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ABSTRACT

APOGEE 2 is a mitochondrially-centered ensemble method designed to improve the accuracy
of pathogenicity predictions for interpreting missense mitochondrial variants. Built on the joint
consensus recommendations by the American College of Medical Genetics and
Genomics/Association for Molecular Pathology (ACMG/AMP), APOGEE 2 features an improved
machine learning method and a curated training set for enhanced performance metrics. It offers
region-wise assessments of genome fragility and mechanistic analyses of specific amino acids
that cause perceptible long-range effects on protein structure. With clinical and research use in
mind, APOGEE 2 scores and pathogenicity probabilities are precompiled and available in
Mitimpact. APOGEE 2's ability to address challenges in interpreting mitochondrial missense

variants makes it an essential tool in the field of mitochondrial genetics.

Keywords: mitochondrial genomics; computational biology; pathogenicity prediction
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Introduction

Mitochondria are responsible for many of the most important functions in eukaryotic cells. They
use oxidative phosphorylation (OXPHOS) to produce large amounts of adenosine triphosphate
(ATP), store calcium for cell signaling, generate heat, and mediate cell growth and death.
Mitochondria, in contrast to the nuclear genome (nDNA), have a smaller repertoire of DNA-
repair pathways. They counteract Muller's ratchet !, the progressive accumulation of deleterious
mutations, with a process known as the mtDNA bottleneck, which, while controversial 2, explains
the increase in cell-to-cell variability in terms of mutant load during development. A unique
mechanism for the degradation of mutated DNA molecules 2 eliminates defective cells, allowing
the mutant load to be stabilized over generations. Despite this, the mtDNA to nDNA variant
ratios range from a few folds in non-vertebrates up to at least 20 folds in vertebrates . The lack
of protective histones in mitochondria, the proximity of mtDNA to the electron transport chain,
which is a primary cellular source of reactive oxygen species, or a dNTP pool imbalance that
leads to decreased DNA polymerase gamma fidelity ° are all factors that could affect these
ratios.

Mutations in the mtDNA are at the core of many human diseases °. Currently, ~1000 different
mutations are associated, based on literature, with human diseases in MITOMAP 7, ~10% of
which with compelling evidence of being pathogenic based on published literature (named as
confirmed in MITOMAP), ~86% not been definitively shown to cause disease (named as
reported), and 4% including synergistic and conflicting variants. 94% of confirmed and reported
variants are single nucleotide variants (SNVs) and span the whole genome. Missense variants
account for 43% of all SNVs in MITOMAP (Figure 1A); 58% of them are present in the Genome
Aggregation Database (gnomAD) & and 65% in HelixMTdb ° (Figure 1B).

As one might anticipate, the majority of gnomAD's missense variants are benign based on

ClinVar, but gnomAD also includes twelve MITOMAP confirmed missense variants and an
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additional three that ClinVar classifies as pathogenic (Supplementary Table 1). In the case of
new variants or without a confirmed functional effect, one should apply the full 2020
ClinGen/ACMG/AMP guidelines '°. For allele frequency (AF), they allow an evidence weight of
“supporting” when a variant is found at an AF <1/50000 (<0.002%) in mitochondrial specific
databases (pathogenic criteria code “PM2”), “likely benign” when AF >0.5% (“BS1”), or “stand-
alone benign” when AF>1% and there is no other conflicting evidence, such as a novel
occurrence in a major haplogroup branch to support pathogenicity (“‘BA1”). While confirmed
variants are mostly rare &, reported, conflicting, and synergistic variants are far more common.
Indeed, there are eight confirmed variants in gnomAD with AF 20.002% (Supplementary Table
1) and 187 reported variants with AF 20.002%, of which 28 with AF 20.5% and 16 =1%.
Similarly, HelixMTdb contains seven confirmed variants with frequencies =0.002%
(Supplementary Table 1) and 191 reported variants 20.002%, of which 23 have AF =0.5% and
13 21% (Figure 1C). Because neither of the databases is enriched for mitochondrial disorders
or other clinical phenotypes, compared to the GenBank mtDNA sequence repository, these
variants are unlikely to be all pathogenic. As a result, the variant pathogenicity can be
challenging to predict as there are several biological mechanisms that concur with the functional
behavior, e.g., epistasis and modulatory effects, which cannot be solely based on allelic

frequency.
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91 Figure 1: A. Counts (top) of reported and confirmed missense variants for all mtDNA protein-coding

92 genes and their frequency (bottom) calculated on each gene length. B. Common missense variants

93 between HelixMTdb, gnomAD, and MITOMAP’s confirmed and reported variants. C. Distribution of

94 heteroplasmic (gnomAD, n = 164, HelixMTdb, n = 204) and homoplasmic (gnomAD, n = 187, HelixMTdb,
95  n=198) reported variants in gnomAD (left) and HelixMTdb (right) based on their AF. Dashed lines

96 represent the 0.002%, 0.5%, and 1% AF thresholds. Error bars represent the 95% Cls around the median
97  values. Red dots are outlier variants by AF.

99 Inconsistencies were mitigated with the introduction of in silico prediction methods in 2015 by
100 the ACMG and AMP’s joint consensus recommendations !, which were later implemented '° for
101 the mitochondrial genome specifically. Variants were further given supporting evidence of
102  benign status (“BP4”) when multiple lines of computational evidence suggested no impact on
103  the gene or gene product (coding non-synonymous variants: APOGEE score <0.5; tRNA

104  variants: MitoTip '2 <50th percentile and HmtVar '3 <0.35). On the contrary, variants were
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105  assigned an evidence weight of supporting pathogenicity (“PP3”) when APOGEE >0.5; MitoTip
106  >50th percentile and HmtVar =0.35.

107  The first version of APOGEE ' was chosen over a slew of other options, the majority of which
108  were designed to work with nuclear-encoded genes. They had poor prediction records when
109  applied to mtDNA variants, evoking the historical congruency issue among predictors °. As a
110  result, APOGEE was built as an ensemble method that was trained on mitochondrial-specific
111 features that contributed to the best classification performance among all competitors.

112 Here, we present its latest iteration. With a better, state-of-the-art, machine learning method and
113  a curated training set, APOGEE version 2 improves its own performance. We tested its ability to
114  spot pathogenic and neutral '® variants in the mitochondrial genome and profiled its time-

115  dependent “learning curve” to demonstrate how the steadily growing number of high-quality

116  annotated mtDNA variants affects its classification performance. We have pre-calculated the
117  prediction scores and pathogenicity probabilities of all possible missense variants of the mtDNA
118  and set five classes of pathogenicity to support clinicians and geneticists in reporting their

119  genetic diagnoses. Finally, we have conducted a mechanistic analysis of specific amino acids
120 that cause perceptible long-range effects on the protein structure to discuss the significance of

121  strengthening protein structural features in the training set.

122 Results

123 Characteristics of the training set
124  The APOGEE 2 training set (Dataset 1) contains 140 pathogenic and likely harmful variants and

125 1734 benign and likely harmless variants that have been manually curated (see Methods for a
126  detailed description of the datasets). These were annotated with mitochondrially-tailored
127  evolutionary, positional, and structural features and fourteen pathogenicity assessments of in

128  silico predictors. Most of their Pearson correlation coefficients were in the range (-0.5, 0.5);
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129  MutationAssessor, SNAP, and PhD-SNP exhibited absolute Pearson's r values >0.7 with more
130 than one other feature (Supplementary Figure 1A and Supplementary Table 2).

131 Features were not always available for all variants. Missing values accounted for 1% of the
132  evolutionary scores and in silico predictions and 0.2% of structural and positional values. We
133  imputed them by using a Random Forest-based iterative imputer, which displayed the lowest
134  Normalized Root Mean Squared Error (NRMSE) values of all tested imputation methods

135 (Supplementary Figure 1B).
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137  Supplementary Figure 1: A. Matrix of Pearson correlation coefficients calculated on the scaled

138  prediction scores to zero mean and unit variance of non-positional features for all possible mitochondrial
139  missense variants. Axes labels related to pathogenicity predictors are highlighted in bold. B. Imputation of
140  missing values with five algorithmic strategies; performance is measured in terms of Normalized Root
141 Mean Squared Error (NRMSE, Y-axis); multipliers of the a priori probability of missing values in Mitimpact
142 (i.e., the unitary value) on the X axis (see Methods); both mean errors (lines) and their 95% CI (colored

143  shadows) are reported in the figure.
144

145 Training, testing, and performance assessment

146  We examined different machine-learning (ML) classification methods to sort deleterious

147  variants, searching for the best-performing one, while all were designed to properly tackle the
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148 class imbalance in Dataset 1. Each method was instantiated during a 20-fold cross-validation
149  (CV)repeated five times, where 19 folds of the dataset were iteratively used for the training and
150  tuning of the hyperparameters, and the remaining fold was used for testing. Each method was
151  tuned by attempting several combinations of hyperparameters (Supplementary Table 3). This
152  was done using an inner 10-fold Grid-Search (GS) CV.

