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Abstract

Synthetic biology dictates the data-driven engineering of biocatalysis, cellular
functions, and organism behavior. Integral to synthetic biology is the aspiration to efficiently
find, access, interoperate, and reuse high-quality data on genotype-phenotype relationships
of native and engineered biosystems under FAIR principles, and from this facilitate forward-
engineering strategies. However, biology is complex at the regulatory level, and noisy at the
operational level, thus necessitating systematic and diligent data handling at all levels of the
design, build, and test phases in order to maximize learning in the iterative design-build-test-

learn engineering cycle. To enable user-friendly simulation, organization, and guidance for
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the engineering of complex biosystems, we have developed an open-source python-based
computer-aided design and analysis platform operating under a literate programming user-
interface hosted on Github. The platform is called teemi and is fully compliant with FAIR
principles. In this study we apply teemi for i) designing and simulating bioengineering, ii)
integrating and analyzing multivariate datasets, and iii) machine-learning for predictive
engineering of a metabolic pathway designs for production of a key precursor to medicinal

alkaloids. The teemi platform is publicly available at PyPi and GitHub.

Introduction

The rational engineering of biology for user-defined purposes, also known as
synthetic biology, has fostered a shift in the way we imagine, design and produce foods,
materials, and medicines [1]. Seminal examples of synthetic biology success stories adopted
by society during the last decade includes plant-based burgers with meat flavour derived
from soy leghemoglobin produced in engineered yeast [2], the hyaline family of clear, flexible
and robust polyimide films for flexible electronics made from bio-sourced monomers [3], and
chimeric antigen receptors (CARSs) fused to antibodies that when inserted in patients’ T cells
and introduced into the patient enable efficient killing of cancer cells [4]. Common to these
examples is the bioengineering of living cells to encapsulate and arm them with novel
functions to meet societal needs in agriculture, manufacturing industry, and health. Even
more so, many more solutions to mitigate climate changes, increase food supplies, and treat
patients with unmet needs are set to depart from engineered cells and synthetic biology in
the near future [5].

However, rapid progress in bioengineering is limited by the long, costly, and non-
standardised approaches used to engineer even the simplest model cells, such as
Escherichia coli and Saccharomyces cerevisiae [6]. Taken together with the molecular and
metabolic complexity of biological systems, and limited scalable design principles,
bioengineers often have to construct and study large libraries of variant cell designs to
identify genotypes with sought-for properties [7]. The targeted construction of strains is often
described as an iterative process of design, build, test, and learn (the DBTL cycle)[7]. To
support the various steps of the DBTL cycle a multitude of commercial software and cloud-
lab platforms are available, including Benchling, Riffyn, Inscripta, Teselagen and Emerald
Cloud Lab, with advanced laboratory information management system (LIMS), data analysis
capabilities, and integration of laboratory workflow execution via robotics [8,9]. In addition to
commercial platforms, open-source Python APIs for flexible workflow planning, execution

and data management central to the working practices of researchers are gaining a lot of
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momentum, especially covering the design and learn steps of the DBTL cycle [10-12], just
as the collection of FAIR (Findable, Accessible, Interoperable, Reusable) training materials
made available via community efforts such as the Galaxy Training Network [13], seek to
empower researchers with data analysis literacy and bridge the skills gap between design-
build-test and learn [14]. Still there is a common challenge to support researchers using
natural language laboratory protocols to integrate such tools and services into their daily
workflows. Solving this challenge should also enable i) that more tasks can be performed in
shorter time and with less errors, ii) better integration of IT tools with other resources, such
as robotics, and iii) better documentation, and thus more effective knowledge transfer among
research communities[15,16].

Literate programming is a paradigm that encourages the combination of text and
computer code in a systematic and coherent way [17]. Computer code is formal language for
describing how to do things [18]. The code can be understood by both humans and
computers if it is written sufficiently abstract. Literate programming protocols are thus written
for humans, but computer code is used whenever the tasks can be performed by a
computer. With literate programming, workflows and data can be described precisely
meeting the FAIR principles [19].

The purpose of the present work is to give a first estimate of the extent to which
bioengineers can accelerate the speed, efficiency, and fidelity of the individual steps in the
DBTL cycle by using literate programming. To do so, we have established an open-source
platform including all elements of the iterative DBTL cycle bioengineers are confronted with.
The platform is called teemi. To showcase teemi in its entirety and facility efficient adoption,
we present an experimental example using literate programming in teemi for all DBTL stages
of an iterative learning task targeting the optimization of a metabolic pathway for production

of a key precursor to medicinal alkaloids in yeast.

Results

Background and motivation for teemi

At the onset of this project, we first assessed a multitude of web tools and scripts
available for bioengineers to streamline their DBTL workflows (Table 1). While truly
enabling, and adopted widely [9,11], we could not identify open-source tools that can
integrate all steps of the DBTL cycle in a single workflow, without the need to acquire
programming skills, and shifting between platforms and programming languages.

In literate programming, besides the textual documentation, embedded code allows

abstracting away all computations in a reusable way. Lab notebook-style chronological


https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.18.545451; this version posted June 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

documents will contain information on when, how, and for what purpose, data was acquired
and used. Moreover, with literate programming, data is compliant with FAIR principles being
findable and accessible from a single context via links to digital repositories, interoperable
via a free to use, open source, and user-friendly workflow document, while both data
acquisition and processing are reproducible via text documentation and embedded
functions.

For this study, teemi is used in Jupyter Notebooks and consists of a set of Python
functions and classes facilitating simulation of experimental flow for in vivo design and
assembly of diverse genetic libraries, pooled library constructions, organization and
modeling of genotype and phenotype data, as well as implementing machine learning to
model the data and recommend new designs (Fig. 1). Through teemi simulations, the
preparation of laboratory work is standardized and thoroughly executed, aimed at reducing
time consumption, decreasing human error rates, and improving the reproducibility of
experimental results.

The literate programming notebooks used for the experimental testbed presented in
this study are hosted by Google Colab. All noteboooks are extensively referenced upon
implementation throughout this study as well as summarized in a comprehensive list (Table
2), allowing the reader to easily connect literate programming for iterative DBTL cycles with

the results presented.

