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Abstract 

Synthetic biology dictates the data-driven engineering of biocatalysis, cellular 

functions, and organism behavior. Integral to synthetic biology is the aspiration to efficiently 

find, access, interoperate, and reuse high-quality data on genotype-phenotype relationships 

of native and engineered biosystems under FAIR principles, and from this facilitate forward-

engineering strategies. However, biology is complex at the regulatory level, and noisy at the 

operational level, thus necessitating systematic and diligent data handling at all levels of the 

design, build, and test phases in order to maximize learning in the iterative design-build-test-

learn engineering cycle. To enable user-friendly simulation, organization, and guidance for 
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the engineering of complex biosystems, we have developed an open-source python-based 

computer-aided design and analysis platform operating under a literate programming user-

interface hosted on Github. The platform is called teemi and is fully compliant with FAIR 

principles. In this study we apply teemi for i) designing and simulating bioengineering, ii) 

integrating and analyzing multivariate datasets, and iii) machine-learning for predictive 

engineering of a metabolic pathway designs for production of a key precursor to medicinal 

alkaloids. The teemi platform is publicly available at PyPi and GitHub.  

 

 

Introduction 

The rational engineering of biology for user-defined purposes, also known as 

synthetic biology, has fostered a shift in the way we imagine, design and produce foods, 

materials, and medicines [1]. Seminal examples of synthetic biology success stories adopted 

by society during the last decade includes plant-based burgers with meat flavour derived 

from soy leghemoglobin produced in engineered yeast [2], the hyaline family of clear, flexible 

and robust polyimide films for flexible electronics made from bio-sourced monomers [3], and 

chimeric antigen receptors (CARs) fused to antibodies that when inserted in patients’ T cells 

and introduced into the patient enable efficient killing of cancer cells [4]. Common to these 

examples is the bioengineering of living cells to encapsulate and arm them with novel 

functions to meet societal needs in agriculture, manufacturing industry, and health. Even 

more so, many more solutions to mitigate climate changes, increase food supplies, and treat 

patients with unmet needs are set to depart from engineered cells and synthetic biology in 

the near future [5].  

However, rapid progress in bioengineering is limited by the long, costly, and non-

standardised approaches used to engineer even the simplest model cells, such as 

Escherichia coli and Saccharomyces cerevisiae [6]. Taken together with the molecular and 

metabolic complexity of biological systems, and limited scalable design principles, 

bioengineers often have to construct and study large libraries of variant cell designs to 

identify genotypes with sought-for properties [7]. The targeted construction of strains is often 

described as an iterative process of design, build, test, and learn (the DBTL cycle)[7]. To 

support the various steps of the DBTL cycle a multitude of commercial software and cloud-

lab platforms are available, including  Benchling, Riffyn, Inscripta, Teselagen and Emerald 

Cloud Lab, with advanced laboratory information management system (LIMS), data analysis 

capabilities, and integration of laboratory workflow execution via robotics [8,9]. In addition to 

commercial platforms, open-source Python APIs for flexible workflow planning, execution 

and data management central to the working practices of researchers are gaining a lot of 
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momentum, especially covering the design and learn steps of the DBTL cycle [10–12], just 

as the collection of FAIR (Findable, Accessible, Interoperable, Reusable) training materials 

made available via community efforts such as the Galaxy Training Network [13], seek to 

empower researchers with data analysis literacy and bridge the skills gap between design-

build-test and learn [14]. Still there is a common challenge to support researchers using 

natural language laboratory protocols to integrate such tools and services into their daily 

workflows. Solving this challenge should also enable i) that more tasks can be performed in 

shorter time and with less errors, ii) better integration of IT tools with other resources, such 

as robotics, and iii) better documentation, and thus more effective knowledge transfer among 

research communities[15,16]. 

Literate programming is a paradigm that encourages the combination of text and 

computer code in a systematic and coherent way [17]. Computer code is formal language for 

describing how to do things [18]. The code can be understood by both humans and 

computers if it is written sufficiently abstract. Literate programming protocols are thus written 

for humans, but computer code is used whenever the tasks can be performed by a 

computer. With literate programming, workflows and data can be described precisely 

meeting the FAIR principles [19].  

The purpose of the present work is to give a first estimate of the extent to which 

bioengineers can accelerate the speed, efficiency, and fidelity of the individual steps in the 

DBTL cycle by using literate programming. To do so, we have established an open-source 

platform including all elements of the iterative DBTL cycle bioengineers are confronted with. 

The platform is called teemi. To showcase teemi in its entirety and facility efficient adoption, 

we present an experimental example using literate programming in teemi for all DBTL stages 

of an iterative learning task targeting the optimization of a metabolic pathway for production 

of a key precursor to medicinal alkaloids in yeast. 

 

Results 

Background and motivation for teemi 

At the onset of this project, we first assessed a multitude of web tools and scripts 

available for bioengineers to streamline their DBTL workflows (Table 1). While truly 

enabling, and adopted widely [9,11], we could not identify open-source tools  that can 

integrate all steps of the DBTL cycle in a single workflow, without the need to acquire 

programming skills, and shifting between platforms and programming languages. 

In literate programming, besides the textual documentation, embedded code allows 

abstracting away all computations in a reusable way. Lab notebook-style chronological 
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documents will contain information on when, how, and for what purpose, data was acquired 

and used. Moreover, with literate programming, data is compliant with FAIR principles being 

findable and accessible from a single context via links to digital repositories, interoperable 

via a free to use, open source, and user-friendly workflow document, while both data 

acquisition and processing are reproducible via text documentation and embedded 

functions.  

For this study, teemi is used in Jupyter Notebooks and consists of a set of Python 

functions and classes facilitating simulation of experimental flow for in vivo design and 

assembly of diverse genetic libraries, pooled library constructions, organization and 

modeling of genotype and phenotype data, as well as implementing machine learning to 

model the data and recommend new designs (Fig. 1). Through teemi simulations, the 

preparation of laboratory work is standardized and thoroughly executed, aimed at reducing 

time consumption, decreasing human error rates, and improving the reproducibility of 

experimental results. 

 The literate programming notebooks used for the experimental testbed presented in 

this study are hosted by Google Colab. All noteboooks are extensively referenced upon 

implementation throughout this study as well as summarized in a comprehensive list (Table 

2), allowing the reader to easily connect literate programming for iterative DBTL cycles with 

the results presented. 

 

The experimental bioengineering testbed  

 An often-encountered bottleneck in modern biotechnology is the bottleneck of 

oxidation reactions catalyzed by cytochrome P450 enzymes [20,21]. These oxidation 

reactions are catalyzed by cytochrome P450 (CYP) superfamily of hemoproteins, and 

cytochrome P450 reductases (CPR)[22–24]. CYPs are often cytosol-facing, N-terminally 

bound enzymes bound to the endoplasmic reticulum (ER)[20]. They catalyze hydroxylations 

of small molecule substrates facilitated by the transfer of two electrons from NADPH to 

NADP+ catalyzed by the ER-bound CPRs [23]. Plant-derived CYP/CPR reactions are 

widespread in modern biotechnology for fermentation-based manufacturing of fine 

chemistries, such as alkaloids and terpenes [25,26]. When heterologously expressed in 

microbes, such as the biotechnology workhorse baker’s yeast Saccharomyces cerevisiae, 

poor CYP activity and shunt product formation limits efficient bioconversion of cheap 

feedstocks to value-added advanced pharmaceutical ingredients sourced by fermentation 

[21,25]. To mitigate this, CYP/CPR reactions often need extensive trial-error engineering to 

optimize substrate conversion and balance co-factor availability in cell factories. This has 

included i) regulating the expression of genes encoding both CPR and CYPs, ii) searching 

for optimal CYP:CPR pairs, iii) bioprospecting for enzyme homologs, iv) perturbing gene 
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copy numbers, or v) rational engineering of signal peptides to target membrane-anchoring of 

enzymes to dedicated subcellular compartments [21,23]. While independently all of these 

approaches have positively impacted oxidation reactions catalyzed by heterologous 

expression of plant-derived CYPs and CPRs in yeast [21,23,25], multivariate exploration of 

these complex reactions are needed. One recent study documenting the power of 

combinatorial search strategies was performed by Davies et al., searching >100 CYP/CPR 

co-expression designs, which when combined with best-performing promoter designs show-

cased improved C8-hydroxylation of geraniol to 8-hydroxy-geraniol catalyzed by the geraniol 

hydroxylase G8H and its CPR partner [23].  

In this study we present the power of teemi and literate programming to build 

simulation-guided and iterative laboratory workflows for optimizing strictosidine production in 

yeast (Fig. 2A). Motivated by the complexity of the oxidation reactions and documented 

importance of exploring combinatorial design spaces [23], and the observation that feeding 

8-hydroxy-geraniol improves strictosidine production compared to feeding geraniol [25], we 

considered the C8-hydroxylation of geraniol to 8-hydroxy-geraniol as a valid testbed to 

showcase the bandwidth and throughput enabled by literate programming using teemi.  

