 Univariate survival analysis at each gene for each cancer type was applied using patient  
482 samples with TCGA clinical data and ATAC-seq profiles. For each selected cancer type and  
483 each gene, the patient samples were separated into two equal-sized groups based on the RP  
484 calculated from TFBS overlapped ATAC-seq peaks. The K-M method was used for the survival  
485 plots and log-rank test was used to compare the differences of survival curves for the p-values.

486

487

### 488 **DATA AND CODE AVAILABILITY**

489 Re-analyzed data results, software packages developed for Cluster Propensity calculation, and  
490 all codes and scripts to produce the results are available at: <https://github.com/zang->  
491 [lab/transcriptional\\_condensates](https://github.com/zang-lab/transcriptional_condensates)

492

493

494 **ACKNOWLEDGEMENTS**

495 The authors thank Dr. Hao Jiang for helpful discussions. This work was supported by US

496 National Institutes of Health grant R35GM133712 to C.Z.

497

498

499 **REFERENCES**

500

- 501 1. Spitz, F. & Furlong, E. E. M. Transcription factors: from enhancer binding to developmental  
502 control. *Nat Rev Genet* 13, 613–626 (2012).
- 503 2. Lambert, S. A. *et al.* The Human Transcription Factors. *Cell* 172, 650–665 (2018).
- 504 3. Bradner, J. E., Hnisz, D. & Young, R. A. Transcriptional Addiction in Cancer. *Cell* 168, 629–  
505 643 (2017).
- 506 4. Whyte, W. A. *et al.* Master Transcription Factors and Mediator Establish Super-Enhancers at  
507 Key Cell Identity Genes. *Cell* 153, 307–319 (2013).
- 508 5. Hnisz, D. *et al.* Super-Enhancers in the Control of Cell Identity and Disease. *Cell* 155, 934–  
509 947 (2013).
- 510 6. Lovén, J. *et al.* Selective Inhibition of Tumor Oncogenes by Disruption of Super-Enhancers.  
511 *Cell* 153, 320–334 (2013).
- 512 7. Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to  
513 genome-wide predictions. *Nat Rev Genet* 15, 272–286 (2014).
- 514 8. Sengupta, S. & George, R. E. Super-Enhancer-Driven Transcriptional Dependencies in  
515 Cancer. *Trends Cancer* 3, 269–281 (2017).
- 516 9. Adam, R. C. *et al.* Pioneer factors govern super-enhancer dynamics in stem cell plasticity  
517 and lineage choice. *Nature* 521, 366–370 (2015).

518 10. Groningen, T. van *et al.* Neuroblastoma is composed of two super-enhancer-associated  
519 differentiation states. *Nat. Genet.* 49, 1261–1266 (2017).

520 11. Boija, A. *et al.* Transcription Factors Activate Genes through the Phase-Separation Capacity  
521 of Their Activation Domains. *Cell* 175, 1842-1855.e16 (2018).

522 12. Sabari, B. R. *et al.* Coactivator condensation at super-enhancers links phase separation and  
523 gene control. *Science* 361, eaar3958 (2018).

524 13. Boija, A., Klein, I. A. & Young, R. A. Biomolecular condensates and cancer. *Cancer Cell* 39,  
525 174–192 (2021).

526 14. Shrinivas, K. *et al.* Enhancer Features that Drive Formation of Transcriptional Condensates.  
527 *Mol Cell* 75, 549-561.e7 (2019).

528 15. Long, H. K., Prescott, S. L. & Wysocka, J. Ever-Changing Landscapes: Transcriptional  
529 Enhancers in Development and Evolution. *Cell* 167, 1170–1187 (2016).

530 16. Fang, C. *et al.* Cancer-specific CTCF binding facilitates oncogenic transcriptional  
531 dysregulation. *Genome Biol* 21, 247 (2020).

532 17. Meeusen, J. V. W. *et al.* Transcription factor clusters enable target search but do not  
533 contribute to target gene activation. *Nucleic Acids Res.* (2023) doi:10.1093/nar/gkad227.

534 18. Cho, W.-K. *et al.* Mediator and RNA polymerase II clusters associate in transcription-  
535 dependent condensates. *Science* 361, 412–415 (2018).

536 19. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A Phase  
537 Separation Model for Transcriptional Control. *Cell* 169, 13–23 (2017).

538 20. Shi, M. *et al.* Quantifying the phase separation property of chromatin-associated proteins  
539 under physiological conditions using an anti-1,6-hexanediol index. *Genome Biol* 22, 229  
540 (2021).

541 21. Levo, M. & Segal, E. In pursuit of design principles of regulatory sequences. *Nat Rev Genet*  
542 15, 453–468 (2014).

543 22. Chen, C.-H. *et al.* Determinants of transcription factor regulatory range. *Nat Commun* 11,  
544 2472 (2020).

545 23. Ji, H., Vokes, S. A. & Wong, W. H. A comparative analysis of genome-wide chromatin  
546 immunoprecipitation data for mammalian transcription factors. *Nucleic Acids Res* 34, e146–  
547 e146 (2006).

548 24. Moorman, C. *et al.* Hotspots of transcription factor colocalization in the genome of  
549 *Drosophila melanogaster*. *Proc. Natl. Acad. Sci.* 103, 12027–12032 (2006).

550 25. Siersbæk, R. *et al.* Molecular Architecture of Transcription Factor Hotspots in Early  
551 Adipogenesis. *Cell Rep.* 7, 1434–1442 (2014).

552 26. Khan, A. *et al.* JASPAR 2018: update of the open-access database of transcription factor  
553 binding profiles and its web framework. *Nucleic Acids Res* 46, gkx1126- (2018).

554 27. Mei, S. *et al.* Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility  
555 data in human and mouse. *Nucleic Acids Res* 45, D658–D662 (2017).

556 28. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif.  
557 *Bioinformatics* 27, 1017–1018 (2011).

558 29. Shorter, J. Prion-like Domains Program Ewing's Sarcoma. *Cell* 171, 30–31 (2017).

559 30. Elliott, B. *et al.* Essential role of JunD in cell proliferation is mediated via MYC signaling in  
560 prostate cancer cells. *Cancer Lett* 448, 155–167 (2019).

561 31. Tai, F., Gong, K., Song, K., He, Y. & Shi, J. Enhanced JunD/RSK3 signalling due to loss of  
562 BRD4/FOXD3/miR-548d-3p axis determines BET inhibition resistance. *Nat Commun* 11,  
563 258 (2020).

564 32. Hu, Y.-W. *et al.* RP5-833A20.1/miR-382-5p/NFIA-Dependent Signal Transduction Pathway  
565 Contributes to the Regulation of Cholesterol Homeostasis and Inflammatory Reaction.  
566 *Arter., Thromb., Vasc. Biol.* 35, 87–101 (2015).

567 33. Qiu, X. *et al.* MYC drives aggressive prostate cancer by disrupting transcriptional pause  
568 release at androgen receptor targets. *Nat Commun* 13, 2559 (2022).

569 34. Koh, C. M. *et al.* MYC and Prostate Cancer. *Genes Cancer* 1, 617–628 (2010).

