

2 **TFAP2 paralogs regulate midfacial development in part through a conserved
ALX genetic pathway.**

4 Timothy T Nguyen^{1,2,3,4†}, Jennyfer M Mitchell^{5†}, Michaela D Kiel^{1,2,3}, Kenneth L Jones^{6‡},
Trevor J Williams^{5,6,7}, James T Nichols⁵, and Eric Van Otterloo^{1,2,3,4,8*}

6 ¹ Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of Iowa, Iowa
City, IA, 52242, USA

8 ² Department of Periodontics, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA,
52242, USA

10 ³ Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA,
52242, USA

12 ⁴ Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA

14 ⁵ Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
80045, USA

16 ⁶ Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital
Colorado, Aurora, CO 80045, USA

18 ⁷ Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus,
Aurora, CO, 80045, USA

20 ⁸ Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA, 52242, USA

22 [†] Equal contributions

24 [‡] Current address: Department of Cell Biology, University of Oklahoma Health Sciences Center,
Oklahoma City, OK 73104, USA

26 * Corresponding author: eric-vanotterloo@uiowa.edu

Keywords: TFAP2, BOFS, Char syndrome, ALX, Frontonasal Dysplasia, neural crest

24 **Summary Statement:** Mouse and zebrafish genetic analyses and next-generation sequencing profiling
identify a critical, conserved TFAP2-ALX transcriptional axis within the midface developmental gene
26 regulatory network.

Competing Interest Statement: The authors declare no conflict of interest.

28 **ABSTRACT:**

30 Cranial neural crest development is governed by positional gene regulatory networks (GRNs). Fine-tuning of the GRN components underly facial shape variation, yet how those in the midface are connected and activated remain poorly understood. Here, we show that concerted inactivation of *Tfap2a* and *Tfap2b* 32 in the murine neural crest even during the late migratory phase results in a midfacial cleft and skeletal abnormalities. Bulk and single-cell RNA-seq profiling reveal that loss of both *Tfap2* members dysregulated 34 numerous midface GRN components involved in midface fusion, patterning, and differentiation. Notably, *Alx1/3/4 (Alx)* transcript levels are reduced, while ChIP-seq analyses suggest TFAP2 directly and positively 36 regulates *Alx* gene expression. *TFAP2* and *ALX* co-expression in midfacial neural crest cells of both mouse and zebrafish further implies conservation of this regulatory axis across vertebrates. Consistent with this 38 notion, *tfap2a* mutant zebrafish present abnormal *alx3* expression patterns, and the two genes display a genetic interaction in this species. Together, these data demonstrate a critical role for TFAP2 in regulating 40 vertebrate midfacial development in part through ALX transcription factor gene expression.

INTRODUCTION:

42 The evolution of paired jaws in parallel with the development of neural crest cells (NCCs) has led to considerable breadth of facial shapes, enabling gnathostome vertebrates to thrive and exploit varied
44 ecological niches (Brandon et al., 2022; Martik and Bronner, 2021; Square et al., 2017; York and McCauley, 2020). The ability for cranial NCCs (CNCCs) to give rise to skeletal elements important for
46 mastication and housing numerous sensory organs is driven by coordination of epigenetic priming and transcriptional responses to local signaling inputs during embryonic development (Clouthier et al., 2010;
48 Kessler et al., 2023; Santagati and Rijli, 2003; Selleri and Rijli, 2023). Fine-tuning of these positional gene regulatory networks (GRNs) underscores facial shape variation; likewise, disruption of such important
50 processes can lead to severe craniofacial birth defects including orofacial clefting. In humans, this phenotype usually presents as a lateral or bilateral cleft of the upper lip and primary palate which presents
52 in ~1 in 700 births (Mai et al., 2019; Tolarova and Cervenka, 1998). However, clefting can also occur at the midline of the medial- and upper-face region (i.e., midface) (Tessier, 1976), generating a bifid nose
54 that is often part of the spectrum of pathologies such as Frontonasal Dysplasia (FND) (MIMs: 136760, 613451, 613456) (Vargel et al., 2021). Genes encoding the homeobox-containing ALX transcription factors
56 (*ALX1/3/4*) are the prominent underpinning of FND when mutated and have also been linked with midfacial development in mouse and zebrafish (Beverdam et al., 2001; Iyyanar et al., 2022; Lakhwani et al., 2010;
58 McGonnell et al., 2011; Mitchell et al., 2021; Qu et al., 1999; Yoon et al., 2022). Although *ALX* genes are clearly fundamental components of the GRNs regulating midfacial development, how they connect with
60 other midface genes into regulatory nodes remains uncertain. Of further importance, midface-specific modules are postulated to drive facial shape variation in humans (Claes et al., 2018; Feng et al., 2021;
62 Naqvi et al., 2022; Xiong et al., 2019). Therefore, uncovering and connecting these genes in the midface GRN remains central to understanding facial development, morphology, and pathology.

64 Encoded members of the *TFAP2* gene family have previously been linked with facial development, particularly as transcription factors operating in GRNs across multiple NCC lineages in several vertebrate
66 species (de Croze et al., 2011; Dooley et al., 2019; Hovland et al., 2022; Kenny et al., 2022; Li and Cornell, 2007; Rothstein and Simoes-Costa, 2020; Schmidt et al., 2011; Seberg et al., 2017; Van Otterloo et al.,

68 2010; Van Otterloo et al., 2012). TFAP2 paralogs share highly conserved amino acid sequences forming
their DNA-binding and dimerization domains; moreover, their overlapping DNA-binding motifs (5'-
70 GCCNNNGGC-3') and capacity to form homo- or heterodimers suggest functional redundancy (Eckert et
al., 2005; Williams et al., 1988; Williams and Tjian, 1991). In particular, TFAP2A and TFAP2B have been
72 shown to regulate craniofacial development in numerous model organisms (Barrallo-Gimeno et al., 2004;
Knight et al., 2003; Martino et al., 2016; Schorle et al., 1996; Zhang et al., 1996) and are also mutated in
74 human syndromes with facial pathologies. Dominant mutations in *TFAP2A* and *TFAP2B* cause Branchio-
Oculo-Facial syndrome (BOFS) (MIM: 113620) (Milunsky et al., 2008) and Char syndrome (MIM: 169100)
76 (Satoda et al., 2000), respectively, conditions which include midface phenotypes such as hypertelorism,
broad nasal tip, as well as an abnormal philtrum and nasal bridge. TFAP2 has also been implicated as a
78 central determinant to facial evolution (Prescott et al., 2015) and, thus, facial morphology appears
particularly sensitive to the total functional levels of TFAP2 (Laugsch et al., 2019; Naqvi et al., 2022).
80 Supporting this notion, biochemical analyses suggest the BOFS and Char syndrome mutations interfere
with the function of the remaining wild-type product or other TFAP2 paralogs (Li et al., 2013; Satoda et al.,
82 2000). Moreover, simultaneous targeting of *TFAP2A* and *TFAP2B* in mice and zebrafish results in
exacerbated craniofacial defects (Knight et al., 2005; Van Otterloo et al., 2018; Van Otterloo et al., 2022;
84 Woodruff et al., 2021). Mechanistically, TFAP2 orchestrates branchial arch (BA) patterning through
modulating homeobox transcription factor gene expression (Knight et al., 2004; Knight et al., 2003; Van
86 Otterloo et al., 2018), thus raising the possibility that similar mechanisms operate in the midface.

88 Here, we coupled mouse and zebrafish genetics with next-generation sequencing to extend our
analysis of TFAP2A and TFAP2B function in midfacial development and gene regulation. Our findings
90 show that similar midfacial clefting phenotypes are observed when these two genes are lost either early or
late in mouse NCC development, suggesting that the critical aspects of their function reside in patterning
92 and differentiation rather than migration. Using genome-wide molecular analysis in mouse coupled with
genetic approaches in zebrafish, we further link these TFAP2 genes with ALX family expression and
function, placing them firmly in a GRN critical for midface development and evolution.

RESULTS:

96 **TFAP2A and TFAP2B cooperatively function in CNCCs during midface development.**

98 In our previous efforts to illuminate the combined role of *TFAP2A* and *TFAP2B* in CNCCs, we
100 identified that simultaneous loss of these genes in mice caused major defects in the development of both
102 midface and BA1-derived jaw structures (Fig. S1A-F) (Van Otterloo et al., 2018). Subsequent profiling
104 focused on the disruption of GRNs patterning BA1, while mechanisms responsible for the midfacial cleft
106 were not pursued in detail. These earlier studies also deployed a combination of null and floxed conditional
108 alleles such that lack of *Tfap2* in NCCs was accompanied by their heterozygosity in the remaining embryo
110 (Fig. 1A). Since the concerted action of TFAP2A and TFAP2B serves critical functions in the ectoderm
112 during facial development (Van Otterloo et al., 2022; Woodruff et al., 2021), we wished to ascertain if the
114 midfacial clefting was caused solely by loss of the two genes in NCCs.

106 To address this, we utilized only floxed conditional alleles in combination with NCC-specific *CRE*
108 recombinase transgenes (Fig. 1B). Moving forward, embryos derived from the prior breeding scheme (Fig.
110 1A) are denoted as the null/conditional model (Fig. 1C, red), while embryos from the updated paradigm
112 (Fig. 1B) are termed as the conditional/conditional model (Fig. 1C, blue). First using *Wnt1:CRE* (Danielian
114 et al., 1998) in the updated paradigm, we conditionally deleted various allelic combinations of *Tfap2* genes
116 in pre-migratory NCCs and examined gross craniofacial development (Fig. 1C-F). *CRE*-negative control
118 mice at embryonic day 18.5 (E18.5) displayed appropriate midface formation that included laterally
120 positioned vibrissae and an elongated snout (Fig. 1D). Littermates with NCC-specific loss of *Tfap2a*
122 (*Tfap2a*^{NCKO}, also *Tfap2b*-heterozygous) or *Tfap2b* (*Tfap2b*^{NCKO}, also *Tfap2a*-heterozygous) displayed mild
124 and largely overlapping midfacial anomalies such as an indented snout (Fig. 1E, F, gold arrowhead) with
126 misplaced vibrissae on the dorsum (Fig. 1E', F', circled). By contrast, complete loss of *Tfap2a* and *Tfap2b*
128 in NCCs (*Tfap2*^{NCKO}) resulted in a fully penetrant midfacial cleft that was accompanied by a mildly
130 shortened snout (Fig. 1G; white arrowhead). The misplaced vibrissae present by loss of a single paralog
132 were not observed in *Tfap2*^{NCKO} embryos, but we surmised this was confounded by the facial cleft. Earlier

120 timepoints (E11.5, E12.5, E15.5) revealed similar phenotypic trends, with the cleft becoming evident at E11.5 (Fig. S2) during midface fusion.

122 Jaw defects were also apparent in the various mutants by gross examination or following skeletal analysis (Fig. S3), resembling those observed in our prior studies (Van Otterloo et al., 2018). Intriguingly, 124 the conditional/conditional embryos did not display a midline mandibular cleft, in contrast to previous 126 findings in their *Tfap2*^{Δ/NCKO} counterparts (Fig. S1). Therefore, the current analysis indicates that the upper 128 midface cleft and significant BA1 patterning defects can be attributed solely to loss of these two genes in NCCs, whereas mandibular clefting is uncovered by the reduced allelic dosage of *Tfap2* elsewhere—presumably the ectoderm.

130 In summary, anomalies like the midfacial cleft suggest that proper facial development relies on sufficient *Tfap2* dosage specifically in NCCs. As observed in other NCC stages and derivatives (Rothstein and Simoes-Costa, 2020; Schmidt et al., 2011; Seberg et al., 2017; Van Otterloo et al., 2018), these 132 findings raise the hypothesis that TFAP2A and TFAP2B cooperatively function in NCC GRNs directing midfacial development.

134

Fusion of the frontonasal prominences require TFAP2 function in post-migratory CNCCs.

136 TFAP2 paralogs are postulated to be critical pioneer transcription factors residing throughout NCC development, marking genes poised to be activated once CNCCs have taken residency in the facial 138 prominences (Fernandez Garcia et al., 2019; Rada-Iglesias et al., 2012; Rothstein and Simoes-Costa, 2020). We next asked whether the midfacial cleft resulted from the lack of TFAP2 activity throughout NCC 140 development or after their migration. Previously assessed by β-galactosidase staining with the *r26r-lacZ* reporter (Soriano, 1999), E9.0 and E10.0 *Tfap2*^{Δ/NCKO} embryos revealed no distinct changes in CNCC 142 migration into the facial complex (Van Otterloo et al., 2018), which comprise of the midface-associated frontonasal prominence (FNP) alongside the paired maxillary prominences (MxP) a mandibular 144 prominences (MdP). Extending this analysis in conditional/conditional animals, we observed that the distribution and intensity of β-galactosidase staining in the E10.5 midface was similar between *Tfap2*^{NCKO},

146 *Tfap2a*^{NCKO}, *Tfap2b*^{NCKO}, and control littermates heterozygous for *Tfap2* in NCCs (*Tfap2*^{HET}) (Fig. S4A),
with the caveat that the developing cleft between the FNP alters overall morphology in *Tfap2*^{NCKO} embryos
148 (Fig. S4A, arrowheads).