153  With the highest average test auPRC (0.716, Figure 2A), auROC (0.95), and the best records
154  for nearly all performance metrics (Supplementary Table 4), the KNN Bagging balanced

155  through Random Under-Sampling (RUS) and Synthetic Minority Oversampling Technique

156 (SMOTE) method (KNN_RusSmote) stood out as the best and was then chosen as the

157  APOGEE 2 ML reference method. The best hyperparameters identified by GS were: “3” for the
158 number of KNN’s neighbors; the inverse euclidean distance as a metric to weight the neighbors'
159 importance; 1/4 as the pathogenic/neutral variant ratio before the SMOTE step; and 1/4 as the
160 ratio of features used by each base learner over the total number of selected features. It used
161 17 out of the 22 considered features, where PhastCons 100V, MutationTaster, FatHmmW,

162  CADD, and AAG were, in fact, discarded in the feature selection step (Figure 2B).

163  On Dataset 1, APOGEE version 1 underwent a second round of testing and received an

164  average auPRC of 0.573 (Figure 2A) and auROC of 0.855. The classification performance of
165 both APOGEE versions was also compared on the test set of our previous work '°, which

166  included the union of MITOMAP and VariBench variants available at the time of that writing (see
167  Supplementary Table 2 in '°) purged of variants overlapping with the APOGEE 2 training.

168 APOGEE 2 outperformed its former version (0.99 vs. 0.87 auROC, Figure 2C; 0.97 vs. 0.65
169 auPRC).

170  Compared with other meta-predictors, APOGEE 2 exhibited the best performance metrics,

171 including auPRC (Figure 2D), but the sensitivity where MtoolBox and Condel excel at the

172  expense of specificity, which ranked worst for both tools (Supplementary Table 4).
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173  To evaluate whether expanding APOGEE 2’s training set would improve its performance in

174  future releases, we adopted the same criteria used to create Dataset 1 to generate seven

175  training sets starting from the MITOMAP content from 2008 to 2020, which was randomly

176  retrieved once every two years. The 2022 content was used as a test set. We found that the
177  models' performance in sorting pathogenic from neutral variants in the 2022 dataset increased
178  monotonically over time (Pearson's r: 0.91, p-value: 0.004), but at an increasingly slower rate
179  (Figure 2E, Supplementary Table 10), indicating that expanding the training set in subsequent
180 iterations will not have as much of an impact on APOGEE 2's performance as adding more

181 informative features would.
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183 Figure 2: A. Average test auPRC values of the selected ML methods, calculated during the training

184 phase. Support Vector Machine classifier with radial basis functions kernel (rbfSVC), Balanced Bagging
185  using Gaussian Naive Bayes (GNB_BalancedBagging) and K-Nearest Neighbors

186  (KNN_BalancedBagging) as base estimators, Balanced Random Forest (BalancedRF), KNN Bagging
187  balanced through RUS and SMOTE techniques (KNN_RusSmote). B. Feature importance assessed on
188  the whole Dataset 1; threshold set to 1%. C. AUROC values calculated on 118 and 13 neutral and

189 pathogenic test variants for APOGEE versions 1 and 2. D. Performance comparison of APOGEE 2 versus
190  other meta-predictors in terms of auROC. APOGEE 2's auROC is reported as the mean + 95% Cls

191 obtained through cross-validation. E. Time-dependent APOGEE 2’'s auROC values obtained by predicting
192 MITOMAP 2022 upon training on the 2008-2020 contents; for each year, the sample mean distribution is
193  reported in gray.

194
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195 \Whole-genome predictions
196  We used APOGEE 2 to predict the pathogenicity of all 24190 possible missense mtDNA

197  variants (Supplementary Table 5) and made them available in Mitimpact.

198 Scores and pathogenicity probabilities. Prediction scores are numeric and do not follow a
199  conventional probability density function. The exact frequency distribution is shown in Figure
200  3A. Scores range from 0 (neutral or benign) to 1 (deleterious or pathogenic). Using Bayesian
201  reasoning, we could determine the posterior pathogenicity probability associated with all

202 missense mitochondrial variants, ranging from 0 (not pathogenic) to 1 (pathogenic). Since the
203  posterior probability monotonically increases with the APOGEE 2 score, ranking variants by one
204  metric or the other is equivalent.

205 Misclassification. The misclassification analysis calculated for any of the 100 test folds

206 revealed that 12.57% of the pathogenic variants were deemed benign, while 9.75% of the

207  neutral variants were misclassified as deleterious (Figure 3B).

208 Positionality. The dependency of the APOGEE 2 score on the variants' locations in the

209 protein's 3D structures placed on a bisector of a 3D space (Figure 3C) was quantified using
210  Moran's index. For this analysis, we recalculated the APOGEE 2 scores by excluding the spatial
211  features from the learning workflow in order to avoid any positional bias. We found significant
212  positive spatial autocorrelation among the predicted pathogenic variants in each mitochondrial
213  complex (Moran's index permutation p-value <10E-5 for each complex except MT-ATPS8, for
214 which p-value =0.02), implying that some regions of these proteins may be less tolerant to

215  amino acid changes than others. We performed this analysis with the quadratic distance decay
216  function as a measure of the proximity between amino acids. We also repeated the test using
217  binary proximity matrices, computed at different cutoff distances as described in 8. The

218 maximum Moran's index has been obtained when setting a cutoff distance between amino acids
219  of 6A for Complex I, Complex IV, and MT-ATPG6, and 8A for Complex Ill (Figure 3D); no

220  significant results were obtained for MT-ATPS.
11
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221  We localized spatially autocorrelated high- and low-risk regions using the LISA index. The most
222  significant regions (adjusted LISA permutation p-value <0.01) were reported in Supplementary
223  Table 6. The APOGEE 2 score threshold used to sort low- from high-risk amino acids in this
224  analytical step was 0.379, which is the median recalculated APOGEE 2 score. For example,
225  focusing on Complex I, which is composed of seven mtDNA-encoded proteins, we identified
226  several neutral hotspots spread throughout MT-ND2 and several fragile regions, which included
227  the transmembrane helices of MT-ND5, MT-ND4 and MT-ND1, the transmembrane helix 3

228 (TMH3) of MT-NDG6 and the MT-ND3 loop. The latter two regions include variants known to

229 impact important physiological mechanisms, which were examined more deeply in the

230  “Evaluation of variants that alter the protein structure non-locally” section (Figure 3E).

