

1 **Mapping the landscape of transcription factor promoter**

2 **activity during vegetative development in *Marchantia***

3

4 *Facundo Romani¹, Susanna Sauret-Güeto¹, Marius Rebmann¹, Davide Annese¹, Ignacy*
5 *Bonter¹, Marta Tomaselli¹, Tom Dierschke^{2,3}, Mihails Delmans¹, Eftychios Frangedakis¹, Linda*
6 *Silvestri¹, Jenna Rever¹, John L. Bowman^{2,3}, Ignacio Romani⁴, Jim Haseloff¹**

7

8 ¹ *Department of Plant Sciences, University of Cambridge, Cambridge, CB3 EA UK.*

9 ² *School of Biological Sciences, Monash University, Clayton, Melbourne, Vic., 3800 Australia.*

10 ³ *ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University,*
11 *Clayton, Melbourne, VIC 3800, Australia.*

12 ⁴ *Departamento de Ciencias Sociales, Universidad Nacional de Quilmes, Bernal, Buenos*
13 *Aires 1876, Argentina.*

14 * *Corresponding author: jh295@cam.ac.uk*

15

16 **ABSTRACT**

17 Transcription factors (TFs) are essential for the regulation of gene expression and cell fate
18 determination. Characterising the transcriptional activity of TF genes in space and time is a
19 critical step towards understanding complex biological systems. The vegetative gametophyte
20 meristems of bryophytes share some characteristics with the shoot-apical meristems of
21 flowering plants. However, the identity and expression profiles of TFs associated with
22 gametophyte organization are largely unknown. With only ~450 TF genes, *Marchantia*
23 *polymorpha* is an outstanding model system for plant systems biology. We have generated a
24 near-complete collection of promoter elements derived from *Marchantia* TF genes. We
25 experimentally tested *in planta* reporter fusions for all the TF promoters in the collection and
26 systematically analysed expression patterns in *Marchantia* gemmae. This allowed us to build
27 a map of precise expression domains and identify a unique set of TFs expressed in the stem-
28 cell zone, providing new insight into the dynamic regulation of the gametophytic meristem and
29 its evolution. In addition, we provide an online database of expression patterns for all
30 promoters in the collection. We expect that the promoter elements characterised here will be

31 useful for cell-type specific expression, synthetic biology applications, and functional
32 genomics.

33

34 **KEYWORDS**

35 Bryophytes, stem cell, synthetic biology, transcription factors, meristem, evo-devo

36

37 **INTRODUCTION**

38 Embryophytes evolved around 470 million years ago and started covering the Earth's land
39 surface. A common feature of the body plan of land plants is the alternation of generations
40 between the sporophyte and the gametophyte during vegetative to reproductive development
41 (Bowman et al., 2016; Bowman, 2022b). The major lineages display two contrasting forms of
42 vegetative body: tracheophytes (vascular plants) display a dominant sporophyte generation
43 (diploid), while the vegetative body of bryophytes is gametophytic (haploid). Both tissues are
44 characterised by polar growth with apical dominance and maintenance of a stem-cell
45 population. Developmental programs controlling meristem organization in the sporophyte of
46 vascular plants are relatively well known (Lodha et al., 2008; Uchida and Torii, 2019). It is
47 expected that the vegetative body of bryophytes has an equivalent meristem organization, but
48 the regulatory programs associated with the bryophyte gametophyte and how it evolved are
49 not fully understood (Bowman et al., 2019; Hata and Kyozuka, 2021).

50 During the last decade, evo-devo studies in models such as *Marchantia polymorpha* and
51 *Physcomitrium patens* have provided exceptional insights into the molecular mechanisms
52 regulating developmental programs in bryophytes. Several aspects of hormonal and peptide
53 signalling follow strikingly similar rules to flowering plants (Blazquez et al., 2020; Hirakawa,
54 2022). However, less is known about the identity of transcription factors (TFs) regulating
55 vegetative development of the apical meristem of bryophytes (Romani and Moreno, 2021). A
56 better understanding of the nature of these two forms of vegetative growth is likely to shed
57 light on the early evolution of land plants.

58 TFs are key determinants of genetic programs operating during cellular development, and
59 their cell-type specific patterns of expression provide indicators for regulatory processes that
60 underpin cell differentiation during the vegetative body formation. *M. polymorpha* shows many
61 advantages as an experimental system and has become a significant model organism for plant
62 science (Kohchi et al., 2021; Bowman, 2022a; Bowman et al., 2022). *Marchantia* not only

63 widens our knowledge of plant molecular biology outside of flowering plants (angiosperms)
64 but is also an exceptional model for synthetic biology (Boehm et al., 2017; Sauret-Gueto et
65 al., 2020). The *Marchantia* genome features only about ~450 TF genes (Bowman et al., 2017),
66 about a fifth of the number of TFs in *A. thaliana*, with several subfamilies containing a single
67 gene. This greatly simplifies the study of complex gene regulatory networks (GRN), which is
68 afflicted by the problem of gene redundancy in other systems (Wagner, 1996; Panchy et al.,
69 2016). Combined with a short haploid life cycle and efficient *Agrobacterium*-mediated
70 transformation protocols (Ishizaki et al., 2016), fast modular growth, and simple morphology
71 (Boehm et al., 2017), *Marchantia* allows system-wide experimental approaches that are
72 infeasible in other plant species.

73 The mapping of temporal and spatial gene expression patterns is essential for understanding
74 regulatory networks underlying developmental processes. In the last few years, different
75 techniques have been developed to explore gene expression using single-cell (scRNA-seq)
76 and spatial transcriptomics (Giacomello, 2021; Seyfferth et al., 2021; Wang et al., 2023).
77 These techniques can provide gene expression information at a single-cell level for an entire
78 transcriptome but associating that to cell identities present some challenges and limitations
79 (Yuan et al., 2017). On the other hand, traditional tools, such as using transgenic lines with
80 reporters fused to predicted promoter regions, can deliver a more detailed map of expression
81 patterns at the cellular level. This approach can provide insight into the dynamics of gene
82 expression as well as useful tools for tissue-specific expression. However, understanding the
83 landscape of gene expression in an organism requires exploring the expression of hundreds
84 to thousands of genes. The generation of stable transgenic lines is laborious and time-
85 consuming, making such an endeavour infeasible for many model organisms, particularly in
86 plant species. Yet, comprehensive expression pattern databases have been established for
87 several metazoan species using transcriptional reporters and *in situ* hybridisation (Visel et al.,
88 2007; Gallo et al., 2011; Bessa et al., 2014; Alonso-Barba et al., 2016).

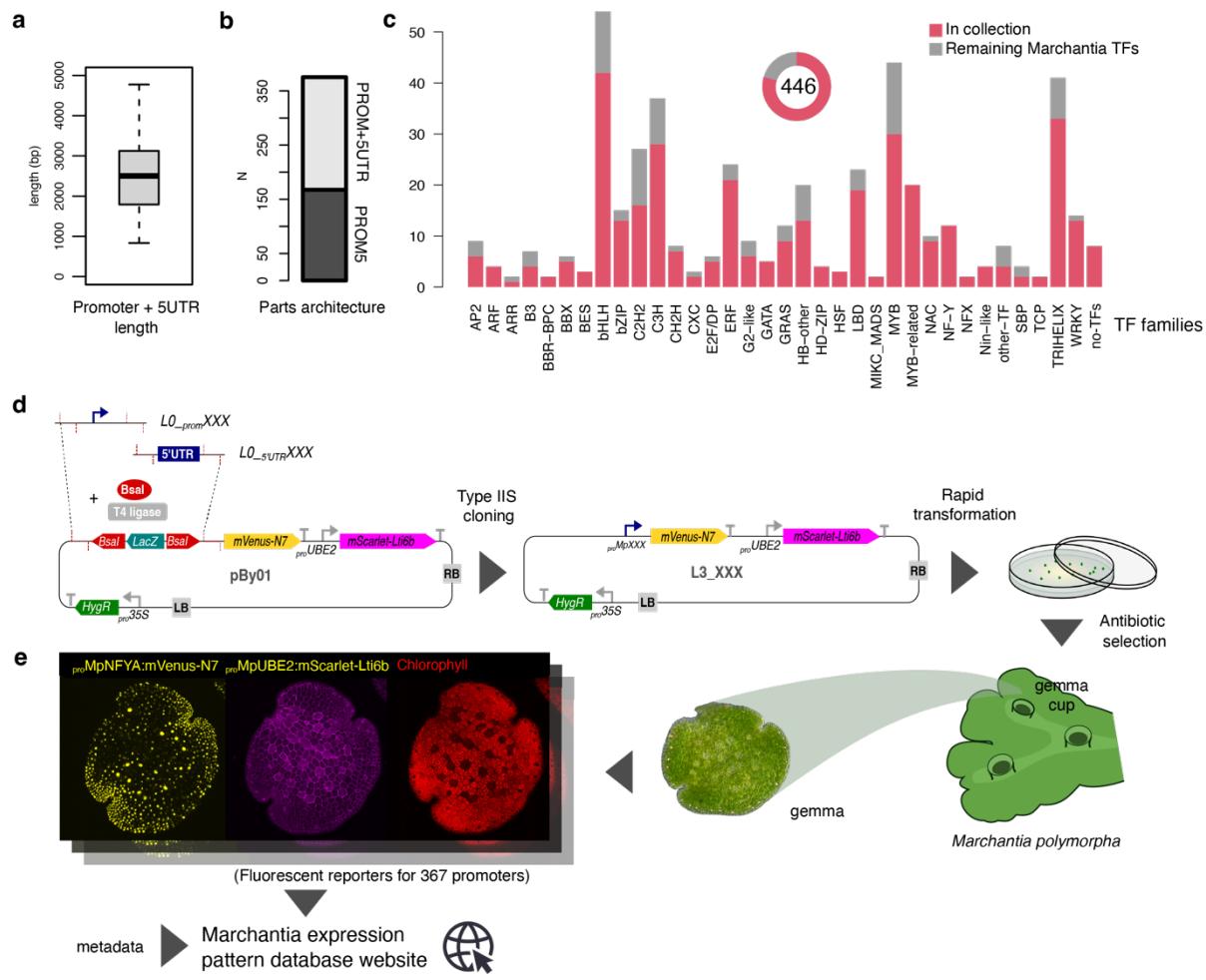
89 In this work, we aimed to systematically explore the behaviour of promoter elements from TF
90 genes in *Marchantia*, and to map the resulting expression patterns. We hypothesise the
91 gametophytic meristem is also characterised by the specific expression patterns of TFs in
92 *Marchantia* and they could provide clues to understand underlying GRNs. We characterised
93 a near-complete collection of promoter elements derived from TFs encoded in the genome of
94 *Marchantia*. These patterns were used as surrogates for the underlying gene circuits and
95 enabled us to survey the regulatory landscape in the vegetative gametophytes of *Marchantia*.
96 The approach offers an unbiased way to explore TF expression patterns in the meristem.

97 Comparative analysis of the reporters allowed us to recognise expression domains and cell
98 types in *Marchantia gemmae* and provide important insights into the genetic programs
99 underpinning the organization of *Marchantia* stem cells. We also identified cell-type specific
100 promoters across different stages of gemma development. Surprisingly, the set of TF reporters
101 found in in the stem-cell zone is largely evolutionary unrelated to TFs known from the
102 sporophyte meristem of vascular plants. The imaging data for all tested promoters is available
103 via a web-based database to accelerate functional genomics studies and cell-type specific
104 engineering.

105

106 **RESULTS**

107 *A comprehensive collection of putative promoters from Marchantia TF genes*


108 We built a library of synthetic promoters derived from the upstream region of TF genes
109 identified in the *M. polymorpha* Tak-1 v5.1 genome (Bowman et al., 2017; Montgomery et al.,
110 2020). For each TF we synthesised the 5'UTR region (5UTR) and putative promoter regions
111 (PROM) of ~1.8 kb from the annotated transcription start site (TSS). 5UTRs shorter than 500
112 bp were cloned as a single unit (PROM5), while longer than 500 bp and smaller than 3kb,
113 were synthesised as separate 5UTR and PROM parts (Fig. 1b). In average, the length of the
114 promoters cloned is about 2.5kb (Fig. 1a). The collection is widely distributed across all major
115 plant TF protein families (Fig. 1c), with a total coverage of around ~82% of all TFs in the
116 *Marchantia* genome. In addition, the collection includes promoters for other relevant genes in
117 *Marchantia* that serve as references (Supplemental Table S1). Promoter sequences were
118 domesticated following the standards for Type IIS cloning and inserted as L0 parts for Loop
119 assembly (Patron et al., 2015; Pollak et al., 2019) to facilitate the reuse of the synthetic parts.

120 We subsequently cloned the promoter elements into a binary vector containing an mVenus
121 fluorescent protein with an N7 nuclear localization signal to drive the expression of the
122 promoter of interest and a plasma membrane marker (mScarlet-Lti6b) controlled by the
123 *proMpUBE2* constitutive promoter (Sauret-Gueto et al., 2020) as part of the same T-DNA
124 insertion cassette (Fig. 1d). This marker works as a positive control for the transformation, an
125 internal reference for any artifacts associated with the insertion site of the construct and helped
126 to visualize different cell shapes and arrangements and to classify patterns. To avoid the
127 intermediate cloning steps, we built a custom vector with Type IIS sites for cloning of PROM5
128 or PROM and 5UTR L0 parts in a backbone with pre-assembled parts, obtaining the desired
129 final construct for stable expression in a single step (Fig. 1d). Finally, we implemented a high-

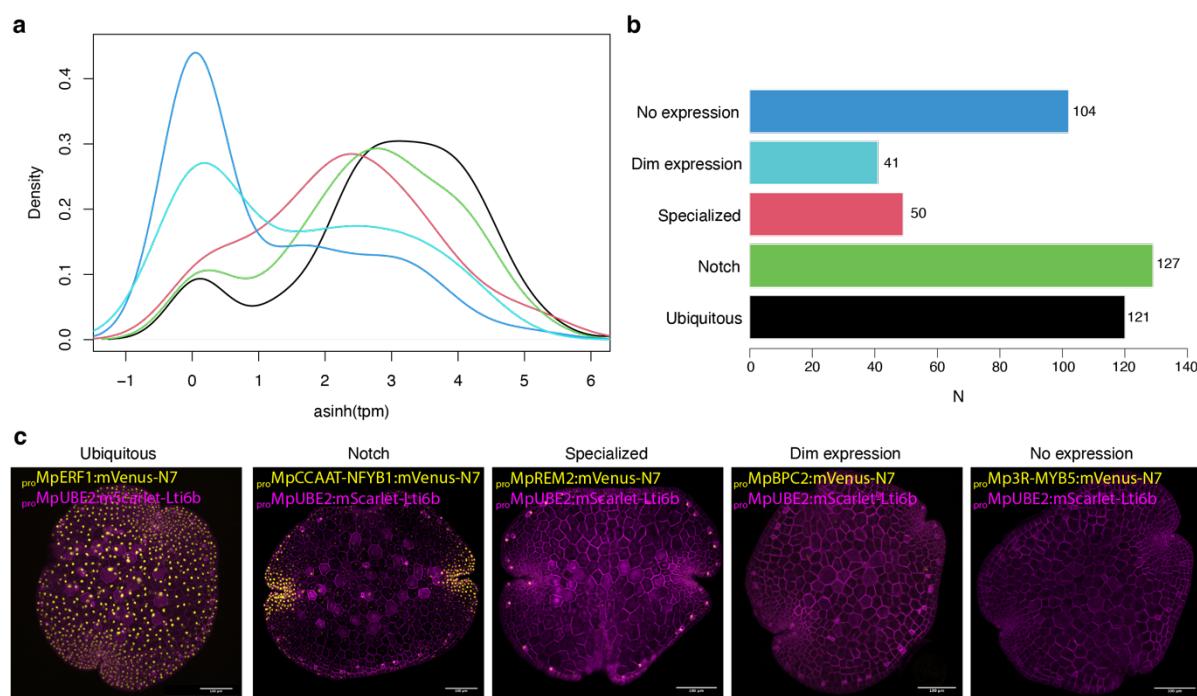
130 throughput transformation protocol based on *Agrobacterium*-mediated transformation in multi-
131 well plates (Ishizaki et al., 2008; Sauret-Gueto et al., 2020) to obtain 6–7 independent stable
132 transgenic lines for each plasmid.