150 Performing sectional immunofluorescence on E11.5 wild-type midface tissue, we found TFAP2A
152 and TFAP2B protein expression in CNCCs occupying the medial and lateral domains of the FNP (Fig. 2A;
Fig. S4B). Additional comparisons of published E11.5 transcriptomes showed persistent *Tfap2a* and
154 *Tfap2b* transcript levels in FNP CNCCs in contrast to those in the MdP (Fig. 2B) (Hooper et al., 2020),
Therefore, taking advantage of the *Sox10:CRE* transgene (Matsuoka et al., 2005) to inactivate *Tfap2* when
156 CNCCs have begun reaching the FNP (~E9.0) (Hari et al., 2012; Jacques-Fricke et al., 2012), we next
sought to determine the critical periods by which TFAP2 is needed for FNP fusion. Micro-computed
158 tomography (μ CT) analysis at E12.5 showed that, indeed, similar to *Wnt1:CRE* animals (Fig. 2C),
Sox10:CRE-Tfap2^{NCKO} embryos presented a midface cleft not observed in controls (Fig. 2D). Quantification
160 of the linear distance between medial FNP tips were statistically significant between controls and their
respective mutant backgrounds (Fig. 2E), with *Sox10:CRE-Tfap2*^{NCKO} more mildly affected at this stage,
162 while ventral μ CT sections revealed that both mutants shared abnormal nasal pit morphology (Fig. 2F, G).
Lastly, examining the gross morphology of E18.5 *Sox10:CRE* embryos of the various *Tfap2* allelic
combinations presented similar phenotypic trends as their *Wnt1:CRE* counterparts (Fig. S5).

164 Thus, while TFAP2 persists throughout CNCC developmental progression, these data provide
166 evidence that the midface cleft does not arise from impaired TFAP2 activity during migration. Rather,
retention of TFAP2A and TFAP2B expression levels in post-migratory CNCCs, alongside the *Sox10:CRE*
studies, refine the temporal requirement for both paralogs in midface fusion.

168 **Appropriate midfacial bone and cartilage formation depends on *Tfap2a* and *Tfap2b* gene dosage.**

170 We next sought to leverage our transgenic models to better understand the developmental timing
of TFAP2 during midfacial bone and cartilage formation. Accordingly, we compared E18.5 skeletal
preparations of *CRE*-negative control, *Tfap2a*^{NCKO}, *Tfap2b*^{NCKO}, and *Tfap2*^{NCKO} backgrounds from both

172 conditional/conditional paradigms. Detailing the midfacial skeleton first in *Sox10:CRE* animals, controls
173 showed appropriate ossification of frontal and nasal bones meeting at the midline (Fig. 3A). Underneath
174 the cranium lies the primary palate formed by the premaxilla bones, while the anterior portions of the vomer
175 bones meet at the midline (Fig. 3A'). The nasal capsules are joined, connected to a compact cartilaginous
176 template for the nasal (i.e., ethmoid) labyrinth and nasal septum that sits adjacent to the anterior
177 presphenoid (Fig. 3A'). *Tfap2a^{NCKO}* and *Tfap2b^{NCKO}* backgrounds exhibited small ectopic cartilage islands
178 forming on the calvaria, mildly increased gaps between the frontal bones (Fig. 3B, C). Comparing
179 *Tfap2a^{NCKO}* and *Tfap2b^{NCKO}* mutants, the former exhibited gaps in the nasal bones and mild split in the
180 vomer bones (Fig. 3B, B', white arrowhead, C, C'). By contrast, *Tfap2^{NCKO}* embryos lacked nasal bones,
181 exposing the underlying split nasal capsules (Fig. 3D, asterisk). Large cartilaginous ectopias were also
182 found in between the hypoplastic frontal bones that, in some individuals, appeared to stem from the nasal
183 septum (Fig. 3D, gold arrowheads; Fig. S6A, A'). Interestingly, in one individual these ectopias were
184 replaced by severe frontal bone fractures (Fig. S6A"). Underneath the calvaria, *Tfap2^{NCKO}* mutants
185 presented clefting of the palatal processes of the premaxilla, increased separation between the split vomer
186 bones, less compacted nasal labyrinths, a thickened nasal septum, and malformed presphenoid bone (Fig.
187 3D'; Fig. S6B-B", dashed lines). Although jaw and cranial base defects were not closely examined, it is
188 worth mentioning that major BA1 defects were in line with those observed in both *Wnt1:CRE* animals (Fig.
189 S7) (Van Otterloo et al., 2018). Intriguingly, only one *Tfap2^{NCKO}* mutant presented fusion of the paired jaws
190 (i.e., syngnathia) (Fig. S7E), a defect with higher prevalence in *Wnt1:CRE-Tfap2^{NCKO}* and *Tfap2^{Δ/NCKO}*
191 embryos (Fig. S3) (Van Otterloo et al., 2018). Overall, the more common phenotype was fusion between
192 maxillary and jugal bones (Fig. S7F).

193 Next examining the midface elements in *Wnt1:CRE* animals, both *Tfap2a^{NCKO}* and *Tfap2b^{NCKO}*
194 single mutants presented largely overlapping phenotypes as their *Sox10:CRE* equivalents, though with
195 slight differences (Fig. 3E-G, E'-G'). For example, compared to controls (Fig. E, E'), both single conditional
196 mutants share gapped nasal bones and mishappened cartilage scaffolds connecting the frontal bone and
197 anterior cranial base (pila pre/postoptica) (Fig. 3F, G, F', G'). Strikingly, *Wnt1:CRE-Tfap2^{NCKO}* embryos
198 presented nearly identical phenotypes like those observed with their *Sox10:CRE* counterparts, including a

complete lack of nasal bones, smaller frontal bones, cranial ectopias, and overt separation between the
200 premaxillary palate and vomer bones (Fig. 3H, H'). Moreover, additional preparation of E15.5 and E18.5
Tfap2^{Δ/NCKO} skeletons displayed similar midfacial hypoplasia and ectopia phenotypes (Fig. S8). It is unclear
202 whether subtle phenotypic distinctions between *Sox10:CRE* and *Wnt1:CRE* mice are confounded by
differences in *CRE* spatial expression patterns (Debbache et al., 2018). Nevertheless, overlaps in major
204 defects between animal models further emphasize critical dependence on *Tfap2a* and *Tfap2b* gene dosage
during post-migratory CNCC events such as skeletal differentiation.

206

**208 Combined loss of *Tfap2a* and *Tfap2b* dysregulates a post-migratory midfacial neural crest GRN
that includes Frontonasal Dysplasia-related *Alx1/3/4* genes.**

Our mouse genetic analyses motivated the hypothesis that TFAP2A and TFAP2B acted upstream
210 at key post-migratory GRN modules associated with midface mesenchyme patterning and differentiation.
Herein, we undertook transcriptomic profiling of controls and mutants during critical timepoints for midface
212 fusion: RNA-seq of E10.5 bulk FNP/MxP tissue and scRNA-seq of E11.5 CNCCs, respectively. With
respect to the first approach, comparison between *CRE*-negative control and *Tfap2*^{Δ/NCKO} mutants
214 uncovered 149 genes to be dysregulated between groups (86 down-regulated, 63 up-regulated) (Fig. 4A;
Table S1). Ontology, enrichment, and pathway analysis via the Enrichr pipeline (Kuleshov et al., 2016)
216 revealed an overrepresentation of midfacial pathology categories associated with down-regulated genes
(Fig. 4B). Similar to *Tfap2*^{Δ/NCKO} profiles in the lower jaw (Van Otterloo et al., 2018), many of the terms
218 contained homeobox transcription factor genes including calvaria development-related *Msx1* (Han et al.,
2007; Ishii et al., 2005; Roybal et al., 2010) as well as *Pax3* and *Pax7* (Gu et al., 2022; Zalc et al., 2015).
220 Notably, terms like *midline defect of the nose* ($p = 2.00e-05$, adj. $p < 0.05$) as well as *Frontonasal Dysplasia*
($6.33e-06$, adj. $p < 0.05$) contained *Alx1*, *Alx3*, *Alx4* (Fig. 4A, B), whose combinatorial loss lead to a midface
222 cleft strikingly similar to those in *Tfap2*^{NCKO} and *Tfap2*^{Δ/NCKO} (Fig. S2; Table S1) (Beverdam et al., 2001; Gu
et al., 2022; Iyyanar et al., 2022; Lakhwani et al., 2010; Qu et al., 1999). Also reduced were *Crabp1* and
224 *Aldh1b1*, encoding regulators of a retinoic acid pathway known to regulate midface fusion (Fig. 4A; Table

S1) (Gao et al., 2021; Kennedy and Dickinson, 2012; Lohnes et al., 1994; Williams and Bohnsack, 2019; 226 Wu et al., 2022). Unexpectedly, we noted increased expression of genes encoding collagens (e.g., *Col14a1*, *Col3a1*), periostin (*Postn*), osteoglycin (*Ogn*), and Fibronectin Leucine Rich Transmembrane 228 Protein 2 (*Fln2*) (Fig. 4A; Table S1), components involved in skeletal formation (Bhatt et al., 2013; Dash and Trainor, 2020) and suggest premature activation of this process. Thus, by E10.5, transcriptional 230 changes are already emerging such as those involved in mammalian midfacial anomalies.

Secondarily conducting scRNA-seq of CNCCs sorted from the heads of E11.5 *Tfap2^{HET}* and 232 *Tfap2^{NCKO}* littermates (Fig. 4C), we next examined the changing GRN architecture amidst midface fusion and the extent to which transcriptomic identities were compromised. Integration and Uniform Manifold 234 Approximation and Projection (UMAP) plotting of combined control and mutant genotypes by Seurat (Hao et al., 2021) generated 16 clusters that divided into three major cell populations (Fig. 4C). Concordant with 236 *Wnt1:CRE* cell labelling and other scRNA-seq studies (Jacques-Fricke et al., 2012; Soldatov et al., 2019), these cells clustered into groups for glia (e.g., *Sox10*, *Erbb3*, *Plp1*, *Isl1*; cluster 9), neurons and 238 components of the brain (e.g., *Neurog2*, *Stmn2*, *Sox2*, *Otx2*; clusters 4, 5, 7, 8, 10-13, 15), and the mesenchyme (e.g., *Prrx1/2*, *Twist1*, *Fli1*; clusters 0-3, 6) (Fig. 4C, Fig. S9). While total cell numbers 240 between samples were not drastically altered, mutant quantities for glial and mesenchymal populations were reduced (~7-8% each) while neuronal populations increased (~12%) compared to controls (Fig. 242 S10A). Gene expression-based cell cycle scoring did not detect noticeable changes in cell cycle progression of these populations (Fig. S10B), indicating cellular profiles between genotypes are not due 244 to altered proliferation states. While it is possible that TFAP2 participates in biasing CNCCs to a particular cell fate decision, we reasoned their loss alone is not sufficient to drive drastic fate switches akin to 246 previously reported factors (Cox et al., 2012; Fan et al., 2021; Scerbo and Monsoro-Burq, 2020; Simoes- 248 Costa and Bronner, 2016; Soldatov et al., 2019). Supporting this notion is no obvious expansion in neurons, previously tested by whole-mount anti-Neurofilament immunostaining (Van Otterloo et al., 2018).

To extend our bulk RNA-seq analyses, we implemented two scRNA-seq workflows in parallel for 250 the mesenchyme group (Fig. 4C): a “pseudobulk” approach for differential gene expression analyses and MAGIC imputation (van Dijk et al., 2018) to annotate major positional identities. The former identified 383

252 dysregulated genes (124 down-regulated, 259 up-regulated; log fold-change threshold = 0.1, adj. p < 0.05),
253 that contained overlaps with RNA profiles in the E10.5 midface (Table S1). For example, downregulated
254 genes yielded several Enrichr terms associated with transcription factor gene regulation and craniofacial
255 features associated with midface molecules (e.g., *Msx1*, *Pax3*, *Pax7*, *Alx1*, *Alx4*) (Fig. S11A, Table S1).
256 Although *Alx3* did not appear in our pseudobulk, we suspect this is partly due to it being the lowest
257 expressing paralog in the whole mesenchyme alongside the limited sequencing depth. Intriguingly, the
258 upregulated GRN modules yielded members of the *Fox* transcription factor family (e.g., *Foxd1*, *Foxf2*,
259 *Foxp1*, *Foxp2*), downstream targets of a Hedgehog signaling pathway often associated with midline facial
260 disorders when precociously activated (Fig. S11B, Table S1) (Brugmann et al., 2010; Jeong et al., 2004;
261 Xu et al., 2022; Xu et al., 2018). Further, we continued to observe several extracellular matrix terms
262 resulting from the multiplicity of elevated collagen genes (e.g., *Col1a1*, *Col2a1*, *Col3a1*, *Col4a1*, *Col6a1*,
263 *Col6a2*) (Fig. S11B, Table S1).

264 Confirming the positional specificity of the disrupted GRNs, we mapped expression levels of select
265 genes on the computationally re-clustered mesenchyme UMAP, which comprises the presumptive FNP
266 (FNP-1/2, clusters 1, 2; *Tfap2a/b*+, *Alx1/3/4*+, *Six2*+) , MxP (cluster 0; *Six1*+, *Lhx6/8*+) , MdP (cluster 0, 4;
267 *Dlx1/2/3/4/5/6*+, *Hand2*+) , and branchial arch 2 (BA2, cluster 3; *Hoxa2*+) (Fig. 4D; Fig. S12; Fig. S13).
268 Consistent with previously reported lower face hypoplasia phenotypes (Van Otterloo et al., 2018), mutant
269 cells were cumulatively underrepresented across MxP, MdP, and BA2 clusters (Fig. S14A, A'),
270 accompanying the decreased expression of various *Dlx*, *Hand2*, and *Gsc* transcripts (Table S1; Fig. S14B).
271 Lastly, of the two FNP clusters, mutant cells increased in FNP-1 (58.4% mutant/41.6% control) while
272 decreasing in FNP-2 (26.8% mutant/73.2% control) (Fig. S14A, A'). These changes were coupled with
273 reduced levels of *Alx1/3/4* (Fig. 4E), *Msx1*, and *Pax3/7*, as well as upregulation of collagen and *Fox* genes
274 (Fig. S14C). Orthogonal approaches like whole mount *in situ* hybridization (Fig. 4F) and real-time PCR
275 (Fig. 4G) analyses validated that, compared to their respective controls, both *Tfap2*^{NCKO} and *Tfap2*^{Δ/NCKO}
276 mutants exhibited reduced midfacial *Alx* gene expression.

