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We present a novel method for inferring connectivity from
large-scale neuronal networks with synchronous activity. Our
approach leverages Dynamic Differential Covariance to address
the associated computational challenges. First, we analyze spike
trains generated from Leaky Integrate-and-Fire network sim-
ulations and evaluate the performance of several off-the-shelf
multivariate connectivity inference methods. Next, we intro-
duce a new approach, Fractional Dynamic Differential Covari-
ance (FDDC), and demonstrate that it consistently outperforms
the other methods. Finally, we apply FDDC to experimental
data to assess the topological organization of inferred graphs of
in vitro neural network recordings obtained using high-density
microelectrode arrays (HD-MEAs). Our results indicate that
FDDC-derived graphs exhibit a significant negative correlation
between small-worldness and measures of network synchrony.
In contrast, graphs inferred through the well-established pair-
wise correlation method do not show such a correlation. This
finding implies that the graphs obtained through FDDC provide
stronger evidence in support of the theoretical notion that net-
works with clustered connections tend to exhibit higher levels
of synchronizability. We hypothesize that our findings have im-
plications for the development of scalable connectivity inference
methods for large-scale neural network data.
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Introduction
Large-scale electrophysiological methodology, such as high-
density microelectrode arrays (HD-MEAs) play an important
role in studying neuronal activity and for gaining insights into
the functioning of neural networks (1). Recent years have
seen significant progress in this field, particularly an increase
in the number of recording electrodes, resulting in improved
spatio-temporal recording resolution (2–5). However, such
gains in information content of neuronal recordings come
with a significant increase in data volume - which can pose
several computational challenges. The sheer volume of data
generated by these arrays can quickly become overwhelm-
ing, making it difficult to process the data in a timely manner.
These challenges become even more pronounced when infer-
ring functional connectivity from the recordings, because an
increase in the number of recording electrodes often corre-
sponds to an increase in the number of recorded neurons. As
connectivity inference methods often rely on pairwise calcu-
lations (1), the inference becomes computationally intensive
as the number of recorded neurons grows. Moreover, many

of today’s inference methods rely on the assumption that neu-
rons in the network exhibit asynchronous firing activity, mak-
ing them less suitable for inferring connections during syn-
chronous network activity (6–9). Although approaches to fil-
ter out time windows of synchronized activity exist, such as
detecting population bursts (10) or factoring out common ac-
tivity through multivariate modeling (11, 12), they introduce
additional computational load and conceptual complications.
Therefore, previous studies have investigated multivariate
methods to uncover the true synaptic connectivity between
neurons by mitigating the influence of signals from other
neurons in the network. Baker et al. (13) examined the
theoretical feasibility of recovering neural connectivity and
found that utilizing the precision matrix, derived from the in-
verse of the covariance matrix of spike trains, seems to be
an effective approach for inferring underlying neuronal con-
nections across diverse experimental scenarios. Furthermore,
there is a considerable body of literature on connectivity in-
ference from the perspective of maximum likelihood estima-
tion with sparsity assumptions, often emphasizing the sparse
estimation of precision matrices. While the majority of such
approaches has focused on inferring functional connectivity
between brain regions (14–20), relatively few studies have
applied the latter to the inference of connectivity between
individual neurons (21, 22). Although these methods hold
considerable promise for scaling up to large networks (23),
further exploration is required to evaluate their efficacy for
large-scale neuronal networks (e.g., n>1000 neurons) and to
assess their potential limitations.
The main goal of this study was to tackle the computational
challenges associated with inferring connectivity in large-
scale, synchronous neural networks. We, therefore, applied
and evaluated scalable methods on simulated data and pro-
posed an improved connectivity inference method. Specif-
ically, we compared the performance of off-the-shelf multi-
variate connectivity inference methods that rely on the co-
variance computed from the spike trains of observed neurons
in a network. We focused on these methods as more sophisti-
cated methods may not scale for networks with large numbers
of neurons (i.e. n>1000 neurons).
As a testing ground, we used spike trains generated from
random networks with 2000 Leaky Integrate-and-Fire (LIF)
neurons that mimicked synchronous network firing activ-
ity of hippocampal networks through adaptation of synaptic
currents(24). We compared the performance of these infer-
ence methods based on their AUROC (Area Under the Re-
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ceiver Operating Characteristic Curve) and AUPRC (Area
Under the Precision-Recall Curve) values. Then we made
two modifications to the best method, Dynamic differential
covariance (DDC)(25), and introduced an improved method,
Fractional Dynamic Differential Covariance (FDDC), which
consistently showed superior performance. Finally, we ap-
plied FDDC to infer connections from in vitro neural record-
ings obtained using high-density microelectrode arrays (HD-
MEAs) and compared the resulting graphs to those obtained
from a well-studied pairwise inference method (cross cor-
relogram (CCG)). Analysis of the topology of the inferred
networks revealed that CCG-derived graphs showed higher
small-worldness compared to the FDDC-derived graphs.
Moreover, FDDC-derived graphs showed a clear negative
correlation between small-worldness and a measure of net-
work synchrony (Participation ratio) across different graph
densities, while CCG-derived graphs did not. These results
highlight the utility of fractional differentiation and inversion
of the covariance matrix for extracting pairwise relations be-
tween neurons in synchronous networks. We argue that our
findings have important implications for developing connec-
tivity inference methods that can handle networks with large
numbers of neurons.

Materials and Methods
In this section, we outline the LIF simulation that was used
to simulate the activity of neural networks. Then we provide
an overview of the different connectivity inference methods
and describe the in vitro neural recordings used in this study.
Lastly, we address how synchrony in the experimental neural
recordings was quantified, as well as how we evaluated the
topologically clustered organization of the inferred neuronal
connectivity.

Simulating network activity with an adaptive exponen-
tial integrate-and-fire model. We employed an adaptive
exponential integrate-and-fire model, as described in (26), for
simulating network activity. Our implementation was based
on the methodologies presented in (24, 27). In this context,
we denoteC the membrane capacitance and Vi the membrane
potential of neuron i. Additionally, EL refers to the leaky
membrane potential and gL is the leakage conductance.

C
dVi(t)
dt

=−gL(Vi(t)−EL) +gL∆exp
[

(Vi(t)−VT )
∆

]
,

− Isyni
(t)−wi(t) +σ

√
2
τm

ξ(t),

Isyni
(t) =gE(t)(Vi(t)−EE) +gI(t)(Vi(t)−EI),

where VT represents the effective threshold for generating
spikes. When the membrane potential Vi reaches VT , it is
reset to Vreset and remains constant for the duration of Trefrac
(see Table S1). The threshold slope factor is denoted by ∆,
and Isyni

(t) is the total synaptic current received by neuron i
from its presynaptic neurons. The reversal potential for ex-
citatory and inhibitory synapses is expressed as EE and EI ,
respectively. ξ(t) is a Gaussian white noise with σ being the

noise strength. Lastly, τm refers to the time constant of the
noise, which can be calculated as τm = C/gL.
The following equation represents the change in excitatory
and inhibitory conductance, denoted gE and gI respectively:

τE,I
dgE,I(t)

dt
=−gE,I(t) +QE,I

∑
k

δ(t− tk),

Excitatory/inhibitory conductance (gE /gI ) increases by a
quantity of QE /QI each time the presynaptic excita-
tory/inhibitory neuron fires at a specific time tk. Further-
more, the synaptic conductance gE /gI undergoes an ex-
ponential decay, following a corresponding time constant
τE /τI .
The following equation describes the adaptation current of
neuron i, represented by wi:

τwi

dwi(t)
dt

= a(Vi(t)−EL)−wi(t) + b
∑
j

δ(t− tj),

where the parameter a models the sub-threshold adaptation.
When neuron i fires at time j, wi increases by a value of b.
Additionally, wi decays exponentially with the time constant
τwi .
All LIF network simulations consisted of n = 2000 neurons
with 80% excitatory and 20% inhibitory neurons. All in-
hibitory neurons were set to show no adaptation, e.g., (a,b)
= (0,0), while excitatory neurons were set to specific (a,b)
parameters (i.e., obtained through parameter search) to im-
plement adaptation. All neurons were randomly connected
with a connection probability of 2%. For each connected
edge, the synaptic delay was implemented by randomly se-
lecting a value in the range of [0 5] ms. At the beginning of
the simulation, a shared Poissonian spike train with the same
excitatory strength QE and a mean firing rate of 500 Hz was
applied to drive all neurons in the network for 100 ms. Af-
terward, the network was purely driven by its own recurrent
activity. For the downstream analysis, the first second (s) of
activity was removed to consider only spontaneous recurrent
activity. All described equations were numerically integrated
with a step size of 0.1 ms using the ’Brian2’ python library1.
Network activities were simulated for 20 min as longer sim-
ulations could not be handled with the computing resources
utilized in this study (e.g., computing instances with 64 GB
RAM). All parameters used for the simulation are provided
in the Supplementary material (Table S1).

Parameter search. A parameter search was performed to se-
lect the set of parameters (a,b,gE ,gI ) for generating network
activities ranging from asynchronous irregular firing activity
(Async) to synchronous firing activity (Sync). The search
was performed in two steps. First, by fixing the adapta-
tion parameters (a,b) = (1µS,5nA) to implement "weakly
adapting cells" as stated in (24), excitatory/inhibitory con-
ductances (gE ,gI) were searched in the range of [0 100]
with a step size of 5 nS (400 combinations)(Fig. S1). For
each parameter set, the network activity was simulated for

1https://brian2.readthedocs.io/en/stable/
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5 s. We selected (gE ,gI) = (10,65) as the default ex-
citatory/inhibitory conductances, as this set of parameters
showed spontaneous firing activity with the highest excita-
tory conductance (gE) without saturation in the network fir-
ing rate (e.g., 200 Hz for Trefrac = 5 ms)(Fig. S1). As the
second step, (a,b) was searched in the range of [0 80] with
a step size of 1 µS,nA) (6400 combinations). 5 s of activity
was simulated for each parameter set, and the simulated ac-
tivities were quantified in how synchronous the spike trains
were in the network.