133

134 **Figure 1. Overview of the transcription factor promoter collection.** (a) Boxplot showing
135 the length distribution of all promoters in the collection and (b) the architecture of the synthetic
136 parts. (c) Distribution of tested TFs (red) across TF families in the *Marchantia* genome. (d)
137 Overview of the cloning and transformation strategy implemented to characterize the
138 promoters, including (e) an example (*proMpNFY*A, *Mp1g13740*) of the imaging output for each
139 promoter deposited in an accessible database.

142 *Characterising TF reporters in planta*

143 Marchantia produces vegetative propagules called gemmae, which have a lenticular disc-like
144 morphology and accumulate in cups. Gemmae provide a stereotypically conserved initial
145 stage of the Marchantia vegetative life cycle, with typically two opposing apical notches
146 containing stem-cells, differentiated cells, two planes of symmetry and no pre-defined
147 abaxial/adaxial polarity (Kato et al., 2020a; Zheng et al., 2020). During the gemma stage, the
148 structure of the stem-cell niche and the entire body is accessible for microscopy and
149 differentiating cells can be recognised easily without the need for staining or clearing.


150 We imaged several lines for each promoter using confocal microscopy and selected images
151 that best represent the consensus expression patterns. From the collection of 367 promoters,
152 we initially classified the expression patterns into 5 non-exclusive categories: 104 lines
153 showed no detectable signal (28%), 41 presented a dim signal (11%), 121 a ubiquitous
154 expression pattern across the gemma (33%), 127 a pattern stronger or specific to the notch
155 area (35%), and, finally, 50 (13%) had some specificity for specialised cells (Supplemental
156 Table S1).

157 To test whether these expression patterns correlate with endogenous expression, we
158 compared each group with transcript levels from the corresponding genes analysed by RNA-
159 seq analysis in whole gemmae (Mizuno et al., 2021). As expected, ubiquitous promoters
160 showed the highest average TPM values, followed by genes associated with specialised cells
161 and notch biased expression (Fig. 2A-B). On the other hand, reporters with no expression had
162 the lowest TPM values, followed by the group with dim expression (poor signal-to-noise ratio).
163 From this latter group of TFs, several genes had higher expression levels in other
164 developmental stages (Kawamura et al., 2022). Only around ~15% presented clearly
165 inconsistent expression patterns compared to RNA-seq.

166 The microscopy data collected during the screening of promoter activities have been
167 organised in a database accessible online (Fig. 1, <https://mpexpatdb.org/>). The collection can
168 be searched and filtered by expression profiles, gene IDs, names, and families. The database
169 links promoters with functional information about the adjacent gene available in the
170 MarpolBase (Ishizaki et al., 2016). For each reporter construct tested we recorded a maximum
171 projection image with 3 separate channels (gene of interest, chlorophyll autofluorescence, and
172 the constitutive plasma membrane marker) for identification of cell types. We have also
173 developed an original feature to visualize the channels independently. The user can select
174 which channels are actively visualised and download the appropriate composite picture.

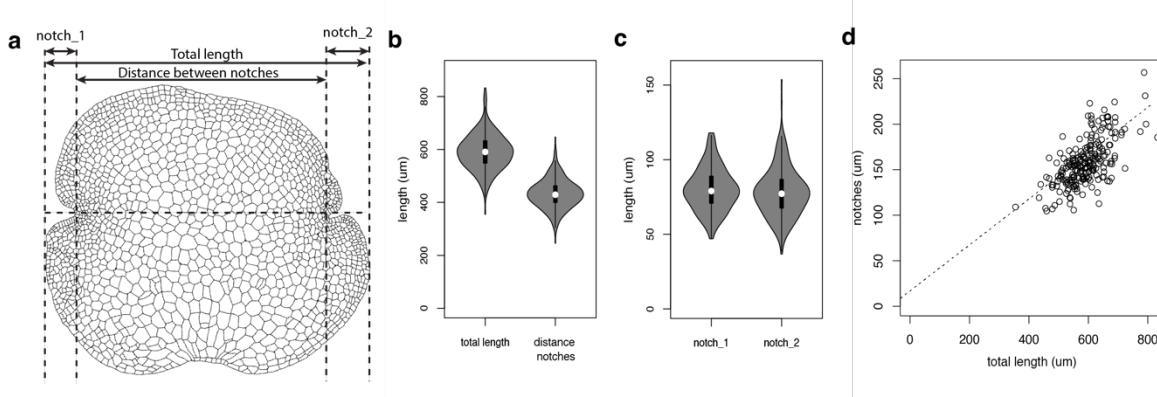
175

176 **Figure 2. Quality control for the promoter collection.** (a) Density plot of initial TF
177 classifications: no expression, dim expression, specialised, notch, and ubiquitous across
178 asinh(TPM) values from whole tissue RNA-seq of the gemma. (b) Number of unique promoters
179 tested in each class. (c) Examples of promoters belonging to each class (*proMpERF1*,
180 *proMpCCAAT-NFYB1*, *proMpREM2*, *proMpBPC2*, *proMp3R-MYB5*). Confocal images of the gene
181 of interest (yellow) and a constitutive plasma membrane marker (magenta,
182 *proMpUBE2:mScarlet-Lti6b*). Scale bar 100 μ m. Gene IDs: *MpERF1* = *Mp1g20040*,
183 *proMpCCAAT-NFYB1* = *Mp4g13360*, *proMpREM2* = *Mp2g08790*, *proMpBPC2* = *MpVg00350*,
184 *proMp3R-MYB5* = *Mp4g04750*.

186

187 *Identifying expression domains in Marchantia gemmae*

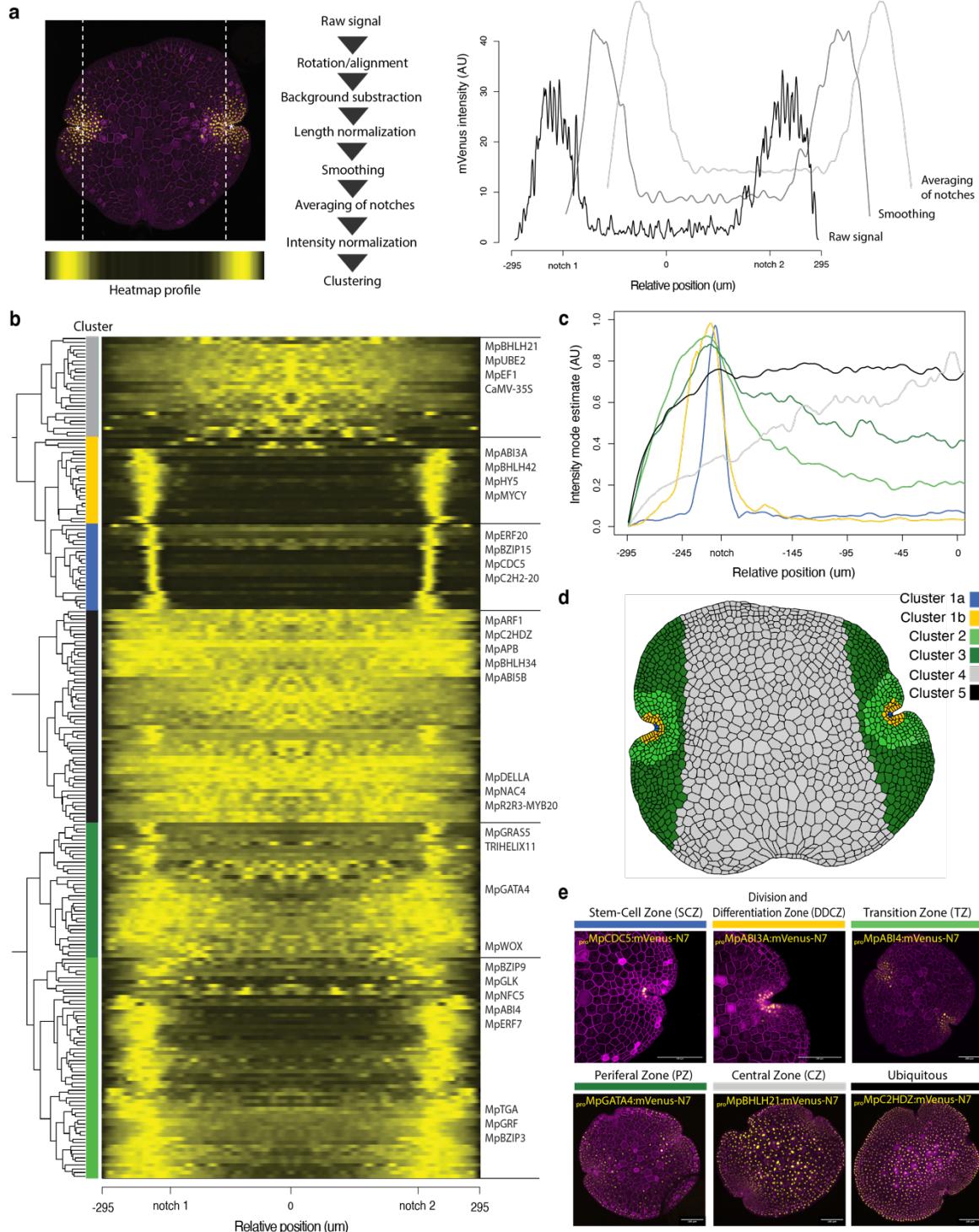
188 The variability between individuals is relatively low and the dimensions of the tissue follow a
189 normal distribution (Fig. S1). This simple morphology makes the gemma stage convenient for
190 systematic comparisons between reporters. Excluding promoters with dim or no expression
191 levels, for each representative reporter we orientated the image to align the two apical notches
192 to the horizontal axis, subtracted the background, and made a profile of the fluorescence
193 intensity along the notch axis. The length of the profile was adjusted to fit the notches at the
194 same distance and then smoothed to reduce the noise of the signal. To avoid small variations
195 between left and right notch, we averaged them. Finally, we normalised the signal to the


196 maximum of each image (Fig 3a). This allowed us to generate a linear vector that represented
197 expression patterns from different transgenic lines in a comparable way.

198 In total, we analysed reporters for 218 different genes. We used hierarchical clustering and
199 identified 5 clusters representing distinct expression domains (Fig. 3b-e). Most expression
200 patterns follow a skewed distribution with the apical notch position as the mode (cluster 1-3).
201 Others instead followed a normal distribution with the central zone as the mode (cluster 4) or
202 were evenly distributed across the gemma (cluster 5). Only a few expression patterns did not
203 match these broad classes, and these were mostly associated with expression in differentiated
204 scattered cells.

205 Within cluster 1, we distinguished two populations, one with a peak in the apical notch and a
206 second includes a broader area around it (Fig. 3c). These correspond to the stem-cell zone
207 (SCZ) and Dividing and Differentiating Cell Zone (DDCZ) respectively, as recognised earlier
208 (Kohchi et al., 2021). The SCZ includes a single apical cell and sub-apical cell anticlinal
209 derivatives located at the center of the notch (Kohchi et al., 2021). The DDCZ covers a
210 population of two rows of derivative cells precisely arranged around the SCZ. Cluster 2 is a
211 broader area of small cells radially distributed along the SCZ that we named Transition Zone
212 (TZ). Cluster 3 also includes the previous domains but extends over a group of cells distant to
213 the apical notches and fades along the axis. We named this domain of larger cells peripheral
214 zone (PZ). Finally, we named Cluster 4 and 5 that correspond to two populations of ubiquitous
215 promoters with different strengths between the apical region and the central zone (CZ). Most
216 known constitutive promoters (*proMpUBE2*, *proMpEF1*, *proCaMV35S*) belong to cluster 4 (Althoff
217 et al., 2014; Sauret-Gueto et al., 2020). Finally, based on clustering analysis and incorporating
218 literature information about cell-types in *Marchantia*, we generated a schematic model of a
219 gemma that described cellular arrangements and cell populations that could be distinguished
220 (Fig. 3d).

221

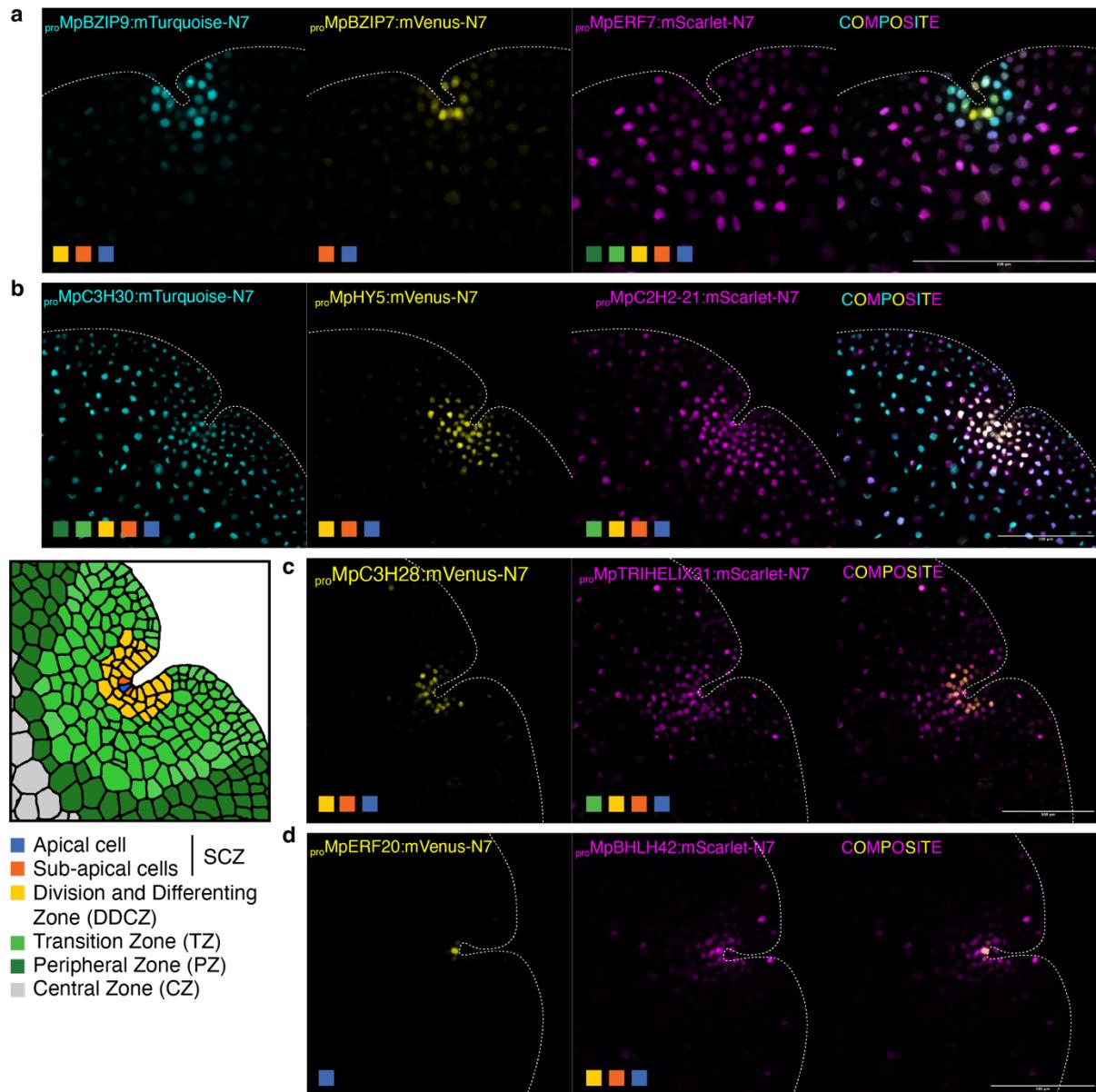

222 **Supplemental Figure S1. Variability of the *Marchantia* gemma dimensions.** (a) Schematic
223 drawing of *Marchantia* gemma dimensions. (b) Distribution of total length and distance
224 between notches. (c) Distribution of length between notches and gemma border. (d)
225 Correlation between total length and distance from notch to border.