231  Categorization. Interpreting the evidence categories given in Tables 3 and 4 of " as

232  categorical conditional probabilities or odds of pathogenicity, in line with 7, and aiming to

233  provide clinical translationality to APOGEE 2 predictions, we adopted the following ranges of
234  probability and set four classes of pathogenicity: benign < 0.001, 0.001 < likely benign < 0.1, 0.9
235  <likely pathogenic < 0.99, pathogenic = 0.99. When none of the previous criteria are met, i.e.,
236  when the posterior pathogenicity probability of a variant is between 0.1 and 0.9, a variant has
237  uncertain significance (VUS) (Supplementary Table 5). With this setting, all known pathogenic
238 variants in Dataset 1 were correctly labeled pathogenic and likely-pathogenic, except for seven
239  of them, which were annotated as VUS. Regarding the harmless variants in Dataset 1, 190
240  were annotated as VUS, while the remaining 1544 were correctly labeled benign and likely-

241  benign (Supplementary Table 5). Nearly all variants in Datasets 2 and 3, which contain only
242  potentially harmless variants and therefore were used to evaluate APOGEE 2’s specificity, were
243  classified as benign or likely-benign by APOGEE 2 (Supplementary Table 7: y%(1, N=36) =
244  16.19, p =5.73E-05 and y?(1, N=35) = 24.10, p =9.15E-07, respectively for Datasets 2 and 3).
245  None of the variants in Dataset 2 were classified as pathogenic or likely-pathogenic, while one

246  variant from Dataset 3 was classified as likely-pathogenic.
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249 Figure 3: A. Distribution of APOGEE 2 scores. Colors represent classes of pathogenicity: green (benign,
250 probability of pathogenicity (P) < 0.001), light green (likely benign, 0.001 < P <0.1), yellow (VUS, 0.1 <P
251 < 0.9), orange (likely pathogenic, 0.9 < P < 0.99), red (pathogenic, P = 0.99). B. Misclassification rate of
252 100 test folds calculated on Dataset 1. C. Mitochondrial protein complexes localization on the bisector of
253  a 3D space. Colors have the same meaning as Figure 3A. D. Global spatial autocorrelation computed at
254 different cutoff distances. Blue circles mark the maximum values for each protein complex. E. Low-risk
255 (green) and high-risk (in red) amino acid regions of the mitochondrial Complex | subunits. Highlighted in
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256 red, we underline the MITOMAP confirmed variants that localize on TMH3 of MT-ND6 and on the MT-
257  ND3 loop.
258

259 Variant functionality prediction in human variation databases

260  As a further test of the negative variants, we used APOGEE 2 to score every mitochondrial

261  missense variant in the gnomAD v3.1.2 and HelixMTdb databases. Heteroplasmic variants were
262 1767 (AF range min 0.0017%: max 0.037%) in gnomAD and 3058 (AF range min 0.0005%: max
263  0.15%) in HelixMTdb. The homoplasmic variants were 2177 (AF range min 0.0017%: max 99%)
264  and 2894 (AF range min 0.0005%: max 99%). The predicted pathogenic and likely pathogenic
265 variants for both databases were comparable (Supplementary Figure 2A,B), even when

266  considering <0.002% variants, irrespective of their heteroplasmy levels. GnhomAD and

267 HelixMTdb showed, in fact, a high and significant positive correlation between the allelic

268 frequencies of their heteroplasmic (Pearson’s r: 0.88, p-value <2.2E-16) and homoplasmic

269  (Pearson’s r: 0.91, p-value =6.434E-11) variants.

270 ltis important to note that HelixMTdb was not enriched in patients with mitochondrial diseases,
271 but there were no exclusion criteria based on mitochondrial disorders °. On the other hand,

272  while gnomAD declares that some individuals with severe disease may still be included in the
273  database, albeit likely at a frequency equivalent to or lower than that seen in the general

274  population, they have explicitly removed individuals known to be affected by severe pediatric
275 disease, as well as their first-degree relatives. This might explain the presence of both likely and
276  frankly pathogenic variants in both datasets.

277  The pathogenicity probability values for ClinGen's neutral variants, which were collected in

278 Dataset 4 (Supplementary Table 7), ranged from 0 to 0.73. Dataset 4 (see Methods) contains
279 neutral variants that were evaluated by the ClinGen mitochondrial VCEP team and, therefore,
280 are supposedly more likely to be neutral than those contained in Datasets 2 and 3. None of

281 Dataset 4 variants was predicted as pathogenic or likely-pathogenic by APOGEE 2. We also

14


https://paperpile.com/c/4Aeykt/f8wR
https://doi.org/10.1101/2023.06.18.545476
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.18.545476; this version posted June 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

282  verified that the APOGEE 2 scores of these variants were lower on average than those of the
283  neutral variants in Dataset 1 (Mann-Whitney U test, U=152940, p-value=2.80E-09;
284  Supplementary Figure 2C), thereby confirming the ability of APOGEE 2 to also quantify the

285  level of certainty of being a neutral variant.
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287 Supplementary Figure 2: A. 83 (4.7%) heteroplasmic variants in gnomAD were predicted to be likely
288  pathogenic, and 10 (0.6%) were pathogenic. 71 (4%) and 7 (0.4%) variants exhibited an AF <0.002%,
289 respectively. 19 (0.9%) homoplasmic variants were classified as likely pathogenic and 3 (0.1%) as

290  pathogenic. 11 (0.5%) and 1 (0.05%) variants exhibited an AF <0.002 %, respectively. B. 101 (3.3%)
291 HelixMTdb heteroplasmic variants were predicted as likely pathogenic, and 15 (0.5%) were classified as
292 pathogenic. Similarly, 33 (1.1%) homoplasmic variants were defined as likely pathogenic, and 3 (0.1%)
293  were deemed pathogenic. 86 (2.8%) heteroplasmic and 22 (0.8%) homoplasmic likely pathogenic

294  variants exhibited an AF <0.002%; 13 (0.4%) and 2 (0.07%) considering heteroplasmic and homoplasmic
295 pathogenic variants, respectively. Both panels represent the APOGEE 2 pathogenicity probability values
296  of heteroplasmic (left) and homoplasmic (right) variants on the Y axis and the variant AF on the X axis. A
297  dotis a variant. A dot color represents the pathogenicity level (green = benign, red = pathogenic), as in
298  Figure 3D. The red dashed line marks the 0.002% AF threshold. The blue dashed lines separate likely-
299  benign from VUS (score = 0.2654, probability = 0.1) and VUS from likely-pathogenic (score = 0.7161,
300  probability = 0.9). C. Frequency distribution of APOGEE 2 scores of Dataset 1’s benign variants (training
301 set) and Dataset 4’s variants (ClinGen). Vertical dashed lines mark the average APOGEE 2 scores for
302  both distributions.

304 Evaluation of variants that alter the protein structure non-locally

305 Variants that have structural and non-local effects may significantly impair APOGEE 2 prediction
306 performance. This is the case of NC_012920.1:m.10161A>C '°, (YP_003024033.1:p.Thr35Pro)
307  which is located in the MT-ND3 loop (residues 24 to 54) and is contiguous to the m.10158T>C
308 (p.Ser34Pro) common variant, reported as “confirmed” by MITOMAP, as “pathogenic” in

309 ClinGen, and is associated with Leigh disease or MELAS syndrome. The loop is between two
310  transmembrane helices (TMH 1 and 2) and includes Cys39. In mammalian Complex |, such a
311  residue is exposed during active mitochondrial respiration and is thought to be necessary for the
312  reversible transition between catalytically active and inactive states '°. Intuitively, the loop's

313  dynamics may influence Cys39 exposure and, as a result, the active-inactive state transition.
314  Multiple MD simulations revealed that the Ser34Pro and Thr35Pro mutants affect the loop

315 flexibility significantly and similarly to the wild-type protein, and the other two mutant systems,
316  Ser34Phe and Ser34Tyr (Figure 4A-D), which were chosen because of their allelic frequencies
317  (0.013% and 0.002% in MITOMAP, respectively), were contiguous and not associated with any
318  relevant phenotype. The RMSF profiles (Figure 4C) of the heavy atoms in part of the loop

319  (residues 40 to 50) were higher for Ser34Pro and Thr35Pro than the wild-type and slightly more
320 rigid in the first part (residues 24 to 40). On the other hand, Ser34Phe and Ser34Tyr displayed

17


https://paperpile.com/c/4Aeykt/PN1pn
https://paperpile.com/c/4Aeykt/PN1pn
https://doi.org/10.1101/2023.06.18.545476
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.18.545476; this version posted June 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

321  flexibility profiles that were similar to those of the wild-type. This can also be observed in the 3D
322  dynamic representation (Figure 4D). The loss of essential interactions between loop residues
323  and nearby subunits brought on by Thr35Pro, such as residues 129 of MT-ND1 and 49 of MT-
324  ND3 and residues 76 of MT-ND6 and 48 of MT-ND3, is what leads to the flexibility alterations.
325 APOGEE 2 classifies this variant as VUS (score 0.51, probability = 0.59) even though we have
326  confirmed it to be pathogenic [Milon et al., under review].