 

teemi for design-build-test-learn cycle I 

Using teemi we initially constructed a parental strain (MIA-CH-A2) harboring CroG8H 

and CroCPR under the control of promoters pTDH3 and pTEF1, together with the 11 other 

genes driving the biosynthesis pathway from geraniol to strictosidine [22,25](Fig. 2A).  

The first DBTL iteration of the teemi-based DESIGN module included enzyme 

homology searches, promoter choices, and primer designs. For prospecting different G8H 

and CPR genes we developed an algorithm to standardize the screening of homologs 

(00_1_DESIGN_Homologs, Paragraph: 1) using Catharanthus roseus G8H and CPR 

sequences as queries [23,25]. In addition to the NCBI database search, CPR candidates 

documented from literature [25,27], search results from the PhytoMetasyn database [28], 

and a beetle G8H from Chrysamela populi (Cpo) were included to generate diversity (Fig. 

2B-C).   

Each gene was expressed under the control of four unique native promoters, yielding 

a total library size of 1,280 (8x10x4x4). For the choice of promoters a second algorithm was 

developed aimed at selecting relevant promoters from expression data generated during the 

lag (10% glucose consumption, low ethanol production), mid-exponential (75% glucose 

consumed, increasing ethanol production), and post-exponential phases (>99% glucose 

consumed, start of ethanol consumption)[29](01_1_DESIGN_Promoters, Paragraph: 1)). All 

promoter sequences were aligned to ensure that there were no homologous sequences in 

order to minimize recombineering during transformation and library propagation 
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(01_1_DESIGN_Promoters, Paragraph: 4). Lastly, primers for amplification of each of the 

chosen library parts were designed (02_1_DESIGN_Combinatorial_library, Paragraph: 3). 

To facilitate homologous recombinations by design, the parts used as flanking regions for 

repair assembly into a pre-defined genomic landing pad were designed to be 0.5 kb and the 

homology regions between library parts were 30 bp by default. For all design steps, the 

notebooks along with teemi were used to simulate all relevant designs in a combinatorial 

library, check primer matches with templates, calculate lengths of PCR products, and print 

tables of PCR mixes in order to provide an overview of reagents and their location, calculate 

melting temperatures for PCR programs and expected gel electrophoresis outputs, and 

create expected sequences from an alignment of parts integrated 

(03_1_BUILD_gRNA_plasmid, 04_1_BUILD_Background_strain, 

05_1_BUILD_Combinatorial_library, 09_2_BUILD_Combinatorial_library). As such this 

simulation also mimics an electronic laboratory notebook (ELN), thus facilitating 

documentation of the experiments and allowing for easy sharing in order to prevent 

knowledge loss. Most importantly, the 100% sequence verification of amplicons 

(06_1_TEST_Library_characterisation, Paragraph: 2.2; 

10_2_TEST_Library_characterization, Paragraph: 2) based on teemi simulations of 

expected gel electrophoresis outputs (Suppl. Fig. S1) is a validation of the simulation 

workflow, and is expected to improve interoperability and reproducibility of laboratory 

workflows, and help reduce human errors. 

Next, for the BUILD module, we adopted CasEMBLR for CRISPR/Cas9-mediated 

assembly harnessing seamless homologous recombination between seven parts in each 

cluster [30], and into a stable genomic integration site [31](Fig. 3A). The seven parts encode 

two different promoters each controlling the expression of a gene encoding a G8H or a CPR, 

together with a selectable marker and two homology regions for the genomic landing pad 

(Fig. 3A).  

When generating diversity, it is essential to remember that the outcome vs effort is 

restricted in the build and test part of the DBTL cycle due to physical capacities in strain 

construction and testing. A potential way to accelerate the process is with stochastic variant 

generation [32]. Hence, we used teemi to output parts lists for combinatorial assemblies, 

each encoding a single G8H:CPR combination together with all 16 different promoter 

combinations (4x4)(05_1_BUILD_Combinatorial_library)(Fig. 3A). The designs were 

assembled as one-pot transformations together with the selectable marker and the two up- 

and down-homology regions, making each transformation consist of 21 parts for a total of 16 

genetic designs in each of 80 (8 x 10) transformations (05_1_BUILD_Combinatorial_library, 

Paragraph: 4)(Fig. 3A).  
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For the TEST module, we scored genotype and phenotype relationships of 

stochastically sampled colonies based on DNA sequencing of promoter:gene combinations 

and liquid-chromatography mass spectrometry to quantify strictosidine, respectively (Fig. 

3A). Sequencing results matched with the simulation from the DESIGN step, were organized 

into a CSV file containing rows with strains that had unambiguous genotypes along with 

strictosidine production as part of the teemi workflow (06_1_TEST_Library_characterisation, 

Paragraph: 3). The pooled library approach complemented stochastic sampling of three 

colonies from each transformation to maximize diversity generation within the shortest 

amount of time [32], from which 159 unique genotypes were extracted from the 238 sampled 

colonies (12.4% coverage of the 1,280 design solution 

space)(06_1_TEST_Library_characterisation, Paragraph: 4). Furthermore, out of the total 

159 unique genotypes obtained, the distribution of the 8 different G8Hs and 10 different 

CPRs were 11.4-13.8% and 7-12%, respectively, while for the 4 promoters driving 

expression of genes encoding G8Hs and CPRs the distributions were 19.6-33.5% and 22.2-

30.0%, respectively (06_1_TEST_Library_characterisation, Paragraph: 4)(Fig. 3B), totaling 

a deviation span of 1.4-8.5 percentile points from an even distribution. Taken together, these 

results demonstrate efficient parts assembly and relatively large coverage of the theoretical 

sequence space. With respect to strictosidine production, LC-MS measurements were 

obtained concomitantly, and data was normalized by the mean of the production obtained for 

the reference strain MIA-CH-A2 run in technical quadruplicates on three different replicate 

plates (29.29 +/- 4.84 µM; 34.77 +/- 4.85 µM; 34.23 +/- 7.60 

µM)[25](06_1_TEST_Library_characterisation, Paragraph: 2.1); 

10_2_TEST_Library_characterization, Paragraph: 1.3). From the analysis, 9 of the 238 

strains tested were observed to produce more than the reference strain (Fig. 3C, Suppl. 

Table 2).  

Lastly, in the interest to automate the modeling of genotype and phenotype data and 

to recommend forward-engineering of lead strains beyond those already used for modeling, 

we showcase integration of machine learning by teemi to LEARN genotype-phenotype 

relationships as well as recommend new strain designs not seen in the training data set. As 

no single machine learning algorithm is optimal for all learning tasks [33,34], 1,895 different 

models sourced from H2O AutoML [35], including DRF, GLM, XGBoost, GBM, 

DeepLearning, and StackedEnsemble, were made as a function of gene and promoter 

combinations combined with normalized strictosidine measurements (input_for_ml.csv). 

AutoML was used to investigate the performance of all models with different algorithms and 

different hyperparameters instead of manually changing parameters of different models, or 

even performing manual pattern investigation. The simultaneous investigation of all the 

different models using this approach facilitated the training of different models on the single 
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regression learning task of predicting the ability of the design combinations of G8H and CPR 

expression cassettes to increase the strictosidine production, and indirectly its ability to 

transform geraniol to 8-hydroxygeraniol. Through a 1-hour run of AutoML in H2O, a deep 

learning model was found to be the best-suited model for predicting relative production from 

genotypes (Fig. 3D). The best model was found by sorting on MAE from cross-validation 

data with the best-performing model yielding an MAE = 8.03 and an RMSE = 18.10 based 

on 10-fold cross-validation predictions (07_1_LEARN_Modelling_and_predictions, 

Paragraph: 2)(Table 3). These MAE and RMSE values represent ~ 3 and 7% of the full 

range of measurements (0.0 - 245.0), respectively.  

The strictosidine measurements were transformed into ranked values representing 

245.03 = 1.00, 156.32 = 0.99, ..., and 0.00 = 0.18 of the full range of measurements, 

respectively (Fig. 3D). Observed production values of 167 strains were compared to cross-

validation predictions, with the deep learning model yielding an overall R2 = 0.77 (Fig. 3D). 

However, the model tended to underpredict production, as evidenced by the majority of 

predicted strictosidine levels lying below the observed production curve (Fig. 3D). 

Beyond the motivation to model genotype-phenotype landscapes from genotypes 

and strictosidine production profiles for the 167 strains used for model training, a further 

motivation was to use the deep learning model to explore genotypes not seen in the training 

data set. From the remaining 1,121 theoretical combinations, 42 genotypes were predicted 

to produce more strictosidine than the reference strain (3.84% of the uncharted theoretical 

design space). With a fully deployed DBTL workflow now available in teemi, we were thus 

motivated to efficiently explore the combinatorial design space via a second DBTL cycle. 

 

teemi for design-build-test-learn cycle II 

 From the learnings of the first DBTL cycle, we used teemi to design the next DBTL 

cycle using the parts found in experimentally-validated top-performers with previously non-

observed combinations from the machine learning-guided predictions of the first DBTL cycle 

(08_2_DESIGN_Model_recommended_combinatiorial_library, Paragraph: 1). Balancing the 

maximum remaining search space (1,121 designs), the predictive power of the deep learning 

model trained on data from the first DBTL cycle (159 designs), we decided for a maximum 

build capacity of 180 strain designs based on the parts found in predicted top-performers. 

