

1 Title: *Listeria monocytogenes* infection in pregnant macaques alters the maternal gut
2 microbiome

3 Running Title: Gut dysbiosis with listeriosis in pregnant macaques

4

5 Summary sentence: Intestinal microbial composition in macaques is influenced by significant
6 interaction between the pregnant state and exposure to *Listeria monocytogenes*, associated in
7 particular with significant changes to *Akkermansia*, *Eubacterium ruminantium*,
8 *Methanobrevibacter*, *Prevotella*, and *Treponema*.

9

10 Keywords: pregnancy, microbiome, bacterial infection, listeriosis, non-pregnant, primate

11

12 Anna Marie Hugon^{1,2}, Courtney L. Deblois^{3,4}, Heather A. Simmons¹, Andres Mejia¹, Michele L.
13 Schotzo¹, Charles J. Czuprynski⁵, Garret Suen³, and Thaddeus G. Golos^{1,6,7}

14

15 ¹Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI,
16 USA

17 ²Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison,
18 Madison, WI, USA

19 ³Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA

20 ⁴Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA

21 ⁵Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA

22 ⁶Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA

23 ⁷Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI,

24 USA

25

26 Grant support: This research was funded by NIH grants R25 GM 83252-11 and an Advanced

27 Opportunity Fellowship through Science & Medicine Graduate Research Scholars at the

28 University of Wisconsin-Madison to A.M.H., R01 AI107157 to T.G.G, and P51 OD011106 to the

29 Wisconsin National Primate Research Center. The content is solely the responsibility of the

30 authors and does not necessarily represent the official views of the NIH.

31

32 Correspondence:

33 Thaddeus G. Golos, Ph.D.

34 University of Wisconsin-Madison

35 Wisconsin National Primate Research Center

36 1223 Capitol Ct.

37 Madison, WI 53715-1299 U.S.A.

38 golos@primate.wisc.edu

39

40 Contributions: TGG, GW, and AMH designed the study. GW and AMH collected samples. AMH

41 and CLD prepared and sequenced samples. AMH and GS analyzed the data. AMH and TGG

42 drafted the manuscript. All authors read and approved the final manuscript.

43

44 Conflict of Interest: There are no conflicts of interest to declare.

45

46 Disclaimer: The contents of this manuscript are solely the responsibility of the authors and do
47 not represent the official views of the NIH.

48

49 Data Availability: The authors confirm that the NGS data supporting the findings of this study
50 are available via METAGENOTE (<https://metagenote.niaid.nih.gov>). For biological samples,
51 WNPRC has a policy of sharing data and materials when scientifically relevant. The datasets are
52 available upon reasonable request. Requests to access the datasets should be directed to TGG
53 (golos@primate.wisc.edu) and to HAS (hsimmons@primate.wisc.edu).

54

55

56 **Abstract**

57 Objectives

58 The bacterium *Listeria monocytogenes* (Lm) is associated with adverse pregnancy outcomes.
59 Infection occurs through consumption of contaminated food that is disseminated to the
60 maternal-fetal interface. The influence on the gastrointestinal microbiome during Lm infection
61 remains unexplored in pregnancy. The objective of this study was to determine the impact of
62 listeriosis on the gut microbiota of pregnant macaques.

63

64 Methods

65 A nonhuman primate model of listeriosis in pregnancy has been previously described [1, 2].
66 Both pregnant and nonpregnant cynomolgus macaques were inoculated with *L. monocytogenes*
67 and bacteremia and fecal shedding were monitored for 14 days. Nonpregnant animal tissues
68 were collected at necropsy to determine bacterial burden, and fecal samples from both
69 pregnant and nonpregnant animals were evaluated by 16S rRNA next-generation sequencing.

70

71 Results

72 Unlike pregnant macaques, nonpregnant macaques did not exhibit bacteremia, fecal shedding,
73 or tissue colonization by Lm. Dispersion of Lm during pregnancy was associated with a
74 significant decrease in alpha-diversity of the host gut microbiome, compared to nonpregnant
75 counterparts. The combined effects of pregnancy and listeriosis were associated with a
76 significant loss in microbial richness, although there were increases in some genera and
77 decreases in others.

78

79 Conclusions

80 Although pregnancy alone is not associated with gut microbiome disruption, we observed
81 dysbiosis with listeriosis during pregnancy. The macaque model may provide an understanding
82 of the roles that pregnancy and the gut microbiota play in the ability of Lm to establish
83 intestinal infection and disseminate throughout the host, thereby contributing to adverse
84 pregnancy outcomes and risk to the developing fetus.

85

86

87 **Introduction**

88 *Listeria monocytogenes* (Lm) is bacterial pathogen associated with fever, muscle aches,
89 gastrointestinal upset, sepsis, and meningitis. It is a ubiquitous bacterium found in the
90 environment and infection with Lm occurs via consumption of contaminated food. It has been
91 shown that at-risk groups for listeriosis include young children, the elderly people,
92 immunocompromised individuals, and pregnant women and their neonates. During pregnancy,
93 infection can lead to serious complications including miscarriage, stillbirth, preterm birth,
94 neonatal sepsis, and meningitis. Pregnant women infected with Lm are typically asymptomatic,
95 lacking clinical features common in infected elderly or immunocompromised individuals [3]. As
96 a result, maternal listeriosis may go unrecognized until infection of the maternal-fetal interface
97 (MFI) resulting in adverse pregnancy outcomes (APOs). Importantly, although Lm does not
98 cause severe illness or pathology within the mother, it is able to establish significant bacterial
99 burden within the placenta and decidua, leading to severe infection, acute inflammation, and
100 severe disruption to the MFI.

101 Although listeriosis can be treated with antibiotics such as ampicillin or gentamicin,
102 these are only effective if diagnosis and administration occurs early during infection[4]. There
103 has been growing concern over antimicrobial resistance in pathogens and the ability to survive
104 at clinical antibiotic concentrations. Antibiotic resistance of Lm has been most notable in
105 isolates from food products[5, 6], however rising rates of antibiotic resistance in humans from
106 low-income countries is a concern for successful treatment and therapies of listeriosis [4, 7].
107 Moreover, antibiotics can have short term and long-term side effects such as gastrointestinal

108 upset and neurotoxicity [8]. These observations provide additional impetus for alternatives to
109 antibiotic treatment for listeriosis.

110 Previous research has sought to understand the molecular mechanisms behind the
111 pathogenic ability of Lm to infect the placenta, with a focus on factors such as internalins and
112 host immune interactions [9-12]. However, few studies focus on the maternal gut microbiome
113 during infection with a bacterial pathogen [13-17]. From birth, the human gastrointestinal tract
114 accumulates and establishes commensal microorganisms which develop into the gut
115 microbiome [18]. To understand how Lm is able to access and cross the intestinal epithelium to
116 establish hematogenous infection, it is crucial to understand microbial interactions within the
117 maternal gut environment and how this microbiome influences Lm pathogenicity. While many
118 studies exist on understanding the intracellular phase of Lm infection, very little is known about
119 the behavior of Lm within the gastrointestinal tract. Few studies have characterized microbial
120 dysbiosis during listeriosis [19]. It is possible that the maternal gut microenvironment may play
121 a role in dispersion of Lm outside of the intestinal tract, with commensal microbes influencing
122 Lm survival and invasion of epithelial tissues. We hypothesized that pregnancy is associated
123 with the hematogenous spread and severity of Lm infection through dysbiosis of the
124 homeostatic gut microbiome that does not occur in nonpregnant hosts. To test this hypothesis,
125 we characterized the gut microbiota of both pregnant and nonpregnant NHP following
126 challenge with Lm using 16S rRNA sequencing.

127

128 **Ethics statement**

129 The rhesus macaques used in this study were cared for by the staff at the WNPRC in
130 accordance with the regulations and guidelines outlined in the Animal Welfare Act and the
131 Guide for the Care and Use of Laboratory Animals and the recommendations of the Weatherall
132 report [20]. Per WNPRC standard operating procedures for animals assigned to protocols
133 involving the experimental inoculation of an infectious pathogen, environmental enhancement
134 included constant visual, auditory, and olfactory contact with conspecifics, the provision of
135 feeding devices which inspire foraging behavior, the provision and rotation of novel
136 manipulanda (e.g., Kong toys, nylabones, etc.), and enclosure furniture (i.e., perches, shelves).
137 Per Animal Welfare Regulations (Title 9, Chapter 1, Subchapter A, Parts 1–4, Section 3.80
138 Primary enclosures) animals were housed in a nonhuman primate Group 3 enclosure with at
139 least 4.3 square feet of floor space and at least 30 inches of height. This study was approved by
140 the University of Wisconsin-Madison Graduate School Institutional Animal Care and Use
141 Committee (animal protocol number 005061).

142 All animals were housed in enclosures with at least 4.3, 6.0, or 8.0 sq. ft. of floor space,
143 measuring 30, 32, or 36 inches high, and containing a tubular PVC or stainless-steel perch. Each
144 individual enclosure was equipped with a horizontal or vertical sliding door, an automatic water
145 lixit, and a stainless-steel feed hopper. All animals were fed using a nutritional plan based on
146 recommendations published by the National Research Council. Twice daily, macaques were fed
147 a fixed formula, extruded dry diet (2050 Teklad Global 20% Protein Primate Diet) with adequate
148 carbohydrate, energy, fat, fiber (10%), mineral, protein, and vitamin content. Dry diets were
149 supplemented with fruits, vegetables, and other edible foodstuffs (e.g., nuts, cereals, seed

150 mixtures, yogurt, peanut butter, popcorn, marshmallows, etc.) to provide variety to the diet
151 and to inspire species-specific behaviors such as foraging. To further promote psychological
152 well-being, animals were provided with food enrichment, human-to monkey interaction,
153 structural enrichment, and manipulanda. Environmental enrichment objects were selected to
154 minimize chances of pathogen transmission from one animal to another and from animals to
155 care staff. While on study, all animals were evaluated by trained animal care staff at least twice
156 daily for signs of pain, distress, and illness by observing appetite, stool quality, activity level,
157 physical condition. Animals exhibiting abnormal presentation for any of these clinical
158 parameters were provided appropriate care by attending veterinarians. Prior to all minor/brief
159 experimental procedures, animals were sedated using ketamine anesthesia, which was
160 reversed at the conclusion of a procedure using atipamizole. Animals undergoing surgical
161 delivery of fetuses were pre-medicated with ketamine and general anesthesia was maintained
162 during the course of the procedure with isoflurane gas using an endotracheal tube. Animals
163 were monitored regularly until fully recovered from anesthesia. Delivered fetuses were
164 anesthetized with ketamine, and then euthanized by an intramuscular or intraperitoneal
165 overdose injection of sodium pentobarbital.

166 **Methods**

167 Care and Use of Macaques

168 Female cynomolgus macaques were housed and cared for by Wisconsin National Primate
169 Research Center (WNPRC) staff in accordance with the regulations and guidelines outlined in
170 the Animal Welfare Act and the Guide for the Care and Use of Laboratory Animals. All animals

171 were systematically monitored twice daily by WNPRC staff and veterinarians, and additionally
172 as needed. All observations were entered into the colony electronic health records. Menstrual
173 cycle monitoring was performed through daily monitoring and vaginal swabbing by WNPRC
174 animal care. Blood samples were collected using a needle and syringe or vacutainer system
175 from the femoral or saphenous vein. This study was approved by the University of Wisconsin-
176 Madison College of Letters and Sciences and the Vice Chancellor Office for Research and
177 Graduate Education Institutional Animal Care and Use Committee (IACUC).

178

179 Cesarean section and tissue collection (fetectomy)

180 All fetal and maternal tissues were surgically removed at laparotomy. These were survival
181 surgeries for the dams. The entire conceptus within the gestational sac (fetus, placenta, fetal
182 membranes, umbilical cord, and amniotic fluid) was collected and submitted for necropsy. The
183 fetus was euthanized with an overdose of sodium pentobarbital (50 mg/kg). Tissues were
184 carefully dissected using sterile instruments that were changed between each organ and tissue
185 type to minimize possible cross contamination. Each organ/tissue was evaluated grossly in situ,
186 removed with sterile instruments, placed in a sterile culture dish, and sectioned for histology,
187 bacterial burden assay, or banked for future assays. Biopsies of the placenta, decidua, maternal
188 liver, spleen, and a mesenteric lymph node were collected aseptically during surgery into sterile
189 petri dishes, weighed, and further processed for bacterial burden and histology. Maternal
190 decidua was dissected from the maternal surface of the placenta.

191

192 Necropsy and tissue collection

193 For terminal studies, animals were euthanized with an overdose of sodium pentobarbital (50
194 mg/kg). At 14 days post infection (dpi), non-pregnant subjects were sedated, euthanized, and
195 sterile instruments were used for the dissection and collection of colon, cecum, jejunum, and
196 uterine epithelium tissues during the gross post-mortem examination. Each tissue was
197 evaluated grossly *in situ*, removed with sterile instruments, placed in a sterile culture dish, and
198 sectioned for histology, bacterial burden assay, or banked for future assays.

199

200 Subjects

201 Thirty-two adult female cynomolgus macaques (*Macaca fascicularis*) were used in this study
202 (Supplementary Table 1). Four of the eight pregnant cohort of Lm-inoculated animals have
203 previously been described [1]. Animals were housed in group 3 or group 4 enclosures in
204 accordance with the Animal Welfare Act and its regulations and the Guide for the Care and Use
205 of Laboratory Animals. All animals were monitored twice daily by an animal researcher or
206 veterinary technician for evidence of disease or injury. Body weight was monitored to ensure
207 that all animals remained in properly sized cages. Animals were fed commercial nonhuman
208 primate chow (2050 Teklad Global 20% Protein Primate Diet, Harlan Laboratories, Madison, WI)
209 twice daily, supplemented with fruits or vegetables and a variety of environmental enrichment.
210 All animals used were actively mensing and had not entered menopause. Menstrual cycle
211 assessment was performed through daily monitoring and vaginal swabbing by WNPRC animal
212 care personnel. The age of subjects ranged from 5-13 years.

213

214 *Listeria* Inoculation

215 The methodology and outcomes of Lm inoculation during pregnancy for subjects included in
216 this study have been previously published[2]. Some of these animals were subsequently
217 included as nonpregnant subjects in the current study. No antibiotics were administered to any
218 animals during the course of pregnant or nonpregnant inoculation.

219 *Listeria monocytogenes* (Lm; Lm2203 [21]) was cultured at 37 °C in Tryptic Soy Broth
220 (Becton Dickinson, Sparks, MD). Each inoculum containing 1×10^8 colony forming units
221 (CFU)/ml of Lm at log-phase growth was diluted in 10mL of whipping cream and delivered via
222 oral gavage through a soft intragastric feeding tube under sedation (n=16), as previously
223 described [1, 2, 22]. Control inoculations (mock) consisted of 10mL of whipping cream alone
224 with no Lm (n=14). These 30 subjects are organized into four cohorts (Supplementary Table 1),
225 with Cohort 1 including non-pregnant controls, Cohort 2 including non-pregnant Lm-exposed
226 females, Cohort 3 including pregnant control dams, and Cohort 4 including pregnant Lm-
227 exposed dams.

228 To confirm the dose of Lm given to each subjects, 500 μ L of the 10mL whipping cream
229 inoculum was serially diluted in phosphate-buffered saline (PBS; Catalog #P5368, Sigma-Aldrich,
230 St. Louis, MO), plated on Trypticase soy agar with 5% sheep blood (Becton Dickinson, Sparks,
231 MD), and quantified after overnight incubation at 37°C.

232

233 Fecal Shedding

234 Lm fecal shedding and bacteremia were evaluated during the 14-day period following Lm
235 inoculation (Supplemental Fig. 1), as previously described [1, 2]. Fecal samples were collected
236 from cage pans daily, starting on the day of inoculation prior to the first dose of inoculum being

237 given and ending on the day of tissue collection. Samples were collected from cage pans. Serial
238 fecal dilutions in PBS were plated on Modified Oxford Medium (Fischer Scientific Hampton, NH)
239 and incubated at 37°C for 48 hours to identify and quantify Lm. The number of colonies was
240 quantified at both 24 hours and 48 hours after plating.

241

242 Diarrhea Observation and Scoring

243 Fecal material was assessed for diarrhea and numerical values were assigned as follows: 0 = no
244 abnormal observations, 1= soft feces, 2 = diarrhea, and 3= wet diarrhea.

245

246 Bacteremia

247 Whole peripheral blood samples were collected every 2-3 days and processed by the Clinical
248 Pathology Laboratory at the School of Veterinary Medicine at the University of Wisconsin-
249 Madison[1, 2]. BD Bactec Peds Plus/F blood culture bottles (Becton Dickinson Diagnostic
250 Systems, Sparks, MD) were aseptically inoculated with 3 mL whole blood per bottle. The
251 samples were then incubated at 35°C in a BD Bactec 9050 blood culture system (Becton
252 Dickinson Diagnostic Systems, Sparks, MD) until a positive signal was observed or for a
253 maximum of 5 days. Recovered isolates were identified by matrix-assisted laser desorption-
254 ionization time-of-flight (MALDI-TOF) mass spectrometry (Bruker Daltonics, Billerica, MA).

255 Sample extraction and strain identification was performed following manufacturer's instruction.
256 A score of >2 indicated genus and probable species identification.