570 35. Mochmann, L. H. *et al.* ERG induces a mesenchymal-like state associated with  
571 chemoresistance in leukemia cells. *Oncotarget* 5, 351–362 (2013).

572 36. Huang, H. *et al.* Defining super-enhancer landscape in triple-negative breast cancer by  
573 multiomic profiling. *Nat. Commun.* 12, 2242 (2021).

574 37. Ito, T. *et al.* Expression of the ets-1 proto-oncogene in human pancreatic carcinoma. *Mod  
575 Pathology Official J United States Can Acad Pathology Inc* 11, 209–15 (1998).

576 38. Ito, H. *et al.* Prostaglandin E2 Enhances Pancreatic Cancer Invasiveness through an Ets-1-  
577 Dependent Induction of Matrix Metalloproteinase-2. *Cancer Res* 64, 7439–7446 (2004).

578 39. Wang, H. *et al.* NOTCH1–RBPJ complexes drive target gene expression through dynamic  
579 interactions with superenhancers. *Proc National Acad Sci* 111, 705–710 (2014).

580 40. Belver, L. *et al.* GATA3-Controlled Nucleosome Eviction Drives MYC Enhancer Activity in T-  
581 cell Development and Leukemia. *Cancer Discov* 9, 1774–1791 (2019).

582 41. Corces, M. R. *et al.* The chromatin accessibility landscape of primary human cancers.  
583 *Science* 362, eaav1898 (2018).

584 42. Wang, S. *et al.* Modeling cis-regulation with a compendium of genome-wide histone  
585 H3K27ac profiles. *Genome Res* 26, 1417–1429 (2016).

586 43. Hnisz, D. *et al.* Activation of proto-oncogenes by disruption of chromosome neighborhoods.  
587 *Science* 351, 1454–1458 (2016).

588 44. Consortium, I. C. G. *et al.* International network of cancer genome projects. *Nature* 464,  
589 993–998 (2010).

590 45. Wang, Z., Zhang, Y. & Zang, C. BART3D: Inferring transcriptional regulators associated with  
591 differential chromatin interactions from Hi-C data. *Bioinformatics* 37, btab173- (2021).

592 46. Ahn, J. H. *et al.* Phase separation drives aberrant chromatin looping and cancer  
593 development. *Nature* 595, 591–595 (2021).

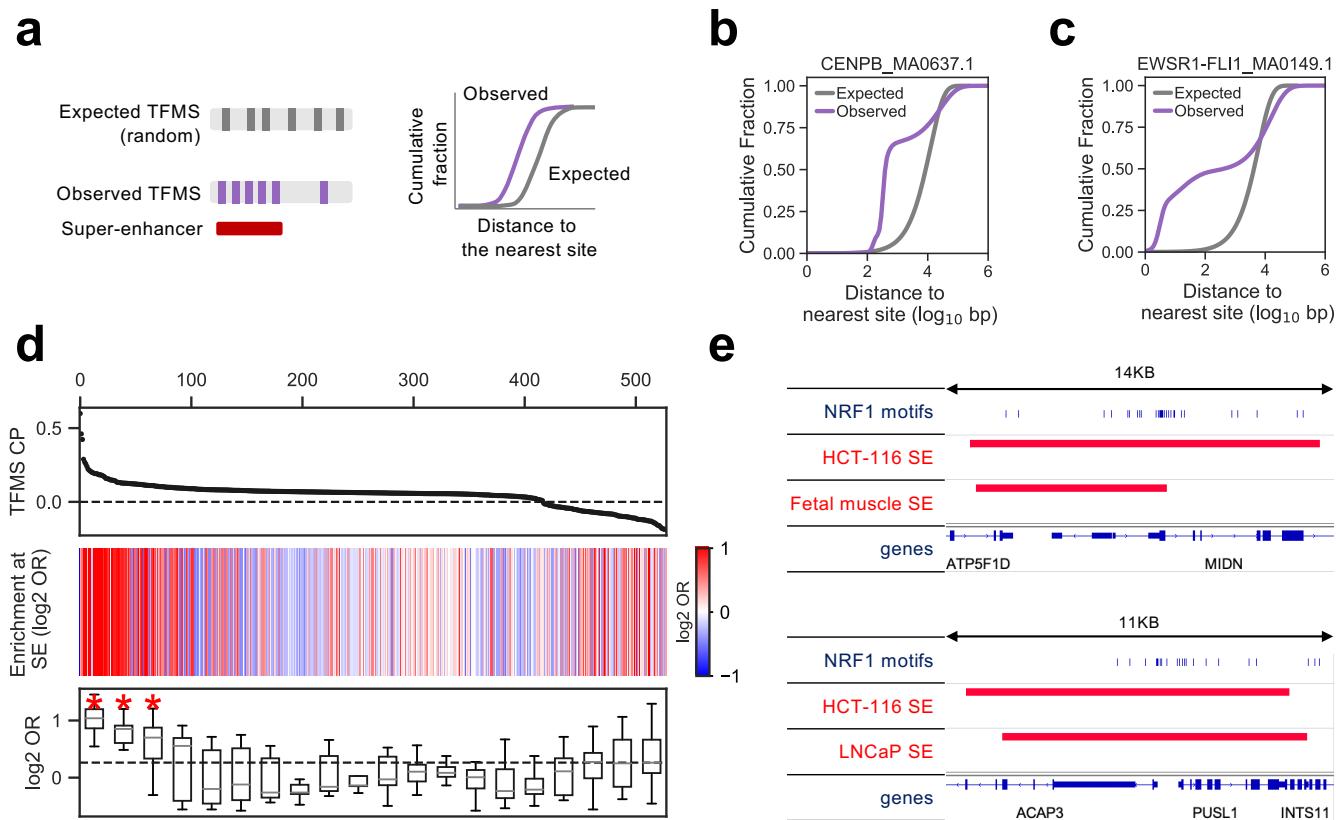
594 47. Shi, B. *et al.* UTX condensation underlies its tumour-suppressive activity. *Nature* 597, 726–  
595 731 (2021).

596 48. Kent, W. J. *et al.* The Human Genome Browser at UCSC. *Genome Res* 12, 996–1006  
597 (2002).

598 49. Servant, N. *et al.* HiC-Pro: an optimized and flexible pipeline for Hi-C data processing.  
599 *Genome Biol* 16, 259 (2015).

