

1

Literate programming for iterative design-build-test-learn

cycles in bioengineering

Søren Petersen1*, Lucas Levassor1,3*, Christine M. Pedersen1, Jan Madsen2, Lea G. Hansen1, Jie

Zhang1, Ahmad K. Haidar1, Rasmus Frandsen3, Jay D. Keasling1,4-7, Tilmann Weber1, Nikolaus

Sonnenschein3,✝, and Michael K. Jensen1, #

1 Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs.

Lyngby, Denmark
2 Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs.

Lyngby, Denmark
3 Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby,

Denmark
4 Joint BioEnergy Institute, Emeryville, CA, USA
5 Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA,

USA
6 Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of

California, Berkeley, CA, USA
7 Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced

Technologies, Shenzhen, China

* = indicate shared first authorships
= to whom correspondence should be addressed: Michael K. Jensen mije@biosustain.dtu.dk

✝ = Present address: Ginkgo Bioworks, Boston, Massachusetts, USA

Abstract

Synthetic biology dictates the data-driven engineering of biocatalysis, cellular

functions, and organism behavior. Integral to synthetic biology is the aspiration to efficiently

find, access, interoperate, and reuse high-quality data on genotype-phenotype relationships

of native and engineered biosystems under FAIR principles, and from this facilitate forward-

engineering strategies. However, biology is complex at the regulatory level, and noisy at the

operational level, thus necessitating systematic and diligent data handling at all levels of the

design, build, and test phases in order to maximize learning in the iterative design-build-test-

learn engineering cycle. To enable user-friendly simulation, organization, and guidance for

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

2

the engineering of complex biosystems, we have developed an open-source python-based

computer-aided design and analysis platform operating under a literate programming user-

interface hosted on Github. The platform is called teemi and is fully compliant with FAIR

principles. In this study we apply teemi for i) designing and simulating bioengineering, ii)

integrating and analyzing multivariate datasets, and iii) machine-learning for predictive

engineering of a metabolic pathway designs for production of a key precursor to medicinal

alkaloids. The teemi platform is publicly available at PyPi and GitHub.

Introduction

The rational engineering of biology for user-defined purposes, also known as

synthetic biology, has fostered a shift in the way we imagine, design and produce foods,

materials, and medicines [1]. Seminal examples of synthetic biology success stories adopted

by society during the last decade includes plant-based burgers with meat flavour derived

from soy leghemoglobin produced in engineered yeast [2], the hyaline family of clear, flexible

and robust polyimide films for flexible electronics made from bio-sourced monomers [3], and

chimeric antigen receptors (CARs) fused to antibodies that when inserted in patients’ T cells

and introduced into the patient enable efficient killing of cancer cells [4]. Common to these

examples is the bioengineering of living cells to encapsulate and arm them with novel

functions to meet societal needs in agriculture, manufacturing industry, and health. Even

more so, many more solutions to mitigate climate changes, increase food supplies, and treat

patients with unmet needs are set to depart from engineered cells and synthetic biology in

the near future [5].

However, rapid progress in bioengineering is limited by the long, costly, and non-

standardised approaches used to engineer even the simplest model cells, such as

Escherichia coli and Saccharomyces cerevisiae [6]. Taken together with the molecular and

metabolic complexity of biological systems, and limited scalable design principles,

bioengineers often have to construct and study large libraries of variant cell designs to

identify genotypes with sought-for properties [7]. The targeted construction of strains is often

described as an iterative process of design, build, test, and learn (the DBTL cycle)[7]. To

support the various steps of the DBTL cycle a multitude of commercial software and cloud-

lab platforms are available, including Benchling, Riffyn, Inscripta, Teselagen and Emerald

Cloud Lab, with advanced laboratory information management system (LIMS), data analysis

capabilities, and integration of laboratory workflow execution via robotics [8,9]. In addition to

commercial platforms, open-source Python APIs for flexible workflow planning, execution

and data management central to the working practices of researchers are gaining a lot of

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

3

momentum, especially covering the design and learn steps of the DBTL cycle [10–12], just

as the collection of FAIR (Findable, Accessible, Interoperable, Reusable) training materials

made available via community efforts such as the Galaxy Training Network [13], seek to

empower researchers with data analysis literacy and bridge the skills gap between design-

build-test and learn [14]. Still there is a common challenge to support researchers using

natural language laboratory protocols to integrate such tools and services into their daily

workflows. Solving this challenge should also enable i) that more tasks can be performed in

shorter time and with less errors, ii) better integration of IT tools with other resources, such

as robotics, and iii) better documentation, and thus more effective knowledge transfer among

research communities[15,16].

Literate programming is a paradigm that encourages the combination of text and

computer code in a systematic and coherent way [17]. Computer code is formal language for

describing how to do things [18]. The code can be understood by both humans and

computers if it is written sufficiently abstract. Literate programming protocols are thus written

for humans, but computer code is used whenever the tasks can be performed by a

computer. With literate programming, workflows and data can be described precisely

meeting the FAIR principles [19].

The purpose of the present work is to give a first estimate of the extent to which

bioengineers can accelerate the speed, efficiency, and fidelity of the individual steps in the

DBTL cycle by using literate programming. To do so, we have established an open-source

platform including all elements of the iterative DBTL cycle bioengineers are confronted with.

The platform is called teemi. To showcase teemi in its entirety and facility efficient adoption,

we present an experimental example using literate programming in teemi for all DBTL stages

of an iterative learning task targeting the optimization of a metabolic pathway for production

of a key precursor to medicinal alkaloids in yeast.

Results

Background and motivation for teemi

At the onset of this project, we first assessed a multitude of web tools and scripts

available for bioengineers to streamline their DBTL workflows (Table 1). While truly

enabling, and adopted widely [9,11], we could not identify open-source tools that can

integrate all steps of the DBTL cycle in a single workflow, without the need to acquire

programming skills, and shifting between platforms and programming languages.

In literate programming, besides the textual documentation, embedded code allows

abstracting away all computations in a reusable way. Lab notebook-style chronological

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

4

documents will contain information on when, how, and for what purpose, data was acquired

and used. Moreover, with literate programming, data is compliant with FAIR principles being

findable and accessible from a single context via links to digital repositories, interoperable

via a free to use, open source, and user-friendly workflow document, while both data

acquisition and processing are reproducible via text documentation and embedded

functions.

For this study, teemi is used in Jupyter Notebooks and consists of a set of Python

functions and classes facilitating simulation of experimental flow for in vivo design and

assembly of diverse genetic libraries, pooled library constructions, organization and

modeling of genotype and phenotype data, as well as implementing machine learning to

model the data and recommend new designs (Fig. 1). Through teemi simulations, the

preparation of laboratory work is standardized and thoroughly executed, aimed at reducing

time consumption, decreasing human error rates, and improving the reproducibility of

experimental results.

 The literate programming notebooks used for the experimental testbed presented in

this study are hosted by Google Colab. All noteboooks are extensively referenced upon

implementation throughout this study as well as summarized in a comprehensive list (Table

2), allowing the reader to easily connect literate programming for iterative DBTL cycles with

the results presented.

The experimental bioengineering testbed

 An often-encountered bottleneck in modern biotechnology is the bottleneck of

oxidation reactions catalyzed by cytochrome P450 enzymes [20,21]. These oxidation

reactions are catalyzed by cytochrome P450 (CYP) superfamily of hemoproteins, and

cytochrome P450 reductases (CPR)[22–24]. CYPs are often cytosol-facing, N-terminally

bound enzymes bound to the endoplasmic reticulum (ER)[20]. They catalyze hydroxylations

of small molecule substrates facilitated by the transfer of two electrons from NADPH to

NADP+ catalyzed by the ER-bound CPRs [23]. Plant-derived CYP/CPR reactions are

widespread in modern biotechnology for fermentation-based manufacturing of fine

chemistries, such as alkaloids and terpenes [25,26]. When heterologously expressed in

microbes, such as the biotechnology workhorse baker’s yeast Saccharomyces cerevisiae,

poor CYP activity and shunt product formation limits efficient bioconversion of cheap

feedstocks to value-added advanced pharmaceutical ingredients sourced by fermentation

[21,25]. To mitigate this, CYP/CPR reactions often need extensive trial-error engineering to

optimize substrate conversion and balance co-factor availability in cell factories. This has

included i) regulating the expression of genes encoding both CPR and CYPs, ii) searching

for optimal CYP:CPR pairs, iii) bioprospecting for enzyme homologs, iv) perturbing gene

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

5

copy numbers, or v) rational engineering of signal peptides to target membrane-anchoring of

enzymes to dedicated subcellular compartments [21,23]. While independently all of these

approaches have positively impacted oxidation reactions catalyzed by heterologous

expression of plant-derived CYPs and CPRs in yeast [21,23,25], multivariate exploration of

these complex reactions are needed. One recent study documenting the power of

combinatorial search strategies was performed by Davies et al., searching >100 CYP/CPR

co-expression designs, which when combined with best-performing promoter designs show-

cased improved C8-hydroxylation of geraniol to 8-hydroxy-geraniol catalyzed by the geraniol

hydroxylase G8H and its CPR partner [23].