257

258 Tissue Collection and Processing

259 Tissues from Cohorts 1 and 2 nonpregnant monkeys were collected at 14 dpi. The monkeys
260 were anesthetized with ketamine hydrochloride (10-15 mg/kg, iv) and euthanized with an
261 overdose of pentobarbital sodium (a minimum of 25 mg/kg, iv). The uterus and selected
262 segments of the GI tract were removed, and the endometrium was scraped from the
263 myometrium for analysis. The colon, cecum, jejunum, and endometrium were collected in
264 addition to liver, spleen, and lymph nodes (Supplemental Table 2). Segments of collected
265 tissues were fixed and embedded for histology (Supplemental Fig 3) or homogenized for
266 bacteriological analysis on blood agar plates as previously described [23].

267

268 Tissue collection from Cohorts 3 and 4 pregnant monkeys was described previously [1,
269 2]. Briefly, following inoculation, if fetal demise was indicated by absence of heartbeat, fetal
270 and maternal tissues were promptly collected at laparotomy. The placenta, decidua, and fetal
271 tissues were collected in addition to maternal liver, spleen, and lymph nodes (Supplemental
272 Table 2).

273

274 Histology

275 Tissues collected for histology were fixed in 4% PFA overnight followed by 70% ethanol
276 overnight, and then processed and embedded in paraffin. 5 μ m sections were stained with H&E
277 and assessed by veterinary pathologists blinded to treatment groups. Tissues were evaluated
278 for the presence or absence of pathologic changes, normal anatomic variations, and
279 inflammation. Organs considered to have no significant pathologic or inflammatory changes
280 and were scored as 0. Severity (Supplemental Table 3) was determined by the extent and

281 distribution of inflammation, vascular change (infarction, thrombosis, pregnancy-associated
282 vascular remodeling and/or the lack thereof), and non-vascular necrosis across the tissue
283 section or organ (multiple slides were necessary to evaluate the placenta). Scores were
284 averaged and compared between treatment groups as previously reported [24].

285

286 DNA extraction, PCR, and sequencing

287 Fecal samples were analyzed at 4 timepoints from all but one individual animal in the 4 cohorts
288 (0, 3-5, 7-10, and 14 dpi); two samples were lost for one animal in the pregnant control cohort
289 (ID 24A & 24B). The DNA extraction methods utilized in this analysis were previously described
290 in detail [25]. Bacterial DNA was isolated using a QIamp PowerFecal DNA Isolation Kit (Qiagen,
291 Hilden, Germany). A negative control was inserted periodically in the workflow after blocks of
292 16 samples to test for methodological contamination during processing. All negative controls
293 yielded an undetectable amount of DNA. DNA was quantified on a Qubit 2.0 Fluorometer
294 (Thermo Fisher Scientific, Waltham, MA, USA) using Qubit fluorometric quantitation reagents
295 (Thermo Fisher Scientific, Waltham, MA, USA).

296

297 The fourth hypervariable (V4) region of the bacterial 16S rRNA gene was amplified using
298 the one-step polymerase chain reaction (PCR) approach with barcoded V4 primers (F-
299 GTGCCAGCMGCCGCGGTAA; R- GGACTACHVGGGTWTCTAAT). Each primer pair was barcoded
300 with individual custom indices to facilitate demultiplexing, as previously described [26]. Each
301 PCR reaction consisted of 12.5 μ l KAPA 2x HiFi Master Mix (KAPA Biosystems, Wilmington, MA,
302 USA), 0.5 μ l of 10 μ M forward primer, 0.5 μ l of 10 μ M reverse primer and up to 11.5 μ l of

303 10ng/μl DNA to a total volume of 25 μl with nuclease-free water (IDT, Coralville, Iowa, USA).
304 Amplification conditions on a C1000 Touch™ thermal cycler (Bio-Rad Laboratories, Hercules, CA,
305 USA) were 95°C for 3 min, 35 cycles of 95° for 30 s, 55°C for 30 s, and 72°C for 30 s, followed by
306 a final extension at 72°C for 5 min. The PCR products were purified by running on a 1% low-melt
307 agarose gel (National Diagnostics, Atlanta, GA) stained with SYBR Safe DNA Gel Stain
308 (Invitrogen, Waltham, CA) to isolate amplicons of the expected size (~380 bp). DNA bands at
309 ~380 bp were excised and purified utilizing the Zymo Gel DNA Recovery Kit (Zymo Research,
310 Irvine, CA, United States). Purified PCR products were equimolar pooled for a final library
311 concentration of 11 pmol/l. Sequencing was performed on an Illumina MiSeq (Illumina, San
312 Diego, CA, USA) with 10% PhiX control using a 500-cycle v2 (2x250 paired-end) sequencing kit
313 and custom sequencing primers [26].

314

315 16S rRNA sequencing data processing

316 Raw sequencing data were processed using mothur [27] (version 1.43.0) and Qiime 2 [28] .
317 Contigs (overlapping sequences) were aligned using the SILVA database (v132) [29] and low-
318 quality reads and chimeras were detected by UCHIME and removed. Sequences were assigned
319 to operational taxonomic units (OTUs) with a threshold of 97% similarity using the SILVA
320 database. OTUs with less than 0.01% overall abundance within the dataset were considered
321 rare and were removed from the dataset. After rare OTUs were filtered, each sample each
322 sample was subsampled to 3,200 reads to normalize against the sample with the lowest
323 number of sequences.

324

325 Statistical analysis

326 Normalized OTU counts were used to determine diversity metrics. Diversity metrics were
327 calculated for all samples using Qiime and RStudio (v2023.5 and v2023.03 respectively) [30]. All
328 alpha- (within sample diversity) and beta-diversity (between sample comparisons) metrics and
329 relative abundance measures were calculated using the phyloseq package in R [31].

330 To assess the stability of alpha-diversity measures by infection status, we compared the
331 mean (by cohort) of observed OTUs using Shannon's Diversity Index. We additionally assessed
332 the change in microbial composition between cohorts, examining both
333 pregnancy/nonpregnancy and infection status separately. To meet the objective of determining
334 changes in the microbiota following experimental challenge, microbiota composition, alpha
335 diversity metrics, the Bray-Curtis [32] and weighted Unifrac [33] beta diversity metrics, and the
336 relative abundance of dominant genera were compared between cohorts, reproductive state,
337 and APO. Common dominant genera within Cohort 4 were evaluated for effects of bacteremia,
338 tissue infection with Lm, and APO on the RA using the generalized linear mixed models
339 described above, accounting for calf as a random effect. Alpha was set at 0.05 for all statistical
340 analyses.

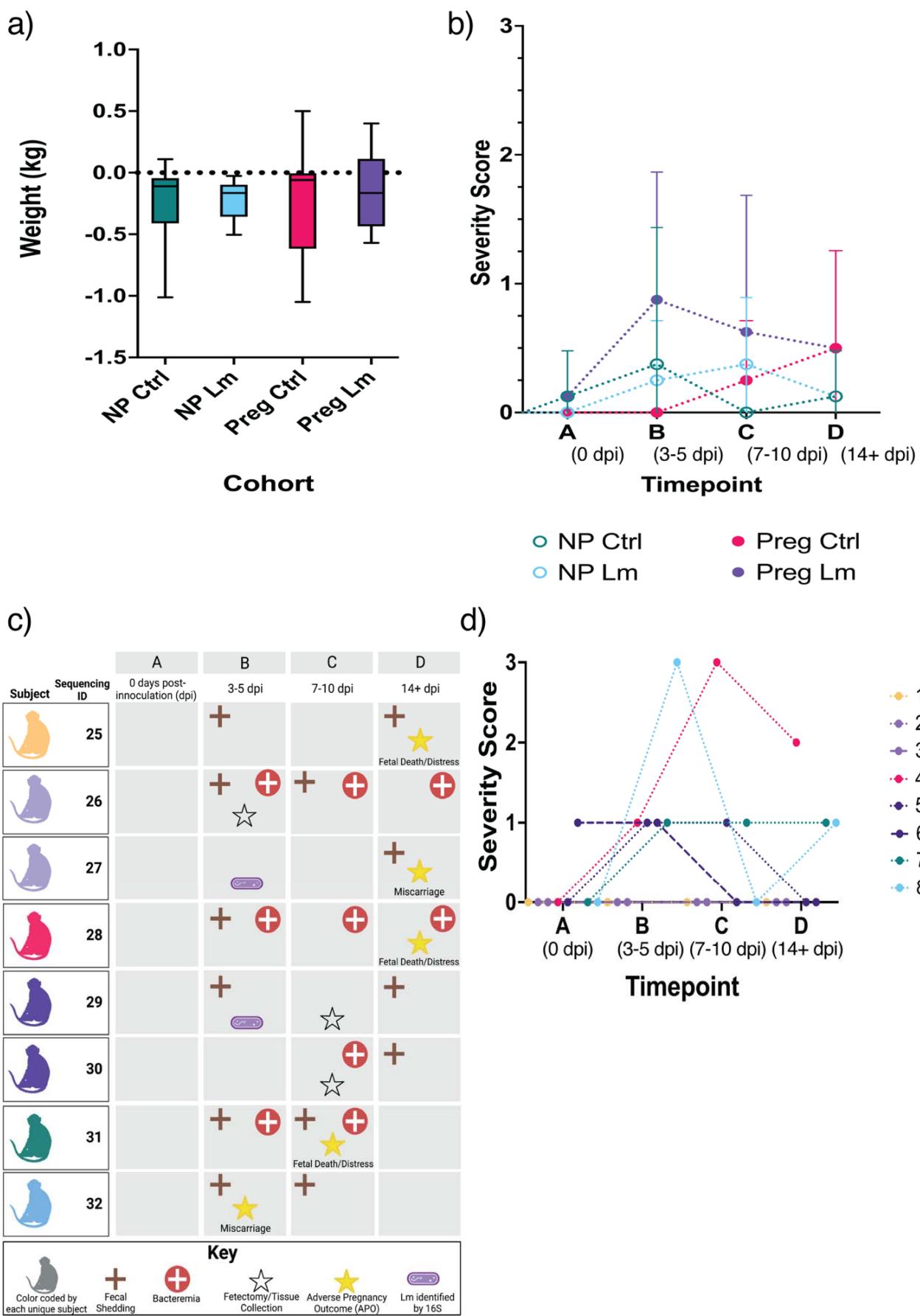
341 Differences in the Bray-Curtis and weighted Unifrac index between groups were used to
342 create a sample-wise distance matrix that was visualized using multidimensional scaling (MDS).
343 Non-metric MDS (NMDS) was used if the base stress of creating the ordination plots was non-
344 linear; metric MDS was utilized if the base stress followed linear regression. Equality of beta
345 dispersion between groups was assessed using the betadisper function of the vegan package.

346 Bray-Curtis and weighted Unifrac was compared between treatment groups (i.e., Cohorts),
347 Reproductive State, and APOs using a permutational multivariate analysis of variance
348 (PERMANOVA) as implemented in the vegan package.

349 Statistical analysis for observational data including diarrhea, weight change, and tissue
350 pathology were performed using GraphPad Prism version 9.0.0 for Mac GraphPad Software,
351 San Diego, California USA (<http://www.graphpad.com>).

352

353 **Results**


354 We utilized a non-human primate model of listeriosis during early gestation and normal
355 menstrual cycles. The well-being of experimental subjects was monitored by evaluation of
356 weight during the period of study. One-way ANOVA followed by Tukey's multiple comparisons
357 test revealed no significant difference in weight change (between timepoint A & D) among the
358 experimental cohorts (Fig 1a). Subjects were also monitored closely for signs of gastrointestinal
359 upset. The incidence and severity of diarrhea was monitored in all groups (Fig 1b). While there
360 was occasional diarrhea in some of the subjects, there were no significant differences between
361 groups with comparison by exposure to Lm or during pregnancy (Fig 1d). Along with daily fecal
362 sample collections, feces type and severity were monitored closely (Fig 1b). Scoring was
363 conducted as mentioned above (See Methods). Statistical analysis of collected data using three-
364 way ANOVA followed by Tukey's multiple comparisons test revealed no significant associations
365 of diarrhea severity with treatment group, reproductive state, Lm exposure, or subject
366 (Supplemental Table 4).

367

368 To characterize the progress of listeriosis and dissemination of bacteria, we monitored
369 fecal shedding, bacteremia, bacterial burden within tissues, and pregnancy outcomes. The non-
370 pregnant cohort displayed no fecal shedding, dissemination, or pathology. As only the
371 pregnant Lm-exposed cohort had observable of listeriosis, we summarized and organized their
372 data in Fig 1c, which lists the 8 experimental subjects in the Pregnant Lm cohort on the left.
373 Within this cohort, all subjects shed Lm in the feces at some time during the 2 weeks following
374 inoculation. Four of the eight subjects had bacteremia, and five of the eight subjects had fetal
375 demise or miscarriage (Fig 1c). While fecal Lm was identified by culture-based methods in all of
376 Cohort 4, Lm was identified by sequencing-based methods in the same individual who was
377 utilized twice in this protocol (subjects 27 & 28), and both samples were during 3-5 dpi
378 (Supplemental Fig 4).

379

380 Although all animals in Cohort 4 had identifiable fecal carriage of Lm, using the diarrhea
381 scoring mentioned previously (Fig 1d) revealed no association of diarrhea severity with subject
382 or timepoint (A-D) (Sup Table 4).

384 **Figure 1a.** A violin plot depicting the average change in weight between timepoint A and D.

385 Each cohort is color coded; these colors are carried through subsequent figures. The mean

386 weight change is indicated by the horizontal line in each plot and standard error of the mean

387 (SEM) denoted by bars.

388 **Figure 1b.** A graph with the average diarrhea severity score of each cohort on the y-axis and the

389 timepoint (A-D) during the experiment on the x-axis. Average values are depicted by circles and

390 SEM denoted by bars. Each cohort is color coded. A = pre-inoculation, B = 3-5 days following

391 inoculation, C = 7-10 following inoculation, and D = tissue collection and conclusion of the

392 experiment.

393 **Figure 1c.** Summary table of fecal shedding of Lm, bacteremia, and occurrence pregnancy

394 outcomes of each subject in the pregnant Lm cohort. Each subject is color coded. Some

395 subjects were utilized in the experimental protocol twice and share a color code. The Key at the

396 bottom explains each symbol. The table depicts fecal and bacterial shedding of Lm throughout

397 timepoints A-D, from left to right. The outcome of each pregnancy is denoted by a hollow star

398 indicating tissue collection and a filled star indicating APO. Furthermore, those subject with Lm

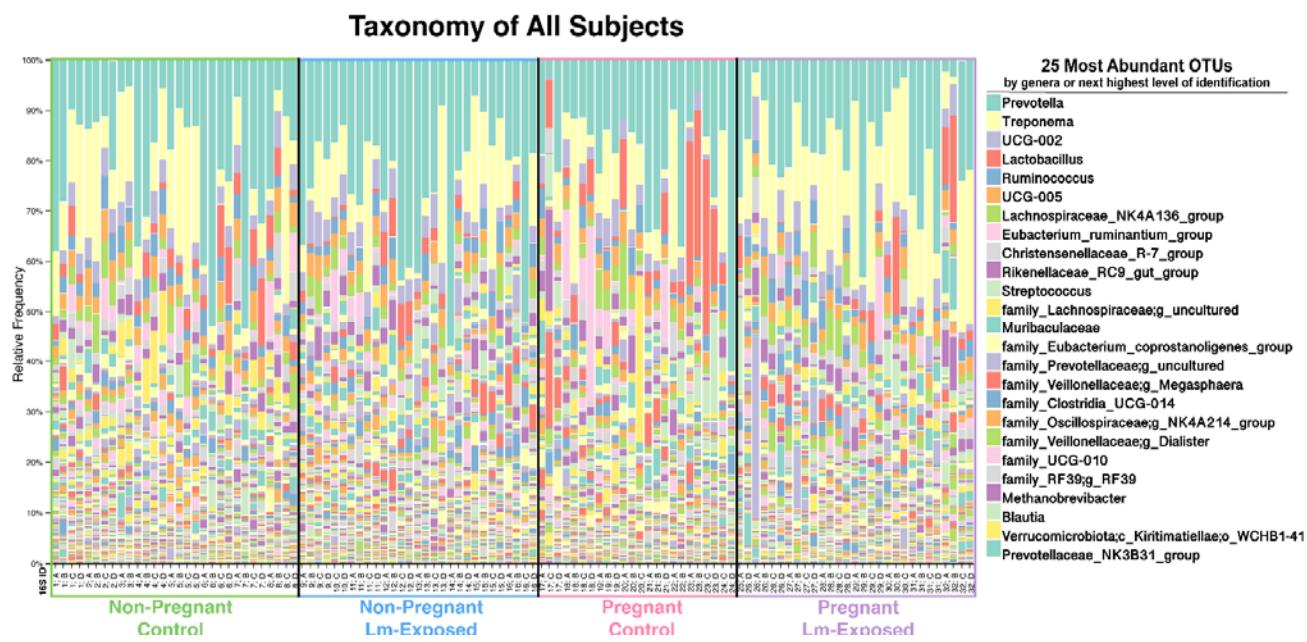
399 identified by sequencing are indicated by a bacterial rod.

400 **Figure 1d.** Diarrhea severity score of each subject within Cohort 4 plotted against the

401 experimental timepoint (A-D). Each subject is color coded. The dashed lines indicate the same

402 subject utilized a second time within the experimental protocol A = pre-inoculation, B = 3-5

403 days following inoculation, C = 7-10 following inoculation, and D = tissue collection and


404 conclusion of the experiment.

