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ABSTRACT 32 

APOGEE 2 is a mitochondrially-centered ensemble method designed to improve the accuracy 33 

of pathogenicity predictions for interpreting missense mitochondrial variants. Built on the joint 34 

consensus recommendations by the American College of Medical Genetics and 35 

Genomics/Association for Molecular Pathology (ACMG/AMP), APOGEE 2 features an improved 36 

machine learning method and a curated training set for enhanced performance metrics. It offers 37 

region-wise assessments of genome fragility and mechanistic analyses of specific amino acids 38 

that cause perceptible long-range effects on protein structure. With clinical and research use in 39 

mind, APOGEE 2 scores and pathogenicity probabilities are precompiled and available in 40 

MitImpact. APOGEE 2's ability to address challenges in interpreting mitochondrial missense 41 

variants makes it an essential tool in the field of mitochondrial genetics.  42 

 43 

 44 
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Introduction 47 

Mitochondria are responsible for many of the most important functions in eukaryotic cells. They 48 

use oxidative phosphorylation (OXPHOS) to produce large amounts of adenosine triphosphate 49 

(ATP), store calcium for cell signaling, generate heat, and mediate cell growth and death. 50 

Mitochondria, in contrast to the nuclear genome (nDNA), have a smaller repertoire of DNA-51 

repair pathways. They counteract Muller's ratchet 1, the progressive accumulation of deleterious 52 

mutations, with a process known as the mtDNA bottleneck, which, while controversial 2, explains 53 

the increase in cell-to-cell variability in terms of mutant load during development. A unique 54 

mechanism for the degradation of mutated DNA molecules 3 eliminates defective cells, allowing 55 

the mutant load to be stabilized over generations. Despite this, the mtDNA to nDNA variant 56 

ratios range from a few folds in non-vertebrates up to at least 20 folds in vertebrates 4. The lack 57 

of protective histones in mitochondria, the proximity of mtDNA to the electron transport chain, 58 

which is a primary cellular source of reactive oxygen species, or a dNTP pool imbalance that 59 

leads to decreased DNA polymerase gamma fidelity 5 are all factors that could affect these 60 

ratios. 61 

Mutations in the mtDNA are at the core of many human diseases 6. Currently, ~1000 different 62 

mutations are associated, based on literature, with human diseases in MITOMAP 7, ~10% of 63 

which with compelling evidence of being pathogenic based on published literature (named as 64 

confirmed in MITOMAP), ~86% not been definitively shown to cause disease (named as 65 

reported), and 4% including synergistic and conflicting variants. 94% of confirmed and reported 66 

variants are single nucleotide variants (SNVs) and span the whole genome. Missense variants 67 

account for 43% of all SNVs in MITOMAP (Figure 1A); 58% of them are present in the Genome 68 

Aggregation Database (gnomAD) 8 and 65% in HelixMTdb 9 (Figure 1B).  69 

As one might anticipate, the majority of gnomAD's missense variants are benign based on 70 

ClinVar, but gnomAD also includes twelve MITOMAP confirmed missense variants and an 71 
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additional three that ClinVar classifies as pathogenic (Supplementary Table 1). In the case of 72 

new variants or without a confirmed functional effect, one should apply the full 2020 73 

ClinGen/ACMG/AMP guidelines 10. For allele frequency (AF), they allow an evidence weight of 74 

“supporting” when a variant is found at an AF <1/50000 (<0.002%) in mitochondrial specific 75 

databases (pathogenic criteria code “PM2”), “likely benign” when AF >0.5% (“BS1”), or “stand-76 

alone benign” when AF>1% and there is no other conflicting evidence, such as a novel 77 

occurrence in a major haplogroup branch to support pathogenicity (“BA1”). While confirmed 78 

variants are mostly rare 8, reported, conflicting, and synergistic variants are far more common. 79 

Indeed, there are eight confirmed variants in gnomAD with AF ≥0.002% (Supplementary Table 80 

1) and 187 reported variants with AF ≥0.002%, of which 28 with AF ≥0.5% and 16 ≥1%. 81 

Similarly, HelixMTdb contains seven confirmed variants with frequencies ≥0.002% 82 

(Supplementary Table 1) and 191 reported variants ≥0.002%, of which 23 have AF ≥0.5% and 83 

13 ≥1% (Figure 1C). Because neither of the databases is enriched for mitochondrial disorders 84 

or other clinical phenotypes, compared to the GenBank mtDNA sequence repository, these 85 

variants are unlikely to be all pathogenic. As a result, the variant pathogenicity can be 86 

challenging to predict as there are several biological mechanisms that concur with the functional 87 

behavior, e.g., epistasis and modulatory effects, which cannot be solely based on allelic 88 

frequency. 89 
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 90 

Figure 1: A. Counts (top) of reported and confirmed missense variants for all mtDNA protein-coding 91 
genes and their frequency (bottom) calculated on each gene length. B. Common missense variants 92 
between HelixMTdb, gnomAD, and MITOMAP’s confirmed and reported variants. C. Distribution of 93 
heteroplasmic (gnomAD, n = 164, HelixMTdb, n = 204) and homoplasmic (gnomAD, n = 187, HelixMTdb, 94 
n = 198) reported variants in gnomAD (left) and HelixMTdb (right) based on their AF. Dashed lines 95 
represent the 0.002%, 0.5%, and 1% AF thresholds. Error bars represent the 95% CIs around the median 96 
values. Red dots are outlier variants by AF.  97 
 98 

Inconsistencies were mitigated with the introduction of in silico prediction methods in 2015 by 99 

the ACMG and AMP’s joint consensus recommendations 11, which were later implemented 10 for 100 

the mitochondrial genome specifically. Variants were further given supporting evidence of 101 

benign status (“BP4”) when multiple lines of computational evidence suggested no impact on 102 

the gene or gene product (coding non-synonymous variants: APOGEE score ≤0.5; tRNA 103 

variants: MitoTip 12 <50th percentile and HmtVar 13 <0.35). On the contrary, variants were 104 
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assigned an evidence weight of supporting pathogenicity (“PP3”) when APOGEE >0.5; MitoTip 105 

>50th percentile and HmtVar ≥0.35. 106 

The first version of APOGEE 14 was chosen over a slew of other options, the majority of which 107 

were designed to work with nuclear-encoded genes. They had poor prediction records when 108 

applied to mtDNA variants, evoking the historical congruency issue among predictors 15. As a 109 

result, APOGEE was built as an ensemble method that was trained on mitochondrial-specific 110 

features that contributed to the best classification performance among all competitors.  111 

Here, we present its latest iteration. With a better, state-of-the-art, machine learning method and 112 

a curated training set, APOGEE version 2 improves its own performance. We tested its ability to 113 

spot pathogenic and neutral 16 variants in the mitochondrial genome and profiled its time-114 

dependent “learning curve” to demonstrate how the steadily growing number of high-quality 115 

annotated mtDNA variants affects its classification performance. We have pre-calculated the 116 

prediction scores and pathogenicity probabilities of all possible missense variants of the mtDNA 117 

and set five classes of pathogenicity to support clinicians and geneticists in reporting their 118 

genetic diagnoses. Finally, we have conducted a mechanistic analysis of specific amino acids 119 

that cause perceptible long-range effects on the protein structure to discuss the significance of 120 

strengthening protein structural features in the training set. 121 

Results 122 

Characteristics of the training set 123 

The APOGEE 2 training set (Dataset 1) contains 140 pathogenic and likely harmful variants and 124 

1734 benign and likely harmless variants that have been manually curated (see Methods for a 125 

detailed description of the datasets). These were annotated with mitochondrially-tailored 126 

evolutionary, positional, and structural features and fourteen pathogenicity assessments of in 127 

silico predictors. Most of their Pearson correlation coefficients were in the range (-0.5, 0.5); 128 
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MutationAssessor, SNAP, and PhD-SNP exhibited absolute Pearson's r values >0.7 with more 129 

than one other feature (Supplementary Figure 1A and Supplementary Table 2).  130 

Features were not always available for all variants. Missing values accounted for 1% of the 131 

evolutionary scores and in silico predictions and 0.2% of structural and positional values. We 132 

imputed them by using a Random Forest-based iterative imputer, which displayed the lowest 133 

Normalized Root Mean Squared Error (NRMSE) values of all tested imputation methods 134 

(Supplementary Figure 1B). 135 

 136 
Supplementary Figure 1: A. Matrix of Pearson correlation coefficients calculated on the scaled 137 
prediction scores to zero mean and unit variance of non-positional features for all possible mitochondrial 138 
missense variants. Axes labels related to pathogenicity predictors are highlighted in bold. B. Imputation of 139 
missing values with five algorithmic strategies; performance is measured in terms of Normalized Root 140 
Mean Squared Error (NRMSE, Y-axis); multipliers of the a priori probability of missing values in MitImpact 141 
(i.e., the unitary value) on the X axis (see Methods); both mean errors (lines) and their 95% CI (colored 142 
shadows) are reported in the figure.  143 
 144 