The experimental bioengineering testbed

An often-encountered bottleneck in modern biotechnology is the bottleneck of
oxidation reactions catalyzed by cytochrome P450 enzymes [20,21]. These oxidation
reactions are catalyzed by cytochrome P450 (CYP) superfamily of hemoproteins, and
cytochrome P450 reductases (CPR)[22-24]. CYPs are often cytosol-facing, N-terminally
bound enzymes bound to the endoplasmic reticulum (ER)[20]. They catalyze hydroxylations
of small molecule substrates facilitated by the transfer of two electrons from NADPH to
NADP+ catalyzed by the ER-bound CPRs [23]. Plant-derived CYP/CPR reactions are
widespread in modern biotechnology for fermentation-based manufacturing of fine
chemistries, such as alkaloids and terpenes [25,26]. When heterologously expressed in
microbes, such as the biotechnology workhorse baker’'s yeast Saccharomyces cerevisiae,
poor CYP activity and shunt product formation limits efficient bioconversion of cheap
feedstocks to value-added advanced pharmaceutical ingredients sourced by fermentation
[21,25]. To mitigate this, CYP/CPR reactions often need extensive trial-error engineering to
optimize substrate conversion and balance co-factor availability in cell factories. This has
included i) regulating the expression of genes encoding both CPR and CYPs, ii) searching

for optimal CYP:CPR pairs, iii) bioprospecting for enzyme homologs, iv) perturbing gene
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copy numbers, or v) rational engineering of signal peptides to target membrane-anchoring of
enzymes to dedicated subcellular compartments [21,23]. While independently all of these
approaches have positively impacted oxidation reactions catalyzed by heterologous
expression of plant-derived CYPs and CPRs in yeast [21,23,25], multivariate exploration of
these complex reactions are needed. One recent study documenting the power of
combinatorial search strategies was performed by Davies et al., searching >100 CYP/CPR
co-expression designs, which when combined with best-performing promoter designs show-
cased improved C8-hydroxylation of geraniol to 8-hydroxy-geraniol catalyzed by the geraniol
hydroxylase G8H and its CPR partner [23].

In this study we present the power of teemi and literate programming to build
simulation-guided and iterative laboratory workflows for optimizing strictosidine production in
yeast (Fig. 2A). Motivated by the complexity of the oxidation reactions and documented
importance of exploring combinatorial design spaces [23], and the observation that feeding
8-hydroxy-geraniol improves strictosidine production compared to feeding geraniol [25], we
considered the C8-hydroxylation of geraniol to 8-hydroxy-geraniol as a valid testbed to

showcase the bandwidth and throughput enabled by literate programming using teemi.

teemi for design-build-test-learn cycle |

Using teemi we initially constructed a parental strain (MIA-CH-A2) harboring CroG8H
and CroCPR under the control of promoters pTDH3 and pTEF1, together with the 11 other
genes driving the biosynthesis pathway from geraniol to strictosidine [22,25](Fig. 2A).

The first DBTL iteration of the teemi-based DESIGN module included enzyme
homology searches, promoter choices, and primer designs. For prospecting different G8H
and CPR genes we developed an algorithm to standardize the screening of homologs
(00_1 DESIGN_Homologs, Paragraph: 1) using Catharanthus roseus G8H and CPR

sequences as queries [23,25]. In addition to the NCBI database search, CPR candidates
documented from literature [25,27], search results from the PhytoMetasyn database [28],
and a beetle G8H from Chrysamela populi (Cpo) were included to generate diversity (Fig.
2B-C).

Each gene was expressed under the control of four unique native promoters, yielding
a total library size of 1,280 (8x10x4x4). For the choice of promoters a second algorithm was
developed aimed at selecting relevant promoters from expression data generated during the
lag (10% glucose consumption, low ethanol production), mid-exponential (75% glucose
consumed, increasing ethanol production), and post-exponential phases (>99% glucose

consumed, start of ethanol consumption)[29](01_1 DESIGN_Promoters, Paragraph: 1)). All

promoter sequences were aligned to ensure that there were no homologous sequences in

order to minimize recombineering during transformation and library propagation
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(01_1 DESIGN_Promoters, Paragraph: 4). Lastly, primers for amplification of each of the

chosen library parts were designed (02_1 DESIGN_Combinatorial_library, Paragraph: 3).

To facilitate homologous recombinations by design, the parts used as flanking regions for
repair assembly into a pre-defined genomic landing pad were designed to be 0.5 kb and the
homology regions between library parts were 30 bp by default. For all design steps, the
notebooks along with teemi were used to simulate all relevant designs in a combinatorial
library, check primer matches with templates, calculate lengths of PCR products, and print
tables of PCR mixes in order to provide an overview of reagents and their location, calculate
melting temperatures for PCR programs and expected gel electrophoresis outputs, and
create expected sequences  from an alignment  of  parts integrated
(03 1 BUILD gRNA plasmid, 04 1 BUILD Background strain,
05_1 BUILD_ Combinatorial_library, 09 2_BUILD_Combinatorial_library). As such this

simulation also mimics an electronic laboratory notebook (ELN), thus facilitating
documentation of the experiments and allowing for easy sharing in order to prevent
knowledge loss. Most importantly, the 100% sequence verification of amplicons
(06_1 TEST_Library characterisation, Paragraph: 2.2,

10 2 TEST Library characterization, Paragraph: 2) based on teemi simulations of

expected gel electrophoresis outputs (Suppl. Fig. S1) is a validation of the simulation
workflow, and is expected to improve interoperability and reproducibility of laboratory
workflows, and help reduce human errors.

Next, for the BUILD module, we adopted CasEMBLR for CRISPR/Cas9-mediated
assembly harnessing seamless homologous recombination between seven parts in each
cluster [30], and into a stable genomic integration site [31](Fig. 3A). The seven parts encode
two different promoters each controlling the expression of a gene encoding a G8H or a CPR,
together with a selectable marker and two homology regions for the genomic landing pad
(Fig. 3A).

When generating diversity, it is essential to remember that the outcome vs effort is
restricted in the build and test part of the DBTL cycle due to physical capacities in strain
construction and testing. A potential way to accelerate the process is with stochastic variant
generation [32]. Hence, we used teemi to output parts lists for combinatorial assemblies,
each encoding a single G8H:CPR combination together with all 16 different promoter
combinations (4x4)(05_1_ BUILD_ Combinatorial_library)(Fig. 3A). The designs were
assembled as one-pot transformations together with the selectable marker and the two up-

and down-homology regions, making each transformation consist of 21 parts for a total of 16
genetic designs in each of 80 (8 x 10) transformations (05_1 BUILD Combinatorial library,
Paragraph: 4)(Fig. 3A).
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For the TEST module, we scored genotype and phenotype relationships of
stochastically sampled colonies based on DNA sequencing of promoter:gene combinations
and liquid-chromatography mass spectrometry to quantify strictosidine, respectively (Fig.
3A). Sequencing results matched with the simulation from the DESIGN step, were organized
into a CSV file containing rows with strains that had unambiguous genotypes along with

strictosidine production as part of the teemi workflow (06_1 TEST Library characterisation,

Paragraph: 3). The pooled library approach complemented stochastic sampling of three
colonies from each transformation to maximize diversity generation within the shortest
amount of time [32], from which 159 unique genotypes were extracted from the 238 sampled
colonies (12.4% coverage of the 1,280 design solution

space)(06_1 TEST Library characterisation, Paragraph: 4). Furthermore, out of the total