327 A second case regards NC_012920.1:m.14538A>G, YP_003024037.1:p.Phe46Leu in MT-NDG,
328 reported in the literature 2° as a novel pathogenic LHON variant but classified as likely-benign by
329 APOGEE 2 (score 0.08, probability = 0.002). It is proximal to the transmembrane helix TMH3
330 (residues 52-74 in the closed state and interrupted by a bulge in the open state that involves
331  residues 60-65 2! of MT-ND6, which actively participates in the Complex | closed conformation,
332 rotating to lose its characteristic -bulge and consequently disrupting the helix 22. A few

333  pathogenic mutations were found in the helix. One of them, m.14459G>A, hits the residue

334  Ala72, reported in MITOMAP and ClinGen as a pathogenic change in valine and associated
335  with multiple mitochondrial phenotypes. It is interesting to note that the same residue is also hit
336 by a proline variant (Ala72Pro, m.14460C>G). The proline variant is included in Dataset 1

337  because it is deemed benign due to its allelic frequency of 0.011%, but it is categorized as VUS
338 by APOGEE 2 (score = 0.64, probability = 0.82). We have compared the long-range impact of
339  p.Phe46Leu on TMH3 with that caused by Ala72Pro and Ala72Val by simulation. After 200 ns of
340 simulation, we observed that all three mutants altered the helix’s folding to different extents, with

341  a more evident destructuration caused by Ala72Pro and Ala72Val than Phe46Leu (Figure 4E).
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Phe46Leu Ala72Pro Ala72Val

Figure 4. A. Structure of the mtDNA-encoded subunits of the complex | membrane arm. B. Average
structures of the wild-type, Ser34Pro, and Thr35Pro MT-ND3 protein models (left) and wild-type, Ser34Phe,
and Ser34Tyr (right). C. RMSF profiles of the heavy atoms of the MT-ND3 loop (residues 24-54) for both
wild-type and mutants. D. 3D representations of the dynamics of the wild-type, Ser34Pro, and Thr35Pro
MT-ND3 protein models. In all subfigures B, C, and D, wild-type is colored green, Ser34Pro is yellow,
Thr35Pro is red, Ser34Phe is pink, and Ser34Tyr is cyan. E. Average structures of the MT-NDG6 protein.
TMH3 is highlighted in dark orange.

19


https://doi.org/10.1101/2023.06.18.545476
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.18.545476; this version posted June 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

351 Discussion

352 APOGEE 2 is an ensemble method that addresses the need for a pathogenicity prediction tool
353  with increased accuracy for interpreting missense mtDNA variants. We have shown that it

354  outperforms the former version due to the availability of more mitochondrially-centered features,
355  their manual curation, and the adoption of a more sophisticated ML protocol. Overall, APOGEE
356 2 offers the best performance metrics when compared to other meta-predictors. It is interesting
357  to note, though, that Condel and MtoolBox excel in sensitivity at the expense of their specificity
358 (Supplementary Table 4). APOGEE 2 outperforms several other predictors as well, i.e.,

359  MutPred and MutPred2 *°, and MutationAssessor, CADD, and EFIN (Supplementary Figure

360  3), which were used for APOGEE 2’s training.

104 101 7 === APOGEE 2 (mean auPRC=0.716 + 0.054)
MutPred (auPRC=0.336)

MutPred2 (auPRC=0.335)
MutationAssessor (auPRC=0.401)

EFIN SP (auPRC=0.488)

EFIN HD (auPRC=0.512)

CADD (auPRC=0.269)

0.8

true positive rate
precision

= APOGEE 2 (mean auROC=0.95 + 0.016) 0.2
MutPred (auROC=0.833)
MutPred2 (auROC=0.844)
MutationAssessor (auROC=0.891)
EFIN SP (auROC=0.837)

EFIN HD (auROC=0.916)

0.04 CADD (auROC=0.845)
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362  Supplementary Figure 3: Performance comparison of APOGEE 2 versus other predictors in terms of
363 auROC (A) and auPRC (B). APOGEE 2’s performance is reported as the mean + 95% Cls obtained
364  through cross-validation.

365

366

367  EFIN HD is the only predictor with a higher specificity score. It identifies 1633 of 1734 likely

368  neutral variants versus 1544 which were identified by APOGEE 2. It should be noted, though,
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369 that the degrees of certainty of the pathogenic and neutral variants of our training set differ. The
370  pathogenicity of variants is based on the literature. Neutrality is assumed by allelic frequency
371  considerations and available MITOMAP annotations. Given that some variants with literature
372  reports of suspected pathogenicity show frequency levels higher than 0.002% in gnomAD and
373  HelixMTdb, it is also likely that some variants that make up the neutral subset of Dataset 1 are
374  actually pathogenic. The reverse is not obvious. We have then tested APOGEE 2 and EFIN HD
375 on ClinGen's recently released neutral variants; in general, APOGEE 2 assigned lower

376  pathogenicity scores to ClinGen's neutral variants than EFIN HD did (Wilcoxon signed-rank test
377  preceded by quantile transformation of both scoring systems; the EFIN score has been inverted
378  since it is proportional to the neutrality of the variant; ranks sum = 3236, p-value = 0.003).

379  We have demonstrated that the APOGEE 2 pathogenic scores exhibit significant spatial

380 autocorrelation, suggesting that some protein structural regions may be less tolerant to amino
381  acid changes than others. As a result, APOGEE 2 can predict mitochondrial-specific high and
382 low-risk regions, but it may still be ineffective for variants that have non-local structural effects,
383  particularly if the involved regions are low-confidence/destructured. The flexibility of an MT-ND3
384  loop, for example, seems to be the key feature for evaluating the functionality of Thr35Pro.

385  Thr35Pro and Ser34Pro were shown to change the flexibility of the loop-spanning residues 24—
386 40 more than Ser34Tyr and Ser34Phe, two rare variants with no associated phenotypes and
387  dynamics that were similar to the wild-type protein. The motion of this loop was critical in the
388 establishment of essential links with neighboring subunits, which were broken by Thr35Pro. The
389 m.14538A>G, p.Phed46Leu pathogenic variant is deemed likely-benign by APOGEE 2 because
390 its effect is not localized but instead works to disrupt the nearby TMH3 helix, which in turn plays
391 a crucial role in the Complex | closed conformation.

392  This factor may also have an impact on how missense variants are interpreted in terms of their
393  pathogenic potential when combined with other variants, e.g., synergistic variants, or in the

394  context of particular mtDNA haplogroups 23. Synergistic variants, in particular, can be
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395 challenging to assess as they can be common in control populations and involve poorly

396 conserved residues 2. These considerations may explain the fact that only one of the 17

397 missense variants classified as possibly synergistic in MITOMAP is predicted as likely-

398  pathogenic by APOGEE 2, which instead classified the remaining 4 as benign, 9 likely-benign,
399 and 3 VUS (Supplementary Table 8).

400 Narrowing the number of VUS variants and, therefore, performance improvements are possible
401 by adding more accurate structural features to variants and accounting for their epistatic

402 interactions, still considering that the growth and curation level alone of the true positive

403 MITOMARP variants in the past fourteen years contributed to a smaller and smaller monotonic
404 increase in the APOGEE 2 performance. Molecular dynamics simulations of a significantly high
405 number of variants that may, even if distantly, alter the functional structure of critical

406 components of the mitochondrial proteins or cooperate with other variants to cause a significant
407  respiratory-chain deficiency might contribute in this direction. A pilot project has already started,
408 and preliminary results are available on Mitimpact’s website.

409 To facilitate use of the APOGEE 2 scoring and pathogenicity probabilities by clinicians and

410 researchers, we have pre-computed these calculations for all missense variants and made them
411  available in Mitimpact through its web interface and as a flat file.

412

413 Methods

414 Datasets

415  Four disjoint sets of variants were used in this work. Dataset 1 comprises 1874 non-
416  synonymous mtDNA variants, divided into 1734 deemed benign and 140 pathogenic variants

417  (Supplementary Table 5). The former set was obtained from MITOMAP’s “general” variants
22
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’ i

418  (accessed on April 20, 2021), which were purged of overlapping MITOMAP’s “disease” variants
419  and variants with ClinGen’s pathogenic criteria code "PM2." The pathogenic set was made up of
420 MITOMAP “disease” variants, including 41 confirmed and 99 reported variants. Overlapping

421  MITOMAP’s “general” variants were discarded. Neither set contained any synergistic or

422  conflicting variants. Dataset 2 was obtained from gnomAD version 3.1.2. It contained 36

423  missense variants not present in the training set, which exhibited allelic frequencies 20.002%
424  both in heteroplasmy and homoplasmy. Dataset 3 was extracted from HelixMTdb ver.