This resulted in a distribution of 5 G8Hs, 2  promoters for controlling expression of genes 

encoding G8Hs, 2 promoters for controlling expression of genes encoding CPRs, and 7 

CPRs (16 parts in total, creating a theoretical combinatorial space of 140 strains)(Fig. 

4A)(08_2_DESIGN_Model_recommended_combinatiorial_library, Paragraph: 1). Based on 

these parts, the combinatorial optimization approach was conducted as in the first DBTL 

cycle (Fig. 3A). 
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In the BUILD step, the combinatorial optimization resulted in 35 transformations of 

pooled transformations, this time consisting of a background strain and 11 different parts, 

namely 2 G8Hs (1 G8H x 2 overhangs), 2 promoters for expression of G8H-encoding genes, 

2 promoters for expression of CPR-encoding genes, 2 CPRs (1 CPR x 2 overhangs), a 

TRP1 expression cassette, and UP and DW homology regions. This created a sequence 

space of 140 (35 x 4) unique 9 kb 7-parts assemblies at the target genomic locus. From the 

transformations, 4 strains with known G8H and CPR were sampled randomly from each 

plate to get 140 strains, a number that matches the sequence space (2 extra were sampled 

from one strain, therefore 142 in total). Additionally, 2 blanks, 2 negative controls and 22 

positive controls were sampled totaling 168 strains (09_2_BUILD_Combinatorial_library, 

Paragraph: 8)(Fig. 4). 

For the TEST step, genotypes and strictosidine production levels were again 

assessed by DNA sequencing and LC-MS, respectively (Fig. 4A-B). From sequencing, a 

total of 86 unique genotypes were obtained from the 142 colonies sampled (86/142 = 

60.56% coverage), of which 75 were not present in the first round, while the number of 

duplicates was 43 (10_2_TEST_Library_characterization, Paragraph: 5.2). Out of the 86 

unique genotypes, the distribution of the 5 different G8Hs and 7 different CPRs were 18.6-

20.9% and 13.1-15.5%, respectively, while for the 2 promoters each driving expression of 

genes encoding G8Hs or CPRs the distributions were 55.0-45.0% and 58.1-41.9%, 

respectively (Fig. 4A, 10_2_TEST_Library_characterization, Paragraph: 4). From the first 

cycle, the 159 unique strains were generated in 80 transformations, providing 99% more 

strains compared to what could maximally be obtained from single-design transformations. 

The second cycle generated 86 unique strains in the 35 transformations and generated 

145% more strains than single-design transformations. Combined with the 159 unique 

strains generated in the first cycle, there were 234 (159+75) unique genotypes created from 

a total of 115 transformations, with only 62 identical genotypes harvested in both cycles, 

highlighting once again stochastic sampling from pooled transformations as an efficient 

approach for searching amble genotypic spaces. 

Again, and concomitant to sequencing, the strictosidine titers were measured for all 

142 strains as well as replicates of reference strain and positive controls (with known 

production) and negative controls (no G8H and CPR expression cassette inserts, 168 in 

total). From the 142 forward engineered strains, 28 strains produced more strictosidine than 

the reference MIA-CH-A2 strain (28.11 µM), which is a 5-fold improvement in performance 

compared to the first DBTL round ((28/142)/(9/238) = 5.21), and the highest producing 

design being  pENO2:SmusG8H and pTPI1:RseCPR with 69% higher production(47.69 µM) 

compared to the reference strain (Fig. 4B; Suppl. Table 3, 

(10_2_TEST_Library_characterization, Paragraph: 1.3)). 13 strains  were only partially 
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genotyped and were therefore discarded. Combining strictosidine measurements with 

genotyping resulted in 129 accepted strains, of which 86 were unique (86/129 = 66.67% of 

the theoretical sequence space)(Fig. 4B, Accepted strains in second iteration, 

10_2_TEST_Library_characterization).   

As conducted for the first DBTL cycle, we used AutoML to investigate and rank the 

performance of 774 models. As AutoML trains models until they reach convergence, the 

number of models is only limited by the time which is set dynamically by H2O to 1 hour if the 

number of models is set to “None” (H2O documentation)[35]. Through a 1-hour run of 

AutoML in H2O, a XGBoost model was found to be the best-suited model for predicting 

relative production from genotypes. Similar to the first DBTL cycle, the best model was found 

by sorting on MAE on cross-validation data with the best-performing model yielding an MAE 

= 11.93 and an RMSE = 23.34 based on 10-fold cross-validation predictions 

(11_2_LEARN_Modelling_and_predictions, Paragraph: 4). These MAE and RMSE values 

represent ~ 7 and 14% of the full range of measurements (0.0-170.0), respectively. 

Additionally, the best model had an overall correlation coefficient of R2 = 0.85 when ranking 

observed production titers with cross-validated predicted titers of the 296 strains (Fig. 4C). 

Furthermore, and as exemplified in the first DBTL cycle (Fig. 3C-D), the LEARN step 

focused on parts distribution and correlation coefficient between the ranking of observed vs. 

cross-validated predicted strictosidine titers to inform about the possible impact of using the 

models generated from data in the first DBTL cycle for a second DBTL cycle. Here, when 

asking the best-performing XGBoost model trained on the data generated in the second 

DBTL cycle to recommend parts to be used for forward-engineering of new strains with 

high(er) even strictosidine titers in a potential third DBTL cycle, we found that the Top-25 

predictions overlapped by 70.0% with those already exploited for the second DBTL cycle 

(Suppl. Fig. S2, (11_2_LEARN_Modelling_and_predictions, Paragraph: 5.3.1)). 

Furthermore, while the hit-rate of high-producers compared to the reference strain obtained 

in the second DBTL cycle increased compared to the results from the first DBTL cycle (9/238 

= 3.8% vs 28/142=19.7%), and a modest increase in correlation coefficient between the 

ranking of observed strictosidine and predicted production could be obtained (R2 = 0.77 vs. 

R2 = 0.85)(Fig. 3D and Fig. 4C), although the algorithm was not able to precisely rank the 

genotypes according to production (Suppl. Fig. S3).  

 

Stop-go evaluation for design-build-test-learn cycle III 

To further evaluate whether to continue into a third DBTL cycle in search for high(est) 

producing strain designs, we used several assessment criteria. First, we evaluated the 

coverage of the explored design space across the two engineering cycles, totalling 234 

different designs out of 1,280 possible combinations (18.3%). Second, we used learning 
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curves as a quantitative parameter to guide the stop-go evaluation 

(07_1_LEARN_Modelling_and_predictions, Paragraph: 8); 

11_2_LEARN_Modelling_and_predictions, Paragraph: 6)). Learning curves, created based 

on the MAE compared to the number of data points used for training, can give an indication 

of how adding more data could affect the predictive power of the models used between 

iterative DBTL cycles.  

We can use data partitioning to evaluate how well a model performs and behaves 

with different subsets of the data [36]. To do this, we shuffled the data, divided it into parts, 

and trained a model on each part of the dataset. We repeated this process 10 times 

(07_1_LEARN_Modelling_and_predictions, Paragraph: 8); 

11_2_LEARN_Modelling_and_predictions, Paragraph: 6). When comparing the learning 

curves obtained from data generated in the first DBTL cycle vs. the second DBTL cycle, it 

can be observed that the MAE of the cross-validation decrease through the data points but 

with a reducing slope as data used for training increases (slope -0.009x from datapoint 56 - 

167 for the first DBTL cycle and slope -0.016x from datapoint 60 - 296 for the second DBTL 

cycle)(Fig. 5A-B). For DBTL cycle I, the lowest MAE from the training data obtained was 

0.08 and with a decreasing trend even when the models were trained on 167 data points 

(07_1_LEARN_Modelling_and_predictions). For the learning curve obtained from the cross-

validated models trained on data from DBTL cycle II, the training MAE, on the other hand, 

reached a plateau at 120 data points with a minimum MAE of 2.56 (Fig. 5B), indicating that 

the model does not improve much with more data, even though the correlation coefficient 

(Fig. 4C), and thereby predictive power, increases in DBTL cycle II (Fig. 5B, 

11_2_LEARN_Modelling_and_predictions).  

Lastly, and in addition to the 70% overlap between the Top-25 predictions offered by 

the best-performing XGBoost model and the designs already exploited for the second DBTL 

cycle (Suppl. Fig. S2), we also compared the distribution of best-performing observed 

strictosidine producers arising from the first and second DBTL cycle. Here we observed that 

even though the best-performing strain design compared to the reference strain was 

identified in the second DBTL cycle, the increase in production compared to the best-

performing strain observed from the first DBTL cycle was merely 10% (159 vs 144)(Fig. 5C).   

Taken together, evaluating design space coverage, learning curves and observed 

production from top-ranking designs between individual DBTL cycles, can help guide 

decisions as to whether to stop further exploration of the remaining design space or to 

continue forward engineering in search of the global maximum. In this case, the relative high 

design space coverage (18.3%), the stagnating learning curve and the higher MAE in the 

second DBTL cycle, and the overlap between already-explored designs and the forward 
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engineering predictions offered by XGBoost for a third DBTL cycle, supported a “stop” 

decision on further exploration of this design space.   