In this study we present the power of teemi and literate programming to build

simulation-guided and iterative laboratory workflows for optimizing strictosidine production in

yeast (Fig. 2A). Motivated by the complexity of the oxidation reactions and documented

importance of exploring combinatorial design spaces [23], and the observation that feeding

8-hydroxy-geraniol improves strictosidine production compared to feeding geraniol [25], we

considered the C8-hydroxylation of geraniol to 8-hydroxy-geraniol as a valid testbed to

showcase the bandwidth and throughput enabled by literate programming using teemi.

teemi for design-build-test-learn cycle I

Using teemi we initially constructed a parental strain (MIA-CH-A2) harboring CroG8H

and CroCPR under the control of promoters pTDH3 and pTEF1, together with the 11 other

genes driving the biosynthesis pathway from geraniol to strictosidine [22,25](Fig. 2A).

The first DBTL iteration of the teemi-based DESIGN module included enzyme

homology searches, promoter choices, and primer designs. For prospecting different G8H

and CPR genes we developed an algorithm to standardize the screening of homologs

(00_1_DESIGN_Homologs, Paragraph: 1) using Catharanthus roseus G8H and CPR

sequences as queries [23,25]. In addition to the NCBI database search, CPR candidates

documented from literature [25,27], search results from the PhytoMetasyn database [28],

and a beetle G8H from Chrysamela populi (Cpo) were included to generate diversity (Fig.

2B-C).

Each gene was expressed under the control of four unique native promoters, yielding

a total library size of 1,280 (8x10x4x4). For the choice of promoters a second algorithm was

developed aimed at selecting relevant promoters from expression data generated during the

lag (10% glucose consumption, low ethanol production), mid-exponential (75% glucose

consumed, increasing ethanol production), and post-exponential phases (>99% glucose

consumed, start of ethanol consumption)[29](01_1_DESIGN_Promoters, Paragraph: 1)). All

promoter sequences were aligned to ensure that there were no homologous sequences in

order to minimize recombineering during transformation and library propagation

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

6

(01_1_DESIGN_Promoters, Paragraph: 4). Lastly, primers for amplification of each of the

chosen library parts were designed (02_1_DESIGN_Combinatorial_library, Paragraph: 3).

To facilitate homologous recombinations by design, the parts used as flanking regions for

repair assembly into a pre-defined genomic landing pad were designed to be 0.5 kb and the

homology regions between library parts were 30 bp by default. For all design steps, the

notebooks along with teemi were used to simulate all relevant designs in a combinatorial

library, check primer matches with templates, calculate lengths of PCR products, and print

tables of PCR mixes in order to provide an overview of reagents and their location, calculate

melting temperatures for PCR programs and expected gel electrophoresis outputs, and

create expected sequences from an alignment of parts integrated

(03_1_BUILD_gRNA_plasmid, 04_1_BUILD_Background_strain,

05_1_BUILD_Combinatorial_library, 09_2_BUILD_Combinatorial_library). As such this

simulation also mimics an electronic laboratory notebook (ELN), thus facilitating

documentation of the experiments and allowing for easy sharing in order to prevent

knowledge loss. Most importantly, the 100% sequence verification of amplicons

(06_1_TEST_Library_characterisation, Paragraph: 2.2;

10_2_TEST_Library_characterization, Paragraph: 2) based on teemi simulations of

expected gel electrophoresis outputs (Suppl. Fig. S1) is a validation of the simulation

workflow, and is expected to improve interoperability and reproducibility of laboratory

workflows, and help reduce human errors.

Next, for the BUILD module, we adopted CasEMBLR for CRISPR/Cas9-mediated

assembly harnessing seamless homologous recombination between seven parts in each

cluster [30], and into a stable genomic integration site [31](Fig. 3A). The seven parts encode

two different promoters each controlling the expression of a gene encoding a G8H or a CPR,

together with a selectable marker and two homology regions for the genomic landing pad

(Fig. 3A).

When generating diversity, it is essential to remember that the outcome vs effort is

restricted in the build and test part of the DBTL cycle due to physical capacities in strain

construction and testing. A potential way to accelerate the process is with stochastic variant

generation [32]. Hence, we used teemi to output parts lists for combinatorial assemblies,

each encoding a single G8H:CPR combination together with all 16 different promoter

combinations (4x4)(05_1_BUILD_Combinatorial_library)(Fig. 3A). The designs were

assembled as one-pot transformations together with the selectable marker and the two up-

and down-homology regions, making each transformation consist of 21 parts for a total of 16

genetic designs in each of 80 (8 x 10) transformations (05_1_BUILD_Combinatorial_library,

Paragraph: 4)(Fig. 3A).

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

7

For the TEST module, we scored genotype and phenotype relationships of

stochastically sampled colonies based on DNA sequencing of promoter:gene combinations

and liquid-chromatography mass spectrometry to quantify strictosidine, respectively (Fig.

3A). Sequencing results matched with the simulation from the DESIGN step, were organized

into a CSV file containing rows with strains that had unambiguous genotypes along with

strictosidine production as part of the teemi workflow (06_1_TEST_Library_characterisation,

Paragraph: 3). The pooled library approach complemented stochastic sampling of three

colonies from each transformation to maximize diversity generation within the shortest

amount of time [32], from which 159 unique genotypes were extracted from the 238 sampled

colonies (12.4% coverage of the 1,280 design solution

space)(06_1_TEST_Library_characterisation, Paragraph: 4). Furthermore, out of the total

159 unique genotypes obtained, the distribution of the 8 different G8Hs and 10 different

CPRs were 11.4-13.8% and 7-12%, respectively, while for the 4 promoters driving

expression of genes encoding G8Hs and CPRs the distributions were 19.6-33.5% and 22.2-

30.0%, respectively (06_1_TEST_Library_characterisation, Paragraph: 4)(Fig. 3B), totaling

a deviation span of 1.4-8.5 percentile points from an even distribution. Taken together, these

results demonstrate efficient parts assembly and relatively large coverage of the theoretical

sequence space. With respect to strictosidine production, LC-MS measurements were

obtained concomitantly, and data was normalized by the mean of the production obtained for

the reference strain MIA-CH-A2 run in technical quadruplicates on three different replicate

plates (29.29 +/- 4.84 µM; 34.77 +/- 4.85 µM; 34.23 +/- 7.60

µM)[25](06_1_TEST_Library_characterisation, Paragraph: 2.1);

10_2_TEST_Library_characterization, Paragraph: 1.3). From the analysis, 9 of the 238

strains tested were observed to produce more than the reference strain (Fig. 3C, Suppl.

Table 2).

Lastly, in the interest to automate the modeling of genotype and phenotype data and

to recommend forward-engineering of lead strains beyond those already used for modeling,

we showcase integration of machine learning by teemi to LEARN genotype-phenotype

relationships as well as recommend new strain designs not seen in the training data set. As

no single machine learning algorithm is optimal for all learning tasks [33,34], 1,895 different

models sourced from H2O AutoML [35], including DRF, GLM, XGBoost, GBM,

DeepLearning, and StackedEnsemble, were made as a function of gene and promoter

combinations combined with normalized strictosidine measurements (input_for_ml.csv).

AutoML was used to investigate the performance of all models with different algorithms and

different hyperparameters instead of manually changing parameters of different models, or

even performing manual pattern investigation. The simultaneous investigation of all the

different models using this approach facilitated the training of different models on the single

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

8

regression learning task of predicting the ability of the design combinations of G8H and CPR

expression cassettes to increase the strictosidine production, and indirectly its ability to

transform geraniol to 8-hydroxygeraniol. Through a 1-hour run of AutoML in H2O, a deep

learning model was found to be the best-suited model for predicting relative production from

genotypes (Fig. 3D). The best model was found by sorting on MAE from cross-validation

data with the best-performing model yielding an MAE = 8.03 and an RMSE = 18.10 based

on 10-fold cross-validation predictions (07_1_LEARN_Modelling_and_predictions,

Paragraph: 2)(Table 3). These MAE and RMSE values represent ~ 3 and 7% of the full

range of measurements (0.0 - 245.0), respectively.

The strictosidine measurements were transformed into ranked values representing

245.03 = 1.00, 156.32 = 0.99, ..., and 0.00 = 0.18 of the full range of measurements,

respectively (Fig. 3D). Observed production values of 167 strains were compared to cross-

validation predictions, with the deep learning model yielding an overall R2 = 0.77 (Fig. 3D).

However, the model tended to underpredict production, as evidenced by the majority of

predicted strictosidine levels lying below the observed production curve (Fig. 3D).