425 20200327 and filtered as Dataset 2. Twelve variants were shared with Dataset 2 and

426  discarded, and 35 were unique to this dataset. Dataset 4 fetches variants from the benign/likely-
427  benign variant sets approved by the Mitochondrial Variant Curation Expert Panel (VCEP) of

428 ClinGen (https://clinicalgenome.org/) as having met the following criteria for mtDNA variants "°:

429  Benign variants in the set had allele frequencies >1% ("BA1") in either MITOMAP, gnomAD, or
430 HelixMTdb and without disease reports or negative in-silico predictors; likely benign variants in
431  the set had allele frequencies of 0.5%-1% ("BS1") in MITOMAP, gnomAD, or HelixMTdb and
432  without disease reports or negative in-silico predictors, and additionally had either a supporting
433 in-silico tool score for benignity or a resulting synonymous amino acid change. All other variants
434  meeting the allele frequency cutoffs but with possible disease associations are referred to the
435 ClinGen mitochondrial VCEP for individual curation. The current set of benign/likely-benign

436 variants meeting the ClinGen criteria is available at https://mitomap.org/MITOMAP/Benign and

437  was accessed for this study on September 7, 2022, and released while Dataset 1 was already
438 made up. We gathered 135 neutral missense variants in total, dropped 8 VUS variants, and
439 found that 97 of them overlapped Dataset 1. Datasets 2, 3, and 4 were used to evaluate the

440  specificity of the APOGEE 2 predictions (Supplementary Table 7).
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441 Features

442  APOGEE 2 was trained on three classes of information: evolution, pathogenicity predictions,
443  and protein structural features.

444  Evolution: PhyloP and PhastCons conservation scores on 100 vertebrate species were

445  obtained from the UCSC Table Browser. Empirical substitution scores were obtained from the
446  MtMam rate matrix, built on 12 proteins, i.e., ATP6, ATP8, COX1, COX2, COX3, CYBB, ND1,
447 ND2, ND3, ND4, ND4L, and ND5, which are located on the heavy strand of the mtDNA (3331
448  sites) %. Data are from 20 species of mammals and three close outgroups, i.e., Wallaroo,

449  Opossum, and Platypus. The rate matrix was downloaded from https://qgithub.com/abacus-

450 gene/paml/blob/master/dat/mtmam.dat.

451  Pathogenicity predictors: Pathogenicity scores were retrieved for the following software

452  packages: PolyPhen2 26, SIFT %, fathmm 28, PROVEAN 2°, MutationAssessor *, EFIN3', CADD
453 32 PANTHER 3%, PhD-SNP 34, SNAP 35 and MutationTaster .

454  Structural features: The 3D structures of the 13 proteins were retrieved from the RCSB Protein
455  Data Bank (PDB) with the following IDs: 5xtc for the Respiratory Complex | (s, i, j, r, k, |, and m
456  chains for MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, and MT-ND6,

457  respectively); 5z62 for the Cytochrome C Oxidase (chain A for MT-CO1, chain B for MT-CO2,
458  and chain C for MT-CO3); 5xte for the Respiratory Complex Il (chains J and V for Cytochrome
459  b). Since MT-ATP6 and MT-ATP8 were not associated with any resolved X-ray structure, their
460 predicted structures were downloaded from the AlphaFold2 3 Protein Structure Database .
461  The five PDB files were placed on the bisector of a 3D space and spaced 3d apart, where d =
462  20A. The total energy variation (AAG, Kca/mol) eventually caused by any possible non-

463 synonymous amino acid change was calculated as follows. The structures/models described
464  above were first repaired (FoldX’s module RepairPDB) and then mutated (PositionScan),

465 considering all possible amino acid changes causing missense variations. Each mutant was
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466  analyzed energetically using FoldX ver. 5.0 % in comparison with the native structure. FoldX
467  was run with default parameters.

468  All these features except for AAG values, mtMam, and the spatial coordinates of amino acids,
469  were pre-calculated and made available in Mitimpact ver. 3.0.6 “°.

470

471 Machine learning workflow

472  The overall learning procedure consists of a double cross-validation procedure that nests an
473  optimization procedure of the best parameter combinations (hyperparameters) of each
474  implemented machine-learning (ML) algorithm under a model selection procedure. The workflow

475  was implemented in Python and made available at https://github.com/mazzalab/playgrounds as

476  a Colab notebook.

477  In particular, for each ML algorithm, the whole dataset was primarily split into training and test
478  sets by a stratified 20-fold cross-validation (CV) procedure, implemented in Python's scikit-

479  learn’s StratifiedKFold, and repeated five times. Then, for each unique group, we took it as a
480 holdout and used the remaining groups (19) as a training data set. Each group was guaranteed
481  to maintain the original pathogenic/neutral variant ratio. Then, each training set was

482  progressively subjected to three preprocessing steps: scaling, imputation of missing values, and

483 feature selection.

484 Data preprocessing

485  Values were scaled using the Python scikit-learn’s StandardScaler module to zero mean and
486 unit variance. The scaler was trained on the training-set features and then used to transform
487  both the training and test sets' values (Figure 5A). Pairwise correlations between the scaled

488 values to zero mean and unit variance of non-positional features, namely those not directly

25


https://paperpile.com/c/4Aeykt/2MEto
https://paperpile.com/c/4Aeykt/8PrMi
https://github.com/mazzalab/playgrounds
https://doi.org/10.1101/2023.06.18.545476
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.18.545476; this version posted June 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

489 involving the genomic or amino acidic positions of variants, for all possible mitochondrial

490 missense variants were obtained using Pearson correlation coefficient. Then, we imputed

491  missing values, as explained in the section below. Finally, a supervised feature selection step
492  was implemented using a Decision Tree classifier (DecisionTreeClassifier scikit-learn module)
493 to assess the relative information gain associated with a feature and hence its contribution to
494  the overall decision process. The features that explained less than 1% of the total information
495  gain were dropped. This step was performed on the training set only. Then, the dropped

496 features were removed from the training and test sets (Figure 5C).

497  Imputer selection

498  The whole Mitimpact content, made up of 22,316 variants regardless of their label (neutral or
499  pathogenic) and excluding the variants in Dataset 1, was split into 20 folds. Each fold was

500 iteratively chosen as test- and the remaining 19 as training-variants for each of the following five
501 imputation methods. We implemented two simple interpolation methods based on the mean and
502 median values of the features to be imputed, respectively; a k-Nearest Neighbors imputer

503 (sklearn.impute.KNNImputer, k = 5); two iterative imputers (sklearn.impute.lterativelmputer)

504  based respectively on Bayesian ridge linear regression (sklearn.linear_model.BayesianRidge)
505 and Random Forest regression (sklearn.ensemble.RandomForestRegressor). Once fitted any of
506 these imputers, we have generated twelve NxM matrices of probability estimates for each test
507  set by sampling from a uniform distribution in the range [0,1), where N and M are, respectively,
508 the numbers of variants (rows) and features (columns), and multiplying its values by one of the
509 twelve values in the range 0.25 - 3.00, by a step of 0.25. Therefore, we added a missing value
510  whenever any resulting number lower than the a priori probability of a missing value

511  (precalculated for each feature and made available in Supplementary Table 9) appeared in the
512  same position of the matrix. The metric we used to identify the best imputer for this study was

513  the Normalized Root Mean Squared Error (NRMSD) defined as E[X;rye — Ximpl?/V [Xtruel,
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514  where E and V are respectively the expected value and the variance, X;,,. is the true value, and

515 Xipmyp is the imputed value.

516 Grid-Search cross-validation

517  We performed an exhaustive search over the parameters (or hyperparameters) of the tested ML
518 methods using a stratified 10-fold Grid Search CV applied to a pre-computed and method-

519  specific parameter grid (GridSearchCV module). The parameter grids for all methods are

520 available in Supplementary Table 3. The preprocessed training set was further split into a 9-
521  fold training set and a 1-fold test set. The Grid Search procedure was run for each CV iteration,
522  for atotal of gs = 10 X d times, where d is the number of hyperparameter combinations

523  explored. An ML method was trained and then tested on the 1-fold test set for each combination
524  (Figure 5D). The area under the precision-recall curve (auPRC) and under the receiver

525  operating characteristic (auROC) curve metrics were evaluated to assess performance.