 

 General design highlights 

With the finalization of the two iterative DBTL cycles for the multivariate optimization 

of the C8-hydroxylation of geraniol to 8-hydroxy-geraniol, several design take-homes can be 

extrapolated. Firstly, we found that the strictosidine production increased by up to 59% 

comparing the reference strain (MIA-CH-A2) with the best-producer encoding 

pENO2:SmusG8H and pTPI1:AanCPR (28.115095 µM vs. 44.719792 µM, respectively) 

(Fig. 5C). Next, from the top-ranking strictosidine producers, our results indicates a high 

level of CPR promiscuity for the two top-ranking G8H candidates from Swertia mussatii 

(Smu) and Rauvolfia serpentina (Rse), as evidenced by 5 different CPRs included in the 

Top-6 ranking strain designs (Fig. 5C). Notably, the identification of several CPRs improving 

8-hydroxygeraniol synthesis corroborates previous findings [23]. Furthermore, even though 

the G8H from Catharanthus roseus (Cro) has been critically acclaimed to enable high 

production of 8-hydroxy-geraniol and down-stream plant bioactives [22,23,25], this study 

highlights SmuG8H and RseG8H as promising geraniol hydroxylating enzymes in microbial 

cells (Fig. 5C). Lastly, and interestingly, the promoters driving the expression of genes 

encoding CPRs, promoters with high expression during the glucose-rich early- and mid-

exponential phases of cultivation, such as pTPI1 and pCCW12 are prominent design parts 

(Fig. 2B-C, Fig. 5C). For G8H expression control, top-ranking strain designs also included 

strong promoters, albeit promoters with expression lower than pTDH3, used in the reference 

design of strain MIA-CH-A2 (Fig. 5C), thus indicating that use of strong constitutive 

promoters may be dispensable for P450-mediated biocatalysis in yeast. 

Taken together, the multivariate design space explored and exploited in this teemi 

testbed has offered robust take-homes in terms of bioengineering designs benchmarking 

with, and extending beyond, previously reported G8H and CPR studies. 

 

Discussion 

The aim of this study was to showcase teemi for bioengineering demonstrated 

experimentally via a complex biological testbed founded on i) computer-aided design to 

standardize workflows and minimize errors during the build step, ii) stochastic sampling from 

pooled DNA parts libraries, iii) research data management according to FAIR principles, and 

iv) the use of 2,000+ ML models sourced from AutoML to stress-test predictive engineering 

compared to manual extrapolation of patterns.  
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The iterative bioengineering testbed supported by teemi, not only enabled a 

streamlined workflow for quantitative assessment of genotypes and phenotypes, but also 

supported objective decision-making. For instance, the best models showed good 

correlations for both first and second DBTL cycle (MAE = 2.7% and 8.7% of the 

measurement ranges, respectively (Table 3), with an increase in predictive power from the 

first DBTL to the second (R2 = 0.776 and 0.850, respectively)(Fig. 3D and Fig. 4C), 

ultimately increasing the forward-engineering hit rate (i.e. obtaining phenotypes that 

performed better than the reference strain within the sequence space) by more than 5 times 

(from 3.8% to 19.7%)(Suppl. Fig. S3). Also, we observed that as we generated more data, 

the cross-validated MAE decreased in both first and second DBTL cycle (slopes of -0.009x 

and -0.016x, respectively)(Fig. 5A-B). Having said this, for this particular testbed, we 

observed different trends in the two learning curves regarding the test MAE, where the 

models in the first DBTL cycle seem to overfit the data, and the models in the second DBTL 

cycle seem to converge, while from cross-validation we observed a higher MAE for the 

models in the second cycle compared to the first cycle (MAE = 8.04 and 11.93, 

respectively)(Table 3). The higher MAE for the second cycle is likely caused by higher 

variation in the data points between the different test runs, and call for higher quality 

analytical data. Furthermore, as almost 20% of the design space has been explored during 

the first two DBTL cycles, and with a mere 10% improvement in strictosidine production in 

top-ranking design found in the second DBTL cycle compared to the top-ranking hit from the 

first DBTL cycle, a natural next engineering step would be to focus attention to other limiting 

factors of the strictosidine pathway, such as rational engineering of the other hydroxylation 

steps [22], for instance using the design principles uncovered in the best–performing 

G8H:CPR step.  

As in any DBTL cycle, the goal has focused on maximizing the knowledge generated, 

and ultimately reducing time and resource allocation during iterative bioengineering cycles. 

With the step-by-step guidance illustrated by experimental data in this study, we expect that 

the use of FAIR-compliant teemi will enable i) that more experiments can be performed in 

shorter amount of time and with less errors, ii) better integration of IT tools with other 

resources (e.g. human-centered and/or robotic work-flows), and iii) effective inter- and intra-

laboratory knowledge transfer, and thus drastically increase reproducibility and 

standardization in biology. With respect to better integration of IT tools in bioengineering, it 

deserves to be mentioned that this study was co-led by MSc-level students to maximise 

compatibility with both the skills and the aspirations of early-stage bioengineers. Basic 

programming skills are advantageous in order to benefit from all the capabilities of teemi, but 

not needed to get started. Indeed, in teemi, abstractions are used to streamline workflows 

and manage complexity, and by providing these workflows as open-source for the 
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community, we can continuously improve the workflows and learn a lot more from each other 

and in less time.  

Materials and Methods 

Executing teemi 

teemi is distributed as free open-source software at pypi.org. To maximize the 

usefulness of teemi we have developed a set of Jupyter notebooks that can be executed 

locally or through Google Colaboratory without any prior installation of software. This, we 

believe will lower the time spent on installation and resolving dependencies which is useful 

for all users regardless of programming experience. The only requirement is a Google 

account to use Google Colaboratory and the notebooks can be found at 

https://github.com/hiyama341/teemi/tree/main/colab_notebooks. 

Modules of teemi 

teemi consists of four modules that aid in strain construction through the Design, 

Build, Test, and Learn phase of the DBTL cycle with an additional Laboratory information 

system module (LIMS)(Fig. 1). The first module is DESIGN, which includes functions for 

cloning procedures, and the generation of combinatorial libraries. The second module, 

BUILD, is focused on building strains with functions for simulating and calculating PCRs, 

transformation reactions and automatically generating robot executable instructions. The 

third module is the LIMS module that can import and export DNA sequences and keep track 

of samples through Benchlings API and a local CSV file database. The fourth module, the 

TEST module, has functions to pre-process data from sequencing results and infer the 

relationship between sequencing results and genetic parts based on pairwise alignment. The 

final module is aimed at the LEARN phase by incorporating easy-to-use ML functions with 

plotting functions.  

 As teemi is under MIT license anyone can edit, and use the code rendering it flexible 

and reusable. Additional modules can be added to the package by anyone willing to 

contribute or  modification of the code by the users  is allowed.  The guidelines for 

contributing can be found on teemi’s contributing site here. For a high-level overview of 

teemi, please visit teemi’s documentation page https://teemi.readthedocs.io/en/latest/. The 

site provides detailed descriptions of the modules, functions, and classes and how to install 

teemi locally.  
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teemi: Simulation of experimental workflow and data analysis 

To enable reproducible high-throughput strain construction, literate programming 

along with the modules of teemi was used to simulate all experimental workflows used in this 

study. The experimental workflows were divided into Jupyter notebooks encompassing 

different parts of the DBTL cycle as shown in Table 2. 

This framework enabled the generation of a large number of strains while keeping 

mistakes at a minimum by simulating experimental workflow and keeping track of samples. 

More specifically, It provided a tool to simulate the amplification of DNA in PCR reactions, 

retrieving locations of all relevant DNA fragments and primers while attaining an overview of 

the procedures. PCR and transformation mixes were calculated and simulated in silico. 

Additionally, it worked as a laboratory notebook containing all experimental setups, 

observations, and results. These notebooks also show how teemi and literate programming 

can incorporate advanced machine learning models through H2O’s AutoML package ( 

07_1_LEARN_Modelling_and_predictions, 11_2_LEARN_Modelling_and_predictions).  

Experimental strains used in this study 

The S. cerevisiae strains constructed in this study were derived from the MIA-CH-A2 

strain containing CroG8H, CroCPR, and 11 other genes under promoters pTDH3 and 

pTEF1, driving the biosynthesis pathway from geraniol to strictosidine[25]. The background 

strain used in this work was made by using literate programming along with teemi’s design 

and build modules to enable CRISPR-mediated knockout of CroG8H and CroCPR in the 

EasyClone site X-3 and XI-3 sites [31], respectively. These modules made it possible to 

extract the knockout sites and simulate the in vivo assembly while generating GenBank files 

of the newly generated strains (04_1_BUILD_Background_strain). The resulting background 

strain was named MIA-HA-1 (MIA-HA-1.gb).  