159 unique genotypes obtained, the distribution of the 8 different G8Hs and 10 different
CPRs were 11.4-13.8% and 7-12%, respectively, while for the 4 promoters driving
expression of genes encoding G8Hs and CPRs the distributions were 19.6-33.5% and 22.2-
30.0%, respectively (06_1 TEST Library characterisation, Paragraph: 4)(Fig. 3B), totaling

a deviation span of 1.4-8.5 percentile points from an even distribution. Taken together, these
results demonstrate efficient parts assembly and relatively large coverage of the theoretical
sequence space. With respect to strictosidine production, LC-MS measurements were
obtained concomitantly, and data was normalized by the mean of the production obtained for
the reference strain MIA-CH-A2 run in technical quadruplicates on three different replicate
plates (29.29 +- 484 uM; 3477 +- 485 pM; 3423 +- 7.60
UM)[25](06_1_TEST_Library characterisation, Paragraph: 2.1);
10_2 TEST Library characterization, Paragraph: 1.3). From the analysis, 9 of the 238

strains tested were observed to produce more than the reference strain (Fig. 3C, Suppl.
Table 2).

Lastly, in the interest to automate the modeling of genotype and phenotype data and
to recommend forward-engineering of lead strains beyond those already used for modeling,
we showcase integration of machine learning by teemi to LEARN genotype-phenotype
relationships as well as recommend new strain designs not seen in the training data set. As
no single machine learning algorithm is optimal for all learning tasks [33,34], 1,895 different
models sourced from H20 AutoML [35], including DRF, GLM, XGBoost, GBM,
DeepLearning, and StackedEnsemble, were made as a function of gene and promoter

combinations combined with normalized strictosidine measurements (input for ml.csv).

AutoML was used to investigate the performance of all models with different algorithms and
different hyperparameters instead of manually changing parameters of different models, or
even performing manual pattern investigation. The simultaneous investigation of all the

different models using this approach facilitated the training of different models on the single
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regression learning task of predicting the ability of the design combinations of G8H and CPR
expression cassettes to increase the strictosidine production, and indirectly its ability to
transform geraniol to 8-hydroxygeraniol. Through a 1-hour run of AutoML in H20, a deep
learning model was found to be the best-suited model for predicting relative production from
genotypes (Fig. 3D). The best model was found by sorting on MAE from cross-validation
data with the best-performing model yielding an MAE = 8.03 and an RMSE = 18.10 based
on 10-fold cross-validation predictions (07_1 LEARN_Modelling_and_predictions,
Paragraph: 2)(Table 3). These MAE and RMSE values represent ~ 3 and 7% of the full

range of measurements (0.0 - 245.0), respectively.

The strictosidine measurements were transformed into ranked values representing
245.03 = 1.00, 156.32 = 0.99, ..., and 0.00 = 0.18 of the full range of measurements,
respectively (Fig. 3D). Observed production values of 167 strains were compared to cross-
validation predictions, with the deep learning model yielding an overall R? = 0.77 (Fig. 3D).
However, the model tended to underpredict production, as evidenced by the majority of
predicted strictosidine levels lying below the observed production curve (Fig. 3D).

Beyond the motivation to model genotype-phenotype landscapes from genotypes
and strictosidine production profiles for the 167 strains used for model training, a further
motivation was to use the deep learning model to explore genotypes not seen in the training
data set. From the remaining 1,121 theoretical combinations, 42 genotypes were predicted
to produce more strictosidine than the reference strain (3.84% of the uncharted theoretical
design space). With a fully deployed DBTL workflow now available in teemi, we were thus

motivated to efficiently explore the combinatorial design space via a second DBTL cycle.

teemi for design-build-test-learn cycle Il
From the learnings of the first DBTL cycle, we used teemi to design the next DBTL
cycle using the parts found in experimentally-validated top-performers with previously non-

observed combinations from the machine learning-guided predictions of the first DBTL cycle

(08_2 DESIGN_Model_recommended_combinatiorial_library, Paragraph: 1). Balancing the
maximum remaining search space (1,121 designs), the predictive power of the deep learning
model trained on data from the first DBTL cycle (159 designs), we decided for a maximum
build capacity of 180 strain designs based on the parts found in predicted top-performers.
This resulted in a distribution of 5 G8Hs, 2 promoters for controlling expression of genes
encoding G8Hs, 2 promoters for controlling expression of genes encoding CPRs, and 7
CPRs (16 parts in total, creating a theoretical combinatorial space of 140 strains)(Fig.

4A)(08 2 DESIGN_Model_recommended_combinatiorial_library, Paragraph: 1). Based on

these parts, the combinatorial optimization approach was conducted as in the first DBTL
cycle (Fig. 3A).
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In the BUILD step, the combinatorial optimization resulted in 35 transformations of
pooled transformations, this time consisting of a background strain and 11 different parts,
namely 2 G8Hs (1 G8H x 2 overhangs), 2 promoters for expression of G8H-encoding genes,
2 promoters for expression of CPR-encoding genes, 2 CPRs (1 CPR x 2 overhangs), a
TRP1 expression cassette, and UP and DW homology regions. This created a sequence
space of 140 (35 x 4) unique 9 kb 7-parts assemblies at the target genomic locus. From the
transformations, 4 strains with known G8H and CPR were sampled randomly from each
plate to get 140 strains, a number that matches the sequence space (2 extra were sampled
from one strain, therefore 142 in total). Additionally, 2 blanks, 2 negative controls and 22
positive controls were sampled totaling 168 strains (09_2_ BUILD Combinatorial_library,
Paragraph: 8)(Fig. 4).

For the TEST step, genotypes and strictosidine production levels were again

assessed by DNA sequencing and LC-MS, respectively (Fig. 4A-B). From sequencing, a
total of 86 unique genotypes were obtained from the 142 colonies sampled (86/142 =
60.56% coverage), of which 75 were not present in the first round, while the number of
duplicates was 43 (10_2 TEST Library characterization, Paragraph: 5.2). Out of the 86

unique genotypes, the distribution of the 5 different G8Hs and 7 different CPRs were 18.6-
20.9% and 13.1-15.5%, respectively, while for the 2 promoters each driving expression of
genes encoding G8Hs or CPRs the distributions were 55.0-45.0% and 58.1-41.9%,
respectively (Fig. 4A, 10 2 TEST Library characterization, Paragraph: 4). From the first

cycle, the 159 unique strains were generated in 80 transformations, providing 99% more
strains compared to what could maximally be obtained from single-design transformations.
The second cycle generated 86 unique strains in the 35 transformations and generated
145% more strains than single-design transformations. Combined with the 159 unique
strains generated in the first cycle, there were 234 (159+75) unique genotypes created from
a total of 115 transformations, with only 62 identical genotypes harvested in both cycles,
highlighting once again stochastic sampling from pooled transformations as an efficient
approach for searching amble genotypic spaces.