226

227

228 **Figure 3. Clustering analysis of expression patterns in *Marchantia gemmae*.** (a) Pipelines
229 for image processing of confocal images to obtain normalised profiles to compare expression
230 patterns between gemmae (see Methods section for detail). Example of confocal images of a
231 fluorescent reporter (left), the corresponding plot of profiles for intermediate steps of the
232 pipeline (right) and heatmap (bottom left). (b) Heatmap of promoters with significant
233 expression and dendrogram of hierarchical clustering with the following color code: Blue,
234 cluster 1a; Yellow, cluster 1b; Light green, cluster 2; Dark green, cluster 3; Grey, cluster 4;
235 Black, cluster 5. (c) Mode of the profile for each cluster across the gemmae. (d) Schematic
236 map of the association of each cluster with distinct cellular expression domains in the
237 *Marchantia* gemma. (e) Example of TF fluorescent reporters for each cluster (*proMpCDC5*,
238 *proMpABI3A*, *proMpABI4*, *proMpGATA4*, *proMpBHLH21*, *proMpC2HDZ*). Confocal images of the
239 gene of interest (yellow) and a constitutive plasma membrane marker (magenta,
240 *proMpUBE2:mScarlet-Lti6b*). Scale bar 100 μ m. Gene IDs: MpCDC5 = Mp1g10310, MpABI3A
241 = Mp5g08310, MpABI4 = Mp7g00860, MpGATA4 = Mp7g03490, MpBHLH21 = Mp3g11900,
242 MpC2HDZ = Mp2g24200.

243


244

245 We selected reporters representative of expression domains and cell-types to obtain a more
 246 precise map of the expression domains at a cellular level. We built transgenic lines with
 247 different combinations of promoters driving the expression of two or three compatible
 248 fluorescent reporters (mVenus, mScarlet and mTurquoise) localised in the nucleus as part of
 249 the same T-DNA. In all cases, the domains could be clearly distinguished in the different

250 combinations (Fig. 4). This demonstrates that the expression patterns could be used in an
251 independent and additive fashion to mark multiple cell states simultaneously and allowed us
252 to differentiate between promoters active in the SCZ and the apical cell in the middle (Fig.
253 4a,d).

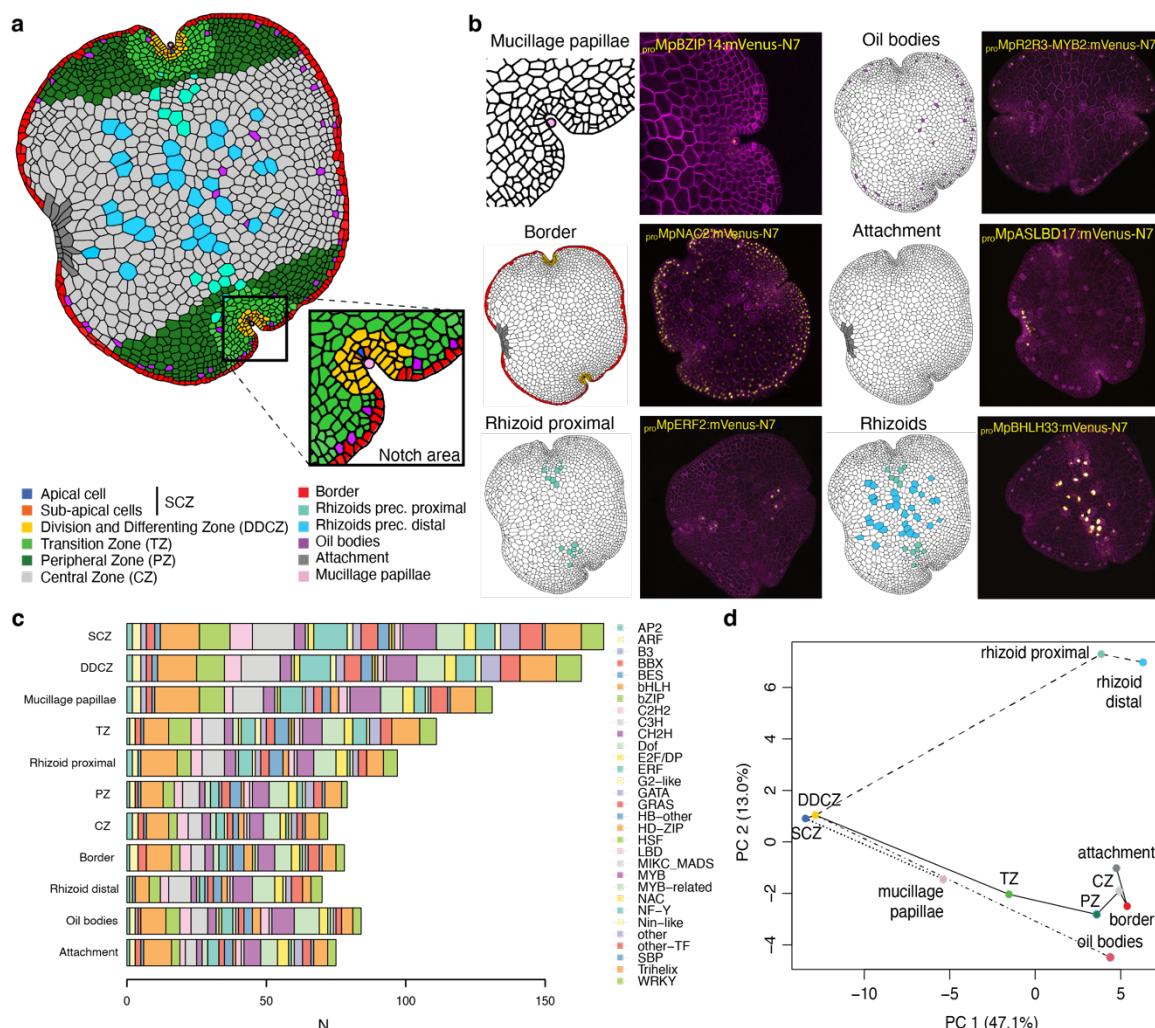
254

255 **Figure 4. Combination of multiple fluorescent reporters.** Confocal images of the apical
256 region of *Marchantia gemmae* transformed with multiple fluorescent reporters of TFs in the
257 same plasmid. (a) Combo 1: *proMpBZIP9*, *proMpBZIP7*, *proMpERF7*. (b) Combo 2: *proMpC3H30*,
258 *proMpHY5*, *proMpC2H2-21*. (c) Combo 3: *proMpC3H28*, *proMpTRIHELIX31*. (d) Combo 4:
259 *proMpERF20*, *proMpBHLH42*. Schematic map and legend of the expression domains and cell-
260 types in the gemma notch is shown (bottom left). Colour squares indicate the domains where
261 each selected promoter is active. Individual channels and composite images are shown. Scale
262 bar 100 μ m. Gene IDs: *MpBZIP9* = *Mp6g03920*, *MpBZIP7* = *Mp3g04360*, *MpERF7* =
263 *Mp6g04880*, *MpC3H30* = *Mp7g18530*, *MpHY5* = *Mp1g16800*, *MpC2H2-21* = *Mp3g11570*,
264 *MpC3H28* = *Mp7g14310*, *MpTRIHELIX31* = *Mp4g09730*, *MpERF20/LAXR* = *Mp5g06970*,
265 *MpBHLH42* = *Mp5g09710*.

266

267

268 *Mapping TF expression patterns in specific cell-types*


269 The global analysis of expression profiles along the apical axis can provide a systematic
270 account of organism-wide patterns but may not capture the local cell patterning important for
271 cell differentiation. To get a more precise map of cell types, we manually inspected each
272 reporter and identified promoters with specificity for specialised cells such as rhizoids, oil body
273 cells, and mucilage papillae (Figure 4b). In addition, two other expression domains (border
274 and attachment) do not form regular distributions along the apical axis as most of the other
275 domains (see below). These cell types and domains match descriptions in the published
276 literature on cellular analysis in the *Marchantia gemmae* (Shimamura, 2016) and can be

277 included in the schematic model gemma (Fig. 5a). The classification of cell types was defined
278 in a way that any observed expression pattern could be classified as active in one or a
279 combination of cell types. The corresponding TF gene families associated with the expression
280 patterns are distributed across different cell-types (Fig. 5c). We did not find a clear association
281 of a particular TF family with specific cell-types. Finally, clustering analysis of the expression
282 domains and cell types reconstruct cell differentiation dynamics (Fig 5d).

283 We identified promoters specific for cell lineages of specialised cells in *Marchantia gemmae*
284 (Fig. 5b). Mucilage papillae are tip-growing cells covering the SCZ (Galatis and Apostolakos,
285 1977). We showed that *proMpBZIP14* and *proMpBHLH28* were specifically active in the
286 mucilage papillae (Fig. 5b, Suppl. Table S1). Oil body cells are idiosyncratic cells scattered across
287 the thallus and are distributed in regular fashion along the edges of gemmae (Romani et al.,
288 2022). Our screening also led to the rediscovery of oil body-specific promoters for the genes
289 *MpERF13*, *MpC1HDZ*, and *MpR2R3-MYB2* (Fig. 5b, Suppl. Table S1), which have been
290 described as important regulators of oil body development (Kubo et al., 2018; Kanazawa et
291 al., 2020; Romani et al., 2020; Romani et al., 2022). The patterns of expression were
292 consistent with earlier published reporters (Romani et al., 2020; Takizawa et al., 2021) despite
293 the shorter length of the promoters in our collection (30%, 49%, and 46% the length of the
294 published promoters respectively). Having a comparable set of reporters allowed us to spot
295 some differences between the expression patterns of each of them: *proMpERF13* seems to be
296 more active in oil body cells closer to the apical cell while *proMpR2R3-MYB02* is more evenly
297 expressed in all oil body cells. In contrast, *proMpC1HDZ* expression is not restricted to only oil
298 body cells (Romani et al., 2020). In addition, we observed that the reporters for *MpBHLH34*,
299 *MpWRKY10*, *MpREM2*, *MpBHLH10*, *MpTRIHELIX8*, *MpASLBD11*, and *MpC2H2-8* displayed
300 degrees of cell-type specificity, but their functions in *Marchantia* are largely unknown (Suppl.
301 Table S1). Among them, *MpC1HDZ*, *MpR2R3-MYB2*, *MpERF13*, and *MpWRKY10* mRNA
302 were also shown to be specifically expressed in oil body cells in scRNA-seq (Wang et al.,
303 2023). We also identified a set of promoters specifically active in rhizoid precursor cells (Fig.
304 5b). Of these, *proMpBHLH33MpRSL3* has been described before (Sauret-Gueto et al., 2020)
305 and is very strongly expressed in all rhizoid cells (Fig. 5b). Some were active in the rhizoid
306 precursors near the apical region but not in those located in the centre of the gemma (e.g.,
307 *proMpAP2L2* and *proMpERF2*), suggesting there are two populations of rhizoid precursor cells
308 (proximal and distal) in the gemma (Fig 5b, Suppl. Table S1). Lastly, we observed a series of
309 other promoters displaying seemingly random expression patterns that do not match any of
310 the cell-types or expression domains that we have described here (Suppl. Table S1).

311

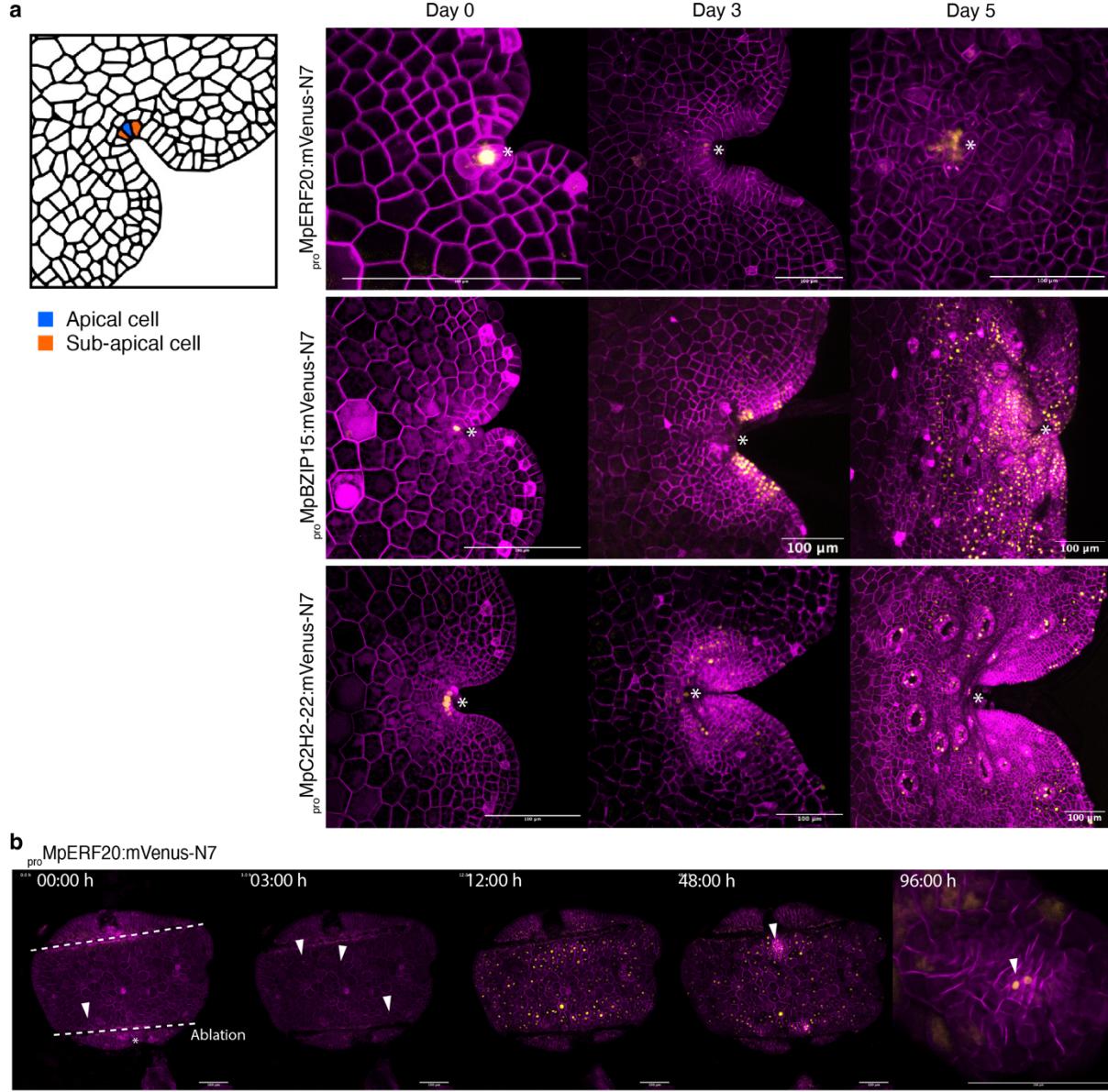
312 **Figure 5. A model for promoter activity in the *Marchantia gemmae*.** (a) Schematic
 313 representation of cell-types identified in the *Marchantia gemma* and (b) detailed view of the
 314 notch area. Examples of representative fluorescent reporters displaying cell-type specific
 315 expression patterns (B): *proMpBZIP14*, *proMpR2R3-MYB2*, *proMpNAC2*, *proMpASLBD17*,
 316 *proMpERF2*, and *proMpBHLH33/MpRSL3*. Marked cell-types are shown (left) with confocal
 317 images (right) of the gene of interest (yellow) and a constitutive plasma membrane marker
 318 (magenta, *proMpUBE2:mScarlet-Lti6b*). (c) Number of reporters with expression across cell-
 319 types colored by TF gene families. (d) Principal component analysis (PCA) of cell-types based
 320 on the expression of TF reporters. Gene IDs: *MpBZIP14* = *Mp2g02230*, *MpR2R3-MYB2* =
 321 *Mp3g07510*, *MpNAC2* = *Mp6g02590*, *MpASLBD17* = *Mp8g09250*, *MpERF2* = *Mp7g13760*,
 322 *MpBHLH33/MpRSL3* = *Mp1g01110*.