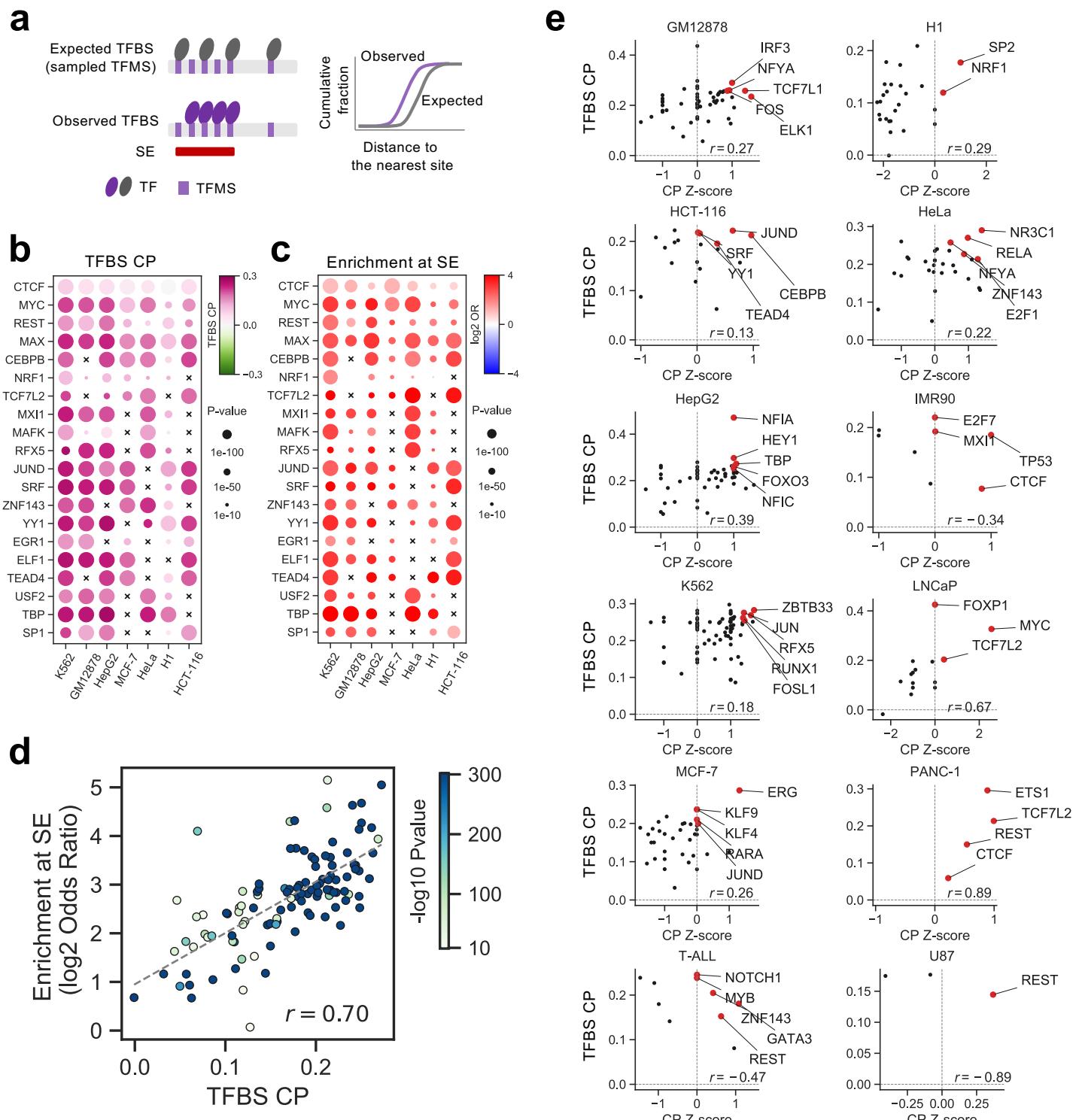
600 50. Zhang, J. *et al.* International Cancer Genome Consortium Data Portal—a one-stop shop for  
601 cancer genomics data. *Database* 2011, bar026 (2011).

602

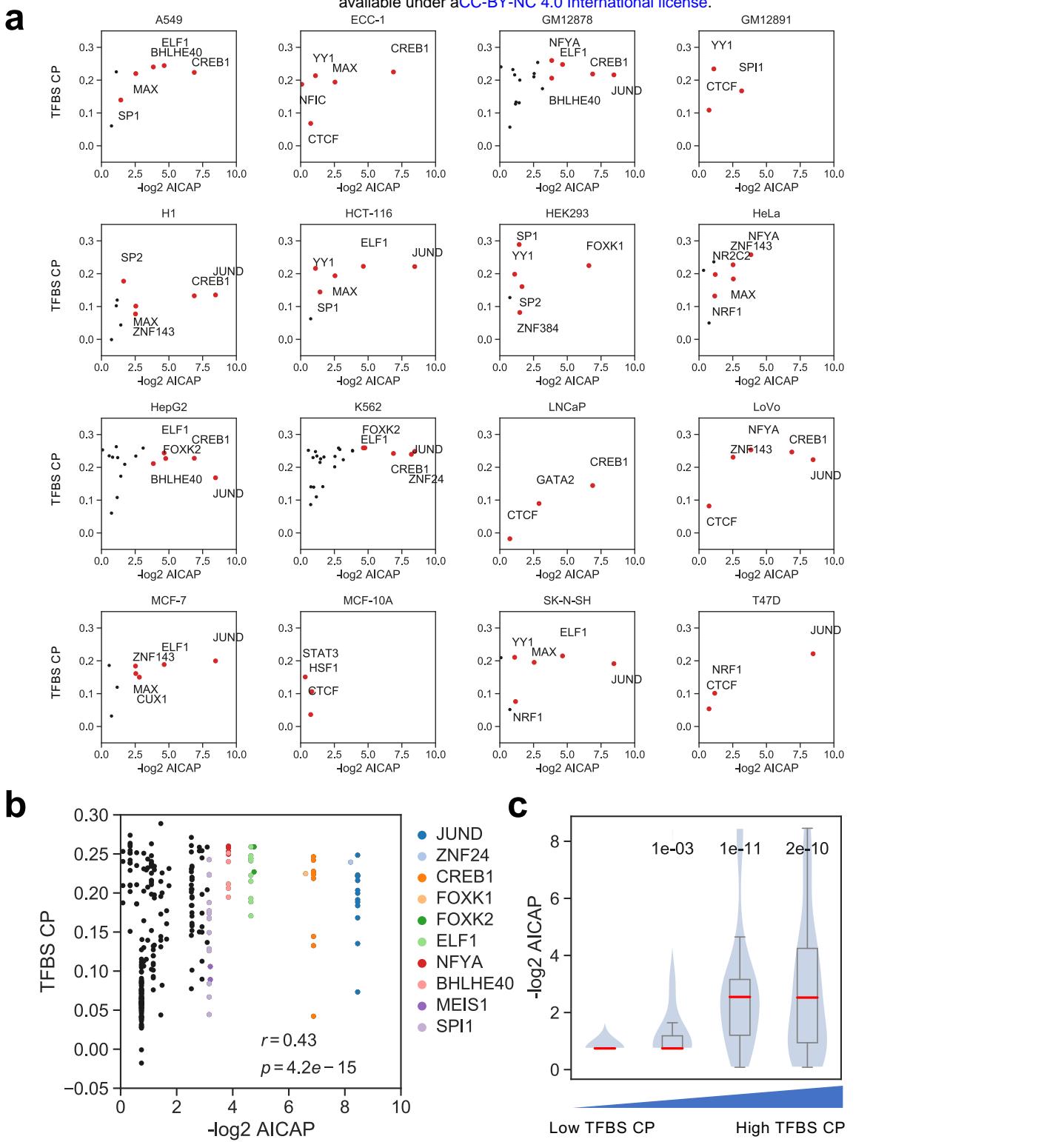


**Figure 1. Clustered transcription factor motif sites (TFMS) are enriched at super-enhancers (SEs).**

**(a)** Schematic of TFMS cluster propensity (CP). K-S test is used to compare the cumulative distributions of distance to the nearest downstream site between the TFMS profile (Observed) and the random control (Expected). **(b,c)** Cumulative distributions of distance to the nearest downstream motif site for CENPB (b) and EWSR1-FLI1 (c) and their corresponding control (expected random distribution). **(d)** Association of TFMS CP with their enrichment at union SEs. Top: Rank of 528 TF motifs by TFMS CP. Middle: Enrichment (log2 odds ratio) of each TFMS profile at union SEs compared to genomic control. Bottom: The 528 motifs were divided into 20 equal-size groups. The boxplots show the enrichment (log2 odds ratio) of TFMS at union SE compared to genomic control. \*  $p < 0.05$ , by one-sample one-sided t-test. **(e)** Genome browser snapshots of NRF1 motifs and the surrounding SEs.