Again, and concomitant to sequencing, the strictosidine titers were measured for all
142 strains as well as replicates of reference strain and positive controls (with known
production) and negative controls (no G8H and CPR expression cassette inserts, 168 in
total). From the 142 forward engineered strains, 28 strains produced more strictosidine than
the reference MIA-CH-A2 strain (28.11 uM), which is a 5-fold improvement in performance
compared to the first DBTL round ((28/142)/(9/238) = 5.21), and the highest producing
design being pENO2:SmusG8H and pTPI1:RseCPR with 69% higher production(47.69 pM)
compared to the reference strain (Fig. 4B; Suppl. Table 3,

(10_2 TEST Library characterization, Paragraph: 1.3)). 13 strains were only partially
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genotyped and were therefore discarded. Combining strictosidine measurements with
genotyping resulted in 129 accepted strains, of which 86 were unique (86/129 = 66.67% of
the theoretical sequence space)(Fig. 4B, Accepted strains in second iteration,
10_2 TEST_ Library characterization).

As conducted for the first DBTL cycle, we used AutoML to investigate and rank the

performance of 774 models. As AutoML trains models until they reach convergence, the
number of models is only limited by the time which is set dynamically by H20 to 1 hour if the

number of models is set to “None” (H20 documentation)[35]. Through a 1-hour run of

AutoML in H20, a XGBoost model was found to be the best-suited model for predicting
relative production from genotypes. Similar to the first DBTL cycle, the best model was found
by sorting on MAE on cross-validation data with the best-performing model yielding an MAE
= 1193 and an RMSE = 23.34 based on 10-fold cross-validation predictions
(11_2 LEARN_Modelling_and_predictions, Paragraph: 4). These MAE and RMSE values
represent ~ 7 and 14% of the full range of measurements (0.0-170.0), respectively.

Additionally, the best model had an overall correlation coefficient of R> = 0.85 when ranking
observed production titers with cross-validated predicted titers of the 296 strains (Fig. 4C).
Furthermore, and as exemplified in the first DBTL cycle (Fig. 3C-D), the LEARN step
focused on parts distribution and correlation coefficient between the ranking of observed vs.
cross-validated predicted strictosidine titers to inform about the possible impact of using the
models generated from data in the first DBTL cycle for a second DBTL cycle. Here, when
asking the best-performing XGBoost model trained on the data generated in the second
DBTL cycle to recommend parts to be used for forward-engineering of new strains with
high(er) even strictosidine titers in a potential third DBTL cycle, we found that the Top-25
predictions overlapped by 70.0% with those already exploited for the second DBTL cycle
(Suppl. Fig. S2, (11_2 LEARN_Modelling_and_predictions, Paragraph: 5.3.1)).

Furthermore, while the hit-rate of high-producers compared to the reference strain obtained
in the second DBTL cycle increased compared to the results from the first DBTL cycle (9/238
= 3.8% vs 28/142=19.7%), and a modest increase in correlation coefficient between the
ranking of observed strictosidine and predicted production could be obtained (R? = 0.77 vs.
R? = 0.85)(Fig. 3D and Fig. 4C), although the algorithm was not able to precisely rank the
genotypes according to production (Suppl. Fig. S3).

Stop-go evaluation for design-build-test-learn cycle Ili

To further evaluate whether to continue into a third DBTL cycle in search for high(est)
producing strain designs, we used several assessment criteria. First, we evaluated the
coverage of the explored design space across the two engineering cycles, totalling 234

different designs out of 1,280 possible combinations (18.3%). Second, we used learning

10
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curves as a (Quantitative parameter to guide the stop-go  evaluation
(07_1 LEARN_Modelling_and_predictions, Paragraph: 8);

11 2 LEARN_Modelling_and_predictions, Paragraph: 6)). Learning curves, created based

on the MAE compared to the number of data points used for training, can give an indication
of how adding more data could affect the predictive power of the models used between
iterative DBTL cycles.

We can use data partitioning to evaluate how well a model performs and behaves
with different subsets of the data [36]. To do this, we shuffled the data, divided it into parts,
and trained a model on each part of the dataset. We repeated this process 10 times
(07_1 LEARN_Modelling_and_predictions, Paragraph: 8);
11 2 LEARN_ Modelling_and_predictions, Paragraph: 6). When comparing the learning

curves obtained from data generated in the first DBTL cycle vs. the second DBTL cycle, it
can be observed that the MAE of the cross-validation decrease through the data points but
with a reducing slope as data used for training increases (slope -0.009x from datapoint 56 -
167 for the first DBTL cycle and slope -0.016x from datapoint 60 - 296 for the second DBTL
cycle)(Fig. 5A-B). For DBTL cycle |, the lowest MAE from the training data obtained was
0.08 and with a decreasing trend even when the models were trained on 167 data points

(07_1 LEARN_ Modelling_and_predictions). For the learning curve obtained from the cross-

validated models trained on data from DBTL cycle I, the training MAE, on the other hand,
reached a plateau at 120 data points with a minimum MAE of 2.56 (Fig. 5B), indicating that
the model does not improve much with more data, even though the correlation coefficient
(Fig. 4C), and thereby predictive power, increases in DBTL cycle Il (Fig. 5B,
11 2 LEARN_Modelling_and_predictions).

Lastly, and in addition to the 70% overlap between the Top-25 predictions offered by

the best-performing XGBoost model and the designs already exploited for the second DBTL
cycle (Suppl. Fig. S2), we also compared the distribution of best-performing observed
strictosidine producers arising from the first and second DBTL cycle. Here we observed that
even though the best-performing strain design compared to the reference strain was
identified in the second DBTL cycle, the increase in production compared to the best-
performing strain observed from the first DBTL cycle was merely 10% (159 vs 144)(Fig. 5C).

Taken together, evaluating design space coverage, learning curves and observed
production from top-ranking designs between individual DBTL cycles, can help guide
decisions as to whether to stop further exploration of the remaining design space or to
continue forward engineering in search of the global maximum. In this case, the relative high
design space coverage (18.3%), the stagnating learning curve and the higher MAE in the

second DBTL cycle, and the overlap between already-explored designs and the forward
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engineering predictions offered by XGBoost for a third DBTL cycle, supported a “stop”
decision on further exploration of this design space.