Characterization of network activity. To characterize the net-
work firing synchrony of LIF simulations, we computed
the mean coefficient of the variation of interspike intervals
(CVISI ) and mean pairwise correlation (MPC) as imple-
mented in Destexhe (2009) (24). We only considered neurons
showing firing rates > 0.01 Hz for the following quantities.
CVISI measures the temporal regularity of the network firing
activity and is calculated as follows.

CVISI =
〈
σISIi

µISIi

〉
,

where σISIi and µISIi denote standard deviation and mean of
the ISIs of neuron i. The bracket 〈〉 indicates an average over
all neurons in the network.
The MPC, on the other hand, measures the degree of syn-
chrony between all neurons in a network.

MPC =
〈

Cov(xi,xj)
σ(xi)σ(xj)

〉
,

where xi, xj denote binned spike trains of neurons i and j
computed using a bin size of 5 ms. We considered the simu-
lated network activity to show asynchronous activity only if
CVISI > 1 and MPC < 0.1. If a simulated network did not
satisfy one of these criteria, the network was considered to
exhibit synchronous firing activity (24).

Parameter selection for LIF network simulations. The param-
eter search for the LIF networks showed that with b > 60 and
a< b, simulations were more likely to show synchronous net-
work activity (Fig. S1). This observation was in agreement
with previously reported values (24, 28). From all 6400 com-
binations of (a,b), the parameter sets that generated simula-
tions without lasting spontaneous activity or with very high
network firing rates (30 Hz) were discarded. For both asyn-
chronous and synchronous networks, we chose two param-
eter sets that exhibited the lowest or highest MPC, respec-
tively. We then generated five 20 min simulations for each
parameter set. From these ten network simulations of each
network type, we selected the five most synchronous or asyn-
chronous networks and used them for the inference tasks.

Perturbation of LIF network simulations using white noise.
The inference was performed on noise-free LIF networks un-
less specified otherwise. For noise-perturbed simulations, the
same connections and synaptic delays as in the non-perturbed

counterpart were used. A wide range of noise currents was
applied with values both smaller and larger than that of the
leaky current (e.g., gL(Vi(t)−EL)), as we observed qualita-
tive changes in network behavior in terms of MPC and firing
irregularity (CVISI ) in cases where the noise was larger than
the leaky current (Fig. S2).

Functional connectivity inference methods. In this
study, we focused on connectivity inference methods that
could scale to large-scale networks (n > 1000 neurons).
When binning of spike trains was necessary, we used 5 ms as
a bin size to reflect the synaptic delay of the simulation unless
specified otherwise. We first implemented a well-established
pairwise inference method that is widely used to study func-
tional connectivity of neural circuits, the results of which
served as a baseline in this study (1, 29). We anticipated
that the method would perform exceptionally well for asyn-
chronous networks. However, we expected its performance
to be suboptimal for synchronous networks, where the spike
time correlations between neurons would be masked by the
synchronous firing activity of the entire network. We then as-
sessed how the selected set of scalable multivariate inference
methods compared to the pairwise method and drew conclu-
sions on their usefulness.

Pairwise cross-correlograms. To assess pairwise relations
between neurons, we adapted the cross-correlogram method
(CCG) implemented in English et al. (30). For all neuron
pairs in the network, cross-correlograms were computed us-
ing a bin size of 1 ms for a time window [-50 +50] ms. Then
the count in each bin was compared to the baseline value
(λbase), which was generated as follows. The observed cross-
correlograms were convolved with the partially hollow Gaus-
sian Kernel (31) with a standard deviation of 10 ms, with a
hollow fraction of 60% to model baseline (30). We estimated
the probability of observing a spike count x ≥ n in the post-
synaptic bin t using the Poisson distribution with a continuity
correction (31).

P (x≥ n|λbase(t)) =1−
n−1∑
a=0

e−λbase(t)λbase(t)a

a!

−0.5∗ e
−λbase(t)λbase(t)n

n!
We also computed 1−P (x≥ n|λbase(t)) to estimate the like-
lihood that the connection was inhibitory. For each neuron
pair, we took the maximum (peak, excitatory connection) and
the minimum (trough, inhibitory connection) in the postsy-
naptic bins [0 5] ms, estimated the probability of respective
values and compared the negative log-likelihoods. If the neg-
ative log-likelihood was larger for the maximum/minimum,
we considered the edge to be an excitatory/inhibitory connec-
tion. As a result, we obtained a directed, weighted connectiv-
ity with each edge representing the negative log-likelihood.

Network deconvolution. We implemented Network deconvo-
lution (ND) (32) to test if synaptic connectivity can be re-
covered from observed covariance matrices containing direct
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and indirect interactions between neurons. We binned the
spike trains of the neurons in the network with the predefined
bin sizes (5 ms) to match the LIF simulations. Then, these
binned spikes counts were used to compute the covariance
matrix (S), which represents the variance between the firing
activity of neurons given the timescale (bin size). Under the
strong assumption that the covariance matrix is a result of
the graph signaling process of the latent graph A, and the
graph signal propagation is linear, time-invariant, and flow-
preserving, the relation between the latent graph A and the
covariance matrix S can be written as follows (32).

S = A(I+A+A2 +A3 + · · ·) = A(I−A)−1,

which equivalently states A = S(I+S)−1. From this rela-
tion, we computed ND in three steps. First, S was rescaled
to ensure that the largest absolute eigenvalue of the A was
strictly smaller than one. This was done by choosing a linear
scaling factor α (Sscaled = αS):

α≤min( β

(1−β)λ+
,
−β

(1 +β)λ−
),

where β is the target value for the largest absolute eigenvalue
of A (β < 1), and λ+/λ− is the largest/smallest eigenvalue
of S. As a second step, the Sscaled was decomposed to get
eigenvalues and eigenvectors such that Sscaled = UΣSU−1.
As the final step, we computed the diagonal eigenvalue ma-

trix of A, ΣA, using the relation λAi = λS
i

λS
i

+1 . Here, λAi
was the i-th component of ΣA and λSi was the i-th com-
ponent of ΣS. The latent graph A was then computed as
A = UΣAU−1, and we considered A as the estimate of
the connectivity. In this study, we chose β = 0.99 to get a
sparse estimate of connectivity. For more details on the ND
approach, we refer the readers to Feizi et al. (32).

Graphical lasso. The covariance matrix, derived from binned
spike trains (bin size = 5 ms), can be inverted to obtain a pre-
cision matrix. Each entry in the precision matrix, Pij , quan-
tifies the correlation between neuron i and j while factor-
ing out all the activity of other neurons in the network. This
is particularly valuable for identifying true pairwise correla-
tions between neurons if the network exhibits synchronous
firing activity. Instead of directly inverting the covariance
matrix, the precision matrix can be estimated using sparse
regularization methods, resulting in a sparser estimate of the
precision matrix. This approach is beneficial when the co-
variance matrix is rank-deficient or too large for calculating
the inverse. A widely used method among them is the graphi-
cal least absolute shrinkage and selection operator (graphical
LASSO (Glasso))(33), which is defined as follows.

min
Θ∈Sn

++
−logdetΘ+ Tr(SΘ) +γ‖Θ‖1,

where Sn
++ denotes a positive-semidefinite (PSD) matrix of

dimensions n×n. S is the observed covariance matrix, and
Θ is the estimated precision matrix. ‖.‖1 is an entrywise l1-
norm, and γ is regularization penalty. This objective can be

optimized using the alternating direction method of multipli-
ers (ADMM) (34) with an augmented Lagrangian, given by

Lρ(Θ,Z,Λ) =− logdetΘ+ Tr(SΘ) +γ‖Z‖1 + Tr[Λ(Θ−Z)]

+ ρ

2‖Θ−Z‖2F
s.t. Θ =Z

where Λ is a dual variable and ρ is a penalty parameter (ρ >
0). ‖.‖F is a Frobenius norm, e.g., a square root of the sum of
squares of entries in a matrix. By additionally setting a scaled
dual variable U = Λ/ρ, we get simplified update rules.

Θk+1 := argmin
Θ

(Tr(SΘ)− logdetΘ+ ρ

2‖Θ−Zk+Uk‖2F )

Zk+1 := argmin
Z

(γ‖Z‖1 + ρ

2‖Θ
k+1−Z+Uk‖2F )

Uk+1 := Uk+Θk+1−Zk+1

where Θ is updated by setting the gradient to zero.

S−Θ−1 +ρ(Θ−Zk+Uk) = 0

By rewriting the equation,

ρΘ−Θ−1 = ρ(Zk−Uk)−S

we can separate Θ on the left-hand side of the equation. The
right-hand side of the equation can be decomposed as

ρ(Zk−Uk)−S = QDQT

where D is the diagonal matrix of eigenvalues. If we consider
Θ̃ = QΘQT , we find the relation ρΘ̃−Θ̃−1 = D and arrive
at the following solution for each diagonal element of Θ̃.

Θ̃ii =
λi+

√
λ2
i + 4ρ

2ρ

We update Θk+1 by setting Θk+1 = QΘ̃QT
. From (35),

Z update is simplified to the soft thresholding operator F as
follows.

Zk+1
ij :=Fλ/ρ(Θk+1

ij +Uk+1
ij )

where Fκ(a) =(a−κ)+− (−a−κ)+

The ADMM was implemented using ‘gglasso’ Python li-
brary2 (36). We computed eight logarithmically spaced γ val-
ues in the range [10−1.5, 100.5] (i.e., ’numpy.logspace(0.5,
-1.5, 8)’). The best regularization parameter γ was selected
using the extended Bayesian information criterion (eBIC) as
suggested in (37). Other than γ, we used default parameters
for both ADMM and eBIC computation unless specified oth-
erwise.

2https://github.com/fabian-sp/GGLasso

4 | bioRχiv Kim et al. | Scalable covariance-based connectivity inference for synchronous neuronal networks

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2023. ; https://doi.org/10.1101/2023.06.17.545399doi: bioRxiv preprint 

https://github.com/fabian-sp/GGLasso
https://doi.org/10.1101/2023.06.17.545399
http://creativecommons.org/licenses/by-nc-nd/4.0/


Differential covariance. We implemented Differential covari-
ance (Dcov) (38) to investigate the utility of directed tempo-
ral covariance in inferring synaptic connectivity. We repre-
sent the column vector x(t) that has the i-th entry equal to
the z-transformed number of spikes or firing rate of the neu-
ron i at time t. Dcov is defined as the covariance between the
x(t) and the derivative.