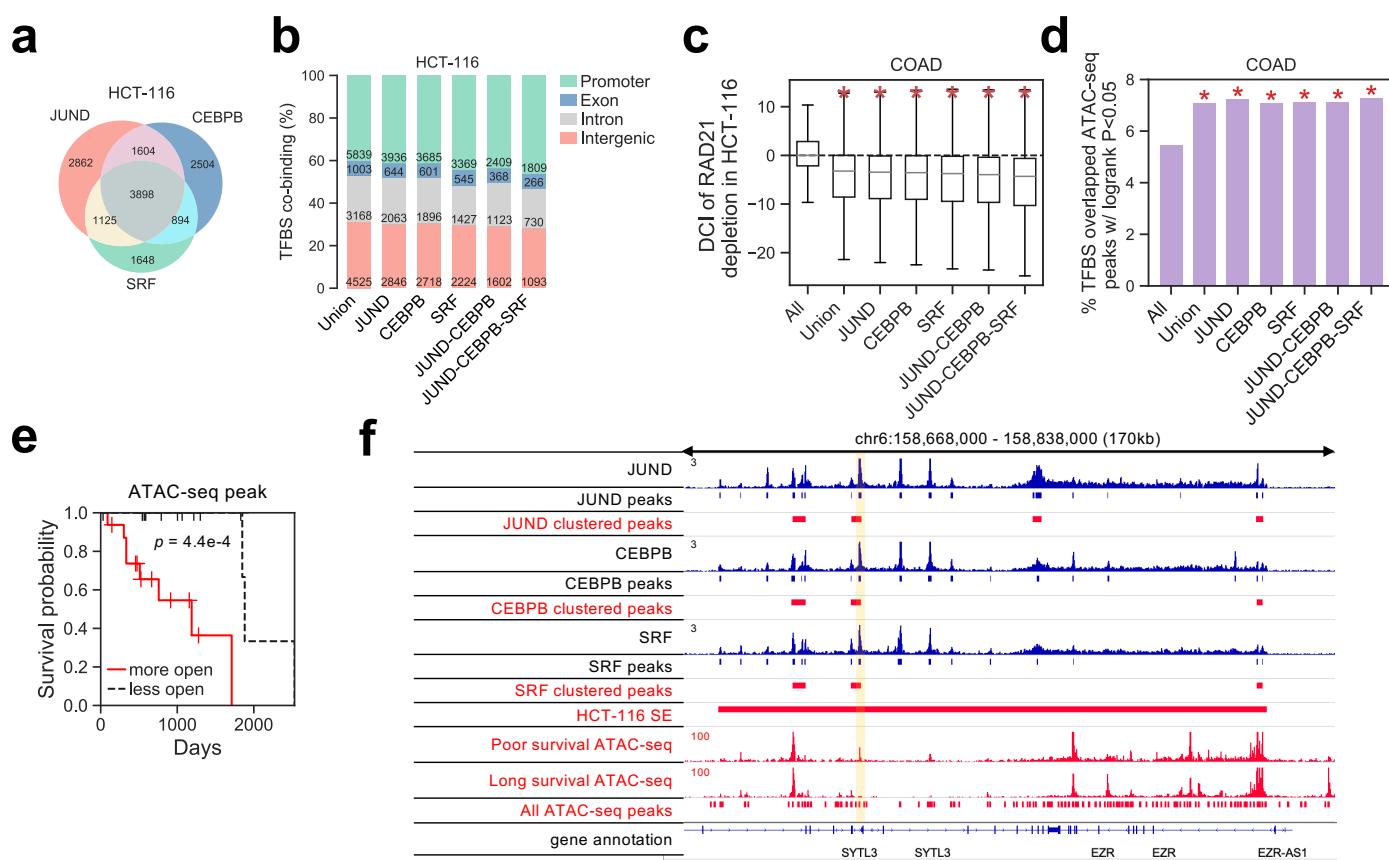
**Figure 2. Clustered transcription factor binding sites (TFBS) are enriched at cell type-specific super-enhancers (SEs).** (a) Schematic of TFBS CP. K-S test is used to compare the cumulative distributions of distance to the nearest downstream site between a TFBS profile (Observed) and the random control (Expected), generated by randomly selecting the same number of motif sites. (b) TFBS CP of 20 TFs in 6 cell types. The color indicates TFBS CP and the circle size indicates p-value calculated by K-S test. (c) Enrichment of TFBS at cell type-specific SE compared with random control (expected). The color indicates the enrichment at SE (log2 odds ratio) and the circle size indicates p-value calculated by the Fisher's exact test. (d) Scatter plots of profiles for 20 TFs in 6 cell types for TFBS CP (x-axis) and their enrichment at cell type-specific SEs compared with random control (y-axis). (e) Scatter plots of TFs showing their TFBS CP (y-axis) and z-scaled TFBS CP (x-axis) in each of the 12 cell types with at least 3 TFs having ChIP-seq data.



**Figure 3. Clustered transcription factors are associated with LLPS potential. (a)** Scatter plots of TFBS CP (y-axis) against -log2 AICAP score (x-axis) in 9 cell types, each of which has at least 3 TFs with both ChIP-seq and AICAP data available. A lower AICAP score (higher -log2 AICAP) indicates a higher potential of liquid-liquid phase separation (LLPS). **(b)** Scatter plots of TFBS CP (y-axis) against log2 AICAP score (x-axis) of all TFs across all cell types with both ChIP-seq and AICAP data available. **(c)** Box plots of -log2 AICAP scores for 4 quartiles of TFs grouped by TFBS CP. Numbers in the plot are the p-values comparing the -log2 AICAP scores in the corresponding quartile with the first quartile, calculated by the one-sided Student's t-test.