405

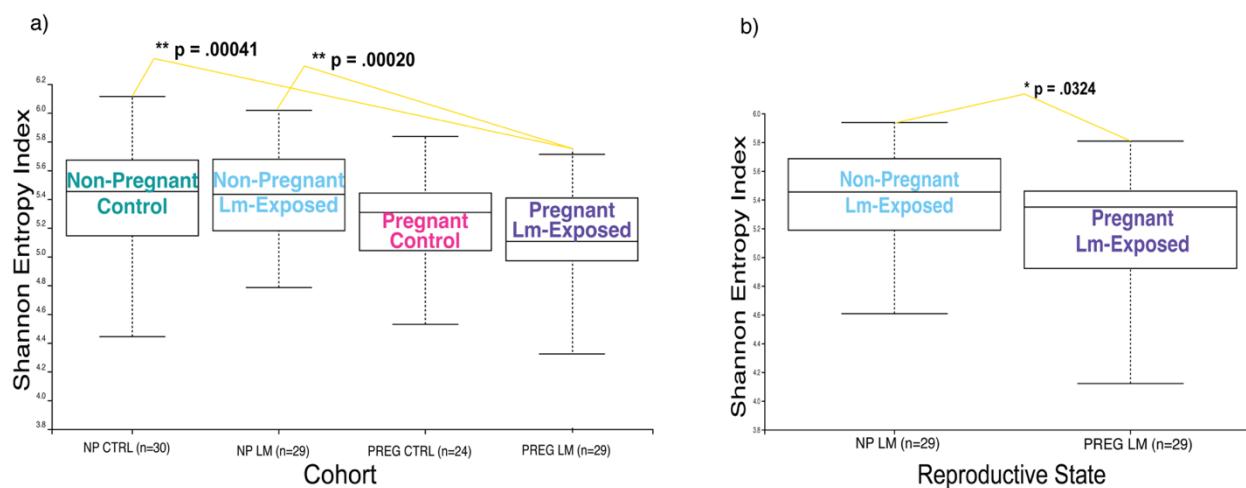
406 To assess the impact of Lm dissemination, we statistically evaluated pathology in Lm
407 target tissues (liver, spleen, lymph nodes) from all experimental cohorts, as well as colon,
408 cecum, jejunum, and endometrial lining from the non-pregnant cohorts and the decidua,
409 placenta, and fetal tissues for the pregnant cohorts (Supplemental Fig 3). Pathology severity
410 was assessed by ACVP board-certified WNPRC Veterinary Pathologists and assigned a score
411 based on our previously documented rubric (Sup Table 3)[2]. We evaluated the data using 3-
412 way ANOVA statistical analysis to assess any significant associations among exposure,
413 reproductive state, and tissue pathology. As expected, based on previously published data,
414 there was a significant increase in the pathology scores in the decidua, placenta and fetal
415 tissues for Lm infected versus uninfected animals [1]. In the nonpregnant cohort, Lm had no
416 effect on the endometrium or gastrointestinal tissues. Although there were no significant
417 differences in histopathology in the spleen, there were significantly lower liver and lymph node
418 pathology scores in non-pregnant Lm-exposed subjects, compared to their pregnant
419 counterparts. The reasons for these isolated differences are not known at this time.

420

421 From the collected feces, a total of 128 samples were sequenced. Bacterial amplicon
422 sequencing of the 16S rRNA gene generated a total of 3,656,601 raw sequences with an
423 average of $28,567 \pm 3,505$ sequences per sample (mean \pm SE; range 7,757–13,859). Sequence
424 clean-up in Qiime2 resulted in a total of 3,651,002 sequences for an average of $32,589 \pm 3,312$
425 sequences per sample (range 19,172–25,796). After normalization, 112 samples remained
426 consisting of 30 non-pregnant controls, 29 non-pregnant Lm-exposed, 23 pregnant controls,
427 and 29 pregnant Lm-exposed.

428

429


430 **Figure 2** Taxonomy Bar plot of 25 most abundant OTUs in fecal samples from experimental
431 cohorts. Each cohort is indicated along the x-axis, and the samples from individual animals as
432 described in Fig. 1 are presented chronologically (e.g., samples 1A, 1B, 1C and 1D are the first
433 presented, followed by 2A, 2B etc.). The top 25 most abundant OTUs are listed at the right in
434 order of highest abundance and classified by the highest level of identification. Each cohort is
435 separated by black bars.

436

437

438 Figure 2 presents the 25 most abundant OTUs to the highest level of taxonomic
439 identification. There was considerable inter- and intra-animal individuality. The data indicate a
440 high abundance of *Prevotella* spp. and *Treponema* spp. which are known to be predominant in
441 NHPs, compared to humans[34]. The other abundant OTUs are similar to those found in the
442 human gut microbiome [35], indicating that this a highly translatable model.

443

444

445 **Figure 3a** Box plot of the alpha-diversity measure by Shannon Entropy Index of the fecal
446 microbiota in the four experimental cohorts. The average H-value is presented with bars
447 indicating SEM. Sample size is listed on the x-axis. Significance is denoted by asterisks and the
448 significantly different cohorts are connected by yellow lines. * P ≤ 0.05, ** P ≤ 0.01.

449 **Figure 3b** Box plot of the alpha-diversity measure by Shannon Entropy Index of the fecal
450 microbiota in the Lm-exposed experimental cohorts only. The average H-value is presented
451 with bars indicating SEM. Sample size is listed on the x-axis. Significance is denoted by asterisks
452 and the significantly different cohorts are connected by yellow lines. * P ≤ 0.05, ** P ≤ 0.01.

453

454

455 We evaluated the community richness of our maternal intestinal environments by
456 determining alpha-diversity. Alpha-diversity is a measure of the relative abundances of the
457 different species that make up the richness of a sample and is represented by assigning a value
458 (H-value) for the species in a particular ecosystem. There are several metrics by which alpha-
459 diversity can be measured. We utilized the Shannon Diversity Index to estimate species richness
460 and evenness or the average diversity of a species within a sample on a local scale. Figure 3
461 illustrates the Shannon Entropy Index (alpha diversity) of the fecal microbiota in the four
462 experimental cohorts. The results demonstrate that the non-pregnant control and non-
463 pregnant Lm-exposed groups were significantly different from the Pregnant Lm-exposed group,
464 but not significantly different from the pregnant control group, suggesting an interaction
465 between the pregnant state and susceptibility to gut dysbiosis during listeriosis (Fig 3a). The
466 data also indicate that Lm by itself does not impact the gut microbiome in the nonpregnant
467 state. Rather, the combined nature of pregnancy and exposure to Lm was associated with
468 significant loss in community richness and diversity (Fig 3b). Furthermore, when examining the
469 Lm-exposed cohort only, there is a significant loss in diversity in the pregnant Lm-exposed vs
470 non-pregnant Lm-exposed cohorts. This confirms the importance of pregnancy in the
471 susceptibility of the pregnant state to dysbiosis with Lm exposure. When examining only the
472 control cohorts, there was no significant impact of pregnancy on alpha diversity (Supplemental
473 Fig 5), underscoring the interaction between reproductive state and Lm exposure.

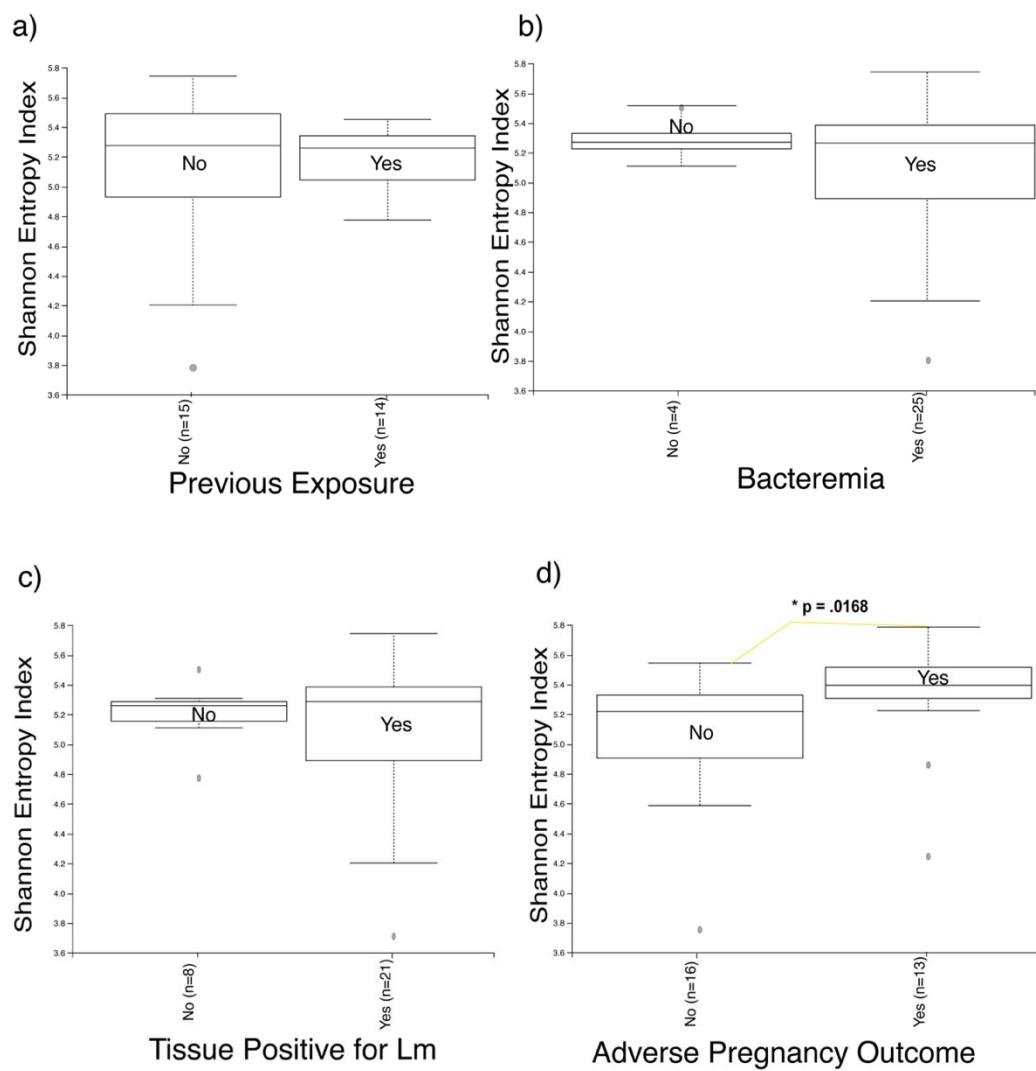
474 We also evaluated whether there was a discernable time-related impact of exposure to
475 Lm on gut microbial richness. Although there was no significant dysbiosis in the pregnant Lm-
476 exposed cohort following introduction of Lm (Sup. Fig 6), there was a statistically significant

477 difference between timepoints C (7-10 days post-inoculation) and D (14+ days post-inoculation)

478 within the nonpregnant Lm-exposed cohort (Sup. Fig. 5). Perhaps the increase in alpha diversity

479 at 7-10 dpi represents a restoration of diversity following resolution of Lm.

480 Because the pregnant Lm-exposed cohort 4 was the only cohort to exhibit signs of

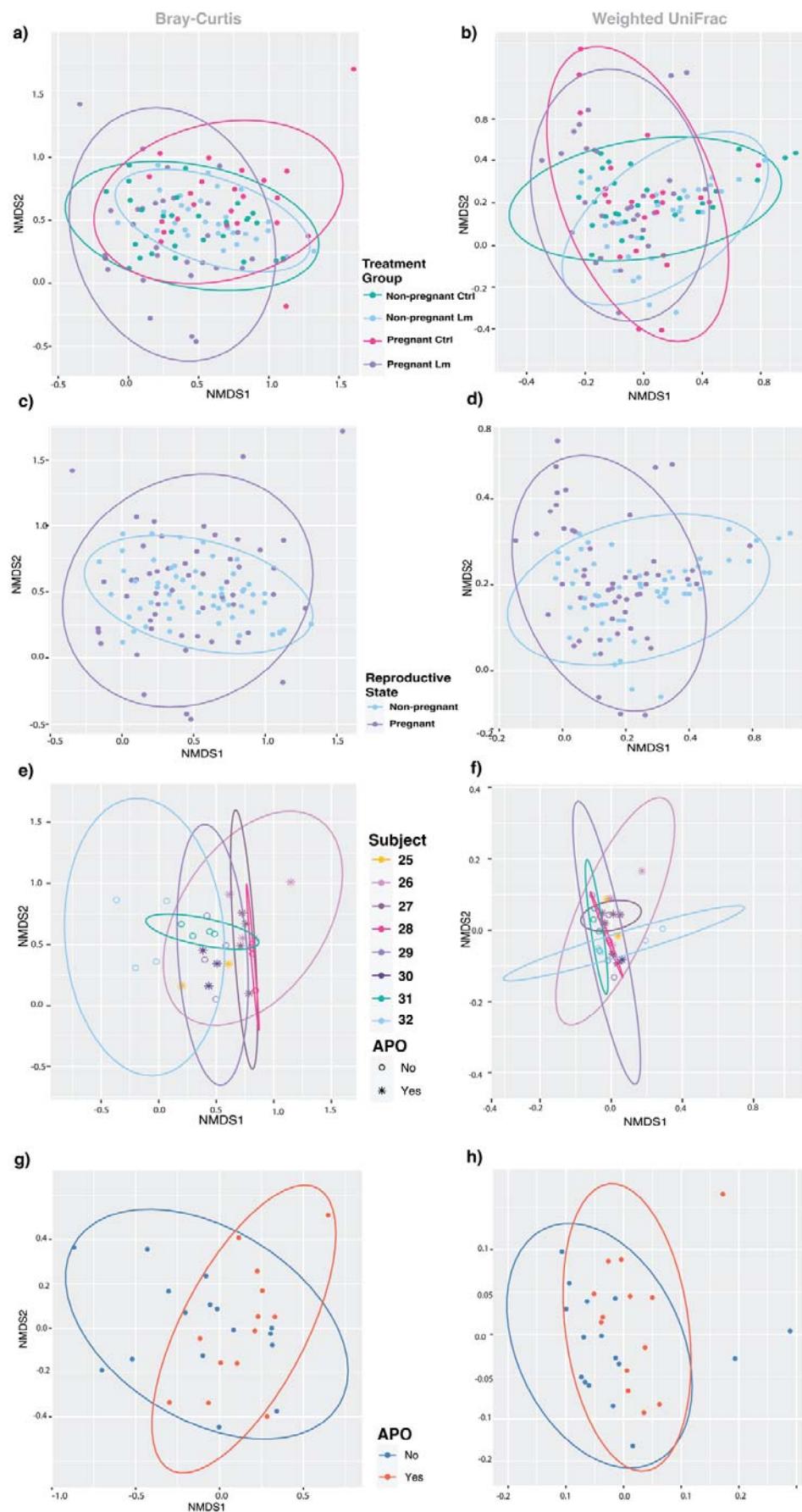

481 listeriosis, we evaluated alpha diversity of Cohort 4 in the in regard to pregnancy outcomes,

482 bacteremia, tissue bacterial burden, and previous exposure to Lm. There were no significant

483 changes in alpha diversity associated with previous exposure, bacteremia, or bacterial burden

484 (Fig 4a-c). However, there was a significant increase in alpha diversity in those individuals who

485 had APOs (miscarriage, intrauterine fetal demise) compared to subjects that did not (Fig 4d).



486

Tissue Positive for Lm

Adverse Pregnancy Outcome

487 **Figure 4** Alpha Diversity measured by Shannon Entropy Index of the Pregnant Lm-Exposed
488 cohort evaluated with regard to previous exposure(4a), bacteremia(4b), tissue bacterial
489 burden(4c), and adverse pregnancy outcome(4d). Fecal shedding of Lm was not analyzed as all
490 subjects were positive for shedding. The average H-value is presented as box plots with bars
491 indicating SEM. "No" indicates negative and "Yes" indicates positive for Previous Exposure,
492 Bacteremia, Tissue positive for Lm, or occurrence of APO; the respective n is listed on the x-axis.
493 Outliers are marked by a filled circle. Significance is denoted by asterisks and the significantly
494 different cohorts are connected by yellow lines. * $P \leq 0.05$, ** $P \leq 0.01$.

496 **Figure 5a** Beta Diversity by Treatment Group, depicted via principal coordinate analysis (PCA)
497 calculated using Bray-Curtis dissimilarity matrix at Genus level abundances. Ellipses are color
498 coded by cohort and depict 95% confidence grouping.

499 **Figure 5b** Beta Diversity by Treatment Group, depicted via principal coordinate analysis (PCA)
500 calculated using weighted UniFrac analysis at Genus level abundances. Ellipses are color coded
501 by cohort and depict 95% confidence grouping.

502 **Figure 5c** Beta Diversity by Reproductive State, depicted via principal coordinate analysis (PCA)
503 and calculated using Bray-Curtis dissimilarity matrix at Genus level abundances. Ellipses are
504 color coded by cohort and depict 95% confidence grouping.

505 **Figure 5d** Beta Diversity by Reproductive State, depicted via principal coordinate analysis (PCA)
506 calculated using weighted UniFrac analysis at Genus level abundances. Ellipses are color coded
507 by cohort and depict 95% confidence grouping.

508 **Figure 5e** Beta Diversity by Subject of the pregnant Lm-exposed cohort depicted via principal
509 coordinate analysis (PCA) and calculated using Bray-Curtis dissimilarity matrix at Genus level
510 abundances. Occurrence of APO is noted by an asterisk shape. Ellipses are color coded by
511 cohort and depict 95% confidence grouping.