Training, testing, and performance assessment 145 

We examined different machine-learning (ML) classification methods to sort deleterious 146 

variants, searching for the best-performing one, while all were designed to properly tackle the 147 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.18.545476doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.18.545476
http://creativecommons.org/licenses/by-nd/4.0/


8 
 

class imbalance in Dataset 1. Each method was instantiated during a 20-fold cross-validation 148 

(CV) repeated five times, where 19 folds of the dataset were iteratively used for the training and 149 

tuning of the hyperparameters, and the remaining fold was used for testing. Each method was 150 

tuned by attempting several combinations of hyperparameters (Supplementary Table 3). This 151 

was done using an inner 10-fold Grid-Search (GS) CV.  152 

With the highest average test auPRC (0.716, Figure 2A), auROC (0.95), and the best records 153 

for nearly all performance metrics (Supplementary Table 4), the KNN Bagging balanced 154 

through Random Under-Sampling (RUS) and Synthetic Minority Oversampling Technique 155 

(SMOTE) method (KNN_RusSmote) stood out as the best and was then chosen as the 156 

APOGEE 2 ML reference method. The best hyperparameters identified by GS were: “3” for the 157 

number of KNN’s neighbors; the inverse euclidean distance as a metric to weight the neighbors' 158 

importance; 1/4 as the pathogenic/neutral variant ratio before the SMOTE step; and 1/4 as the 159 

ratio of features used by each base learner over the total number of selected features. It used 160 

17 out of the 22 considered features, where PhastCons 100V, MutationTaster, FatHmmW, 161 

CADD, and ΔΔG were, in fact, discarded in the feature selection step (Figure 2B).  162 

On Dataset 1, APOGEE version 1 underwent a second round of testing and received an 163 

average auPRC of 0.573 (Figure 2A) and auROC of 0.855. The classification performance of 164 

both APOGEE versions was also compared on the test set of our previous work 15, which 165 

included the union of MITOMAP and VariBench variants available at the time of that writing (see 166 

Supplementary Table 2 in 15) purged of variants overlapping with the APOGEE 2 training. 167 

APOGEE 2 outperformed its former version (0.99 vs. 0.87 auROC, Figure 2C; 0.97 vs. 0.65 168 

auPRC). 169 

Compared with other meta-predictors, APOGEE 2 exhibited the best performance metrics, 170 

including auPRC (Figure 2D), but the sensitivity where MtoolBox and Condel excel at the 171 

expense of specificity, which ranked worst for both tools (Supplementary Table 4). 172 
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To evaluate whether expanding APOGEE 2’s training set would improve its performance in 173 

future releases, we adopted the same criteria used to create Dataset 1 to generate seven 174 

training sets starting from the MITOMAP content from 2008 to 2020, which was randomly 175 

retrieved once every two years. The 2022 content was used as a test set. We found that the 176 

models' performance in sorting pathogenic from neutral variants in the 2022 dataset increased 177 

monotonically over time (Pearson's r: 0.91, p-value: 0.004), but at an increasingly slower rate 178 

(Figure 2E, Supplementary Table 10), indicating that expanding the training set in subsequent 179 

iterations will not have as much of an impact on APOGEE 2's performance as adding more 180 

informative features would. 181 
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 182 

Figure 2: A. Average test auPRC values of the selected ML methods, calculated during the training 183 
phase. Support Vector Machine classifier with radial basis functions kernel (rbfSVC), Balanced Bagging 184 
using Gaussian Naive Bayes (GNB_BalancedBagging) and K-Nearest Neighbors 185 
(KNN_BalancedBagging) as base estimators, Balanced Random Forest (BalancedRF), KNN Bagging 186 
balanced through RUS and SMOTE techniques (KNN_RusSmote). B. Feature importance assessed on 187 
the whole Dataset 1; threshold set to 1%. C. AuROC values calculated on 118 and 13 neutral and 188 
pathogenic test variants for APOGEE versions 1 and 2. D. Performance comparison of APOGEE 2 versus 189 
other meta-predictors in terms of auROC. APOGEE 2’s auROC is reported as the mean ± 95% CIs 190 
obtained through cross-validation. E. Time-dependent APOGEE 2’s auROC values obtained by predicting 191 
MITOMAP 2022 upon training on the 2008-2020 contents; for each year, the sample mean distribution is 192 
reported in gray. 193 
 194 
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Whole-genome predictions 195 

We used APOGEE 2 to predict the pathogenicity of all 24190 possible missense mtDNA 196 

variants (Supplementary Table 5) and made them available in MitImpact. 197 

Scores and pathogenicity probabilities. Prediction scores are numeric and do not follow a 198 

conventional probability density function. The exact frequency distribution is shown in Figure 199 

3A. Scores range from 0 (neutral or benign) to 1 (deleterious or pathogenic). Using Bayesian 200 

reasoning, we could determine the posterior pathogenicity probability associated with all 201 

missense mitochondrial variants, ranging from 0 (not pathogenic) to 1 (pathogenic). Since the 202 

posterior probability monotonically increases with the APOGEE 2 score, ranking variants by one 203 

metric or the other is equivalent.  204 

Misclassification. The misclassification analysis calculated for any of the 100 test folds 205 

revealed that 12.57% of the pathogenic variants were deemed benign, while 9.75% of the 206 

neutral variants were misclassified as deleterious (Figure 3B).  207 

Positionality. The dependency of the APOGEE 2 score on the variants' locations in the 208 

protein's 3D structures placed on a bisector of a 3D space (Figure 3C) was quantified using 209 

Moran's index. For this analysis, we recalculated the APOGEE 2 scores by excluding the spatial 210 

features from the learning workflow in order to avoid any positional bias. We found significant 211 

positive spatial autocorrelation among the predicted pathogenic variants in each mitochondrial 212 

complex (Moran's index permutation p-value <10E-5 for each complex except MT-ATP8, for 213 

which p-value =0.02), implying that some regions of these proteins may be less tolerant to 214 

amino acid changes than others. We performed this analysis with the quadratic distance decay 215 

function as a measure of the proximity between amino acids. We also repeated the test using 216 

binary proximity matrices, computed at different cutoff distances as described in 18. The 217 

maximum Moran's index has been obtained when setting a cutoff distance between amino acids 218 

of 6Å for Complex I, Complex IV, and MT-ATP6, and 8Å for Complex III (Figure 3D); no 219 

significant results were obtained for MT-ATP8. 220 
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We localized spatially autocorrelated high- and low-risk regions using the LISA index. The most 221 

significant regions (adjusted LISA permutation p-value <0.01) were reported in Supplementary 222 

Table 6. The APOGEE 2 score threshold used to sort low- from high-risk amino acids in this 223 

analytical step was 0.379, which is the median recalculated APOGEE 2 score. For example, 224 

focusing on Complex I, which is composed of seven mtDNA-encoded proteins, we identified 225 

several neutral hotspots spread throughout MT-ND2 and several fragile regions, which included 226 

the transmembrane helices of MT-ND5, MT-ND4 and MT-ND1, the transmembrane helix 3 227 

(TMH3) of MT-ND6 and the MT-ND3 loop. The latter two regions include variants known to 228 

impact important physiological mechanisms, which were examined more deeply in the 229 

“Evaluation of variants that alter the protein structure non-locally” section (Figure 3E).  230 

Categorization. Interpreting the evidence categories given in Tables 3 and 4 of 11 as 231 

categorical conditional probabilities or odds of pathogenicity, in line with 17, and aiming to 232 

provide clinical translationality to APOGEE 2 predictions, we adopted the following ranges of 233 

probability and set four classes of pathogenicity: benign ≤ 0.001, 0.001 < likely benign ≤ 0.1, 0.9 234 

≤ likely pathogenic < 0.99, pathogenic ≥ 0.99. When none of the previous criteria are met, i.e., 235 

when the posterior pathogenicity probability of a variant is between 0.1 and 0.9, a variant has 236 

uncertain significance (VUS) (Supplementary Table 5). With this setting, all known pathogenic 237 

variants in Dataset 1 were correctly labeled pathogenic and likely-pathogenic, except for seven 238 

of them, which were annotated as VUS. Regarding the harmless variants in Dataset 1, 190 239 

were annotated as VUS, while the remaining 1544 were correctly labeled benign and likely-240 

benign (Supplementary Table 5). Nearly all variants in Datasets 2 and 3, which contain only 241 

potentially harmless variants and therefore were used to evaluate APOGEE 2’s specificity, were 242 

classified as benign or likely-benign by APOGEE 2 (Supplementary Table 7: 𝜒𝜒2(1, N=36) = 243 