526 Model training and testing

527  Each classifier was trained on the 19-fold training set using the best hyperparameter

528 combination found by the Grid-Search loop and then tested on the relative 1-fold test set, which
529  was not involved in the training or tuning phases (Figure 5E). The best classifier exhibited a
530 superior average auROC over the five replicas of the overall 20-fold CV process. Then, the total

531  number of iterations performed for each ML method was 100 x (gs + 1).
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534 Figure 5: ML pipeline including data preprocessing, i.e., scaling (A), imputation of missing values (B), and
535  feature selection (C), model tuning by 10-folds Grid Search CV (D), training of any ML method with the
536  best hyperparameter combination obtained in D and testing (E).

537

538

539  Finally, we trained a model of the best method on the entire Dataset 1, using the best
540 hyperparameters found through the GridSearch CV procedure, and scored all possible non-

541 synonymous mtDNA variants.

542 ML classifiers

543  The workflow described above was run with several ML classifiers. Most of them were

544  implemented in the scikit-learn Python library.

545  Support Vector Machine (SVM) with radial basis functions (RBF) kernel. We implemented
546  the SVC module of scikit-learn. It attempts to maximize the distance between two groups by
547  minimizing the hinge loss function. The loss function was kept balanced by adjusting the class
548  weights depending on their frequencies in the training set. The method was set to use a Radial
549  Basis Function (rbf) as a kernel and L2 as the regularization term. The rbf function, defined as
550 K (x;,x,) =eCVIx=%1") depends on a parameter y, which is the inverse of the standard

551  deviation of the rbf kernel and represents the influence of each single sample in the learning
552  process, while L2 is controlled by a parameter C, which is inversely proportional to the

553  regularization strength. Both parameters were optimized by Grid-Search.

554  Gaussian Naive-Bayes (GNB) Balanced Bagging. This is a probabilistic classifier that uses a
555  Gaussian Naive-Bayes (GNB) model as the base learner for a Bootstrap Aggregation (Bagging)
556 classifier. This approach is typically used to improve the performance of a “weak-learner” (such
557  as the GNB) and reduce overfitting. To tackle the problem of class imbalance in our training set,
558  we resorted to the Balance Bagging classifier implemented by the imbalanced-learn package of
559  scikit-learn. We have also bootstrapped the features (without replacement) for each base-

560 learner training in an attempt to reduce overfitting. The Grid-Search-based optimization step
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561  was applied to i) the ratio of the bootstrapped samples over the total samples; ii) the ratio of the
562  bootstrapped features over the total number of features; and iii) the GNB variance smoothing
563 (more details in the scikit-learn documentation).

564 K-Nearest Neighbors (KNN) Balanced Bagging. 200 KNN classifiers were used as base

565 learners for a Balanced Bagging classifier with the aim of reducing the risk of overfitting and
566  balancing the pathogenic and neutral classes during the training phase. As in the previous case,
567  the Grid-Search optimization step was used to find the i) ratio of the bootstrapped samples over
568 the total samples, and ii) the ratio of the bootstrapped features over the total number of features.
569  Here, another 2 hyperparameters were subjected to optimization: the number of “neighbors” to
570 consider and the “weight” of each neighbor, which can be considered uniform or the inverse of
571  their distances.

572 Balanced Random Forest (RF). This variation of the classical RF classifier is available from
573  imbalanced-learn as the BalancedRandomfForestClassifier module. It is an ensemble method
574  where each tree in a forest will be provided with a balanced bootstrap sample for tree learning.
575  Grid-Search was used to tune i) the trees' maximum depth, ii) the number of random features to
576  consider for each node spilit, iii) the minimum number of samples required to split a node, and
577  iv) the minimum number of samples that a node requires to be considered a leaf node.

578 K-Nearest Neighbors (KNN) Bagging balanced through RUS and SMOTE. We used a

579  synthetic minority over-sampling technique available from the imbalanced-learn package and
580 called SMOTE #' to solve the classification imbalance by generating synthetic samples in the
581  pathogenic class of variants. We combined SMOTE with the randomly under-sampling

582  technique (RUS) according to the following four steps: i) training samples are bootstrapped with
583 replacement, preserving the original training-set size; ii) RUS undersamples the majority class
584  (neutral variants) to partially decrease the imbalance; iii) then, SMOTE is used to generate

585  synthetic minority samples to perfectly balance the base-learner training-set; iv) finally, the

586  base-learner is fitted. Following this procedure, we implemented KNN_RusSmote, which uses a

29


https://paperpile.com/c/4Aeykt/pz8Oc
https://doi.org/10.1101/2023.06.18.545476
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.18.545476; this version posted June 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

587  KNN classifier as a base learner. We chose to consider five neighbors in the SMOTE algorithm.
588  As for KNN Balanced Bagging, Grid-Search was used to tune i) the number of “neighbors” to
589 consider, ii) the “weight” of each neighbor, iii) the ratio of the bootstrapped features over the
590 total number of features, iv) the ratio of the minority class over the majority class of samples

591  after the RUS step.

592 Scores and pathogenicity probabilities

593 APOGEE 2 scores are decimal values ranging from 0 (benign) to 1 (pathogenic). Extreme

594  values suggest a high level of confidence in the predictions. Scores were computed using the
595 KNN_RusSmote machine learning algorithm, tuned through GS CV and trained on the whole
596 Dataset 1. Given that the algorithm is essentially a bagging model, we were able to determine
597  the out-of-bag (OOB) APOGEE 2 score for each variant in the training set. We used the OOB
598  score to infer the conditional APOGEE 2 probability distribution given the pathogenic class (C =
599 1); the APOGEE 2 probability distribution given the benign class (C = 0), instead, was inferred
600 on the Dataset 4 (ClinGen’s benign variants) scores, considering the OOB scores whenever
601  they overlapped with Dataset 1 (training set). The distributions of both classes were

602 approximated by Beta distributions, whose parameters were optimized through the SciPy

603  Python library by minimizing the negative log-likelihood probability. Once inferred the distribution
604 P(y|C=0)andP(y|C =1), where y is the APOGEE 2 score, we could compute the posterior
605 probability P(C = 1| y) using the Bayes theorem: P(C =1|y) =P(y|C = 1)P(C =1)/P(y),
606  where P(y) can be written in the form P(y) =P(y|C =1)P(C =1)+P(y|C=0)P(C =0). We

607  set the prior probability P(C = 1) = 0.1asin "7,
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608 Misclassification and specificity assessment

609 In order to calculate the per-class misclassification rate on Dataset 1, we first divided the

610 APOGEE 2 scores into two classes (pathogenic and benign) based on the median value. Then,
611  we calculated the frequency of incorrectly classified test variants, which are the variants that
612  were disregarded from the model learning and tuning during CV. Based on the distribution of
613  APOGEE 2 scores for all Mitimpact variants, the median threshold was recalculated for each
614  test. Using Mitimpact’s non-benign frequency as the expected frequency for the null hypothesis,
615  we performed a Chi-square test on the alternative hypothesis of having a high frequency of
616  benign variants in Datasets 2 and 3. Finally, we compared the average APOGEE 2 scores of
617 the Dataset 4’s benign variants with the average APOGEE 2 scores of the Dataset 1's benign
618 variants, using a Mann-Whitney U test; the OOB scores were used for the Dataset 1’s benign
619  variants in this test.