Beyond the motivation to model genotype-phenotype landscapes from genotypes

and strictosidine production profiles for the 167 strains used for model training, a further

motivation was to use the deep learning model to explore genotypes not seen in the training

data set. From the remaining 1,121 theoretical combinations, 42 genotypes were predicted

to produce more strictosidine than the reference strain (3.84% of the uncharted theoretical

design space). With a fully deployed DBTL workflow now available in teemi, we were thus

motivated to efficiently explore the combinatorial design space via a second DBTL cycle.

teemi for design-build-test-learn cycle II

 From the learnings of the first DBTL cycle, we used teemi to design the next DBTL

cycle using the parts found in experimentally-validated top-performers with previously non-

observed combinations from the machine learning-guided predictions of the first DBTL cycle

(08_2_DESIGN_Model_recommended_combinatiorial_library, Paragraph: 1). Balancing the

maximum remaining search space (1,121 designs), the predictive power of the deep learning

model trained on data from the first DBTL cycle (159 designs), we decided for a maximum

build capacity of 180 strain designs based on the parts found in predicted top-performers.

This resulted in a distribution of 5 G8Hs, 2 promoters for controlling expression of genes

encoding G8Hs, 2 promoters for controlling expression of genes encoding CPRs, and 7

CPRs (16 parts in total, creating a theoretical combinatorial space of 140 strains)(Fig.

4A)(08_2_DESIGN_Model_recommended_combinatiorial_library, Paragraph: 1). Based on

these parts, the combinatorial optimization approach was conducted as in the first DBTL

cycle (Fig. 3A).

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

9

In the BUILD step, the combinatorial optimization resulted in 35 transformations of

pooled transformations, this time consisting of a background strain and 11 different parts,

namely 2 G8Hs (1 G8H x 2 overhangs), 2 promoters for expression of G8H-encoding genes,

2 promoters for expression of CPR-encoding genes, 2 CPRs (1 CPR x 2 overhangs), a

TRP1 expression cassette, and UP and DW homology regions. This created a sequence

space of 140 (35 x 4) unique 9 kb 7-parts assemblies at the target genomic locus. From the

transformations, 4 strains with known G8H and CPR were sampled randomly from each

plate to get 140 strains, a number that matches the sequence space (2 extra were sampled

from one strain, therefore 142 in total). Additionally, 2 blanks, 2 negative controls and 22

positive controls were sampled totaling 168 strains (09_2_BUILD_Combinatorial_library,

Paragraph: 8)(Fig. 4).

For the TEST step, genotypes and strictosidine production levels were again

assessed by DNA sequencing and LC-MS, respectively (Fig. 4A-B). From sequencing, a

total of 86 unique genotypes were obtained from the 142 colonies sampled (86/142 =

60.56% coverage), of which 75 were not present in the first round, while the number of

duplicates was 43 (10_2_TEST_Library_characterization, Paragraph: 5.2). Out of the 86

unique genotypes, the distribution of the 5 different G8Hs and 7 different CPRs were 18.6-

20.9% and 13.1-15.5%, respectively, while for the 2 promoters each driving expression of

genes encoding G8Hs or CPRs the distributions were 55.0-45.0% and 58.1-41.9%,

respectively (Fig. 4A, 10_2_TEST_Library_characterization, Paragraph: 4). From the first

cycle, the 159 unique strains were generated in 80 transformations, providing 99% more

strains compared to what could maximally be obtained from single-design transformations.

The second cycle generated 86 unique strains in the 35 transformations and generated

145% more strains than single-design transformations. Combined with the 159 unique

strains generated in the first cycle, there were 234 (159+75) unique genotypes created from

a total of 115 transformations, with only 62 identical genotypes harvested in both cycles,

highlighting once again stochastic sampling from pooled transformations as an efficient

approach for searching amble genotypic spaces.

Again, and concomitant to sequencing, the strictosidine titers were measured for all

142 strains as well as replicates of reference strain and positive controls (with known

production) and negative controls (no G8H and CPR expression cassette inserts, 168 in

total). From the 142 forward engineered strains, 28 strains produced more strictosidine than

the reference MIA-CH-A2 strain (28.11 µM), which is a 5-fold improvement in performance

compared to the first DBTL round ((28/142)/(9/238) = 5.21), and the highest producing

design being pENO2:SmusG8H and pTPI1:RseCPR with 69% higher production(47.69 µM)

compared to the reference strain (Fig. 4B; Suppl. Table 3,

(10_2_TEST_Library_characterization, Paragraph: 1.3)). 13 strains were only partially

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

10

genotyped and were therefore discarded. Combining strictosidine measurements with

genotyping resulted in 129 accepted strains, of which 86 were unique (86/129 = 66.67% of

the theoretical sequence space)(Fig. 4B, Accepted strains in second iteration,

10_2_TEST_Library_characterization).

As conducted for the first DBTL cycle, we used AutoML to investigate and rank the

performance of 774 models. As AutoML trains models until they reach convergence, the

number of models is only limited by the time which is set dynamically by H2O to 1 hour if the

number of models is set to “None” (H2O documentation)[35]. Through a 1-hour run of

AutoML in H2O, a XGBoost model was found to be the best-suited model for predicting

relative production from genotypes. Similar to the first DBTL cycle, the best model was found

by sorting on MAE on cross-validation data with the best-performing model yielding an MAE

= 11.93 and an RMSE = 23.34 based on 10-fold cross-validation predictions

(11_2_LEARN_Modelling_and_predictions, Paragraph: 4). These MAE and RMSE values

represent ~ 7 and 14% of the full range of measurements (0.0-170.0), respectively.

Additionally, the best model had an overall correlation coefficient of R2 = 0.85 when ranking

observed production titers with cross-validated predicted titers of the 296 strains (Fig. 4C).

Furthermore, and as exemplified in the first DBTL cycle (Fig. 3C-D), the LEARN step

focused on parts distribution and correlation coefficient between the ranking of observed vs.

cross-validated predicted strictosidine titers to inform about the possible impact of using the

models generated from data in the first DBTL cycle for a second DBTL cycle. Here, when

asking the best-performing XGBoost model trained on the data generated in the second

DBTL cycle to recommend parts to be used for forward-engineering of new strains with

high(er) even strictosidine titers in a potential third DBTL cycle, we found that the Top-25

predictions overlapped by 70.0% with those already exploited for the second DBTL cycle

(Suppl. Fig. S2, (11_2_LEARN_Modelling_and_predictions, Paragraph: 5.3.1)).

Furthermore, while the hit-rate of high-producers compared to the reference strain obtained

in the second DBTL cycle increased compared to the results from the first DBTL cycle (9/238

= 3.8% vs 28/142=19.7%), and a modest increase in correlation coefficient between the

ranking of observed strictosidine and predicted production could be obtained (R2 = 0.77 vs.

R2 = 0.85)(Fig. 3D and Fig. 4C), although the algorithm was not able to precisely rank the

genotypes according to production (Suppl. Fig. S3).

Stop-go evaluation for design-build-test-learn cycle III

To further evaluate whether to continue into a third DBTL cycle in search for high(est)

producing strain designs, we used several assessment criteria. First, we evaluated the

coverage of the explored design space across the two engineering cycles, totalling 234

different designs out of 1,280 possible combinations (18.3%). Second, we used learning

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

11

curves as a quantitative parameter to guide the stop-go evaluation

(07_1_LEARN_Modelling_and_predictions, Paragraph: 8);

11_2_LEARN_Modelling_and_predictions, Paragraph: 6)). Learning curves, created based

on the MAE compared to the number of data points used for training, can give an indication

of how adding more data could affect the predictive power of the models used between

iterative DBTL cycles.

We can use data partitioning to evaluate how well a model performs and behaves

with different subsets of the data [36]. To do this, we shuffled the data, divided it into parts,

and trained a model on each part of the dataset. We repeated this process 10 times

(07_1_LEARN_Modelling_and_predictions, Paragraph: 8);

11_2_LEARN_Modelling_and_predictions, Paragraph: 6). When comparing the learning

curves obtained from data generated in the first DBTL cycle vs. the second DBTL cycle, it

can be observed that the MAE of the cross-validation decrease through the data points but

with a reducing slope as data used for training increases (slope -0.009x from datapoint 56 -

167 for the first DBTL cycle and slope -0.016x from datapoint 60 - 296 for the second DBTL

cycle)(Fig. 5A-B). For DBTL cycle I, the lowest MAE from the training data obtained was

0.08 and with a decreasing trend even when the models were trained on 167 data points

(07_1_LEARN_Modelling_and_predictions). For the learning curve obtained from the cross-

validated models trained on data from DBTL cycle II, the training MAE, on the other hand,

reached a plateau at 120 data points with a minimum MAE of 2.56 (Fig. 5B), indicating that

the model does not improve much with more data, even though the correlation coefficient

(Fig. 4C), and thereby predictive power, increases in DBTL cycle II (Fig. 5B,

11_2_LEARN_Modelling_and_predictions).