 

Microbial strain cultivations 

We used teemi and literate programming to document and calculate all steps of plate 

and liquid cultivations. The plate and liquid cultivations were performed as described in  [25] 

except that 0.2 mM geraniol and 1 mM tryptamine were added to YPD media and the 

cultures were grown at 300 rpm when testing for strictosidine production 

(03_1_BUILD_gRNA_plasmid, Paragraph: 1.5, 04_1_BUILD_Background_strain,, 

Paragraph: 6, 05_1_BUILD_Combinatorial_library, , Paragraph: 4). 
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Genetic parts selection 

To standardize the selection of genetic parts we developed an algorithm in a literate 

programming workflow that automates the selection process by searching and selecting 

homologs based on amino acid identity through NCBIs databases ( 

00_1_DESIGN_Homologs). Using Catharanthus roseus sequences (Q8VWZ7, Q05001) as 

queries, eight G8H and CPR genes were found on NCBI’s databases. To diversify the CPR 

genes we searched the PhytoMetaSyn database using Catharanthus roseus CPR mRNA 

(X69791.1) as a query. We selected two additional CPRs from the largest ORFs of the 

mRNA transcripts, which provided a broad range of amino acid identities for all the chosen 

CPRs (00_1_DESIGN_Homologs, Paragraph: 5.1.5). The sequences were codon-optimized 

for S.cerevisiae with DNA Chisel (00_1_DESIGN_Homologs, Paragraph: 5.3).  

A literate programming workflow was used to select promoters to drive the 

expression of the gene homologs (01_1_DESIGN_Promoters).  Promoters were chosen 

based on absolute mRNA abundance measured from S. cerevisiae CEN.PK 113-7D at 

cultivation time points 6, 12, and 24 hours (01_1_DESIGN_Promoters, Paragraph: 

2)[29].The promoters were defined as 1kb upstream of the target gene, with lengths varying 

from 984-1004 bp due to differences in in our in-house strains and the database strains. 

Four promoters were selected for each CYP and CPR module based on constitutive 

expression and expression patterns (high/low and increasing/decreasing). To prevent 

homologous recombination during transformation, all promoter sequences were aligned to 

ensure no homologous sequences, reducing the chance of genetic part looping out 

(01_1_DESIGN_Promoters, Paragraph: 8).To streamline the combinatorial library size and 

minimize the number of integrated fragments, gene homologs were assembled with tCYC 

and tADH terminators. 

Extracting genetic parts  

In this study, we ordered gene homologs as gBlocks and cloned them into plasmids 

along with tADH and tCYC terminators. To extract promoters from the genomic DNA of wild-

type S. cerevisiae CEN.PK2-1C, we generated specific primers. Additionally, we amplified 

the TRP1 cassette from plasmid pRS414-USER using primers overlapping with the tCYC1 

terminator and homologous to the fragment downstream of EasyClone site XI-2 [31]. 

Prior to conducting the PCR reactions and USER assemblies in the laboratory, we 

simulated them using the teemi’s module PCR.py. The specific PCR programs, 

polymerases, purifications methods, and amplification of USER and transformation parts can 

be found in  (03_1_BUILD_gRNA_plasmid, 04_1_BUILD_Background_strain, 

05_1_BUILD_Combinatorial_library). 
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Plasmid construction  

Construction of plasmids was simulated with teemi’s cloning.py module in a literate 

programming workflow and assembled in the lab with USER cloning [37], 

03_1_BUILD_gRNA_plasmid). More specifically, cloning.py module was used to simulate 

and construct the plasmid (Double_gRNA_vecor_p1_G09_(pESC-LEU-

gRNA_ATF1_CroCPR) that was used to perform CRISPR-mediated deletion of the G8H and 

CPR genes  (03_1_BUILD_gRNA_plasmid). The second plasmid used in this study,  pESC-

URA-gRNA_XI2-2, used for in vivo assembly into the EasyClone site XI-2 locus had been 

constructed previous to this work.  

Designing genetic parts for the combinatorial library  

We used two methods to design combinatorial libraries, the commercially available 

Teselagen Design module, and our own open-source DesignAssembly algorithm. The 

designs made with the DesignAssembly algorithm incorporate 40 bp overlapping overhangs 

by default with a distribution of 50/50% of the overhang to the forward and reverse primer. A 

pad (defined as a nucleotide sequence of 40 bp) was incorporated between the promoters 

with an ATF1 gRNA site to provide the deletion of the module at a later stage. The designs 

and instructions for the assembly can be found in the following notebook 

(02_1_DESIGN_Combinatorial_library).  

Another similar combinatorial library was created with Teselagen Design Module 

software where the parts were made with 30 bp overhangs. Annealing temperatures were 

re-calculated with tmcalculator.neb.com. The design of overhangs can be seen here 

(05_1_BUILD_Combinatorial_library). Both designs are presented in this work but it was 

decided only to go forward with the designs made with Tesselagen 

(05_1_BUILD_Combinatorial_library). 

Pooled construction of the combinatorial libraries 

The combinatorial library in this study was constructed using the CasEMBLR method 

and designed for the EasyClone site XI-2 [31]. To facilitate the construction process, we 

used literate programming and teemi’s modules to standardize and simplify the procedure 

(05_1_BUILD_Combinatorial_library,  09_2_BUILD_Combinatorial_library). We used the 

teemi’s lab module (PCR.py and transformation.py) to calculate PCR melting temperatures, 

simulate and verify gel bands, and track samples using a local CSV-based LIMS system 

(csv_database.py,). The plasmid pESC-URA-gRNA_XI2-2 was used for the in vivo assembly 

of the library into locus XI2-2. Flanking regions for repair were approximately 0.5 kb, and the 

homology regions between parts were 30 bp by default. A tryptophan selection marker was 
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used to select for positive transformants. (05_1_BUILD_Combinatorial_library,  

09_2_BUILD_Combinatorial_library). 

To create the library, we pooled genetic parts into one mixture, including promoters, 

UP, DW, and cTRP1 parts, and one gene pair, all with overlapping overhangs and in 

equimolar amounts(05_1_BUILD_Combinatorial_library, Paragraph: 2.2), 

09_2_BUILD_Combinatorial_library, Paragraph: 5.1-5.3). The pooled library was 

transformed with the genetic parts in a one-pot reaction to prevent unwanted homologous 

recombination between the genes (05_1_BUILD_Combinatorial_library, Paragraph: 4.1, 

09_2_BUILD_Combinatorial_library, Paragraph 6.1-6.3)). 

Yeast transformations were carried out using the LiAc/SS carrier DNA/PEG method 

[38] and performed with 1-2 ml of a background strain with an optical density of 1. Each 

transformation reaction contained 0.25 pmol of a CRISPR plasmid expressing the gRNA for 

XI-2 and 0.5 picomoles of each DNA fragment (05_1_BUILD_Combinatorial_library, 

Paragraph: 4, 09_2_BUILD_Combinatorial_library, Paragraph: 6.1). 

Control strains were transformed alongside the library strains. These strains were 

transformed with plasmids containing uracil or tryptophan to test transformation efficiency 

and water to test cell viability. The first set of transformations was split into three in the first 

round of the DBTL(05_1_BUILD_Combinatorial_library, Paragraph: 4.1, while the second 

set was split into two in the second cycle  (09_2_BUILD_Combinatorial_library, Paragraph: 

6.1). 

Sample preparation for LC-MS and data analysis 

Sample preparation and internal standards were prepared according to [25], with the 

exception that pre-cultures were transferred to media containing 0.2 mM geraniol + 1 mM 

tryptamine after two days as described in 05_1_BUILD_Combinatorial_library(Paragraph: 5) 

and 09_2_BUILD_Combinatorial_library(Paragraph: 8). The metabolites strictosidine, 

loganic acid, loganin, secologanin, and tryptamine were analyzed according to [25]. 

The full data analysis with respect to normalization, and calculations can be found in 

notebook 06_1_TEST_Library_characterisation and 10_2_TEST_Library_characterization 

where functions from teemi’s data_wrangling.py were used to process the data.  

Promoter genotyping 

Genomic DNA was extracted from overnight cultures with LiOAc/SDS method 

adapted for 96 well plates [39]. Each extract was used as a template for two PCR’s spanning 

the promoter gene pairs (05_1_BUILD_Combinatorial_library, Paragraph: 5, 

09_2_BUILD_Combinatorial_library, Paragraph: 7), providing approximately ~2700 bp and 
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~3200 bp (Lenghts_of_constructs).  The colony PCR products were validated with 1% 

agarose gels followed by sequencing. Positive colony PCRs were first sequenced by 

Eurofins, using a PlateSeq Kit for crude PCR products according to the manufacturer's 

instructions. Second re-sequencing was performed with previous transformants with 5 µl 

PCR products and 2 µl ExoSAP-IT enzymes (Thermo Fisher Scientific Inc.) heated to 37 °C 

for 15 minutes followed by 80 °C for another 15 minutes. 

The sequencing data consisted of a plate report describing each well's average 

quality and sequencing files (.ab1). Using teemi’s  data_wrangling.py we automated data 

processing by filtering out low-quality alignments (average quality < 50, length used > 25).  

Then, using functions from genotyping.py we inferred the promoter relationship to the 

samples. Wells with multiple inferred promoters were filtered out. The final result was CSV 

files with inferred promoters for each well. These results were merged with LC-MS data, 

resulting in a CSV file with genotypes and normalized strictosidine production for 129 strains. 