Dcov = 〈dx(t)
dt

,x(t)〉,

where 〈,〉 denotes time averaged vector outer product and dif-
ferentiation is computed as dx(t)

dt = x(t+1)−x(t−1)
2∆t (38). The

differentiation term in Dcov makes it a directed measure of
connectivity.

Dynamic differential covariance. Dynamic differential co-
variance (DDC)(25) can be estimated as a matrix product be-
tween the Dcov and the precision matrix (i.e., the inverse of
the covariance matrix).

DDC = Dcov · 〈x(t),x(t)〉−1

DDC improves upon Dcov by factoring out the influence of
common input sources. For further proofs and characteristics
of DDC, we refer readers to Chen et al. (25).

Fractional dynamic differential covariance. If a time series
exhibits long decay in autocorrelation, taking fractional (non-
integer) differentiation can preserve the lasting trend in the
time series which would otherwise be lost for full integer dif-
ferentiation (39). Fractional differentiation with a fractional
order β, is defined as:

Dβx(t) =
∞∑
k=0

ωkx(t−k)

where ω0 = 1, ω1 = −β, and ωk = (−1)k
∏k−1

i=0 β−i
k! , for

k≥ 2. If β= 1, we retrieve full-integer differentiation. In this
study, we implemented up to 10-th order (k= 10) to compute
fractional differentiation using Python library ‘fdiff’ 3. By
substituting the differentiation in DDC with fractional differ-
entiation, we could compute the Fractional dynamic differen-
tial covariance (FDDC).

FDDC = 〈Dβx(t),x(t)〉 · 〈x(t),x(t)〉−1

Spike train convolution. One strategy to increase the num-
ber of sample points from spike trains is to compute instanta-
neous rates (40). Instantaneous rates can be computed by
convolving the spike trains using predefined kernels. We
used two commonly used functions to generate instantaneous
rates: alpha-function kernels (Alpha kernels) and Gaussian
kernels. The Gaussian kernel has the form:

kGaussian(t) = 1
w
√

2π
exp(− t2

2w2 )

3https://fracdiff.github.io/fracdiff/

We denote a filter size (duration in ms) asw. As an asymmet-
ric counterpart, we applied Alpha kernels as a complemen-
tary approach. The Alpha kernel is a decaying exponential
function with a characteristic time constant (τ ), which facil-
itates the modeling of postsynaptic currents (41). The kernel
was defined as:

kAlpha(t) =
{

(1/τ2)t · exp(−t/τ), if t > 0
0, if t≤ 0

We considered τ = w/
√

2 for the consistency in notation
with the Gaussian kernel. For both kernels, filter sizes (w)
of 1, 3 ms were used to generate instantaneous rates. The
filter size of 1 ms corresponded to the typical duration of an
action potential (i.e., < 5 ms), and 3 ms corresponded to the
timescale of longer synaptic delays (i.e., < 20 ms) in experi-
mental studies (42, 43). We sampled points at a frequency of
1 kHz from these instantaneous rates.

Evaluation of inference performance. We assessed the
performance of each connectivity inference method against
the ground truth by calculating the Area Under the Receiver
Operating Characteristic Curve (AUROC) and the Area Un-
der the Precision-Recall Curve (AUPRC). The absolute val-
ues of computed inference scores (weights) were used to
compute AUROC and AUPRC. Additionally, we investigated
the impact of simulation duration on inference performance
by testing 5, 10, 15, and 20 min of simulated activity. To de-
termine whether multivariate methods benefited from an in-
crease in the number of observed neurons, we sampled 500,
1000, and 1500 neurons for the analysis. We randomly sam-
pled three times from each simulated network, so for one
condition (e.g., 5 min simulation length, 500 sampled neu-
rons), we reported the mean and standard deviation of AU-
ROC/AUPRC values from 15 instances (i.e., five network
simulations × three samples). We also compared wall-clock
time to assess the scalability of the inference methods. While
all multivariate methods were implemented in Python, CCG
was implemented using C and Matlab adapted from English
et al. (30)(see Section "Data and code availability"). Python
implementation of CCG using a standard multiprocessing li-
brary (‘map’) was roughly five times slower than the values
reported in this study. The computation time was measured
excluding the computation for preprocessing (e.g., binning,
kernel convolution of spike trains). For all inferences, we
used computing instances with the same specification with 8
CPU cores (Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz)
and 64 GB of RAM.

Recording neural network activity in vitro.

High-density microelectrode array recordings. HD-MEA
recordings used in this study were part of the dataset reported
in a prior study (44). We performed recordings with com-
mercially available 6-well high-density microelectrode array
(HD-MEA) plates (MaxTwo system by Maxwell Biosystems,
Zurich, Switzerland). Each well included a CMOS-based
HD-MEA(2) featuring 26,400 electrodes arranged in a 120
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x 220 electrode grid with a microelectrode center-to-center
spacing (pitch) of 17.5 µm. The overall sensing area of this
HD-MEA was 3.85 × 2.10 mm2. The HD-MEA enabled the
simultaneous recording of up to 1020 electrodes at a sam-
pling rate of 10 kHz. Recordings were performed in an incu-
bator chamber of the MaxTwo system at 37°C and 5% CO2/
95% O2 and were conducted at days in vitro (DIVs) 22–25.
Each recording started with a whole-array ‘activity scan’ to
determine the active electrodes on the HD-MEA. The activity
scan consisted of 29 dense electrode configurations to scan
through the entire sensing area of the electrode array; each
configuration was sequentially recorded for 60 s. From the
activity scan, up to 1020 electrodes were selected by prior-
itizing electrodes with high firing rates. Using the selected
electrodes, we recorded two hours of spontaneous activity
from 22 HD-MEA wells or neuronal cultures.

Hippocampal dissociated neuronal culture. Rat primary neu-
rons were acquired from the dissociated hippocampus of
Wistar rats on embryonic day (E) 18, using the protocol
described in (45). All animal experiments were conducted
in accordance with the approved guidelines and Swiss fed-
eral laws on animal welfare, with approval from the Basel-
Stadt veterinary office. HD-MEA wells were sterilized in
70% ethanol for 30 min prior to cell plating. Afterwards,
the ethanol was removed, and the wells were rinsed three
times with sterile distilled water before being left to dry.
The HD-MEA wells were then coated with a layer of 0.05%
polyethylenimine (Sigma-Aldrich, Buchs, Switzerland) in
a borate buffer (Thermo Fisher Scientific, Waltham, MA,
United States) to render the surface more hydrophilic. Then,
a thin layer of laminin (Sigma-Aldrich, 0.02 mg/mL) in Neu-
robasal medium (Gibco, Thermo Fisher Scientific) was ap-
plied to the array and incubated for 30 min at 37°C to promote
cell adhesion. We dissociated hippocampi of E18 Wistar rat
in trypsin with 0.25% EDTA (Gibco), followed by trituration.
Cell suspensions of 15,000 cells in 7 µL were then plated
on top of the electrode arrays. The plated wells were incu-
bated at 37°C for 30 min before adding 2 mL of the plating
medium. The plating medium consisted of Neurobasal, sup-
plemented with 10% horse serum (HyClone, Thermo Fisher
Scientific), 0.5 mM Glutamax (Invitrogen, Thermo Fisher
Scientific), and 2% B-27 (Invitrogen). After 5 days, 50% of
the plating medium was replaced with a growth medium, con-
taining Brainphys medium supplemented with SM1 and N2-
A (Stemcell technologies, Cologne, Germany). For the rest
of the experiments, medium changes were performed twice
a week using the same Brainphys-based medium. The wells
were kept inside a humidified incubator at 37°C and 5% CO2/
95% O2.

Spike-sorting and quality control of sorted units. For each
HD-MEA/well, the recordings were filtered, and spike-sorted
using ‘Kilosort2’ (46); the applied parameters are stated in
Table S2. To be included in subsequent analyses, all inferred
spike-sorted units had to pass a quality control: First, we re-
moved units with a firing rate below 0.05 Hz and higher than
30 Hz. Then we computed the refractory period violation

ratio, which was calculated as the fraction of interspike in-
tervals (ISIs) less than 2 ms (47). In practice, we quantified
the number of spikes within the [±2 ms] bins of the spike
train autocorrelogram (ACG) and then computed the fraction
between this count and the total number of spikes in a larger
range of the ACG [±50 ms]. Any template exceeding a re-
fractory period violation ratio of 0.3 was removed. Based on
these preprocessing steps, the obtained units were considered
to originate from single neurons.

Characterizing the spontaneous activity of in vitro hip-
pocampal networks.

Participation ratio. We used the Participation Ratio (PR) to
measure the correlated firing activity in each network record-
ing, normalized by the number of neurons. The calculation
and interpretation of the PR were based on the implemen-
tation of Recanatesi et al.(48). First, the spike trains of the
baseline recordings were binned using a window size of 5
ms. The resulting binned spike trains were z-transformed and
used to compute inner products, generating a correlation ma-
trix. From the eigendecomposition of the correlation matrix,
we collected the eigenvalues to assess the level of correlated
activity between neurons. The participation ratio was defined
as

PR=
(
∑
iλi)2∑
iλ

2
i

,

where λi is i-th eigenvalue of the correlation matrix. The
resulting PR value indicates the number of principal compo-
nents that were necessary to explain 80% to 90% of the to-
tal variance for typical Principal component analysis (PCA)
eigenspectra (49). We then normalized the PR, by dividing it
by the number of neurons (N ) in the network.

1
N
≤ PR normalized≤ 1

A normalized PR value of < 0.8, suggests that the majority
of the variance in the network activity could be explained by
less than 80% of principal components (48–50).