277 In total, profiling the loss of *Tfap2* in CNCCs by transcriptomic and target gene expression profiling
278 suggests these transcription factors play crucial roles in regulating genes in the various positional

programs. Importantly, these data support the hypothesis that TFAP2 paralogs function upstream of critical
280 GRN nodes involved in midface fusion and skeletal formation, which include the Frontonasal Dysplasia-
associated *Alx1/3/4* genes.

282

TFAP2 plays a direct role in the midface GRN in part by occupying *Alx1/3/4* regulatory elements.

284 Our genome wide transcriptomic analyses identified important genes that were dysregulated by
loss of *Tfap2* in the midface CNCCs, but whether these were direct or indirect targets of these two
286 transcription factors remained unclear. Therefore, we conducted ChIP-seq in E11.5 whole facial
prominence tissue using an antibody that recognizes TFAP2A/B/C (Fig. 5A, data not shown). We identified
288 13,778 enriched regions (i.e., TFAP2 ‘peaks’) relative to input (Fig. 5B, Table S2), while antibody specificity
was reflected by the TFAP2 consensus binding motif being the most significantly enriched ($p = 1.00e-154$)
290 (Fig. 5C). Further analysis of TFAP2 binding coordinates revealed approximately 35% of them being in
proximal promoters, 23% intronic, 16% intergenic, 9% in the 5’ UTR, while remaining peaks were found in
292 additional regions of the genome (Fig. 5C). Since we used whole facial prominence tissue for these studies,
these peaks presumably reflect unique or shared targets within the FNP, MxP, MdP, as well as those
294 present in other tissues such as ectoderm and neuronal tissue. To focus on genes relevant to the midface,
we cross-referenced these peak data with gene expression data for the E11.5 FNP (Hooper et al., 2020).
296 Of all genes with detectable midface expression (e.g., E11.5 FNP mesenchyme FPKM > 0, $N = 15,842$),
the genes associated with at least one TFAP2 peak ($N = 8,754$) were expressed in the midface at a
298 significantly higher level than midface genes ($N = 7,088$) without a TFAP2 associated peak ($p = 2.60e-256$)
256 (Fig. 5D, Table S2). Further, despite the unique features of different datasets (e.g., E10.5 vs E11.5,
300 NCC-only vs whole face, etc.), ~66% (76 of 115) of the genes dysregulated in our overlapping bulk and
scRNA-seq dataset, including both upper- and lower-face specific, were associated with a TFAP2 peak
302 (Table S2).

304 We next assessed chromatin states at these ~13,800 genomic regions with the prediction that a
subset of these coordinates would be found within FNP expressed, CNCC-associated, accessible, and

‘active’ regions of the genome. Using k-means clustering along with previously published histone ChIP-seq and chromatin accessibility datasets generated from wild-type E10.5 FNP CNCCs (Minoux et al., 2017), 5 major clusters (clusters 3, 4, 5, 6, 7; cluster 1 and 2 had < 6 peaks) were identified (Fig. 5E, Table S2). Of these five clusters, over half of TFAP2 bound regions (N = 7,995; 58% of all peaks) clustered into 2 major groups (clusters 5, 6) (Fig. 5E, Table S2). Both clusters contained substantial levels of the active H3K4me2 and H3K27ac, accessible chromatin, and marked reduction in the repressive H3K27me3 mark (Fig. 5E). In contrast to clusters 5 and 6, clusters 3 and 4 displayed substantially reduced levels for open chromatin and active H3K27ac accompanied by expanded H3K27me3 signal (i.e., repressed regions in E10.5 FNP CNCCs) (Fig. 5E, Table S2). Consistent with these profiles, genes associated with clusters 5 and 6 were highly expressed in the FNP, relative to genes without a TFAP2 peak, or genes associated with a peak(s) found in other clusters (Fig. 5F, Table S2). Pathway analysis for cluster 5 (1,658 peaks) and cluster 6 (6,336 peaks) revealed terms associated with head and midfacial pathology (Fig. 5G). Notably, genes associated with cluster 3 and 4 were significantly enriched for skin (cluster 4), neuronal (clusters 3, 4), and cardiac (cluster 3) terms (Fig. S15), potentially reflecting TFAP2 binding in non-NCC tissues in which TFAP2 is expressed (e.g., ectoderm). Finally, cluster 7 displayed relatively little FNP associated histone and chromatin signatures (Fig. 5E, Table S2) and displayed the fewest associated terms (data not shown).

Given the significant down-regulation of all three *Alx* genes in *Tfap2^{NCKO}* and *Tfap2^{Δ/NCKO}* mutants (Fig. 4) and the midfacial cleft associated with their loss (Beverdam et al., 2001; Iyyanar et al., 2022; Lakhwani et al., 2010; Qu et al., 1999), we next asked whether the *Alx* loci were directly bound by TFAP2. Assessment of peak files revealed that all 3 *Alx* loci had enriched regions of TFAP2 binding (Fig. 5H); moreover, these regions were associated with cluster 5, concordant with active and open genomic regions at the site of TFAP2 binding (Fig. 5H). Consistent with the more limited expression of *Alx1*, *Alx3*, and *Alx4* in jaw domains at E11.5, these genomic regions were associated with reduced H3K4me2 and H3K27ac and increased H3K27me3 in CNCCs occupying the MxP and MdP (Fig. 5H, and not shown) (Minoux et al., 2017). Thus, transcription factor binding analysis suggests that TFAP2 paralogs occupy genomic

regions harboring active histone enhancer marks and associated with midfacial patterning and
332 differentiation genes, namely *Alx* genes.

334 **Zebrafish *tfap2a* regulates *alx3* expression and genetically interacts with *alx3* during midfacial development.**

336 While different vertebrates use different TFAP2 paralogs during CNCC development, a member
commonly used is TFAP2A (Eckert et al., 2005; Meulemans and Bronner-Fraser, 2002). Like humans and
338 mice, the zebrafish *tfap2a* paralog is a critical determinant for formation of the craniofacial structures
(Neuhauß et al., 1996; Schilling et al., 1996). Mining our published CNCC scRNA-seq data (Mitchell et
340 al., 2021; Stenzel et al., 2022), we observed *tfap2a* gene expression predominantly in the frontonasal
cluster giving rise to the neurocranium (i.e., midface skeleton) (Fig. S16). Further co-expression analyses
342 indicated that *tfap2a*-positive cells also express *alx3* (Fig. S16), suggesting that TFAP2A regulation of ALX
gene expression is a conserved transcriptional axis in vertebrates. To test this, we examined *alx3*
344 expression in wild-types and *tfap2a* mutants (Fig. 6A-D") (Knight et al., 2003; Schilling et al., 1996). We
analyzed zebrafish embryos using *in situ* hybridization at 48 hours post-fertilization, a stage resembling
346 the mouse E10.5 stage when changes in *Alx* expression were identified in mouse *Tfap2a*^{Δ/NCKO} FNP tissue
(Fig. 4G). In wild-type embryos, *alx3* expression is enriched in *fli1a:EGFP*-labelled CNCCs on the
348 developing roof of the mouth (Fig. 6A-A", C-C"), as well as those ventral and medial to the nasal placodes
(Fig. 6A-A"). In *tfap2a* mutants, *alx3* expression patterns were altered, becoming reduced around the
350 periphery of the nasal placodes, and bifurcated into two laterally expanded domains (Fig. 6B, D, E). Similar
to prior zebrafish BA studies (Barrallo-Gimeno et al., 2004) and our mouse study (Fig. S4A), CNCC number
352 and positioning appeared to be largely intact in the frontonasal region in *tfap2a* mutants (Fig. 6A'-D', A"-
D"). These data strongly suggest that the transcriptional circuit identified in post-migratory CNCCs is
354 conserved between mice and zebrafish.

356 Further testing the conservation hypothesis with the *tfap2a* and *alx3* mutant alleles (Mitchell et al.,
2021), we sought to determine if the regulatory axis could be read out as genetic interactions (Fig. 6F-J).

Several previous genetic studies indicate that viscerocranum structures derived from BA2-7 appear the
358 most sensitive to *tfap2a* mutation, while the BA1 skeleton is less affected (Knight et al., 2003; Neuhauss
et al., 1996; Schilling et al., 1996; Wang et al., 2011). In the anterior neurocranium, *tfap2a* mutants
360 produced incompletely penetrant ethmoid plate loss with variable expressivity, ranging from complete
absence to small discontinuations (Barrallo-Gimeno et al., 2004). In mutants with a divided ethmoid plate,
362 the parasphenoid bone extended anteriorly, sometimes interfacing with the abnormal cartilage gap (Fig.
6G') (Schilling et al., 1996). In this study, two incompletely penetrant *tfap2a* mutant-associated skeletal
364 phenotypes were observed that were not previously described. Specifically, *tfap2a* mutant larvae exhibited
partial penetrance for cartilaginous ectopias proximal to the eyes (Fig. 6G, red arrowhead) as well as
366 ectopic cartilage rods projecting dorsally from the ethmoid plate (Fig. 6J). As *alx3* gene dosage was
reduced in *tfap2a* mutants, the penetrance for all three phenotypes increased. We also discovered a new
368 phenotype, never seen in single mutants, when copies of *alx3* were removed from *tfap2a* mutants (Fig. 6I,
J). The parasphenoid is expanded in animals mutant for both *tfap2a* and *alx3*. It is interesting to note that
370 a selection of these skeletal abnormalities parallel those observed in our mouse models. Specifically, the
midfacial clefting and ectopic cartilage (Fig. 6I, I') bear a striking resemblance to those found in *Tfap2*^{NCKO}
372 and *Tfap2*^{Δ/NCKO} mutant embryos, suggesting that midline facial defects in both *TFAP2* mutant animal
models are *ALX3*-dependent.

374 Performing the reciprocal genetic interaction experiment, we documented how *alx3* mutant-
associated phenotypes were affected upon removing wild-type copies of *tfap2a*. *alx3* homozygous mutants
376 present cellular morphology changes in the anterior ethmoid plate, an anteriorly truncated parasphenoid,
and ectopic midline cartilage (Fig. 6J, middle table, boxed in purple) (Mitchell et al., 2021). In *alx3* mutant
378 homozygotes with reduced *tfap2a* dosage, the ethmoid plate and parasphenoid were severely impacted
(Fig. 6J, middle table), precluding us from scoring *tfap2a*-dependent changes. Therefore, we examined
380 changes in *alx3*-associated phenotypes in *alx3* heterozygotes when wild-type copies of *tfap2a* were
removed. Concordant with the first phenotypic scoring, we found that the removal of *tfap2a* copies from
382 *alx3* heterozygotes increased penetrance of the *alx3* mutant phenotypes (Fig. 6J, bottom table). These
findings demonstrate that *tfap2a* and *alx3* genetically interact during zebrafish midfacial development.

384 Taken together with our observations in mice, these results raise a model that the transcription factors
encoded by *TFAP2* and *ALX* genes function in a conserved, midface developmental pathway.

386

DISCUSSION:

388 **The role of TFAP2A and TFAP2B in cranial neural crest cells during midface development.**

390 Positional gene regulatory networks endow CNCCs their ability to form unique facial structures
392 during embryogenesis. Despite the clear existence of GRN components directing midfacial development,
shape, and pathology, our understanding of how they connect into transcription circuits is poorly
394 understood. Our previous studies had established an essential role for NCC-specific *Tfap2a* and *Tfap2b*
in facial development, and in particular, jaw patterning (Van Otterloo et al., 2018). While there are severe
defects in both lower-face and midface regions, mechanisms underlying the latter were not investigated.

396 In the current study, we show that TFAP2A and TFAP2B plays an essential role in CNCCs during midfacial
development in part through activation of a conserved *ALX* genetic pathway. Deploying mouse models,
398 we found that TFAP2-dependent midface fusion is largely driven by their regulatory control of post-
migratory CNCCs. The combination of gene expression and transcription factor binding profiling suggest
400 that TFAP2 paralogs act upstream of several GRN nodes critical for midface identity, midface fusion, and
skeletal formation—notably through ALX transcription factor gene expression. Consistent with the notion
402 that these regulatory mechanisms are conserved across jawed vertebrates, we found that zebrafish *tfap2a*
is required for proper *alx3* expression patterns and that both genes interact in the midface skeleton in this
404 species. Given the continuum of midface anomalies associated with disrupted *TFAP2A* (BOFS), *TFAP2B*
(Char Syndrome), and *ALX* (FND) function in humans, these findings link features of previously disparate
developmental disorders into a shared genetic hierarchy.

406

TFAP2 and ALX paralogs in vertebrate midface morphology and evolution.

408 Loss of *TFAP2* genes in CNCCs indicates a central role for the encoded proteins in defining
positional neural crest GRNs, in part, by modulating homeobox transcription factor pathways. While TFAP2

410 is necessary for driving BA1 transcriptional programs—including *DLX* paralogs (Knight et al., 2003; Van
Otterloo et al., 2018)—this study identified these factors execute a similar function in the midface. However,
412 in this tissue, *TFAP2* drives a unique repertoire of transcription factor genes, including *Pax3*, *Pax7*, *Msx1*,
414 and of particular interest, *Alx1*, *Alx3*, and *Alx4*. Past studies using induced pluripotent stem-cell derived
416 primate NCCs suggested *TFAP2* and *ALX* proteins likely underlie species-specific facial variation (Prescott
et al., 2015; Rada-Iglesias et al., 2012). More recent computational analyses of these datasets support the
418 idea that *TFAP2* and *ALX* paralogs are linked to human facial morphology (Feng et al., 2021). Intraspecies
comparisons further strengthen the role of both *TFAP2* [stickleback, (Erickson et al., 2018)] and *ALX*
420 [Darwin's finches, (Lamichhaney et al., 2015)] in facial evolution. Our *in vivo* ChIP-seq data suggests that
the *Alx* loci (along with other lower-face and midface genes) are direct targets of *TFAP2* binding. These
422 findings are consistent with the study by Prescott et al., which postulated that human *TFAP2A* directly
regulated genes hallmarking the various positional identities, including the *ALX* family (Prescott et al.,
424 2015). Although additional studies are required for further detailing the relationship between *TFAP2* and
ALX factors, our *in vivo* analyses in mice and zebrafish recontextualize these *in vitro* studies, suggesting
midface evolution is a direct output of gene regulation enacted by both transcription factor families.