AutoML and learning curves 

In this study, we used the AutoML H2O python library version 3.38.0.4 to automate 

the machine learning process (AutoML H2O). The H2OAutoML class was initiated with an 

input dataframe (input_for_ml_dbtl1.csv,  input_for_ml_dbtl2.csv), response 

column(norm.strictosidine) and specified feature columns(promoter:gene combinations). The 

feature columns were made categorical, and 10-fold cross-validation was performed. The 

trained models were saved in a leaderboard, and the best model was selected to predict 

phenotypes of unseen genotypes in the remaining combinatorial library 

(07_1_LEARN_Modelling_and_predictions(Paragraph: 1-7), 

11_2_LEARN_Modelling_and_predictions(Paragraph: 1-5)). 

To generate a learning curve, the teemi module auto_ml.py was used on the 

datasets (input_for_ml_dbtl1.csv,  input_for_ml_dbtl2.csv). Here, the main function divides 

the dataset into partitions that progressively increase in size, and then trains models on each 

partition. The function outputs a dataframe containing the name of the top performing 

model(sorted in MAE), the mean-absolute error, and cross-validated values. This was done 

ten times for each dataset, including a shuffling step between each run 

(07_1_LEARN_Modelling_and_predictions(Paragraph: 8), 

11_2_LEARN_Modelling_and_predictions, Paragraph: 6).  

Model based recommendations of Combinatorial library 

The genetic parts for the second DBTL round were selected by iterating through all 

predictions of non-encountered combinations 
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(08_2_DESIGN_Model_recommended_combinatiorial_library(Paragraph: 1)). Each new 

genetic part was saved and once the total number of combinations reached the maximum 

capacity the iteration stopped. The encountered genetic parts were then used in the 

following DBTL cycle to investigate the best-performing parts of the combinatorial library 

(09_2_BUILD_Combinatorial_library). 

 

Dependencies 

Suppl. Table 1 provides a list of dependencies required to run teemi's modules. 

Specifically, it describes the minimum dependencies needed, while the optional test 

dependencies can be installed through the setup.py file. The installation of these can be 

done with the following command: pip install teemi[dev]. For executing the 

00_1_DESIGN_Homologs and 01_1_DESIGN_Promoters notebooks additional 

requirements need to be installed. These packages include InterMines Python API and 

Edinburgh Genome Foundry’s DnaChisel. However, through the Google colab notebooks, 

these dependencies are installed automatically.  

Data availability statement 

 The paper and its supplementary information files provide data that support the 

findings of this study. All data related to this study can be accessed and downloaded from 

GitHub, the designated data repository at https://github.com/hiyama341/G8H_CPR_library. 

The data include all source files and datasets analyzed throughout the study as well as 

training sets for the machine-learning models.  

 

Code availability 

The code utilized for data extraction, organization, filtering, and simulation, as well as 

the code utilized for algorithm training, can be found on GitHub 

https://github.com/hiyama341/teemi. The teemi platform was implemented through PyPi and 

is available at https://pypi.org/project/teemi/. 

 

Acknowledgments 

This work was supported by Novo Nordisk Foundation Center for Biosustainability 

grant number NNF20CC0035580 and by the European Union Horizon 2020 research and 

innovation program grant agreement number 814645 (MIAMi) to MKJ. NS. acknowledges 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/


 

21 

funding from the Novo Nordisk Foundation under the Fermentation Based Biomanufacturing 

program (grant no. NNF17SA0031362). 

 

Competing interests 

 M.K.J., L.G.H. J.D.K. and J.Z. are inventors on pending patent applications. M.K.J., 

L.G.H., J.D.K., and J.Z. have financial interest in Biomia Aps. J.D.K. also has a financial 

interest in Amyris, Lygos, Demetrix, Napigen, Apertor Pharmaceuticals, Maple Bio, Ansa 

Biotechnologies, Berkeley Yeast, and Zero Acre Farms. The remaining authors declare no 

competing interests. 

 

Figure legends 

 

Fig. 1. Conversion of natural language lab protocols for iterative design-build-test-

learn cycles to literate protocols using teemi. Natural language protocols (left - blue) 

comprehensible to humans are converted into computer code (right - yellow) that can be 

understood by both computers and humans. In teemi, each procedure in natural language 

protocols relates to names of python modules in literate protocols, thus lowering the 

programming entry level needed for adopting teemi.  

 

Fig. 2. Design and characteristics of the constituent DNA parts used as experimental 

testbed for teemi. (A) The ten-step biosynthetic pathway converting geraniol to 

strictosidine. The G8H step is highlighted in a dashed box [22]. (B-C) Rooted phylogenetic 

trees of G8H (D) and CPR (E) protein representatives. Uniprot identifiers are shown in 

parentheses for those available. Catharanthus roseus (Cro), Rauvolfia serpentina (Rse), 

Olea europaea (Oeu), Camptotheca acuminata (Cac), Vinca minor (Vmi), Cinchona calisaya 

(Cca), Ophi- arrhiza pumila (Opu), and Swertia mussatii (Smu), Artemisia annua (Aan), 

Arabidopsis thaliana (Ath), Catharanthus longifolius (Clo), Amsania hubrichtii (Ahu), and 

Aspergillus niger (Ani). (D-E) Temporal resolution of transcript abundances for candidate 

genes [29], for which promoters were chosen to control the expression of genes encoding 

G8H (D) and CPR (D) homologous. (F) Combinatorial assembly and genome integration 

strategy. 

 

Fig. 3. Design, characterization, and modeling of design-build-test-learn cycle I. (A) 

Outline of the stochastic sampling and test workflow for data generation. (B) The distribution 

and counts of parts from the 167 strains that were accepted as input for machine learning in 
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the first learning phase of the first DBTL cycle. (C) The distribution of observed strictosidine 

titers relative to reference strain MIA-CH-A2. Below the bar plot the distribution of parts for 

each of the 238 analyzed strains is presented. (D) Cross-validated predictions vs average 

normalized strictosidine production. All values are ranked.  

 

Figure 4. Design, characterization, and modeling of design-build-test-learn cycle II. (A) 

The distribution and counts of parts from the strains that were accepted as input for machine 

learning in the second learning phase of the second cycle of DBTL. (B) The distribution of 

observed strictosidine titers relative to reference strain MIA-CH-A2. Below the bar plot the 

distribution of parts for each of the 240 analysed strains is presented. (C) Cross-validated 

predictions vs average normalized strictosidine production. All values are ranked.    

 

Figure 5. Learning curves and top-ranking strains designs from the iterative 

engineering cycles. Learning curves from the first (A) and second (B) DBTL cycles, 

illustrating mean absolute error (MAE) of the best-performing deep learning and XGBoost 

models used cycle I and II, respectively, in relation to the number of data points (blue line) 

and the cross-validation holdout prediction MAE together with the standard deviations of the 

10 models created (yellow line). The points are based on 10 models created with a 

randomized shuffled data in partitions of 33, 67, 100% and 20, 40, 60, 80 and 100% of the 

data available for dbtl1 and dbtl2 respectively to get the same size of partitions. (C) Average 

strictosidine production for Top-20 strains from first and second DBTL cycles. Genotypes are 

shown (left) with their respective color codes (middle) and average strictosidine production 

(right). For the strictosidine production, the light and dark blue colors correspond to strain 

designs that were first found in the first and second second DBTL cycle, respectively. 

 

Tables 

 

 

Table 1. Comparison of IT tools and their functionalities for full-stack DBTL cycle.  

 JBEI 
/Cas 
design
er 

Pydna Aquari
um 

Galaxy 
project 

Poly Lila 
(Amyri
s) 

Inscripta Teselage
n 

Bench
ling 

Riffyn.
Nexus 

strateos 
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Open- 
source 

+ + + + + - - - - - - 

DESIGN:  
Parts 
selection 

+ - - - - (+) (+) - - (+) (+) 

DESIGN:  
Combinatori
al library 
generation 

- - - - - (+) (+) + - (+) (+) 

DESIGN:  
Combinatori
al library 
generation 

- - - - - (+) (+) + - (+) (+) 

DESIGN: 
Cloning 
workflows 

+ + + 
 

- + (+) (+) - + (+) (+) 

BUILD: 
Transformati
on workflows 

- - + - + (+) (+) - - (+) (+) 

BUILD: 
Automation 
with robotics 

- + - - - (+) (+) + + (+) (+) 

TEST: Data 
processing 
of analytics 

- - + + - (+) (+) + - (+) (+) 

LEARN: 
Machine-
Learning 

- - - + - (+) (+) + - (+) (+) 

LIMS 
system 

- -  - - (+) (+) + + (+) (+) 

Python 
level 

Limite
d 

Mediu
m 

None None Go-
pac
kag
e 

None None None None None None 

            

*() denoting if a statement is undisclosed.  

 

Table 2. Overview of the notebooks created for this work.  

DBTL 

Round 

 Name and link Description 

1 DESIGN 00_1_DESIGN_Homologs  Describes how we automatically can select homologs 

from NCBI from a query in a standardizable and 

repeatable way. 
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  01_1_DESIGN_Promoters 

 

Describes how promoters can be selected from 

RNAseq data and fetched from an online database with 

various quality measurements implemented. 