620

621 The APOGEE 2’s time-dependent learning curve
622  From 2008 through 2020, we fetched the MITOMAP content every two years and generated

623  seven datasets by applying the same criteria we used for Dataset 1 (Supplementary Table 5).
624  We trained APOGEE 2 with these datasets and used the current MITOMAP version (July 2022)
625  for testing the trained models. In particular, we applied a random stratified 5-fold partitioning
626  strategy to the 2022 dataset, obtaining 5 partitions. For each partition, we trained a model on
627  every other training set (2008—2020) and tested it on the partition, making sure to remove every
628 variant already present in the partition from the training sets. The final auROC profile resulted
629 from the average of the auROCs computed on the five different test-partitions. The ML classifier
630  used was still KNN_RusSmote; 10-fold Grid-Search CV has been performed on each training-

631 set.
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632

633 Positionality and impact of variants on the protein structure

634 Spatial autocorrelation of the APOGEE 2 scores

635 Moran’s index was used to measure the spatial autocorrelation of the predicted APOGEE 2
636  scores. Itis defined as

_ N T 2 Wi )
Z?L]_E?,:lwij E?,:1(yi_37)2 ’

637 I

638  where N is the number of spatial data points and w;; a weight matrix that measures the
639 closeness of each residue in a pair. It ranges from -1 to +1; values significantly lower or higher

640 than the expected value (i.e., E[I] = N_—_ll) indicate respectively negative or positive spatial

641  autocorrelation *?. We used a quadratic distance decay function, i.e., wij = dl-j"z, to model the
642 residue closeness in order to prioritize short-range autocorrelation.

643  Calculations were performed separately for each complex, while the APOGEE 2 scores were
644  averaged by residue to have one value for every spatial point. Positional biases were limited by
645  dropping all bagging base estimators, which were trained using at least one spatial feature (i.e.,
646 X, Y, or Z coordinates) from the APOGEE 2 predictions. 84 out of 200 base estimators were
647  selected. This modification required recalculating the APOGEE 2 threshold between benign and
648  pathogenic variants for this analysis. Due to the possibility that the APOGEE 2 scores obtained
649 in this manner had a different distribution than the original one, we determined the pathogenicity
650 threshold for this new distribution using the same formula we described in the "Model training
651  and testing" methods section.

652  The weight matrix was row-normalized and then renormalized to ensure that 2?’2127:1 wij =1;

653 the variable of interest, y, i.e., the APOGEE 2 average scores, was also standardized.

654 Consequentlyl = Z'WZ, where Z is the vector of the standardized values of y and W is the
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655 normalized weight matrix. P-values were calculated by permuting the APOGEE 2 scores 10,000
656  times and computing the Moran's index for each permutation.
657  Since we were also interested in estimating the autocorrelation effect under a certain cutoff

658 distance r, we performed the same procedure using a different weight matrix, defined as

1-¢ djjsr
O+e, di;>r’

659 wi; = {
660  where ¢ is an infinitesimal number (10~%) whose purpose is only to make the weight matrix row-
661 normalizable. We computed the Moran’s index using this weight function at multiple cutoff

662 distances, each time estimating a p-value on 1000 permutations.

663  Finally, we implemented a local version of Moran’s index, LISA #® or Local Indicators of Spatial
664  Association, to investigate which regions contribute more to the global spatial autocorrelation. It
665 isdefinedas!l=1[l;,...,Iy] = Z - WZ, where the weight matrix W was introduced above and
666 N ,I; = I. High LISA values are assigned to residues contributing the most to the global

667  positive spatial autocorrelation and showing similar APOGEE 2 scores to their neighbors. To
668  confer significance to the results, we permuted the APOGEE 2 scores 1000 times and

669 computed the [ vector for each permutation round; then, we calculated a p-value based only on

670 the [; random distribution of the spatial point i. The False Discovery Rate was controlled using

671  the Benjamini-Hochberg procedure.

672 Molecular Dynamics simulation

673  Molecular Dynamics (MD) simulations were conducted on the human respiratory complex |

674  transmembrane arm (PDB ID: 5xtc, described above). The starting system was refined using

675 MODELLER ver. 9.16 *“ and then mutated in-silico using UCSF Chimera ver. 1.16 * to

676 introduce S34P, S34Y, S34F, and T35P amino acid variants in MT-ND3 and A72V, A72P, and

677  F46L variants in MT-ND6. Using the Membrane Builder Input Generator of the CHARMM-GUI

678  web toolkit *¢, the seven resulting alternative protein structures were embedded in a lipid bilayer

679 composed of Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-
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680  glycero-3-phosphoethanolamine (POPE), and 1,1',2,2'-tetraoleoyl-cardiolipin (TOCL) to mimic
681  the composition of the inner mitochondrial membrane that forms tight interactions with the

682 transmembrane helix of each protein. Then, both the proteins and the lipid bilayer were solvated
683 in a periodic boundary condition box filled with 22.5A of TIP3P water molecules on either side of
684  the bilayer, and a salt concentration of 0.15 M KCI was added to obtain a neutral simulation

685  system.

686  All generated systems were energy minimized and equilibrated following the CHARMM-GUI’s
687  workflow, consisting of i) steepest-descent minimization for 5000 steps; ii) a gradually heating
688  process conducted into a canonical ensemble (NVT) for 250000 steps with a timestep of 1 fs; iii)
689  an isothermal-isobaric ensemble equilibration for 125000 steps with a timestep of 1 fs followed
690 by 750000 steps of an isothermal-isobaric ensemble equilibration every 2 fs. During the

691 equilibration, harmonic restraints were applied to both the heavy protein atoms and the

692 membrane lipid phosphates.

693  Gaussian accelerated Molecular Dynamics (GaMD) %’ simulations were performed, starting with
694  a 20 ns short classical MD simulation used to collect potential statistics for calculating the

695 GaMD acceleration parameter, followed by ~80 ns equilibration run. Finally, 200 ns of GaMD
696 simulations were carried out, divided into 10 sequential production steps. Three replicas of the
697  simulation of the wild-type and each mutant system were performed using Amber20 *¢. Every
698 GaMD simulation was performed at the "dual-boost" level, with one boost applied to the total
699  potential energetic term and the other to the dihedral energetic term. For both the dihedral and
700 the total potential energetic terms, 12.0 kcal/mol was chosen as the upper limit of the boost

701 potential SD, 0o. The code for the entire simulation workflow is provided in Supplementary File

702 1.
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703  Analysis of simulated trajectories

704  AmberTools21 was used to calculate the Root-Mean-Square Fluctuation (RMSF), which
705  measures the time deviation of the positions of the atomic coordinates of the alpha carbons of
706  each residue and those of the reference starting structure. The GetContacts

707  (https://getcontacts.qgithub.io) tool was used to compute all the atomic interactions and contacts

708 established in each time frame of the simulated trajectories. Secondary structures were

709  computed using the DSSP module of the MDTraj *° tool for each simulation frame. The DSSP
710  assignments were calculated using the 8-category schemes: H=a helix, B=residue in isolated
711 beta-bridge, E=extended strand, participating in beta ladder, G=3-helix (3/10 helix), I=5-helix (1
712  helix), T=hydrogen bonded turn, S=bend, — =unclassified. 3D images and motions were

713  generated using UCSF Chimera.

714

715 Data Availability

716  The datasets supporting the conclusions of this article are included within the article and its
717  additional files. The Mitimpact database, together with the APOGEE 2 probabilities/classes of

718  pathogenicity, can be freely downloaded from http://mitimpact.css-mendel.it. Datasets 2 and 3

719 are available from https://gnomad.broadinstitute.org/ and

720  https://www.helix.com/pages/mitochondrial-variant-database, respectively. Dataset 4 is

721 available from MITOMAP at https://mitomap.org/MITOMAP/Benign.

722 Code Availability

723
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724  The complete molecular dynamics simulation protocol is available as Supplementary File 1. The
725  APOGEE 2 machine-learning workflow is available from

726  https://github.com/mazzalab/playgrounds and is freely runnable as a Colab notebook.

727
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gs7  Figures

858  Figure 1: A. Counts (top) of reported and confirmed missense variants for all mtDNA protein-coding

859  genes and their frequency (bottom) calculated on each gene length. B. Common missense variants

860 between HelixMTdb, gnomAD, and MITOMAP’s confirmed and reported variants. C. Distribution of

861 heteroplasmic (gnomAD, n = 164, HelixMTdb, n = 204) and homoplasmic (gnomAD, n = 187, HelixMTdb,
862  n=198) reported variants in gnomAD (left) and HelixMTdb (right) based on their AF. Dashed lines

863 represent the 0.002%, 0.5%, and 1% AF thresholds. Error bars represent the 95% Cls around the median
864  values. Red dots are outlier variants by AF.