512 **Figure 5f** Beta Diversity by Subject of the pregnant Lm-exposed cohort depicted via principal
513 coordinate analysis (PCA) and calculated using weighted UniFrac dissimilarity matrix at Genus
514 level abundances. Occurrence of APO is noted by an asterisk shape. Ellipses are color coded by
515 cohort and depict 95% confidence grouping.

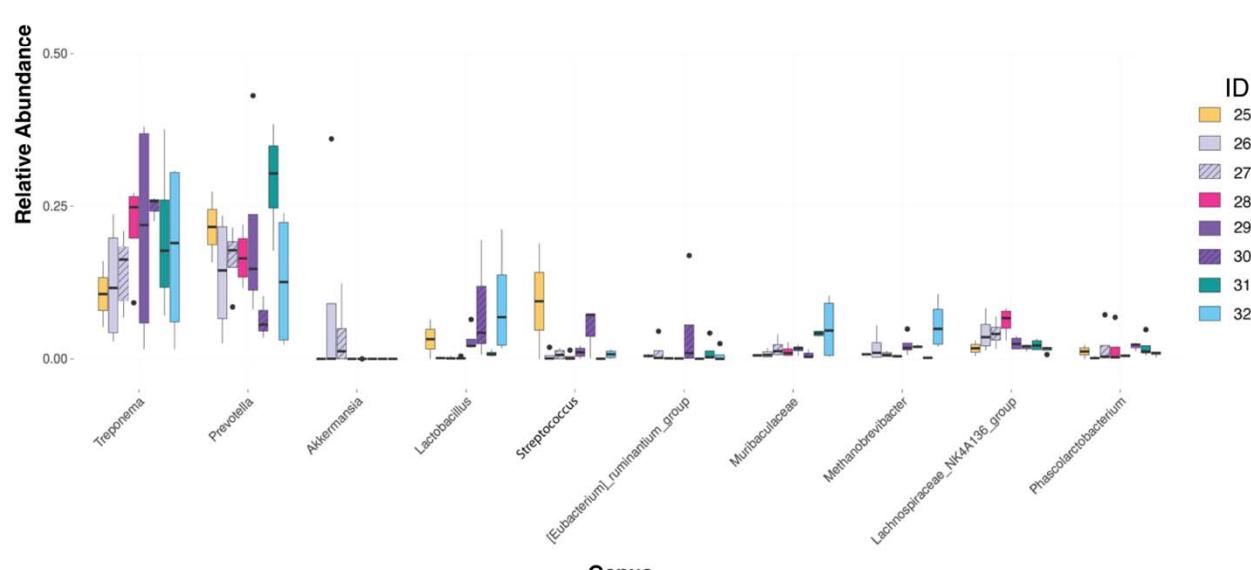
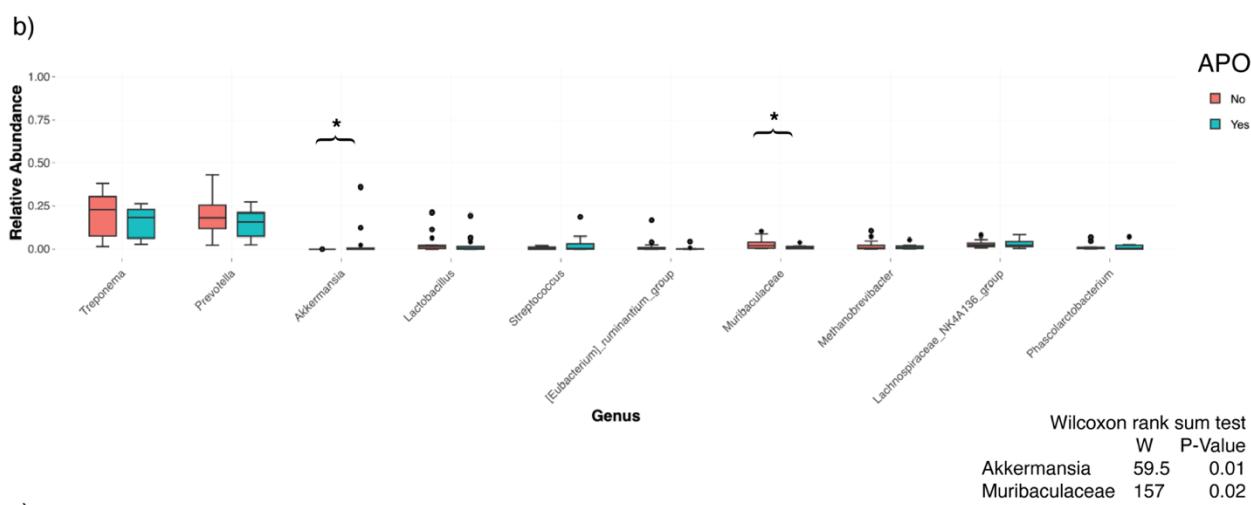
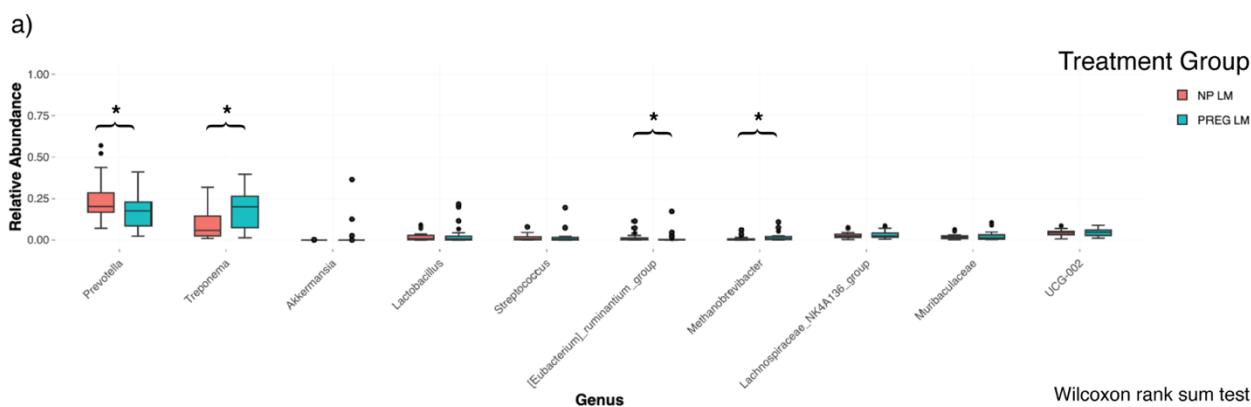
516 **Figure 5g** Beta Diversity by APO, depicted via principal coordinate analysis (PCA) calculated
517 using Bray-Curtis analysis at Genus level abundances. Occurrence of APO is noted by an asterisk
518 shape. Ellipses are color coded by cohort and depict 95% confidence grouping.

519 **Figure 5h** Beta Diversity by APO, depicted via principal coordinate analysis (PCA) calculated
520 using weighted UniFrac analysis at Genus level abundances. Occurrence of APO is noted by an
521 asterisk shape. Ellipses are color coded by cohort and depict 95% confidence grouping.

522

523

524 To determine whether our treatment groups were heterogeneous, we next examined beta-
525 diversity which measures the distance or dissimilarity between each sample pair. Similar to
526 alpha-diversity, there are several metrics for calculating beta-diversity. For our analysis, the
527 Bray–Curtis dissimilarity and weighted UniFrac were employed, as they quantify the
528 compositional dissimilarity between sites based upon relative abundance. UniFrac differs from
529 Bray-Curtis in that it incorporates phylogenetic distances and allows for the option to consider
530 the relative abundance of taxa shared between samples (weighted vs. un-weighted). These
531 statistical analyses are organized in Supplementary Table 4. We then visualized both Bray-Curtis
532 and weighted UniFrac metrics via principal coordinate analysis (PCA) (Fig 5).




533

534 We began by examining all cohorts. Unsupervised clustering and analysis revealed that the
535 data cluster by treatment group (betadisper adj $P=0.001$) and that microbial composition was
536 significantly dissimilar between cohorts ($P = 0.001$) (Figure 5a). Weighted clustering and analysis
537 confirmed clustering (betadisper adj $P=0.005$), but indicated that the microbial composition
538 between treatment groups was similar when accounting for abundances (Figure 5b).

539

540 When evaluating the Lm-exposed cohorts, unsupervised clustering and analysis supported
541 clustering by reproductive state (betadisper adj $P=0.005$) and microbial composition
542 dissimilarity between the pregnant and non-pregnant state ($P = 0.001$) (Fig 5c). Weighted
543 clustering and analysis by reproductive state confirmed clustering (betadisper adj $P=0.007$)
544 but indicated that pregnancy and non-pregnancy shared similar microbial compositions when
545 accounting for abundances (Fig 5d).

546 Finally, we examined the pregnant Lm-exposed cohort separately. While unsupervised
547 clustering and analysis by Subject ID revealed no clusters (Fig 5e), weighted clustering indicated
548 clustering by Subject (betadisper adj $P=0.002$), but that the compositions were similar
549 between subjects (Fig 5f). Furthermore, unsupervised clustering revealed distinct clustering of
550 groups with and without APO (betadisper adj $P=0.018$) with similar compositions between
551 the two groups (Fig 5g). Weighted clustering indicated no significant clustering with occurrence
552 of APO (Fig 5h).

554 **Figure 6a** The box plot illustrates the variation of abundance reads of the ten most abundant
555 taxa across all timepoints (A-D) of the Lm-exposed Cohort 2 & 4. Reproductive state is color
556 coded. OTUs are listed left to right, in order of decreasing abundance. The average abundance
557 of each OTU is indicated by a black line in the middle of the bars and SEM denoted by lines.
558 Outliers are represented by black dots. Significance is denoted by asterisks. * $P \leq 0.05$, ** $P \leq$
559 0.01.

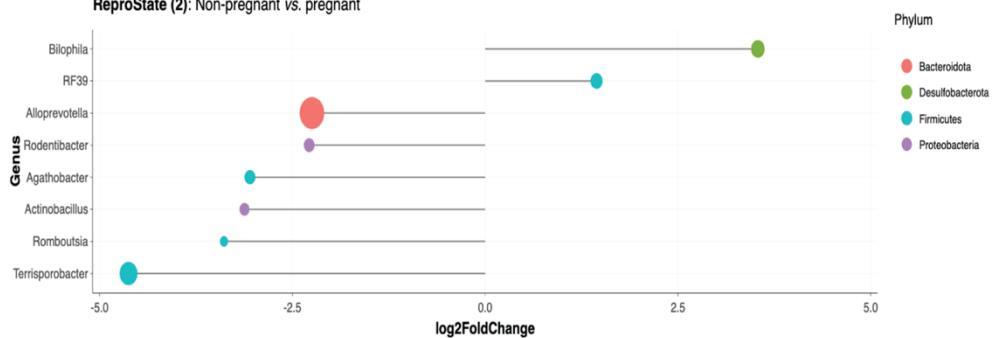
560 **Figure 6b** The box plot illustrates the variation of abundance reads of the most abundant taxa
561 across all timepoints (A-D) of the pregnant Lm-exposed Cohort 4. The occurrence of APOs is
562 color coded. OTUs are listed left to right, in order of decreasing abundance. The average
563 abundance of each OTU is indicated by a black line in the middle of the bars and SEM denoted
564 by lines. Outliers are represented by black circles. Significance is denoted by asterisks. * $P \leq$
565 0.05, ** $P \leq 0.01$.

566 **Figure 6c** The box plot illustrates the variation of abundance reads of the most abundant taxa
567 across all timepoints (A-D) of each subject in the pregnant Lm-exposed Cohort 4. OTUs are
568 listed left to right, in order of decreasing abundance. Subjects are color coded. Those subjects
569 which were used twice in the experiment are indicated with black diagonal stripes within the
570 bars. The average abundance of each OTU is marked by a black line in the middle of the bars
571 and SEM denoted by lines. Outliers are represented by black dots.

572

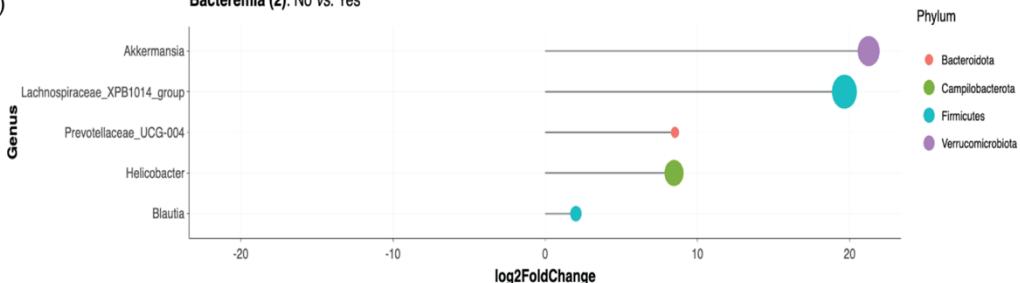
573

574 To identify specific taxa that contributed to the differences indicated by our beta-
575 diversity results, we performed non-parametric t-tests on the most abundant taxa associated
576 with reproductive state and APO (Fig 6). We found four genera that significantly varied
577 between pregnant and non-pregnant Lm-exposed subjects (Fig 6a). There was an increase in
578 *Methanobrevibacter* spp. and *Treponema* spp., and a reduction in the *Eubacterium*
579 *ruminantium* and *Prevotella* spp. in the pregnant subjects, compared to non-pregnant
580 counterparts. There were two genera that significantly varied between those with or without
581 APOs: an increase in *Akkermansia* spp. and a decrease in *Muribaculaceae* spp. (Fig 6b). It is
582 worth noting that *Akkermansia* was only identifiable in two subjects (26 & 27).

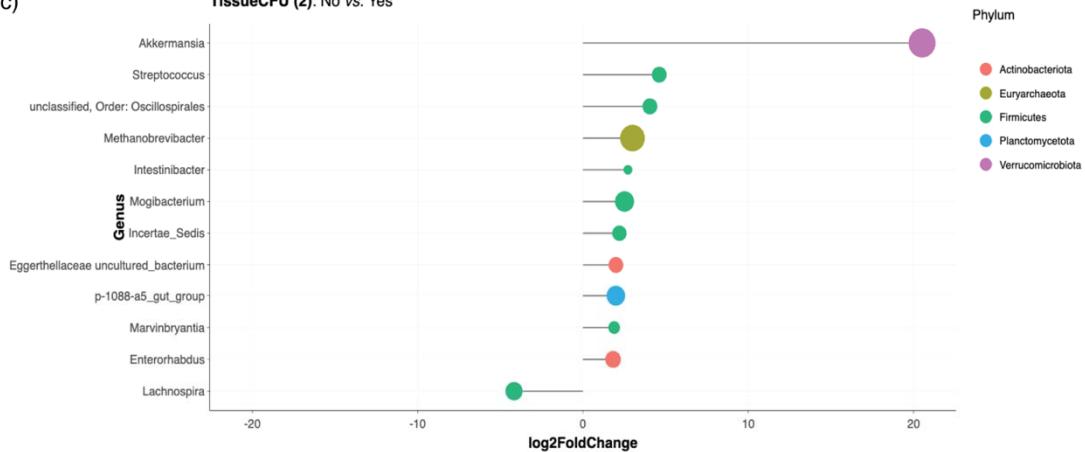

583

584 We also examined the taxa in each subject of the pregnant Lm-exposed cohort (Fig 6c).
585 While there were no significant associations with each subject within Cohort 4, we explored the
586 OTUs with changes in abundance across the experimental period within each subject. We
587 identified minor alterations within the *Treponema*, *Prevotella*, *Akkermansia*, *Lactobacillus*,
588 *Lachnospiraceae*, *Streptococcus*, *Muribaculaceae*, *Eubacterium ruminantium* group,
589 *Methanobrevibacter*, and *Phascolarctobacterium* (Fig 6c). *Akkermansia* also displayed
590 significant changes within the same individual that was used in two pregnancy trials (subjects
591 26 & 27). Interestingly, *Akkermansia* was only identifiable within this individual. *Eubacterium*
592 *ruminantium* had changes in abundance within subject 29, but not subsequent experimentation
593 of that individual, subject 30. *Muribaculaceae* & *Methanobrevibacter* displayed minor changes
594 among all subjects, with increased variability within subject 32 only. *Lachnospiraceae* displayed
595 minor changes in abundance among all subjects, suggesting a potential interaction during

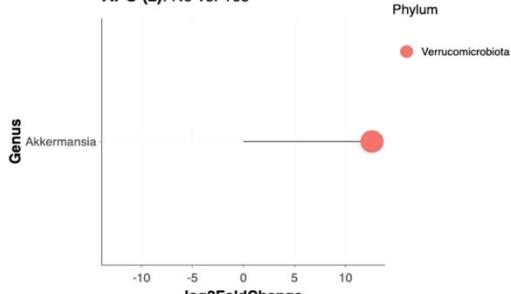
596 gestational listeriosis. Furthermore, fewer changes to *Lachnospiraceae* in subject 27 as
597 compared to subject 26 (same individual) indicate that *Lachnospira* may be more resistant to
598 disruption with prior exposure. *Lactobacillus* and *Streptococcus* abundance changed primarily
599 within subjects 25, 29, 32. *Phascolarctobacterium* had minor alterations in abundance for
600 subjects 25, 27, 28, and 31. Interesting to note, variation within subject 27 was during that
601 subject's second experiment. *Prevotella* and *Treponema* have the largest range in abundances
602 within subjects, indicating that these OTUs are highly susceptible to disruption during
603 gestational listeriosis (Fig 6c). They were detected in all eight of the subjects in this cohort. In
604 conclusion, alterations to low biomass genera including *Treponema*, *Prevotella*, *Akkermansia*,
605 *Lactobacillus*, *Lachnospiraceae*, *Streptococcus*, *Muribaculaceae*, *Eubacterium ruminantium*
606 group, *Methanobrevibacter*, and *Phascolarctobacterium* may be of particular interest in
607 elucidating the associations of maternal GI microbes during gestational listeriosis.


a)

ReproState (2): Non-pregnant vs. pregnant


b)

Bacteremia (2): No vs. Yes


c)

TissueCFU (2): No vs. Yes

d)

APO (2): No vs. Yes

608

609 **Figure 7 (a-d).** Differential Abundance Analysis of OTUs significantly associated with

610 Reproductive State, Bacteremia, Tissue Positive for Lm, and APOs. The change in OTU

611 abundance is presented on a \log_2 scale along the x-axis, and individual OTUs are listed on the
612 left. Color indicates the phylum designation, and the size of the dot illustrates the relative
613 abundance of that phylum within the whole population. Those data points to the right indicate
614 an increase in abundance with the a) pregnant state, b) Lm bacteremia, c) presence of tissue
615 Lm, and d) occurrence of an APO, while negative values indicating a decrease in the specific
616 OTU associated with these parameters. Please note the scale of the x-axis varies by graph. The
617 main findings from this analysis are summarized below (Table 1).