16.19, p =5.73E-05 and 𝜒𝜒2(1, N=35) = 24.10, p =9.15E-07, respectively for Datasets 2 and 3). 244 

None of the variants in Dataset 2 were classified as pathogenic or likely-pathogenic, while one 245 

variant from Dataset 3 was classified as likely-pathogenic. 246 
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 247 

 248 
Figure 3: A. Distribution of APOGEE 2 scores. Colors represent classes of pathogenicity: green (benign, 249 
probability of pathogenicity (P) ≤ 0.001), light green (likely benign, 0.001 < P ≤ 0.1), yellow (VUS, 0.1 < P 250 
< 0.9), orange (likely pathogenic, 0.9 ≤ P < 0.99), red (pathogenic, P ≥ 0.99). B. Misclassification rate of 251 
100 test folds calculated on Dataset 1. C. Mitochondrial protein complexes localization on the bisector of 252 
a 3D space. Colors have the same meaning as Figure 3A. D. Global spatial autocorrelation computed at 253 
different cutoff distances. Blue circles mark the maximum values for each protein complex. E. Low-risk 254 
(green) and high-risk (in red) amino acid regions of the mitochondrial Complex I subunits. Highlighted in 255 
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red, we underline the MITOMAP confirmed variants that localize on TMH3 of MT-ND6 and on the MT-256 
ND3 loop. 257 
 258 

Variant functionality prediction in human variation databases 259 

As a further test of the negative variants, we used APOGEE 2 to score every mitochondrial 260 

missense variant in the gnomAD v3.1.2 and HelixMTdb databases. Heteroplasmic variants were 261 

1767 (AF range min 0.0017%: max 0.037%) in gnomAD and 3058 (AF range min 0.0005%: max 262 

0.15%) in HelixMTdb. The homoplasmic variants were 2177 (AF range min 0.0017%: max 99%) 263 

and 2894 (AF range min 0.0005%: max 99%). The predicted pathogenic and likely pathogenic 264 

variants for both databases were comparable (Supplementary Figure 2A,B), even when 265 

considering <0.002% variants, irrespective of their heteroplasmy levels. GnomAD and 266 

HelixMTdb showed, in fact, a high and significant positive correlation between the allelic 267 

frequencies of their heteroplasmic (Pearson’s r: 0.88, p-value <2.2E-16) and homoplasmic 268 

(Pearson’s r: 0.91, p-value =6.434E-11) variants.  269 

It is important to note that HelixMTdb was not enriched in patients with mitochondrial diseases, 270 

but there were no exclusion criteria based on mitochondrial disorders 9. On the other hand, 271 

while gnomAD declares that some individuals with severe disease may still be included in the 272 

database, albeit likely at a frequency equivalent to or lower than that seen in the general 273 

population, they have explicitly removed individuals known to be affected by severe pediatric 274 

disease, as well as their first-degree relatives. This might explain the presence of both likely and 275 

frankly pathogenic variants in both datasets. 276 

The pathogenicity probability values for ClinGen's neutral variants, which were collected in 277 

Dataset 4 (Supplementary Table 7), ranged from 0 to 0.73. Dataset 4 (see Methods) contains 278 

neutral variants that were evaluated by the ClinGen mitochondrial VCEP team and, therefore, 279 

are supposedly more likely to be neutral than those contained in Datasets 2 and 3. None of 280 

Dataset 4 variants was predicted as pathogenic or likely-pathogenic by APOGEE 2. We also 281 
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verified that the APOGEE 2 scores of these variants were lower on average than those of the 282 

neutral variants in Dataset 1 (Mann-Whitney U test, U=152940, p-value=2.80E-09; 283 

Supplementary Figure 2C), thereby confirming the ability of APOGEE 2 to also quantify the 284 

level of certainty of being a neutral variant. 285 
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Supplementary Figure 2: A. 83 (4.7%) heteroplasmic variants in gnomAD were predicted to be likely 287 
pathogenic, and 10 (0.6%) were pathogenic. 71 (4%) and 7 (0.4%) variants exhibited an AF <0.002%, 288 
respectively. 19 (0.9%) homoplasmic variants were classified as likely pathogenic and 3 (0.1%) as 289 
pathogenic. 11 (0.5%) and 1 (0.05%) variants exhibited an AF <0.002 %, respectively. B. 101 (3.3%) 290 
HelixMTdb heteroplasmic variants were predicted as likely pathogenic, and 15 (0.5%) were classified as 291 
pathogenic. Similarly, 33 (1.1%) homoplasmic variants were defined as likely pathogenic, and 3 (0.1%) 292 
were deemed pathogenic. 86 (2.8%) heteroplasmic and 22 (0.8%) homoplasmic likely pathogenic 293 
variants exhibited an AF <0.002%; 13 (0.4%) and 2 (0.07%) considering heteroplasmic and homoplasmic 294 
pathogenic variants, respectively. Both panels represent the APOGEE 2 pathogenicity probability values 295 
of heteroplasmic (left) and homoplasmic (right) variants on the Y axis and the variant AF on the X axis. A 296 
dot is a variant. A dot color represents the pathogenicity level (green = benign, red = pathogenic), as in 297 
Figure 3D. The red dashed line marks the 0.002% AF threshold. The blue dashed lines separate likely-298 
benign from VUS (score = 0.2654, probability = 0.1) and VUS from likely-pathogenic (score = 0.7161, 299 
probability = 0.9). C. Frequency distribution of APOGEE 2 scores of Dataset 1’s benign variants (training 300 
set) and Dataset 4’s variants (ClinGen). Vertical dashed lines mark the average APOGEE 2 scores for 301 
both distributions. 302 
  303 

Evaluation of variants that alter the protein structure non-locally  304 

Variants that have structural and non-local effects may significantly impair APOGEE 2 prediction 305 

performance. This is the case of NC_012920.1:m.10161A>C 19, (YP_003024033.1:p.Thr35Pro) 306 

which is located in the MT-ND3 loop (residues 24 to 54) and is contiguous to the m.10158T>C 307 

(p.Ser34Pro) common variant, reported as “confirmed” by MITOMAP, as “pathogenic” in 308 

ClinGen, and is associated with Leigh disease or MELAS syndrome. The loop is between two 309 

transmembrane helices (TMH 1 and 2) and includes Cys39. In mammalian Complex I, such a 310 

residue is exposed during active mitochondrial respiration and is thought to be necessary for the 311 

reversible transition between catalytically active and inactive states 19. Intuitively, the loop's 312 

dynamics may influence Cys39 exposure and, as a result, the active-inactive state transition. 313 

Multiple MD simulations revealed that the Ser34Pro and Thr35Pro mutants affect the loop 314 

flexibility significantly and similarly to the wild-type protein, and the other two mutant systems, 315 

Ser34Phe and Ser34Tyr (Figure 4A-D), which were chosen because of their allelic frequencies 316 

(0.013% and 0.002% in MITOMAP, respectively), were contiguous and not associated with any 317 

relevant phenotype. The RMSF profiles (Figure 4C) of the heavy atoms in part of the loop 318 

(residues 40 to 50) were higher for Ser34Pro and Thr35Pro than the wild-type and slightly more 319 

rigid in the first part (residues 24 to 40). On the other hand, Ser34Phe and Ser34Tyr displayed 320 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.18.545476doi: bioRxiv preprint 

https://paperpile.com/c/4Aeykt/PN1pn
https://paperpile.com/c/4Aeykt/PN1pn
https://doi.org/10.1101/2023.06.18.545476
http://creativecommons.org/licenses/by-nd/4.0/


18 
 

flexibility profiles that were similar to those of the wild-type. This can also be observed in the 3D 321 

dynamic representation (Figure 4D). The loss of essential interactions between loop residues 322 

and nearby subunits brought on by Thr35Pro, such as residues 129 of MT-ND1 and 49 of MT-323 

ND3 and residues 76 of MT-ND6 and 48 of MT-ND3, is what leads to the flexibility alterations. 324 

APOGEE 2 classifies this variant as VUS (score 0.51, probability = 0.59) even though we have 325 

confirmed it to be pathogenic [Milon et al., under review]. 326 

A second case regards NC_012920.1:m.14538A>G, YP_003024037.1:p.Phe46Leu in MT-ND6, 327 

reported in the literature 20 as a novel pathogenic LHON variant but classified as likely-benign by 328 

APOGEE 2 (score 0.08, probability = 0.002). It is proximal to the transmembrane helix TMH3 329 