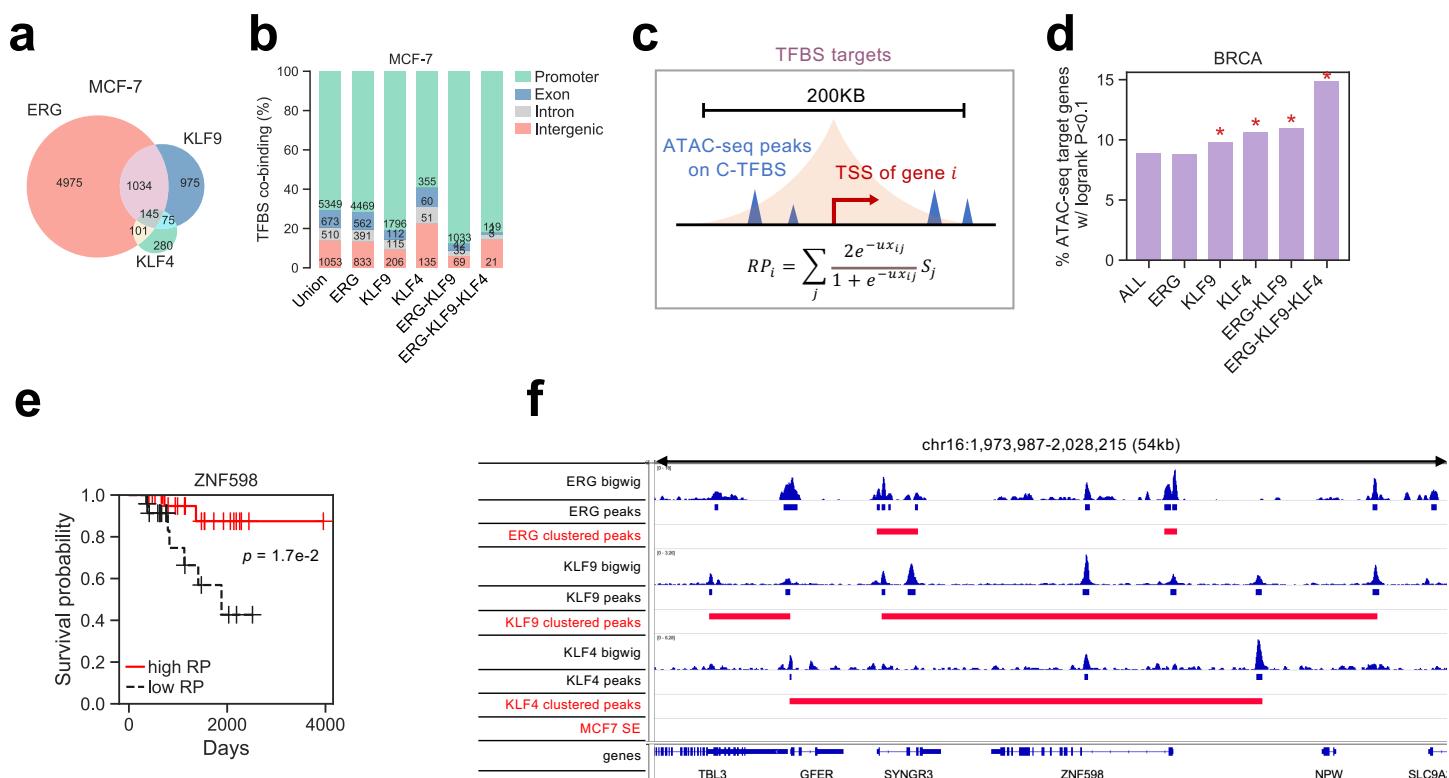


**Figure 4. Clustered TFBS show higher SE enrichment and higher chromatin activities in cancer cells. (a)** Schematic of the epigenomic features comparing between clustered (C-) and non-clustered (NC-) TFBS. **(b,c)** C-TFBS and NC-TFBS comparison in cell-type-specific SE enrichment, ATAC-seq RP, differential ATAC-seq score, and Hi-C interactions, in BRCA (b) and COAD (c). TFs were ranked along the x-axis by CP rank (average rank of TFBS CP and z-scaled CP) as shown in Fig. 2e. **(d,e)** Mutation rate at motif loci within the binding sites comparing C-TFBS and NC-TFBS in BRCA (d) and COAD (e). TFs were ranked along the x-axis by CP rank (average rank of TFBS CP and z-scaled CP) as shown in Fig. 2e.

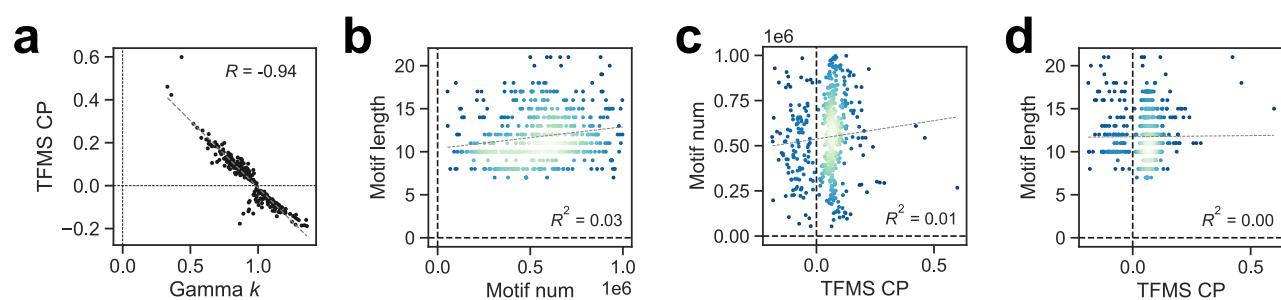


**Figure 5. Chromatin accessibility at clustered TF co-binding sites is predictive of COAD survival.**

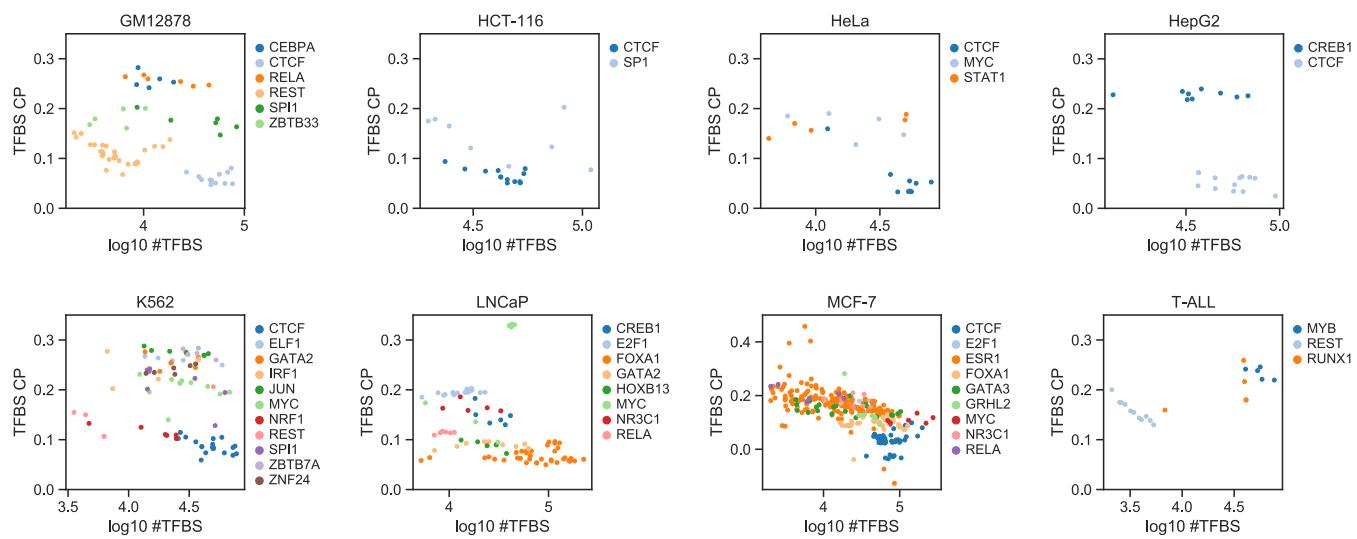
**(a)** Numbers of co-binding of clustered sites of JUND, CEBPB and SRF, the 3 factors with the highest ranked CP in COAD. **(b)** Genomic distributions of binding and co-binding of of the 3 factors' clustered sites. **(c)** Differential chromatin interaction (DCI) levels at binding and co-binding of the 3 factors' clustered sites. DCI were calculated comparing before and after RAD21 degradation in HCT-116 cells. \*  $p < 0.05$ , by two-sided Student's t-test. **(d)** Percentage of ATAC-seq peaks overlapping with each category that are significantly associated with COAD survival. \*  $p < 0.05$ , by two-sided Student's t-test. **(e)** Univariate survival analysis comparing patients with high (red) and low (black) chromatin accessibility at the clinical-associated ATAC-seq peaks. P-value by log-rank test. **(f)** Example ChIP-seq and ATAC-seq signals surrounding an ATAC-seq peak.