618 To characterize the significant changes in abundance associated with reproductive
619 state during listeriosis, as well as identify changes in low-abundance communities, we
620 performed differential abundance analysis using the DESEQ package in R [36]. Differential
621 analysis allows for comparing read counts between different conditions. We evaluated genera
622 significantly associated with reproductive state, bacteremia, tissue bacterial burden, and APOs
623 (Fig 7). In comparison of reproductive state, *Alloprevotella*, *Terrisporobacter*, *Rodentibacter*,
624 *Actinobacillus*, *Romboutsia*, and *Agathobacter* were decreased, while *Bilophila* and RF39 were
625 increased in the pregnant Lm-exposed cohort, compared to non-pregnant Lm-exposed subjects
626 (Fig 7a). *Blautia*, *Helicobacter*, *Prevotellaceae_UCG-004*, *Akkermansia*, and
627 *Lachnospiraceae_XPB1014_group* were all increased in subjects with bacteremia of the
628 pregnant Lm-exposed cohort (Fig 7b). While *Lachnospira* was decreased, *Methanobrevibacter*,
629 *Streptococcus*, *Marvinbryantia*, *Mogibacterium*, *p-1088-a5_gut_group*, *Intestinibacter*,
630 *Enterorhabdus*, and *Akkermansia* were increased in pregnant Lm-exposed subjects with tissue
631 infection with Lm (Fig 7c). Furthermore, in assessing genera with significant differences in
632 abundance between those subject with APOs, only *Akkermansia* was identified as significantly
633 increased in those with poor outcomes (Fig 7d).

634

635 From our comparisons, we found 23 OTUs whose abundance was significantly
636 associated with reproductive state, Lm bacteremia, Lm infection of the tissues, and APO during
637 gestational listeriosis (Supplemental Table 4). For ease of the reader, the main findings are
638 summarized below (Table 1).

639

OTU	REPRODUCTIVE STATE	BACTEREMIA	TISSUE	APO
<i>Actinobacillus</i>	-3.12			
<i>Agathobacter</i>	-3.05			
<i>Akkermansia</i>		21.25	20.51	12.6
<i>Alloprevotella</i>	-2.25			
<i>Bilophila</i>	3.54			
<i>Blautia</i>		2.02		
<i>Eggerthellaceae uncultured bacterium</i>			1.99	
<i>Enterococcaceae bacterium rf39</i>	1.44			
<i>Enterorhabdus</i>			1.82	
<i>Helicobacter</i>		8.46		
<i>Intestinibacter</i>			2.72	
<i>Lachnospira</i>			-4.17	
<i>Lachnospiraceae xpb1014 group</i>		19.66		
<i>Marvinbryantia</i>			1.89	
<i>Methanobrevibacter</i>			3	
<i>Mogibacterium</i>			2.52	
<i>Pirellulaceae p-1088-a5 gut group</i>			1.99	
<i>Prevotellaceae_ucg-004</i>		8.53		
<i>Rodentibacter</i>	-2.28			
<i>Romboutsia</i>	-3.39			
<i>Streptococcus</i>			4.62	
<i>Terrisporobacter</i>	-4.62			
Unclassified, order: <i>oscillospirales</i>			4.05	

640 **Table 1** Table summarizing the genera of interest indicated by differential abundance analysis

641 first by reproductive state in Lm-exposed Cohorts 2 and 4 (n= 58), then by incidence of

642 bacteremia, bacterial burden, and adverse pregnancy outcome within Lm-exposed pregnant

643 Cohort 4 only (n= 29). The increased or decreased presence of each OTU associated with each

644 factor is indicated as \log_2 -fold change.

645

646 **Discussion**

647 Evidence in the literature supporting microbial interactions during pathogen exposure
648 led us to evaluate the potential impact of listeriosis on maternal GI microbial communities in
649 pregnant and nonpregnant subjects. Contrary to our hypothesis, there was no significant
650 change in GI community richness or abundance associated solely with exposure to Lm in
651 nonpregnant animals. However, in the case of gestational listeriosis, we identified significant
652 remodeling to genera including *Eubacterium ruminantium*, *Methanobrevibacter*, *Prevotella*, and
653 *Treponema*. Our findings further indicate an association of the maternal intestinal commensal
654 microbes with the pathogenesis of listeriosis during pregnancy.

655

656 Lm is a Gram-positive organism, with thick outer layer consisting of a layer of dense
657 peptidoglycan, enabling the bacterium to survive and replicate across a wide range of
658 temperatures, pH and salt concentrations[37]. These traits enable Lm to withstand the highly
659 acidic environment of the stomach, as well as bile within the gallbladder where replication
660 occurs [37, 38]. Further in the gastrointestinal tract, Lm invades host cells, enters the
661 enterocytes and goblet cells in the small intestine, cecum, and colon, and gains access to the
662 lymphatic system through a process known as paracytosis, and ultimately enters the
663 bloodstream[39, 40]. Lm virulence genes that facilitate host cell invasion include the bacterial
664 surface proteins internalin A (InlA) and internalin B (InlB) [40]. Within the host cell, Lm secretes
665 Listeriolysin O (LLO) along with phospholipases PlcA and PlcB to escape from vacuoles into the
666 cytosol, where the bacterium can replicate [39]. Bacterial surface proteins ActA and PrfA
667 promote cell-to-cell spread, furthering infection and evading extracellular immune detection

668 [37]. More recently characterized, InlP has been shown to interact with affadin to invade cells
669 at the MFI [10-12]. Each of these virulence factors aid Lm in invasion, survival, and replication
670 within the host cells.

671

672 Once within the circulatory system, Lm disseminates to the liver, spleen, gallbladder,
673 and the placenta[41, 42]. Within the intervillous space of the placenta, exchange of nutrients
674 from mother to fetus occurs, including amino acids, fatty acids, glucose, and oxygen to
675 underpin fetal development [8]. Through incompletely defined mechanisms, Lm is able to
676 attach to and invade the placental tissues [11, 12]. Once within the placental tissue, Lm may
677 establish severe infection which ultimately causes acute inflammation, chorioamnionitis, and
678 necrosis[9]. Within the gastrointestinal (GI) tract, there are two barriers to infection:
679 mechanical, which consists of epithelial enterocytes and an associated layer of mucus, and
680 environmental, which consists of immune cells, cytokines, metabolites, hormones, and
681 microorganisms [43]. The potential impact of pregnancy on these barriers is poorly understood.

682

683 Interactions between GI bacteria and the host can benefit the host through the
684 modulation of nutrient uptake and metabolism, strengthening the intestinal barrier function,
685 inhibiting pathogen propagation, and regulating host immunity [44-46]. This communication
686 occurs via bacterial metabolic products such as the short-chain fatty acids (SCFA) propionate,
687 butyrate, acetate, formate, and succinate that are produced by degradation and fermentation
688 of dietary fiber, vitamins, and immunomodulatory peptides [47, 48]. SCFAs are the most
689 extensively studied bacterial metabolic pathways in the context of host immunity [49] and are

690 suggested to play a pivotal role in host-microbial crosstalk [50]. SCFAs have been shown to
691 improve epithelial barrier function and immune tolerance and to promotes gut homeostasis
692 [51, 52]. However, the impact of SCFA specifically on Lm remains unknown. Furthermore,
693 SCFAs have been show to increase mucus production by stimulating epithelial mucin-2
694 expression [50]. Butyrate, in particular, plays a critical role in energy intestinal motility,
695 immunomodulation, suppression of inflammation in the gut, and has been further shown to
696 inhibit production of virulence factors in Lm [53]. There is ample evidence that commensal
697 microorganisms confer protection against invading pathogens, and defense against Lm
698 invasion, potentially through the production of SCFAs [19, 54-56]. It is thus important to
699 consider whether the current results provide any insight into whether alterations in the gut
700 microbiota may be complicit in the susceptibility of pregnancy to disseminated listeriosis.

701
702 Our study identified four genera that vary significantly across all timepoints between
703 pregnant and non-pregnant Lm-exposed subjects (Fig 6a). There was an increase in relative
704 abundance within the entire population of *Methanobrevibacter* spp. and *Treponema* spp., but a
705 reduction in the *Eubacterium ruminantium* group and *Prevotella* spp. within in the pregnant
706 subjects, compared to non-pregnant counterparts. However, when examining the differential
707 abundance between reproductive states, we identified decreases in *Alloprevotella*,
708 *Terrisporobacter*, *Rodentibacter*, *Actinobacillus*, *Romboutsia*, and *Agathobacter*, and an
709 increase in *Bilophila* and RF39 (Fig 7a).

710

711 *Methanobrevibacter* is strictly anaerobic archaeabacteria that produces methane through
712 the reduction of carbon dioxide via hydrogen. One study in human pregnancy showed that this
713 genus was differentially abundant between those with zero or high parity, or the number of
714 times a person has given birth [15]. Moreover, that study also showed that as parity increases,
715 microbial remodeling occurs more rapidly [15]. The significance of changes in these taxa
716 remains to be elaborated. Our data further supports that *Methanobrevibacter* is impacted by
717 reproductive state, as seen by an increase in abundance associated with the pregnant cohorts.

718

719 *Treponema*, a member of the phyla Spirochaetota, contains species known to cause
720 syphilis and yaws in humans and genital ulcers in baboons [57]. It has been documented that
721 *Treponema* is a naturally occurring infection in primates, with extensive studies using NHP
722 experimental models of Treponematoses [58]. During pregnancy, infection with *T. pallidum* can
723 lead to early fetal loss, preterm birth, stillbirth, low birth weight, and congenital disease [59]. In
724 the context of listeriosis, there is some evidence that intravenous *T. pallidum* is associated with
725 resistance to intravenous listeria infection [60]. Although the exact mechanisms of this
726 potential interaction are undefined, it is hypothesized that *T. pallidum* triggers cell mediated
727 immunity which prolongs the listericidal activity[61].

728

729 *Eubacterium ruminantium* is a Gram-positive bacterium that plays pivotal role in
730 metabolism, producing methane, butyrate, lactate, and formate [62]. The genus *Eubacterium*,
731 belonging to the phylum Firmicutes, includes a myriad of diverse species that have potential as

732 therapeutic microbes. Although it is a commonly documented in the human gut microbiome,
733 most of the knowledge about this genus originates from ruminant microbiome studies [63-65].

734

735 *Prevotellaceae* is a predominant taxon in the rhesus monkey gut [66] and has been
736 documented as one of the most abundant taxa within the human gut [21]. One study that
737 examined age-associated microbial communities in mice found that Lm infection increased the
738 abundance of *Prevotellaceae* in young-adult mice [67]. Another study found enrichment of
739 *Prevotella* relative to *Listeria* [68]. Our data support these findings, as we identified an increase
740 in the *Prevotellaceae* associated with bacteremia (Fig 5b).

741

742 While there were no significant changes in the relative abundances of top 10 abundant
743 taxa associated with bacteremia or tissue infection with Lm, we were able to identify
744 alterations in less predominant genera. *Blautia*, *Helicobacter*, *Prevotellaceae_UCG-004*,
745 *Akkermansia* and *Lachnospiraceae_XPB1014_group* were all increased in animals with
746 bacteremia (Fig 7b). While *Methanobrevibacter*, *Streptococcus*, *Marvinbryantia*,
747 *Mogibacterium*, *p-1088-a5_gut_group*, *Intestinibacter*, *Enterorhabdus*, and *Akkermansia* were
748 increased in animals with tissue infection of Lm, *Lachnospira* was decreased (Fig 7c). While
749 *Lachnospiraceae* was increased with bacteremia, it was decreased with tissue infection of Lm.
750 The impact of *Lachnospiraceae* on the host physiology is inconsistent across different studies
751 [69]. This genus has been associated with various intra- and extra- intestinal diseases [69].
752 Members of the *Lachnospiraceae* family were shown to be significantly increased in aged mice

753 with listeriosis [67]. It is important to note that members of the *Lachnospiraceae* spp. include
754 some of the most prolific producers of SCFA, a microbial byproduct as discussed above.

755

756 There were marked changes to both *Akkermansia* spp. and *Muribaculaceae* spp. in
757 macaques with APOs (Fig. 7b). Through examining differential abundance, we identified a
758 significant increase of *Akkermansia* in those with poor outcomes (Fig 7d). It is interesting to
759 note that *Akkermansia* was only identifiable at low levels within 2 subjects, the same individual
760 who was utilized twice in the experiment (26 & 27). There is growing interest in *Akkermansia*
761 due to its potential association with intestinal health. Notably, reduced levels of *A. muciniphila*
762 have been observed in patients with inflammatory bowel diseases and metabolic disorders,
763 suggesting it may have potential anti-inflammatory properties [70]. One listeriosis study
764 examined age-associated microbial communities in mice and found that *Akkermansia* were only
765 abundant in infected young-adult mice, with diminished abundance in infected aged mice[67].
766 While the subjects utilized in this study were of reproductive age, it is possible that individual
767 26/27 may have had some circumstances facilitating *Akkermansia* colonization/prevalence.
768 Alternatively, it may have been present in other subjects, but at levels not detectable by 16S
769 rRNA sequencing.

770

771 The changes in gut microbiota may point to potential alternatives to antibiotic
772 treatment in pregnancy. Epidemiological studies also have found an association between
773 antibiotic usage during pregnancy and increased incidence of asthma in the infant [71, 72].
774 While antibiotics can treat listeriosis, the risks associated with this treatment leave clinicians

775 and patients desiring safer alternatives such as preventative biotherapies [73, 74]. One
776 potential treatment is probiotic intervention, either as a daily preventative or through microbial
777 transplant during severe listeriosis [75-77]. Probiotic intervention is clinically used to treat
778 patients with chronic bowel disease, ulcerative colitis, and necrotizing enterocolitis [76].
779 Bacterial genera commonly utilized in probiotic treatments include, but are not limited to
780 *Lactobacterium, Bacillus, Bifidobacterium, Bacteriodes, and Akkermansia* [78]. A review of
781 probiotic administration as a potential maternity supplement highlighted the importance of
782 understanding microbial interactions during pregnancy and their potential impact on
783 reproductive health outcome [79].

784

785 In summary, we identified genera whose abundances are linked with reproductive state,
786 bacteremia, tissue infection, and APO during listeriosis. Of the 23 OTUs of interest that were
787 significantly associated with gestational listeriosis and disease progression (Fig 7), our data
788 indicate that *Treponema, Prevotella, Akkermansia, Eubacterium ruminantium* group, and
789 *Methanobrevibacter* are key genera in understanding the influences of and on the maternal
790 gastrointestinal microbiota in susceptibility to listeriosis.

791 **Conclusions**

792 These findings indicate that dysbiosis is not associated with reproductive state or listeriosis
793 alone. Dysbiosis is significantly associated with the interaction of listeriosis during pregnancy,
794 bolstering the clinical significance of increased infection susceptibility in human gestational
795 listeriosis. This implies that exposure to listeriosis exacerbates the mild disruption that may be

796 associated with the pregnant state. Our data reinforce the previous notion that the pregnant
797 state is uniquely susceptible to listeriosis and builds on our understanding of the potential role
798 of the microbiome in maternal-fetal health through identification of OTUs of primary interest.
799 Further investigation to characterize the gut microbial environment during gestation may
800 provide insight into treating listeriosis during pregnancy.

801

802 **Acknowledgements**

803 We thank the WNPRC Veterinary, Scientific Protocol Implementation, Colony Services, and
804 Pathology Services staff for assistance with animal procedures, including breeding, ultrasound
805 monitoring, and sample collection. We thank Sophia Kathariou of North Carolina State
806 University for generous donation of clinical strain LM2203. We would like to thank Faye
807 Hartmann and the Clinical Pathology Laboratory at the School of Veterinary Medicine for
808 assistance with blood cultures, and Greg Wiepz at the WNPRC for assistance with specimen
809 processing. We sincerely thank Bryce Wolfe for assistance with study design, sample collection,
810 and mentorship.

811

812

813 References

814 1. Wolfe B, Kerr AR, Mejia A, Simmons HA, Czuprynski CJ, Golos TG. Sequelae of Fetal
815 Infection in a Non-human Primate Model of Listeriosis. *Front Microbiol* 2019; 10:2021.