426 **TFAP2 and ALX transcription factor pathways facilitating midface fusion.**

How might a *TFAP2*-driven *ALX* node in the midface GRN ultimately influence CNCC behaviors
428 directing midface fusion? A combination of studies has provided some insight into the potential roles of
ALX in this process. Most notably, *ALX* is a known regulator of skeletal differentiation across species. For
430 example, in sea urchin, *ALX* directly targets biomineralization and extracellular matrix genes (Khor and
Ettensohn, 2020). In line with these observations, our previous cellular and skeletal analyses in zebrafish
432 implicate *Alx3* as a critical determinant of midfacial chondrocyte differentiation timing (Mitchell et al., 2021).
Similarly, in this study, we observed a significant increase in the gene expression of multiple collagens in
434 *Tfap2^{NCKO}* mouse embryos (Fig. S11; Tables S1, S2)—whose deposition acts as a major readout of bone
and cartilage formation (Dash and Trainor, 2020). Conceivably, aberrant activation of a differentiation GRN
436 mediated via loss of *TFAP2* could preclude appropriate midface fusion in an *ALX*-dependent manner.

There is precedent for ALX regulating additional aspects of post-migratory developmental

438 programs. In the case of cell survival, *Alx1*, *Alx3*, and *Alx3/4* mutant mice exhibited elevated apoptosis in
440 FNP CNCCs (Beverdam et al., 2001; Lakhwani et al., 2010; Zhao et al., 1996) and its periocular
442 mesenchyme lineage (Iyyanar et al., 2022), while FND3 (*ALX1*) patient-derived NCC lines showed an
increased propensity to cell death (Pini et al., 2020). Consistent with a role in patterning, *Alx1* and *Alx1/4*
444 mutant mice exhibited a reduction of *Pax7* and an expansion of BA1-specific *Lhx6* and *Lhx8* into the FNP
(Iyyanar et al., 2022). Interestingly, while a clear reduction in *Pax7* (and *Pax3*) expression was noted in
446 *Tfap2*^{ΔNCKO} and *Tfap2*^{NCKO} embryos, our expression profiling did not detect a concomitant expansion of
Lhx6 and *Lhx8*. The degree to which a reduction of *Alx* expression in *Tfap2* mutants contributes to the
post-migratory CNCC phenotypes observed remains elusive and will require follow-up studies.

448 **Potential TFAP2 interplay with other midface positional factors.**

Our suite of animal and molecular studies suggests the TFAP2-ALX transcriptional circuit as a

450 major node operating in the midfacial CNCCs. Yet, also evident was the disruption of additional GRN
452 components, such as signaling pathways and other transcription factors. For example, loss of *Tfap2*
resulted in decreased levels of various retinoic acid-related genes (Fig. 4A; Table S1, S2). This is of interest
454 because loss of genes encoding components of the retinoic acid signaling pathway also results in a midline
cleft (Gao et al., 2021; Kennedy and Dickinson, 2012; Lohnes et al., 1994; Wu et al., 2022), while the
morphogen itself can modulate *TFAP2A* gene expression and activity *in vitro* (Luscher et al., 1989). Thus,
456 TFAP2 may function in a regulatory feedback loop with this signaling cascade. Another pathway that is
critical for midface development and that appeared to be disrupted upon loss of *Tfap2* included Sonic
458 hedgehog signaling. While our gene expression profiling did not reveal significant changes in major
Hedgehog signaling pathway molecules (e.g., *Shh*, *Ptch1/2*, *Gli1/2/3*, *Smo*), loss of *Tfap2* resulted in an
460 upregulation of members in the *Fox* transcription factor family in the FNP. FOX factors normally act as
downstream targets for this signaling input and functions during BA1 CNCC patterning and cartilage
462 differentiation (Jeong et al., 2004; Xu et al., 2022; Xu et al., 2018; Xu et al., 2021). Further, hyperactivation
of Hedgehog activity is strongly linked with failure of the FNP to fuse at the midline (Brugmann et al., 2010;

464 Wu et al., 2022). Thus, it is possible that the TFAP2 midface pathway—and potentially ALX—plays a role
in safeguarding FNP fusion in part by restricting *Fox* gene expression.

466 TFAP2 may also interact in parallel with other midfacial transcription factors. One such example
includes SIX2, whose gene expression coincides with *Tfap2* in the FNP (Fig. S12) (Minoux et al., 2017)
468 and is largely unaffected by loss of *Tfap2* in NCCs. Loss of human *SIX2* causes FND pathology (Hufnagel
et al., 2016), while mice harboring a similar locus deletion produced a nasal cleft (Fogelgren et al., 2008).
470 Mouse genetic analyses suggested SIX paralogs contribute to *Alx* gene expression (Liu et al., 2019),
thereby hinting at a transcriptional battery running in parallel with TFAP2 in the FNP. Such interplay at
472 midfacial GRN nodes requires further investigation, as it is unclear whether the SIX2 midface pathway is
dependent or independent of TFAP2 activity. Given the collective contributions of both signaling pathways
474 and transcription factors to the midface GRN, addressing these remaining knowledge gaps will further
advance our understanding of how TFAP2 contributes to facial shape variation, vertebrate facial evolution,
476 and the pathogenesis of midfacial disorders.

478 **MATERIALS & METHODS:**

Animal husbandry and procedures

480 Mice: Experiments were all conducted in accordance with all applicable guidelines and regulations,
following the “Guide for the Care and Use of Laboratory Animals of the National Institutes of Health”. The
482 animal protocols utilized were approved by the Institutional Animal Care and Use Committee of the
University of Iowa (protocols #9012197 and #2032197) and University of Colorado (protocol #14). Noon
484 on the day of an observable copulatory plug was denoted as embryonic day 0.5 (E0.5). Additionally, all
dissections were performed in 1X PBS (Fisher Scientific) treated with Diethyl Pyrocarbonate (Fisher
486 Scientific) (i.e., DEPC-PBS). Yolk sacs or tails clips were used to extract DNA for all PCR-genotyping as
previously described, with the listed primers (Table S3, Tab 1) (Van Otterloo et al., 2018). During single-
488 cell RNA sequencing (scRNA-seq), we deployed a rapid lysis protocol using reagents from the SYBR
Green Extract-N-Amp Tissue PCR Kit (Sigma) (Doan and Monuki, 2008). Yolk sacs were incubated in a

490 4:1 mixture of Extraction and Tissue Preparation Solutions first at room temperature (RT) for 10 min and
subsequently at 95°C for 3 min. Neutralization Solution B was then added to the lysate, which was briefly
492 vortexed prior to immediate PCR-genotyping.

Embryonic lethality was denoted for a subset of E18.5 embryos in the *Wnt1:CRE* model (see
494 'Mouse alleles and breeding schemes', Table S4), a consequence of reduced norepinephrine and
compromised survival of neural crest cell (NCC)-derived tissues in the sympathetic nervous system
496 (Schmidt et al., 2011). To prevent this lethality, pregnant dams received a water supplement to drink *ad*
libitum (Hendershot et al., 2008; Lim et al., 2000). USP grade L-phenylephrine (β -adrenergic receptor
498 agonist), isoproterenol (α -adrenergic receptor agonist), and L-ascorbic acid (agonist preservative) were
added to their drinking water from E8.5 to E18.5, which was replaced every 3-5 days. Like previous studies
500 (Abe et al., 2021), we note the supplementation did not alter craniofacial phenotypes in control or mutant
embryos compared to those without supplementation.

502 **Zebrafish**: All work with zebrafish was approved by the University of Colorado Institutional Animal
Care and Use Committee (protocol #00188). All zebrafish experiments were performed on the AB strain.
504 Animals were maintained, staged, and genotyped as previously described (Knight et al., 2003; Mitchell et
al., 2021).

506 **Mouse alleles and breeding schemes**

508 *Wnt1:CRE* (Danielian et al., 1998), *Sox10:CRE* (Matsuoka et al., 2005), *Gt(ROSA)26Sortm1Sor/J*
[*r26r-lacZ*; (Soriano, 1999)], and *Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J* [*mTmG*; (Muzumdar
et al., 2007)] mice were obtained from the Jackson Laboratory (Bar Harbor, ME). The *Tfap2a* and *Tfap2b*
510 alleles used in this study include *Tfap2a*-null (Zhang et al., 1996), *Tfap2atm2Will/J* [*Tfap2a* floxed
conditional; (Brewer et al., 2004)], *Tfap2b*-null (Martino et al., 2016), and *Tfap2btm2Will* [*Tfap2b* floxed
512 conditional; (Van Otterloo et al., 2018)].

514 Females in this study were double homozygous for *Tfap2a* and *Tfap2b* floxed conditional alleles
(Fig. 1A-C). For lineage tracing and fluorescence-activated cell sorting, the dams were also homozygous
for *r26r-lacZ* and *mTmG* alleles, respectively. Conversely, the sires were *CRE* hemizygous and

516 heterozygous for either *Tfap2a/b*-null alleles (used in the null/conditional model, Fig. 1A) or *Tfap2a/b* floxed
518 conditional alleles (used in the conditional/conditional model, Fig. 1B) (Van Otterloo et al., 2018; Woodruff
520 et al., 2021). Using either NCC-specific *Wnt1:CRE* or *Sox10:CRE* transgene, we were able to acquire
522 *CRE*-negative controls as well as littermates that harbored NCC-specific heterozygosity for *Tfap2a* and
524 *Tfap2b* (*Tfap2*^{HET}), NCC-specific loss of *Tfap2a* (*Tfap2a*^{NCKO}), NCC-specific loss of *Tfap2b* (*Tfap2b*^{NCKO}),
and NCC-specific loss of both *Tfap2a* and *Tfap2b* (*Tfap2*^{NCKO}) (Fig. 1C). To distinguish between breeding
schemes, genotype nomenclature for the null/conditional model was denoted with the “Δ/NCKO”
superscript (i.e., *Tfap2a*^{Δ/NCKO}, *Tfap2b*^{Δ/NCKO}, *Tfap2*^{Δ/NCKO}) (Fig. 1C).

524 **Zebrafish alleles**

The transgenic line *Tg(fli1a:EGFP)y1* (Lawson and Weinstein, 2002) and the germline mutant lines
526 for *tfap2a* *low*^{ls213} and *alx3*^{co3003} have been previously reported (Knight et al., 2003; Mitchell et al., 2021).

Scanning electron microscopy

528 Preparation of E11.5 *CRE*-negative control, *Tfap2*^{HET}, and *Tfap2*^{NCKO} littermate heads and imaging
was performed as previously described (Van Otterloo et al., 2022). Briefly, samples were fixed in 4%
530 paraformaldehyde, and then rinsed in 1X PBS. Subsequently, samples were rinsed in ddH₂O, air-dried for
532 at least 3 days, mounted on an SEM stub, and sputter coated for 4.5 minutes at 5 mA using a
gold/palladium target in an Emitech K550X sputter coater. Scanning electron micrographs were acquired
533 using a Hitachi (Tokyo, Japan) S4800 electron microscope operated in high-vacuum mode at 1.8kV.
534 Imaging was performed through the University of Iowa Central Microscopy Research Facility workflow.

β-galactosidase staining

536 E10.5 littermates with *Wnt1:CRE*-mediated recombination of the *r26r-lacZ* reporter allele were
subject to β-galactosidase staining as previously described (Van Otterloo et al., 2016).

538 **Tissue section analyses**

540 Hematoxylin and Eosin staining: Histology staining analyses of E17.5 control and *Tfap2*^{Δ/NCKO} embryos was performed as previously described (Van Otterloo et al., 2018).

542 Cryosectioning: Cryosectioning was performed as previously described (Van Otterloo et al., 2016), with minor modifications. In brief, E11.5 wild-type CD-1 mice were fixed overnight in 4% PFA at 4°C. Fixed embryos were then transferred through increasing concentrations of Tissue Tek OCT compound (Sakura 544 Finetek USA, Inc.), embedded in 100% OCT, and stored at -80°C when not immediately processed. Embryonic heads were sectioned in a horizontal fashion (10 µm slices) using a Microm HM525 NX Cryostat 546 Microtome (ThermoFisher) housed within the University of Iowa Central Microscopy Research Facility, mounted onto positively charged glass slides, and were left in a closed container at RT overnight to further 548 adhere. We used the eMouseAtlas database (Armit et al., 2017) to reference the horizontal section angle.

550 Immunofluorescence: Sectioned tissue was blocked for 1.5 hours in 5% milk or 3% BSA dissolved in 0.1% Triton-X/PBS (PBSTx). Wild-type sections were used to examine protein expression of TFAP2A (3B5-supernatant, Santa Cruz Biotechnology; 1:25 dilution) and TFAP2B (2509S, Cell Signaling 552 Technology; 1:25 dilution). After washing with PBSTx, samples were incubated with Alexa Fluor 488/568 secondary antibodies (Invitrogen; 1:500 dilution) for 1.5 hours. We used DAPI to counterstain nuclei. Stains 554 were imaged via Zen software on a Zeiss 700 LSM confocal microscope. Images were exported as Z-stacked, maximum intensity projection TIFF images.

556 **Micro-computed tomography**

558 The University of Iowa Small Animal Imaging Core Facility provided scanning and software services. E12.5 *CRE*-negative control and *Tfap2*^{NCKO} littermates were prepared as previously described (Hsu et al., 2016). All fixing, washing, and incubation steps were performed at 4°C. In brief, embryos were 560 fixed in 4% PFA overnight and washed thrice and stored in 1X PBS until the day of scanning was determined. Three days prior to scanning, embryos were incubated in 1 N (v/v) iodine solution (Sigma). 562 Control and mutant embryos were then mounted above 1% agarose in the same screw-top conical tube, submerged in 1X PBS, and immediately imaged at 5- or 6-µm resolution.