General design highlights

With the finalization of the two iterative DBTL cycles for the multivariate optimization
of the C8-hydroxylation of geraniol to 8-hydroxy-geraniol, several design take-homes can be
extrapolated. Firstly, we found that the strictosidine production increased by up to 59%
comparing the reference strain (MIA-CH-A2) with the best-producer encoding
PENO2:SmusG8H and pTPIl:AanCPR (28.115095 puM vs. 44.719792 uM, respectively)
(Fig. 5C). Next, from the top-ranking strictosidine producers, our results indicates a high
level of CPR promiscuity for the two top-ranking G8H candidates from Swertia mussatii
(Smu) and Rauvolfia serpentina (Rse), as evidenced by 5 different CPRs included in the
Top-6 ranking strain designs (Fig. 5C). Notably, the identification of several CPRs improving
8-hydroxygeraniol synthesis corroborates previous findings [23]. Furthermore, even though
the G8H from Catharanthus roseus (Cro) has been critically acclaimed to enable high
production of 8-hydroxy-geraniol and down-stream plant bioactives [22,23,25], this study
highlights SmuG8H and RseG8H as promising geraniol hydroxylating enzymes in microbial
cells (Fig. 5C). Lastly, and interestingly, the promoters driving the expression of genes
encoding CPRs, promoters with high expression during the glucose-rich early- and mid-
exponential phases of cultivation, such as pTPI1 and pCCW12 are prominent design parts
(Fig. 2B-C, Fig. 5C). For G8H expression control, top-ranking strain designs also included
strong promoters, albeit promoters with expression lower than pTDH3, used in the reference
design of strain MIA-CH-A2 (Fig. 5C), thus indicating that use of strong constitutive
promoters may be dispensable for P450-mediated biocatalysis in yeast.

Taken together, the multivariate design space explored and exploited in this teemi
testbed has offered robust take-homes in terms of bioengineering designs benchmarking

with, and extending beyond, previously reported G8H and CPR studies.

Discussion

The aim of this study was to showcase teemi for bioengineering demonstrated
experimentally via a complex biological testbed founded on i) computer-aided design to
standardize workflows and minimize errors during the build step, ii) stochastic sampling from
pooled DNA parts libraries, iii) research data management according to FAIR principles, and
iv) the use of 2,000+ ML models sourced from AutoML to stress-test predictive engineering

compared to manual extrapolation of patterns.
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The iterative bioengineering testbed supported by teemi, not only enabled a
streamlined workflow for quantitative assessment of genotypes and phenotypes, but also
supported objective decision-making. For instance, the best models showed good
correlations for both first and second DBTL cycle (MAE = 2.7% and 8.7% of the
measurement ranges, respectively (Table 3), with an increase in predictive power from the
first DBTL to the second (R?> = 0.776 and 0.850, respectively)(Fig. 3D and Fig. 4C),
ultimately increasing the forward-engineering hit rate (i.e. obtaining phenotypes that
performed better than the reference strain within the sequence space) by more than 5 times
(from 3.8% to 19.7%)(Suppl. Fig. S3). Also, we observed that as we generated more data,
the cross-validated MAE decreased in both first and second DBTL cycle (slopes of -0.009x
and -0.016x, respectively)(Fig. 5A-B). Having said this, for this particular testbed, we
observed different trends in the two learning curves regarding the test MAE, where the
models in the first DBTL cycle seem to overfit the data, and the models in the second DBTL
cycle seem to converge, while from cross-validation we observed a higher MAE for the
models in the second cycle compared to the first cycle (MAE = 8.04 and 11.93,
respectively)(Table 3). The higher MAE for the second cycle is likely caused by higher
variation in the data points between the different test runs, and call for higher quality
analytical data. Furthermore, as almost 20% of the design space has been explored during
the first two DBTL cycles, and with a mere 10% improvement in strictosidine production in
top-ranking design found in the second DBTL cycle compared to the top-ranking hit from the
first DBTL cycle, a natural next engineering step would be to focus attention to other limiting
factors of the strictosidine pathway, such as rational engineering of the other hydroxylation
steps [22], for instance using the design principles uncovered in the best—performing
G8H:CPR step.

As in any DBTL cycle, the goal has focused on maximizing the knowledge generated,
and ultimately reducing time and resource allocation during iterative bioengineering cycles.
With the step-by-step guidance illustrated by experimental data in this study, we expect that
the use of FAIR-compliant teemi will enable i) that more experiments can be performed in
shorter amount of time and with less errors, ii) better integration of IT tools with other
resources (e.g. human-centered and/or robotic work-flows), and iii) effective inter- and intra-
laboratory knowledge transfer, and thus drastically increase reproducibility and
standardization in biology. With respect to better integration of IT tools in bioengineering, it
deserves to be mentioned that this study was co-led by MSc-level students to maximise
compatibility with both the skills and the aspirations of early-stage bioengineers. Basic
programming skills are advantageous in order to benefit from all the capabilities of teemi, but
not needed to get started. Indeed, in teemi, abstractions are used to streamline workflows

and manage complexity, and by providing these workflows as open-source for the
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community, we can continuously improve the workflows and learn a lot more from each other

and in less time.

Materials and Methods

Executing teemi

teemi is distributed as free open-source software at pypi.org. To maximize the
usefulness of teemi we have developed a set of Jupyter notebooks that can be executed
locally or through Google Colaboratory without any prior installation of software. This, we
believe will lower the time spent on installation and resolving dependencies which is useful
for all users regardless of programming experience. The only requirement is a Google
account to use Google Colaboratory and the notebooks can be found at

https://github.com/hivama341/teemi/tree/main/colab notebooks.

Modules of teemi

teemi consists of four modules that aid in strain construction through the Design,
Build, Test, and Learn phase of the DBTL cycle with an additional Laboratory information
system module (LIMS)(Fig. 1). The first module is DESIGN, which includes functions for
cloning procedures, and the generation of combinatorial libraries. The second module,
BUILD, is focused on building strains with functions for simulating and calculating PCRs,
transformation reactions and automatically generating robot executable instructions. The
third module is the LIMS module that can import and export DNA sequences and keep track
of samples through Benchlings APl and a local CSV file database. The fourth module, the
TEST module, has functions to pre-process data from sequencing results and infer the
relationship between sequencing results and genetic parts based on pairwise alignment. The
final module is aimed at the LEARN phase by incorporating easy-to-use ML functions with
plotting functions.

As teemi is under MIT license anyone can edit, and use the code rendering it flexible
and reusable. Additional modules can be added to the package by anyone willing to
contribute or modification of the code by the users is allowed. The guidelines for
contributing can be found on teemi’s contributing site here. For a high-level overview of

teemi, please visit teemi’'s documentation page https://teemi.readthedocs.io/en/latest/. The

site provides detailed descriptions of the modules, functions, and classes and how to install

teemi locally.
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teemi: Simulation of experimental workflow and data analysis

To enable reproducible high-throughput strain construction, literate programming
along with the modules of teemi was used to simulate all experimental workflows used in this
study. The experimental workflows were divided into Jupyter notebooks encompassing
different parts of the DBTL cycle as shown in Table 2.