323

324

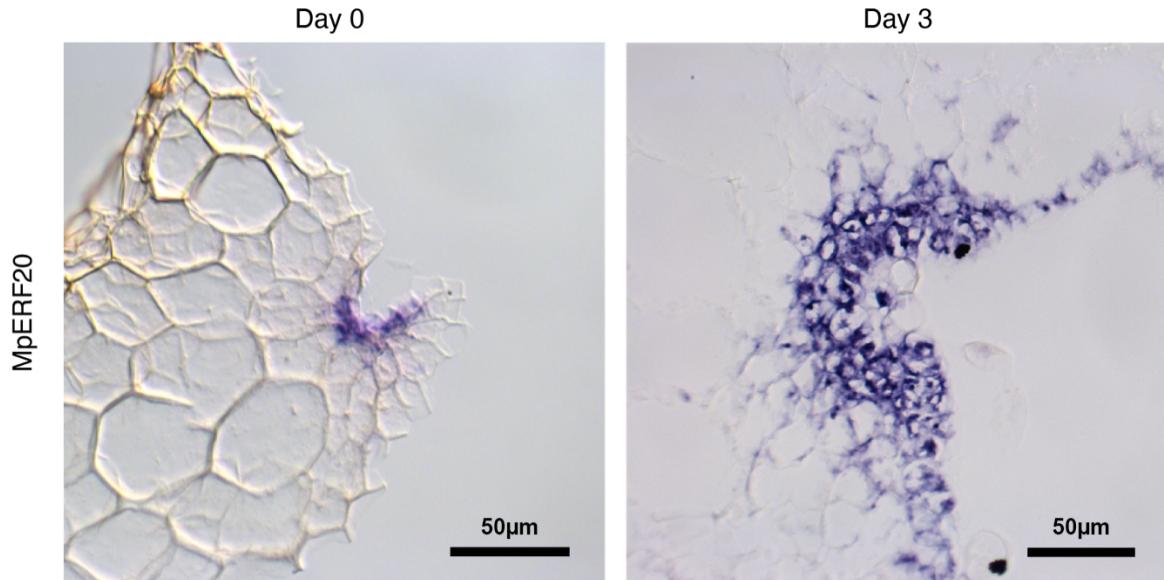
325 *Marker expression reveal the dynamics of cell fates in the stem cell zone*

326 The availability of this prolific collection of highly precise cellular markers allows new
327 approaches to visualizing the dynamics cell fates *in planta*. We followed the expression profile
328 of a set of promoters active in the notch to better understand patterns of cell differentiation.
329 We found five TFs reporters with high specificity for the SCZ (*proMpBZIP15*, *proMpBZIP7*,
330 *proMpC2H2-26*, *proMpC2H2-22*, *proMpERF20/LAXR*, *proMpCDC5*) at the gemma stage. The SCZ
331 is composed of a central apical cell and a pair of immediate derivatives called sub-apical cells
332 (Kohchi et al., 2021). During the first days of gemmaling development, it is possible to observe
333 two stacked apical cells (Miller and Alvarez, 1965; Miller, 1966; Bowman, 2016). We followed
334 the expression pattern of these candidates after the germination of gemmae and only
335 *proMpERF20/LAXR* remained expressed in the apical cells (Fig. 6, Suppl. Fig S2). In contrast,
336 *proMpBZIP15*, *proMpBZIP7*, *proMpC2H2-26*, *proMpCDC5* and *proMpC2H2-22* are expressed in a
337 subset of differentiated cells after gemmae germination (Fig. 6, Suppl. Fig. S2). The
338 expression of these reporters in sub-apical cells in the gemma provides evidence of the
339 initiation of cell differentiation processes immediately adjacent to the stem cell.

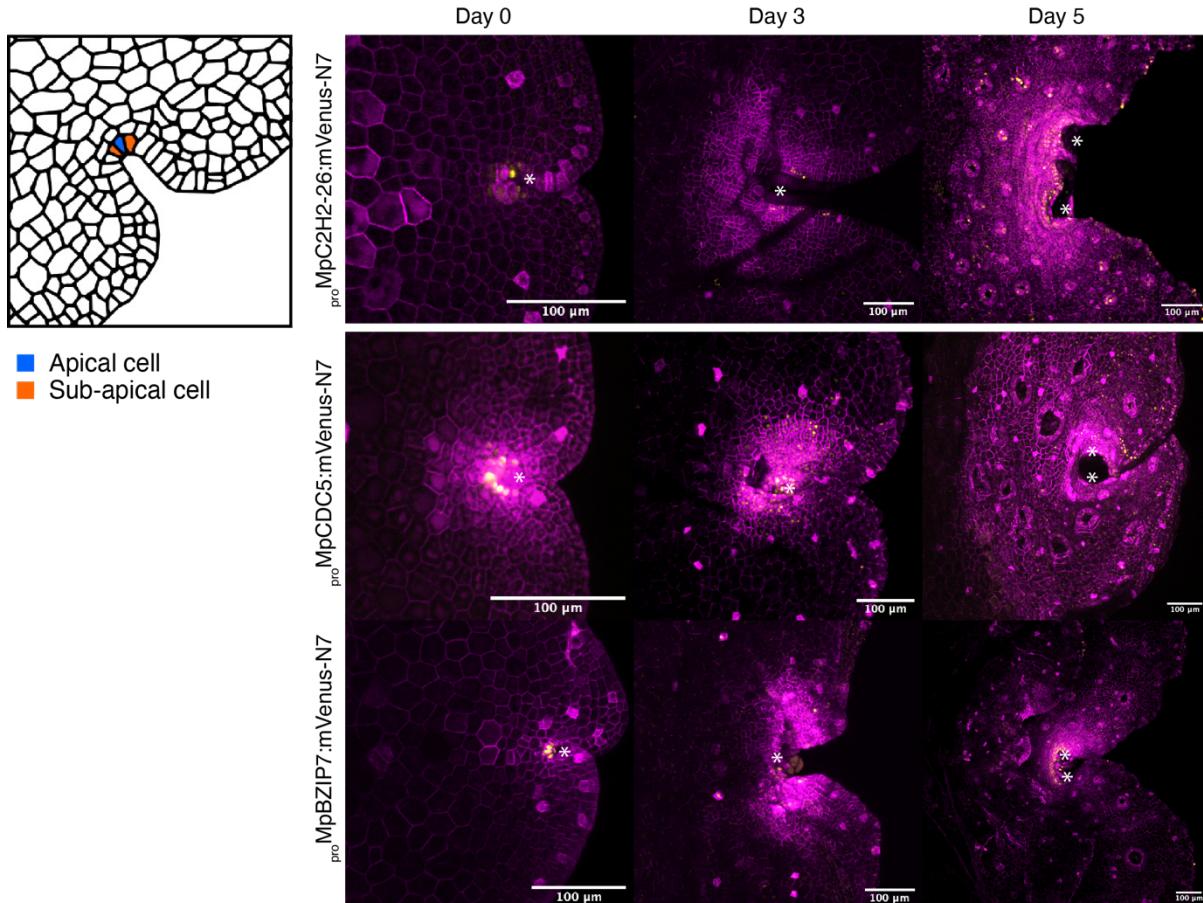

340 We verified the expression of *MpERF20/LAXR* transcript by *in situ* hybridisation. (Suppl. Fig.
341 S4). Tissue-specific expression of *MpERF20/LAXR* in the SCZ was confirmed, however
342 mRNA transcript signal corresponds to a larger area than it was observed in the transcriptional
343 reporter. It was recently shown that *MpERF20/LAXR* plays a fundamental role in regeneration,
344 has the capacity to induce cellular reprogramming to generate undifferentiated cells and it is
345 a sufficient to generate new apical stem cells (Ishida et al., 2022). After the ablation of the
346 notches in the gemma, a strong response of *proMpERF20/LAXR* is induced in the whole tissue
347 after just 5 hours consistently with data from RNA-seq experiments after ablation (Ishida et
348 al., 2022). A previous longer version (4.3 kb vs 1.8 kb) of this promoter also displayed similar
349 induction after ablation (Ishida et al., 2022). Following the induction of *proMpERF20/LAXR*,
350 cells start dividing and de-differentiate until a new apical region is formed. Subsequently, the
351 expression activity of *proMpERF20/LAXR* diminishes in epidermal cells and only remains in the
352 new SCZ (Figure 6, Supplemental movie S1).

353

354 **Figure 6. Dynamic expression of reporters in the SCZ.** (a) A selection of promoters
355 specifically active in the SCZ (*proMpERF20/LAXR*, *proMpBZIP15*, *proMpC2H2-22*). Cell types of
356 the SCZ are shown on the left. Confocal images of the gene of interest (yellow) and a
357 constitutive plasma membrane marker (magenta, *proMpUBE2:mScarlet-Lti6b*). Asterisks point
358 the apical notch. (b) Time lapse of *proMpERF20/LAXR* expression after laser ablation of the
359 notches and until re-establishment of the new SCZ. Ablated regions are marked as dotted


360 lines. Arrows point the first cells with signal and the forming apical notch (see also
 361 Supplemental Movie S1). Scale bars = 100 μ m. Gene IDs: Mp*ERF20/LAXR* = Mp5g06970,
 362 Mp*BZIP15* = Mp1g03580, Mp*C2H2-22* = Mp4g11030.

363



364

365 **Supplemental Figure S4.** *In situ* localization of MpERF20/LAXR mRNA in 0-day-old and 3-
366 day-old gemmalings. Signal is specifically localised in cells around the SCZ. Scale bar = 50
367 μ m.

370 **Supplemental Figure S2.** Dynamic activity of additional TF promoters reporters specific to
371 the SCZ (*proMpC2H2-26*, *proMpCDC5*, *proMpBZIP7*) driving expression of *mVenus-N7* nuclear-
372 localised fluorescent protein). Cell types of the SCZ are shown on the left. Confocal images of
373 the gene of interest (yellow) and a constitutive plasma membrane marker (magenta,
374 *proMpUBE2:mScarlet-Lti6b*). Asterisks mark the apical notch. Scale bars = 100 μ m. Gene IDs:
375 *MpC2H2-26* = *Mp8g14220*, *MpCDC5* = *Mp1g10310*, *MpBZIP7* = *Mp3g04360*.

376

377

378 **Supplemental movie S1. Additional dynamic expression of reporters in the SCZ.** Time-
379 lapse of *proMpERF20/LAXR* (yellow) expression after laser ablation of the notches and until re-
380 establishment of the new SCZ. Constitutive plasma membrane marker (*proMpUBE2:mScarlet*-
381 *Lti6b*) is shown in magenta.

382

383 *Dynamic expression of reporters during gemmaling development*

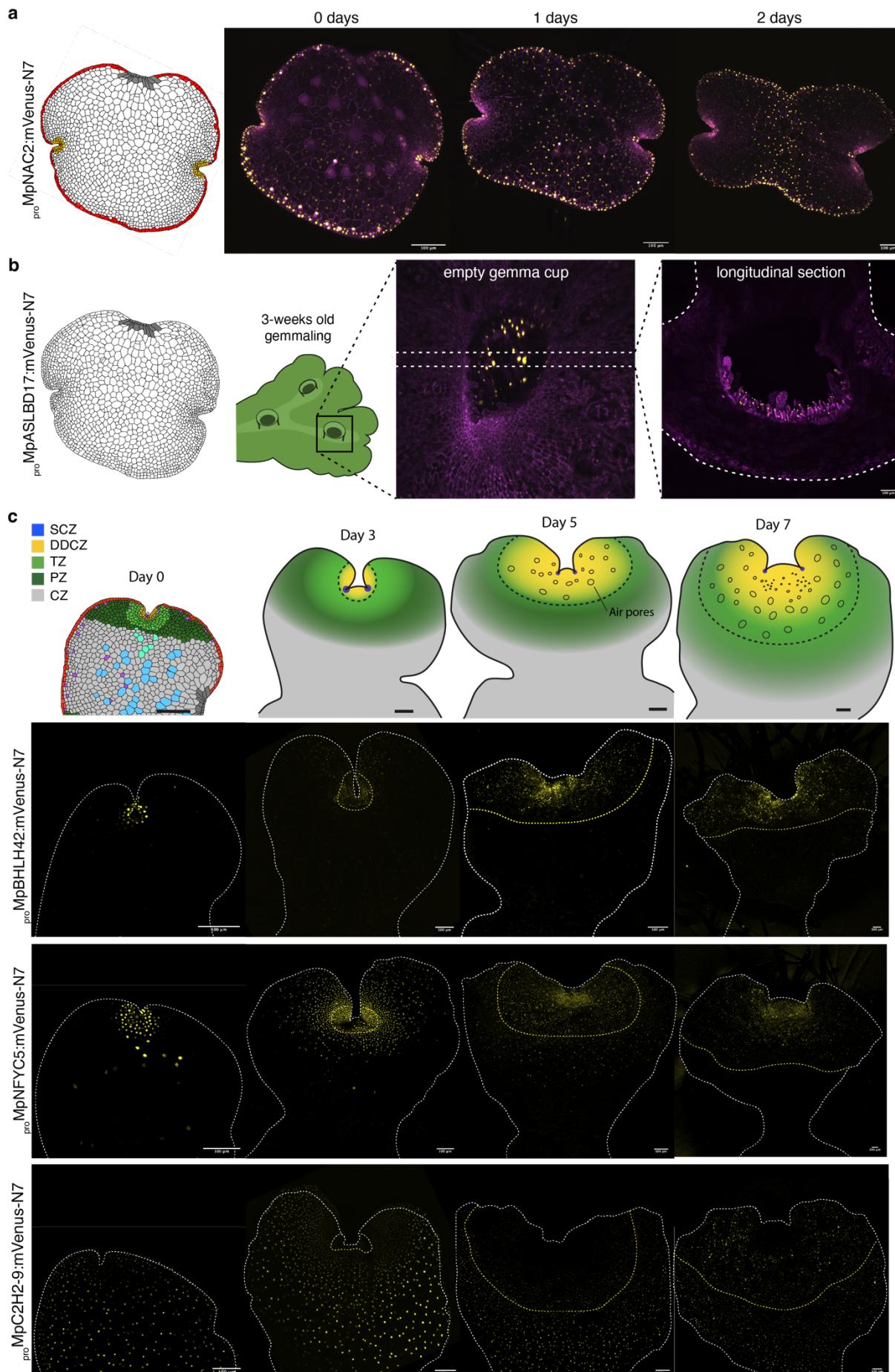
384 Outside of the SCZ, we identified 20 TF promoter-driven reporters specifically expressed in
385 the DDCZ. Interestingly, this later group of TFs also include stress related genes such as
386 *MpABI3a*, *MpMYCY*, *MpHY5* (Clayton et al., 2018; Eklund et al., 2018; Penuelas et al., 2019),
387 suggesting that stress signal transduction pathways are specifically active in the DDCZ at this
388 stage of gemma development. We found only 9 TF reporters specific to the TZ, and all of them
389 are also active in the DDCZ and SCZ. This logic is followed by other TFs expressed in the PZ.
390 Altogether, the *Marchantia* meristem is characterised by more than 200 TFs active in the SCZ
391 and this number diminishes as cells mature and are displaced distally from the apical growth
392 direction.

393 Two types of expression pattern do not follow a regular profile along the apical axis and are
394 not associated with known specialised cells. The first corresponds to cells around the
395 perimeter of gemmae that we called “border cells”. Such cells were not well described in the
396 literature. In a transverse section, the border cells form a layer of 2-3 cells at the margins of
397 the gemma. Among the promoters observed, *MpNAC2* and *MpARF2* show higher specificity
398 for expression in border cells. A similar expression pattern was shown before by using a
399 knock-in reporter of *MpARF2* (Kato et al., 2020b). We observed the expression of both genes
400 after gemma germination (Fig. 7a, Suppl. Fig. S3a) and the expression maximum migrates
401 from the border to the CZ after 2 days. We believe the border expression pattern could be
402 associated with the establishment of abaxial/adaxial polarity or auxin accumulation during
403 gemma formation. This interpretation is supported by the role of *MpARF2* and auxin signalling
404 in gemmae development (Rousseau, 1953; Eklund et al., 2015).