Small-worldness of inferred networks. The small-worldness
of a network measures the extent to which a network exhibits
both high local clustering and short average path lengths be-
tween nodes (51). To conclude whether a network shows
small-worldness, Downes et al. (52) defined Small-World
Index (SWI) as a ratio between clustering coefficient (CC)
and characteristic path length (Lpath). CC was defined as the
fraction of possible triangles in the network that are present,
while the Lpath was the average number of steps along the
shortest paths for all possible pairs of network nodes (51).
In practice, CC and Lpath need to be normalized against the
expected values computed from random networks with the
same number of nodes and edges as the original graph (29). If
SWI> 1, the network is considered to show small-worldness.
To investigate the differences in the inferred network struc-
ture from in vitro recordings, we inferred connectivity from
the recordings using both FDDC and CCG. For each case,
we applied thresholds to generate multiple binary, directed
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graphs with density (ρ) of 5, 10, 15, and 20%. CC and the
Lpath were then computed from each thresholded graph, and
lattice surrogates (n = 30) were generated by rewiring the
edges in the thresholded graphs while preserving the distri-
bution of in-degree and out-degree across nodes (53). From
lattice surrogates, the average CC and Lpath were calculated.
Then SWI was computed as the ratio between the normalized
CC and Lpath.

SWI = CC/CCrand

Lpath/Lrand
,

where CCrand and Lrand were the average clustering coeffi-
cient and characteristic path length of the lattice surrogates.
The generation of lattice surrogate networks and subsequent
computation of SWI was implemented using the Python li-
brary ‘bctpy’ 4.

Measurement of autocorrelation in convolved spike
trains. To assess the temporal dependency present in a se-
quence of convolved spike trains, we computed the normal-
ized autocorrelation.

ρk =
∑T
t=k+1(yt− ȳ)(yt−k− ȳ)∑T

t=1(yt− ȳ)2
,

where yt is the value of the convolved spike train at time t,
and ȳ is the mean of the convolved spike train. T is the to-
tal number of observations and k is the lag. In this study,
T was set to 20 min with the bin size of 1 ms, and k was
computed up to 20 (20 ms). After computing ρk, we normal-
ized the resulting values by dividing them by the maximum
value ρ0 (k = 0). This ensured that the normalized autocor-
relation values ranged from -1 to 1. In the case of simulated
networks, we randomly sampled 500 neurons and computed
the autocorrelation only for those neurons that had a firing
rate higher than 0.1 Hz. For the experimental data, we also
computed the autocorrelation only for neurons that had a fir-
ing rate higher than 0.1 Hz. We characterized the degree of
structure in the spike trains by computing the average area
under the curve (AUC) of the autocorrelation curves. These
AUC values were compared with the AUC values of random-
ized surrogates, which shuffled spike times randomly while
keeping the total number of spikes.

Results
In this section, we first characterize the simulated networks
and pinpoint the condition under which the pairwise in-
ference approach falls short. After identifying the failure
mode, we assess the performance of the multivariate infer-
ence methods. Then, we build up on the most promising
method and apply a new inference approach, FDDC. Lastly,
we investigate the FDDC further by applying it to HD-MEA
network recordings from in vitro neuronal cultures and com-
pare the inferred FDDC-derived connectivity graphs with
those derived with the CCG method.

4https://github.com/aestrivex/bctpy

Simulated networks with asynchronous and syn-
chronous network activity. The simulated asynchronous
and synchronous networks showed clear differences in their
average population firing rates and in both measures of net-
work synchrony (MPC, CVISI ). The asynchronous networks
showed average population firing rates of 31 Hz (standard
deviation 0.7 Hz), and the synchronous networks exhibited
average population firing rates of 20 Hz (1.3 Hz). The av-
erage CVISI for the asynchronous networks was 1.7 (0.04),
and 1.1 (0.11) for the synchronous networks. Moreover, the
asynchronous networks showed on average lower MPC val-
ues (0.02 (0.002)) compared to the MPC values obtained for
the synchronous networks (0.24 (0.06); Fig. 1).

Pairwise inference using cross-correlograms fails to
recover connectivity of simulated synchronous net-
work activity. Upon examining the inference methods on
both asynchronous and synchronous simulated networks, we
discovered that the CCG performed exceptionally well for
the asynchronous networks while only attaining performance
close to random success for the synchronous networks (i.e.,
AUROC ≈ 0.5, AUPRC ≈ 0.02). An overview of the perfor-
mance across all methods is provided in Table 1 (For more
details, see also Table S3 and Fig. 2A). Although none of
the multivariate methods outperformed CCG for the asyn-
chronous networks, DDC showed the best performance for
the synchronous networks (Table 1, S4, S5). Moreover, as
the number of observed neurons (n) increased, the average
AUROC and AUPRC scores for DDC also showed improve-
ment (Fig. 2B). In contrast, Glasso demonstrated inference
performance that was close to random estimations, and ND,
Dcov showed marginally better performance compared to
Glasso (Table S4, S5, Fig. S3, S4). We additionally eval-
uated the AUROC and AUPRC values for undirected meth-
ods, such as ND and Glasso, by transforming the directed
ground truth connectivity into undirected connections. The
resulting scores remained consistently low for both methods
(Table S6).

Improving the inference performance of Dynamic dif-
ferential covariance using spike train convolution and
fractional differentiation. We further explored the potential
of using DDC to infer connections in synchronous networks
by increasing the number of data points through computing
instantaneous rates. Our findings showed that DDC’s ability
to infer connections was enhanced when instantaneous rates
were used, with all cases reporting higher average AUPRC
values (Fig. 3A, Table 2, S7, S8). Among the four kernels
that were used to convolve the spike trains, the Gaussian ker-
nel (w =3 ms) consistently showed the highest average AU-
ROC and AUPRC scores.
Our focus then turned to a limitation of the differentiation
used in DDC. We noted that the spike trains from simulated
network activities and in vitro recordings were non-random
processes (e.g., refractory periods). Therefore, we considered
fractional differentiation as a means to capture lasting trends
in the time series that would be overlooked with full-integer
differentiation. Our analysis confirmed that both the simu-
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Fig. 1. LIF network simulations. (A): There was a clear difference in the measures of network synchrony (mean pairwise correlation (MPC), CVISI ) between the two network
simulation types. Asynchronous networks showed average population firing rates of 31 Hz (standard deviation 0.7 Hz), while synchronous networks exhibited average
population firing rates of 20 Hz (1.3 Hz). (B): A spike raster plot showing 2 seconds of the network firing activity from an asynchronous network. (C): A raster plot showing 2
seconds of network firing activity from a synchronous network. In contrast to the asynchronous network (depicted in Panel B), a more prominent synchronized firing pattern
is observed.

Fig. 2. Inference performances of CCG and DDC. The graphs in panels (A) and (B) display average AUROC (left) and AUPRC (right) values (mean ± standard deviation)
across different sampling conditions (number of sampled neurons (n), simulation length used). (A): CCG demonstrated high AUROC and AUPRC values for the asynchronous
networks but lower AUROC and AUPRC values in the case of synchronous networks. (B): DDC showed lower average AUROC and AUPRC for the asynchronous networks
but showed higher average AUROC and AUPRC values for the synchronous networks compared to CCG.
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Network
act. Method AUROC AUPRC

Comp. time (s)
(averaged)

Async CCG 0.93 ± 1.1e-2 0.55 ± 2.4e-2 3300
ND 0.63 ± 5.4e-3 0.06 ± 2.4e-3 9
Glasso 0.51 ± 1.0e-2 0.02 ± 2.7e-4 12
Dcov 0.61 ± 1.3e-2 0.06 ± 6.2e-3 39
DDC 0.78 ± 1.4e-2 0.10 ± 1.4e-2 40

Sync CCG 0.56 ± 5.9e-2 0.02 ± 4.2e-3 2000
ND 0.58 ± 2.1e-2 0.04 ± 2.4e-2 6
Glasso 0.51 ± 6.0e-4 0.02 ± 1.7e-4 82
Dcov 0.51 ± 2.4e-3 0.02 ± 2.5e-4 35
DDC 0.79 ± 2.7e-2 0.11 ± 1.5e-2 35

Table 1. Comparison of inference performance. The performance of each inference method for the simulated network activities, based on 1500 sampled neurons and 20
min of simulation, is presented in the table. The average values rounded for two significant digits are reported for the computation time. For the asynchronous networks,
CCG showed the best performance with the highest AUROC and AUPRC, but failed to recover the ground truth connections for the synchronous networks. DDC showed
the best performance for the synchronous networks in addition to faster computation.

Fig. 3. Enhancing inference performance of DDC for synchronous networks (n=1500) (A): AUROC (left) and AUPRC (right) values for the four kernel variants are shown.
Gaussian kernel (w = 3 ms) consistently showed the best performance. (B): The plot compares the average AUC values of autocorrelation curves for 10 simulated networks
(5 asynchronous and 5 synchronous) and 22 in vitro recordings against the average value of random surrogates (standard deviation (σ) < 10−5). For all networks, the
average AUC values of autocorrelation curves were larger than those of random surrogates. (C): The performances of FDDC on the synchronous networks for different
fractional orders (β) are presented (AUROC (left), AUPRC (right)). The results showed that as smaller fractional derivative orders were applied, the average AUROC and
AUPRC values increased. The best-performing method from panel A (Gaussian kernel (w = 3 ms), colored in cyan) is also plotted for comparison. (D): The plot illustrates
how fractional differentiation can preserve the original time series (β = 0, no diff.) compared to the full integer differentiation (β = 1, the same as DDC). As the β increases,
the differentiated time series diverges from the original time series.

lated and experimental spike trains displayed stronger auto-
correlation than the randomized surrogate spike trains (Fig.
3B), indicating the presence of non-random temporal struc-
tures in these time series. Compared to DDC using the Gaus-
sian kernel (w =3 ms), a consistent improvement in the av-
erage AUPRC values was observed for all kernels when frac-
tional differentiation was used (see Table 2, S9, S10). Among

these kernels, the Alpha kernel (w =3 ms)(see method sec-
tion "Spike train convolution") resulted in the best perfor-
mance (Fig. 3C, Table 2). We also observed that smaller
fractional orders (β) resulted in enhanced inference perfor-
mances, owing to better preservation of the original time se-
ries with smaller β (Fig. 3C, D).
Throughout the study, FDDC (β =0.1) combined with Alpha
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Network
act. Method Kernel

Filter
size

(w, ms)
AUROC AUPRC

Comp. time (s)
(averaged)