564 Sectional analysis and measurements of the μ CT scans were performed on Dragonfly software
(Object Research Systems). Embryo scans were oriented to a frontal plane to examine nasal
566 morphologies. Embryos were also oriented in a horizontal fashion, spanning from the nasal pits to the
568 hindbrain to quantify the distance between the anterior tips of the mFNP. Control and mutant pairs were
imaged using the same parameters. A Student's t-test was performed on GraphPad Prism using three
570 independent control-mutant pairs to compare mFNP tip distances. A p-value less than 0.05 was considered
statistically significant.

Concurrent Alizarin Red and Alcian Blue staining preparation

572 Concurrent Alizarin Red/Alcian Blue staining of E18.5 embryos and E15.5 Alcian Blue staining of
null/conditional embryos were performed as previously described (Van Otterloo et al., 2016). Note that
574 Alcian blue staining for E18.5 nasal capsule elements are highly variable.

Bulk RNA-sequencing

576 Tissue preparation, cDNA library generation, and sequencing: E10.5 FNP and MxP bulk tissue
from three control and three *Tfap2^{Δ/NCKO}* littermates were processed for RNA-seq as previously described
578 (Van Otterloo et al., 2016). After PCR-genotyping, samples stored in RNAlater (ThermoFisher) were
processed for RNA (Norgen Biotek) and further purified with the RNAeasy kit (Qiagen). mRNA quality was
580 determined with DNA Analysis ScreenTape (Agilent Technologies), and cDNA libraries were generated
using the Illumina TruSeq Stranded mRNA Sample Prep Kit (Illumina). Samples were sequenced on the
582 Illumina HiSeq2500 platform as 150-bp single-end reads. Library construction and sequencing was carried
out by the Genomics and Microarray Core on the University of Colorado Anschutz Medical Campus.

584 RNA-seq dataset processing and analyses: Following sequencing, reads were demultiplexed, and
FASTQ files processed using two distinct bioinformatic pipelines. Two pipelines were used to help reduce
586 false positives. In the first approach, FASTQ files were mapped to the mm10 genome using STAR Aligner
(Dobin et al., 2013) with default settings. Gene expression was then quantified using StringTie (Pertea et
588 al., 2016; Pertea et al., 2015), with the following settings: -e (expression estimation mode), -G (mm10
reference annotation file), -A (gene abundances). Following quantification, count matrices were produced

590 using the *prepDE.py* script, available from StringTie, and used as input for DESeq2 (Love et al., 2014).
592 Differential gene expression analysis was conducted in DESeq2 using the *DESeqDataSetFromMatrix*
594 function. For the second approach, FASTQ files were pseudo-aligned to the mm10 genome using the
596 kallisto (Bray et al., 2016) *quant* function with the following settings: -b 50, --single, -l 100, -s 20. After
598 alignment, differential gene expression analysis was conducted using sleuth (Pimentel et al., 2017), along
600 with the *sleuth_prep* function and the following settings: full_model = genotype, gene_model = TRUE,
602 read_bootstrap_tpm = TRUE, extra_bootstrap_summary = TRUE, transformation_function = function(x)
log2(x + 0.05)). The resulting ‘sleuth object’ was then subjected to the *sleuth_fit* function, followed by the
604 *sleuth_wt* function to calculate differentially expressed genes between genotypes. The kallisto-sleuth
606 pipeline output was used, along with ggplot2 (Wickham, 2016) and ggrepel, to generate and visualize
608 differentially expressed genes by volcano plot. Genes that both had, 1) a fold-change greater or less than
610 +1.25 or -1.25, respectively, and an adjusted p-value less than 0.05 (pipeline 1), and 2) a q-value less than
0.1 (pipeline 2) (Table S1), were used for ontology, enrichment, and pathway analysis using the Enrichr
platform (Chen et al., 2013; Kuleshov et al., 2016; Xie et al., 2021).

604 Reanalysis and visualization of published RNA-seq datasets: To directly compare the E11.5
606 mandibular and frontonasal prominence mesenchyme (e.g., Fig. 2) a procedure like ‘pipeline 2’ above
608 (kallisto and sleuth) was used. Specifically, triplicate bam files were downloaded from the Facebase.org
repository (FB00000867) for both E11.5 mandibular prominence mesenchyme (Biosample 30H6; RID
610 33SA, 33SE, 33SJ) and E11.5 frontonasal prominence mesenchyme (Biosample 2Y6P; RID: 33TT, 33TY,
33V2). Next, bam files were converted to fastq files using the *bam2fq* function in samtools (Li et al., 2009),
612 Generated FASTQ files were then used along with kallisto and sleuth for differential gene expression
analysis. Data was plotted using ggplot2 and ggrepel.

612 **Mouse single-cell RNA-sequencing**

614 Single-cell dissociation and cell sorting: To isolate CNCCs, E11.5 embryonic heads were cut just
below BA2 and the otic vesicle by microdissection. Using *Wnt1:CRE*-mediated recombination of the *mTmG*
reporter allele (Muzumdar et al., 2007), *CRE*-positive embryos were selected for further processing. Tissue

616 samples were then subject to a cold protease single-cell dissociation protocol (Adam et al., 2017), with
617 modifications. Embryo heads were incubated in a protease cocktail comprised of *Bacillus licheniformis*
618 Subtilisin A (Creative Enzymes), Accumax, and Accutase (Fisher Scientific) suspended in DEPC-PBS as
619 previously described (Sekiguchi and Hauser, 2019). The tissue was then carefully disrupted using a
620 disposable Eppendorf pellet pestle and placed on a rotator at 4°C for 30 min. During this step, samples
621 were gently triturated every 10 minutes using a wide bore 1 mL pipette tip. The enzymatic reaction was
622 quenched using an equal volume of 10% heat-inactivated FBS (Fisher Scientific) in 1X phenol red-free
623 DMEM (ThermoFisher). Dissociated cells were washed thrice in DEPC-PBS by centrifugation at 600 x g
624 at 4°C for 5 min and then transferred, through Bel Art SP Scienceware Flowmi 40-μm strainers
625 (ThermoFisher), into chilled flow tubes precoated with DEPC-PBS. After GFP-positive sorting on the
626 University of Iowa Flow Cytometry Facility's ARIA II system (Becton Dickinson), CNCCs were re-
627 suspended in DEPC-PBS containing 0.04% non-acetylated BSA (New England Biolabs). Cell viability was
628 determined to be >95% by Trypan Blue staining. During cell sorting, genotypes were confirmed by rapid
629 genotyping, allowing isolation of GFP-positive cells from two *Tfap2^{HET}* control and two sibling-matched
630 *Tfap2^{NCKO}* mutant embryos. Cells from each “biological replicate” were combined to generate a single
control and mutant sample.

632 Library preparation & sequencing: ~6,000 GFP-positive CNCCs from each condition were subject
633 to library preparation by the University of Iowa Genomics Division on the 3' expression scRNA-seq 10X
634 Chromium v3.1 pipeline. Libraries were sequenced on an Illumina NovaSeq 6000 platform as 100-bp
paired-end reads. Over 20,000 reads per cell were acquired, resulting in ~1.5 x 10⁸ reads per condition.

636 Quality control, integration, and UMAP visualization: Sequencing results were demultiplexed and
637 converted to a FASTQ format using the Illumina bcl2fastq software. Reads were processed and aligned to
638 the mm10 reference genome assembly with the Cell Ranger *Count* function. Seurat v4.3.0 was used for
quality control, filtering out cells with >10% mitochondrial counts, less than 200 features, and more than
640 7,500 features. We then integrated *Tfap2^{HET}* and *Tfap2^{NCKO}* conditions (Hao et al., 2021), where RNA
counts were normalized and *FindVariableFeatures* was run with the following parameters:
642 *selection.method* = “vst”, *nfeatures* = 2,000. Cell clustering by Uniform Manifold Approximation and

Projection (UMAP) plots was deployed by *RunPCA* and then *RunUMAP* with dims 1:30. The UMAP 644 visualizing all CNCCs was generated with *FindClusters* using a resolution of 0.40. Major CNCC derivatives 646 were annotated based on published sectional immunofluorescence and scRNA-seq profiling (Soldatov et al., 2019). Gene expression was plotted on UMAP plots by *FeaturePlots*. Gene expression mapping of CNCC lineage markers was done using the *FeaturePlot* function.

648 Cell cycle analysis: The *CellCycleScoring* function was performed as previously described, with minor modifications (Hao et al., 2021). The UMAP resolution was changed to 0.05 to segregate the major 650 CNCC lineages as individual clusters. Bioconductor BiomaRt v2.46.3 (Durinck et al., 2005) was used to convert a published list of cell cycle genes (Kowalczyk et al., 2015) from human to mouse gene 652 nomenclature. Cell cycle scores were then mapped directly onto the UMAP and graphed, as a percentage relative to each CNCC lineage, using GraphPad Prism.

654 Cellular distribution analysis: To examine genotype cellular distributions in each cluster, each condition was expressed as a percentage per cluster. These analyses were visualized in GraphPad Prism. 656 For the initial UMAP containing all sorted cells, a resolution of 0.05 was used. For the MAGIC-clustered UMAP, a resolution of 0.10 was used (see “Facial prominence mesenchyme annotation”).

658 Facial prominence mesenchyme annotation: To better define the facial prominence subpopulations, we subset and re-clustered the “Mesenchyme” clusters using MAGIC v2.0.3 (van Dijk et 660 al., 2018) with *RunUMAP* dims 1:20. Major mesenchyme populations were then annotated based on known gene markers, which were plotted on the MAGIC-clustered UMAP with DefaultAssay = 662 “MAGIC_RNA”. A cluster resolution of 0.10 was chosen to best visualize each prominence population and the second branchial arch as individual clusters based on published *in situ* data, ChIP-seq, ATAC-seq, and 664 transcriptomic datasets (Gu et al., 2022; Hooper et al., 2020; Minoux et al., 2017). To visualize co-expression of two genes on the UMAP, the flag *blend* = “TRUE” was used in the *FeaturePlots* function.

666 Gene-set and gene expression analyses: The UMAP resolution was set to 0.05 to distinguish the major cell groupings, to which we then subset the “pseudobulked” mesenchyme group. We then used the 668 *FindMarkers* function with ident.1 = *Tfap2^{HET}* and ident.2 = *Tfap2^{NCKO}* on CNCCs, to generate a list of

670 differentially expressed genes (adjusted p-value < 0.05 and a log fold-change threshold of 0.10) (Table
671 S2, Tab 9). For gene-set enrichment, ontology, and pathway analysis, lists of either up- or downregulated
672 genes, generated from the mesenchyme “pseudobulk” approach, in the *Tfap2^{NCKO}* condition were inputted
673 in the Enrichr pipeline. Control-versus-mutant expression analysis of select genes was visualized as a
674 violin plot using the *VlnPlot* function on the MAGIC-clustered UMAP, with DefaultAssay = “RNA”.
675 Differential gene expression was validated for a select set of genes-of-interest by targeted approaches
676 (see real-time PCR).

677 Gene-set overlap with bulk RNA-seq datasets: First, to determine overlapping genes between the
678 E11.5 scRNA-seq and E10.5 bulk RNA-seq datasets, gene lists of differentially expressed genes were
679 compiled (Table S1, Tab 11). Datasets used included the following outputs: E11.5 scRNA-seq
680 mesenchyme “pseudobulk” (Table S1, Tab 10), E10.5 bulk FNP/MxP (i.e., ‘upper-face’) pipeline 1 (Table
681 S1, Tab 4) and pipeline 2 (Table S1, Tab 7), and E10.5 bulk MdP (i.e., ‘lower-face’) pipeline 1 and pipeline
682 2 (Van Otterloo et al., 2018). Second, the VLOOKUP function in Excel was used to intersect all 4 E10.5
683 gene lists with the E11.5 pseudobulk gene list and generate a comprehensive overlap table (Table S1,
684 Tab 2).

684 **Real-time PCR**

685 For the null/conditional model, E10.5 bulk FNP tissue was acquired from *CRE*-negative controls
686 and *Tfap2^{Δ/NCKO}* mutants by micro-dissection. For the conditional/conditional model, E11.5 MxP and FNP
687 tissue from *Tfap2^{HET}* and *Tfap2^{NCKO}* embryos were microdissected, and CNCCs were collected by the
688 *Wnt1:CRE-mTmG* sorting strategy. For the latter, single-cell dissociation was conducted using 0.25%
689 trypsin (ThermoFisher) for 15 minutes at 37°C. Samples were either stored in RNAlater (ThermoFisher) at
690 -20°C or immediately processed for RNA using the RNeasy Mini Kit as per manufacturer’s protocol
691 (Qiagen). Real-time analyses were performed as previously described (Van Otterloo et al., 2018). After
692 PCR-genotyping, cDNA was prepared with SuperScript III First-Strand Synthesis Kit
693 (Invitrogen/ThermoFisher), where equal amounts of RNA template were processed from each condition.
694 Real-time reactions were performed on a CFX Connect instrument (Bio-Rad) with either SYBR Green or

696 Select Master Mixes (Applied Biosystems, ThermoFisher). Primers targeting *Alx1*, *Alx3*, and *Alx4* transcripts were designed to target exons flanking intronic sequences. Relative mRNA expression levels were normalized to *B2m* or *Actb* transcripts. Real-time PCR primers are listed in Table S3, Tab 2.

698 **Whole mount *in situ* hybridization**

700 Control and *Tfap2*^{Δ/NCKO} embryos at E9.0 and E10.5 were subject to whole mount *in situ* hybridization with *Alx3* and *Alx4* RNA probes as previously described (Van Otterloo et al., 2018). Primers used to generate the probes are listed in Table S3, Tab 3.