(residues 52–74 in the closed state and interrupted by a bulge in the open state that involves 330 

residues 60–65 21 of MT-ND6, which actively participates in the Complex I closed conformation, 331 

rotating to lose its characteristic π-bulge and consequently disrupting the helix 22. A few 332 

pathogenic mutations were found in the helix. One of them, m.14459G>A, hits the residue 333 

Ala72, reported in MITOMAP and ClinGen as a pathogenic change in valine and associated 334 

with multiple mitochondrial phenotypes. It is interesting to note that the same residue is also hit 335 

by a proline variant (Ala72Pro, m.14460C>G). The proline variant is included in Dataset 1 336 

because it is deemed benign due to its allelic frequency of 0.011%, but it is categorized as VUS 337 

by APOGEE 2 (score = 0.64, probability = 0.82). We have compared the long-range impact of 338 

p.Phe46Leu on TMH3 with that caused by Ala72Pro and Ala72Val by simulation. After 200 ns of 339 

simulation, we observed that all three mutants altered the helix’s folding to different extents, with 340 

a more evident destructuration caused by Ala72Pro and Ala72Val than Phe46Leu (Figure 4E). 341 
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 342 

Figure 4. A. Structure of the mtDNA-encoded subunits of the complex I membrane arm. B. Average 343 
structures of the wild-type, Ser34Pro, and Thr35Pro MT-ND3 protein models (left) and wild-type, Ser34Phe, 344 
and Ser34Tyr (right). C. RMSF profiles of the heavy atoms of the MT-ND3 loop (residues 24-54) for both 345 
wild-type and mutants. D. 3D representations of the dynamics of the wild-type, Ser34Pro, and Thr35Pro 346 
MT-ND3 protein models. In all subfigures B, C, and D, wild-type is colored green, Ser34Pro is yellow, 347 
Thr35Pro is red, Ser34Phe is pink, and Ser34Tyr is cyan. E. Average structures of the MT-ND6 protein. 348 
TMH3 is highlighted in dark orange. 349 
 350 
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Discussion 351 

APOGEE 2 is an ensemble method that addresses the need for a pathogenicity prediction tool 352 

with increased accuracy for interpreting missense mtDNA variants. We have shown that it 353 

outperforms the former version due to the availability of more mitochondrially-centered features, 354 

their manual curation, and the adoption of a more sophisticated ML protocol. Overall, APOGEE 355 

2 offers the best performance metrics when compared to other meta-predictors. It is interesting 356 

to note, though, that Condel and MtoolBox excel in sensitivity at the expense of their specificity 357 

(Supplementary Table 4). APOGEE 2 outperforms several other predictors as well, i.e., 358 

MutPred and MutPred2 50, and MutationAssessor, CADD, and EFIN (Supplementary Figure 359 

3), which were used for APOGEE 2’s training.  360 

 361 

Supplementary Figure 3: Performance comparison of APOGEE 2 versus other predictors in terms of 362 
auROC (A) and auPRC (B). APOGEE 2’s performance is reported as the mean ± 95% CIs obtained 363 
through cross-validation.  364 
 365 
 366 
EFIN HD is the only predictor with a higher specificity score. It identifies 1633 of 1734 likely 367 

neutral variants versus 1544 which were identified by APOGEE 2. It should be noted, though, 368 
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that the degrees of certainty of the pathogenic and neutral variants of our training set differ. The 369 

pathogenicity of variants is based on the literature. Neutrality is assumed by allelic frequency 370 

considerations and available MITOMAP annotations. Given that some variants with literature 371 

reports of suspected pathogenicity show frequency levels higher than 0.002% in gnomAD and 372 

HelixMTdb, it is also likely that some variants that make up the neutral subset of Dataset 1 are 373 

actually pathogenic. The reverse is not obvious. We have then tested APOGEE 2 and EFIN HD 374 

on ClinGen's recently released neutral variants; in general, APOGEE 2 assigned lower 375 

pathogenicity scores to ClinGen's neutral variants than EFIN HD did (Wilcoxon signed-rank test 376 

preceded by quantile transformation of both scoring systems; the EFIN score has been inverted 377 

since it is proportional to the neutrality of the variant; ranks sum = 3236, p-value = 0.003). 378 

We have demonstrated that the APOGEE 2 pathogenic scores exhibit significant spatial 379 

autocorrelation, suggesting that some protein structural regions may be less tolerant to amino 380 

acid changes than others. As a result, APOGEE 2 can predict mitochondrial-specific high and 381 

low-risk regions, but it may still be ineffective for variants that have non-local structural effects, 382 

particularly if the involved regions are low-confidence/destructured. The flexibility of an MT-ND3 383 

loop, for example, seems to be the key feature for evaluating the functionality of Thr35Pro. 384 

Thr35Pro and Ser34Pro were shown to change the flexibility of the loop-spanning residues 24–385 

40 more than Ser34Tyr and Ser34Phe, two rare variants with no associated phenotypes and 386 

dynamics that were similar to the wild-type protein. The motion of this loop was critical in the 387 

establishment of essential links with neighboring subunits, which were broken by Thr35Pro. The 388 

m.14538A>G, p.Phe46Leu pathogenic variant is deemed likely-benign by APOGEE 2 because 389 

its effect is not localized but instead works to disrupt the nearby TMH3 helix, which in turn plays 390 

a crucial role in the Complex I closed conformation. 391 

This factor may also have an impact on how missense variants are interpreted in terms of their 392 

pathogenic potential when combined with other variants, e.g., synergistic variants, or in the 393 

context of particular mtDNA haplogroups 23. Synergistic variants, in particular, can be 394 
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challenging to assess as they can be common in control populations and involve poorly 395 

conserved residues 24. These considerations may explain the fact that only one of the 17 396 

missense variants classified as possibly synergistic in MITOMAP is predicted as likely-397 

pathogenic by APOGEE 2, which instead classified the remaining 4 as benign, 9 likely-benign, 398 

and 3 VUS (Supplementary Table 8). 399 

Narrowing the number of VUS variants and, therefore, performance improvements are possible 400 

by adding more accurate structural features to variants and accounting for their epistatic 401 

interactions, still considering that the growth and curation level alone of the true positive 402 

MITOMAP variants in the past fourteen years contributed to a smaller and smaller monotonic 403 

increase in the APOGEE 2 performance. Molecular dynamics simulations of a significantly high 404 

number of variants that may, even if distantly, alter the functional structure of critical 405 

components of the mitochondrial proteins or cooperate with other variants to cause a significant 406 

respiratory-chain deficiency might contribute in this direction. A pilot project has already started, 407 

and preliminary results are available on MitImpact’s website. 408 

To facilitate use of the APOGEE 2 scoring and pathogenicity probabilities by clinicians and 409 

researchers, we have pre-computed these calculations for all missense variants and made them 410 

available in MitImpact through its web interface and as a flat file. 411 

 412 

Methods 413 

Datasets 414 

Four disjoint sets of variants were used in this work. Dataset 1 comprises 1874 non-415 

synonymous mtDNA variants, divided into 1734 deemed benign and 140 pathogenic variants 416 

(Supplementary Table 5). The former set was obtained from MITOMAP’s “general” variants 417 
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(accessed on April 20, 2021), which were purged of overlapping MITOMAP’s “disease” variants 418 

and variants with ClinGen’s pathogenic criteria code "PM2." The pathogenic set was made up of 419 

MITOMAP “disease” variants, including 41 confirmed and 99 reported variants. Overlapping 420 

MITOMAP’s “general” variants were discarded. Neither set contained any synergistic or 421 

conflicting variants. Dataset 2 was obtained from gnomAD version 3.1.2. It contained 36 422 

missense variants not present in the training set, which exhibited allelic frequencies ≥0.002% 423 

both in heteroplasmy and homoplasmy. Dataset 3 was extracted from HelixMTdb ver. 424 

20200327 and filtered as Dataset 2. Twelve variants were shared with Dataset 2 and 425 

discarded, and 35 were unique to this dataset. Dataset 4 fetches variants from the benign/likely-426 

benign variant sets approved by the Mitochondrial Variant Curation Expert Panel (VCEP) of 427 

ClinGen (https://clinicalgenome.org/) as having met the following criteria for mtDNA variants 10: 428 

Benign variants in the set had allele frequencies >1% ("BA1") in either MITOMAP, gnomAD, or 429 

HelixMTdb and without disease reports or negative in-silico predictors; likely benign variants in 430 

the set had allele frequencies of 0.5%-1% ("BS1") in MITOMAP, gnomAD, or HelixMTdb and 431 

without disease reports or negative in-silico predictors, and additionally had either a supporting 432 

in-silico tool score for benignity or a resulting synonymous amino acid change. All other variants 433 

meeting the allele frequency cutoffs but with possible disease associations are referred to the 434 