Lastly, and in addition to the 70% overlap between the Top-25 predictions offered by

the best-performing XGBoost model and the designs already exploited for the second DBTL

cycle (Suppl. Fig. S2), we also compared the distribution of best-performing observed

strictosidine producers arising from the first and second DBTL cycle. Here we observed that

even though the best-performing strain design compared to the reference strain was

identified in the second DBTL cycle, the increase in production compared to the best-

performing strain observed from the first DBTL cycle was merely 10% (159 vs 144)(Fig. 5C).

Taken together, evaluating design space coverage, learning curves and observed

production from top-ranking designs between individual DBTL cycles, can help guide

decisions as to whether to stop further exploration of the remaining design space or to

continue forward engineering in search of the global maximum. In this case, the relative high

design space coverage (18.3%), the stagnating learning curve and the higher MAE in the

second DBTL cycle, and the overlap between already-explored designs and the forward

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

12

engineering predictions offered by XGBoost for a third DBTL cycle, supported a “stop”

decision on further exploration of this design space.

 General design highlights

With the finalization of the two iterative DBTL cycles for the multivariate optimization

of the C8-hydroxylation of geraniol to 8-hydroxy-geraniol, several design take-homes can be

extrapolated. Firstly, we found that the strictosidine production increased by up to 59%

comparing the reference strain (MIA-CH-A2) with the best-producer encoding

pENO2:SmusG8H and pTPI1:AanCPR (28.115095 µM vs. 44.719792 µM, respectively)

(Fig. 5C). Next, from the top-ranking strictosidine producers, our results indicates a high

level of CPR promiscuity for the two top-ranking G8H candidates from Swertia mussatii

(Smu) and Rauvolfia serpentina (Rse), as evidenced by 5 different CPRs included in the

Top-6 ranking strain designs (Fig. 5C). Notably, the identification of several CPRs improving

8-hydroxygeraniol synthesis corroborates previous findings [23]. Furthermore, even though

the G8H from Catharanthus roseus (Cro) has been critically acclaimed to enable high

production of 8-hydroxy-geraniol and down-stream plant bioactives [22,23,25], this study

highlights SmuG8H and RseG8H as promising geraniol hydroxylating enzymes in microbial

cells (Fig. 5C). Lastly, and interestingly, the promoters driving the expression of genes

encoding CPRs, promoters with high expression during the glucose-rich early- and mid-

exponential phases of cultivation, such as pTPI1 and pCCW12 are prominent design parts

(Fig. 2B-C, Fig. 5C). For G8H expression control, top-ranking strain designs also included

strong promoters, albeit promoters with expression lower than pTDH3, used in the reference

design of strain MIA-CH-A2 (Fig. 5C), thus indicating that use of strong constitutive

promoters may be dispensable for P450-mediated biocatalysis in yeast.

Taken together, the multivariate design space explored and exploited in this teemi

testbed has offered robust take-homes in terms of bioengineering designs benchmarking

with, and extending beyond, previously reported G8H and CPR studies.

Discussion

The aim of this study was to showcase teemi for bioengineering demonstrated

experimentally via a complex biological testbed founded on i) computer-aided design to

standardize workflows and minimize errors during the build step, ii) stochastic sampling from

pooled DNA parts libraries, iii) research data management according to FAIR principles, and

iv) the use of 2,000+ ML models sourced from AutoML to stress-test predictive engineering

compared to manual extrapolation of patterns.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

13

The iterative bioengineering testbed supported by teemi, not only enabled a

streamlined workflow for quantitative assessment of genotypes and phenotypes, but also

supported objective decision-making. For instance, the best models showed good

correlations for both first and second DBTL cycle (MAE = 2.7% and 8.7% of the

measurement ranges, respectively (Table 3), with an increase in predictive power from the

first DBTL to the second (R2 = 0.776 and 0.850, respectively)(Fig. 3D and Fig. 4C),

ultimately increasing the forward-engineering hit rate (i.e. obtaining phenotypes that

performed better than the reference strain within the sequence space) by more than 5 times

(from 3.8% to 19.7%)(Suppl. Fig. S3). Also, we observed that as we generated more data,

the cross-validated MAE decreased in both first and second DBTL cycle (slopes of -0.009x

and -0.016x, respectively)(Fig. 5A-B). Having said this, for this particular testbed, we

observed different trends in the two learning curves regarding the test MAE, where the

models in the first DBTL cycle seem to overfit the data, and the models in the second DBTL

cycle seem to converge, while from cross-validation we observed a higher MAE for the

models in the second cycle compared to the first cycle (MAE = 8.04 and 11.93,

respectively)(Table 3). The higher MAE for the second cycle is likely caused by higher

variation in the data points between the different test runs, and call for higher quality

analytical data. Furthermore, as almost 20% of the design space has been explored during

the first two DBTL cycles, and with a mere 10% improvement in strictosidine production in

top-ranking design found in the second DBTL cycle compared to the top-ranking hit from the

first DBTL cycle, a natural next engineering step would be to focus attention to other limiting

factors of the strictosidine pathway, such as rational engineering of the other hydroxylation

steps [22], for instance using the design principles uncovered in the best–performing

G8H:CPR step.

As in any DBTL cycle, the goal has focused on maximizing the knowledge generated,

and ultimately reducing time and resource allocation during iterative bioengineering cycles.

With the step-by-step guidance illustrated by experimental data in this study, we expect that

the use of FAIR-compliant teemi will enable i) that more experiments can be performed in

shorter amount of time and with less errors, ii) better integration of IT tools with other

resources (e.g. human-centered and/or robotic work-flows), and iii) effective inter- and intra-

laboratory knowledge transfer, and thus drastically increase reproducibility and

standardization in biology. With respect to better integration of IT tools in bioengineering, it

deserves to be mentioned that this study was co-led by MSc-level students to maximise

compatibility with both the skills and the aspirations of early-stage bioengineers. Basic

programming skills are advantageous in order to benefit from all the capabilities of teemi, but

not needed to get started. Indeed, in teemi, abstractions are used to streamline workflows

and manage complexity, and by providing these workflows as open-source for the

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

14

community, we can continuously improve the workflows and learn a lot more from each other

and in less time.

Materials and Methods

Executing teemi

teemi is distributed as free open-source software at pypi.org. To maximize the

usefulness of teemi we have developed a set of Jupyter notebooks that can be executed

locally or through Google Colaboratory without any prior installation of software. This, we

believe will lower the time spent on installation and resolving dependencies which is useful

for all users regardless of programming experience. The only requirement is a Google

account to use Google Colaboratory and the notebooks can be found at

https://github.com/hiyama341/teemi/tree/main/colab_notebooks.

Modules of teemi

teemi consists of four modules that aid in strain construction through the Design,

Build, Test, and Learn phase of the DBTL cycle with an additional Laboratory information

system module (LIMS)(Fig. 1). The first module is DESIGN, which includes functions for

cloning procedures, and the generation of combinatorial libraries. The second module,

BUILD, is focused on building strains with functions for simulating and calculating PCRs,

transformation reactions and automatically generating robot executable instructions. The

third module is the LIMS module that can import and export DNA sequences and keep track

of samples through Benchlings API and a local CSV file database. The fourth module, the

TEST module, has functions to pre-process data from sequencing results and infer the

relationship between sequencing results and genetic parts based on pairwise alignment. The

final module is aimed at the LEARN phase by incorporating easy-to-use ML functions with

plotting functions.

 As teemi is under MIT license anyone can edit, and use the code rendering it flexible

and reusable. Additional modules can be added to the package by anyone willing to

contribute or modification of the code by the users is allowed. The guidelines for

contributing can be found on teemi’s contributing site here. For a high-level overview of

teemi, please visit teemi’s documentation page https://teemi.readthedocs.io/en/latest/. The

site provides detailed descriptions of the modules, functions, and classes and how to install

teemi locally.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

15

teemi: Simulation of experimental workflow and data analysis

To enable reproducible high-throughput strain construction, literate programming

along with the modules of teemi was used to simulate all experimental workflows used in this

study. The experimental workflows were divided into Jupyter notebooks encompassing

different parts of the DBTL cycle as shown in Table 2.

This framework enabled the generation of a large number of strains while keeping

mistakes at a minimum by simulating experimental workflow and keeping track of samples.

More specifically, It provided a tool to simulate the amplification of DNA in PCR reactions,

retrieving locations of all relevant DNA fragments and primers while attaining an overview of

the procedures. PCR and transformation mixes were calculated and simulated in silico.

Additionally, it worked as a laboratory notebook containing all experimental setups,

observations, and results. These notebooks also show how teemi and literate programming

can incorporate advanced machine learning models through H2O’s AutoML package (

07_1_LEARN_Modelling_and_predictions, 11_2_LEARN_Modelling_and_predictions).