Async DDC Alpha 1 0.74 ± 0.01 0.13 ± 0.02 290
3 0.79 ± 0.01 0.11 ± 0.02 300

Gaussian 1 0.75 ± 0.01 0.13 ± 0.02 300
3 0.85 ± 0.02 0.14 ± 0.02 310

FDDC (β=0.1) Alpha 1 0.79 ± 0.01 0.17 ± 0.02 380
3 0.87 ± 0.01 0.31 ± 0.04 380

Gaussian 1 0.80 ± 0.01 0.18 ± 0.03 380
3 0.86 ± 0.01 0.24 ± 0.03 380

Sync DDC Alpha 1 0.75 ± 0.02 0.14 ± 0.01 320
3 0.77 ± 0.02 0.12 ± 0.01 290

Gaussian 1 0.76 ± 0.02 0.15 ± 0.01 290
3 0.87 ± 0.02 0.17 ± 0.01 290

FDDC (β=0.1) Alpha 1 0.81 ± 0.02 0.28 ± 0.02 380
3 0.92 ± 0.02 0.49 ± 0.03 380

Gaussian 1 0.83 ± 0.02 0.30 ± 0.02 380
3 0.91 ± 0.01 0.39 ± 0.02 380

Table 2. Performances of modified DDC methods on convolved spike trains. The table shows the performance (AUROC, AUPRC) of modified DDC methods on simulated
network activities (1500 sampled neurons and 20 min of simulation). FDDC (β = 0.1) with Alpha kernel (w = 3 ms) showed the best performance among all combinations
(β, w) tested in this study. Among the DDC methods utilizing full-integer differentiation, the Gaussian kernel (w = 3 ms) emerged as the most effective yet showed lower
average AUROC, AUPRC values than the best FDDC method.

kernel (w =3 ms) showed the best performance among all
methods that were assessed for the synchronous networks.
To test the robustness of this FDDC approach, we probed
its performance on the noise-perturbed simulations. We sub-
jected the networks to a broad spectrum of noise levels. At
the higher end of the noise range, where the noise level was
larger than the leaky current (≈0.2 nA), we observed a recov-
ery of the ground truth connectivity induced by the noise (Ta-
ble 3). In the lower noise range, we observed consistent per-
formances for both asynchronous and synchronous networks.
Regarding average AUROC values, the noise-perturbed asyn-
chronous and synchronous networks showed a decline of ap-
proximately 7% and 20%. Similarly, the average AUPRC
values of the noise-perturbed asynchronous and synchronous
networks displayed a reduction of approximately 32% and
73%, respectively.

Network connectivity and topology of in vitro neuronal
networks differ between FDDC and CCG-derived con-
nectivity graphs. To probe our ability to infer ground truth
connectivity using FDDC from synchronous network activ-
ity, we inferred connectivity from in vitro hippocampal neu-
ronal cultures using CCG and the best FDDC method. We
focused on comparing the resulting graph topology between
the two inferred graphs by quantifying the small-world in-
dex (SWI) and intersecting edges between them. When com-
paring the inferred graphs with varying graph densities (e.g.,
ρ= 5, 10, 15, 20 %), CCG-derived graphs generally showed
higher SWIs than FDDC-derived graphs (Fig. 4A). For all
graph densities, the graphs obtained through CCG consis-
tently exhibited small-worldness with SWI > 1, whereas a
few of the FDDC-derived graphs displayed SWI < 1. Next,
we investigated whether there was a relationship between

synchronized network firing activities and graph topology by
analyzing the correlation between the normalized participa-
tion ratio (PR) and SWI. For the graphs derived from FDDC,
we found a significant negative linear correlation between the
PR and SWI (ordinary least squares, two-sided t-test, p-value
< 0.01) across all tested graph densities. This finding shows
that the more the connections clustered between the nodes,
the more synchronous was the population firing activity of
the networks. However, we did not observe any linear corre-
lation for CCG-derived graphs for all tested graph densities
(Fig. 4B,C). Finally, we calculated the number of intersect-
ing edges across all graph densities and found that there were
always less than 40% of edges that intersected (Fig. 4D-H).

Discussion
In the first part of our study, we compared the performance
of selected multivariate inference methods for inferring neu-
ronal connectivity in networks with asynchronous and syn-
chronous activity obtained from LIF simulations. Our find-
ings indicate that when computation time is not a primary
concern, the multivariate methods were consistently less ef-
fective than CCG for asynchronous networks. Furthermore,
we observed subpar performance by ND, Dcov, and Glasso
in both asynchronous and synchronous networks. The poor
performance of ND may stem from its inability to explicitly
consider negative edge weights for the underlying connec-
tivity graph (32). Similar approaches based on graph signal
propagation assume undirected and non-negative edges for
connectivity graphs (54–57). This assumption may be ap-
propriate for analyzing brain connectivity in data acquired
from techniques such as functional magnetic resonance imag-
ing (fMRI), electroencephalography (EEG) and magnetoen-
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Fig. 4. Comparing connectivity graphs of in vitro neuronal networks inferred using CCG and FDDC. (A): The CCG-derived graphs exhibited a small-worldness index (SWI)
with values greater than 1 for all the tested graph densities. On the other hand, some of the FDDC-derived graphs had SWI values smaller than 1. In general, the SWI values
were higher for CCG-derived graphs compared to FDDC-derived graphs. (B): There was no significant linear correlation between PR and SWI for CCG-derived graphs at
any graph density. (C): There was a negative linear correlation between PR and SWI for FDDC-derived graphs across all the graph densities. (D): The ratios of intersecting
edges to all existing edges are presented. None of the in vitro neural networks shared more than 40% of edges for all tested graph densities. (E): The panel depicts an
example CCG-derived graph, where the size of each node represents the total degree (sum of in-degree and out-degree) of the respective nodes. (F): Panel F depicts the
corresponding FDDC-derived graph for the graph shown in (E). (G): Panel G depicts the difference between the CCG-derived graph (panel E) and the FDDC-derived graph
(panel F), i.e., only the edges that are exclusive to the CCG-derived graph. (H): Intersection between the CCG-derived graph (panel E) and FDDC-derived graph (panel F) is
presented.
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Network
act.

Noise
(σ, nA) AUROC AUPRC

Comp. time (s)
(averaged)

Async 0 0.87 ± 0.01 0.31 ± 0.04 380
0.001 0.81 ± 0.01 0.21 ± 0.03 380
0.005 0.81 ± 0.01 0.21 ± 0.03 390
0.01 0.81 ± 0.01 0.21 ± 0.03 390
0.05 0.81 ± 0.01 0.21 ± 0.03 390
0.1 0.81 ± 0.01 0.21 ± 0.03 390
0.5 0.82 ± 0.01 0.21 ± 0.03 420
1 0.82 ± 0.01 0.21 ± 0.04 410

Sync 0 0.92 ± 0.02 0.49 ± 0.03 380
0.001 0.74 ± 0.04 0.13 ± 0.03 410
0.005 0.74 ± 0.04 0.13 ± 0.03 420
0.01 0.74 ± 0.04 0.13 ± 0.03 420
0.05 0.75 ± 0.04 0.13 ± 0.03 410
0.1 0.75 ± 0.04 0.13 ± 0.03 390
0.5 0.83 ± 0.05 0.22 ± 0.06 390
1 0.91 ± 0.01 0.36 ± 0.03 380

Table 3. Performances of FDDC (β = 0.1, Alpha Kernel (w = 3 ms)) on the noise-perturbed simulations. The table shows the performance of FDDC (β =0.1) on noise-
perturbed simulated networks (1500 sampled neurons and 20 min of simulation). When the noise level was smaller than the leaky current (≈0.2nA), the average AUROC
and AUPRC values remained stable. However, in the higher noise range, both values increased, indicating a noise-induced recovery of the ground truth connectivity.

cephalography (MEG) (58–60). However, the assumption
may not accurately reflect inhibitory connections in neuronal
cultures. Moreover, Dcov and Glasso, which are both con-
ceptual components of DDC, performed poorly, while DDC
emerged as the most effective method on synchronous net-
works. The findings suggest that accurate recovery of the
ground-truth connectivity in synchronous networks requires
a combination of directed information obtained through dif-
ferentiation of the original time series (Dcov) and considera-
tion of other neurons’ impact (Glasso).

We also found that using instantaneous rates to infer con-
nectivity improved the inference performance of DDC. It is
worth noting that the idea of convolving spike trains with
kernels has been previously proposed by Chen et al. (25),
and our study provides quantitative support for this approach.
In our experiments, we found that when using full-integer
differentiation, the best inference performance was obtained
with the Gaussian kernel (w = 3 ms). However, when frac-
tional differentiation was employed, the Alpha kernel (w =
3 ms) yielded the best performance. This observation sug-
gests that fractional differentiation can preserve useful tem-
poral information that was uniquely captured by an asymmet-
ric kernel. The use of fractional differentiation with a lower
fractional order (β) improved the inference performance. It
should be noted that β can be even smaller than the values ex-
amined in this study but must be strictly greater than 0; oth-
erwise, we retrieve an identity matrix. In this study, our fo-
cus was to demonstrate that FDDC with any β outperformed
DDC with full-integer differentiation when using instanta-
neous rates generated with the Alpha kernel (w = 3 ms). In
practice, we suggest determining the smallest β by conduct-
ing statistical tests such as the Dickey–Fuller test (61) to en-
sure stationarity in the differentiated time series. On the other
hand, exploring the best-performing FDDC method (β = 0.1,

Alpha kernel (w = 3 ms)) on noise-perturbed networks re-
vealed that the inference using FDDC on synchronous net-
works was more vulnerable compared to the case of asyn-
chronous networks. This finding suggests FDDC is most ef-
fective for networks with robust and consistent synchronized
firing patterns.

We compared the inferred connectivity graphs obtained from
in vitro neural networks by applying both CCG and FDDC to
assess the relevance of FDDC to experimental data. As small-
worldness has been previously reported as a characteristic
feature of inferred connectivity based on cross-covariance
for neuronal cultures (62, 63), we compared the SWI result-
ing from CCG- and FDDC-derived graphs. In this study,
cross-covariance reduces to CCG, as we assumed the original
time series were stationary (29), given that FDDC showed
improved inference performance over DDC for the tested
fractional orders (64). The connectivity graphs obtained us-
ing CCG indeed exhibited small-worldness across all tested
graph densities. However, some of the connectivity graphs
derived using FDDC did not show small-worldness with
SWIs smaller than 1, and most of the FDDC-derived graphs
showed smaller SWIs compared to CCG-derived graphs. Pre-
vious theoretical studies on network dynamics have indicated
that networks with clustered connections are more prone to
show synchronization (51, 65–67). Our results showed that
this relation was robust for FDDC-derived graphs, while no
clear correlation was observed for the CCG-derived graphs.
We speculate that FDDC-derived graphs generated more con-
servative connectivity that reflected the synaptic connectivity
responsible for the synchronized firing activity.