816 2. Bryce Wolfe, J. Wiepz G, Michele Schotzko, I. Bondarenko G, Maureen Durning,
817 A. Simmons H, Andres Mejia, G. Faith N, Emmanuel Sampene, Marulasiddappa Suresh,
818 Sophia Kathariou, J. Czuprynski C, et al. Acute Fetal Demise with First Trimester
819 Maternal Infection Resulting from *Listeria monocytogenes* in a Nonhuman Primate
820 Model. *mBio* 2017; 8:e01938-01916.

821 3. Régis Pouillot, Karin Hoelzer, A. Jackson K, L. Henao O, J. Silk B. Relative Risk of Listeriosis
822 in Foodborne Diseases Active Surveillance Network (FoodNet) Sites According to Age,
823 Pregnancy, and Ethnicity. *Clinical Infectious Diseases* 2012; 54:S405-S410.

824 4. S. Thønning, J.D. Knudsen, H.C. Schønheyder, M. Søgaard, M. Arpi, K.O. Gradel,
825 C. Østergaard, C. Østergaard, M. Arpi, K.O. Gradel, U.S. Jensen, S. Thønning, et al.
826 Antibiotic treatment and mortality in patients with *Listeria monocytogenes* meningitis
827 or bacteraemia. *Clinical Microbiology and Infection* 2016; 22:725-730.

828 5. Olaimat AN, Al-Holy MA, Shahbaz HM, Al-Nabulsi AA, Abu Ghoush MH, Osaili TM,
829 Ayyash MM, Holley RA. Emergence of Antibiotic Resistance in *Listeria monocytogenes*
830 Isolated from Food Products: A Comprehensive Review. *Comprehensive Reviews in Food*
831 *Science and Food Safety* 2018; 17:1277-1292.

832 6. Maciej Sosnowski, Beata Lachtara, Kinga Wieczorek, Jacek Osek. Antimicrobial
833 resistance and genotypic characteristics of *Listeria monocytogenes* isolated from food in
834 Poland. *International Journal of Food Microbiology* 2019; 289:1-6.

835 7. Baquero F, F. Lanza V, Duval M, Coque TM. Ecogenetics of antibiotic resistance in
836 *Listeria monocytogenes*. *Molecular Microbiology* 2020; 113:570-579.

837 8. Lamond NM, Freitag NE. Vertical Transmission of *Listeria monocytogenes*: Probing the
838 Balance between Protection from Pathogens and Fetal Tolerance. *Pathogens* 2018; 7.

839 9. A. Vázquez-Boland J, Emilia Krypotou, Mariela Scotti. *Listeria Placental Infection*. *mBio*
840 2017; 8.

841 10. Eva Harter, Caroline Lassnig, Maria Wagner E, Andreas Zaiser, Martin Wagner,
842 Kathrin Rychli. The Novel Internalins InlP1 and InlP4 and the Internalin-Like Protein InlP3
843 Enhance the Pathogenicity of *Listeria monocytogenes*. *Frontiers in Microbiology* 2019;
844 10.

845 11. Faralla C, Bastounis EE, Ortega FE, Light SH, Rizzato G, Gao L, Marciano DK, Nocadello S,
846 Anderson WF, Robbins JR, Theriot JA, Bakardjieva Al. *Listeria monocytogenes* InlP
847 interacts with afadin and facilitates basement membrane crossing. *PLoS Pathog* 2018;
848 14:e1007094.

849 12. Cristina Faralla, A. Rizzato G, E. Lowe D, Byoungkwan Kim, Cara Cooke, R. Shiow L,
850 I. Bakardjieva A. InlP, a New Virulence Factor with Strong Placental Tropism. *Infection and*
851 *Immunity* 2016; 84:3584-3596.

852 13. Yolanda Sanz. Gut microbiota and probiotics in maternal and infant health. *The*
853 *American Journal of Clinical Nutrition* 2011; 94:2000S-2005S.

854 14. L. Dunlop A, G. Mulle J, P. Ferranti E, Sara Edwards, B. Dunn A, J. Corwin E. Maternal
855 Microbiome and Pregnancy Outcomes That Impact Infant Health. *Advances in Neonatal*
856 *Care* 2015; 15:377-385.

857 15. Berry ASF, Pierdon MK, Misic AM, Sullivan MC, O'Brien K, Chen Y, Murray SJ, Ramharack
858 LA, Baldassano RN, Parsons TD, Beiting DP. Remodeling of the maternal gut microbiome
859 during pregnancy is shaped by parity. *Microbiome* 2021; 9.

860 16. Nunez N, Réot L, Menu E. Neonatal Immune System Ontogeny: The Role of Maternal
861 Microbiota and Associated Factors. How Might the Non-Human Primate Model
862 Enlighten the Path? *Vaccines* 2021; 9:584.

863 17. Ido Solt. The human microbiome and the great obstetrical syndromes: A new frontier in
864 maternal–fetal medicine. *Best Practice & Research Clinical Obstetrics & Gynaecology*
865 2015; 29:165-175.

866 18. Bolte EE, Moorshead D, Aagaard KM. Maternal and early life exposures and their
867 potential to influence development of the microbiome. *Genome Medicine* 2022; 14.

868 19. Sleator RD, Watson D, Hill C, Gahan CG. The interaction between *Listeria*
869 monocytogenes and the host gastrointestinal tract. *Microbiology* 2009; 155:2463-2475.

870 20. Sciences AoM, Weatherall DJ. The use of non-human primates in research: A working
871 group report. 2006.

872 21. Tett A, Huang KD, Asnicar F, Fehlner-Peach H, Pasolli E, Karcher N, Armanini F, Manghi P,
873 Bonham K, Zolfo M, De Filippis F, Magnabosco C, et al. The *Prevotella copri* Complex
874 Comprises Four Distinct Clades Underrepresented in Westernized Populations. *Cell Host & Microbe* 2019; 26:666-679.e667.

876 22. Smith Mary A, Takeuchi K, Brackett Robert E, McClure Harold M, Raybourne Richard B,
877 Williams Kristina M, Babu Uma S, Ware Glenn O, Broderson JR, Doyle Michael P.
878 Nonhuman Primate Model for *Listeria monocytogenes*-Induced Stillbirths. *Infection and*
879 *Immunity* 2003; 71:1574-1579.

880 23. Poulsen K, G. Faith N, Howard Steinberg, J. Czuprynski C. Bacterial load and
881 inflammation in fetal tissues is not dependent on IL-17a or IL-22 in 10–14 day pregnant
882 mice infected with *Listeria monocytogenes*. *Microbial Pathogenesis* 2013; 56:47-52.

883 24. Wolfensohn S. Humane Endpoints and End of Life in Primates Used in Laboratories. In:
884 *Nonhuman Primate Welfare*: Springer International Publishing; 2023: 375-391.

885 25. Holzhausen EA, Nikodemova M, Deblois CL, Barnet JH, Peppard PE, Suen G, Malecki KM.
886 Assessing the impact of storage time on the stability of stool microbiota richness,
887 diversity, and composition. *Gut Pathog* 2021; 13:75.

888 26. Kozich James J, Westcott Sarah L, Baxter Nielson T, Highlander Sarah K, Schloss Patrick
889 D. Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing
890 Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. *Applied and*
891 *Environmental Microbiology* 2013; 79:5112-5120.

892 27. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA,
893 Oakley BB, Parks DH, Robinson CJ. Introducing mothur: open-source, platform-
894 independent, community-supported software for describing and comparing microbial
895 communities. *Applied and environmental microbiology* 2009; 75:7537-7541.

896 28. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm
897 EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, et al. Reproducible, interactive, scalable and

898 extensible microbiome data science using QIIME 2. *Nature Biotechnology* 2019; 37:852-
899 857.

900 29. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The
901 SILVA ribosomal RNA gene database project: improved data processing and web-based
902 tools. *Nucleic Acids Research* 2012; 41:D590-D596.

903 30. Shannon CE. A mathematical theory of communication. *The Bell System Technical
904 Journal* 1948; 27:379-423.

905 31. McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis
906 and Graphics of Microbiome Census Data. *PLoS ONE* 2013; 8:e61217.

907 32. Bray JR, Curtis JT. An Ordination of the Upland Forest Communities of Southern
908 Wisconsin. *Ecological Monographs* 1957; 27:325-349.

909 33. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance
910 metric for microbial community comparison. *ISME J* 2011; 5:169-172.

911 34. Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM, Al-Ghalith GA, Travis DA, Long HT,
912 Tuan BV, Minh VV, Cabana F, Nadler T, et al. Captivity humanizes the primate
913 microbiome. *Proceedings of the National Academy of Sciences* 2016; 113:10376-10381.

914 35. Structure, function and diversity of the healthy human microbiome. *Nature* 2012;
915 486:207-214.

916 36. Anders S, Huber W. Differential expression analysis for sequence count data. *Genome
917 Biology* 2010; 11:R106.

918 37. M. Gahan CG, Colin Hill. *Listeria monocytogenes*: survival and adaptation in the
919 gastrointestinal tract. *Frontiers in Cellular and Infection Microbiology* 2014; 4.

920 38. Roberts AJ, Wiedmann M. Pathogen, host and environmental factors contributing to the
921 pathogenesis of listeriosis. *Cellular and Molecular Life Sciences* 2003; 60:904-918.

922 39. Lilliana Radoshevich, Pascale Cossart. *Listeria monocytogenes*: towards a complete
923 picture of its physiology and pathogenesis. *Nature Reviews Microbiology* 2018; 16:32-
924 46.

925 40. Pizarro-Cerda J, Kuhbacher A, Cossart P. Entry of *Listeria monocytogenes* in mammalian
926 epithelial cells: an updated view. *Cold Spring Harb Perspect Med* 2012; 2.

927 41. Morrison HA, Lowe D, Robbins JR, Bakardjiev AI. In Vivo Virulence Characterization of
928 Pregnancy-Associated *Listeria monocytogenes* Infections. *Infect Immun* 2018; 86.

929 42. Bakardjiev AI, Theriot JA, Portnoy DA. *Listeria monocytogenes* traffics from maternal
930 organs to the placenta and back. *PLoS Pathog* 2006; 2:e66.

931 43. Simone Becattini, Eric Pamer. Multifaceted Defense against *Listeria monocytogenes* in
932 the Gastro-Intestinal Lumen. *Pathogens* 2017; 7:1.

933 44. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and
934 health. *BMJ* 2018;k2179.

935 45. Power SE, O'Toole PW, Stanton C, Ross RP, Fitzgerald GF. Intestinal microbiota, diet and
936 health. *British Journal of Nutrition* 2014; 111:387-402.

937 46. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early
938 life shapes the immune system. *Science* 2016; 352:539-544.

939 47. Chassard C, Lacroix C. Carbohydrates and the human gut microbiota. *Current Opinion in
940 Clinical Nutrition & Metabolic Care* 2013; 16:453-460.

941 48. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. *Nature Reviews Immunology* 2016; 16:341-352.

942 49. Willemsen LEM. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E1 and E2 production by intestinal myofibroblasts. *Gut* 2003; 52:1442-1447.

943 50. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. *Nature* 2009; 461:1282-1286.

944 51. Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Minireview: Gut microbiota: the neglected endocrine organ. *Mol Endocrinol* 2014; 28:1221-1238.

945 52. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, et al. The Orphan G Protein-coupled Receptors GPR41 and GPR43 Are Activated by Propionate and Other Short Chain Carboxylic Acids. *Journal of Biological Chemistry* 2003; 278:11312-11319.

946 53. Sun Y, Wilkinson BJ, Standiford TJ, Akinbi HT, O'Riordan MXD. Fatty Acids Regulate Stress Resistance and Virulence Factor Production for *Listeria monocytogenes*. *Journal of Bacteriology* 2012; 194:5274-5284.

947 54. Simone Becattini, R. Littmann E, A. Carter R, G. Kim S, M. Morjaria S, Lilan Ling, Yangtsho Gyaltshen, Emily Fontana, Ying Taur, M. Leiner I, G. Pamer E. Commensal microbes provide first line defense against *Listeria monocytogenes* infection. *Journal of Experimental Medicine* 2017; 214:1973-1989.

948 55. Ubeda C, Djukovic A, Isaac S. Roles of the intestinal microbiota in pathogen protection. *Clin Transl Immunology* 2017; 6:e128.

949 56. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. *Cell* 2014; 157:121-141.

950 57. Knauf S, Batamuzi EK, Mlengeya T, Kilewo M, Lejora IAV, Nordhoff M, Ehlers B, Harper KN, Fyumagwa R, Hoare R, Failing K, Wehrend A, et al. Treponema Infection Associated With Genital Ulceration in Wild Baboons. *Veterinary Pathology* 2012; 49:292-303.

951 58. Chuma IS, Abel L, Hallmaier-Wacker LK, Šmajis D, Knauf S. Pathogenic Spirochetes in Monkeys: Stealthy Pathogens of Global Importance. In: *Neglected Diseases in Monkeys*: Springer International Publishing; 2020: 95-119.

952 59. Adams Waldorf KM, Mcadams RM. Influence of infection during pregnancy on fetal development. *REPRODUCTION* 2013; 146:R151-R162.

953 60. Schell RF, Musher DM. Detection of Nonspecific Resistance to *Listeria monocytogenes* in Rabbits Infected with *Treponema pallidum*. *Infection and Immunity* 1974; 9:658-662.

954 61. Baker-Zander SA, Lukehart SA. Macrophage-Mediated Killing of Opsonized *Treponema pallidum*. *The Journal of Infectious Diseases* 1992; 165:69-74.

955 62. Wade WG. The genus *Eubacterium* and related genera. *Prokaryotes* 2006; 4:823-835.

956 63. Korpela K, Flint HJ, Johnstone AM, Lappi J, Poutanen K, Dewulf E, Delzenne N, De Vos WM, Salonen A. Gut Microbiota Signatures Predict Host and Microbiota Responses to Dietary Interventions in Obese Individuals. *PLoS ONE* 2014; 9:e90702.

957 64. Silvestre AM, Pinto ACJ, Schleifer WF, Miranda LS, Silva LAF, Casali DM, Souza KLR, Gasparini VGL, Cruz GD, Suen G, Millen DD. Relationships of the Microbial Communities

984 with Rumen Epithelium Development of Nellore Cattle Finished in Feedlot Differing in
985 Phenotypic Residual Feed Intake. *Animals* published 2022; PMID: PMID.

986 65. Cox MS, Deblouis CL, Suen G. Assessing the Response of Ruminal Bacterial and Fungal
987 Microbiota to Whole-Rumen Contents Exchange in Dairy Cows. *Frontiers in*
988 *Microbiology* 2021; 12.

989 66. Amaral WZ, Lubach GR, Proctor A, Lyte M, Phillips GJ, Coe CL. Social Influences on
990 Prevotella and the Gut Microbiome of Young Monkeys. *Psychosom Med* 2017; 79:888-
991 897.

992 67. Alam MS, Gangiredla J, Hasan NA, Barnaba T, Tartera C. Aging-Induced Dysbiosis of Gut
993 Microbiota as a Risk Factor for Increased *Listeria monocytogenes* Infection. *Front*
994 *Immunol* 2021; 12:672353.

995 68. Nathalie Rolhion, Benoit Chassaing, Marie-Anne Nahori, Bodt Jana D, Alexandra Moura,
996 Marc Lecuit, Olivier Dussurget, Marion Bérard, Massimo Marzorati, Hannah Fehlner-
997 Peach, R. Littman D, T. Gewirtz A, et al. A *Listeria monocytogenes* Bacteriocin Can Target
998 the Commensal *Prevotella copri* and Modulate Intestinal Infection. *Cell Host & Microbe*
999 2019; 26:691-701.e695.

1000 69. Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbiotti M, De Angelis M. The
1001 Controversial Role of Human Gut Lachnospiraceae. *Microorganisms* 2020; 8:573.

1002 70. Derrien M, Belzer C, De Vos WM. *Akkermansia muciniphila* and its role in regulating host
1003 functions. *Microbial Pathogenesis* 2017; 106:171-181.