Experimental strains used in this study

The S. cerevisiae strains constructed in this study were derived from the MIA-CH-A2

strain containing CroG8H, CroCPR, and 11 other genes under promoters pTDH3 and

pTEF1, driving the biosynthesis pathway from geraniol to strictosidine[25]. The background

strain used in this work was made by using literate programming along with teemi’s design

and build modules to enable CRISPR-mediated knockout of CroG8H and CroCPR in the

EasyClone site X-3 and XI-3 sites [31], respectively. These modules made it possible to

extract the knockout sites and simulate the in vivo assembly while generating GenBank files

of the newly generated strains (04_1_BUILD_Background_strain). The resulting background

strain was named MIA-HA-1 (MIA-HA-1.gb).

Microbial strain cultivations

We used teemi and literate programming to document and calculate all steps of plate

and liquid cultivations. The plate and liquid cultivations were performed as described in [25]

except that 0.2 mM geraniol and 1 mM tryptamine were added to YPD media and the

cultures were grown at 300 rpm when testing for strictosidine production

(03_1_BUILD_gRNA_plasmid, Paragraph: 1.5, 04_1_BUILD_Background_strain,,

Paragraph: 6, 05_1_BUILD_Combinatorial_library, , Paragraph: 4).

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

16

Genetic parts selection

To standardize the selection of genetic parts we developed an algorithm in a literate

programming workflow that automates the selection process by searching and selecting

homologs based on amino acid identity through NCBIs databases (

00_1_DESIGN_Homologs). Using Catharanthus roseus sequences (Q8VWZ7, Q05001) as

queries, eight G8H and CPR genes were found on NCBI’s databases. To diversify the CPR

genes we searched the PhytoMetaSyn database using Catharanthus roseus CPR mRNA

(X69791.1) as a query. We selected two additional CPRs from the largest ORFs of the

mRNA transcripts, which provided a broad range of amino acid identities for all the chosen

CPRs (00_1_DESIGN_Homologs, Paragraph: 5.1.5). The sequences were codon-optimized

for S.cerevisiae with DNA Chisel (00_1_DESIGN_Homologs, Paragraph: 5.3).

A literate programming workflow was used to select promoters to drive the

expression of the gene homologs (01_1_DESIGN_Promoters). Promoters were chosen

based on absolute mRNA abundance measured from S. cerevisiae CEN.PK 113-7D at

cultivation time points 6, 12, and 24 hours (01_1_DESIGN_Promoters, Paragraph:

2)[29].The promoters were defined as 1kb upstream of the target gene, with lengths varying

from 984-1004 bp due to differences in in our in-house strains and the database strains.

Four promoters were selected for each CYP and CPR module based on constitutive

expression and expression patterns (high/low and increasing/decreasing). To prevent

homologous recombination during transformation, all promoter sequences were aligned to

ensure no homologous sequences, reducing the chance of genetic part looping out

(01_1_DESIGN_Promoters, Paragraph: 8).To streamline the combinatorial library size and

minimize the number of integrated fragments, gene homologs were assembled with tCYC

and tADH terminators.

Extracting genetic parts

In this study, we ordered gene homologs as gBlocks and cloned them into plasmids

along with tADH and tCYC terminators. To extract promoters from the genomic DNA of wild-

type S. cerevisiae CEN.PK2-1C, we generated specific primers. Additionally, we amplified

the TRP1 cassette from plasmid pRS414-USER using primers overlapping with the tCYC1

terminator and homologous to the fragment downstream of EasyClone site XI-2 [31].

Prior to conducting the PCR reactions and USER assemblies in the laboratory, we

simulated them using the teemi’s module PCR.py. The specific PCR programs,

polymerases, purifications methods, and amplification of USER and transformation parts can

be found in (03_1_BUILD_gRNA_plasmid, 04_1_BUILD_Background_strain,

05_1_BUILD_Combinatorial_library).

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

17

Plasmid construction

Construction of plasmids was simulated with teemi’s cloning.py module in a literate

programming workflow and assembled in the lab with USER cloning [37],

03_1_BUILD_gRNA_plasmid). More specifically, cloning.py module was used to simulate

and construct the plasmid (Double_gRNA_vecor_p1_G09_(pESC-LEU-

gRNA_ATF1_CroCPR) that was used to perform CRISPR-mediated deletion of the G8H and

CPR genes (03_1_BUILD_gRNA_plasmid). The second plasmid used in this study, pESC-

URA-gRNA_XI2-2, used for in vivo assembly into the EasyClone site XI-2 locus had been

constructed previous to this work.

Designing genetic parts for the combinatorial library

We used two methods to design combinatorial libraries, the commercially available

Teselagen Design module, and our own open-source DesignAssembly algorithm. The

designs made with the DesignAssembly algorithm incorporate 40 bp overlapping overhangs

by default with a distribution of 50/50% of the overhang to the forward and reverse primer. A

pad (defined as a nucleotide sequence of 40 bp) was incorporated between the promoters

with an ATF1 gRNA site to provide the deletion of the module at a later stage. The designs

and instructions for the assembly can be found in the following notebook

(02_1_DESIGN_Combinatorial_library).

Another similar combinatorial library was created with Teselagen Design Module

software where the parts were made with 30 bp overhangs. Annealing temperatures were

re-calculated with tmcalculator.neb.com. The design of overhangs can be seen here

(05_1_BUILD_Combinatorial_library). Both designs are presented in this work but it was

decided only to go forward with the designs made with Tesselagen

(05_1_BUILD_Combinatorial_library).

Pooled construction of the combinatorial libraries

The combinatorial library in this study was constructed using the CasEMBLR method

and designed for the EasyClone site XI-2 [31]. To facilitate the construction process, we

used literate programming and teemi’s modules to standardize and simplify the procedure

(05_1_BUILD_Combinatorial_library, 09_2_BUILD_Combinatorial_library). We used the

teemi’s lab module (PCR.py and transformation.py) to calculate PCR melting temperatures,

simulate and verify gel bands, and track samples using a local CSV-based LIMS system

(csv_database.py,). The plasmid pESC-URA-gRNA_XI2-2 was used for the in vivo assembly

of the library into locus XI2-2. Flanking regions for repair were approximately 0.5 kb, and the

homology regions between parts were 30 bp by default. A tryptophan selection marker was

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

18

used to select for positive transformants. (05_1_BUILD_Combinatorial_library,

09_2_BUILD_Combinatorial_library).

To create the library, we pooled genetic parts into one mixture, including promoters,

UP, DW, and cTRP1 parts, and one gene pair, all with overlapping overhangs and in

equimolar amounts(05_1_BUILD_Combinatorial_library, Paragraph: 2.2),

09_2_BUILD_Combinatorial_library, Paragraph: 5.1-5.3). The pooled library was

transformed with the genetic parts in a one-pot reaction to prevent unwanted homologous

recombination between the genes (05_1_BUILD_Combinatorial_library, Paragraph: 4.1,

09_2_BUILD_Combinatorial_library, Paragraph 6.1-6.3)).

Yeast transformations were carried out using the LiAc/SS carrier DNA/PEG method

[38] and performed with 1-2 ml of a background strain with an optical density of 1. Each

transformation reaction contained 0.25 pmol of a CRISPR plasmid expressing the gRNA for

XI-2 and 0.5 picomoles of each DNA fragment (05_1_BUILD_Combinatorial_library,

Paragraph: 4, 09_2_BUILD_Combinatorial_library, Paragraph: 6.1).

Control strains were transformed alongside the library strains. These strains were

transformed with plasmids containing uracil or tryptophan to test transformation efficiency

and water to test cell viability. The first set of transformations was split into three in the first

round of the DBTL(05_1_BUILD_Combinatorial_library, Paragraph: 4.1, while the second

set was split into two in the second cycle (09_2_BUILD_Combinatorial_library, Paragraph:

6.1).

Sample preparation for LC-MS and data analysis

Sample preparation and internal standards were prepared according to [25], with the

exception that pre-cultures were transferred to media containing 0.2 mM geraniol + 1 mM

tryptamine after two days as described in 05_1_BUILD_Combinatorial_library(Paragraph: 5)

and 09_2_BUILD_Combinatorial_library(Paragraph: 8). The metabolites strictosidine,

loganic acid, loganin, secologanin, and tryptamine were analyzed according to [25].

The full data analysis with respect to normalization, and calculations can be found in

notebook 06_1_TEST_Library_characterisation and 10_2_TEST_Library_characterization

where functions from teemi’s data_wrangling.py were used to process the data.

Promoter genotyping

Genomic DNA was extracted from overnight cultures with LiOAc/SDS method

adapted for 96 well plates [39]. Each extract was used as a template for two PCR’s spanning

the promoter gene pairs (05_1_BUILD_Combinatorial_library, Paragraph: 5,

09_2_BUILD_Combinatorial_library, Paragraph: 7), providing approximately ~2700 bp and

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

19

~3200 bp (Lenghts_of_constructs). The colony PCR products were validated with 1%

agarose gels followed by sequencing. Positive colony PCRs were first sequenced by

Eurofins, using a PlateSeq Kit for crude PCR products according to the manufacturer's

instructions. Second re-sequencing was performed with previous transformants with 5 µl

PCR products and 2 µl ExoSAP-IT enzymes (Thermo Fisher Scientific Inc.) heated to 37 °C

for 15 minutes followed by 80 °C for another 15 minutes.