In conclusion, we propose that the combination of fractional
differentiation and DDC presents a promising solution to ad-
dress the scalability challenges associated with synchronous
networks containing thousands of neurons. However, we ac-
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knowledge that even the proposed FDDC method would not
scale for networks with a much larger number of neurons.
The most computationally expensive step in FDDC is the in-
version of a large covariance matrix. Therefore, we recom-
mend further exploring methods such as Cholesky decom-
position (68) to compute the inverse efficiently or to solve
equations directly using proximal gradient methods (69, 70).
By implementing these modifications, we believe that deriva-
tive inference methods could achieve scalability beyond thou-
sands of neurons.
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Supplementary Material

Table S1. LIF simulation parameters. In this study, QE and QI were fixed as (10 nS, 65 nS) after the parameter search.

Parameters Value Unit
C (membrane capacitance) 200 pF
EL (leaky membrane potential) -60 mV
gL (leakage conductance) 10 nS
VT (effective threshold) -50 mV
Vreset (reset potential) -60 mV
Trefrac (refractory period) 5 5ms
∆ (threshold slope factor) 2.5 ms
EE (reversal potential (exc.)) 0 mV
EI (reversal potential (inh.)) -80 mV
QE (synaptic strength change (exc.)) 10 nS
QI (synaptic strength change (inh.)) 65 nS
τm (time constant for white noise) 20 ms

Table S2. Parameters for spike-sorting (Kilosort2)
Parameters value

ops.fs 20000
ops.fshigh 150

ops.minfr_goodchannels 0
ops.Th [10 4]
ops.lam 10

ops.AUCsplit 0.9
ops.minFR 1/50

ops.momentum [20 400]
ops.sigmaMask 30

ops.ThPre 8
ops.spkTh -6
ops.reorder 1
ops.nskip 25

ops.nfilt_factor 4
ops.ntbuff 64

ops.NT 4*64*1024+ ops.ntbuff
ops.whiteningRange 32

ops.nSkipCov 25
ops.scaleproc 200

ops.nPCs 3
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Table S3. Performance of CCG method. The table shows the performance (AUROC, AUPRC) of CCG method across different inference
conditions.

AUROC AUPRC Comp. time (s)
Method Network Neurons Duration (s) mean std. mean std. mean std.

CCG Async 500 300 0.86 0.022 0.49 0.044 66 16
600 0.91 0.018 0.54 0.043 110 20
900 0.92 0.017 0.55 0.039 160 36
1200 0.94 0.015 0.55 0.035 200 42

1000 300 0.86 0.015 0.48 0.032 350 50
600 0.9 0.013 0.53 0.031 630 79
900 0.92 0.012 0.54 0.028 930 140
1200 0.93 0.011 0.55 0.025 1200 210

1500 300 0.86 0.014 0.48 0.028 880 46
600 0.9 0.013 0.53 0.028 1600 150
900 0.92 0.012 0.54 0.026 2500 420
1200 0.93 0.011 0.55 0.024 3300 290

Sync 500 300 0.59 0.051 0.029 0.0082 51 5.3
600 0.58 0.051 0.026 0.005 88 12
900 0.58 0.05 0.025 0.0041 120 17
1200 0.58 0.048 0.025 0.0036 150 15

1000 300 0.6 0.045 0.031 0.0083 250 30
600 0.59 0.047 0.027 0.0051 470 69
900 0.59 0.047 0.026 0.0043 680 92
1200 0.59 0.047 0.025 0.0038 880 140

1500 300 0.58 0.063 0.029 0.0093 570 57
600 0.58 0.062 0.026 0.0058 1100 200
900 0.55 0.059 0.024 0.0045 1600 260
1200 0.56 0.059 0.024 0.0042 2000 250
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Table S4. Performance of multivariate methods (asynchronous networks). The table shows the performance (AUROC, AUPRC) of
multivariate methods across different inference conditions.

AUROC AUPRC Comp. time (s)
Network Method Neurons Duration (s) mean std mean std mean std

Async Dcov 500 300 0.61 0.017 0.063 0.0071 2 0.18
600 0.61 0.018 0.064 0.0076 4.2 0.27
900 0.61 0.018 0.064 0.0078 6.4 0.67
1200 0.61 0.018 0.065 0.0078 8.9 1.8

1000 300 0.6 0.013 0.063 0.0059 5.6 1.3
600 0.61 0.014 0.063 0.0063 11 3.2
900 0.61 0.014 0.064 0.0065 18 7.7
1200 0.61 0.014 0.064 0.0065 23 7.3

1500 300 0.6 0.012 0.062 0.0056 10 2.8
600 0.61 0.013 0.063 0.006 20 5.8
900 0.61 0.013 0.064 0.0061 31 11
1200 0.61 0.013 0.064 0.0062 39 9.3

DDC 500 300 0.7 0.016 0.055 0.0074 2 0.12
600 0.73 0.017 0.068 0.01 4.1 0.09
900 0.74 0.018 0.075 0.012 6.2 0.091
1200 0.74 0.018 0.08 0.013 8.1 0.14

1000 300 0.72 0.014 0.058 0.0074 5.1 0.13
600 0.75 0.014 0.075 0.011 10 0.22
900 0.76 0.015 0.085 0.013 15 0.22
1200 0.77 0.014 0.093 0.014 20 0.39

1500 300 0.72 0.013 0.058 0.0066 11 4.8
600 0.76 0.014 0.076 0.01 21 7.6
900 0.77 0.015 0.088 0.012 31 12
1200 0.78 0.014 0.097 0.014 40 13

Glasso 500 300 0.51 0.0015 0.022 0.00053 1.9 0.97
600 0.51 0.0015 0.022 0.00053 1.5 0.076
900 0.51 0.0014 0.022 0.00054 1.8 0.28
1200 0.51 0.0014 0.022 0.00053 2 0.21

1000 300 0.51 0.0008 0.022 0.00028 4.9 0.98
600 0.51 0.00082 0.022 0.00029 4.7 0.16
900 0.51 0.00079 0.022 0.00029 5.3 0.15
1200 0.51 0.00078 0.022 0.00029 5.9 0.19

1500 300 0.51 0.00068 0.022 0.00026 10 1.3
600 0.51 0.00068 0.022 0.00026 10 0.68
900 0.51 0.00067 0.022 0.00027 11 0.69
1200 0.51 0.00065 0.022 0.00027 12 0.74

ND 500 300 0.6 0.0059 0.042 0.0017 0.41 0.04
600 0.6 0.0063 0.043 0.0018 0.63 0.024
900 0.6 0.007 0.043 0.0018 0.86 0.026
1200 0.6 0.0065 0.043 0.0018 1.1 0.021

1000 300 0.61 0.0055 0.049 0.0021 1.5 0.044
600 0.62 0.0061 0.051 0.0023 1.9 0.045
900 0.62 0.0063 0.052 0.0024 2.5 0.08
1200 0.62 0.0062 0.052 0.0024 3 0.097

1500 300 0.62 0.0046 0.055 0.0021 5.3 4.4
600 0.63 0.0055 0.058 0.0023 6.4 4.9
900 0.63 0.0054 0.059 0.0024 7.5 5.2
1200 0.63 0.0054 0.059 0.0024 8.5 5.1
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Table S5. Performance of multivariate methods (synchronous networks). The table shows the performance (AUROC, AUPRC) of
multivariate methods across different inference conditions.

AUROC AUPRC Comp. time (s)
Network Method Neurons Duration (s) mean std mean std mean std

Sync Dcov 500 300 0.51 0.0056 0.021 0.00053 2 0.13
600 0.51 0.0054 0.021 0.00053 4.1 0.13
900 0.51 0.0054 0.021 0.00053 6.1 0.23
1200 0.51 0.0054 0.021 0.00052 8.2 0.27

1000 300 0.51 0.0032 0.021 0.00036 5 0.075
600 0.51 0.003 0.021 0.00035 10 0.23
900 0.51 0.003 0.021 0.00035 15 0.42
1200 0.51 0.003 0.021 0.00035 20 0.58

1500 300 0.51 0.0027 0.021 0.00026 8.8 0.12
600 0.51 0.0024 0.021 0.00025 18 0.32
900 0.51 0.0024 0.021 0.00025 26 0.56
1200 0.51 0.0024 0.021 0.00025 35 0.69

DDC 500 300 0.68 0.058 0.05 0.012 2.8 1.5
600 0.7 0.06 0.054 0.014 5 1.9
900 0.71 0.061 0.056 0.015 7.1 2.3
1200 0.71 0.063 0.057 0.015 9.1 2.2

1000 300 0.73 0.027 0.069 0.0098 6.1 2.1
600 0.76 0.026 0.082 0.012 13 5.4
900 0.77 0.026 0.088 0.013 17 3.4
1200 0.77 0.026 0.091 0.014 23 6.1

1500 300 0.74 0.029 0.074 0.0095 9 0.13
600 0.77 0.028 0.094 0.012 18 0.3
900 0.79 0.027 0.1 0.014 27 0.61
1200 0.79 0.027 0.11 0.015 35 0.48

Glasso 500 300 0.51 0.0026 0.021 0.0005 31 54
600 0.51 0.0028 0.021 0.0005 28 48
900 0.51 0.0027 0.021 0.00049 23 40
1200 0.51 0.0028 0.021 0.00051 23 38

1000 300 0.51 0.00083 0.021 0.00031 45 55
600 0.51 0.00087 0.021 0.00031 35 42
900 0.51 0.00086 0.021 0.00032 53 71
1200 0.51 0.00087 0.021 0.00032 53 73

1500 300 0.51 0.00056 0.021 0.00017 70 71
600 0.51 0.00055 0.021 0.00017 80 91
900 0.51 0.00055 0.021 0.00017 78 86
1200 0.51 0.00056 0.021 0.00017 82 93

ND 500 300 0.55 0.021 0.028 0.0033 1.2 1.6
600 0.55 0.021 0.028 0.0034 1.4 1.7
900 0.55 0.021 0.028 0.0034 1.6 1.5
1200 0.55 0.021 0.028 0.0034 1.8 1.6

1000 300 0.57 0.017 0.033 0.0037 2.7 2.4
600 0.57 0.017 0.034 0.0037 3.5 3
900 0.57 0.017 0.034 0.0038 4 3
1200 0.57 0.016 0.034 0.0037 4 1.9

1500 300 0.57 0.021 0.035 0.0049 3.3 0.083
600 0.58 0.021 0.036 0.0052 4.2 0.046
900 0.58 0.021 0.036 0.0053 5.3 0.23
1200 0.58 0.021 0.037 0.0053 6.2 0.17
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Table S6. Performance of undirected multivariate methods. The table shows the performance (AUROC, AUPRC) of the undirected
multivariate methods (Glasso, ND) evaluated using the undirected ground truth connections.