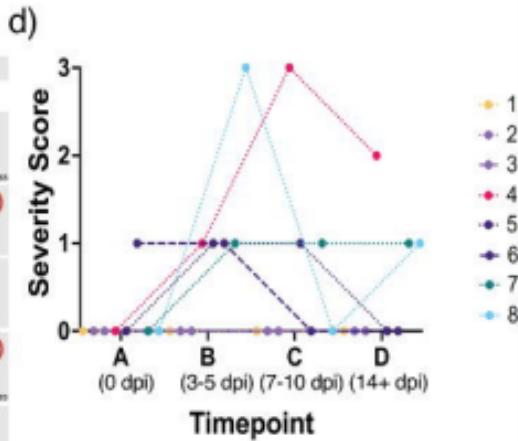
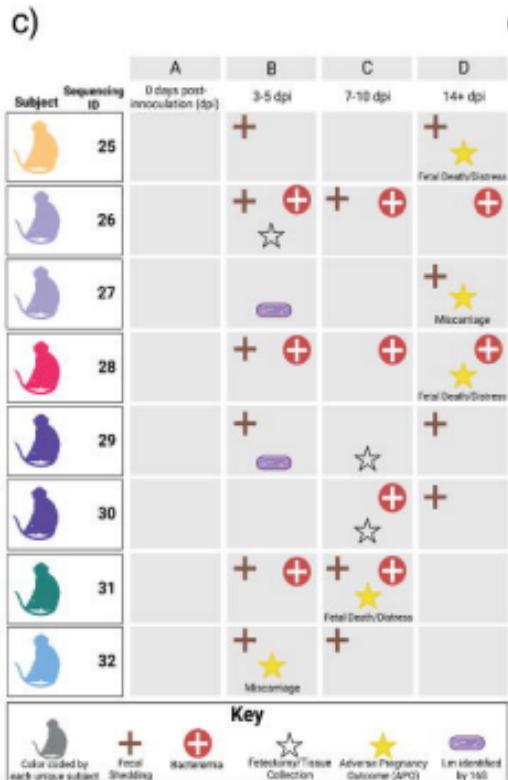
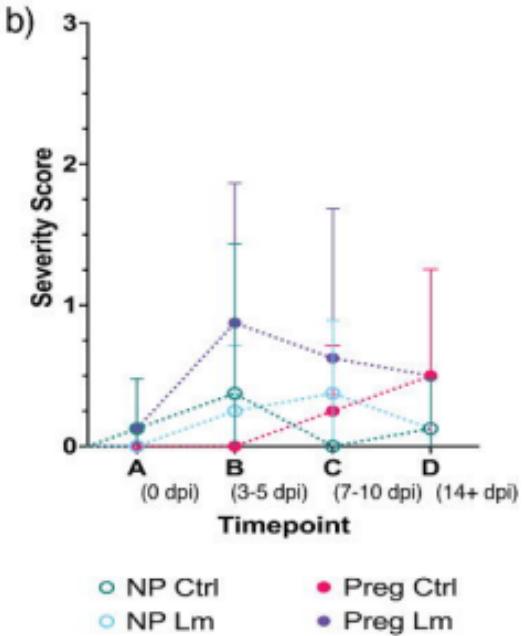
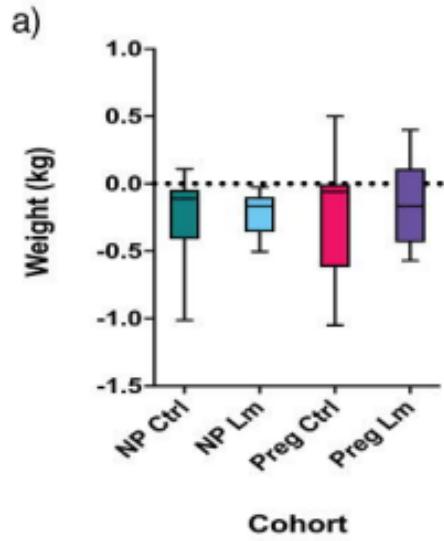
1004 71. Keely Loewen, Barret Monchka, M. Mahmud S, Jong GT, B. Azad M. Prenatal antibiotic
1005 exposure and childhood asthma: a population-based study. *European Respiratory Journal*
1006 2018; 52:1702070.

1007 72. F. Lamont R, Luef Birgitte M, Jørgensen Jan S. Childhood inflammatory and metabolic
1008 disease following exposure to antibiotics in pregnancy, antenatally, intrapartum and
1009 neonatally. *F1000Research* 2020; 9:144.

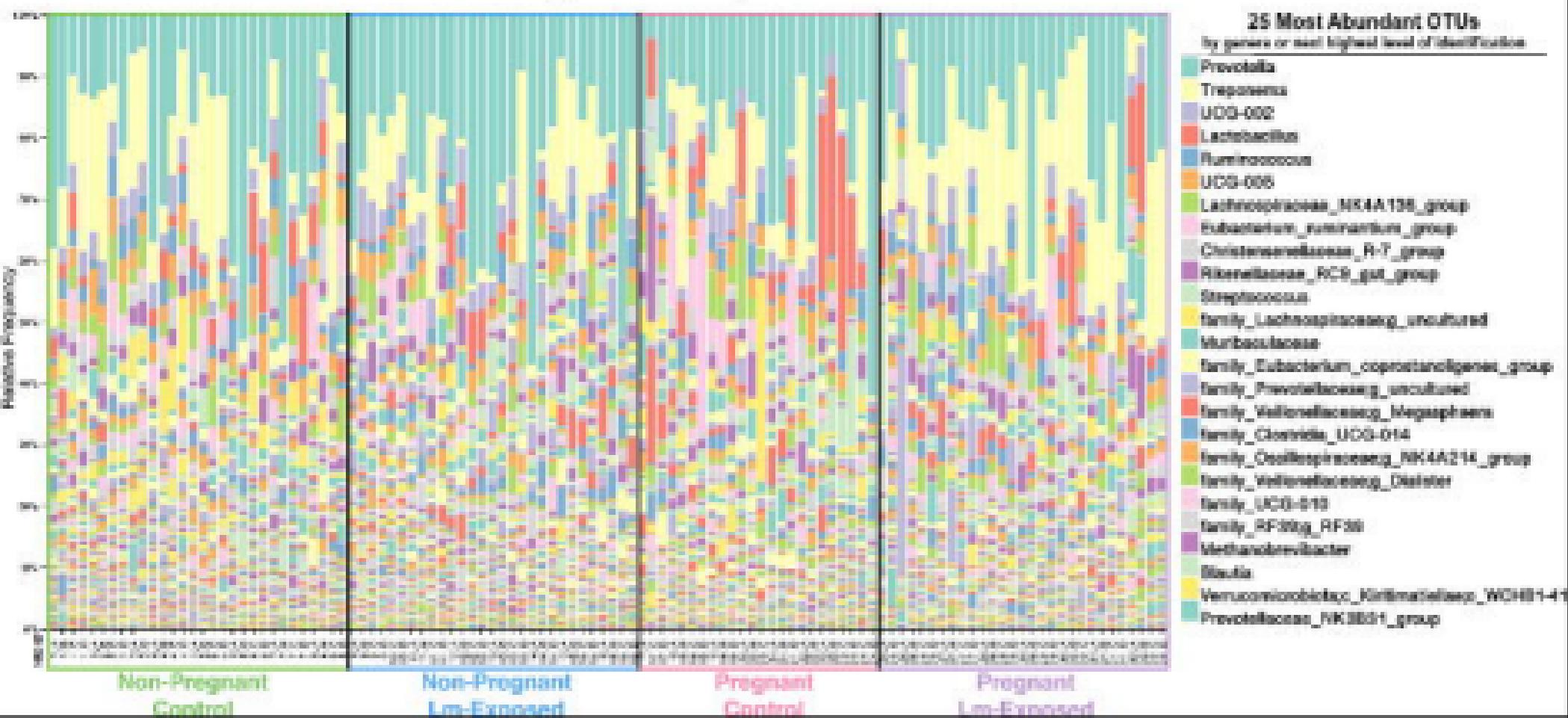
1010 73. Dibo M, Ventimiglia MS, Valeff N, Serradell MLA, Jensen F. An overview of the role of
1011 probiotics in pregnancy-associated pathologies with a special focus on preterm birth. *J*
1012 *Reprod Immunol* 2022; 150:103493.

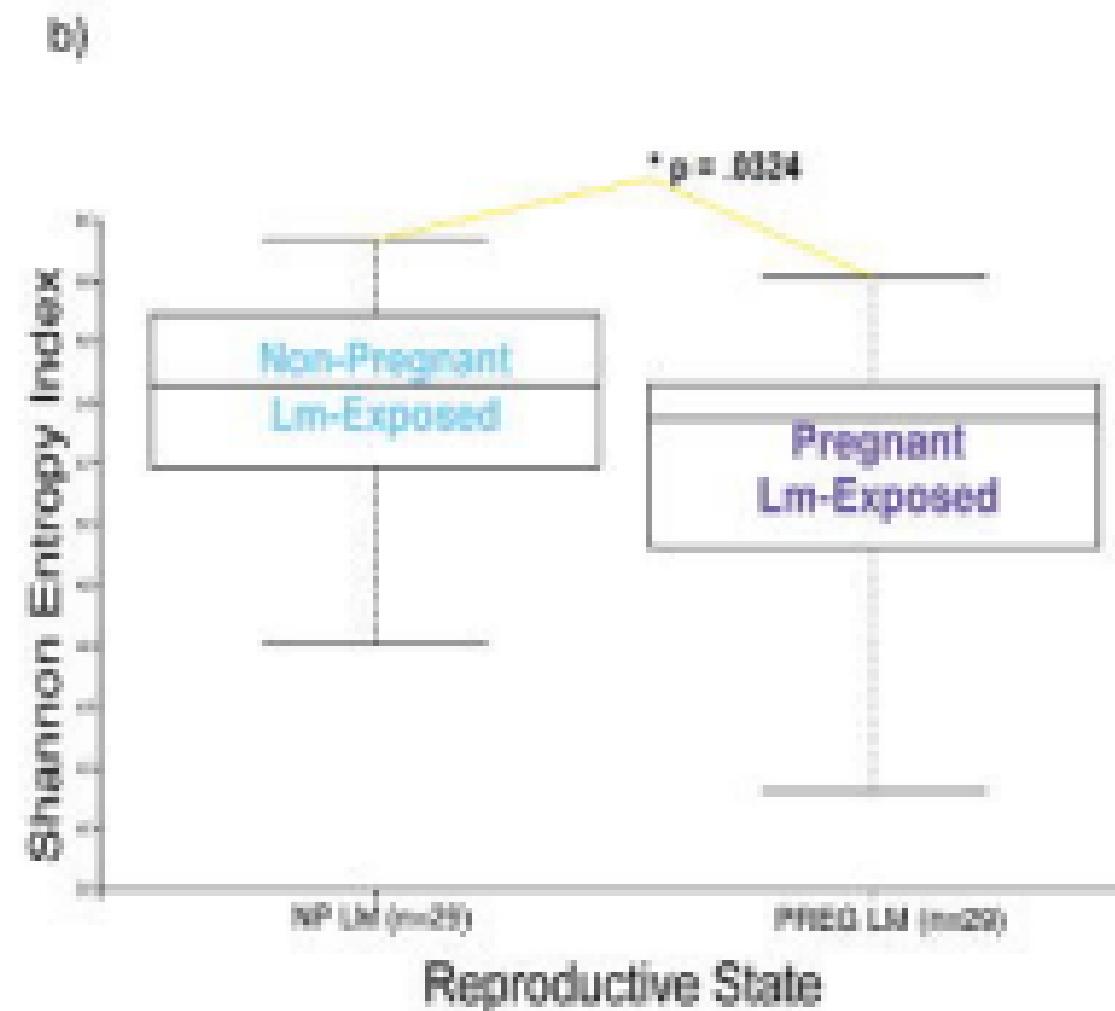
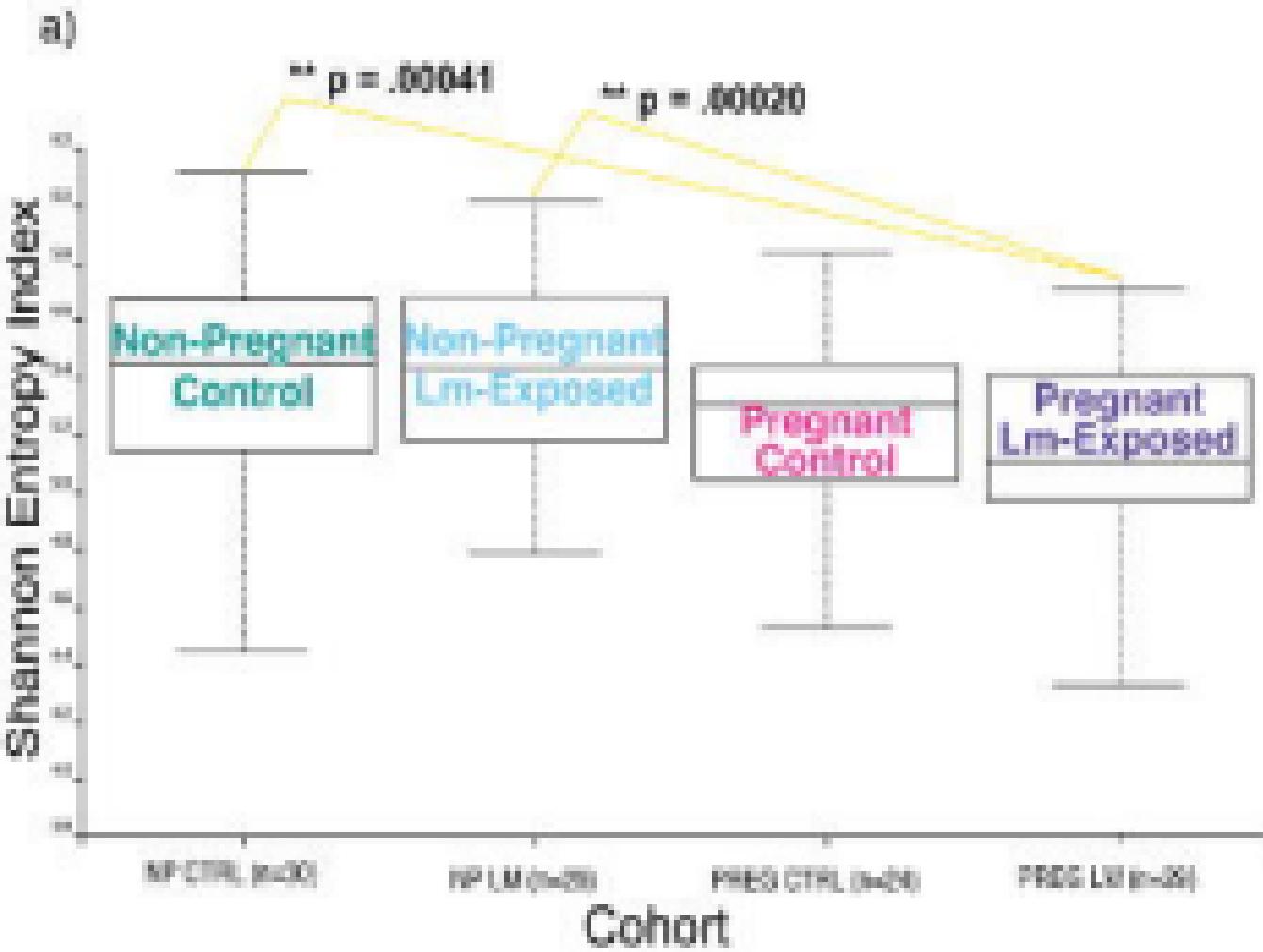
1013 74. Abdulkadir B NA, Skeath T, Marrs E, C, L, Perry J, D, Cummings S, P, Embleton N, D,
1014 Berrington J, E, Stewart C, J. Routine Use of Probiotics in Preterm Infants: Longitudinal
1015 Impact on the Microbiome and Metabolome. *Neonatology* 2016; 109:239-247.

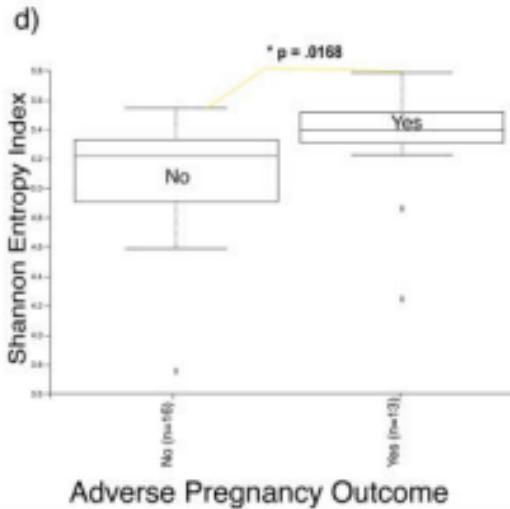
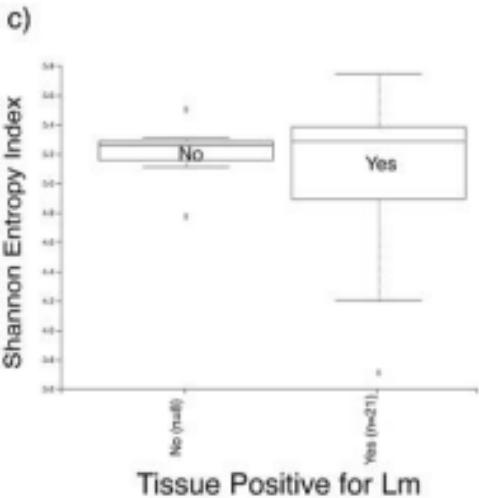
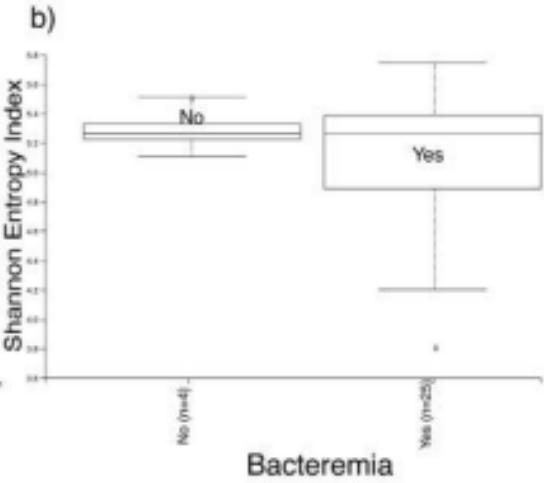
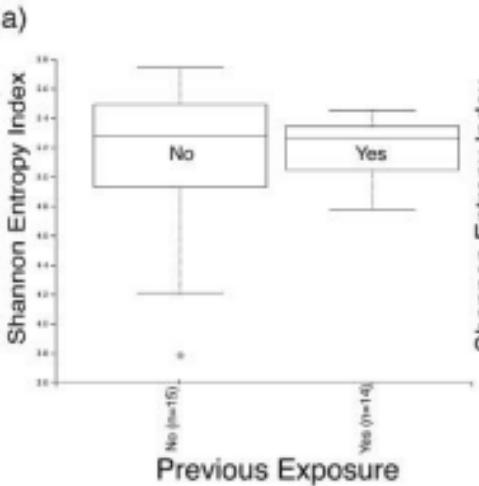
1016 75. Yuyi Chen, Zhe Li, Deng Tye K, Huijuan Luo, Xiaomei Tang, Yu Liao, Dongju Wang,
1017 Juan Zhou, Ping Yang, Yimi Li, Yingbing Su, Xiaomin Xiao. Probiotic Supplementation
1018 During Human Pregnancy Affects the Gut Microbiota and Immune Status. *Frontiers in*
1019 *Cellular and Infection Microbiology* 2019; 9.