The sequencing data consisted of a plate report describing each well's average

quality and sequencing files (.ab1). Using teemi’s data_wrangling.py we automated data

processing by filtering out low-quality alignments (average quality < 50, length used > 25).

Then, using functions from genotyping.py we inferred the promoter relationship to the

samples. Wells with multiple inferred promoters were filtered out. The final result was CSV

files with inferred promoters for each well. These results were merged with LC-MS data,

resulting in a CSV file with genotypes and normalized strictosidine production for 129 strains.

AutoML and learning curves

In this study, we used the AutoML H2O python library version 3.38.0.4 to automate

the machine learning process (AutoML H2O). The H2OAutoML class was initiated with an

input dataframe (input_for_ml_dbtl1.csv, input_for_ml_dbtl2.csv), response

column(norm.strictosidine) and specified feature columns(promoter:gene combinations). The

feature columns were made categorical, and 10-fold cross-validation was performed. The

trained models were saved in a leaderboard, and the best model was selected to predict

phenotypes of unseen genotypes in the remaining combinatorial library

(07_1_LEARN_Modelling_and_predictions(Paragraph: 1-7),

11_2_LEARN_Modelling_and_predictions(Paragraph: 1-5)).

To generate a learning curve, the teemi module auto_ml.py was used on the

datasets (input_for_ml_dbtl1.csv, input_for_ml_dbtl2.csv). Here, the main function divides

the dataset into partitions that progressively increase in size, and then trains models on each

partition. The function outputs a dataframe containing the name of the top performing

model(sorted in MAE), the mean-absolute error, and cross-validated values. This was done

ten times for each dataset, including a shuffling step between each run

(07_1_LEARN_Modelling_and_predictions(Paragraph: 8),

11_2_LEARN_Modelling_and_predictions, Paragraph: 6).

Model based recommendations of Combinatorial library

The genetic parts for the second DBTL round were selected by iterating through all

predictions of non-encountered combinations

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

20

(08_2_DESIGN_Model_recommended_combinatiorial_library(Paragraph: 1)). Each new

genetic part was saved and once the total number of combinations reached the maximum

capacity the iteration stopped. The encountered genetic parts were then used in the

following DBTL cycle to investigate the best-performing parts of the combinatorial library

(09_2_BUILD_Combinatorial_library).

Dependencies

Suppl. Table 1 provides a list of dependencies required to run teemi's modules.

Specifically, it describes the minimum dependencies needed, while the optional test

dependencies can be installed through the setup.py file. The installation of these can be

done with the following command: pip install teemi[dev]. For executing the

00_1_DESIGN_Homologs and 01_1_DESIGN_Promoters notebooks additional

requirements need to be installed. These packages include InterMines Python API and

Edinburgh Genome Foundry’s DnaChisel. However, through the Google colab notebooks,

these dependencies are installed automatically.

Data availability statement

 The paper and its supplementary information files provide data that support the

findings of this study. All data related to this study can be accessed and downloaded from

GitHub, the designated data repository at https://github.com/hiyama341/G8H_CPR_library.

The data include all source files and datasets analyzed throughout the study as well as

training sets for the machine-learning models.

Code availability

The code utilized for data extraction, organization, filtering, and simulation, as well as

the code utilized for algorithm training, can be found on GitHub

https://github.com/hiyama341/teemi. The teemi platform was implemented through PyPi and

is available at https://pypi.org/project/teemi/.

Acknowledgments

This work was supported by Novo Nordisk Foundation Center for Biosustainability

grant number NNF20CC0035580 and by the European Union Horizon 2020 research and

innovation program grant agreement number 814645 (MIAMi) to MKJ. NS. acknowledges

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

21

funding from the Novo Nordisk Foundation under the Fermentation Based Biomanufacturing

program (grant no. NNF17SA0031362).

Competing interests

 M.K.J., L.G.H. J.D.K. and J.Z. are inventors on pending patent applications. M.K.J.,

L.G.H., J.D.K., and J.Z. have financial interest in Biomia Aps. J.D.K. also has a financial

interest in Amyris, Lygos, Demetrix, Napigen, Apertor Pharmaceuticals, Maple Bio, Ansa

Biotechnologies, Berkeley Yeast, and Zero Acre Farms. The remaining authors declare no

competing interests.

Figure legends

Fig. 1. Conversion of natural language lab protocols for iterative design-build-test-

learn cycles to literate protocols using teemi. Natural language protocols (left - blue)

comprehensible to humans are converted into computer code (right - yellow) that can be

understood by both computers and humans. In teemi, each procedure in natural language

protocols relates to names of python modules in literate protocols, thus lowering the

programming entry level needed for adopting teemi.

Fig. 2. Design and characteristics of the constituent DNA parts used as experimental

testbed for teemi. (A) The ten-step biosynthetic pathway converting geraniol to

strictosidine. The G8H step is highlighted in a dashed box [22]. (B-C) Rooted phylogenetic

trees of G8H (D) and CPR (E) protein representatives. Uniprot identifiers are shown in

parentheses for those available. Catharanthus roseus (Cro), Rauvolfia serpentina (Rse),

Olea europaea (Oeu), Camptotheca acuminata (Cac), Vinca minor (Vmi), Cinchona calisaya

(Cca), Ophi- arrhiza pumila (Opu), and Swertia mussatii (Smu), Artemisia annua (Aan),

Arabidopsis thaliana (Ath), Catharanthus longifolius (Clo), Amsania hubrichtii (Ahu), and

Aspergillus niger (Ani). (D-E) Temporal resolution of transcript abundances for candidate

genes [29], for which promoters were chosen to control the expression of genes encoding

G8H (D) and CPR (D) homologous. (F) Combinatorial assembly and genome integration

strategy.

Fig. 3. Design, characterization, and modeling of design-build-test-learn cycle I. (A)

Outline of the stochastic sampling and test workflow for data generation. (B) The distribution

and counts of parts from the 167 strains that were accepted as input for machine learning in

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

22

the first learning phase of the first DBTL cycle. (C) The distribution of observed strictosidine

titers relative to reference strain MIA-CH-A2. Below the bar plot the distribution of parts for

each of the 238 analyzed strains is presented. (D) Cross-validated predictions vs average

normalized strictosidine production. All values are ranked.

Figure 4. Design, characterization, and modeling of design-build-test-learn cycle II. (A)

The distribution and counts of parts from the strains that were accepted as input for machine

learning in the second learning phase of the second cycle of DBTL. (B) The distribution of

observed strictosidine titers relative to reference strain MIA-CH-A2. Below the bar plot the

distribution of parts for each of the 240 analysed strains is presented. (C) Cross-validated

predictions vs average normalized strictosidine production. All values are ranked.

Figure 5. Learning curves and top-ranking strains designs from the iterative

engineering cycles. Learning curves from the first (A) and second (B) DBTL cycles,

illustrating mean absolute error (MAE) of the best-performing deep learning and XGBoost

models used cycle I and II, respectively, in relation to the number of data points (blue line)

and the cross-validation holdout prediction MAE together with the standard deviations of the

10 models created (yellow line). The points are based on 10 models created with a

randomized shuffled data in partitions of 33, 67, 100% and 20, 40, 60, 80 and 100% of the

data available for dbtl1 and dbtl2 respectively to get the same size of partitions. (C) Average

strictosidine production for Top-20 strains from first and second DBTL cycles. Genotypes are

shown (left) with their respective color codes (middle) and average strictosidine production

(right). For the strictosidine production, the light and dark blue colors correspond to strain

designs that were first found in the first and second second DBTL cycle, respectively.

Tables

Table 1. Comparison of IT tools and their functionalities for full-stack DBTL cycle.

 JBEI
/Cas
design
er

Pydna Aquari
um

Galaxy
project

Poly Lila
(Amyri
s)

Inscripta Teselage
n

Bench
ling

Riffyn.
Nexus

strateos

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

23

Open-
source

+ + + + + - - - - - -

DESIGN:
Parts
selection

+ - - - - (+) (+) - - (+) (+)

DESIGN:
Combinatori
al library
generation

- - - - - (+) (+) + - (+) (+)

DESIGN:
Combinatori
al library
generation

- - - - - (+) (+) + - (+) (+)

DESIGN:
Cloning
workflows

+ + +

- + (+) (+) - + (+) (+)

BUILD:
Transformati
on workflows

- - + - + (+) (+) - - (+) (+)

BUILD:
Automation
with robotics

- + - - - (+) (+) + + (+) (+)

TEST: Data
processing
of analytics

- - + + - (+) (+) + - (+) (+)

LEARN:
Machine-
Learning

- - - + - (+) (+) + - (+) (+)

LIMS
system

- - - - (+) (+) + + (+) (+)

Python
level

Limite
d

Mediu
m

None None Go-
pac
kag
e

None None None None None None

*() denoting if a statement is undisclosed.