AUROC AUPRC Comp. time (s)
Network Method Neurons Duration (s) mean std mean std mean std

Async Glasso 500 300 0.51 0.0015 0.043 0.00089 1.9 0.97
600 0.51 0.0015 0.043 0.00088 1.5 0.076
900 0.51 0.0014 0.043 0.00089 1.8 0.28
1200 0.51 0.0014 0.043 0.00088 2 0.21

1000 300 0.51 0.00081 0.043 0.00054 4.9 0.98
600 0.51 0.00083 0.043 0.00055 4.7 0.16
900 0.51 0.00079 0.043 0.00055 5.3 0.15
1200 0.51 0.00079 0.043 0.00054 5.9 0.19

1500 300 0.51 0.00066 0.044 0.00044 10 1.3
600 0.51 0.00066 0.044 0.00045 10 0.68
900 0.51 0.00065 0.044 0.00046 11 0.69
1200 0.51 0.00064 0.044 0.00046 12 0.74

ND 500 300 0.6 0.006 0.082 0.0032 0.41 0.04
600 0.6 0.0064 0.084 0.0034 0.63 0.024
900 0.61 0.007 0.084 0.0034 0.86 0.026
1200 0.61 0.0066 0.085 0.0035 1.1 0.021

1000 300 0.61 0.0057 0.097 0.0042 1.5 0.044
600 0.62 0.0063 0.1 0.0045 1.9 0.045
900 0.62 0.0065 0.1 0.0046 2.5 0.08
1200 0.62 0.0063 0.1 0.0047 3 0.097

1500 300 0.62 0.0047 0.11 0.0041 5.3 4.4
600 0.63 0.0057 0.11 0.0047 6.4 4.9
900 0.63 0.0056 0.11 0.0047 7.5 5.2
1200 0.63 0.0056 0.12 0.0048 8.5 5.1

Sync Glasso 500 300 0.51 0.0026 0.042 0.00089 31 54
600 0.51 0.0028 0.042 0.00093 28 48
900 0.51 0.0028 0.042 0.00092 23 40
1200 0.51 0.0028 0.042 0.00094 23 38

1000 300 0.51 0.00083 0.042 0.00058 45 55
600 0.51 0.00086 0.042 0.00058 35 42
900 0.51 0.00085 0.042 0.00058 53 71
1200 0.51 0.00086 0.042 0.00058 53 73

1500 300 0.51 0.00059 0.042 0.00033 70 71
600 0.51 0.00056 0.042 0.00032 80 91
900 0.51 0.00057 0.042 0.00033 78 86
1200 0.51 0.00058 0.042 0.00032 82 93

ND 500 300 0.55 0.021 0.055 0.0064 1.2 1.6
600 0.55 0.021 0.056 0.0065 1.4 1.7
900 0.55 0.021 0.056 0.0065 1.6 1.5
1200 0.55 0.021 0.056 0.0065 1.8 1.6

1000 300 0.57 0.017 0.065 0.0071 2.7 2.4
600 0.57 0.017 0.066 0.0072 3.5 3
900 0.57 0.017 0.067 0.0073 4 3
1200 0.57 0.017 0.067 0.0073 4 1.9

1500 300 0.58 0.021 0.069 0.0096 3.3 0.083
600 0.58 0.022 0.071 0.01 4.2 0.046
900 0.58 0.022 0.072 0.01 5.3 0.23
1200 0.58 0.022 0.072 0.01 6.2 0.17
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Table S7. Performance of DDC on convolved spike trains (asynchronous networks). The performance (AUROC, AUPRC) of DDC on
convolved spike trains is presented in the table for four different kernels.

AUROC AUPRC Comp. time (s)
Network Method Neurons Duration (s) mean std mean std mean std

Async DDC (Alpha, 1 ms) 500 300 0.68 0.016 0.065 0.011 19 0.49
600 0.71 0.018 0.092 0.018 39 1.4
900 0.73 0.018 0.11 0.023 59 1.2
1200 0.74 0.019 0.12 0.026 79 0.91

1000 300 0.68 0.013 0.065 0.0097 44 0.62
600 0.71 0.014 0.092 0.016 88 0.74
900 0.73 0.015 0.11 0.02 130 0.93
1200 0.74 0.015 0.13 0.023 180 3.1

1500 300 0.68 0.011 0.064 0.0087 72 3.6
600 0.71 0.012 0.092 0.015 150 3.7
900 0.73 0.012 0.11 0.019 220 4.4
1200 0.74 0.013 0.13 0.022 290 5.3

DDC (Alpha, 3 ms) 500 300 0.72 0.017 0.066 0.011 20 0.76
600 0.75 0.018 0.079 0.014 40 1.2
900 0.76 0.018 0.087 0.016 61 1.1
1200 0.76 0.017 0.092 0.018 82 1.2

1000 300 0.73 0.013 0.069 0.01 45 1.2
600 0.76 0.014 0.087 0.014 90 2.5
900 0.77 0.014 0.097 0.016 130 3.7
1200 0.78 0.014 0.1 0.018 180 5

1500 300 0.73 0.012 0.068 0.0088 76 3
600 0.77 0.013 0.088 0.012 150 4
900 0.78 0.013 0.1 0.014 230 4.7
1200 0.79 0.013 0.11 0.016 300 7.5

DDC (Gaussian, 1 ms) 500 300 0.68 0.016 0.067 0.012 20 0.67
600 0.72 0.018 0.095 0.019 40 1.2
900 0.73 0.018 0.11 0.023 59 2
1200 0.74 0.018 0.13 0.026 80 1.4

1000 300 0.69 0.014 0.068 0.01 44 0.55
600 0.72 0.014 0.096 0.017 89 1.4
900 0.74 0.015 0.12 0.021 130 2
1200 0.75 0.015 0.13 0.024 180 1.8

1500 300 0.69 0.011 0.067 0.0092 74 2.5
600 0.72 0.012 0.096 0.016 150 3.5
900 0.74 0.012 0.12 0.02 220 5.6
1200 0.75 0.013 0.13 0.023 300 6.7

DDC (Gaussian, 3 ms) 500 300 0.76 0.02 0.073 0.012 21 0.41
600 0.78 0.021 0.086 0.015 41 0.66
900 0.78 0.021 0.093 0.016 62 1.2
1200 0.79 0.021 0.097 0.017 83 1.7

1000 300 0.79 0.016 0.084 0.013 46 1.3
600 0.81 0.017 0.1 0.017 92 1.1
900 0.82 0.016 0.11 0.019 140 1.9
1200 0.83 0.016 0.12 0.02 180 2.2

1500 300 0.8 0.015 0.088 0.012 77 2.7
600 0.83 0.015 0.11 0.016 150 2.9
900 0.84 0.015 0.13 0.018 230 4.1
1200 0.85 0.015 0.14 0.019 310 6.6
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Table S8. Performance of DDC on convolved spike trains (synchronous networks). The performance (AUROC, AUPRC) of DDC on
convolved spike trains is presented in the table for four different kernels.

AUROC AUPRC Comp. time (s)
Network Method Neurons Duration (s) mean std mean std mean std

Sync DDC (Alpha, 1 ms) 500 300 0.66 0.045 0.074 0.018 20 3
600 0.68 0.049 0.081 0.021 41 6.4
900 0.68 0.05 0.083 0.021 62 9
1200 0.69 0.052 0.085 0.022 81 8.7

1000 300 0.69 0.012 0.099 0.0089 43 1.6
600 0.72 0.014 0.11 0.011 84 2.6
900 0.73 0.016 0.12 0.013 130 4.9
1200 0.73 0.017 0.12 0.014 170 5.8

1500 300 0.7 0.012 0.1 0.0074 71 2.6
600 0.73 0.014 0.13 0.0092 150 13
900 0.74 0.016 0.13 0.011 230 35
1200 0.75 0.017 0.14 0.012 320 62

DDC (Alpha, 3 ms) 500 300 0.68 0.052 0.062 0.013 19 0.68
600 0.69 0.053 0.065 0.014 37 1.4
900 0.7 0.054 0.066 0.015 56 2.1
1200 0.7 0.055 0.067 0.015 75 3

1000 300 0.73 0.017 0.09 0.0065 43 0.77
600 0.74 0.017 0.099 0.0075 86 1.8
900 0.75 0.017 0.1 0.0083 130 3.2
1200 0.75 0.018 0.1 0.0088 170 3.2

1500 300 0.74 0.017 0.1 0.006 72 3.2
600 0.76 0.018 0.11 0.0074 140 7.6
900 0.77 0.018 0.12 0.0087 220 9.8
1200 0.77 0.018 0.12 0.0095 290 13

DDC (Gaussian, 1 ms) 500 300 0.67 0.048 0.078 0.019 19 0.39
600 0.69 0.051 0.085 0.022 39 0.41
900 0.7 0.053 0.088 0.023 58 0.74
1200 0.7 0.055 0.09 0.023 77 0.82

1000 300 0.71 0.012 0.11 0.0091 42 0.88
600 0.73 0.014 0.12 0.012 85 1.4
900 0.74 0.016 0.13 0.013 130 2.4
1200 0.75 0.016 0.13 0.014 170 3.7

1500 300 0.71 0.012 0.11 0.0077 77 15
600 0.74 0.014 0.13 0.0093 160 33
900 0.76 0.015 0.14 0.011 240 55
1200 0.76 0.016 0.15 0.012 290 4.1

DDC (Gaussian, 3 ms) 500 300 0.75 0.069 0.077 0.019 20 0.61
600 0.76 0.071 0.083 0.02 39 1.1
900 0.77 0.072 0.085 0.021 59 1.8
1200 0.77 0.073 0.086 0.022 78 2.5

1000 300 0.82 0.023 0.12 0.011 48 9
600 0.84 0.021 0.13 0.012 98 20
900 0.85 0.02 0.14 0.012 150 27
1200 0.85 0.02 0.14 0.013 190 34

1500 300 0.83 0.025 0.13 0.012 72 2.4
600 0.86 0.023 0.16 0.013 150 7.1
900 0.87 0.022 0.17 0.014 220 13
1200 0.87 0.021 0.17 0.014 290 15
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Table S9. Performance of FDDC on convolved spike trains (asynchronous networks). The performance (AUROC, AUPRC) of FDDC
(β = 0.1) on convolved spike trains is presented in the table for four different kernels.