 

  02_1_DESIGN_Combinatorial_librar

y 

Describes how a combinatorial library can be generated 

with the DesignAssembly class along with robot 

executable instructions. 

 

 BUILD 03_1_BUILD_gRNA_plasmid 

 

Describes the assembly of a CRISPR plasmid with 

USER cloning. 

  04_1_BUILD_Background_strain Describes the construction of the background strain by 

K/O of G8H and CPR in the X-3 and XI-3 sites 

respectively.  

  05_1_BUILD_Combinatorial_library Building a combinatorial library of 1280 combinations 

with designs generated by Tesselagen software. 

 TEST  06_1_TEST_Library_characterisatio

n 

 

Describes data processing of LC-MS data and 

genotyping of the generated strains. 

 LEARN 07_1_LEARN_Modelling_and_predic

tions 

Describes the use AutoML to predict the best 

combinations for a targeted second round of library 

construction.  

2 DESIGN 08_2_DESIGN_Model_recommende

d_combinatiorial_library 

This notebook utilizes the machine learning predictions 

made in the previous notebook to create a targeted 

combinatorial library with best predicted genetic parts. 

 

 

BUILD 09_2_BUILD_Combinatorial_library Shows how results from the ML can be translated into 

making a second focused library of strains. 

 TEST 10_2_TEST_Library_characterizatio

n 

 

 

Describes the data processing of LC-MS data like in 

notebook 8 but with the second focused library.  

 

 

 LEARN 11_2_LEARN_Modelling_and_predic

tions 

 

Second cycle of ML showing how the model increased 

performance and saturation of best-performing strains. 
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Table 3. Machine-learning model characteristics 

 First model Second Model 

Model Deep Learning XGBoost 

MAE* 2.728627138605333 8.669277115850836 

RMSE* 6.088407587552942 19.04539155210566 

Cross-validation MAE**  8.037346736078618 11.928834673923415 

Cross-validation RMSE** 18.104192131285426 23.340093018693615 

R2  of observed vs. cross-
validation-predicted 

0.776 0.850 

*Reported on train data 

**Reported on cross-validation data 

 

 
References 

1.  Meng F, Ellis T. The second decade of synthetic biology: 2010-2020. Nat Commun. 
2020;11: 5174. 

2.  Shankar S, Hoyt MA. Expression constructs and methods of genetically engineering 
methylotrophic yeast. US Patent. 20170349906:A1, 2017. Available: 
https://patentimages.storage.googleapis.com/50/a8/bb/e4a1541ba12ec0/US201703499
06A1.pdf 

3.  Mcnamara J, Harvey JD, Graham MJ, Scherger C. Optically transparent polyimides. 
World Patent. 2019 [cited 26 May 2023]. Available: 
https://patents.google.com/patent/WO2019156717A2/en 

4.  Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al. T cells with chimeric 
antigen receptors have potent antitumor effects and can establish memory in patients 
with advanced leukemia. Sci Transl Med. 2011;3: 95ra73. 

5.  Voigt CA. Synthetic biology 2020-2030: six commercially-available products that are 
changing our world. Nat Commun. 2020;11: 6379. 

6.  Nielsen J, Keasling JD. Engineering Cellular Metabolism. Cell. 2016;164: 1185–1197. 

7.  Opgenorth P, Costello Z, Okada T, Goyal G, Chen Y, Gin J, et al. Lessons from Two 
Design-Build-Test-Learn Cycles of Dodecanol Production in Escherichia coli Aided by 
Machine Learning. ACS Synth Biol. 2019;8: 1337–1351. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/


 

26 

8.  Juergens H, Niemeijer M, Jennings-Antipov LD, Mans R, Morel J, van Maris AJA, et al. 
Evaluation of a novel cloud-based software platform for structured experiment design 
and linked data analytics. Sci Data. 2018;5: 180195. 

9.  Fero MJ, Craft JK, Vu T, Hillson NJ. Combinatorial-Hierarchical DNA Library Design 
Using the TeselaGen DESIGN Module with j5. Methods Mol Biol. 2020;2205: 19–47. 

10.  Craig T, Holland R, D’Amore R, Johnson JR, McCue HV, West A, et al. Leaf LIMS: A 
Flexible Laboratory Information Management System with a Synthetic Biology Focus. 
ACS Synth Biol. 2017;6: 2273–2280. 

11.  Vrana J, de Lange O, Yang Y, Newman G, Saleem A, Miller A, et al. Aquarium: open-
source laboratory software for design, execution and data management. Synth Biol. 
2021;6: ysab006. 

12.  Fernández-Castané A, Fehér T, Carbonell P, Pauthenier C, Faulon J-L. Computer-aided 
design for metabolic engineering. J Biotechnol. 2014. doi:10.1016/j.jbiotec.2014.03.029 

13.  Batut B, Hiltemann S, Bagnacani A, Baker D, Bhardwaj V, Blank C, et al. Community-
Driven Data Analysis Training for Biology. Cell Syst. 2018;6: 752–758.e1. 

14.  Hiltemann S, Rasche H, Gladman S, Hotz H-R, Larivière D, Blankenberg D, et al. 
Galaxy Training: A powerful framework for teaching! PLoS Comput Biol. 2023;19: 
e1010752. 

15.  Jessop-Fabre MM, Sonnenschein N. Improving Reproducibility in Synthetic Biology. 
Front Bioeng Biotechnol. 2019;7: 18. 

16.  Carbonell P, Radivojevic T, García Martín H. Opportunities at the Intersection of 
Synthetic Biology, Machine Learning, and Automation. ACS Synth Biol. 2019;8: 1474–
1477. 

17.  Knuth DE. Literate Programming. Comput J. 1984;27: 97–111. 

18.  Abelson H, Sussman GJ, Sussman J. Structure and Interpretation of Computer 
Programs - 2nd Edition (MIT Electrical Engineering and Computer Science). second 
edition. The MIT Press; 1996. 

19.  Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, et al. The 
FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 
2016;3: 160018. 

20.  Meunier B, de Visser SP, Shaik S. Mechanism of oxidation reactions catalyzed by 
cytochrome p450 enzymes. Chem Rev. 2004;104: 3947–3980. 

21.  Billingsley JM, Anguiano JL, Tang Y. Production of semi-biosynthetic nepetalactone in 
yeast. J Ind Microbiol Biotechnol. 2019;46: 1365–1370. 

22.  Brown S, Clastre M, Courdavault V, O’Connor SE. De novo production of the plant-
derived alkaloid strictosidine in yeast. Proc Natl Acad Sci U S A. 2015;112: 3205–3210. 

23.  Davies ME, Tsyplenkov D, Martin VJJ. Engineering Yeast for De Novo Synthesis of the 
Insect Repellent Nepetalactone. ACS Synth Biol. 2021;10: 2896–2903. 

24.  Li S, Li Y, Smolke CD. Strategies for microbial synthesis of high-value phytochemicals. 
Nat Chem. 2018;10: 395–404. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/


 

27 

25.  Zhang J, Hansen LG, Gudich O, Viehrig K, Lassen LMM, Schrübbers L, et al. A 
microbial supply chain for production of the anti-cancer drug vinblastine. Nature. 
2022;609: 341–347. 

26.  Bathe U, Tissier A. Cytochrome P450 enzymes: A driving force of plant diterpene 
diversity. Phytochemistry. 2019;161: 149–162. 

27.  Srinivasan P, Smolke CD. Biosynthesis of medicinal tropane alkaloids in yeast. Nature. 
2020;585: 614–619. 

28.  Xiao M, Zhang Y, Chen X, Lee E-J, Barber CJS, Chakrabarty R, et al. Transcriptome 
analysis based on next-generation sequencing of non-model plants producing 
specialized metabolites of biotechnological interest. J Biotechnol. 2013;166: 122–134. 

29.  Rajkumar AS, Özdemir E, Lis AV, Schneider K, Qin J, Jensen MK, et al. Engineered 
Reversal of Function in Glycolytic Yeast Promoters. ACS Synth Biol. 2019;8: 1462–
1468. 

30.  Jakočiūnas T, Rajkumar AS, Zhang J, Arsovska D, Rodriguez A, Jendresen CB, et al. 
CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA 
Parts in Saccharomyces cerevisiae. ACS Synth Biol. 2015. Available: 
https://www.ncbi.nlm.nih.gov/pubmed/25781611 

31.  Jensen NB, Strucko T, Kildegaard KR, David F, Maury J, Mortensen UH, et al. 
EasyClone: Method for iterative chromosomal integration of multiple genes in 
Saccharomyces cerevisiae. FEMS Yeast Res. 2014;14: 238–248. 

32.  Fox R. Forward Engineering in Biological Systems. 2020 Aug. Available: 
https://www2.inscripta.com/Forward-Engineering_webinar.html 

33.  Mey F, Clauwaert J, Van Huffel K, Waegeman W, De Mey M. Improving the 
performance of machine learning models for biotechnology: The quest for deus ex 
machina. Biotechnol Adv. 2021;53: 107858. 