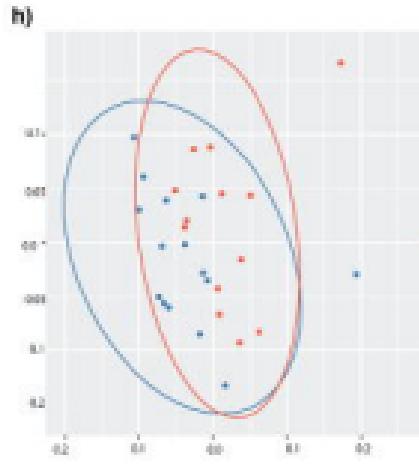
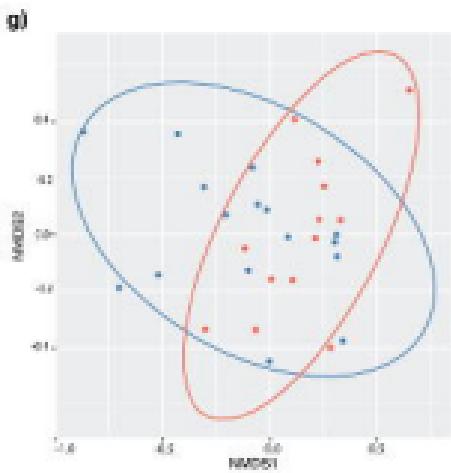
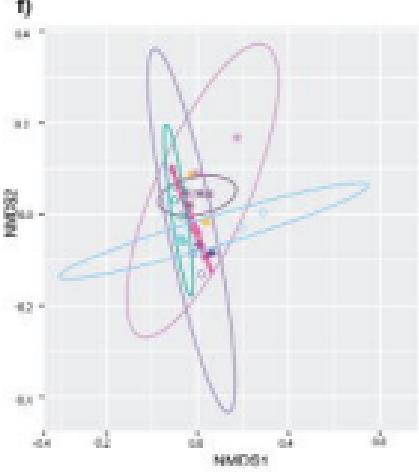
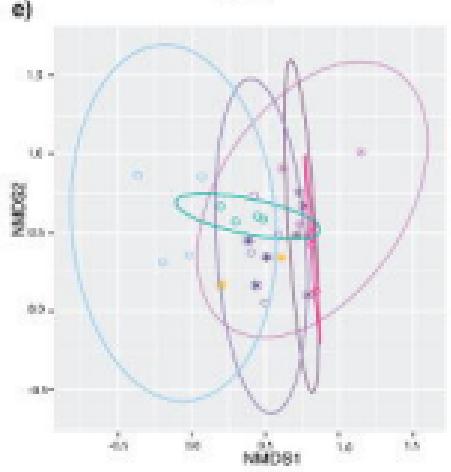
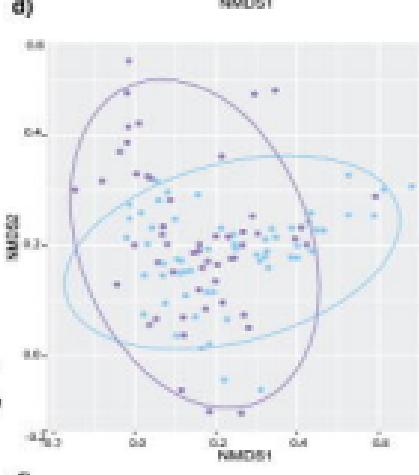
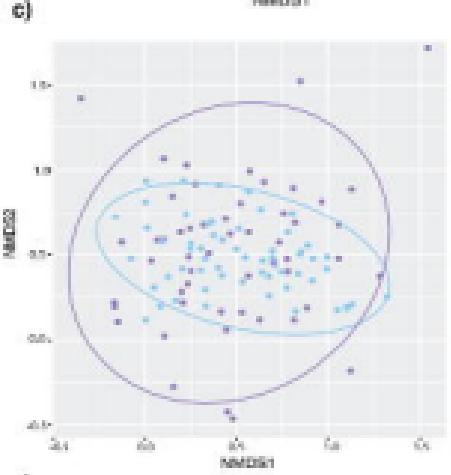
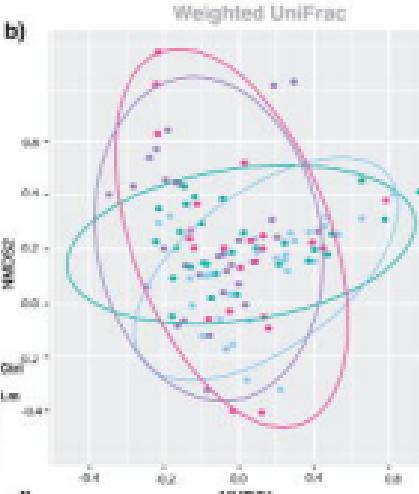
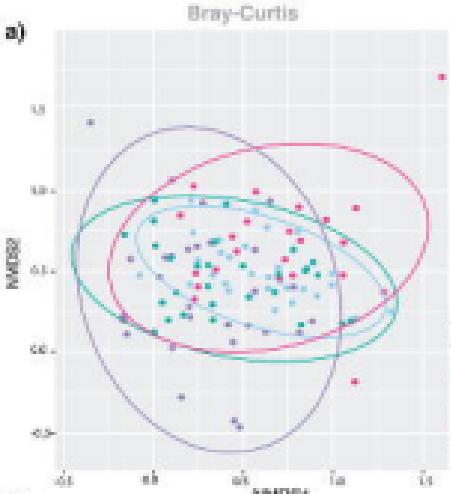




1020 76. Gómez-Rodríguez G, Amador-Licona N, Daza-Benítez L, Barbosa-Sabanero G, Carballo-
1021 Magdaleno D, Aguilar-Padilla R, González-Ramírez E. Single strain versus multispecies
1022 probiotic on necrotizing enterocolitis and faecal IgA levels in very low birth weight
1023 preterm neonates: A randomized clinical trial. *Pediatrics & Neonatology* 2019; 60:564-
1024 569.

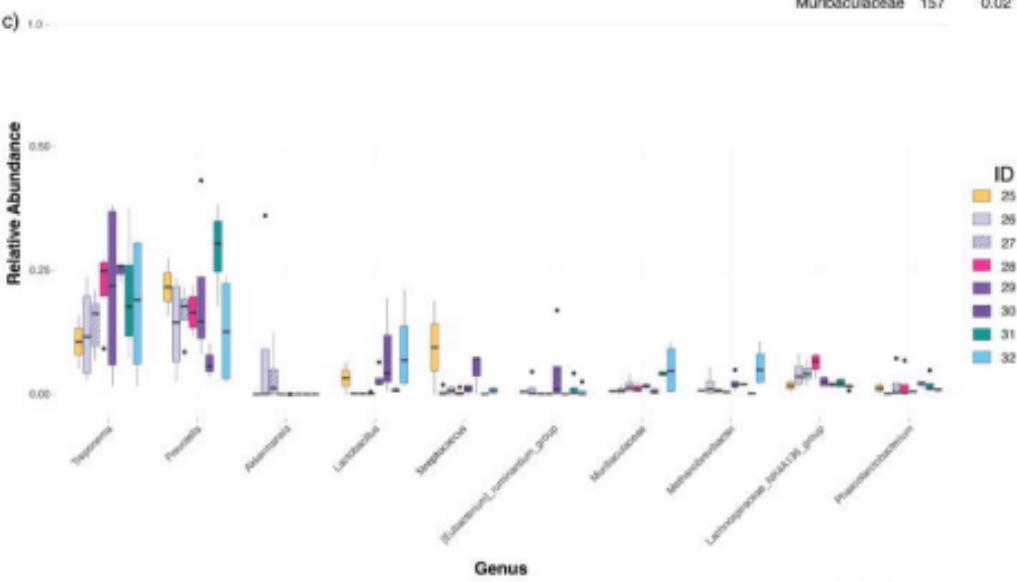
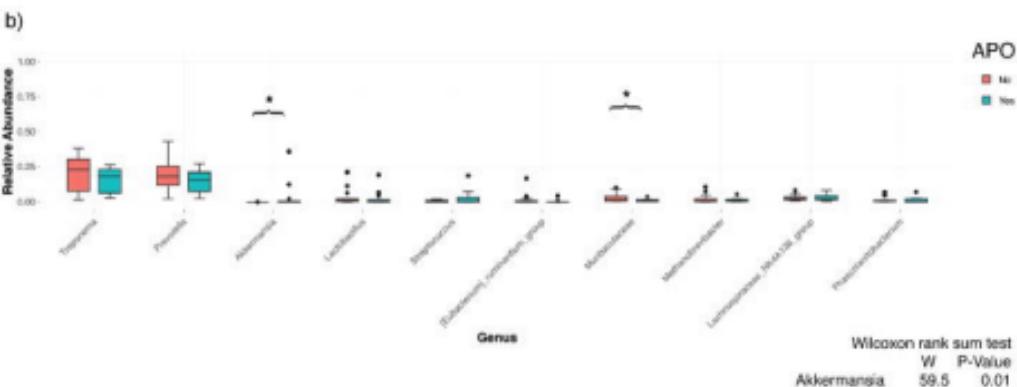
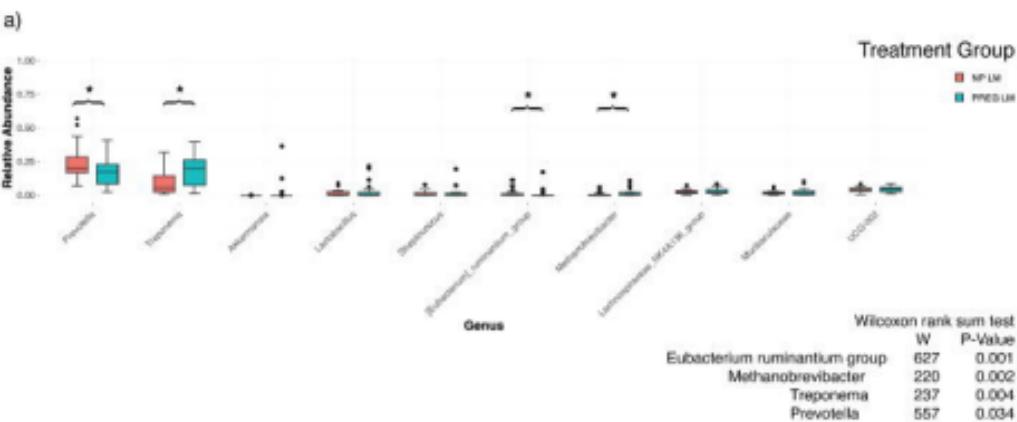
1025 77. Brianna Swartwout, M. Luo X. Implications of Probiotics on the Maternal-Neonatal
1026 Interface: Gut Microbiota, Immunomodulation, and Autoimmunity. *Frontiers in*
1027 *Immunology* 2018; 9.

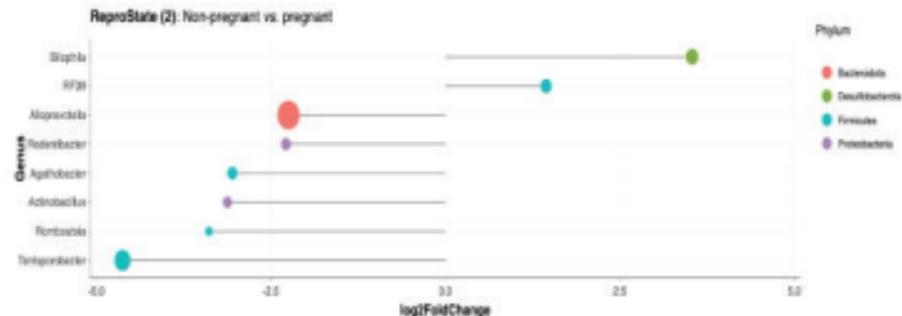

1028 78. Kerry Rout G, Kumar Patra J, Sushanto Gouda, Yooheon Park, Han-Seung Shin,
1029 Gitishree Das. Benefaction of probiotics for human health: A review. *Journal of Food and*
1030 *Drug Analysis* 2018; 26:927-939.

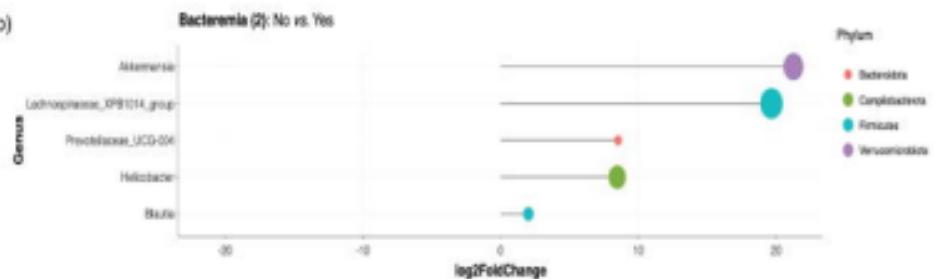


1031 79. Jean-Jacques Dugoua H, ND,, Marcio Machado P, Xu Zhu M, Xin Chen H, Gideon Koren
1032 M, FABMT, FRCPC,, Thomas R. Einarson P. Probiotic Safety in Pregnancy: A Systematic
1033 Review and Meta-analysis of Randomized
1034 Controlled Trials of *Lactobacillus*, *Bifidobacterium*, and *Saccharomyces* spp. *Journal of*
1035 *obstetrics and gynaecology, Canada* 2009; 31:542.

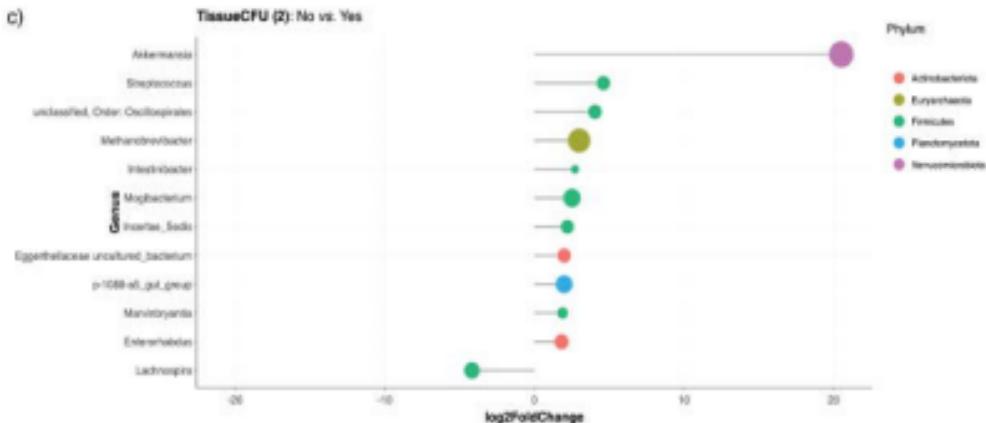




1036

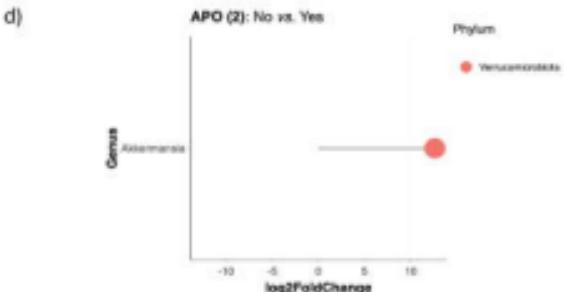












Taxonomy of All Subjects






a)


b)

c)

d)

OTU	REPRODUCTIVE STATE	BACTEREMIA	TISSUE	APO
<i>Actinobacillus</i>	-3.12			
<i>Agathobacter</i>	-3.05			
<i>Akkermansia</i>		21.25	20.51	12.6
<i>Alloprevotella</i>	-2.25			
<i>Bilophila</i>	3.54			
<i>Blautia</i>		2.02		
<i>Eggerthellaceae uncultured bacterium</i>			1.99	
<i>Enterococcaceae bacterium rf39</i>	1.44			
<i>Enterorhabdus</i>			1.82	
<i>Helicobacter</i>		8.46		
<i>Intestinibacter</i>			2.72	
<i>Lachnospira</i>			-4.17	
<i>Lachnospiraceae xpb1014 group</i>		19.66		
<i>Marvinbryantia</i>			1.89	
<i>Methanobrevibacter</i>			3	
<i>Mogibacterium</i>			2.52	
<i>Pirellulaceae p-1088-a5 gut group</i>			1.99	
<i>Prevotellaceae_ ucg-004</i>		8.53		
<i>Rodentibacter</i>	-2.28			
<i>Romboutsia</i>	-3.39			
<i>Streptococcus</i>			4.62	
<i>Terrisporobacter</i>	-4.62			
Unclassified, order: <i>oscilliospirales</i>			4.05	