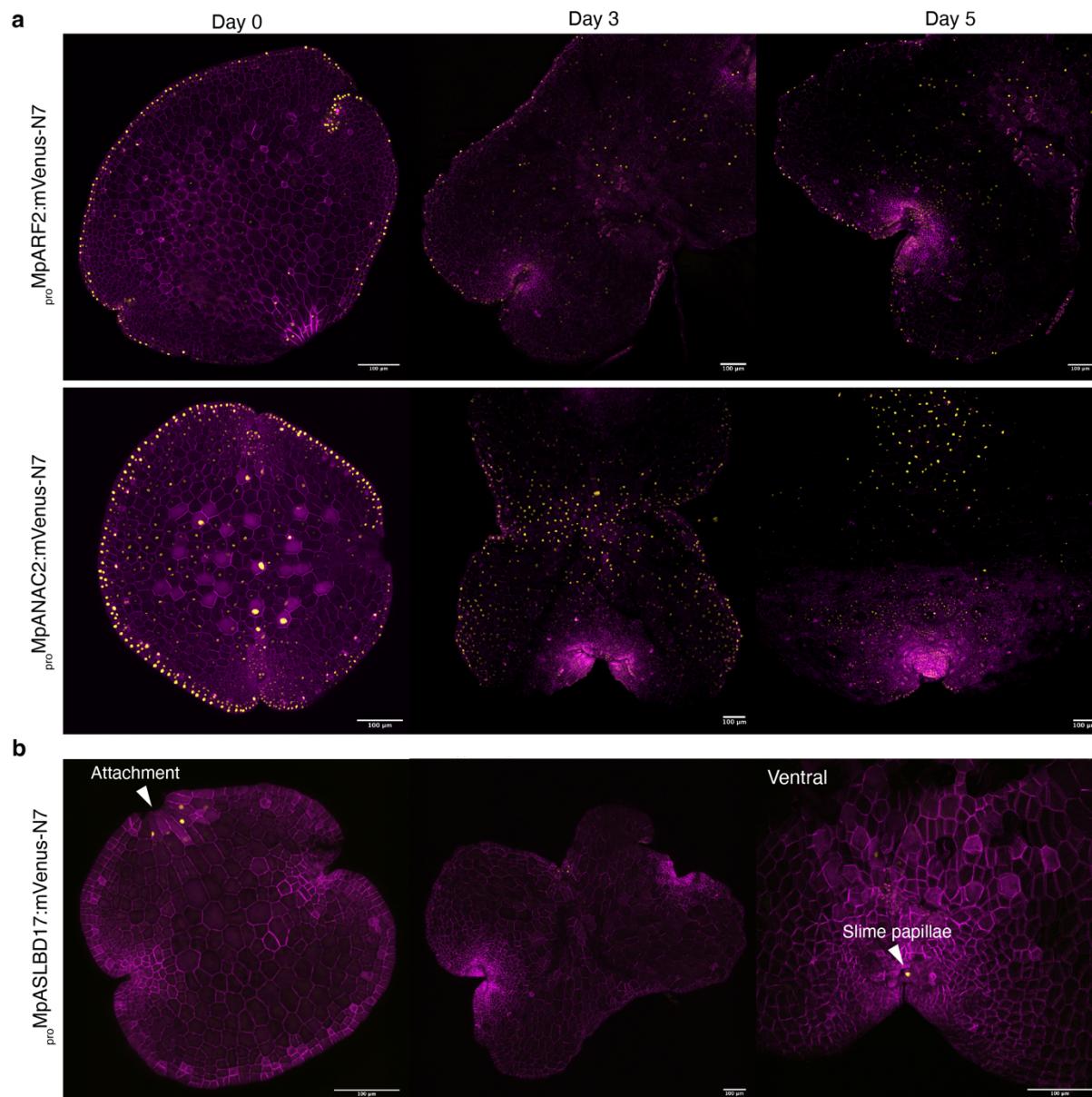
405 The second special expression domain corresponds to a group of elongated cells referred to
406 in the literature as the “attachment point” (Solly et al., 2017) which correspond to the cells
407 connected to the cup base before the detachment of the gemma from the stalk cell. These
408 (Kato et al., 2020a). *proMpASLBD17* is the best reporter with high specificity for the attachment
409 cells (Fig. 5). After gemma germination, *proMpASLBD17* signal remain in the attachment but
410 signal diminishes (Suppl. Fig. S3). Interestingly, *MpASLBD17* is also active in the base of the
411 cup in both gemma initials and mucilage cells (Fig. 7b). These terminal cells do not divide after
412 germination suggesting this cell identity could be a remnant of interaction between the gemma
413 and cup. Later in development, *proMpASLBD17* is also strongly expressed in slime papillae
414 (Suppl. Fig. S3b). This is consistent with the notion that the mucilage papillae, slime papillae,
415 and gemma initials are all homologous cell types with similar genetic programs (Proust et al.,
416 2016).

417 We followed the expression patterns of 27 other promoters active in the different expression
418 domains in the notch across the course of vegetative development in *Marchantia* gemmalings
419 for 7 days. During this developmental period, gemmaling start maturing and proliferating and
420 undergo drastic morphological changes. Still, most patterns remained consistent (19/27) with
421 the pattern of cell divisions (Fig. 7c). Examples of expression patterns in 0, 3, 5 and 7 days-
422 old are shown in Figure 7c. After the first 2 days of growth, cells rapidly expand and form a
423 mature epidermis while the first bifurcation of the thallus takes place. Proximal rhizoids (Fig.
424 5a) of the dorsal surface can still undergo cell divisions and de-differentiate into epidermal
425 cells, while distal rhizoids are committed to elongate even at the dorsal surface. The mature
426 thallus is characterised by the complete formation of air chambers and air pore structures

427 (Shimamura, 2016). These structures are formed by a very precise pattern of cell divisions
428 that occur very close to the SCZ and form a boundary between the mature thallus and the
429 gemmae epidermis visible after 3-4 days. The DDCZ drastically expands during the first days
430 and covers most of the newly formed mature thallus, displacing the TZ and PZ (Fig. 7C). This
431 contrasts with TF promoters expressed in the SCZ of the gemma which remain limited to sub-
432 domains of the mature thallus (Fig. 6). The DDCZ, TZ, and PZ maintain a high rates of cell
433 expansion and division during the first days (Boehm et al., 2017; Ishida et al., 2022) but only
434 the DDCZ is active during the differentiation of cells. Both the TZ and PZ expand to form the
435 boundary and heart-shaped morphology that separate both apical notches, acting as a
436 supportive tissue to the forming mature epidermis (Fig. 7c). The CZ remains unaltered while
437 the rhizoid precursors in the dorsal region de-differentiate. It is only after 5-7 days that the
438 DDCZ forms a gradient of expression focused on the SCZ forming a boundary between
439 developing and mature air pores (Fig. 7c). This structure is repeated in a similar pattern during
440 vegetative growth (Solly et al., 2017). We synthesized these observations and expanded our
441 model of expression domains to later developmental stages (Fig. 7c).

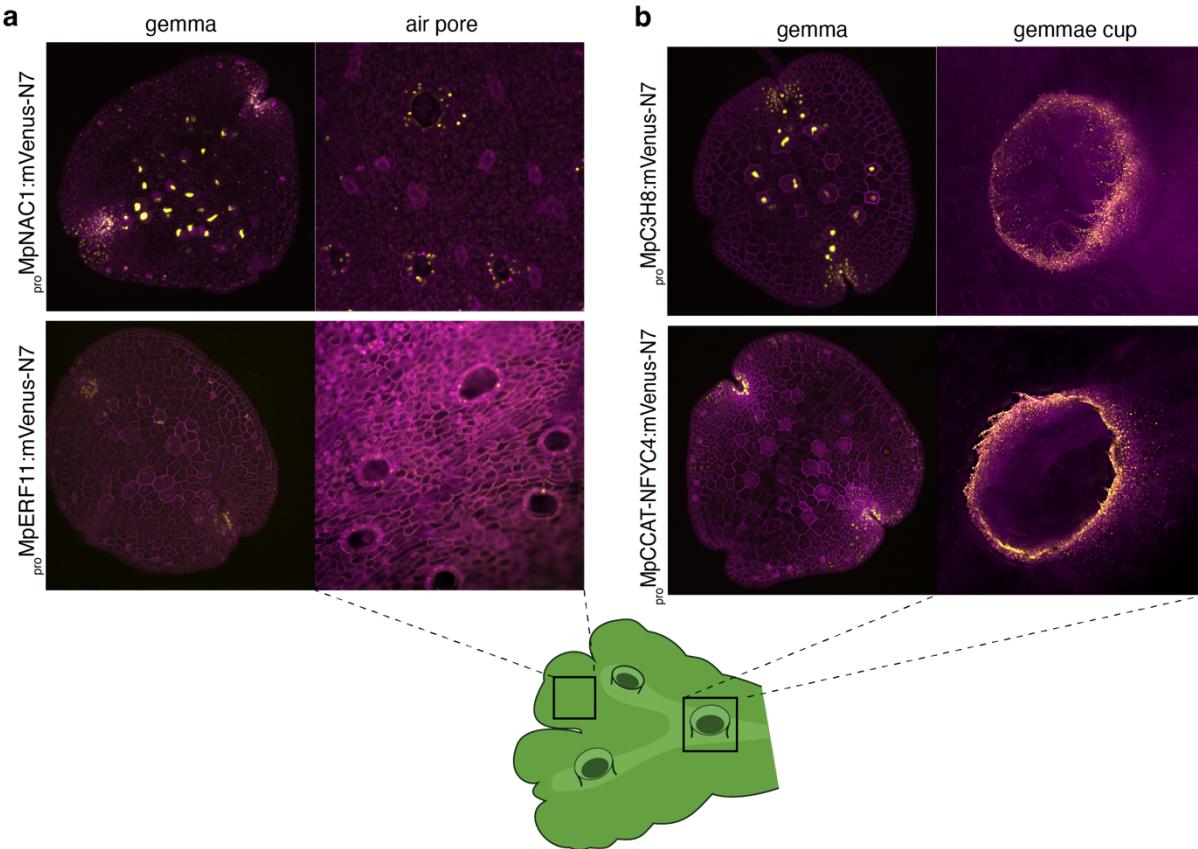

442 The mature thallus is later characterised by the presence of air pores and gemma cups. We
443 also observed that other promoters showing tissue specific expression in organs in the mature
444 thallus, such as gemma cup (*proMpNAC1* and *proMpERF11*) and air pores (*proMpC3H8*,
445 *proMpCCAAT-NFYC4*), are also active in the DDCZ of the developing gemma (Fig. 8). Among
446 them, *MpCCAAT-NFYC4* was also found to be air pore specific in scRNA-seq experiments
447 (Wang et al., 2023). These observations are in agreement with classical morphological models
448 of cell differentiation in bryophytes where most cell differentiation processes occur in the cells
449 surrounding the apical region (APOSTOLAKOS et al., 1982; Bowman, 2016; Shimamura,
450 2016).

451


452 **Figure 7. Promoter activity during gemmaling development.** (a) Schematic representation
453 of the gemma border and time-course of expression for a representative cell-type specific
454 marker (*proMpNAC2*). (b) Schematic representation of the attachment point of the gemma and
455 expression of a representative cell-type specific marker (*proMpASLBD17*) in a gemma cup in
456 a mature thallus (view from the top and cross-section). Confocal images of the gene of interest
457 (yellow) and a constitutive plasma membrane marker (magenta, *proMpUBE2:mScarlet-Lti6b*).
458 (c) Schematic models of expression domain dynamics during the first days of gemmaling
459 development, with (below) examples of confocal images of time-courses of fluorescent
460 reporters (*proMpBHLH42*, *proMpNFYC5*, *proMpC2H2-9*) illustrating the different expression

461 domains. The dashed line represents the boundary between the mature epidermis and the
462 supportive tissue of the gemmae. Scale bar 100 μm . Gene IDs: *MpNAC2* = *Mp6g02590*,
463 *MpASLBD17* = *Mp8g09250*, *MpBHLH42* = *Mp5g09710*, *MpNFYC5* = *Mp1g16880*, *MpC2H2-*
464 *9* = *Mp7g09260*.

465



467 **Supplemental Figure S3.** (a) Time-course images of gemmaling development in lines with
468 expression of fluorescent reporters specific to the border (*proMpARF2*, *proMpNAC2*). (b) Time-
469 course images of gemmaling development in lines with expression of fluorescent reporters
470 specific to the attachment (*proMpASLBD17*). The attachment and slime papillae are
471 highlighted. Confocal images of the gene of interest (yellow) and a constitutive plasma
472 membrane marker (magenta, *proMpUBE2:mScarlet-Lti6b*). Scale bar 100 μ m. MpARF2 =
473 *Mp4g11820*, MpNAC2 = *Mp6g02590*, MpASLBD17 = *Mp8g09250*.

474 **Figure 8. Promoters specifically active in mature thallus tissues.** (a) Expression pattern
475 of reporters with specific expression in air pores (*proMpC3H8*, *proMpCCAAT-NFYC4*) and (b)
476 gemma cups (*proMpNAC1* and *proMpERF11*). Schematic representation of a *Marchantia* adult
477

478 plant and the correspondence to images shown. Gene IDs: *MpC3H8* = *Mp2g05060*,
479 *MpCCAAT-NFYC4* = *Mp1g01960*, *MpNAC1* = *Mp2g07720*, *MpERF11* = *Mp7g17020*.

480

481

482

483 DISCUSSION

484 We built and tested a comprehensive library of promoters derived from the genes of regulatory
485 TFs in *Marchantia*. The promoter parts are of relatively compact size with standardised
486 modular format to allow simple DNA engineering. These reporters can be easily reused and
487 combined to recognise virtually any cell-type in *Marchantia*, providing a toolset that rivals any
488 other plant system.

489 We have used these promoters to systematically map patterns of gene expression during early
490 gemmaling development in *Marchantia*. We exploited nuclear-localised fluorescent cell
491 markers and the regular cellular architecture of gemmae to normalise and compare patterns
492 of gene expression with cellular resolution. These could be registered using microscopic
493 features of cellular anatomy and compared with published knowledge of cellular differentiation
494 to enable construction of a stereotypical map of cell states in the *Marchantia* gemma. This

495 atlas will provide a guide for further use of the promoter collection, and a template for more
496 detailed studies of the interactions between genome and cellular development in *Marchantia*.

497 The promoter activities have some limitations in accurately reflecting the transcriptional
498 patterns of the corresponding endogenous genes. For example, they may be missing
499 important downstream or upstream regulatory regions, alterations due to domestication, and
500 post-transcriptional regulatory mechanisms associated with the native transcripts. The former,
501 was shown to be important for several developmental regulators in *Marchantia* (e.g., *MpRSL1*,
502 *MpFGMYB* (Honkanen et al., 2018; Hisanaga et al., 2019)). Nevertheless, we found broad
503 and consistent correlations between the observed patterns of promoter activity and
504 independently measured levels and distribution of transcripts, and documented properties of
505 longer versions of the promoters from the literature. Our approach is complementary to other
506 transcriptomic efforts to understand *Marchantia* development. Moreover, it could capture
507 precise features of cellular organisation and gene regulation in the apical meristem that were
508 not discernible by time-resolved scRNA-seq (Wang et al., 2023). Further, these promoters can
509 drive expression of fluorescent proteins to deliver spatially precise and sensitive markers for
510 visualising the dynamics of cell states in living tissues.

511 Reconstructing the evolution of morphological traits requires defining the relationship between
512 tissues and cell types and how genetic programs evolved (Delaux et al., 2019; Zeng, 2022).
513 Previous models suggested that the vegetative gametophyte meristem of bryophytes is
514 analogous or homologous to the vegetative sporophyte meristem in tracheophytes (vascular
515 plants), both as a deeply conserved trait or by the co-option of several TFs from one generation
516 to the other (Bowman et al., 2019). To reconstruct the history of the evolution of meristems in
517 land plants, the expression patterns of TFs play a crucial role. Looking only for conserved
518 factors across embryophytes may have generated constraints in the comparisons between
519 the functional architectures of these two forms of multicellular polar growth. Our approach of
520 testing a near-complete collection of TF reporters has the potential to revisit this question,
521 sidestepping selection bias.