865  Figure 2: A. Average test auPRC values of the selected ML methods, calculated during the training

866  phase. Support Vector Machine classifier with radial basis functions kernel (rbfSVC), Balanced Bagging
867 using Gaussian Naive Bayes (GNB_BalancedBagging) and K-Nearest Neighbors

868 (KNN_BalancedBagging) as base estimators, Balanced Random Forest (BalancedRF), KNN Bagging
869 balanced through RUS and SMOTE techniques (KNN_RusSmote). B. Feature importance assessed on
870  the whole Dataset 1; threshold set to 1%. C. AUROC values calculated on 118 and 13 neutral and

871 pathogenic test variants for APOGEE versions 1 and 2. D. Performance comparison of APOGEE 2 versus
872  other meta-predictors in terms of auROC. APOGEE 2’'s auROC is reported as the mean + 95% Cls

873  obtained through cross-validation. E. Time-dependent APOGEE 2’s auROC values obtained by predicting
874 MITOMAP 2022 upon training on the 2008-2020 contents; for each year, the sample mean distribution is
875  reported in gray.

876  Figure 3: A. Distribution of APOGEE 2 scores. Colors represent classes of pathogenicity: green (benign,
877 probability of pathogenicity (P) < 0.001), light green (likely benign, 0.001 < P £0.1), yellow (VUS, 0.1 <P
878 < 0.9), orange (likely pathogenic, 0.9 < P < 0.99), red (pathogenic, P = 0.99). B. Misclassification rate of
879 100 test folds calculated on Dataset 1. C. Mitochondrial protein complexes localization on the bisector of
880 a 3D space. Colors have the same meaning as Figure 3A. D. Global spatial autocorrelation computed at
881 different cutoff distances. Blue circles mark the maximum values for each protein complex. E. Low-risk
882 (green) and high-risk (in red) amino acid regions of the mitochondrial Complex | subunits. Highlighted in
883  red, we underline the MITOMAP confirmed variants that localize on TMH3 of MT-ND6 and on the MT-

884  ND3 loop.
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885  Figure 4: A. Structure of the mtDNA-encoded subunits of the complex | membrane arm. B. Average
886  structures of the wild-type, Ser34Pro, and Thr35Pro MT-ND3 protein models (left) and wild-type,

887 Ser34Phe, and Ser34Tyr (right). C. RMSF profiles of the heavy atoms of the MT-ND3 loop (residues 24-
888 54) for both wild-type and mutants. D. 3D representations of the dynamics of the wild-type, Ser34Pro, and
889  Thr35Pro MT-ND3 protein models. In all subfigures B, C, and D, wild-type is colored green, Ser34Pro is
890  yellow, Thr35Pro is red, Ser34Phe is pink, and Ser34Tyr is cyan. E. Average structures of the MT-ND6
891 protein. TMH3 is highlighted in dark orange.

892  Figure 5: ML pipeline including data preprocessing, i.e., scaling (A), imputation of missing values (B),
893  and feature selection (C), model tuning by 10-folds Grid Search CV (D), training of any ML method with

894 the best hyperparameter combination obtained in D and testing (E).

895 Supplementary Figures

896 Supplementary Figure 1: Matrix of Pearson correlation coefficients calculated on the scaled prediction
897 scores to zero mean and unit variance of non-positional features for all possible mitochondrial missense
898 variants. Axes labels related to pathogenicity predictors are highlighted in bold. B. Imputation of missing
899 values with five algorithmic strategies; performance is measured in terms of Normalized Root Mean
900 Squared Error (NRMSE, Y-axis); multipliers of the a priori probability of missing values in Mitimpact (i.e.,
901  the unitary value) on the X axis (see Methods); both mean errors (lines) and their 95% CI (colored

902  shadows) are reported in the figure.

903  Supplementary Figure 2: A. 83 (4.7%) heteroplasmic variants in gnomAD were predicted to be likely
904  pathogenic, and 10 (0.6%) were pathogenic. 71 (4%) and 7 (0.4%) variants exhibited an AF <0.002%,
905 respectively. 19 (0.9%) homoplasmic variants were classified as likely pathogenic and 3 (0.1%) as

906  pathogenic. 11 (0.5%) and 1 (0.05%) variants exhibited an AF <0.002 %, respectively. B. 101 (3.3%)
907 HelixMTdb heteroplasmic variants were predicted as likely pathogenic, and 15 (0.5%) were classified as
908 pathogenic. Similarly, 33 (1.1%) homoplasmic variants were defined as likely pathogenic, and 3 (0.1%)
909  were deemed pathogenic. 86 (2.8%) heteroplasmic and 22 (0.8%) homoplasmic likely pathogenic

910  variants exhibited an AF <0.002%; 13 (0.4%) and 2 (0.07%) considering heteroplasmic and homoplasmic
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911 pathogenic variants, respectively. Both panels represent the APOGEE 2 pathogenicity probability values
912  of heteroplasmic (left) and homoplasmic (right) variants on the Y axis and the variant AF on the X axis. A
913 dot is a variant. A dot color represents the pathogenicity level (green = benign, red = pathogenic), as in
914 Figure 3D. The red dashed line marks the 0.002% AF threshold. The blue dashed lines separate likely-
915 benign from VUS (score = 0.2654, probability = 0.1) and VUS from likely-pathogenic (score = 0.7161,
916  probability = 0.9). C. Frequency distribution of APOGEE 2 scores of Dataset 1's benign variants (training
917  set) and Dataset 4’s variants (ClinGen). Vertical dashed lines mark the average APOGEE 2 scores for
918  both distributions.

919 Supplementary Figure 3: Performance comparison of APOGEE 2 versus other predictors in terms of
920 auROC (A) and auPRC (B). APOGEE 2’s performance is reported as the mean + 95% Cls obtained

921  through cross-validation.

922

923  Supplementary Tables

924  Supplementary Table 1: GhomAD variants that are in MITOMAP as confirmed, those with an
925 allele frequency greater than 0.002%, plus three gnomAD variants that were deemed

926  pathogenic by ClinVar (accessed in October 2021). We also reported HelixMTdb variants

927  showing an allele frequency = 0.002% and a confirmed disease status according to MITOMAP.
928 Supplementary Table 2: Correlation matrix of the evolution, pathogenicity predictions, and
929  protein structural features used to train APOGEE 2. It includes three evolution measures,

930 fourteen in silico pathogenicity predictors, and one protein structural feature. Pearson

931  correlation coefficients are reported.

932  Supplementary Table 3: Parameter grids tested through GridSearch CV for all the machine
933 learning methods evaluated in this work. The best parameters found for the selected method

934  are marked in bold.
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935 Supplementary Table 4: Performance metrics of all the machine learning methods evaluated in
936  this work and performance comparison between APOGEE 2 and other meta-predictors. In the
937  upper table, for each metric, we reported the average performance + 95% confidence intervals,
938 calculated on 100 test folds. In the lower table, we reported the average performance metrics for
939  all the meta-predictors compared to APOGEE 2.

940 Supplementary Table 5: List of all Mitimpact variants annotated and categorized according to
941  APOGEE 2. Variants belonging to the training set (Dataset 1) have been flagged as “P” or “N”
942  referring to pathogenic or deemed benign variants, respectively.

943  Supplementary Table 6: List of the most significantly high local spatial autocorrelated amino
944  acids (adjusted LISA permutation p-value <0.01).

945  Supplementary Table 7: Datasets 2, 3, and 4 containing benign or likely benign variants, used
946  to evaluate the specificity of the APOGEE?2 predictions. Datasets 2 and 3 were retrieved from
947  gnomAD and HelixMTdb, respectively, considering missense variants not included in the

948 training set, showing an allele frequency 20.002% (according to the source database). Dataset
949 4 was obtained from MITOMAP (https://mitomap.org/MITOMAP/Benign, accessed on

950 September 7, 2022) and refers to non-synonymous curated variants not included in the training
951  set and flagged as Benign or Likely-benign.

952  Supplementary Table 8: List of possible synergistic variants in MITOMAP. We functionally
953  annotated each variant and reported its classification according to APOGEE 2.

954  Supplementary Table 9: Frequency of missing values of APOGEE 2 features in Mitimpact.
955  Supplementary Table 10: auROC values calculated on 5 random partitions of the 2022

956 MITOMAP dataset, after training APOGEE 2 on seven MITOMAP sets retrieved from 2008 to

957 2020 every two years.
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