702 **Chromatin Immunoprecipitation followed by sequencing**

704 Tissue preparation, library construction, and sequencing: Chromatin immunoprecipitation (ChIP) was conducted, essentially as previously described (Van Otterloo et al., 2022), with the exception that full 706 facial prominences were used, rather than just isolated ectoderm. Further modifications included the use of an anti-TFAP2A antibody (5 µg, sc-184, Santa Cruz Biotechnology) and Dynabeads (ThermoFisher 708 Scientific). Following precipitation and subsequent quality control analysis (ScreenTape analysis, Agilent), samples (i.e., sc-184 IP and input DNA) were sequenced on the Illumina HiSeq 2500 platform as 150-bp 710 single-end reads. Library construction and sequencing was carried out by the Genomics and Microarray Core at the University of Colorado Anschutz Medical Campus.

712 Peak calling and analyses: Following sequencing and demultiplexing, FASTQ files were mapped to the mm10 genome using BWA (Li and Durbin, 2009), followed by sam to bam file conversion using Samtools (Li et al., 2009). To identify 'enriched' regions (i.e., regions with significantly more reads in the 714 TFAP2 IP versus input), MACS2 was utilized with the following settings: -f BAM, -g mm, --keep-dup 2 (Table S2, Tab 3). Motif and peak annotation were completed using the *findMotifsGenome.pl* and the 716 *annotatePeaks.pl* functions in HOMER (Heinz et al., 2010). Heatmap visualization of enriched regions was completed using the *bamCoverage*, *computeMatrix* and *plotHeatmap* function in deepTools (Ramirez et 718 al., 2016), with the following settings: -of 'bigwig', --ignoreDuplicates, -bs 25, --normalizeUsing RPKM (for *bamCoverage*); reference-point, -b 3000, -a 3000 –referencePoint center (for *computeMatrix*); -- 720 whatToShow 'heatmap and colorbar', --missingDataColor 1, --kmeans 7, --refPointLabel "peak" (for

721 *plotHeatmap*). For *computeMatrix* (Fig. 5E) the following scaled bigwig datasets were downloaded from
722 GEO (Barrett et al., 2013) and used (along with the MACS2 generated ‘TFAP2-bound’ bed file):
723 GSM2371708, E10.5 FNP H3K4me2; GSM2371717, E10.5 FNP H3K27ac; GSM2371732, E10.5 FNP
724 ATAC-seq; GSM2371713, E10.5 FNP H3K27me3 (peak-cluster annotations in Table S2, Tab 3) (Minoux
725 et al., 2017). Additional datasets used for analysis included: GSM2371710, E10.5 MdP H3K4me2;
726 GSM2371719, E10.5 MdP H3K27ac; GSM2371734, E10.5 MdP ATAC-seq; GSM2371715, E10.5 MdP
727 H3K27me3. The Integrative Genomics Viewer (Robinson et al., 2011) was used for gene level visualization
728 of these datasets at *Alx* loci. Pathway analysis was conducted using GREAT (McLean et al., 2010) with
729 the following setting: ‘*Basal plus extension*’, ‘*Proximal 5 kb upstream, 1 kb downstream, plus Distal: up to*
730 ‘*100 kb*’.

731 To intersect peak coordinates with dysregulated genes, a data matrix was generated (Table S2,
732 Tab 11) that included all genes in the GREAT database (mm10, n = 20,510), their TFAP2 peak association
733 (yes/no) using the criteria outlined above, along with gene lists from the E10.5 bulk RNA-seq analysis and
734 the E11.5 mesenchyme “pseudobulk” analysis. The E10.5 bulk RNA-seq datasets included the ‘upper-
735 face’ pipeline 1, pipeline 2, and their overlap (this study) along with the ‘lower-face’ pipeline 1, pipeline 2,
736 and their overlap (Van Otterloo et al., 2018). Total genes with or without peaks (excluding those that did
737 not have a 1:1 match between datasets) were summed and summarized (Table S2, Tab 2). To correlate
738 peak status with gene expression in the midface, genes with and without an associated TFAP2 peak were
739 paired with previously calculated FPKM values from the E11.5 FNP mesenchyme (Hooper et al., 2020)
740 (Table S2, Tab 12). Data was plotted and visualized using ggplot2 and statistical significance calculated
741 using ggpubr.

742 **Zebrafish single-cell RNA sequencing analysis**

743 Expression mapping on UMAPs of published zebrafish CNCC scRNA-seq datasets were performed
744 as previously described (Stenzel et al., 2022).

***in situ* hybridization chain reaction v3.0 and fluorescence microscopy**

746 We ordered oligos from Molecular Instruments targeting the same *alx3* 5' UTR sequence previously
used for *in situ* hybridization (Mitchell et al., 2021) and followed the manufacturer's protocol for whole-
748 mount zebrafish embryos and larvae (Choi et al., 2016). High salt content in buffers used during the
hybridization chain reaction (HCR) v3.0 protocol made genotyping difficult. To circumvent this, we used
750 Promega GoTaq Flexi (M8295) in "M" buffer (2mM MgCl₂, 14mM Tris-HCl pH 8.4, 68.25 mM KCl, 0.0013%
gelatin, 1.8 mg/mL BSA, 140 μM each dNTP). Embryos or larvae were then embedded in 0.2% agarose
752 and imaged with an Andor Dragonfly 301 spinning disk confocal system. Acquisition parameters and
fluorescence adjustments were applied linearly and equally to all samples.

754 Zebrafish genetic interaction analyses

Zebrafish larvae 6 days post-fertilization were subject to concurrent Alizarin Red/Alcian Blue
756 staining preparations as previously described (Walker and Kimmel, 2007). Nomarski imaging, genotype-
blinded phenotype scoring, and statistical analysis were performed as previously described (Bailon-
758 Zambrano et al., 2022; Mitchell et al., 2021; Sucharov et al., 2019). In brief, larval skeletons were dissected
and flat mounted for imaging on a Leica DMi8 inverted microscope equipped with a Leica DMC2900. For
760 penetrance scores, we performed the Fisher's exact test using GraphPad. All sample sizes and p-values
are included in Fig. 6F.

762 **FOOTNOTES:**

764 **Acknowledgements:** The authors would like to acknowledge the University of Iowa Small Animal Imaging
766 Core, Central Microscopy Research Facility, Flow Cytometry Facility, and Genomics Division for their
768 technical support in μ CT, tissue processing, and scRNA-seq experiments. These facilities are funded
770 through user fees and generous financial support from the Carver College of Medicine. To Dr. Michael
772 Chimenti from the Bioinformatics Division, Professor Huojun Cao from the College of Dentistry Division of
Biostatistics and Computational Biology, Nate Mullin, and Yann Vanrobaeys for their insights into scRNA-
seq analyses. To Jamie Thompson for technical input on immunofluorescence experiments and additional
care for animals used in this study. Lastly, we are grateful to all Van Otterloo lab members and our
colleagues in the Craniofacial Interest Group for their invaluable feedback, particularly Professors Colin
Kenny, Robert Cornell, Brad Amendt, Martine Dunnwald, and John Manak.

774 **Funding:** Training support was provided by the National Institute for Dental and Craniofacial Research
776 (NIDCR) [T90DE023520 to TTN; F32DE029995 to JMM]. This research was funded by the University of
Iowa Graduate and Professional Student Government Research Grant (to TTN), NIDCR [2R01DE12728
778 to TJW; R01DE029193 to JTN; R00DE026823 to EVO], alongside University of Iowa College of Dentistry
start-up & seed grant funds (to EVO).

778 **Author Contributions:**

780 Conceptualization: TTN, JMM, TJW, JTN, EVO

782 Methodology: TTN, JMM, TJW, JTN, EVO

784 Software: TTN, JMM, KLJ, EVO

786 Validation: TTN, JMM, EVO

788 Formal analysis: TTN, JMM, JTN, EVO

790 Investigation: TTN, JMM, MDK, EVO

792 Resources: KLJ, TW, JTN, EVO

794 Data Curation: TTN, JMM, EVO

796 Writing – original draft: TTN, JMM

798 Writing – review and editing: TTN, JMM, TJW, JTN, EVO

800 Visualization: TTN, JMM, EVO

802 Supervision: TJW, JTN, EVO

804 Project administration: TJW, JTN, EVO

806 Funding acquisition: TTN, TJW, JTN, EVO

FIGURE LEGENDS:

794 **Fig. 1 – TFAP2A and TFAP2B cooperatively function in CNCCs during midfacial development. (A,**
795 **B)** Schematics depicting the mouse breeding scheme used for the null/conditional model (A), previously
796 described (Van Otterloo et al., 2018), and the conditional/conditional model (B) used in this study. Cartoons
797 are adapted from BioRender. **(C)** Table summarizing a subset of the combination of alleles that can be
798 obtained using the breeding scheme highlighted in panels A or B, along with current and previous
799 shorthand nomenclature. Note, null/conditional genotypes are denoted with a “Δ” superscript in the current
800 study. **(D-G)** Lateral (D-G) or frontal (D'-G') views of conditional/conditional mouse embryos at embryonic
801 day 18.5 (E18.5), with indicated genotypes. Gold arrowheads in panels E and F point to indented snouts.
802 Insets in panels D'-G' include higher magnification images of the snout, with misplaced vibrissae outlined
803 in a gold dashed circle. White arrowhead in G indicates the shortened snout and the asterisk marks the
804 short mandible. N = 5 per genotype.

Fig. 2 – TFAP2A and TFAP2B function during post-migratory CNCCs to facilitate midface fusion.

805 **(A)** Immunofluorescent analysis of TFAP2A (left, green) and TFAP2B (right, red) on a horizontal tissue
806 section through an E11.5 wild type embryonic midface. White dashed lines demarcate ectoderm-
807 mesenchyme boundaries. **(B)** Volcano plot displaying differentially expressed genes between E11.5
808 CNCCs occupying the mandibular prominence (MdP, violet) and those occupying the frontonasal
809 prominence (FNP, orange). **(C, D)** μCT horizontal sections of E12.5 control-*Tfap2*^{NCKO} littermates in either
810 the *Wnt1:CRE* (C) or *Sox10:CRE* (D) models. Yellow dashed lines outline the medial domains of the
811 frontonasal prominence (mFNP). **(E)** Quantification of the linear distance between the tips of the mFNP
812 domains in control and *Tfap2*^{NCKO} embryos in both mouse models. N = 3 per genotype. Student's t-test, **
813 p < 0.01, *** p < 0.001. **(F, G)** μCT frontal sections through the snout. Gold dashed lines highlight the
814 midfacial cleft. Additional abbreviations: d, dorsal; ect, ectoderm; IFNP, lateral FNP; ne, nasal epithelium;
815 np, nasal pit; v, ventral.

Fig. 3 – Formation of midfacial bone and cartilage structures depends on *Tfap2a* and *Tfap2b* gene 816 dosage in CNCCs. **(A-H)** Concurrent Alizarin Red/Alcian Blue stained skeletal preparations of E18.5

embryos, with indicated genotypes, from *Sox10:CRE* (**A-D**) or *Wnt1:CRE* (**E-H**) based breeding schemes.
820 Anterior (a) is to the left. Bone is stained magenta while cartilage is stained blue. However, note that
cartilage staining towards the anterior end is variable that precluded thorough examination of the nasal
822 capsules. Top-down, dorsal, (**A-H**) or bottom-up, ventral, (**A'-H'**) views of the midfacial skeleton, with the
maxillary bone removed. Gold dashed lines (**A-H**) outline the peripheral edges of the calvarial bones. White
824 dashed lines (**B, F, G**) outline nasal bone gaps. Gold arrowheads (**D, F-H**) point to cartilaginous ectopias
sitting adjacent to the frontal bones. White arrowheads (**B', F'**) point to a gap between the anterior portion
826 of the vomer bones. Asterisks (**D, H**) highlight missing nasal bones. N = 5 per genotype. Scale bar = 1
mm. Additional abbreviations: cs, coronal suture; fr, frontal bone; na, nasal bone; ns, nasal septum; nl,
828 nasal/ethmoid labyrinth; p, posterior; pl, palatine bone; pmx, premaxilla; ppp, palatal process of the
palatine; ppm, palatal process of the premaxilla; ppro, pila preoptica; pso, pila postoptica; pr, parietal
830 bone; ps, presphenoid; vm, vomer bone.

Fig. 4 – Transcriptomic analyses reveal NCC-specific loss of *Tfap2* compromises midface *Alx1/3/4*

832 **gene expression.** (**A**) Bulk RNA-seq volcano plot analysis of frontonasal and maxillary prominence tissue
(FNP, MxP) isolated from E10.5 control and *Tfap2^{Δ/NCKO}* littermates (cartoon workflow on the left). Down-
834 regulated genes are visualized in purple while up-regulated genes are gold. (**B**) Enrichr (Kuleshov et al.,
2016) terms based on the downregulated gene-set from the bulk RNA-seq analysis. (**C**) Overview of the
836 scRNA-seq experiment performed on E11.5 *Tfap2^{HET}* and *Tfap2^{NCKO}* littermates. The top box displays the
workflow of sorting GFP-positive head cranial neural crest cells (CNCCs) from branchial arch 2 (BA2) and
838 upward. Cartoon partly derived from BioRender. Displayed at the bottom is the resulting Uniform Manifold
Approximation and Projection (UMAP) plot of the three major groupings and genes enriched in each.
840 Outlined is the mesenchyme population that is further subset and re-clustered (**D**) using MAGIC imputation
(van Dijk et al., 2018). Dashed lines on the mesenchyme UMAP demarcate the identified positional identity
842 clusters, with their respective gene signatures, of the head CNCCs. These include clusters for the FNP
(two generated), MxP, mandibular prominence (MdP), and BA2. (**E**) Violin plots of *Alx1/3/4* gene
844 expression between conditions and divided based on clusters. Boxed are the FNP clusters. (**F**) Whole
mount *in situ* hybridization for *Alx3/4* between E10.5 controls and *Tfap2^{Δ/NCKO}* mutants, viewed in a frontal

846 fashion. Scale bar = 500 μ m. Dashed lines outline the FNP, while arrowheads point to the dysregulated
847 *Alx3/4* staining in the MdP that was previously characterized (Van Otterloo et al., 2018). (G) Real-time
848 PCR analysis for *Alx1/3/4* gene expression in the conditional/conditional model (left) and null/conditional
849 model (right), with indicated genotypes and timepoints. Note that in the conditional/conditional model used
850 sorted CNCCs from the FNP/MxP. Meanwhile, the null/conditional model examined expression profiles in
851 bulk tissue isolated from individual medial and lateral domains of the FNP (mFNP, IFNP).