This framework enabled the generation of a large number of strains while keeping
mistakes at a minimum by simulating experimental workflow and keeping track of samples.
More specifically, It provided a tool to simulate the amplification of DNA in PCR reactions,
retrieving locations of all relevant DNA fragments and primers while attaining an overview of
the procedures. PCR and transformation mixes were calculated and simulated in silico.
Additionally, it worked as a laboratory notebook containing all experimental setups,
observations, and results. These notebooks also show how teemi and literate programming
can incorporate advanced machine learning models through H20’s AutoML package (
07_1 LEARN_Modelling_and_predictions, 11_2 LEARN_Modelling_and_predictions).

Experimental strains used in this study

The S. cerevisiae strains constructed in this study were derived from the MIA-CH-A2
strain containing CroG8H, CroCPR, and 11 other genes under promoters pTDH3 and
pTEF1, driving the biosynthesis pathway from geraniol to strictosidine[25]. The background
strain used in this work was made by using literate programming along with teemi’s design
and build modules to enable CRISPR-mediated knockout of CroG8H and CroCPR in the
EasyClone site X-3 and XI-3 sites [31], respectively. These modules made it possible to
extract the knockout sites and simulate the in vivo assembly while generating GenBank files

of the newly generated strains (04_1 BUILD Background_strain). The resulting background

strain was hamed MIA-HA-1 (MIA-HA-1.gb).

Microbial strain cultivations

We used teemi and literate programming to document and calculate all steps of plate
and liquid cultivations. The plate and liquid cultivations were performed as described in [25]
except that 0.2 mM geraniol and 1 mM tryptamine were added to YPD media and the
cultures were grown at 300 rpm when testing for strictosidine production
(03_1 BUILD gRNA_plasmid, Paragraph: 1.5, 04 _1 BUILD Background_strain,,

Paragraph: 6, 05 1 BUILD Combinatorial_library, , Paragraph: 4).
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Genetic parts selection

To standardize the selection of genetic parts we developed an algorithm in a literate
programming workflow that automates the selection process by searching and selecting
homologs based on amino acid identity through NCBIs databases (
00_1 DESIGN_Homologs). Using Catharanthus roseus sequences (Q8VWZ7, Q05001) as
queries, eight G8H and CPR genes were found on NCBI's databases. To diversify the CPR
genes we searched the PhytoMetaSyn database using Catharanthus roseus CPR mRNA
(X69791.1) as a query. We selected two additional CPRs from the largest ORFs of the

MRNA transcripts, which provided a broad range of amino acid identities for all the chosen
CPRs (00_1 DESIGN_Homologs, Paragraph: 5.1.5). The sequences were codon-optimized
for S.cerevisiae with DNA Chisel (00_1 DESIGN_Homologs, Paragraph: 5.3).

A literate programming workflow was used to select promoters to drive the

expression of the gene homologs (01 1 DESIGN_Promoters). Promoters were chosen

based on absolute mMRNA abundance measured from S. cerevisiae CEN.PK 113-7D at

cultivation time points 6, 12, and 24 hours (01_1 DESIGN_Promoters, Paragraph:

2)[29].The promoters were defined as 1kb upstream of the target gene, with lengths varying
from 984-1004 bp due to differences in in our in-house strains and the database strains.
Four promoters were selected for each CYP and CPR module based on constitutive
expression and expression patterns (high/low and increasing/decreasing). To prevent
homologous recombination during transformation, all promoter sequences were aligned to
ensure no homologous sequences, reducing the chance of genetic part looping out

(01_1 DESIGN_Promoters, Paragraph: 8).To streamline the combinatorial library size and

minimize the number of integrated fragments, gene homologs were assembled with tCYC

and tADH terminators.

Extracting genetic parts

In this study, we ordered gene homologs as gBlocks and cloned them into plasmids
along with tADH and tCYC terminators. To extract promoters from the genomic DNA of wild-
type S. cerevisiae CEN.PK2-1C, we generated specific primers. Additionally, we amplified
the TRP1 cassette from plasmid pRS414-USER using primers overlapping with the tCYC1
terminator and homologous to the fragment downstream of EasyClone site XI-2 [31].

Prior to conducting the PCR reactions and USER assemblies in the laboratory, we
simulated them using the teemi’'s module PCR.py. The specific PCR programs,
polymerases, purifications methods, and amplification of USER and transformation parts can
be found in (03_1 BUILD_gRNA_plasmid, 04 1 BUILD_ Background_strain,
05_1 BUILD_Combinatorial_library).
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Plasmid construction

Construction of plasmids was simulated with teemi’s cloning.py module in a literate
programming workflow and assembled in the lab with USER cloning [37],
03 1 BUILD gRNA plasmid). More specifically, cloning.py module was used to simulate
and construct the plasmid (Double_gRNA vecor_pl GO09 (pESC-LEU-
gRNA_ATF1 CroCPR) that was used to perform CRISPR-mediated deletion of the G8H and
CPR genes (03_1 BUILD gRNA plasmid). The second plasmid used in this study, pESC-

URA-gRNA_XI2-2, used for in vivo assembly into the EasyClone site XI-2 locus had been

constructed previous to this work.

Designing genetic parts for the combinatorial library

We used two methods to design combinatorial libraries, the commercially available
Teselagen Design module, and our own open-source DesignAssembly algorithm. The
designs made with the DesignAssembly algorithm incorporate 40 bp overlapping overhangs
by default with a distribution of 50/50% of the overhang to the forward and reverse primer. A
pad (defined as a nucleotide sequence of 40 bp) was incorporated between the promoters
with an ATF1 gRNA site to provide the deletion of the module at a later stage. The designs
and instructions for the assembly can be found in the following notebook
(02_1 DESIGN_Combinatorial library).

Another similar combinatorial library was created with Teselagen Design Module

software where the parts were made with 30 bp overhangs. Annealing temperatures were

re-calculated with tmcalculator.neb.com. The design of overhangs can be seen here

(05_1 BUILD_Combinatorial_library). Both designs are presented in this work but it was

decided only to go forward with the designs made with Tesselagen
(05_1 BUILD_Combinatorial library).

Pooled construction of the combinatorial libraries

The combinatorial library in this study was constructed using the CasEMBLR method
and designed for the EasyClone site XI-2 [31]. To facilitate the construction process, we
used literate programming and teemi’'s modules to standardize and simplify the procedure
(05_1 BUILD_Combinatorial_library, 09 _2 BUILD Combinatorial_library). We used the
teemi’s lab module (PCR.py and transformation.py) to calculate PCR melting temperatures,

simulate and verify gel bands, and track samples using a local CSV-based LIMS system

(csv_database.py,). The plasmid pESC-URA-gRNA_XI2-2 was used for the in vivo assembly

of the library into locus XI2-2. Flanking regions for repair were approximately 0.5 kb, and the

homology regions between parts were 30 bp by default. A tryptophan selection marker was
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used to select for positive transformants. (05_1 BUILD Combinatorial library,
09 2 BUILD Combinatorial library).