AUROC AUPRC Comp. time (s)
Network Method Neurons Duration (s) mean std mean std mean std

Async FDDC (Alpha, 1 ms, β = 0.1) 500 300 0.72 0.017 0.099 0.017 28 0.45
600 0.73 0.016 0.12 0.018 56 0.8
900 0.73 0.016 0.12 0.017 83 0.89
1200 0.73 0.016 0.13 0.016 110 1.2

1000 300 0.75 0.014 0.1 0.017 58 1.3
600 0.76 0.013 0.13 0.02 120 1.6
900 0.77 0.013 0.14 0.02 180 2.4
1200 0.77 0.013 0.15 0.019 240 3.4

1500 300 0.76 0.013 0.11 0.017 93 3.1
600 0.78 0.013 0.14 0.022 190 3.4
900 0.79 0.013 0.16 0.023 280 4.9
1200 0.79 0.012 0.17 0.022 380 4.5

FDDC (Alpha, 3 ms, β = 0.1) 500 300 0.79 0.02 0.16 0.031 27 0.5
600 0.81 0.02 0.19 0.033 55 1
900 0.81 0.02 0.21 0.033 83 1.2
1200 0.81 0.019 0.22 0.033 110 1.3

1000 300 0.82 0.017 0.17 0.032 59 1.6
600 0.84 0.016 0.23 0.039 120 2
900 0.85 0.016 0.25 0.039 180 2.9
1200 0.85 0.015 0.27 0.038 240 3.1

1500 300 0.84 0.016 0.17 0.032 92 2.8
600 0.86 0.015 0.24 0.042 190 4.2
900 0.87 0.015 0.28 0.044 290 5.2
1200 0.87 0.014 0.31 0.044 380 5.2

FDDC (Gaussian, 1 ms, β = 0.1) 500 300 0.73 0.017 0.1 0.019 27 0.72
600 0.74 0.017 0.12 0.02 55 1.3
900 0.74 0.017 0.13 0.019 82 2
1200 0.74 0.016 0.14 0.018 110 1.8

1000 300 0.75 0.014 0.11 0.019 58 1.9
600 0.77 0.014 0.14 0.022 120 1.9
900 0.78 0.013 0.16 0.022 180 2.6
1200 0.78 0.013 0.16 0.022 230 2.6

1500 300 0.77 0.014 0.11 0.018 92 2.9
600 0.79 0.013 0.15 0.024 190 2.7
900 0.8 0.013 0.17 0.025 280 4.3
1200 0.8 0.013 0.18 0.025 380 6.8

FDDC (Gaussian, 3 ms, β = 0.1) 500 300 0.78 0.02 0.12 0.026 27 0.88
600 0.79 0.019 0.15 0.031 56 1.1
900 0.8 0.019 0.17 0.033 83 1.3
1200 0.8 0.019 0.18 0.033 110 1.6

1000 300 0.81 0.016 0.13 0.025 58 1.7
600 0.83 0.015 0.18 0.031 120 1.8
900 0.84 0.015 0.2 0.033 180 2.1
1200 0.84 0.015 0.22 0.034 240 2.9

1500 300 0.82 0.015 0.14 0.023 93 2.6
600 0.84 0.014 0.19 0.03 190 2.5
900 0.85 0.014 0.22 0.033 290 3.9
1200 0.86 0.013 0.24 0.033 380 5
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Table S10. Performance of FDDC on convolved spike trains (synchronous networks). The performance (AUROC, AUPRC) of FDDC
(β = 0.1) on convolved spike trains is presented in the table for four different kernels.

AUROC AUPRC Comp. time (s)
Network Method Neurons Duration (s) mean std mean std mean std

Sync FDDC (Alpha, 1 ms, β = 0.1) 500 300 0.73 0.065 0.14 0.043 27 0.47
600 0.74 0.066 0.15 0.045 55 0.81
900 0.74 0.067 0.15 0.046 82 1.3
1200 0.74 0.067 0.15 0.046 110 2.1

1000 300 0.78 0.018 0.21 0.017 58 1.5
600 0.79 0.018 0.23 0.017 120 1.6
900 0.8 0.018 0.24 0.016 180 2.1
1200 0.8 0.017 0.24 0.015 240 2.1

1500 300 0.79 0.019 0.23 0.018 92 2.2
600 0.8 0.018 0.26 0.02 190 1.9
900 0.81 0.018 0.27 0.019 280 3.2
1200 0.81 0.018 0.28 0.016 380 4.6

FDDC (Alpha, 3 ms, β = 0.1) 500 300 0.81 0.086 0.24 0.078 27 0.37
600 0.82 0.088 0.25 0.081 55 0.85
900 0.83 0.088 0.26 0.083 82 0.75
1200 0.83 0.089 0.26 0.084 110 0.7

1000 300 0.88 0.02 0.37 0.032 58 1.5
600 0.9 0.018 0.4 0.03 120 1.6
900 0.9 0.017 0.42 0.03 180 2.5
1200 0.91 0.017 0.42 0.029 240 3.5

1500 300 0.9 0.021 0.41 0.037 93 2.8
600 0.92 0.018 0.46 0.033 190 2.9
900 0.92 0.017 0.48 0.032 280 3.7
1200 0.92 0.016 0.49 0.031 380 4.9

FDDC (Gaussian, 1 ms, β = 0.1) 500 300 0.74 0.068 0.16 0.047 27 0.71
600 0.75 0.069 0.16 0.05 55 1.4
900 0.75 0.07 0.17 0.051 82 1.9
1200 0.76 0.07 0.17 0.051 110 2.6

1000 300 0.79 0.018 0.23 0.018 58 1.9
600 0.8 0.018 0.25 0.018 120 2.5
900 0.81 0.017 0.26 0.018 180 3.6
1200 0.81 0.017 0.26 0.016 240 4.4

1500 300 0.8 0.019 0.25 0.02 93 2.7
600 0.82 0.018 0.28 0.021 190 3.5
900 0.82 0.018 0.29 0.02 280 4
1200 0.83 0.018 0.3 0.018 380 3.7

FDDC (Gaussian, 3 ms, β = 0.1) 500 300 0.79 0.081 0.2 0.062 27 0.53
600 0.8 0.082 0.21 0.066 55 0.75
900 0.81 0.083 0.22 0.067 83 0.65
1200 0.81 0.084 0.22 0.068 110 0.8

1000 300 0.86 0.018 0.29 0.022 58 1.4
600 0.88 0.016 0.32 0.019 120 1.3
900 0.89 0.015 0.34 0.019 180 2.1
1200 0.89 0.014 0.34 0.018 240 2.7

1500 300 0.88 0.02 0.32 0.025 94 2.5
600 0.9 0.017 0.36 0.021 190 3.7
900 0.91 0.015 0.38 0.02 290 4.6
1200 0.91 0.014 0.39 0.02 380 6.6
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Fig. S1. Parameter search of LIF network simulations. (A): While fixing the adaptation parameters (a,b) = (1 µS,5nA) for excitatory
neurons to implement ‘weakly adapting cells’ (24), the amounts for postsynaptic excitatory/inhibitory conductance change (QE,I ) were
searched in the range of [0 100] with a step size of 5. Each parameter set was simulated for 5 seconds, and the corresponding average
population firing rates are shown. (B): Under the fixed parameter choice, (QE ,QI) = (10, 65) nS, (a,b) parameter sets were searched
in the range [0 80] with a step size of 1. Each parameter set was simulated for 5 seconds and network activities were color-coded
to indicate either synchronous network activity (‘sync’) or asynchronous network activity (‘async’). (C): Based on the criteria of (24),
network simulations that showed a mean pairwise correlation (‘corr’) higher than 0.1 and a lower mean coefficient of variation (‘CV’) than
1 were labeled as synchronous (‘sync’). All other network simulations that did not meet these two criteria were labeled as asynchronous
networks (‘async’).
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Fig. S2. Noise-induced network activity changes in synchronous LIF simulations. (A): For noises that were below 0.2 nA (≈ size of the
leaky current), the mean CVISI of the simulated synchronous networks remained relatively stable. However, with larger noises, there
was a rapid increase in mean CVISI , and mean CVISI values larger than 1.0 were observed. (B): Similarly, with larger noise levels
that exceed 0.2 nA, there was a steeper decrease in the mean pairwise correlation of the simulated synchronous networks compared
to the case of lower noise levels.
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Fig. S3. Inference performances of the multivariate methods (asynchronous networks). (A): AUROC values (mean ± standard devia-
tion) are presented for three evaluation conditions. (left): all ground truth connections, (middle): excitatory ground truth connections,
(right): inhibitory ground truth connections. (B): AUPRC values are presented for three evaluation conditions. (left): all ground truth
connections, (middle): excitatory ground truth connections, (right): inhibitory ground truth connections.
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Fig. S4. Inference performances of the multivariate methods (synchronous networks). (A): AUROC values (mean ± standard devia-
tion) are presented for three evaluation conditions. (left): all ground truth connections, (middle): excitatory ground truth connections,
(right): inhibitory ground truth connections. (B): AUPRC values are presented for three evaluation conditions. (left): all ground truth
connections, (middle): excitatory ground truth connections, (right): inhibitory ground truth connections.
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