522 Morphological studies suggest that stem cells of the vegetative body of bryophytes are
523 comprised of single apical cell (Menand et al., 2007; Shimamura, 2016; Suzuki et al., 2020).
524 This simple structure is likely the ancestral state of the land plant meristem, while the more
525 complex meristem observed in vascular plants is likely a derived trait (Harrison and Morris,
526 2018; Fouracre and Harrison, 2022). Our observations provide genetic evidence for the
527 identity of such cells in *Marchantia*. *MpERF20/LAXR* is expressed in the centre of the SCZ (as
528 verified by the fluorescent reporter and *in situ* hybridisation) and accompanied by sub-apical

529 cells where other TFs are specifically expressed (*MpBZIP15*, *MpBZIP7*, *MpC2H2-26*,
530 *MpC2H2-22*, *MpCDC5*). In addition, we found a set of TF promoters active in the DDCZ that
531 completes the arrangement of cells forming the *Marchantia* notch, that constitute the building
532 blocks of *Marchantia* vegetative development.

533 Thus, there appears to be a hierarchical order to the patterns for gene expression in the
534 *Marchantia* thallus. Many TFs are expressed in the SCZ and expression patterns are
535 progressively pruned along the longitudinal axis as distal daughter lineages take up specific
536 cell fates (Fig. 4d). However, we also observed complex gene expression patterns which are
537 active in broad domains but excluded from specific cell-types (e.g., *proMpERF21*, *proMpBZR2*,
538 *proMpBBX3*) that could also be important for developmental processes.

539 The classical model of stem cell organization in the sporophyte of vascular plants involve
540 *WUSCHEL* (*WUS/WOX*), *Class I KNOX* (*KNOX1*), *Class III HD-ZIP* (*C3HDZ*),
541 *INTEGUMENTA/PLETHORA/BABYBOOM* (*APB*), *SCARECROW* (*SCR*), *SHORTROOT*
542 (*SHR*) and *HAIRY MERISTEM* (*HAM*) TFs. In *Marchantia*, the reporters for *MpWOX*, *MpAPB*,
543 *MpKNOX1*, and *MpC3HDZ* are not specific to an analogous region of the apical notch in the
544 *Marchantia* gametophyte (Suppl. Table S1). This is in line with functional evo-devo studies in
545 bryophytes showing that *MpWOX* does not play a critical role in the gametophyte of
546 *Marchantia* (Hirakawa et al., 2020), that *MpKNOX1* only participates in the sporophyte
547 generation (Sano et al., 2005; Sakakibara et al., 2008; Dierschke et al., 2021; Hisanaga et al.,
548 2021), and *C3HDZ* mutant does not affect the gametophytic meristem in the model moss *P.*
549 *patens* (Yip et al., 2016). As observed in other cases, the function of TFs could be only
550 conserved in the sporophyte generation (Romani and Moreno, 2021). In the case of GRAS
551 TFs such as *HAM* and *SCR*, they seem to play a prominent role in the gametophytic stem cell
552 organization in *Physcomitrium*, but orthologues for some do not exist in *Marchantia* (Beheshti
553 et al., 2021; Ge et al., 2022; Ishikawa et al., 2023).

554 The singular set of TFs expressed in the SCZ is largely unrelated to known TFs associated
555 with meristem organization in other species. For example, *MpBZIP15* has no true orthologue
556 in angiosperms (Bowman et al., 2017) and characterized C2H2 TFs are largely associated
557 with stress responses (Han et al., 2020). Interestingly, *CDC5* has been associated with shoot
558 apical meristem organization in *Arabidopsis* upstream of *STM* and *WOX* and loss-of-function
559 plants are embryo lethal, but its expression is not meristem specific (Lin et al., 2007). As a
560 possible exception, in *Arabidopsis*, *AtESR1/DRN* the orthologue of *MpERF20*, was described
561 to be involved in regulation of the shoot apical meristem organization and regeneration,
562 suggesting that this role could be conserved across land plants, or co-opted in the opposite

563 generation (Banno et al., 2001; Kirch et al., 2003; Ikeda et al., 2021). However, unlike
564 *MpERF20*, *AtESR1/DRN* is expressed in the leaf primordia and not in the stem-cell zone (Kirch
565 et al., 2003).

566 In summary, the evidence presented here supports the notion that GRNs governing the
567 formation of an apical meristem in the vegetative body of bryophytes and embryophytes are
568 not analogous. One scenario is that both forms of multicellular polar growth evolved to a large
569 degree independently in contrasting generations. The fact that the only conserved factor is
570 associated with regeneration, indicates that the bryophyte meristem GRNs may be built on
571 top of an ancestral capacity of ancestral land plants to regenerate. On the other hand, the
572 more complex body plans of vascular plant may have recruited *de novo* GRNs during evolution
573 to support organ development and more sophisticated patterning. In contrast, most of the
574 differentiation events in *Marchantia* development are observed immediately after formation of
575 the first derivatives of the apical cell (DDCZ) and there is not a comparable peripheral zone
576 as in the sporophyte of vascular plants. Nevertheless, other aspects of the molecular
577 machinery regulating the meristem formation and maintenance, such as: peptide signalling,
578 such as auxin biosynthesis and polar transport, and cytokinin signalling; seem to work in a
579 similar fashion in both forms of vegetative body (Whitewoods et al., 2018; Aki et al., 2019;
580 Hirakawa et al., 2019; Blazquez et al., 2020; Hirakawa et al., 2020; Kato et al., 2020b; Bowman
581 et al., 2021). Future work on hormone control of growth and their interaction with TFs in
582 bryophytes and streptophyte algae will help to fill the gaps in how the cell types are defined
583 and maintained across development.

584 This atlas of TF expression patterns will provide a valuable resource for the plant science
585 community. As we showed for the case of the air pores and cups, there is a strong potential
586 to find tissue-specific promoters to *Marchantia* tissues in other developmental stages not
587 covered here. We expect this collection of promoter will help to accelerate studies in
588 *Marchantia* for a wide range of applications: markers for cell identities, ratiometric
589 quantification (Federici et al., 2012), isolation of nuclei tagged in specific cell types
590 (INTACT)(Deal and Henikoff, 2011), cell-type specific expression, among many other
591 functional genomics and synthetic biology applications.

592

593 **ACKNOWLEDGMENTS**

594 We thank the *Marchantia* evo-devo community for useful discussion. We thank Nicola Patron
595 and the Earlham institute Biofoundry for assistance with the automated cloning. This work was

596 funded as part of the BBSRC/EPSRC OpenPlant Synthetic Biology Research Centre Grant
597 BB/L014130/1 to J.H., BBSRC BB/F011458/1 for confocal microscopy, BBSRC BB/T007117/1
598 to J.H, and Australian Research Council grants DP210101423, CE200100015 to J.L.B.

599

600

601 **METHODS**

602 *Plant Material and Growth Conditions.*

603 *Marchantia polymorpha* subs. *rudelaris* accessions *Cam-1* (male) and *Cam-2* (female) were
604 used in this study (Delmans et al., 2017). Under normal conditions, plants were grown on solid
605 0.5× Gamborg B-5 basal medium (Phytotech #G398) at pH 5.8 with 1.2% (w/v) agar
606 micropropagation grade (Phytotech #A296), under continuous light at 21 °C with light intensity
607 of 150 µmol/m²/s. For spore production, plants were grown in Microbox micropropagation
608 containers (SacO₂) in long day conditions (16 h light/8 h dark) under light supplemented with
609 far-red light as described (Sauret-Gueto et al., 2020).

610 *Synthesis of L0 parts*

611 5'UTR and promoter regions from genes were extracted from *Marchantia* genome version 5.1
612 (Montgomery et al., 2020) primary transcripts. DNA sequences were domesticated to remove
613 internal Bsal and Sapl sites. The sequences of synthetic L0 parts used in this work is available
614 in Supplemental Table S1. L0 parts were synthesised either by GENEWIZ or Twist Bioscience
615 following the standard syntax for plant synthetic biology with PROM5 or PROM and 5UTR
616 overhangs and cloned into the plasmid pUAP1 (Addgene #63674) (Patron et al., 2015) by
617 recombination. Promoter sequences with repeated Ns in first 1000bp or 5UTR longer than 3
618 kbp, were omitted. Additional L1 and L0 parts were obtained from the OpenPlant toolkit
619 (Sauret-Gueto et al., 2020)(Supplemental Table S1).

620 *Plasmid assembly*

621 L1 and L2 plasmids were constructed using Loop Assembly as described before (Pollak et al.,
622 2019) with the L0 and L1 parts described in Supplemental Table S1. For one-step assembly
623 of L3 plasmids, a new acceptor (pBy_01) was built using NEBuilder HiFi DNA Assembly
624 Master Mix (New England Biolabs, NEB #E2621). Four fragments were amplified by PCR
625 using the Q5 High-Fidelity DNA Polymerase (NEB #M0492) and purified using Monarch PCR
626 & DNA Cleanup kit (NEB #T1030). The *proUBE2:mTurquoise-N7; proUBE2:mScarlet-Lti6b*;

627 *proMp WRKY10:mVenus-N7* plasmid was used as a template, with primers Fw1 (5'-
628 acataaacgaattgctctcaagattgccttcaattcagaaagaatg-3') and Rv1 (5'-
629 ggtctctccctccctcctgctagcgatc-3'), Fw2 (5'-cctgtcggtcggtctcaaatggtagcaagggcgaggagc-3'),
630 Rv2 (atctcgaaatccgacggccacgcggcatg-3'), Fw3 (5'-gtggccgtcgattcgagatccaccgag-3'), Rv3 (5'-
631 cctgtcagaattgctctcaatctggatttagtactggatttg-3'); and pCsA as template with primers Fw4 (5'-
632 aaggagggagggagagaccagctgtctgttaagcgatg-3') and Rv4 (5'-
633 catttgagaccgcacgacaggttcccgac-3'). The full-length of the final construct was verified by
634 sequencing using the Oxford Nanopore technology (SNPsaurus LLC). The acceptor pBy_01
635 was used to assemble using Bsal and L0 corresponding to PROM5 or PROM and 5UTR parts
636 as in Supplemental Table S1. Type-IIS cloning was performed as described previously (Cai et
637 al., 2020) using a Master Mix containing 10% (v/v) 10× T4 DNA ligase buffer (NEB #M0202),
638 2.5% (v/v) 1 mg/mL bovine serum albumin (NEB #B9200S), 5% (v/v) T4 DNA ligase at 400
639 U/μL (NEB #M0202), 5% (v/v) Bsal at 20 U/μL (NEB #R3733), 10% (v/v) acceptor at 40 ng/μL,
640 20% (v/v) pre-mixed L0 parts (~100 ng/μL), and water to a final volume of either 2 μL for the
641 acoustic liquid handling robot (Labcyte Echo 550, Beckman) or 5 μL for manual handling.
642 Cycling conditions were 26 cycles of 37 °C for 3 min and 16 °C for 4 min. Termination and
643 enzyme denaturation: 50 °C for 5 min, and 80 °C for 10 min. 15 μL of TOP10 chemically
644 competent *E. coli* cells were transformed using the assembly reaction and plated on LB-agar
645 plates containing 50 μg/mL kanamycin and 40 μg/mL of 5-bromo-4-chloro-3-indolyl β-D-
646 galactopyranoside (X-Gal). The presence of the correct insert was confirmed by restriction
647 Xhol digestion (Thermo Scientific #FD0694) and Sanger sequencing using primers Fw5 (5'-
648 tactcgccatagtggaaacc) and Rv5 (5'-aagcactgcaggccgtagcc-3').

649 *Agrobacterium mediated transformation*

650 *Marchantia* spores were sterilised as previously described (Sauret-Gueto et al., 2020). A
651 modification of the published *Agrobacterium*-mediated protocol for transformation in multi-well
652 dishes was used (Ishizaki et al., 2008; Sauret-Gueto et al., 2020). Briefly, *A. tumefaciens*
653 (GV3103) were transformed using a miniaturised freeze-thaw method (Weigel and
654 Glazebrook, 2006) and plated in six-well plates with LB-agar plus kanamycin (50 mg/ml),
655 rifampicin (50 mg/ml), and gentamycin (25 mg/ml) and grown for 3 days at 29°C. Spores were
656 grown on solid 0.5x Gamborg B-5 media for 5 days and dispensed in 6-well plates containing
657 4 mL of liquid 0.5x Gamborg B-5 plus supplements: 0.1% N-Z amino A (Sigma #C7290) 0.03%
658 (w/v) L-glutamine (Alpha Caesar #A14201) 2% (w/v) sucrose (Fisher Scientific #10634932),
659 and 100 μM acetosyringone. A single colony of *Agrobacterium* transformed with the plasmid
660 of interest was scooped and inoculated the spore culture. The 6-well plate was then placed

661 on a shaker at 120 rpm for 2 days at 21 °C with continuous lighting (150 μ mol/m²/s). For each
662 well, the sporelings were washed with 25 mL of sterile water and plated on solid 0.5× Gamborg
663 B-5 media supplemented with 0.5% (w/v) sucrose plus 100 μ g/mL cefotaxime (Apollo
664 Scientific, #BIC0111) and hygromycin 20 μ g/mL (Invitrogen, #10687010). Plants were grown
665 in normal conditions for 10 days and transferred to a new selection plate for another 12-14
666 days until cups with gemmae are formed.

667 *Laser Scanning Confocal Microscopy*

668 Images of *Marchantia* were acquired on a Leica SP5 confocal microscope upright system
669 equipped with Argon ion gas laser with emitted wavelengths of 458, 476, 488 and 514 nm,
670 405 nm diode laser, 594 nm HeNe laser, 633 nm HeNe laser, and 561 DPSS laser. For higher
671 resolution and time lapse studies, images were acquired on a Leica SP8X spectral confocal
672 microscope upright system equipped with a 460–670 nm super continuum white light laser, 2
673 CW laser lines 405 nm, and 442 nm, and 5 Channel Spectral Scanhead (4 hybrid detectors
674 and 1 PMT). For slides, imaging was conducted using either a 10 \times air objective (HC PL APO
675 10 \times /0.40 CS2), a 20 \times air objective (HC PL APO 20 \times /0.75 CS2). When observing fluorescent
676 protein with overlapping emission spectra, sequential scanning mode was selected. Excitation
677 laser wavelength and captured emitted fluorescence wavelength window were as follows: for
678 mTurquoise2 (442 nm, 460–485 nm), for eGFP (488 nm, 498–516 nm), for mVenus (514 nm,
679 527–552 nm), for mScarlet (561 nm, 595–620 nm), and for chlorophyll autofluorescence (633,
680 687–739 nm).

681 When imaging time-courses, plants grown under normal culture conditions in small petri
682 dishes, removed the lid for imaging, and returned the plants to the growth chamber and
683 imaged as described above. For live imaging, six stacked Gene Frames (ThermoFisher
684 #AB0578) were placed on a glass slide and filled halfway with molten Gamborg B-5 agar
685 medium. Plants were then places on the solidified agar surface and meristems were removed
686 using a Laser Microdissection Leica LMD7000. Samples were mounted in perfluorodecalin
687 (Littlejohn et al., 2010) with a glass coverslip on top. The slides were then continuously imaged
688 on the Leica SP8X confocal microscope for 1–4 days.

689 *Analysis of Public RNA-Seq Data*

690 Transcripts per million (TPM) values were extracted from Marpolbase Expression database
691 (Kawamura et al., 2022). Sample accessions DRR284685 and DRR284686 (Mizuno et al.,
692 2021) were used to compare reporter expression patterns with RNA-seq. Data was

subsequently analysed with R. Hyperbolic arc-sin was calculated for each corresponding transcript (*base* package v4.1.3) and plotted with the density function (*stats* package v4.1.3).

695 *Image analysis and clustering*

696 Image processing was performed in Fiji (Schindelin et al., 2012) to perform maximum intensity
697 projections of the Z-stacks. For fluorescence intensity analysis, background was subtracted
698 with parameters by default, images were rotated to align the notches in the X-axis, and the
699 histogram was done using the plot profile function of the mVenus channel covering the entire
700 gemma, using the chlorophyll channel as a reference. Raw intensity data and distance of the
701 notches was exported for further analysis in R. The *smooth.spline* function (spar=0.4) was
702 used to reduce noise from cell-to-cell signal, and *approxfun* function from the *stats* package
703 was used to interpolate the distance from the start to the first notch, and then to the second
704 and end of the plot using fixed values. The average distance values of all images taken was
705 used as a reference to align all profiles. Intensity was normalised to the maximum value. The
706 *hclust* and *cutree* functions from *stats* package were used to perform the clustering and extract
707 the groups. The *pheatmap* function for *ComplexHeatmap* package v2.10.0 (Gu et al., 2016)
708 was used to plot the heatmap. For calculating the mode, the *mlv* function from *modeest*
709 package v2.4.0 with the Grenander method (Grenander, 1965). Default parameters were
710 used, and plots were made using the *base* package v4.1.3 unless specifically stated.