852 **Fig. 5 – ChIP-seq profiling identifies TFAP2 paralogs directly bind *Alx1/3/4* regulatory elements. (A)**
853 Schematic depicting workflow for anti-TFAP2 chromatin immunoprecipitation followed by sequencing
854 (ChIP-seq) of wild-type E11.5 C57BL/6 facial prominence tissues. (B) Density heatmap displaying read-
855 depth at the 13,778 TFAP2 ‘peaks’ (y-axis) detected by anti-TFAP2 ChIP-seq, relative to non-
856 immunoprecipitated input. (C) A hollow pie chart summarizing the distribution of TFAP2 ‘peaks’ throughout
857 the genome, relative to key features (e.g., promoters, introns, etc.). The TFAP2 motif, along with the
858 significance of its enrichment in all TFAP2 ‘peaks’, is displayed in the center. (D) Box-and-whisker graph
859 plotting the FPKM values of 16,573 genes with frontonasal prominence (FNP) mesenchymal expression
860 at E11.5 (Hooper et al., 2020), with or without an associated TFAP2 peak (p-value = 2.60e-256). (E)
861 Density heatmaps for anti-H3K4me2 (blue), anti-H3K27ac (green), ATAC-seq (forest green), and anti-
862 H3K27me3 (red) profiles of E10.5 FNP cranial neural crest cells (CNCCs) (Minoux et al., 2017) at the
863 TFAP2-positive coordinates. These regions are divided by k-means clustering. Boxed are clusters 5 and
864 6, whose coordinates are correlated with high H3K4me2, high H3K27ac, high ATAC (i.e., chromatin
865 accessibility), and low H3K27me3 signals. (F) Box-and-whisker graphs, as in panel D, but further
866 partitioning the ‘peak’ group based on k-means clusters from panel E. (G) GREAT (McLean et al., 2010)
867 pathway analysis of genes associated with cluster 5 TFAP2 peaks. Significant “Human Phenotype” terms
868 are listed, with the most significant on the top. Navy shaded boxes are associated with craniofacial-specific
869 terms. (H) IGV browser views of the *Alx1*, *Alx3*, and *Alx4* loci overlayed with the epigenome signatures
870 (blue, H3K4me2; green, H3K27ac; forest green, ATAC; red, H3K27me3) of E10.5 CNCCs residing in the
871 mandibular prominence (MdP, top 4 tracks) and FNP (tracks 5-8), as well as the cluster 5-assigned TFAP2
872 peaks (bottom, gray highlights).

Fig. 6 – Gene expression and epistasis studies indicate zebrafish *alx3* is genetically downstream of *tfap2a*. (A-D) Frontal views of *alx3* *in situ* hybridization (violet) and *fli1a:EGFP*-labelled cranial neural crest cells (green) in a wild-type control (A, C) and a *tfap2a*-/- sibling (B, D) at 48 hours post-fertilization (hpf). Note, panels C and D are magnified views of the roof of the mouth, as boxed in panels A and B. (E) Schematic summarizing expression patterns observed, N = 5 per genotype. (F-I) Whole mount, lateral images of Alizarin Red/Alcian Blue stained skeletal preparations of 6-day-old zebrafish heads, with indicated genotypes. The anterior is to the left. Red arrowhead. (F'-I') Neurocrania were dissected and flat mounted. Red arrowhead indicates ectopic cartilage near the eye socket. Black arrowhead marks dorsally projecting ectopic ethmoid plate cartilage. (J) Tables summarizing penetrance, samples, and statistics of the epistasis experiments as follow: top, the removal of wild-type *alx3* copies from *tfap2a* homozygous mutants; middle, the removal of wild-type *tfap2a* copies from *alx3* homozygous mutants; bottom, the removal of wild-type *tfap2a* copies from *alx3* heterozygotes. Boxed values correspond to the genotypes shown in panels G, H, and I. For example, in yellow are *tfap2a* mutant phenotypes and their penetrance (corresponding to G, G'); boxed in green those for when both *alx3* copies are removed in *tfap2a*-mutant backgrounds (corresponding to I, I'); lastly, boxed in purple are those for *alx3* mutants (H, H'). Asterisk indicates significant difference compared with the far-left column. Carets indicate significant difference compared with middle column by Fisher's exact test. Scale bars = 100 μ m. Abbreviations: ep, ethmoid plate; m, mouth; n, nares; ND, not determined; ps, parasphenoid.

Fig. S1 – Histological analysis of midface phenotypes in *Tfap2*^{ΔNCKO} mutants. (A-F) Coronal sections of H&E stained anterior (A-C) and posterior (D-F) regions of the snout of E17.5 embryos, indicated by genotype. Note, the schematic in the top left highlights relative position of sections in A-C ('Top') and D-F ('Bottom'). Yellow lines in panels C and F demarcate the midfacial cleft. Scale bars = 500 μ m. N = 3 per genotype. Abbreviations: i, incisor; ns, nasal septum; t, tongue; v, vibrissae.

Fig. S2 – TFAP2A and TFAP2B cooperative function in CNCCs during midface fusion. (A-C) Gross craniofacial morphology, as detected by scanning electron microscopy (A) or brightfield imaging (B, C) of E11.5 (A), E12.5 (B), or E15.5 (C) embryonic midfaces, as indicated by genotype. Panel A is ventral views, whereas panels B and C are top-down views of the cranium and midface. Black dotted lines in the E12.5

900 images highlight the frontonasal prominences. White arrowheads point to the midface cleft. N = 3 per
genotype. Scale bar = 1 mm. Abbreviations: FNP, frontonasal prominence; IFNP, lateral FNP; mFNP,
902 medial FNP; np, nasal pit.

Fig. S3 – *Tfap2*^{NCKO} mutant skeletal phenotypes recapitulate those observed in *Tfap2*^{ΔNCKO} mutants.

904 (A) An E18.5 *Wnt1:CRE Tfap2*^{NCKO} skeletal preparation showing 'maxilla-like' medial projections on the
mandible that meet at the midline (left) along with syngnathia of the left jaw viewed laterally in isolation
906 (right). (B) Isolated left mandible from E18.5 *Tfap2*^{NCKO} embryos, with indicated genotype. These
phenotypes match those previously described in *Tfap2*^{ΔNCKO} embryos (Van Otterloo et al., 2018). Scale
908 bar = 1 mm. Abbreviations: agp, angular process; cdp, condylar process; crp, coronoid process; fpm,
frontal process of the maxilla; jg, jugal bone; li, lower incisor; mc, Meckel's cartilage; mx-l, maxilla-like;
910 ppmx, palatal process of the maxilla; zpm, zygomatic process of the maxilla.

Fig. S4 – Lineage tracing and immunofluorescence analysis suggest a post-migratory role for

912 **TFAP2A and TFAP2B during midfacial development.** (A) Front view of E10.5 embryos, with indicated
genotypes. Cranial neural crest cells are β -galactosidase-stained from *Wnt1:CRE*-mediated recombination
914 of the *r26r-lacZ* reporter allele. Dashed yellow lines mark the midline-proximal edges of the medial domains
of the frontonasal prominences (mFNP). White arrowhead in *Tfap2*^{NCKO} embryo points to the increased
916 gap between the mFNP. Scale bar = 500 μ m. (B) Co-staining of nuclei (DAPI, blue), TFAP2A (gold), and
TFAP2B (red) in midface tissue. The top-left image, derived from BioRender, indicates the plane of each
918 section that TFAP2 co-staining was performed. The bottom-left image, derived from the eMouse atlas
(Armit et al., 2017), is a representative orientation of the tissue section. Boxed is the region examined in
920 the immunofluorescent images. The white arrowhead indicates absent TFAP2B protein expression in the
nasal epithelium, in contrast to the top panel. White dashed lines indicate boundaries between
922 mesenchyme and epithelium. Additional abbreviations: d, dorsal; ect, ectoderm; IFNP, lateral domain of
the FNP; MxP, maxillary prominence; ne, nasal epithelium; np, nasal pit; v, ventral.

924 Fig. S5 – A post-migratory CNCC role for TFAP2A and TFAP2B during midfacial development.

Frontal view of E18.5 *Sox10:CRE-Tfap2*^{NCKO} animals, with indicated genotypes. Scale bar = 1 mm.

926 **Fig. S6 – Defects in the midfacial skeleton of *Sox10:CRE Tfap2^{NCKO}* mutants. (A-A”, B-B”)** Three
individual E18.5 *Sox10:CRE-Tfap2^{NCKO}* skeletal preparations in top-down (A) or bottom-up (B) view.
928 Anterior is to the left. Yellow dashed lines in the top-down view outline the peripheral edges of the calvarial
bones while those in the bottom-up view outline the presphenoid bone. Yellow arrowheads point to the
930 cartilaginous ectopias stemming from the nasal septum. Note, in contrast to the first two embryos, the
maxillary bone has been removed from the third. Further, the third exhibits isolated Alizarin red stained
932 tissue (i.e., bony ‘islands’, individually outlined) on the calvaria instead of the cartilaginous ectopias. Scale
bar = 1 mm. Abbreviations: bs, basisphenoid; cs, coronal suture; fr, frontal bone; ip, interparietal bone; nl,
934 nasal/ethmoid labyrinth; ns, nasal septum; pl, palatine; pmx, premaxilla; ppp, palatal process of the
palatine; ppmx, palatal process of the premaxilla; ppro, pila postoptica; pps, pila postoptica; pr, parietal
936 bone; vm, vomer bone.

938 **Fig. S7 – Jaw phenotypes in *Sox10:CRE-Tfap2^{NCKO}* mutants partially recapitulate those observed
in *Wnt1:CRE-Tfap2^{NCKO}* and *-Tfap2^{ΔNCKO}* mutants. (A-F)** E18.5 maxillary and mandibular bones in
isolation, with indicated genotypes. In panels A through D, the left-side elements are presented; panels E
940 and F show the right-side elements. In panel B, circled is the missing jugal bone and thickened zygomatic
process of the maxilla. In panel E, the synanthia is circled. In panel F, fusion between the jugal and
942 thickened zygomatic process of the maxilla is circled. Scale bar = 1 mm. Abbreviations: agp, angular
process; cdp, condylar process; crp, coronoid process; fpm, frontal process of the maxilla; jg, jugal bone;
944 li, lower incisor; mc, Meckel’s cartilage; ppmx, palatal process of the maxilla; sq, squamosal bone; zpm,
zygomatic process of the maxilla.

946 **Fig. S8 – *Wnt1:CRE-Tfap2^{ΔNCKO}* mutants present defects in the midfacial skeleton. (A)** Oblique frontal
view of Alcian Blue stained preparations for E15.5 *Tfap2^{ΔNCKO}* mutant embryos, indicated by genotypes.
948 The midface is outlined by black dotted lines. The black arrowhead points to ectopic cartilage forming
superior to the midface cleft. **(A')** Bottom-up ventral view, anterior to the left, of chondrocrania, as in panel
950 A, with a focus on nasal cartilage elements. Black arrowheads point to structural aberrations which
presumably would have formed the anterior nasal capsules and labyrinths. **(B)** Top-down view of E18.5
952 craniums, anterior up, from the indicated genotypes. Gold dashed lines outline the edge of the calvarial

954 bones at the midline. The asterisk marks the midface cleft and missing nasal bones. N = 3 per genotype.
955 Scale bar = 500 μ m. Abbreviations: cs, coronal suture; e, eye; fr, frontal bone; ip, interparietal bone; ms,
956 metopic suture; na, nasal bone; ns, nasal septum; pn, paries nasi; ppro, pila preoptica; pps, pila
postoptica; pr, parietal bone; ss, sagittal suture.

Fig. S9 – Gene expression-based scRNA-seq annotation of the major CNCC lineages. Gene
957 expression of select genes mapped onto the Uniform Manifold Approximation and Projection (UMAP) plot
in Fig. 4C. These genes were selected based on published scRNA-seq datasets (Soldatov et al., 2019).
958 Note that cells from the brain are included in this dataset because *Wnt1:CRE* labels parts of the brain.

Fig. S10 – Cellular profiling of the three major CNCC lineages in the developing head. (A) *Tfap2*^{HET}
959 and *Tfap2*^{NCKO} representation in the integrated dataset, divided by the three major groupings and
960 expressed as a percentage. The dashed line marks the fifty-percent threshold. (B) Gene expression-based
961 cell cycle scoring for individual *Tfap2*^{HET} and *Tfap2*^{NCKO} conditions. Cell cycle scores are mapped on the
962 Uniform Manifold Approximation and Projection (UMAP) plots of individual conditions (left) and visualized
963 as percentages per CNCC lineage.

Fig. S11 – Enrichment analyses of downregulated genes in the scRNA-seq mesenchyme group.
964 Terms from the Enrichr pipeline (Kuleshov et al., 2016), based on (A) downregulated or (B) upregulated
965 genes identified through the mesenchyme pseudobulk analysis (Table S2, Tab 9).