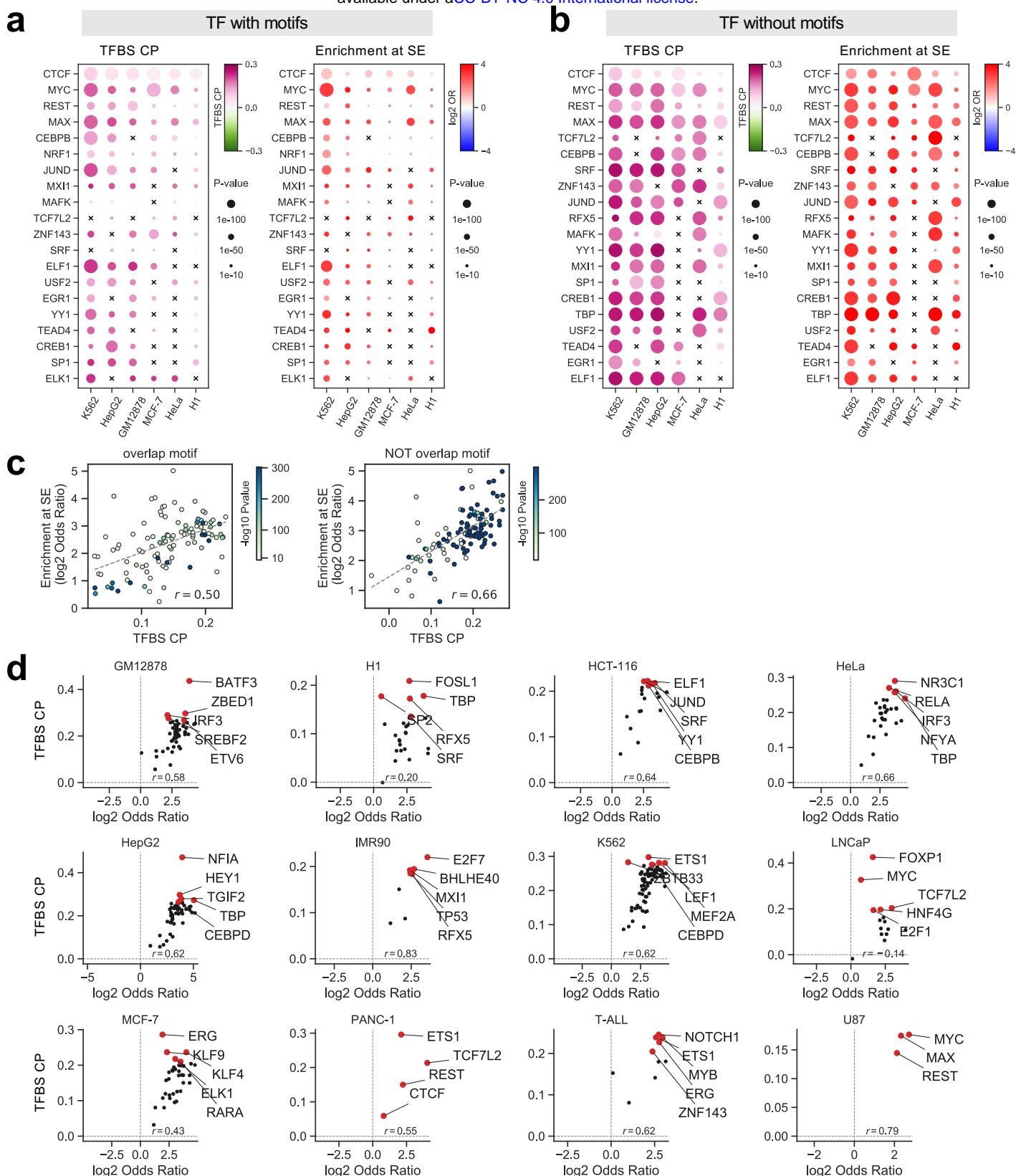
**Figure 6. Co-regulated genes of clustered TFBSs are predictive of BRCA survival. (a)** Venn diagram of co-binding of clustered sites of ERG, KLF9, and KLF4, the 3 factors with the highest ranked CP rank (average rank of TFBS CP and z-scored CP) in BRCA. **(b)** Genomic distributions of binding and co-binding of the 3 factors' clustered sites. **(c)** Schematic of TF regulatory potential (RP) on target genes. Identified TFBSs overlapped ATAC-seq peaks surrounding a gene locus (TSS +/- 100KB) were collected and the weighted sum was calculated as the RP for this gene. **(d)** Percentage of the target genes of each category that are significantly associated with BRCA survival. \*  $p < 0.05$ , by two-sided Student's t-test. **(e)** Univariate survival analysis at gene ZNF598 comparing patients with high (red) and low (black) ATAC-seq RP. P-value was identified by log-rank test. **(f)** Example of ChIP-seq and ATAC-seq signals surrounding the gene ZNF598.