711 *In situ hybridisation*

712 Mp*ERF20* coding sequence was amplified from cDNA using primers Mp*ERF20* cds in situ F
713 (5'- GTACAAAAAAAGCAGGCTCCGCGGCCGCatggggggagg-3') and Mp*ERF20* cds in situ R
714 (5' GTACAAGAAAGCTGGGTGGCGCGCCttacatgagtggggactaaaagaagagt-3') and
715 seamlessly cloned using NEBuilder HiFi DNA Assembly (New England Biolabs, #E5520) into
716 pENTR-D linearized with *Not*I/*Ascl*. *M. polymorpha* ssp *ruderalis*, ecotype MEL, tissue
717 fixation, embedding, sectioning, and hybridization with digoxigenin (DIG)-labeled antisense
718 RNA probes were performed according to (Zachgo, 2002). Microscopic slides were observed
719 using an Axioskop 2 mot plus (Zeiss) microscope and photographed using AxioCam HRc and
720 AxioVision software.

721

722 REFERENCES

723 Aki, S.S., Mikami, T., Naramoto, S., Nishihama, R., Ishizaki, K., Kojima, M., Takebayashi,
724 Y., Sakakibara, H., Kyozuka, J., Kohchi, T., and Umeda, M. (2019). Cytokinin

725 Signaling Is Essential for Organ Formation in *Marchantia polymorpha*. *Plant Cell*
726 **Physiol** **60**, 1842-1854.

727 **Alonso-Barba, J.I., Rahman, R.U., Wittbrodt, J., and Mateo, J.L.** (2016). MEPD: medaka
728 expression pattern database, genes and more. *Nucleic Acids Res* **44**, D819-821.

729 **Althoff, F., Kopischke, S., Zobell, O., Ide, K., Ishizaki, K., Kohchi, T., and Zachgo, S.**
730 (2014). Comparison of the MpEF1alpha and CaMV35 promoters for application in
731 *Marchantia polymorpha* overexpression studies. *Transgenic Res* **23**, 235-244.

732 **APOSTOLAKOS, P., GALATIS, B., and MITRAKOS, K.** (1982). Studies on the Development
733 of the Air Pores and Air Chambers of *Marchantia paleacea*: 1. Light Microscopy.
734 *Annals of Botany* **49**, 377-396.

735 **Banno, H., Ikeda, Y., Niu, Q.W., and Chua, N.H.** (2001). Overexpression of *Arabidopsis*
736 ESR1 induces initiation of shoot regeneration. *Plant Cell* **13**, 2609-2618.

737 **Beheshti, H., Strotbek, C., Arif, M.A., Klingl, A., Top, O., and Frank, W.** (2021). PpGRAS12
738 acts as a positive regulator of meristem formation in *Physcomitrium patens*. *Plant Mol*
739 *Biol* **107**, 293-305.

740 **Bessa, J., Luengo, M., Rivero-Gil, S., Ariza-Cosano, A., Maia, A.H., Ruiz-Ruano, F.J.,**
741 **Caballero, P., Naranjo, S., Carvajal, J.J., and Gomez-Skarmeta, J.L.** (2014). A
742 mobile insulator system to detect and disrupt cis-regulatory landscapes in vertebrates.
743 *Genome Res* **24**, 487-495.

744 **Blazquez, M.A., Nelson, D.C., and Weijers, D.** (2020). Evolution of Plant Hormone Response
745 Pathways. *Annu Rev Plant Biol* **71**, 327-353.

746 **Boehm, C.R., Pollak, B., Purswani, N., Patron, N., and Haseloff, J.** (2017). Synthetic
747 Botany. *Cold Spring Harb Perspect Biol* **9**.

748 **Bowman, J.L.** (2016). A Brief History of *Marchantia* from Greece to Genomics. *Plant Cell*
749 *Physiol* **57**, 210-229.

750 **Bowman, J.L.** (2022a). The liverwort *Marchantia polymorpha*, a model for all ages. *Curr Top*
751 *Dev Biol* **147**, 1-32.

752 **Bowman, J.L.** (2022b). The origin of a land flora. *Nat Plants* **8**, 1352-1369.

753 **Bowman, J.L., Briginshaw, L.N., and Florent, S.N.** (2019). Evolution and co-option of
754 developmental regulatory networks in early land plants. *Curr Top Dev Biol* **131**, 35-53.

755 **Bowman, J.L., Flores Sandoval, E., and Kato, H.** (2021). On the Evolutionary Origins of
756 Land Plant Auxin Biology. *Cold Spring Harb Perspect Biol* **13**.

757 **Bowman, J.L., Sakakibara, K., Furumizu, C., and Dierschke, T.** (2016). Evolution in the
758 Cycles of Life. *Annu Rev Genet* **50**, 133-154.

759 **Bowman, J.L., Arteaga-Vazquez, M., Berger, F., Briginshaw, L.N., Carella, P., Aguilar-
760 Cruz, A., Davies, K.M., Dierschke, T., Dolan, L., Dorantes-Acosta, A.E., Fisher,
761 T.J., Flores-Sandoval, E., Futagami, K., Ishizaki, K., Jibran, R., Kanazawa, T.,
762 Kato, H., Kohchi, T., Levins, J., Lin, S.S., Nakagami, H., Nishihama, R., Romani,
763 F., Schornack, S., Tanizawa, Y., Tsuzuki, M., Ueda, T., Watanabe, Y., Yamato,
764 K.T., and Zachgo, S. (2022). The renaissance and enlightenment of *Marchantia* as a
765 model system. *Plant Cell* **34**, 3512-3542.**

766 **Bowman, J.L., Kohchi, T., Yamato, K.T., Jenkins, J., Shu, S., Ishizaki, K., Yamaoka, S.,**
767 **Nishihama, R., Nakamura, Y., Berger, F., Adam, C., Aki, S.S., Althoff, F., Araki, T.,**
768 **Arteaga-Vazquez, M.A., Balasubrmanian, S., Barry, K., Bauer, D., Boehm, C.R.,**
769 **Briginshaw, L., Caballero-Perez, J., Catarino, B., Chen, F., Chiyoda, S., Chovatia,**
770 **M., Davies, K.M., Delmans, M., Demura, T., Dierschke, T., Dolan, L., Dorantes-
771 **Acosta, A.E., Eklund, D.M., Florent, S.N., Flores-Sandoval, E., Fujiyama, A.,**
772 **Fukuzawa, H., Galik, B., Grimanelli, D., Grimwood, J., Grossniklaus, U., Hamada,**
773 **T., Haseloff, J., Hetherington, A.J., Higo, A., Hirakawa, Y., Hundley, H.N., Ikeda,**
774 **Y., Inoue, K., Inoue, S.I., Ishida, S., Jia, Q., Kakita, M., Kanazawa, T., Kawai, Y.,**
775 **Kawashima, T., Kennedy, M., Kinose, K., Kinoshita, T., Kohara, Y., Koide, E.,**
776 **Komatsu, K., Kopischke, S., Kubo, M., Kyozuka, J., Lagercrantz, U., Lin, S.S.,****

777 **Lindquist, E., Lipzen, A.M., Lu, C.W., De Luna, E., Martienssen, R.A., Minamino,**
778 **N., Mizutani, M., Mizutani, M., Mochizuki, N., Monte, I., Mosher, R., Nagasaki, H.,**
779 **Nakagami, H., Naramoto, S., Nishitani, K., Ohtani, M., Okamoto, T., Okumura, M.,**
780 **Phillips, J., Pollak, B., Reinders, A., Rovekamp, M., Sano, R., Sawa, S., Schmid,**
781 **M.W., Shirakawa, M., Solano, R., Spunde, A., Suetsugu, N., Sugano, S.,**
782 **Sugiyama, A., Sun, R., Suzuki, Y., Takenaka, M., Takezawa, D., Tomogane, H.,**
783 **Tsuzuki, M., Ueda, T., Umeda, M., Ward, J.M., Watanabe, Y., Yazaki, K.,**
784 **Yokoyama, R., Yoshitake, Y., Yotsui, I., Zachgo, S., and Schmutz, J. (2017).**
785 **Insights into Land Plant Evolution Garnered from the *Marchantia polymorpha* Genome.**
786 **Cell 171, 287-304 e215.**

787 **Cai, Y.M., Carrasco Lopez, J.A., and Patron, N.J. (2020).** PhytoBricks: Manual and
788 **Automated Assembly of Constructs for Engineering Plants. Methods Mol Biol 2205,**
789 **179-199.**

790 **Clayton, W.A., Albert, N.W., Thrimawithana, A.H., McGhie, T.K., Deroles, S.C., Schwinn,**
791 **K.E., Warren, B.A., McLachlan, A.R.G., Bowman, J.L., Jordan, B.R., and Davies,**
792 **K.M. (2018).** UVR8-mediated induction of flavonoid biosynthesis for UVB tolerance is
793 **conserved between the liverwort *Marchantia polymorpha* and flowering plants. Plant J**
794 **96, 503-517.**

795 **Deal, R.B., and Henikoff, S. (2011).** The INTACT method for cell type-specific gene
796 **expression and chromatin profiling in *Arabidopsis thaliana*. Nat Protoc 6, 56-68.**

797 **Delaux, P.M., Hetherington, A.J., Coudert, Y., Delwiche, C., Dunand, C., Gould, S.,**
798 **Kenrick, P., Li, F.W., Philippe, H., Rensing, S.A., Rich, M., Strullu-Derrien, C., and**
799 **de Vries, J. (2019).** Reconstructing trait evolution in plant evo-devo studies. Curr Biol
800 **29, R1110-R1118.**

801 **Delmans, M., Pollak, B., and Haseloff, J. (2017).** MarpoDB: An Open Registry for *Marchantia*
802 **Polymorpha** Genetic Parts. Plant Cell Physiol 58, e5.

803 **Dierschke, T., Flores-Sandoval, E., Rast-Somssich, M.I., Althoff, F., Zachgo, S., and**
804 **Bowman, J.L. (2021).** Gamete expression of TALE class HD genes activates the
805 **diploid sporophyte program in *Marchantia polymorpha*. Elife 10.**

806 **Eklund, D.M., Kanei, M., Flores-Sandoval, E., Ishizaki, K., Nishihama, R., Kohchi, T.,**
807 **Lagercrantz, U., Bhalerao, R.P., Sakata, Y., and Bowman, J.L. (2018).** An
808 **Evolutionarily Conserved Abscisic Acid Signaling Pathway Regulates Dormancy in the**
809 **Liverwort *Marchantia polymorpha*. Curr Biol 28, 3691-3699 e3693.**

810 **Eklund, D.M., Ishizaki, K., Flores-Sandoval, E., Kikuchi, S., Takebayashi, Y., Tsukamoto,**
811 **S., Hirakawa, Y., Nonomura, M., Kato, H., Kouno, M., Bhalerao, R.P., Lagercrantz,**
812 **U., Kasahara, H., Kohchi, T., and Bowman, J.L. (2015).** Auxin Produced by the
813 **Indole-3-Pyruvic Acid Pathway Regulates Development and Gemmae Dormancy in**
814 **the Liverwort *Marchantia polymorpha*. Plant Cell 27, 1650-1669.**

815 **Federici, F., Dupuy, L., Laplaze, L., Heisler, M., and Haseloff, J. (2012).** Integrated genetic
816 **and computation methods for in planta cytometry. Nat Methods 9, 483-485.**

817 **Fouracre, J.P., and Harrison, C.J. (2022).** How was apical growth regulated in the ancestral
818 **land plant? Insights from the development of non-seed plants. Plant Physiol 190, 100-**
819 **112.**

820 **Galatis, B., and Apostolakos, P. (1977).** On the fine structure of differentiating mucilage
821 **papillae of *Marchantia*. Canadian Journal of Botany 55, 772-795.**

822 **Gallo, S.M., Gerrard, D.T., Miner, D., Simich, M., Des Soye, B., Bergman, C.M., and**
823 **Halfon, M.S. (2011).** REDfly v3.0: toward a comprehensive database of transcriptional
824 **regulatory elements in *Drosophila*. Nucleic Acids Res 39, D118-123.**

825 **Ge, Y., Gao, Y., Jiao, Y., and Wang, Y. (2022).** A conserved module in the formation of moss
826 **midribs and seed plant axillary meristems. Sci Adv 8, eadd7275.**

827 **Giacomello, S. (2021).** A new era for plant science: spatial single-cell transcriptomics. Curr
828 **Opin Plant Biol 60, 102041.**

829 **Grenander, U.** (1965). Some Direct Estimates of the Mode. *The Annals of Mathematical*
830 *Statistics* **36**, 131-138, 138.

831 **Gu, Z., Eils, R., and Schlesner, M.** (2016). Complex heatmaps reveal patterns and
832 correlations in multidimensional genomic data. *Bioinformatics* **32**, 2847-2849.

833 **Han, G., Lu, C., Guo, J., Qiao, Z., Sui, N., Qiu, N., and Wang, B.** (2020). C2H2 Zinc Finger
834 Proteins: Master Regulators of Abiotic Stress Responses in Plants. *Front Plant Sci* **11**,
835 115.

836 **Harrison, C.J., and Morris, J.L.** (2018). The origin and early evolution of vascular plant
837 shoots and leaves. *Philos Trans R Soc Lond B Biol Sci* **373**.

838 **Hata, Y., and Kyozuka, J.** (2021). Fundamental mechanisms of the stem cell regulation in
839 land plants: lesson from shoot apical cells in bryophytes. *Plant Mol Biol* **107**, 213-225.

840 **Hirakawa, Y.** (2022). Evolution of meristem zonation by CLE gene duplication in land plants.
841 *Nat Plants* **8**, 735-740.

842 **Hirakawa, Y., Uchida, N., Yamaguchi, Y.L., Tabata, R., Ishida, S., Ishizaki, K., Nishihama,**
843 **R., Kohchi, T., Sawa, S., and Bowman, J.L.** (2019). Control of proliferation in the
844 haploid meristem by CLE peptide signaling in *Marchantia polymorpha*. *PLoS Genet*
845 **15**, e1007997.

846 **Hirakawa, Y., Fujimoto, T., Ishida, S., Uchida, N., Sawa, S., Kiyosue, T., Ishizaki, K.,**
847 **Nishihama, R., Kohchi, T., and Bowman, J.L.** (2020). Induction of Multichotomous
848 Branching by CLAVATA Peptide in *Marchantia polymorpha*. *Curr Biol* **30**, 3833-3840
849 e3834.

850 **Hisanaga, T., Fujimoto, S., Cui, Y., Sato, K., Sano, R., Yamaoka, S., Kohchi, T., Berger,**
851 **F., and Nakajima, K.** (2021). Deep evolutionary origin of gamete-directed zygote
852 activation by KNOX/BELL transcription factors in green plants. *Elife* **10**.

853 **Hisanaga, T., Okahashi, K., Yamaoka, S., Kajiwara, T., Nishihama, R., Shimamura, M.,**
854 **Yamato, K.T., Bowman, J.L., Kohchi, T., and Nakajima, K.** (2019). A cis-acting
855 bidirectional transcription switch controls sexual dimorphism in the liverwort. *EMBO J*
856 **38**.

857 **Honkanen, S., Thamm, A., Arteaga-Vazquez, M.A., and Dolan, L.** (2018). Negative
858 regulation of conserved RSL class I bHLH transcription factors evolved independently
859 among land plants. *Elife* **7**.

860 **Ikeda, Y., Kralova, M., Zalabak, D., Kubalova, I., and Aida, M.** (2021). Post-Embryonic
861 Lateral Organ Development and Adaxial-Abaxial Polarity Are Regulated by the
862 Combined Effect of ENHANCER OF SHOOT REGENERATION 1 and WUSCHEL in
863 *Arabidopsis* Shoots. *Int J Mol Sci* **22**.