34.  Zhang J, Petersen SD, Radivojevic T, Ramirez A, Pérez-Manríquez A, Abeliuk E, et al. 
Combining mechanistic and machine learning models for predictive engineering and 
optimization of tryptophan metabolism. Nat Commun. 2020;11: 4880. 

35.  Ledell E, Poirier S. H2O AutoML: Scalable Automatic Machine Learning. [cited 3 May 
2023]. Available: https://www.automl.org/wp-
content/uploads/2020/07/AutoML_2020_paper_61.pdf 

36.  Partin A, Brettin T, Evrard YA, Zhu Y, Yoo H, Xia F, et al. Learning curves for drug 
response prediction in cancer cell lines. BMC Bioinformatics. 2021;22: 252. 

37.  Nour-Eldin HH, Hansen BG, Nørholm MHH, Jensen JK, Halkier BA. Advancing uracil-
excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic 
Acids Res. 2006;34: e122. 

38.  Gietz RD, Schiestl RH. Quick and easy yeast transformation using the LiAc/SS carrier 
DNA/PEG method. Nat Protoc. 2007;2: 35–37. 

39.  Lõoke M, Kristjuhan K, Kristjuhan A. Extraction of genomic DNA from yeasts for PCR-
based applications. Biotechniques. 2011;50: 325–328. 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/


Natural language 

protocols

Literate

protocols

learn design

test build

open source life science

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/


A B

C

T_ADH1

T_CYC1

 pCYC1 
 pENO2 
 pPCK1 
 pRPL15B

 pMLS1 
 pTPI1 
 pURE2 
 pCCW12

 CroG8H 
 CcaG8H 
 OpuG8H 
 CacG8H 
 RseG8H 
 SmuG8H 
 VmiG8H 
 OeuG8H 

 AhuCPR 
 AanCPR 
 CloCPR 
 CacCPR 
 AniCPR 
 CpoCPR 
 OeuCPR 
 RseCPR 
 AthATR1 
 CroCPR

up G8H homologs CPR homologs dw

7DLGT

STR

8HGO

ISYIO
CPR
CYB5

CYPADH

SLS
CPR
CYB5

LAMT

7DLH
CPR
CYB5

TDC

IDI1

8-oxogeranialnepetalactol7-deoxyloganetic
alcohol 

DMAPP

Native 
mevalonate 

pathway

IPP
GES

FPSN144W

GPPS2

ERG20 

GPP

F96W;F127W G8H

CPR
CYB5geraniol

8-hydroxygeraniol

7-deoxyloganetic
acid 

7-deoxyloganic
acid 

loganic acid

loganin secologanin

Native 
shikimate 
pathway

tryptophantryptamine

strictosidine

D E F

1

5 10 15 2520 5 10 15 2520
Time (h) Time (h)

pCCW12
pURE2
pMLS1
pTPI1
pTEF1

pCYC1
pRPL15B
pPCK1
pENO2
pTDH3

0

2

3

4

5

6

1

0

2

3

4

5

6

m
R

N
A 

ex
pr

es
si

on
 x

 1
03 

(a
.u

.)

m
R

N
A 

ex
pr

es
si

on
 x

 1
03 

(a
.u

.)

 CloCPR (KAI5675352)

 CroCPR (Q05001)

 RseCPR

 AhuCPR

 OeuCPR (XP_022867604)

 CacCPR (AJW67229)

 AanCPR (ABC47946)

 AthCPR (NP_194183)

 CpoCPR (QEG78946)

 AniCPR (Q00141)

 OpuG8H (BAP90522.1)

 CcaG8H (AGX93051.1)

 RseG8H (AGX93053.1)

 CroG8H (Q8VWZ7.1)

 VmiG8H (AGX93055.1)

 OeuG8H (XP_022858342.1)

 SmuG8H (D1MI46.1)

 CacG8H (AES93118.1)

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/


A B

C D

0 50 100 150 200
Individual strains

0

50

100

150

200

250

R
el

at
iv

e 
st

ric
to

si
di

ne
 a

cc
um

ul
at

io
n

Reference (MIA-CH-A2)
Relative strictosidine

300

G
8H

pG
8H

pC
P

R

C
P

R

Parts

0

20

40

60

80

100

Pa
rt

s 
di

st
rib

ut
io

n 
(%

)

Vmin
13.77 %

Smus
13.77 %

Rsep
12.57 %

Oeu
12.57 %

Ccal
12.57 %

Cro
11.98 %

Cacu
11.38 %

Opum
11.38 %

pRPL15B
33.53 %

pPCK1
23.95 %

pCYC1
22.75 %

pENO2
19.76 %

pURE2
29.94 %

pCCW12
25.75 %

pMLS1
22.16 %

pTPI1
22.16 %

Aan
11.98 %

Cac
11.98 %

Ara
11.38 %

Rse
10.78 %

Ahu
10.78 %

Cro
9.58 %

Oeu
9.58 %

Clo
9.58 %

Cpo
7.78 %

Ani
6.59 %

Norm. ranked strictosidine measurements (%)

CacG8H
OpuG8H
CroG8H
VmiG8H
SmuG8H
RseG8H
OeuG8H
CcaG8H
pCYC1
pENO2
pPCK1
pRPL15B
pCCW12
pTPI1
pMLS1
pURE2
CroCPR
AanCPR
AraCPR
CloCPR
RseCPR
AhuCPR
AniCPR
CacCPR
OeuCPR
CpoCPR
Not_fully_genotyped

R-squared = 0.776 
  P-value = 6.416E-35

0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

R
an

ke
d 

st
ric

to
si

di
ne

 p
re

di
ct

io
ns

 (%
)

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/


A B C
G

8H

pG
8H

pC
PR

C
PR

Parts

0

20

40

60

80

100

Pa
rt

s 
di

st
rib

ut
io

n 
(%

)

Vmin 
20.93 %

Oeu 
20.93 %

Rsep 
20.16 %

Cro 
19.38 %

Smus 
18.6 %

pCYC1 
55.04 %

pENO2 
44.96 %

pTPI1 
58.14 %

pCCW12 
41.86 %

Aan 
15.5 %

Ani 
15.5 %

Rse 
14.73 %

Cro 
13.95 %

Ahu 
13.95 %

Clo 
13.18 %

Ara 
13.18 %

0

40

80

120

160

0 50 100 150

Individual strains

R
el

at
iv

e 
st

ric
to

si
di

ne
 a

cc
um

ul
at

io
n

Reference (MIA-CH-A2)
Relative strictosidine

CroG8H
VmiG8H
SmuG8H
RseG8H
OeuG8H
pCYC1
pENO2
pCCW12
pTPI1
CroCPR
AanCPR
AraCPR
CloCPR
RseCPR
AhuCPR
AniCPR
Not_fully_
genotyped

R-squared = 0.850 
  P-value = 6.710E-84

Norm. ranked strictosidine measurements (%)

0.4 0.6 0.8 1.00.2

0.0

0.2

0.4

0.6

0.8

1.0

R
an

ke
d 

st
ric

to
si

di
ne

 p
re

di
ct

io
ns

 (%
)

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/


A B

Length of the partitioned data

M
A

E

DBTL 1

60 80 100 120 140 160

Length of the partitioned data

50 100 150 200 250 300
0

5

10

15

20

25

M
A

E

0

5

10

15

20

25

Cross-validation mean MAE
Cross-validation standard deviation
Deep-learning model performance MAE
Deep-learning model standard deviation

Cross-validation mean MAE
Cross-validation standard deviation
XGBoost model performance MAE
XGBoost model standard deviation

DBTL 2

Norm. average strictosidine production

pENO2:SmuG8H-pTPI1:AanCPR
pCYC1:SmuG8H-pTPI1:CacCPR

pCYC1:SmuG8H-pCCW12:CloCPR
pENO2:RseG8H-pTPI1:CloCPR

pENO2:RseG8H-pTPI1:RseCPR
pENO2:VmiG8H-pTPI1:AraCPR

pENO2:CroG8H-pCCW12:RseCPR
pENO2:SmuG8H-pTPI1:AraCPR

pENO2:RseG8H-pCCW12:AanCPR
pENO2:OeuG8H-pTPI1:AanCPR

pENO2:SmuG8H-pCCW12:RseCPR
pCYC1:SmuG8H-pCCW12:AanCPR

pENO2:CroG8H-pTPI1:AanCPR
pENO2:CroG8H-pCCW12:AraCPR

pENO2:RseG8H-pTPI1:CroCPR
pENO2:RseG8H-pCCW12:CroCPR

pENO2:SmuG8H-pTPI1:CroCPR
pENO2:VmiG8H-pTPI1:RseCPR

pENO2:ReseG8H-pCCW12:CloCPR
pCYC1:SmuG8H-pTPI1:CloCPR

159.0
144.0
143.0
142.5
135.7
134.0
132.0
130.7
129.0
126.0
123.0
121.0
117.7
116.0
114.0
114.0
113.0
109.0
100.0
99.5

0 50 100 150

DBTL II
DBTL I

Genotypes

Top-20 strains from DBTL I & II 

C

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.06.18.545451doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