To create the library, we pooled genetic parts into one mixture, including promoters,
UP, DW, and cTRP1 parts, and one gene pair, all with overlapping overhangs and in

equimolar amounts(05_1 BUILD Combinatorial library, Paragraph: 2.2),

09 2 BUILD_Combinatorial_library, Paragraph: 5.1-5.3). The pooled library was

transformed with the genetic parts in a one-pot reaction to prevent unwanted homologous
recombination between the genes (05 _1 BUILD Combinatorial library, Paragraph: 4.1,
09 2 BUILD_Combinatorial_library, Paragraph 6.1-6.3)).

Yeast transformations were carried out using the LiAc/SS carrier DNA/PEG method

[38] and performed with 1-2 ml of a background strain with an optical density of 1. Each
transformation reaction contained 0.25 pmol of a CRISPR plasmid expressing the gRNA for
XI-2 and 0.5 picomoles of each DNA fragment (05_1 BUILD Combinatorial_library,
Paragraph: 4,09 2 BUILD Combinatorial library, Paragraph: 6.1).

Control strains were transformed alongside the library strains. These strains were
transformed with plasmids containing uracil or tryptophan to test transformation efficiency
and water to test cell viability. The first set of transformations was split into three in the first
round of the DBTL(05_1 BUILD Combinatorial library, Paragraph: 4.1, while the second
set was split into two in the second cycle (09_2 BUILD Combinatorial library, Paragraph:
6.1).

Sample preparation for LC-MS and data analysis

Sample preparation and internal standards were prepared according to [25], with the
exception that pre-cultures were transferred to media containing 0.2 mM geraniol + 1 mM

tryptamine after two days as described in 05_1_ BUILD_Combinatorial_library(Paragraph: 5)

and 09 2 BUILD Combinatorial library(Paragraph: 8). The metabolites strictosidine,

loganic acid, loganin, secologanin, and tryptamine were analyzed according to [25].
The full data analysis with respect to normalization, and calculations can be found in

notebook 06 1 TEST Library characterisation and 10 2 TEST Library characterization

where functions from teemi’'s data_wrangling.py were used to process the data.

Promoter genotyping

Genomic DNA was extracted from overnight cultures with LIOAc/SDS method
adapted for 96 well plates [39]. Each extract was used as a template for two PCR’s spanning

the promoter gene pairs (05 _1 BUILD Combinatorial library, Paragraph: 5,

09 2 BUILD Combinatorial_library, Paragraph: 7), providing approximately ~2700 bp and
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~3200 bp (Lenghts_of constructs). The colony PCR products were validated with 1%

agarose gels followed by sequencing. Positive colony PCRs were first sequenced by
Eurofins, using a PlateSeq Kit for crude PCR products according to the manufacturer's
instructions. Second re-sequencing was performed with previous transformants with 5 pl
PCR products and 2 pl ExoSAP-IT enzymes (Thermo Fisher Scientific Inc.) heated to 37 °C
for 15 minutes followed by 80 °C for another 15 minutes.

The sequencing data consisted of a plate report describing each well's average

quality and sequencing files (.abl). Using teemi’'s data_wrangling.py we automated data
processing by filtering out low-quality alignments (average quality < 50, length used > 25).
Then, using functions from genotyping.py we inferred the promoter relationship to the
samples. Wells with multiple inferred promoters were filtered out. The final result was CSV
files with inferred promoters for each well. These results were merged with LC-MS data,

resulting in a CSV file with genotypes and normalized strictosidine production for 129 strains.

AutoML and learning curves

In this study, we used the AutoML H20O python library version 3.38.0.4 to automate
the machine learning process (AutoML H20). The H20AutoML class was initiated with an

input  dataframe (input_for_ml_dbtl1.csv, input_for_ml_dbtl2.csv), response

column(norm.strictosidine) and specified feature columns(promoter:gene combinations). The
feature columns were made categorical, and 10-fold cross-validation was performed. The
trained models were saved in a leaderboard, and the best model was selected to predict
phenotypes of unseen genotypes in the remaining combinatorial library
(07_1 LEARN_ Modelling_and_predictions(Paragraph: 1-7),
11 2 LEARN_Modelling_and_predictions(Paragraph: 1-5)).

To generate a learning curve, the teemi module auto_ml.py was used on the

datasets (input for ml dbtll.csv, input for ml dbtl2.csv). Here, the main function divides

the dataset into partitions that progressively increase in size, and then trains models on each
partition. The function outputs a dataframe containing the name of the top performing
model(sorted in MAE), the mean-absolute error, and cross-validated values. This was done
ten times for each dataset, including a shuffling step between each run
(07_1 LEARN_Modelling_and_predictions(Paragraph: 8),
11 2 LEARN_Modelling_and_predictions, Paragraph: 6).

Model based recommendations of Combinatorial library

The genetic parts for the second DBTL round were selected by iterating through all

predictions of non-encountered combinations
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(08_2_DESIGN_Model_recommended_combinatiorial_library(Paragraph: 1)). Each new

genetic part was saved and once the total number of combinations reached the maximum
capacity the iteration stopped. The encountered genetic parts were then used in the
following DBTL cycle to investigate the best-performing parts of the combinatorial library
(09_2 BUILD_Combinatorial library).

Dependencies

Suppl. Table 1 provides a list of dependencies required to run teemi's modules.
Specifically, it describes the minimum dependencies needed, while the optional test
dependencies can be installed through the setup.py file. The installation of these can be
done with the following command: pip install teemi[dev]. For executing the
00_1 DESIGN_Homologs and 01 1 DESIGN_Promoters notebooks  additional

requirements need to be installed. These packages include InterMines Python API and
Edinburgh Genome Foundry’s DnaChisel. However, through the Google colab notebooks,

these dependencies are installed automatically.

Data availability statement

The paper and its supplementary information files provide data that support the
findings of this study. All data related to this study can be accessed and downloaded from
GitHub, the designated data repository at https://github.com/hivama341/G8H_CPR_library.

The data include all source files and datasets analyzed throughout the study as well as

training sets for the machine-learning models.