ClinGen mitochondrial VCEP for individual curation. The current set of benign/likely-benign 435 

variants meeting the ClinGen criteria is available at https://mitomap.org/MITOMAP/Benign and 436 

was accessed for this study on September 7, 2022, and released while Dataset 1 was already 437 

made up. We gathered 135 neutral missense variants in total, dropped 8 VUS variants, and 438 

found that 97 of them overlapped Dataset 1. Datasets 2, 3, and 4 were used to evaluate the 439 

specificity of the APOGEE 2 predictions (Supplementary Table 7).  440 
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Features 441 

APOGEE 2 was trained on three classes of information: evolution, pathogenicity predictions, 442 

and protein structural features.  443 

Evolution: PhyloP and PhastCons conservation scores on 100 vertebrate species were 444 

obtained from the UCSC Table Browser. Empirical substitution scores were obtained from the 445 

MtMam rate matrix, built on 12 proteins, i.e., ATP6, ATP8, COX1, COX2, COX3, CYBB, ND1, 446 

ND2, ND3, ND4, ND4L, and ND5, which are located on the heavy strand of the mtDNA (3331 447 

sites) 25. Data are from 20 species of mammals and three close outgroups, i.e., Wallaroo, 448 

Opossum, and Platypus. The rate matrix was downloaded from https://github.com/abacus-449 

gene/paml/blob/master/dat/mtmam.dat. 450 

Pathogenicity predictors: Pathogenicity scores were retrieved for the following software 451 

packages: PolyPhen2 26, SIFT 27, fathmm 28, PROVEAN 29, MutationAssessor 30, EFIN31, CADD 452 

32, PANTHER 33, PhD-SNP 34, SNAP 35, and MutationTaster 36. 453 

Structural features: The 3D structures of the 13 proteins were retrieved from the RCSB Protein 454 

Data Bank (PDB) with the following IDs: 5xtc for the Respiratory Complex I (s, i, j, r, k, l, and m 455 

chains for MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, and MT-ND6, 456 

respectively); 5z62 for the Cytochrome C Oxidase (chain A for MT-CO1, chain B for MT-CO2, 457 

and chain C for MT-CO3); 5xte for the Respiratory Complex III (chains J and V for Cytochrome 458 

b). Since MT-ATP6 and MT-ATP8 were not associated with any resolved X-ray structure, their 459 

predicted structures were downloaded from the AlphaFold2 37 Protein Structure Database 38. 460 

The five PDB files were placed on the bisector of a 3D space and spaced 3𝑑𝑑 apart, where 𝑑𝑑 =461 

20Å. The total energy variation (ΔΔG, Kcal/mol) eventually caused by any possible non-462 

synonymous amino acid change was calculated as follows. The structures/models described 463 

above were first repaired (FoldX’s module RepairPDB) and then mutated (PositionScan), 464 

considering all possible amino acid changes causing missense variations. Each mutant was 465 
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analyzed energetically using FoldX ver. 5.0 39 in comparison with the native structure. FoldX 466 

was run with default parameters.  467 

All these features except for ΔΔG values, mtMam, and the spatial coordinates of amino acids, 468 

were pre-calculated and made available in MitImpact ver. 3.0.6 40.  469 

 470 

Machine learning workflow 471 

The overall learning procedure consists of a double cross-validation procedure that nests an 472 

optimization procedure of the best parameter combinations (hyperparameters) of each 473 

implemented machine-learning (ML) algorithm under a model selection procedure. The workflow 474 

was implemented in Python and made available at https://github.com/mazzalab/playgrounds as 475 

a Colab notebook. 476 

In particular, for each ML algorithm, the whole dataset was primarily split into training and test 477 

sets by a stratified 20-fold cross-validation (CV) procedure, implemented in Python's scikit-478 

learn’s StratifiedKFold, and repeated five times. Then, for each unique group, we took it as a 479 

holdout and used the remaining groups (19) as a training data set. Each group was guaranteed 480 

to maintain the original pathogenic/neutral variant ratio. Then, each training set was 481 

progressively subjected to three preprocessing steps: scaling, imputation of missing values, and 482 

feature selection.  483 

Data preprocessing 484 

Values were scaled using the Python scikit-learn’s StandardScaler module to zero mean and 485 

unit variance. The scaler was trained on the training-set features and then used to transform 486 

both the training and test sets' values (Figure 5A). Pairwise correlations between the scaled 487 

values to zero mean and unit variance of non-positional features, namely those not directly 488 
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involving the genomic or amino acidic positions of variants, for all possible mitochondrial 489 

missense variants were obtained using Pearson correlation coefficient. Then, we imputed 490 

missing values, as explained in the section below. Finally, a supervised feature selection step 491 

was implemented using a Decision Tree classifier (DecisionTreeClassifier scikit-learn module) 492 

to assess the relative information gain associated with a feature and hence its contribution to 493 

the overall decision process. The features that explained less than 1% of the total information 494 

gain were dropped. This step was performed on the training set only. Then, the dropped 495 

features were removed from the training and test sets (Figure 5C). 496 

Imputer selection 497 

The whole MitImpact content, made up of 22,316 variants regardless of their label (neutral or 498 

pathogenic) and excluding the variants in Dataset 1, was split into 20 folds. Each fold was 499 

iteratively chosen as test- and the remaining 19 as training-variants for each of the following five 500 

imputation methods. We implemented two simple interpolation methods based on the mean and 501 

median values of the features to be imputed, respectively; a k-Nearest Neighbors imputer 502 

(sklearn.impute.KNNImputer, k = 5); two iterative imputers (sklearn.impute.IterativeImputer) 503 

based respectively on Bayesian ridge linear regression (sklearn.linear_model.BayesianRidge) 504 

and Random Forest regression (sklearn.ensemble.RandomForestRegressor). Once fitted any of 505 

these imputers, we have generated twelve 𝑁𝑁𝑁𝑁𝑁𝑁 matrices of probability estimates for each test 506 

set by sampling from a uniform distribution in the range [0,1), where N and M are, respectively, 507 

the numbers of variants (rows) and features (columns), and multiplying its values by one of the 508 

twelve values in the range 0.25 - 3.00, by a step of 0.25. Therefore, we added a missing value 509 

whenever any resulting number lower than the a priori probability of a missing value 510 

(precalculated for each feature and made available in Supplementary Table 9) appeared in the 511 

same position of the matrix. The metric we used to identify the best imputer for this study was 512 

the Normalized Root Mean Squared Error (NRMSD) defined as 𝐸𝐸[𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖]2/𝑉𝑉[𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡], 513 
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where 𝐸𝐸 and 𝑉𝑉 are respectively the expected value and the variance, 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the true value, and 514 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 is the imputed value.  515 

Grid-Search cross-validation 516 

We performed an exhaustive search over the parameters (or hyperparameters) of the tested ML 517 

methods using a stratified 10-fold Grid Search CV applied to a pre-computed and method-518 

specific parameter grid (GridSearchCV module). The parameter grids for all methods are 519 

available in Supplementary Table 3. The preprocessed training set was further split into a 9-520 

fold training set and a 1-fold test set. The Grid Search procedure was run for each CV iteration, 521 

for a total of 𝑔𝑔𝑔𝑔 =  10 × 𝑑𝑑 times, where 𝑑𝑑 is the number of hyperparameter combinations 522 

explored. An ML method was trained and then tested on the 1-fold test set for each combination 523 

(Figure 5D). The area under the precision-recall curve (auPRC) and under the receiver 524 

operating characteristic (auROC) curve metrics were evaluated to assess performance.  525 

Model training and testing 526 

Each classifier was trained on the 19-fold training set using the best hyperparameter 527 

combination found by the Grid-Search loop and then tested on the relative 1-fold test set, which 528 

was not involved in the training or tuning phases (Figure 5E). The best classifier exhibited a 529 

superior average auROC over the five replicas of the overall 20-fold CV process. Then, the total 530 

number of iterations performed for each ML method was 100 × (𝑔𝑔𝑔𝑔 + 1). 531 

 532 

 533 
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Figure 5: ML pipeline including data preprocessing, i.e., scaling (A), imputation of missing values (B), and 534 
feature selection (C), model tuning by 10-folds Grid Search CV (D), training of any ML method with the 535 
best hyperparameter combination obtained in D and testing (E). 536 
 537 
 538 
Finally, we trained a model of the best method on the entire Dataset 1, using the best 539 

hyperparameters found through the GridSearch CV procedure, and scored all possible non-540 

synonymous mtDNA variants. 541 

ML classifiers 542 

The workflow described above was run with several ML classifiers. Most of them were 543 

implemented in the scikit-learn Python library. 544 

Support Vector Machine (SVM) with radial basis functions (RBF) kernel. We implemented 545 

the SVC module of scikit-learn. It attempts to maximize the distance between two groups by 546 

minimizing the hinge loss function. The loss function was kept balanced by adjusting the class 547 

weights depending on their frequencies in the training set. The method was set to use a Radial 548 