864 **Ishida, S., Suzuki, H., Iwaki, A., Kawamura, S., Yamaoka, S., Kojima, M., Takebayashi,**
865 **Y., Yamaguchi, K., Shigenobu, S., Sakakibara, H., Kohchi, T., and Nishihama, R.**
866 (2022). Diminished Auxin Signaling Triggers Cellular Reprogramming by Inducing a
867 Regeneration Factor in the Liverwort *Marchantia polymorpha*. *Plant Cell Physiol* **63**,
868 384-400.

869 **Ishikawa, M., Fujiwara, A., Kosetsu, K., Horiuchi, Y., Kamamoto, N., Umakawa, N.,**
870 **Tamada, Y., Zhang, L., Matsushita, K., Palfalvi, G., Nishiyama, T., Kitasaki, S.,**
871 **Masuda, Y., Shiroza, Y., Kitagawa, M., Nakamura, T., Cui, H., Hiwatashi, Y.,**
872 **Kabeya, Y., Shigenobu, S., Aoyama, T., Kato, K., Murata, T., Fujimoto, K., Benfey,**
873 **P.N., Hasebe, M., and Kofuji, R.** (2023). GRAS transcription factors regulate cell
874 division planes in moss overriding the default rule. *Proc Natl Acad Sci U S A* **120**,
875 e2210632120.

876 **Ishizaki, K., Chiyoda, S., Yamato, K.T., and Kohchi, T.** (2008). Agrobacterium-mediated
877 transformation of the haploid liverwort *Marchantia polymorpha* L., an emerging model
878 for plant biology. *Plant Cell Physiol* **49**, 1084-1091.

879 **Ishizaki, K., Nishihama, R., Yamato, K.T., and Kohchi, T.** (2016). Molecular Genetic Tools
880 and Techniques for *Marchantia polymorpha* Research. *Plant Cell Physiol* **57**, 262-270.

881 **Kanazawa, T., Morinaka, H., Ebine, K., Shimada, T.L., Ishida, S., Minamino, N.,**
882 **Yamaguchi, K., Shigenobu, S., Kohchi, T., Nakano, A., and Ueda, T.** (2020). The
883 liverwort oil body is formed by redirection of the secretory pathway. *Nat Commun* **11**,
884 6152.

885 **Kato, H., Yasui, Y., and Ishizaki, K.** (2020a). Gemma cup and gemma development in
886 *Marchantia polymorpha*. *New Phytol* **228**, 459-465.

887 **Kato, H., Mutte, S.K., Suzuki, H., Crespo, I., Das, S., Radoeva, T., Fontana, M., Yoshitake,**
888 **Y., Hainiwa, E., van den Berg, W., Lindhoud, S., Ishizaki, K., Hohlbein, J., Borst,**
889 **J.W., Boer, D.R., Nishihama, R., Kohchi, T., and Weijers, D.** (2020b). Design
890 principles of a minimal auxin response system. *Nat Plants* **6**, 473-482.

891 **Kawamura, S., Romani, F., Yagura, M., Mochizuki, T., Sakamoto, M., Yamaoka, S.,**
892 **Nishihama, R., Nakamura, Y., Yamato, K.T., Bowman, J.L., Kohchi, T., and**
893 **Tanizawa, Y.** (2022). MarpolBase Expression: A Web-Based, Comprehensive
894 Platform for Visualization and Analysis of Transcriptomes in the Liverwort *Marchantia*
895 *polymorpha*. *Plant Cell Physiol* **63**, 1745-1755.

896 **Kirch, T., Simon, R., Grunewald, M., and Werr, W.** (2003). The
897 DORNROSCHEN/ENHANCER OF SHOOT REGENERATION1 gene of *Arabidopsis*
898 acts in the control of meristem cell fate and lateral organ development. *Plant Cell* **15**,
899 694-705.

900 **Kohchi, T., Yamato, K.T., Ishizaki, K., Yamaoka, S., and Nishihama, R.** (2021).
901 Development and Molecular Genetics of *Marchantia polymorpha*. *Annu Rev Plant Biol*
902 **72**, 677-702.

903 **Kubo, H., Nozawa, S., Hiwatashi, T., Kondou, Y., Nakabayashi, R., Mori, T., Saito, K.,**
904 **Takanashi, K., Kohchi, T., and Ishizaki, K.** (2018). Biosynthesis of riccionidins and
905 merchantins is regulated by R2R3-MYB transcription factors in *Marchantia*
906 *polymorpha*. *J Plant Res* **131**, 849-864.

907 **Lin, Z., Yin, K., Zhu, D., Chen, Z., Gu, H., and Qu, L.J.** (2007). AtCDC5 regulates the G2 to
908 M transition of the cell cycle and is critical for the function of *Arabidopsis* shoot apical
909 meristem. *Cell Res* **17**, 815-828.

910 **Littlejohn, G.R., Gouveia, J.D., Edner, C., Smirnoff, N., and Love, J.** (2010).
911 Perfluorodecalin enhances *in vivo* confocal microscopy resolution of *Arabidopsis*
912 *thaliana* mesophyll. *New Phytol* **186**, 1018-1025.

913 **Lodha, M., Marco, C.F., and Timmermans, M.C.** (2008). Genetic and epigenetic regulation
914 of stem cell homeostasis in plants. *Cold Spring Harb Symp Quant Biol* **73**, 243-251.

915 **Menand, B., Calder, G., and Dolan, L.** (2007). Both chloronemal and caulonemal cells
916 expand by tip growth in the moss *Physcomitrella patens*. *J Exp Bot* **58**, 1843-1849.

917 **Miller, M.W.** (1966). Relation between Extrapolation Number and Apical Cell Number in
918 Gemmae of *Marchantia polymorpha* L. *Nature* **210**, 748-749.

919 **Miller, M.W., and Alvarez, M.R.** (1965). A Relationship between Extrapolation Number and
920 Cellular Kinetics in Apical Cells of Gemmae of *Marchantia polymorpha* L. *Bryologist*,
921 184-192.

922 **Mizuno, Y., Komatsu, A., Shimazaki, S., Naramoto, S., Inoue, K., Xie, X., Ishizaki, K.,**
923 **Kohchi, T., and Kyozuka, J.** (2021). Major components of the KARRIKIN
924 INSENSITIVE2-dependent signaling pathway are conserved in the liverwort
925 *Marchantia polymorpha*. *Plant Cell* **33**, 2395-2411.

926 **Montgomery, S.A., Tanizawa, Y., Galik, B., Wang, N., Ito, T., Mochizuki, T., Akimcheva,**
927 **S., Bowman, J.L., Cognat, V., Marechal-Drouard, L., Ekker, H., Hong, S.F.,**
928 **Kohchi, T., Lin, S.S., Liu, L.D., Nakamura, Y., Valeeva, L.R., Shakirov, E.V.,**
929 **Shippen, D.E., Wei, W.L., Yagura, M., Yamaoka, S., Yamato, K.T., Liu, C., and**
930 **Berger, F.** (2020). Chromatin Organization in Early Land Plants Reveals an Ancestral
931 Association between H3K27me3, Transposons, and Constitutive Heterochromatin.
932 *Curr Biol* **30**, 573-588 e577.

933 **Panchy, N., Lehti-Shiu, M., and Shiu, S.H.** (2016). Evolution of Gene Duplication in Plants.
934 *Plant Physiol* **171**, 2294-2316.

935 **Patron, N.J., Orzaez, D., Marillonnet, S., Warzecha, H., Matthewman, C., Youles, M.,**
936 **Raitskin, O., Leveau, A., Farre, G., Rogers, C., Smith, A., Hibberd, J., Webb, A.A.,**
937 **Locke, J., Schornack, S., Ajioka, J., Baulcombe, D.C., Zipfel, C., Kamoun, S.,**
938 **Jones, J.D., Kuhn, H., Robatzek, S., Van Esse, H.P., Sanders, D., Oldroyd, G.,**
939 **Martin, C., Field, R., O'Connor, S., Fox, S., Wulff, B., Miller, B., Breakspear, A.,**
940 **Radhakrishnan, G., Delaux, P.M., Loque, D., Granell, A., Tissier, A., Shih, P.,**
941 **Brutnell, T.P., Quick, W.P., Rischer, H., Fraser, P.D., Aharoni, A., Raines, C.,**
942 **South, P.F., Ane, J.M., Hamberger, B.R., Langdale, J., Stougaard, J.,**
943 **Bouwmeester, H., Udvardi, M., Murray, J.A., Ntoukakis, V., Schafer, P., Denby,**
944 **K., Edwards, K.J., Osbourn, A., and Haseloff, J.** (2015). Standards for plant
945 synthetic biology: a common syntax for exchange of DNA parts. *New Phytol* **208**, 13-
946 19.

947 **Penuelas, M., Monte, I., Schweizer, F., Vallat, A., Reymond, P., Garcia-Casado, G.,**
948 **Franco-Zorrilla, J.M., and Solano, R.** (2019). Jasmonate-Related MYC Transcription
949 Factors Are Functionally Conserved in Marchantia polymorpha. *Plant Cell* **31**, 2491-
950 2509.

951 **Pollak, B., Cerdá, A., Delmans, M., Alamos, S., Moyano, T., West, A., Gutierrez, R.A.,**
952 **Patron, N.J., Federici, F., and Haseloff, J.** (2019). Loop assembly: a simple and open
953 system for recursive fabrication of DNA circuits. *New Phytol* **222**, 628-640.

954 **Proust, H., Honkanen, S., Jones, V.A., Morieri, G., Prescott, H., Kelly, S., Ishizaki, K.,**
955 **Kohchi, T., and Dolan, L.** (2016). RSL Class I Genes Controlled the Development of
956 Epidermal Structures in the Common Ancestor of Land Plants. *Curr Biol* **26**, 93-99.

957 **Romani, F., and Moreno, J.E.** (2021). Molecular mechanisms involved in functional
958 macroevolution of plant transcription factors. *New Phytol* **230**, 1345-1353.

959 **Romani, F., Flores, J.R., Tolopka, J.I., Suarez, G., He, X., and Moreno, J.E.** (2022).
960 Liverwort oil bodies: diversity, biochemistry, and molecular cell biology of the earliest
961 secretory structure of land plants. *J Exp Bot* **73**, 4427-4439.

962 **Romani, F., Banic, E., Florent, S.N., Kanazawa, T., Goodger, J.Q.D., Mentink, R.A.,**
963 **Dierschke, T., Zachgo, S., Ueda, T., Bowman, J.L., Tsiantis, M., and Moreno, J.E.**
964 (2020). Oil Body Formation in Marchantia polymorpha Is Controlled by MpC1HDZ and
965 Serves as a Defense against Arthropod Herbivores. *Curr Biol* **30**, 2815-2828 e2818.

966 **Rousseau, J.** (1953). Action des hétéro-auxines sur les chapeaux du Marchantia potimorpha
967 L. *Bulletin de la Société Botanique de France* **100**, 179-180.

968 **Sakakibara, K., Nishiyama, T., Deguchi, H., and Hasebe, M.** (2008). Class 1 KNOX genes
969 are not involved in shoot development in the moss *Physcomitrella patens* but do
970 function in sporophyte development. *Evol Dev* **10**, 555-566.

971 **Sano, R., Juarez, C.M., Hass, B., Sakakibara, K., Ito, M., Banks, J.A., and Hasebe, M.**
972 (2005). KNOX homeobox genes potentially have similar function in both diploid
973 unicellular and multicellular meristems, but not in haploid meristems. *Evol Dev* **7**, 69-
974 78.

975 **Sauret-Gueto, S., Fragedakis, E., Silvestri, L., Rebmann, M., Tomaselli, M., Markel, K.,**
976 **Delmans, M., West, A., Patron, N.J., and Haseloff, J.** (2020). Systematic Tools for
977 Reprogramming Plant Gene Expression in a Simple Model, *Marchantia polymorpha*.
978 *ACS Synth Biol* **9**, 864-882.

979 **Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,**
980 **Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J.,**
981 **Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A.** (2012). Fiji: an open-
982 source platform for biological-image analysis. *Nat Methods* **9**, 676-682.

983 **Seyfferth, C., Renema, J., Wendrich, J.R., Eekhout, T., Seurinck, R., Vandamme, N.,**
984 **Blob, B., Saeys, Y., Helariutta, Y., Birnbaum, K.D., and De Rybel, B.** (2021).

985 Advances and Opportunities in Single-Cell Transcriptomics for Plant Research. *Ann
986 Rev Plant Biol* **72**, 847-866.

987 **Shimamura, M.** (2016). *Marchantia polymorpha*: Taxonomy, Phylogeny and Morphology of a
988 Model System. *Plant Cell Physiol* **57**, 230-256.

989 **Solly, J.E., Cunniffe, N.J., and Harrison, C.J.** (2017). Regional Growth Rate Differences
990 Specified by Apical Notch Activities Regulate Liverwort Thallus Shape. *Curr Biol* **27**,
991 16-26.

992 **Suzuki, H., Harrison, C.J., Shimamura, M., Kohchi, T., and Nishihama, R.** (2020).
993 Positional cues regulate dorsal organ formation in the liverwort *Marchantia*
994 *polymorpha*. *J Plant Res* **133**, 311-321.

995 **Takizawa, R., Hatada, M., Moriwaki, Y., Abe, S., Yamashita, Y., Arimitsu, R., Yamato,
996 K.T., Nishihama, R., Kohchi, T., Koeduka, T., Chen, F., and Matsui, K.** (2021).
997 Fungal-Type Terpene Synthases in *Marchantia polymorpha* Are Involved in
998 Sesquiterpene Biosynthesis in Oil Body Cells. *Plant Cell Physiol* **62**, 528-537.

999 **Uchida, N., and Torii, K.U.** (2019). Stem cells within the shoot apical meristem: identity,
1000 arrangement and communication. *Cell Mol Life Sci* **76**, 1067-1080.

1001 **Visel, A., Minovitsky, S., Dubchak, I., and Pennacchio, L.A.** (2007). VISTA Enhancer
1002 Browser--a database of tissue-specific human enhancers. *Nucleic Acids Res* **35**, D88-
1003 92.

1004 **Wagner, A.** (1996). Genetic redundancy caused by gene duplications and its evolution in
1005 networks of transcriptional regulators. *Biol Cybern* **74**, 557-567.

1006 **Wang, L., Wan, M.C., Liao, R.Y., Xu, J., Xu, Z.G., Xue, H.C., Mai, Y.X., and Wang, J.W.**
1007 (2023). The maturation and aging trajectory of *Marchantia polymorpha* at single-cell
1008 resolution. *Dev Cell*.

1009 **Weigel, D., and Glazebrook, J.** (2006). Transformation of agrobacterium using the freeze-
1010 thaw method. *CSH Protoc* **2006**.

1011 **Whitewoods, C.D., Cammarata, J., Nemec Venza, Z., Sang, S., Crook, A.D., Aoyama, T.,
1012 Wang, X.Y., Waller, M., Kamisugi, Y., Cuming, A.C., Szovenyi, P., Nimchuk, Z.L.,
1013 Roeder, A.H.K., Scanlon, M.J., and Harrison, C.J.** (2018). CLAVATA Was a Genetic
1014 Novelty for the Morphological Innovation of 3D Growth in Land Plants. *Curr Biol* **28**,
1015 2365-2376 e2365.

1016 **Yip, H.K., Floyd, S.K., Sakakibara, K., and Bowman, J.L.** (2016). Class III HD-Zip activity
1017 coordinates leaf development in *Physcomitrella patens*. *Dev Biol* **419**, 184-197.

1018 **Yuan, G.C., Cai, L., Elowitz, M., Enver, T., Fan, G., Guo, G., Irizarry, R., Kharchenko, P.,
1019 Kim, J., Orkin, S., Quackenbush, J., Saadatpour, A., Schroeder, T., Shividasani,
1020 R., and Tirosh, I.** (2017). Challenges and emerging directions in single-cell analysis.
1021 *Genome Biol* **18**, 84.

1022 **Zachgo, S.** (2002). *In situ hybridisation*. (Oxford: Oxford University Press).

1023 **Zeng, H.** (2022). What is a cell type and how to define it? *Cell* **185**, 2739-2755.

1024 **Zheng, T.-X., Inoue, Y., and Shimamura, M.** (2020). Morphology of gemmae, an overlooked
1025 taxonomic trait in the genus *Marchantia* L. (Marchantiaceae). *The Bryologist* **123**, 601-
1026 610.