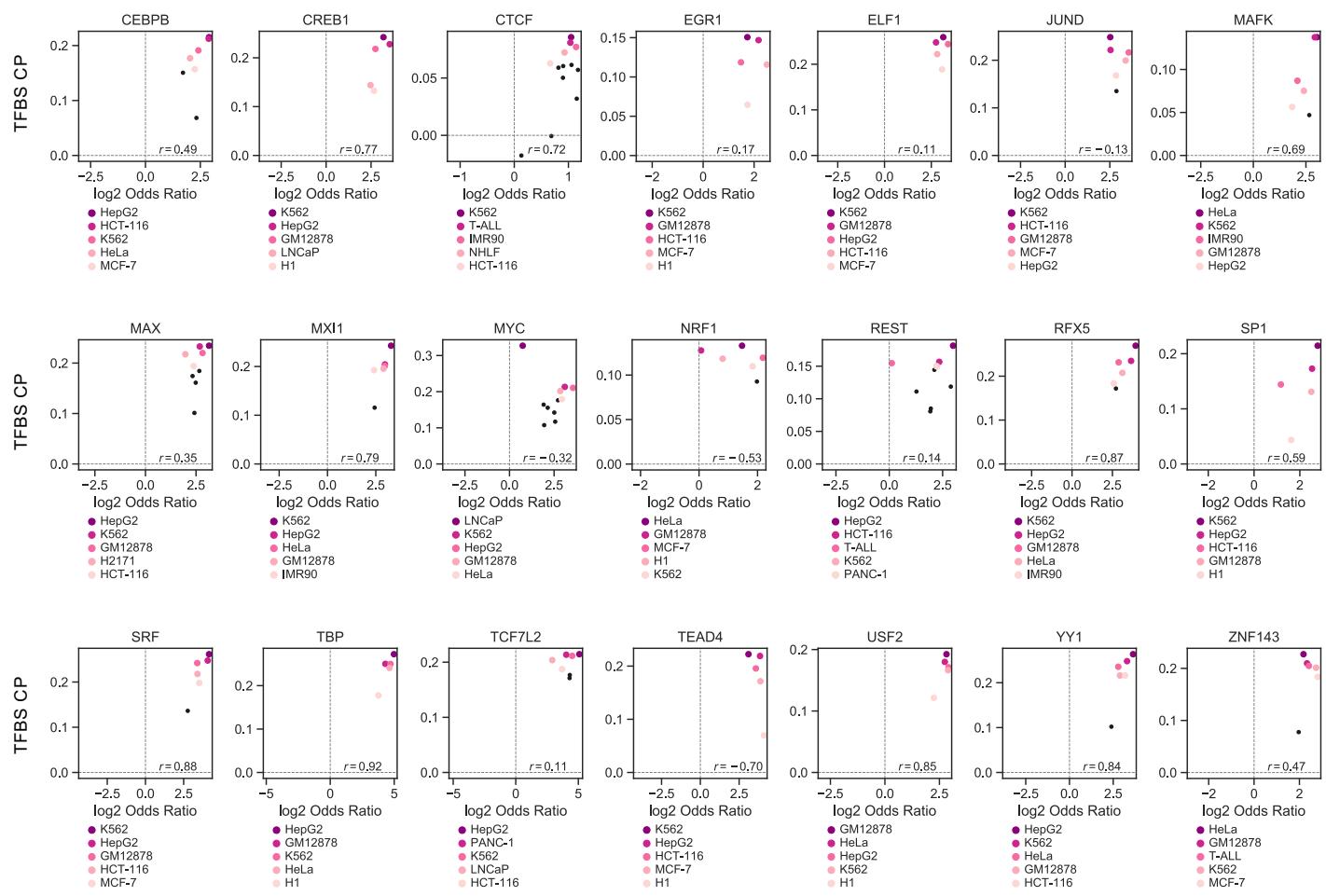
**Supplementary Fig 1. Different TFs show different TFMS CPs. (a)** Association of Gamma k with TFMS CP. **(b-d)** Scatter plots of correlation among TFBS CP, number and length of TF motifs.



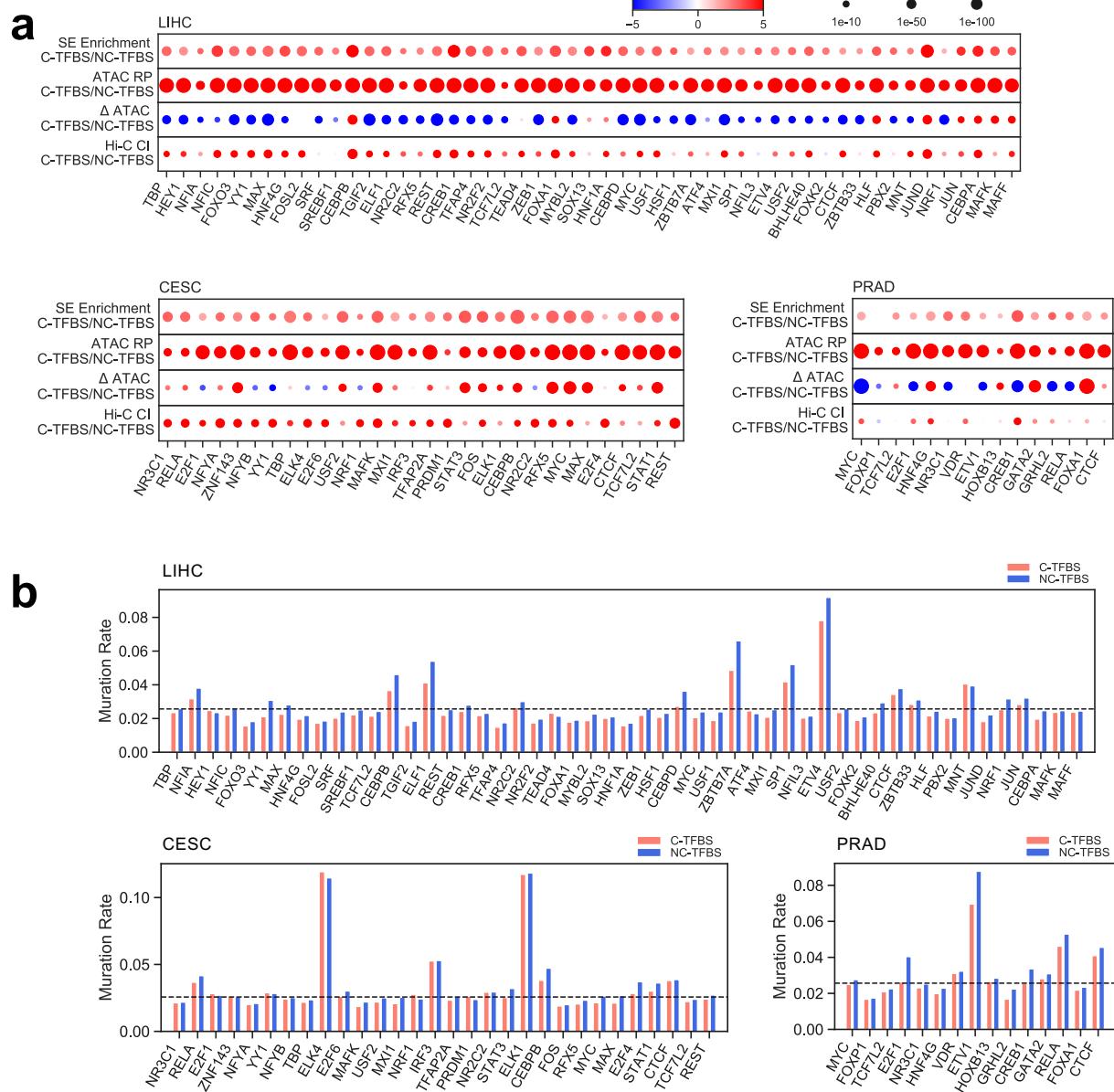
**Supplementary Fig 2. TFBS CPs are not correlated with the number of peaks in the ChIP-seq profiles.** Scatter plots of TFBS CP (y-axis) against the number of binding sites ( $\log_{10}$ ) in ChIP-seq profile in each of the 8 cell types with at least 5 TFs having ChIP-seq data.