Basis Function (rbf) as a kernel and L2 as the regularization term. The rbf function, defined as 549 

𝐾𝐾(𝑥𝑥1,𝑥𝑥2)  = 𝑒𝑒(−𝛾𝛾||𝑥𝑥1−𝑥𝑥2||2), depends on a parameter 𝛾𝛾, which is the inverse of the standard 550 

deviation of the rbf kernel and represents the influence of each single sample in the learning 551 

process, while L2 is controlled by a parameter 𝐶𝐶, which is inversely proportional to the 552 

regularization strength. Both parameters were optimized by Grid-Search.  553 

Gaussian Naive-Bayes (GNB) Balanced Bagging. This is a probabilistic classifier that uses a 554 

Gaussian Naive-Bayes (GNB) model as the base learner for a Bootstrap Aggregation (Bagging) 555 

classifier. This approach is typically used to improve the performance of a “weak-learner” (such 556 

as the GNB) and reduce overfitting. To tackle the problem of class imbalance in our training set, 557 

we resorted to the Balance Bagging classifier implemented by the imbalanced-learn package of 558 

scikit-learn. We have also bootstrapped the features (without replacement) for each base-559 

learner training in an attempt to reduce overfitting. The Grid-Search-based optimization step 560 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.18.545476doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.18.545476
http://creativecommons.org/licenses/by-nd/4.0/


29 
 

was applied to i) the ratio of the bootstrapped samples over the total samples; ii) the ratio of the 561 

bootstrapped features over the total number of features; and iii) the GNB variance smoothing 562 

(more details in the scikit-learn documentation). 563 

K-Nearest Neighbors (KNN) Balanced Bagging. 200 KNN classifiers were used as base 564 

learners for a Balanced Bagging classifier with the aim of reducing the risk of overfitting and 565 

balancing the pathogenic and neutral classes during the training phase. As in the previous case, 566 

the Grid-Search optimization step was used to find the i) ratio of the bootstrapped samples over 567 

the total samples, and ii) the ratio of the bootstrapped features over the total number of features. 568 

Here, another 2 hyperparameters were subjected to optimization: the number of “neighbors” to 569 

consider and the “weight” of each neighbor, which can be considered uniform or the inverse of 570 

their distances. 571 

Balanced Random Forest (RF). This variation of the classical RF classifier is available from 572 

imbalanced-learn as the BalancedRandomForestClassifier module. It is an ensemble method 573 

where each tree in a forest will be provided with a balanced bootstrap sample for tree learning. 574 

Grid-Search was used to tune i) the trees' maximum depth, ii) the number of random features to 575 

consider for each node split, iii) the minimum number of samples required to split a node, and 576 

iv) the minimum number of samples that a node requires to be considered a leaf node. 577 

K-Nearest Neighbors (KNN) Bagging balanced through RUS and SMOTE. We used a 578 

synthetic minority over-sampling technique available from the imbalanced-learn package and 579 

called SMOTE 41 to solve the classification imbalance by generating synthetic samples in the 580 

pathogenic class of variants. We combined SMOTE with the randomly under-sampling 581 

technique (RUS) according to the following four steps: i) training samples are bootstrapped with 582 

replacement, preserving the original training-set size; ii) RUS undersamples the majority class 583 

(neutral variants) to partially decrease the imbalance; iii) then, SMOTE is used to generate 584 

synthetic minority samples to perfectly balance the base-learner training-set; iv) finally, the 585 

base-learner is fitted. Following this procedure, we implemented KNN_RusSmote, which uses a 586 
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KNN classifier as a base learner. We chose to consider five neighbors in the SMOTE algorithm. 587 

As for KNN Balanced Bagging, Grid-Search was used to tune i) the number of “neighbors” to 588 

consider, ii) the “weight” of each neighbor, iii) the ratio of the bootstrapped features over the 589 

total number of features, iv) the ratio of the minority class over the majority class of samples 590 

after the RUS step.  591 

Scores and pathogenicity probabilities 592 

APOGEE 2 scores are decimal values ranging from 0 (benign) to 1 (pathogenic). Extreme 593 

values suggest a high level of confidence in the predictions. Scores were computed using the 594 

KNN_RusSmote machine learning algorithm, tuned through GS CV and trained on the whole 595 

Dataset 1. Given that the algorithm is essentially a bagging model, we were able to determine 596 

the out-of-bag (OOB) APOGEE 2 score for each variant in the training set. We used the OOB 597 

score to infer the conditional APOGEE 2 probability distribution given the pathogenic class (𝐶𝐶 =598 

1); the APOGEE 2 probability distribution given the benign class (𝐶𝐶 = 0), instead, was inferred 599 

on the Dataset 4 (ClinGen’s benign variants) scores, considering the OOB scores whenever 600 

they overlapped with Dataset 1 (training set). The distributions of both classes were 601 

approximated by Beta distributions, whose parameters were optimized through the SciPy 602 

Python library by minimizing the negative log-likelihood probability. Once inferred the distribution 603 

𝑃𝑃(𝑦𝑦 | 𝐶𝐶 = 0) and 𝑃𝑃(𝑦𝑦 | 𝐶𝐶 = 1), where 𝑦𝑦 is the APOGEE 2 score, we could compute the posterior 604 

probability 𝑃𝑃(𝐶𝐶 = 1 | 𝑦𝑦) using the Bayes theorem: 𝑃𝑃(𝐶𝐶 = 1 | 𝑦𝑦) = 𝑃𝑃(𝑦𝑦 | 𝐶𝐶 = 1)𝑃𝑃(𝐶𝐶 = 1)/𝑃𝑃(𝑦𝑦), 605 

where 𝑃𝑃(𝑦𝑦) can be written in the form  𝑃𝑃(𝑦𝑦) = 𝑃𝑃(𝑦𝑦 | 𝐶𝐶 = 1)𝑃𝑃(𝐶𝐶 = 1) + 𝑃𝑃(𝑦𝑦 | 𝐶𝐶 = 0)𝑃𝑃(𝐶𝐶 = 0). We 606 

set the prior probability 𝑃𝑃(𝐶𝐶 = 1) = 0.1 as in 17. 607 
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Misclassification and specificity assessment 608 

In order to calculate the per-class misclassification rate on Dataset 1, we first divided the 609 

APOGEE 2 scores into two classes (pathogenic and benign) based on the median value. Then, 610 

we calculated the frequency of incorrectly classified test variants, which are the variants that 611 

were disregarded from the model learning and tuning during CV. Based on the distribution of 612 

APOGEE 2 scores for all MitImpact variants, the median threshold was recalculated for each 613 

test. Using MitImpact’s non-benign frequency as the expected frequency for the null hypothesis, 614 

we performed a Chi-square test on the alternative hypothesis of having a high frequency of 615 

benign variants in Datasets 2 and 3. Finally, we compared the average APOGEE 2 scores of 616 

the Dataset 4’s benign variants with the average APOGEE 2 scores of the Dataset 1’s benign 617 

variants, using a Mann–Whitney U test; the OOB scores were used for the Dataset 1’s benign 618 

variants in this test. 619 

 620 

The APOGEE 2’s time-dependent learning curve 621 

From 2008 through 2020, we fetched the MITOMAP content every two years and generated 622 

seven datasets by applying the same criteria we used for Dataset 1 (Supplementary Table 5). 623 

We trained APOGEE 2 with these datasets and used the current MITOMAP version (July 2022) 624 

for testing the trained models. In particular, we applied a random stratified 5-fold partitioning 625 

strategy to the 2022 dataset, obtaining 5 partitions. For each partition, we trained a model on 626 

every other training set (2008–2020) and tested it on the partition, making sure to remove every 627 

variant already present in the partition from the training sets. The final auROC profile resulted 628 

from the average of the auROCs computed on the five different test-partitions. The ML classifier 629 

used was still KNN_RusSmote; 10-fold Grid-Search CV has been performed on each training-630 

set.  631 
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 632 

Positionality and impact of variants on the protein structure 633 

Spatial autocorrelation of the APOGEE 2 scores 634 

Moran’s index was used to measure the spatial autocorrelation of the predicted APOGEE 2 635 

scores. It is defined as 636 

𝐼𝐼 = 𝑁𝑁
∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖

𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1  

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑦𝑦𝑖𝑖−𝑦𝑦�)(𝑦𝑦𝑗𝑗−𝑦𝑦�)𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1  

∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1

, 637 

where 𝑁𝑁 is the number of spatial data points and 𝑤𝑤𝑖𝑖𝑖𝑖 a weight matrix that measures the 638 

closeness of each residue in a pair. It ranges from -1 to +1; values significantly lower or higher 639 

than the expected value (i.e., 𝐸𝐸[𝐼𝐼] = −1
𝑁𝑁−1

) indicate respectively negative or positive spatial 640 

autocorrelation 42. We used a quadratic distance decay function, i.e., 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖
−2, to model the 641 

residue closeness in order to prioritize short-range autocorrelation.  642 

Calculations were performed separately for each complex, while the APOGEE 2 scores were 643 

averaged by residue to have one value for every spatial point. Positional biases were limited by 644 

dropping all bagging base estimators, which were trained using at least one spatial feature (i.e., 645 

X, Y, or Z coordinates) from the APOGEE 2 predictions. 84 out of 200 base estimators were 646 

selected. This modification required recalculating the APOGEE 2 threshold between benign and 647 

pathogenic variants for this analysis. Due to the possibility that the APOGEE 2 scores obtained 648 

in this manner had a different distribution than the original one, we determined the pathogenicity 649 

threshold for this new distribution using the same formula we described in the "Model training 650 

and testing" methods section. 651 

The weight matrix was row-normalized and then renormalized to ensure that ∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1 = 1; 652 

the variable of interest, y, i.e., the APOGEE 2 average scores, was also standardized. 653 

Consequently𝐼𝐼 = 𝑍𝑍′𝑊𝑊𝑊𝑊, where 𝑍𝑍 is the vector of the standardized values of 𝑦𝑦 and 𝑊𝑊 is the 654 
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normalized weight matrix. P-values were calculated by permuting the APOGEE 2 scores 10,000 655 

times and computing the Moran's index for each permutation. 656 

Since we were also interested in estimating the autocorrelation effect under a certain cutoff 657 

distance 𝑟𝑟, we performed the same procedure using a different weight matrix, defined as 658 

𝑤𝑤𝑖𝑖𝑖𝑖 = {0+𝜀𝜀, 𝑑𝑑𝑖𝑖𝑖𝑖>𝑟𝑟
1−𝜀𝜀, 𝑑𝑑𝑖𝑖𝑖𝑖≤𝑟𝑟 , 659 

where 𝜀𝜀 is an infinitesimal number (10−6) whose purpose is only to make the weight matrix row-660 

normalizable. We computed the Moran’s index using this weight function at multiple cutoff 661 

distances, each time estimating a p-value on 1000 permutations. 662 

Finally, we implemented a local version of Moran’s index, LISA 43 or Local Indicators of Spatial 663 

Association, to investigate which regions contribute more to the global spatial autocorrelation. It 664 

is defined as 𝑙𝑙 = [𝑙𝑙1, . . . , 𝑙𝑙𝑁𝑁] = 𝑍𝑍 ⋅ 𝑊𝑊𝑊𝑊, where the weight matrix 𝑊𝑊 was introduced above and 665 

∑ 𝑙𝑙𝑖𝑖𝑁𝑁
𝑖𝑖=1 = 𝐼𝐼. High LISA values are assigned to residues contributing the most to the global 666 

positive spatial autocorrelation and showing similar APOGEE 2 scores to their neighbors. To 667 

confer significance to the results, we permuted the APOGEE 2 scores 1000 times and 668 

computed the 𝑙𝑙 vector for each permutation round; then, we calculated a p-value based only on 669 

the 𝑙𝑙𝑖𝑖 random distribution of the spatial point 𝑖𝑖. The False Discovery Rate was controlled using 670 

the Benjamini-Hochberg procedure. 671 

Molecular Dynamics simulation 672 

Molecular Dynamics (MD) simulations were conducted on the human respiratory complex I 673 

transmembrane arm (PDB ID: 5xtc, described above). The starting system was refined using 674 

MODELLER ver. 9.16 44 and then mutated in-silico using UCSF Chimera ver. 1.16 45 to 675 

introduce S34P, S34Y, S34F, and T35P amino acid variants in MT-ND3 and A72V, A72P, and 676 

F46L variants in MT-ND6. Using the Membrane Builder Input Generator of the CHARMM-GUI 677 

web toolkit 46, the seven resulting alternative protein structures were embedded in a lipid bilayer 678 

composed of Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-679 
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glycero-3-phosphoethanolamine (POPE), and 1,1′,2,2′-tetraoleoyl-cardiolipin (TOCL) to mimic 680 

the composition of the inner mitochondrial membrane that forms tight interactions with the 681 

transmembrane helix of each protein. Then, both the proteins and the lipid bilayer were solvated 682 

in a periodic boundary condition box filled with 22.5Å of TIP3P water molecules on either side of 683 

the bilayer, and a salt concentration of 0.15 M KCl was added to obtain a neutral simulation 684 

system. 685 

All generated systems were energy minimized and equilibrated following the CHARMM-GUI’s 686 

workflow, consisting of i) steepest-descent minimization for 5000 steps; ii) a gradually heating 687 

process conducted into a canonical ensemble (NVT) for 250000 steps with a timestep of 1 fs; iii) 688 

an isothermal-isobaric ensemble equilibration for 125000 steps with a timestep of 1 fs followed 689 

by 750000 steps of an isothermal-isobaric ensemble equilibration every 2 fs. During the 690 

equilibration, harmonic restraints were applied to both the heavy protein atoms and the 691 

membrane lipid phosphates. 692 

Gaussian accelerated Molecular Dynamics (GaMD) 47 simulations were performed, starting with 693 

a 20 ns short classical MD simulation used to collect potential statistics for calculating the 694 

GaMD acceleration parameter, followed by ~80 ns equilibration run. Finally, 200 ns of GaMD 695 

simulations were carried out, divided into 10 sequential production steps. Three replicas of the 696 

simulation of the wild-type and each mutant system were performed using Amber20 48. Every 697 

GaMD simulation was performed at the "dual-boost" level, with one boost applied to the total 698 

potential energetic term and the other to the dihedral energetic term. For both the dihedral and 699 

the total potential energetic terms, 12.0 kcal/mol was chosen as the upper limit of the boost 700 

potential SD, σ0. The code for the entire simulation workflow is provided in Supplementary File 701 

1. 702 
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Analysis of simulated trajectories 703 

AmberTools21 was used to calculate the Root-Mean-Square Fluctuation (RMSF), which 704 

measures the time deviation of the positions of the atomic coordinates of the alpha carbons of 705 

each residue and those of the reference starting structure. The GetContacts 706 

(https://getcontacts.github.io) tool was used to compute all the atomic interactions and contacts 707 

established in each time frame of the simulated trajectories. Secondary structures were 708 

computed using the DSSP module of the MDTraj 49 tool for each simulation frame. The DSSP 709 

assignments were calculated using the 8-category schemes: H=α helix, B=residue in isolated 710 

beta-bridge, E=extended strand, participating in beta ladder, G=3-helix (3/10 helix), I=5-helix (π 711 

helix), T=hydrogen bonded turn, S=bend, – =unclassified. 3D images and motions were 712 

generated using UCSF Chimera. 713 

 714 

Data Availability 715 

The datasets supporting the conclusions of this article are included within the article and its 716 

additional files. The MitImpact database, together with the APOGEE 2 probabilities/classes of 717 

pathogenicity, can be freely downloaded from http://mitimpact.css-mendel.it. Datasets 2 and 3 718 

are available from https://gnomad.broadinstitute.org/ and 719 

https://www.helix.com/pages/mitochondrial-variant-database, respectively. Dataset 4 is 720 

available from MITOMAP at https://mitomap.org/MITOMAP/Benign. 721 

Code Availability 722 

 723 
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The complete molecular dynamics simulation protocol is available as Supplementary File 1. The 724 

APOGEE 2 machine-learning workflow is available from 725 

https://github.com/mazzalab/playgrounds and is freely runnable as a Colab notebook.  726 