Code availability

The code utilized for data extraction, organization, filtering, and simulation, as well as
the code utilized for algorithm training, can be found on  GitHub

https://github.com/hiyama341/teemi. The teemi platform was implemented through PyPi and

is available at https://pypi.org/project/teemil.
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Figure legends

Fig. 1. Conversion of natural language lab protocols for iterative design-build-test-
learn cycles to literate protocols using teemi. Natural language protocols (left - blue)
comprehensible to humans are converted into computer code (right - yellow) that can be
understood by both computers and humans. In teemi, each procedure in natural language
protocols relates to names of python modules in literate protocols, thus lowering the

programming entry level needed for adopting teemi.

Fig. 2. Designh and characteristics of the constituent DNA parts used as experimental
testbed for teemi. (A) The ten-step biosynthetic pathway converting geraniol to
strictosidine. The G8H step is highlighted in a dashed box [22]. (B-C) Rooted phylogenetic
trees of G8H (D) and CPR (E) protein representatives. Uniprot identifiers are shown in
parentheses for those available. Catharanthus roseus (Cro), Rauvolfia serpentina (Rse),
Olea europaea (Oeu), Camptotheca acuminata (Cac), Vinca minor (Vmi), Cinchona calisaya
(Cca), Ophi- arrhiza pumila (Opu), and Swertia mussatii (Smu), Artemisia annua (Aan),
Arabidopsis thaliana (Ath), Catharanthus longifolius (Clo), Amsania hubrichtii (Ahu), and
Aspergillus niger (Ani). (D-E) Temporal resolution of transcript abundances for candidate
genes [29], for which promoters were chosen to control the expression of genes encoding
G8H (D) and CPR (D) homologous. (F) Combinatorial assembly and genome integration

strategy.
Fig. 3. Design, characterization, and modeling of design-build-test-learn cycle 1. (A)

Outline of the stochastic sampling and test workflow for data generation. (B) The distribution

and counts of parts from the 167 strains that were accepted as input for machine learning in

21


https://doi.org/10.1101/2023.06.18.545451
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.18.545451; this version posted June 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

the first learning phase of the first DBTL cycle. (C) The distribution of observed strictosidine
titers relative to reference strain MIA-CH-A2. Below the bar plot the distribution of parts for
each of the 238 analyzed strains is presented. (D) Cross-validated predictions vs average

normalized strictosidine production. All values are ranked.

Figure 4. Design, characterization, and modeling of design-build-test-learn cycle Il. (A)
The distribution and counts of parts from the strains that were accepted as input for machine
learning in the second learning phase of the second cycle of DBTL. (B) The distribution of
observed strictosidine titers relative to reference strain MIA-CH-A2. Below the bar plot the
distribution of parts for each of the 240 analysed strains is presented. (C) Cross-validated

predictions vs average normalized strictosidine production. All values are ranked.

Figure 5. Learning curves and top-ranking strains designs from the iterative
engineering cycles. Learning curves from the first (A) and second (B) DBTL cycles,
illustrating mean absolute error (MAE) of the best-performing deep learning and XGBoost
models used cycle | and I, respectively, in relation to the number of data points (blue line)
and the cross-validation holdout prediction MAE together with the standard deviations of the
10 models created (yellow line). The points are based on 10 models created with a
randomized shuffled data in partitions of 33, 67, 100% and 20, 40, 60, 80 and 100% of the
data available for dbtll and dbtl2 respectively to get the same size of partitions. (C) Average
strictosidine production for Top-20 strains from first and second DBTL cycles. Genotypes are
shown (left) with their respective color codes (middle) and average strictosidine production
(right). For the strictosidine production, the light and dark blue colors correspond to strain

designs that were first found in the first and second second DBTL cycle, respectively.

Tables

Table 1. Comparison of IT tools and their functionalities for full-stack DBTL cycle.

JBEI Pydna  Aquari Galaxy Poly Lila Inscripta  Teselage Bench Riffyn. strateos
ICas um project (Amyri n ling Nexus
design s)

er
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Open- + + + + + - - - - - -
source

DESIGN: + - - - - (+) (+) - - (+) (+)
Parts
selection

DESIGN: - - - - - ) ) + - (+) )
Combinatori

al library

generation

DESIGN: - - - - - (+) () + - (+) (+)
Combinatori

al library

generation

DESIGN: + + + - + (+) (+) - + + (+)
Cloning
workflows

BUILD: : - LG B ORI e I G
Transformati
on workflows

BUILD: : - : S B O B L RN G
Automation
with robotics

TEST: Data - - + + - (+) (+) + - +) (+)
processing
of analytics
LEARN: - - - + S B O T RN
Machine-
Learning
LIMS - - - - (+) (+) + + +) +)
system
Python Limite Mediu  None None Go-  None None None None None None
level d m pac
kag
e
*() denoting if a statement is undisclosed.
Table 2. Overview of the notebooks created for this work.
DBTL Name and link Description
Round
I T T T 1
1 DESIGN 00 1 DESIGN Homologs Describes how we automatically can select homologs

from NCBI from a query in a standardizable and

repeatable way.
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01 1 DESIGN Promoters Describes how promoters can be selected from

RNAseq data and fetched from an online database with

various quality measurements implemented.

02 1 DESIGN_Combinatorial librar  Describes how a combinatorial library can be generated

y with the DesignAssembly class along with robot

executable instructions.

BUILD 03 1 BUILD gRNA plasmid Describes the assembly of a CRISPR plasmid with
USER cloning.
04 1 BUILD Background strain Describes the construction of the background strain by
K/O of G8H and CPR in the X-3 and XI-3 sites
respectively.

05 1 BUILD Combinatorial library Building a combinatorial library of 1280 combinations

with designs generated by Tesselagen software.

TEST 06 1 TEST Library characterisatio  Describes data processing of LC-MS data and

1>

genotyping of the generated strains.

LEARN 07 1 LEARN Modelling_and predic Describes the use AutoML to predict the best
tions combinations for a targeted second round of library

construction.

N

DESIGN 08 2 DESIGN Model recommende This notebook utilizes the machine learning predictions

d_combinatiorial_library made in the previous notebook to create a targeted

combinatorial library with best predicted genetic parts.

BUILD 09_2 BUILD_Combinatorial_library Shows how results from the ML can be translated into

making a second focused library of strains.

TEST 10 2 TEST Library characterizatio = Describes the data processing of LC-MS data like in

n notebook 8 but with the second focused library.

LEARN 11 2 LEARN Modelling _and predic Second cycle of ML showing how the model increased

tions performance and saturation of best-performing strains.
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Table 3. Machine-learning model characteristics

First model Second Model

Model Deep Learning XGBoost
MAE* 2.728627138605333 8.669277115850836
RMSE* 6.088407587552942 19.04539155210566

Cross-validation MAE** 8.037346736078618 11.928834673923415

Cross-validation RMSE** 18.104192131285426 23.340093018693615

R? of observed vs. cross- 0.776 0.850
validation-predicted

*Reported on train data

**Reported on cross-validation data
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