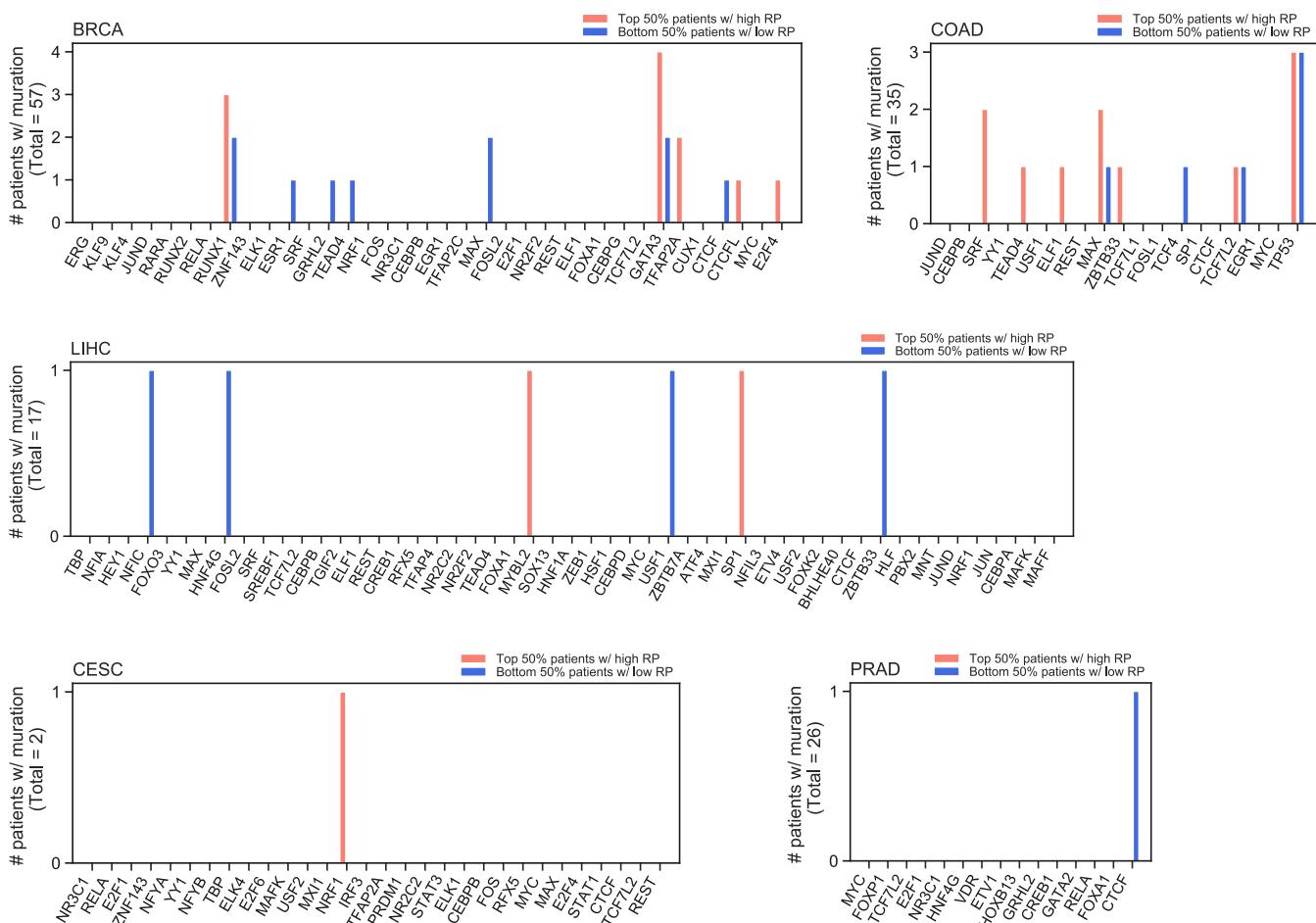
**Supplementary Fig 3. TFs show different TFBS CPs in different cell types.** (a,b) TFBS CP (left) and enrichment of TFBS at cell type-specific SE compared with random control (right) of 20 TFs in 6 cell types for TFBS with motif (a) and without motif(b). (c) Scatter plots of correlation of TFBS CP (x-axis) and enrichment of TFBS at cell type-specific SE compared with random control (y-axis) of 20 TFs in 6 cell types. (d) Scatter plots of TFBS CP (y-axis) against the enrichment of TFBS at cell type-specific SE (x-axis) in each of the 12 cell types with at least 3 TFs having ChIP-seq data.



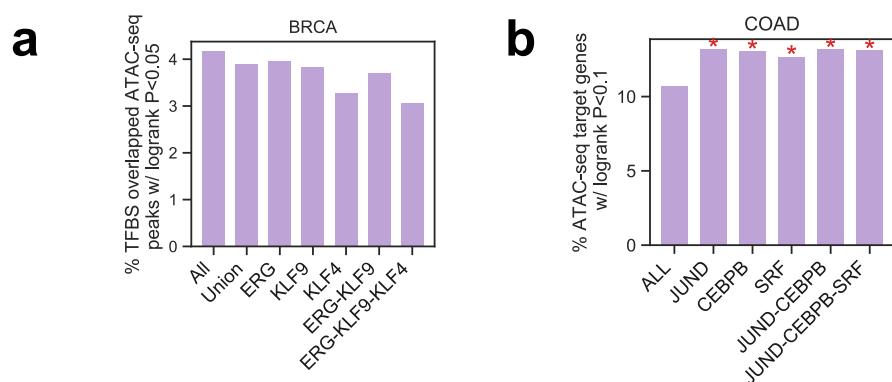
**Supplementary Fig 4. The same factor has different TFBS CPs across different cell types.** Scatter plots of TFBS CP (y-axis) against the enrichment of TFBS at cell type-specific SE (x-axis) in each of the 21 factors with at least 5 cell types having ChIP-seq data.



**Supplementary Fig 5. Chromatin activity and mutations of C-TFBS and NC-TFBS in different cancer cells.** (a) The comparison of enrichment at cell-type-specific SEs, ATAC-seq RP, differential ATAC-seq score and Hi-C chromatin interactions between C-TFBS and NC-TFBS in LIHC, CESC and PRAD. TFs were ranked on x-axis by CP rank as shown in Fig. 2e. (b) Mutation rate at motif loci within the binding sites comparing C-TFBS and NC-TFBS in LIHC, CESC and PRAD. TFs were ranked on x-axis by CP rank as shown in Fig. 2e.



**Supplementary Fig 6. Mutations at genes encoding TFs in different cancer cells.** The mutation rate of genes encoding the TFs in LIHC, CESC and PRAD. For each factor and in each cell type, the patients were evenly separated into two groups by their averaged ATAC-seq RP at the C-TFBSs from the corresponding TF. TFs were ranked on x-axis by CP rank as shown in Fig. 2e.



**Supplementary Fig 7. Association of chromatin accessibility levels at clustered TFBSS and clinical outcome.** **(a)** Bar plot of percentage of clinical associated ATAC-seq peaks overlapping binding and co-binding of C-TFBS of the 3 factors with the highest CP rank in BRCA. **(b)** Bar plot of percentage of clinical associated target genes of the 3 factors with the highest CP rank in in COAD.