Table 2. Overview of the notebooks created for this work.

DBTL

Round

 Name and link Description

1 DESIGN 00_1_DESIGN_Homologs Describes how we automatically can select homologs

from NCBI from a query in a standardizable and

repeatable way.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

24

 01_1_DESIGN_Promoters

Describes how promoters can be selected from

RNAseq data and fetched from an online database with

various quality measurements implemented.

 02_1_DESIGN_Combinatorial_librar

y

Describes how a combinatorial library can be generated

with the DesignAssembly class along with robot

executable instructions.

 BUILD 03_1_BUILD_gRNA_plasmid

Describes the assembly of a CRISPR plasmid with

USER cloning.

 04_1_BUILD_Background_strain Describes the construction of the background strain by

K/O of G8H and CPR in the X-3 and XI-3 sites

respectively.

 05_1_BUILD_Combinatorial_library Building a combinatorial library of 1280 combinations

with designs generated by Tesselagen software.

 TEST 06_1_TEST_Library_characterisatio

n

Describes data processing of LC-MS data and

genotyping of the generated strains.

 LEARN 07_1_LEARN_Modelling_and_predic

tions

Describes the use AutoML to predict the best

combinations for a targeted second round of library

construction.

2 DESIGN 08_2_DESIGN_Model_recommende

d_combinatiorial_library

This notebook utilizes the machine learning predictions

made in the previous notebook to create a targeted

combinatorial library with best predicted genetic parts.

BUILD 09_2_BUILD_Combinatorial_library Shows how results from the ML can be translated into

making a second focused library of strains.

 TEST 10_2_TEST_Library_characterizatio

n

Describes the data processing of LC-MS data like in

notebook 8 but with the second focused library.

 LEARN 11_2_LEARN_Modelling_and_predic

tions

Second cycle of ML showing how the model increased

performance and saturation of best-performing strains.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

25

Table 3. Machine-learning model characteristics

 First model Second Model

Model Deep Learning XGBoost

MAE* 2.728627138605333 8.669277115850836

RMSE* 6.088407587552942 19.04539155210566

Cross-validation MAE** 8.037346736078618 11.928834673923415

Cross-validation RMSE** 18.104192131285426 23.340093018693615

R2 of observed vs. cross-
validation-predicted

0.776 0.850

*Reported on train data

**Reported on cross-validation data

References

1. Meng F, Ellis T. The second decade of synthetic biology: 2010-2020. Nat Commun.
2020;11: 5174.

2. Shankar S, Hoyt MA. Expression constructs and methods of genetically engineering
methylotrophic yeast. US Patent. 20170349906:A1, 2017. Available:
https://patentimages.storage.googleapis.com/50/a8/bb/e4a1541ba12ec0/US201703499
06A1.pdf

3. Mcnamara J, Harvey JD, Graham MJ, Scherger C. Optically transparent polyimides.
World Patent. 2019 [cited 26 May 2023]. Available:
https://patents.google.com/patent/WO2019156717A2/en

4. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al. T cells with chimeric
antigen receptors have potent antitumor effects and can establish memory in patients
with advanced leukemia. Sci Transl Med. 2011;3: 95ra73.

5. Voigt CA. Synthetic biology 2020-2030: six commercially-available products that are
changing our world. Nat Commun. 2020;11: 6379.

6. Nielsen J, Keasling JD. Engineering Cellular Metabolism. Cell. 2016;164: 1185–1197.

7. Opgenorth P, Costello Z, Okada T, Goyal G, Chen Y, Gin J, et al. Lessons from Two
Design-Build-Test-Learn Cycles of Dodecanol Production in Escherichia coli Aided by
Machine Learning. ACS Synth Biol. 2019;8: 1337–1351.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

26

8. Juergens H, Niemeijer M, Jennings-Antipov LD, Mans R, Morel J, van Maris AJA, et al.
Evaluation of a novel cloud-based software platform for structured experiment design
and linked data analytics. Sci Data. 2018;5: 180195.

9. Fero MJ, Craft JK, Vu T, Hillson NJ. Combinatorial-Hierarchical DNA Library Design
Using the TeselaGen DESIGN Module with j5. Methods Mol Biol. 2020;2205: 19–47.

10. Craig T, Holland R, D’Amore R, Johnson JR, McCue HV, West A, et al. Leaf LIMS: A
Flexible Laboratory Information Management System with a Synthetic Biology Focus.
ACS Synth Biol. 2017;6: 2273–2280.

11. Vrana J, de Lange O, Yang Y, Newman G, Saleem A, Miller A, et al. Aquarium: open-
source laboratory software for design, execution and data management. Synth Biol.
2021;6: ysab006.

12. Fernández-Castané A, Fehér T, Carbonell P, Pauthenier C, Faulon J-L. Computer-aided
design for metabolic engineering. J Biotechnol. 2014. doi:10.1016/j.jbiotec.2014.03.029

13. Batut B, Hiltemann S, Bagnacani A, Baker D, Bhardwaj V, Blank C, et al. Community-
Driven Data Analysis Training for Biology. Cell Syst. 2018;6: 752–758.e1.

14. Hiltemann S, Rasche H, Gladman S, Hotz H-R, Larivière D, Blankenberg D, et al.
Galaxy Training: A powerful framework for teaching! PLoS Comput Biol. 2023;19:
e1010752.

15. Jessop-Fabre MM, Sonnenschein N. Improving Reproducibility in Synthetic Biology.
Front Bioeng Biotechnol. 2019;7: 18.

16. Carbonell P, Radivojevic T, García Martín H. Opportunities at the Intersection of
Synthetic Biology, Machine Learning, and Automation. ACS Synth Biol. 2019;8: 1474–
1477.

17. Knuth DE. Literate Programming. Comput J. 1984;27: 97–111.

18. Abelson H, Sussman GJ, Sussman J. Structure and Interpretation of Computer
Programs - 2nd Edition (MIT Electrical Engineering and Computer Science). second
edition. The MIT Press; 1996.

19. Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, et al. The
FAIR Guiding Principles for scientific data management and stewardship. Sci Data.
2016;3: 160018.

20. Meunier B, de Visser SP, Shaik S. Mechanism of oxidation reactions catalyzed by
cytochrome p450 enzymes. Chem Rev. 2004;104: 3947–3980.

21. Billingsley JM, Anguiano JL, Tang Y. Production of semi-biosynthetic nepetalactone in
yeast. J Ind Microbiol Biotechnol. 2019;46: 1365–1370.

22. Brown S, Clastre M, Courdavault V, O’Connor SE. De novo production of the plant-
derived alkaloid strictosidine in yeast. Proc Natl Acad Sci U S A. 2015;112: 3205–3210.

23. Davies ME, Tsyplenkov D, Martin VJJ. Engineering Yeast for De Novo Synthesis of the
Insect Repellent Nepetalactone. ACS Synth Biol. 2021;10: 2896–2903.

24. Li S, Li Y, Smolke CD. Strategies for microbial synthesis of high-value phytochemicals.
Nat Chem. 2018;10: 395–404.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

27

25. Zhang J, Hansen LG, Gudich O, Viehrig K, Lassen LMM, Schrübbers L, et al. A
microbial supply chain for production of the anti-cancer drug vinblastine. Nature.
2022;609: 341–347.

26. Bathe U, Tissier A. Cytochrome P450 enzymes: A driving force of plant diterpene
diversity. Phytochemistry. 2019;161: 149–162.

27. Srinivasan P, Smolke CD. Biosynthesis of medicinal tropane alkaloids in yeast. Nature.
2020;585: 614–619.

28. Xiao M, Zhang Y, Chen X, Lee E-J, Barber CJS, Chakrabarty R, et al. Transcriptome
analysis based on next-generation sequencing of non-model plants producing
specialized metabolites of biotechnological interest. J Biotechnol. 2013;166: 122–134.

29. Rajkumar AS, Özdemir E, Lis AV, Schneider K, Qin J, Jensen MK, et al. Engineered
Reversal of Function in Glycolytic Yeast Promoters. ACS Synth Biol. 2019;8: 1462–
1468.

30. Jakočiūnas T, Rajkumar AS, Zhang J, Arsovska D, Rodriguez A, Jendresen CB, et al.
CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA
Parts in Saccharomyces cerevisiae. ACS Synth Biol. 2015. Available:
https://www.ncbi.nlm.nih.gov/pubmed/25781611

31. Jensen NB, Strucko T, Kildegaard KR, David F, Maury J, Mortensen UH, et al.
EasyClone: Method for iterative chromosomal integration of multiple genes in
Saccharomyces cerevisiae. FEMS Yeast Res. 2014;14: 238–248.

32. Fox R. Forward Engineering in Biological Systems. 2020 Aug. Available:
https://www2.inscripta.com/Forward-Engineering_webinar.html

33. Mey F, Clauwaert J, Van Huffel K, Waegeman W, De Mey M. Improving the
performance of machine learning models for biotechnology: The quest for deus ex
machina. Biotechnol Adv. 2021;53: 107858.