 727 
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Figures 857 

Figure 1: A. Counts (top) of reported and confirmed missense variants for all mtDNA protein-coding 858 

genes and their frequency (bottom) calculated on each gene length. B. Common missense variants 859 

between HelixMTdb, gnomAD, and MITOMAP’s confirmed and reported variants. C. Distribution of 860 

heteroplasmic (gnomAD, n = 164, HelixMTdb, n = 204) and homoplasmic (gnomAD, n = 187, HelixMTdb, 861 

n = 198) reported variants in gnomAD (left) and HelixMTdb (right) based on their AF. Dashed lines 862 

represent the 0.002%, 0.5%, and 1% AF thresholds. Error bars represent the 95% CIs around the median 863 

values. Red dots are outlier variants by AF.  864 

Figure 2: A. Average test auPRC values of the selected ML methods, calculated during the training 865 

phase. Support Vector Machine classifier with radial basis functions kernel (rbfSVC), Balanced Bagging 866 

using Gaussian Naive Bayes (GNB_BalancedBagging) and K-Nearest Neighbors 867 

(KNN_BalancedBagging) as base estimators, Balanced Random Forest (BalancedRF), KNN Bagging 868 

balanced through RUS and SMOTE techniques (KNN_RusSmote). B. Feature importance assessed on 869 

the whole Dataset 1; threshold set to 1%. C. AuROC values calculated on 118 and 13 neutral and 870 

pathogenic test variants for APOGEE versions 1 and 2. D. Performance comparison of APOGEE 2 versus 871 

other meta-predictors in terms of auROC. APOGEE 2’s auROC is reported as the mean ± 95% CIs 872 

obtained through cross-validation. E. Time-dependent APOGEE 2’s auROC values obtained by predicting 873 

MITOMAP 2022 upon training on the 2008-2020 contents; for each year, the sample mean distribution is 874 

reported in gray. 875 

Figure 3: A. Distribution of APOGEE 2 scores. Colors represent classes of pathogenicity: green (benign, 876 

probability of pathogenicity (P) ≤ 0.001), light green (likely benign, 0.001 < P ≤ 0.1), yellow (VUS, 0.1 < P 877 

< 0.9), orange (likely pathogenic, 0.9 ≤ P < 0.99), red (pathogenic, P ≥ 0.99). B. Misclassification rate of 878 

100 test folds calculated on Dataset 1. C. Mitochondrial protein complexes localization on the bisector of 879 

a 3D space. Colors have the same meaning as Figure 3A. D. Global spatial autocorrelation computed at 880 

different cutoff distances. Blue circles mark the maximum values for each protein complex. E. Low-risk 881 

(green) and high-risk (in red) amino acid regions of the mitochondrial Complex I subunits. Highlighted in 882 

red, we underline the MITOMAP confirmed variants that localize on TMH3 of MT-ND6 and on the MT-883 

ND3 loop. 884 
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Figure 4: A. Structure of the mtDNA-encoded subunits of the complex I membrane arm. B. Average 885 

structures of the wild-type, Ser34Pro, and Thr35Pro MT-ND3 protein models (left) and wild-type, 886 

Ser34Phe, and Ser34Tyr (right). C. RMSF profiles of the heavy atoms of the MT-ND3 loop (residues 24-887 

54) for both wild-type and mutants. D. 3D representations of the dynamics of the wild-type, Ser34Pro, and 888 

Thr35Pro MT-ND3 protein models. In all subfigures B, C, and D, wild-type is colored green, Ser34Pro is 889 

yellow, Thr35Pro is red, Ser34Phe is pink, and Ser34Tyr is cyan. E. Average structures of the MT-ND6 890 

protein. TMH3 is highlighted in dark orange. 891 

Figure 5: ML pipeline including data preprocessing, i.e., scaling (A), imputation of missing values (B), 892 

and feature selection (C), model tuning by 10-folds Grid Search CV (D), training of any ML method with 893 

the best hyperparameter combination obtained in D and testing (E). 894 

Supplementary Figures 895 

Supplementary Figure 1: Matrix of Pearson correlation coefficients calculated on the scaled prediction 896 

scores to zero mean and unit variance of non-positional features for all possible mitochondrial missense 897 

variants. Axes labels related to pathogenicity predictors are highlighted in bold. B. Imputation of missing 898 

values with five algorithmic strategies; performance is measured in terms of Normalized Root Mean 899 

Squared Error (NRMSE, Y-axis); multipliers of the a priori probability of missing values in MitImpact (i.e., 900 

the unitary value) on the X axis (see Methods); both mean errors (lines) and their 95% CI (colored 901 

shadows) are reported in the figure. 902 

Supplementary Figure 2: A. 83 (4.7%) heteroplasmic variants in gnomAD were predicted to be likely 903 

pathogenic, and 10 (0.6%) were pathogenic. 71 (4%) and 7 (0.4%) variants exhibited an AF <0.002%, 904 

respectively. 19 (0.9%) homoplasmic variants were classified as likely pathogenic and 3 (0.1%) as 905 

pathogenic. 11 (0.5%) and 1 (0.05%) variants exhibited an AF <0.002 %, respectively. B. 101 (3.3%) 906 

HelixMTdb heteroplasmic variants were predicted as likely pathogenic, and 15 (0.5%) were classified as 907 

pathogenic. Similarly, 33 (1.1%) homoplasmic variants were defined as likely pathogenic, and 3 (0.1%) 908 

were deemed pathogenic. 86 (2.8%) heteroplasmic and 22 (0.8%) homoplasmic likely pathogenic 909 

variants exhibited an AF <0.002%; 13 (0.4%) and 2 (0.07%) considering heteroplasmic and homoplasmic 910 
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pathogenic variants, respectively. Both panels represent the APOGEE 2 pathogenicity probability values 911 

of heteroplasmic (left) and homoplasmic (right) variants on the Y axis and the variant AF on the X axis. A 912 

dot is a variant. A dot color represents the pathogenicity level (green = benign, red = pathogenic), as in 913 

Figure 3D. The red dashed line marks the 0.002% AF threshold. The blue dashed lines separate likely-914 

benign from VUS (score = 0.2654, probability = 0.1) and VUS from likely-pathogenic (score = 0.7161, 915 

probability = 0.9). C. Frequency distribution of APOGEE 2 scores of Dataset 1’s benign variants (training 916 

set) and Dataset 4’s variants (ClinGen). Vertical dashed lines mark the average APOGEE 2 scores for 917 

both distributions. 918 

Supplementary Figure 3: Performance comparison of APOGEE 2 versus other predictors in terms of 919 

auROC (A) and auPRC (B). APOGEE 2’s performance is reported as the mean ± 95% CIs obtained 920 

through cross-validation.  921 

 922 

Supplementary Tables 923 

Supplementary Table 1: GnomAD variants that are in MITOMAP as confirmed, those with an 924 

allele frequency greater than 0.002%, plus three gnomAD variants that were deemed 925 

pathogenic by ClinVar (accessed in October 2021). We also reported HelixMTdb variants 926 

showing an allele frequency ≥ 0.002% and a confirmed disease status according to MITOMAP. 927 

Supplementary Table 2: Correlation matrix of the evolution, pathogenicity predictions, and 928 

protein structural features used to train APOGEE 2. It includes three evolution measures, 929 

fourteen in silico pathogenicity predictors, and one protein structural feature. Pearson 930 

correlation coefficients are reported.  931 

Supplementary Table 3: Parameter grids tested through GridSearch CV for all the machine 932 

learning methods evaluated in this work. The best parameters found for the selected method 933 

are marked in bold. 934 
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Supplementary Table 4: Performance metrics of all the machine learning methods evaluated in 935 

this work and performance comparison between APOGEE 2 and other meta-predictors. In the 936 

upper table, for each metric, we reported the average performance ± 95% confidence intervals, 937 

calculated on 100 test folds. In the lower table, we reported the average performance metrics for 938 

all the meta-predictors compared to APOGEE 2.  939 

Supplementary Table 5: List of all MitImpact variants annotated and categorized according to 940 

APOGEE 2. Variants belonging to the training set (Dataset 1) have been flagged as “P” or “N” 941 

referring to pathogenic or deemed benign variants, respectively. 942 

Supplementary Table 6: List of the most significantly high local spatial autocorrelated amino 943 

acids (adjusted LISA permutation p-value <0.01). 944 

Supplementary Table 7: Datasets 2, 3, and 4 containing benign or likely benign variants, used 945 

to evaluate the specificity of the APOGEE2 predictions. Datasets 2 and 3 were retrieved from 946 

gnomAD and HelixMTdb, respectively, considering missense variants not included in the 947 

training set, showing an allele frequency ≥0.002% (according to the source database). Dataset 948 

4 was obtained from MITOMAP (https://mitomap.org/MITOMAP/Benign, accessed on 949 

September 7, 2022) and refers to non-synonymous curated variants not included in the training 950 

set and flagged as Benign or Likely-benign. 951 

Supplementary Table 8: List of possible synergistic variants in MITOMAP. We functionally 952 

annotated each variant and reported its classification according to APOGEE 2. 953 

Supplementary Table 9: Frequency of missing values of APOGEE 2 features in Mitimpact. 954 

Supplementary Table 10: auROC values calculated on 5 random partitions of the 2022 955 

MITOMAP dataset, after training APOGEE 2 on seven MITOMAP sets retrieved from 2008 to 956 

2020 every two years.  957 
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