34. Zhang J, Petersen SD, Radivojevic T, Ramirez A, Pérez-Manríquez A, Abeliuk E, et al.
Combining mechanistic and machine learning models for predictive engineering and
optimization of tryptophan metabolism. Nat Commun. 2020;11: 4880.

35. Ledell E, Poirier S. H2O AutoML: Scalable Automatic Machine Learning. [cited 3 May
2023]. Available: https://www.automl.org/wp-
content/uploads/2020/07/AutoML_2020_paper_61.pdf

36. Partin A, Brettin T, Evrard YA, Zhu Y, Yoo H, Xia F, et al. Learning curves for drug
response prediction in cancer cell lines. BMC Bioinformatics. 2021;22: 252.

37. Nour-Eldin HH, Hansen BG, Nørholm MHH, Jensen JK, Halkier BA. Advancing uracil-
excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic
Acids Res. 2006;34: e122.

38. Gietz RD, Schiestl RH. Quick and easy yeast transformation using the LiAc/SS carrier
DNA/PEG method. Nat Protoc. 2007;2: 35–37.

39. Lõoke M, Kristjuhan K, Kristjuhan A. Extraction of genomic DNA from yeasts for PCR-
based applications. Biotechniques. 2011;50: 325–328.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

Natural language

protocols

Literate

protocols

learn design

test build

open source life science

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

A B

C

T_ADH1

T_CYC1

 pCYC1
 pENO2
 pPCK1
 pRPL15B

 pMLS1
 pTPI1
 pURE2
 pCCW12

 CroG8H
 CcaG8H
 OpuG8H
 CacG8H
 RseG8H
 SmuG8H
 VmiG8H
 OeuG8H

 AhuCPR
 AanCPR
 CloCPR
 CacCPR
 AniCPR
 CpoCPR
 OeuCPR
 RseCPR
 AthATR1
 CroCPR

up G8H homologs CPR homologs dw

7DLGT

STR

8HGO

ISYIO
CPR
CYB5

CYPADH

SLS
CPR
CYB5

LAMT

7DLH
CPR
CYB5

TDC

IDI1

8-oxogeranialnepetalactol7-deoxyloganetic
alcohol

DMAPP

Native
mevalonate

pathway

IPP
GES

FPSN144W

GPPS2

ERG20

GPP

F96W;F127W G8H

CPR
CYB5geraniol

8-hydroxygeraniol

7-deoxyloganetic
acid

7-deoxyloganic
acid

loganic acid

loganin secologanin

Native
shikimate
pathway

tryptophantryptamine

strictosidine

D E F

1

5 10 15 2520 5 10 15 2520
Time (h) Time (h)

pCCW12
pURE2
pMLS1
pTPI1
pTEF1

pCYC1
pRPL15B
pPCK1
pENO2
pTDH3

0

2

3

4

5

6

1

0

2

3

4

5

6

m
R

N
A

ex
pr

es
si

on
 x

 1
03

(a
.u

.)

m
R

N
A

ex
pr

es
si

on
 x

 1
03

(a
.u

.)

 CloCPR (KAI5675352)

 CroCPR (Q05001)

 RseCPR

 AhuCPR

 OeuCPR (XP_022867604)

 CacCPR (AJW67229)

 AanCPR (ABC47946)

 AthCPR (NP_194183)

 CpoCPR (QEG78946)

 AniCPR (Q00141)

 OpuG8H (BAP90522.1)

 CcaG8H (AGX93051.1)

 RseG8H (AGX93053.1)

 CroG8H (Q8VWZ7.1)

 VmiG8H (AGX93055.1)

 OeuG8H (XP_022858342.1)

 SmuG8H (D1MI46.1)

 CacG8H (AES93118.1)

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

A B

C D

0 50 100 150 200
Individual strains

0

50

100

150

200

250

R
el

at
iv

e
st

ric
to

si
di

ne
 a

cc
um

ul
at

io
n

Reference (MIA-CH-A2)
Relative strictosidine

300

G
8H

pG
8H

pC
P

R

C
P

R

Parts

0

20

40

60

80

100

Pa
rt

s
di

st
rib

ut
io

n
(%

)

Vmin
13.77 %

Smus
13.77 %

Rsep
12.57 %

Oeu
12.57 %

Ccal
12.57 %

Cro
11.98 %

Cacu
11.38 %

Opum
11.38 %

pRPL15B
33.53 %

pPCK1
23.95 %

pCYC1
22.75 %

pENO2
19.76 %

pURE2
29.94 %

pCCW12
25.75 %

pMLS1
22.16 %

pTPI1
22.16 %

Aan
11.98 %

Cac
11.98 %

Ara
11.38 %

Rse
10.78 %

Ahu
10.78 %

Cro
9.58 %

Oeu
9.58 %

Clo
9.58 %

Cpo
7.78 %

Ani
6.59 %

Norm. ranked strictosidine measurements (%)

CacG8H
OpuG8H
CroG8H
VmiG8H
SmuG8H
RseG8H
OeuG8H
CcaG8H
pCYC1
pENO2
pPCK1
pRPL15B
pCCW12
pTPI1
pMLS1
pURE2
CroCPR
AanCPR
AraCPR
CloCPR
RseCPR
AhuCPR
AniCPR
CacCPR
OeuCPR
CpoCPR
Not_fully_genotyped

R-squared = 0.776
 P-value = 6.416E-35

0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

R
an

ke
d

st
ric

to
si

di
ne

 p
re

di
ct

io
ns

 (%
)

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

A B C
G

8H

pG
8H

pC
PR

C
PR

Parts

0

20

40

60

80

100

Pa
rt

s
di

st
rib

ut
io

n
(%

)

Vmin
20.93 %

Oeu
20.93 %

Rsep
20.16 %

Cro
19.38 %

Smus
18.6 %

pCYC1
55.04 %

pENO2
44.96 %

pTPI1
58.14 %

pCCW12
41.86 %

Aan
15.5 %

Ani
15.5 %

Rse
14.73 %

Cro
13.95 %

Ahu
13.95 %

Clo
13.18 %

Ara
13.18 %

0

40

80

120

160

0 50 100 150

Individual strains

R
el

at
iv

e
st

ric
to

si
di

ne
 a

cc
um

ul
at

io
n

Reference (MIA-CH-A2)
Relative strictosidine

CroG8H
VmiG8H
SmuG8H
RseG8H
OeuG8H
pCYC1
pENO2
pCCW12
pTPI1
CroCPR
AanCPR
AraCPR
CloCPR
RseCPR
AhuCPR
AniCPR
Not_fully_
genotyped

R-squared = 0.850
 P-value = 6.710E-84

Norm. ranked strictosidine measurements (%)

0.4 0.6 0.8 1.00.2

0.0

0.2

0.4

0.6

0.8

1.0

R
an

ke
d

st
ric

to
si

di
ne

 p
re

di
ct

io
ns

 (%
)

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

A B

Length of the partitioned data

M
A

E

DBTL 1

60 80 100 120 140 160

Length of the partitioned data

50 100 150 200 250 300
0

5

10

15

20

25

M
A

E

0

5

10

15

20

25

Cross-validation mean MAE
Cross-validation standard deviation
Deep-learning model performance MAE
Deep-learning model standard deviation

Cross-validation mean MAE
Cross-validation standard deviation
XGBoost model performance MAE
XGBoost model standard deviation

DBTL 2

Norm. average strictosidine production

pENO2:SmuG8H-pTPI1:AanCPR
pCYC1:SmuG8H-pTPI1:CacCPR

pCYC1:SmuG8H-pCCW12:CloCPR
pENO2:RseG8H-pTPI1:CloCPR

pENO2:RseG8H-pTPI1:RseCPR
pENO2:VmiG8H-pTPI1:AraCPR

pENO2:CroG8H-pCCW12:RseCPR
pENO2:SmuG8H-pTPI1:AraCPR

pENO2:RseG8H-pCCW12:AanCPR
pENO2:OeuG8H-pTPI1:AanCPR

pENO2:SmuG8H-pCCW12:RseCPR
pCYC1:SmuG8H-pCCW12:AanCPR

pENO2:CroG8H-pTPI1:AanCPR
pENO2:CroG8H-pCCW12:AraCPR

pENO2:RseG8H-pTPI1:CroCPR
pENO2:RseG8H-pCCW12:CroCPR

pENO2:SmuG8H-pTPI1:CroCPR
pENO2:VmiG8H-pTPI1:RseCPR

pENO2:ReseG8H-pCCW12:CloCPR
pCYC1:SmuG8H-pTPI1:CloCPR

159.0
144.0
143.0
142.5
135.7
134.0
132.0
130.7
129.0
126.0
123.0
121.0
117.7
116.0
114.0
114.0
113.0
109.0
100.0
99.5

0 50 100 150

DBTL II
DBTL I

Genotypes

Top-20 strains from DBTL I & II

C

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