**Fig. S12 – Gene expression-based scRNA-seq annotation of the major CNCC mesenchymal
966 populations.** MAGIC-based (van Dijk et al., 2018) gene expression of select genes mapped onto the
967 Uniform Manifold Approximation and Projection (UMAP) plot in Fig. 4D. These genes were selected based
968 on published transcriptomic datasets (Gu et al., 2022; Hooper et al., 2020), epigenome datasets (Minoux
969 et al., 2017), and published *in situ* data.

Fig. S13 – *Tfap2* and *Alx* paralog transcripts are enriched in the murine FNP CNCCs. Gene
970 expression of *Tfap2a* and *Tfap2b* (blue) overlaid with individual *Alx* paralogs (red) onto the Uniform
971 Manifold Approximation and Projection (UMAP) plot. Color saturation correlates to gene expression levels,
972 while degree of co-expression is read out as a blending of the two colors.

Fig. S14 – Cellular and gene expression profiling in the CNCC-derived mesenchyme. (A) Cellular distributions of *Tfap2*^{HET} and *Tfap2*^{NCKO} conditions as Uniform Manifold Approximation and Projection (UMAP) plots (A) or as a percentage in each cluster (A'). (B) Violin expression plots of branchial arch (BA)-enriched genes previously identified (Van Otterloo et al., 2018). Boxed are clusters for the maxillary prominence (MxP), mandibular prominence (MdP), and BA2. (C) Violin expression plots for genes dysregulated in the midface. Boxed are the frontonasal prominence (FNP) clusters.

Fig. S15 – Additional GREAT pathway analysis on TFAP2 genomic binding. Terms enriched in cluster 3 and 4 peaks that contained positive TFAP2 ChIP-seq signal. Note, peaks in these clusters are significantly enriched for skin (cluster 4), neuronal (clusters 3, 4), and cardiac (cluster 3) terms.

Fig. S16 – *tfap2a* and *alx3* transcripts are enriched in the zebrafish frontonasal CNCCs. Gene expression of *tfap2a* and *alx3* overlaid together on a Uniform Manifold Approximation and Projection (UMAP) plot of a published single-cell RNA-seq dataset generated from sorted zebrafish cranial neural crest cells (Stenzel et al., 2022). Color saturation correlates to gene expression levels, while degree of co-expression is read out as a blending of the two colors.

REFERENCES

994 **Abe, M., Cox, T. C., Firulli, A. B., Kanai, S. M., Dahlka, J., Lim, K. C., Engel, J. D. and Clouthier, D. E.** (2021). GATA3
996 is essential for separating patterning domains during facial morphogenesis. *Development* **148**.

998 **Adam, M., Potter, A. S. and Potter, S. S.** (2017). Psychrophilic proteases dramatically reduce single-cell RNA-seq
1000 artifacts: a molecular atlas of kidney development. *Development* **144**, 3625-3632.

1002 **Armit, C., Richardson, L., Venkataraman, S., Graham, L., Burton, N., Hill, B., Yang, Y. and Baldock, R. A.** (2017).
eMouseAtlas: An atlas-based resource for understanding mammalian embryogenesis. *Dev Biol* **423**, 1-11.

1004 **Bailon-Zambrano, R., Sucharov, J., Mumme-Monheit, A., Murry, M., Stenzel, A., Pulvino, A. T., Mitchell, J. M.,
1006 Colborn, K. L. and Nichols, J. T.** (2022). Variable paralog expression underlies phenotype variation. *Elife* **11**.

1008 **Barrallo-Gimeno, A., Holzschuh, J., Driever, W. and Knapik, E. W.** (2004). Neural crest survival and differentiation
1010 in zebrafish depends on mont blanc/tfap2a gene function. *Development* **131**, 1463-1477.

1012 **Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippe, K. H.,
1014 Sherman, P. M., Holko, M., et al.** (2013). NCBI GEO: archive for functional genomics data sets--update. *Nucleic Acids Res* **41**, D991-995.

1016 **Beverdam, A., Brouwer, A., Reijnen, M., Korving, J. and Meijlink, F.** (2001). Severe nasal clefting and abnormal
1018 embryonic apoptosis in Alx3/Alx4 double mutant mice. *Development* **128**, 3975-3986.

1020 **Bhatt, S., Diaz, R. and Trainor, P. A.** (2013). Signals and switches in Mammalian neural crest cell differentiation.
1022 *Cold Spring Harb Perspect Biol* **5**.

1024 **Brandon, A. A., Almeida, D. and Powder, K. E.** (2022). Neural crest cells as a source of microevolutionary variation.
Semin Cell Dev Biol.

1026 **Bray, N. L., Pimentel, H., Melsted, P. and Pachter, L.** (2016). Near-optimal probabilistic RNA-seq quantification. *Nat
1028 Biotechnol* **34**, 525-527.

1030 **Brewer, S., Feng, W., Huang, J., Sullivan, S. and Williams, T.** (2004). Wnt1-Cre-mediated deletion of AP-2alpha
1032 causes multiple neural crest-related defects. *Dev Biol* **267**, 135-152.

1034 **Brugmann, S. A., Allen, N. C., James, A. W., Mekonnen, Z., Madan, E. and Helms, J. A.** (2010). A primary cilia-
1036 dependent etiology for midline facial disorders. *Hum Mol Genet* **19**, 1577-1592.

1038 **Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V., Clark, N. R. and Ma'ayan, A.** (2013). Enrichr:
1040 interactive and collaborative HTML5 gene list enrichment analysis tool. *BMC Bioinformatics* **14**, 128.

1042 **Choi, H. M., Calvert, C. R., Husain, N., Huss, D., Barsi, J. C., Deverman, B. E., Hunter, R. C., Kato, M., Lee, S. M.,
1044 Abelin, A. C., et al.** (2016). Mapping a multiplexed zoo of mRNA expression. *Development* **143**, 3632-3637.

1046 **Claes, P., Roosenboom, J., White, J. D., Swigut, T., Sero, D., Li, J., Lee, M. K., Zaidi, A., Mattern, B. C., Liebowitz,
1048 C., et al.** (2018). Genome-wide mapping of global-to-local genetic effects on human facial shape. *Nat Genet* **50**, 414-423.

1050 **Clouthier, D. E., Garcia, E. and Schilling, T. F.** (2010). Regulation of facial morphogenesis by endothelin signaling:
1052 insights from mice and fish. *Am J Med Genet A* **152A**, 2962-2973.

1054 **Cox, S. G., Kim, H., Garnett, A. T., Medeiros, D. M., An, W. and Crump, J. G.** (2012). An essential role of variant
1056 histone H3.3 for ectomesenchyme potential of the cranial neural crest. *PLoS Genet* **8**, e1002938.

1058 **Danielian, P. S., Muccino, D., Rowitch, D. H., Michael, S. K. and McMahon, A. P.** (1998). Modification of gene
1060 activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. *Curr Biol* **8**, 1323-
1062 1326.

1064 **Dash, S. and Trainor, P. A.** (2020). The development, patterning and evolution of neural crest cell differentiation
1066 into cartilage and bone. *Bone* **137**, 115409.

1068 **de Croze, N., Maczkowiak, F. and Monsoro-Burq, A. H.** (2011). Reiterative AP2a activity controls sequential steps
1070 in the neural crest gene regulatory network. *Proc Natl Acad Sci U S A* **108**, 155-160.

1072 **Debbache, J., Parfejevs, V. and Sommer, L.** (2018). Cre-driver lines used for genetic fate mapping of neural crest
1074 cells in the mouse: An overview. *Genesis* **56**, e23105.

1076 **Doan, L. and Monuki, E. S.** (2008). Rapid genotyping of mouse tissue using Sigma's Extract-N-Amp Tissue PCR Kit. *J
1078 Vis Exp.*

1042 **Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M. and Gingeras, T. R.**
(2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21.

1044 **Dooley, C. M., Wali, N., Sealy, I. M., White, R. J., Stemple, D. L., Collins, J. E. and Busch-Nentwich, E. M.** (2019).
The gene regulatory basis of genetic compensation during neural crest induction. *PLoS Genet* **15**, e1008213.

1046 **Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., De Moor, B., Brazma, A. and Huber, W.** (2005). BioMart and
Bioconductor: a powerful link between biological databases and microarray data analysis. *Bioinformatics*
21, 3439-3440.

1048 **Eckert, D., Buhl, S., Weber, S., Jager, R. and Schorle, H.** (2005). The AP-2 family of transcription factors. *Genome*
Biol **6**, 246.

1050 **Erickson, P. A., Baek, J., Hart, J. C., Cleves, P. A. and Miller, C. T.** (2018). Genetic Dissection of a Supergene
Implicates Tfap2a in Craniofacial Evolution of Threespine Sticklebacks. *Genetics* **209**, 591-605.

1052 **Fan, X., Masamsetti, V. P., Sun, J. Q., Engholm-Keller, K., Osteil, P., Studdert, J., Graham, M. E., Fossat, N. and**
Tam, P. P. (2021). TWIST1 and chromatin regulatory proteins interact to guide neural crest cell
differentiation. *Elife* **10**.

1054 **Feng, Z., Duren, Z., Xiong, Z., Wang, S., Liu, F., Wong, W. H. and Wang, Y.** (2021). hReg-CNCC reconstructs a
regulatory network in human cranial neural crest cells and annotates variants in a developmental context.
Commun Biol **4**, 442.

1056 **Fernandez Garcia, M., Moore, C. D., Schulz, K. N., Alberto, O., Donague, G., Harrison, M. M., Zhu, H. and Zaret, K.**
S. (2019). Structural Features of Transcription Factors Associating with Nucleosome Binding. *Mol Cell* **75**,
921-932 e926.

1058 **Fogelgren, B., Kuroyama, M. C., McBratney-Owen, B., Spence, A. A., Malahn, L. E., Anawati, M. K., Cabatbat, C.,**
Alarcon, V. B., Marikawa, Y. and Lozanoff, S. (2008). Misexpression of Six2 is associated with heritable
frontonasal dysplasia and renal hypoplasia in 3H1 Br mice. *Dev Dyn* **237**, 1767-1779.

1060 **Gao, T., Wright-Jin, E. C., Sengupta, R., Anderson, J. B. and Heuckerth, R. O.** (2021). Cell-autonomous retinoic
acid receptor signaling has stage-specific effects on mouse enteric nervous system. *JCI Insight* **6**.

1062 **Gu, R., Zhang, S., Saha, S. K., Ji, Y., Reynolds, K., McMahon, M., Sun, B., Islam, M., Trainor, P. A., Chen, Y., et al.**
(2022). Single-cell transcriptomic signatures and gene regulatory networks modulated by WIs in mammalian
midline facial formation and clefts. *Development* **149**.

1064 **Han, J., Ishii, M., Bringas, P., Jr., Maas, R. L., Maxson, R. E., Jr. and Chai, Y.** (2007). Concerted action of Msx1 and
Msx2 in regulating cranial neural crest cell differentiation during frontal bone development. *Mech Dev* **124**,
729-745.

1066 **Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W. M., 3rd, Zheng, S., Butler, A., Lee, M. J., Wilk, A. J., Darby, C.,**
Zager, M., et al. (2021). Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587 e3529.

1068 **Hari, L., Miescher, I., Shakhova, O., Suter, U., Chin, L., Taketo, M., Richardson, W. D., Kessaris, N. and Sommer, L.**
(2012). Temporal control of neural crest lineage generation by Wnt/beta-catenin signaling. *Development*
139, 2107-2117.

1070 **Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P., Cheng, J. X., Murre, C., Singh, H. and Glass, C. K.**
(2010). Simple combinations of lineage-determining transcription factors prime cis-regulatory elements
required for macrophage and B cell identities. *Mol Cell* **38**, 576-589.

1072 **Hendershot, T. J., Liu, H., Clouthier, D. E., Shepherd, I. T., Coppola, E., Studer, M., Firulli, A. B., Pittman, D. L. and**
Howard, M. J. (2008). Conditional deletion of Hand2 reveals critical functions in neurogenesis and cell type-
specific gene expression for development of neural crest-derived noradrenergic sympathetic ganglion
neurons. *Dev Biol* **319**, 179-191.

1074 **Hooper, J. E., Jones, K. L., Smith, F. J., Williams, T. and Li, H.** (2020). An Alternative Splicing Program for Mouse
Craniofacial Development. *Front Physiol* **11**, 1099.

1076 **Hovland, A. S., Bhattacharya, D., Azambuja, A. P., Pramio, D., Copeland, J., Rothstein, M. and Simoes-Costa, M.**
(2022). Pluripotency factors are repurposed to shape the epigenomic landscape of neural crest cells. *Dev*
Cell **57**, 2257-2272 e2255.

1078 **Hsu, C. W., Wong, L., Rasmussen, T. L., Kalaga, S., McElwee, M. L., Keith, L. C., Bohat, R., Seavitt, J. R., Beaudet,**
A. L. and Dickinson, M. E. (2016). Three-dimensional microCT imaging of mouse development from early
post-implantation to early postnatal stages. *Dev Biol* **419**, 229-236.

1092 **Hufnagel, R. B., Zimmerman, S. L., Krueger, L. A., Bender, P. L., Ahmed, Z. M. and Saal, H. M.** (2016). A new
frontonasal dysplasia syndrome associated with deletion of the SIX2 gene. *Am J Med Genet A* **170A**, 487-
491.

1094 **Ishii, M., Han, J., Yen, H. Y., Sucov, H. M., Chai, Y. and Maxson, R. E., Jr.** (2005). Combined deficiencies of Msx1 and
Msx2 cause impaired patterning and survival of the cranial neural crest. *Development* **132**, 4937-4950.

1096 **Iyyanar, P. P. R., Wu, Z., Lan, Y., Hu, Y. C. and Jiang, R.** (2022). Alx1 Deficient Mice Recapitulate Craniofacial
Phenotype and Reveal Developmental Basis of ALX1-Related Frontonasal Dysplasia. *Front Cell Dev Biol* **10**,
777887.

1100 **Jacques-Fricke, B. T., Roffers-Agarwal, J. and Gammill, L. S.** (2012). DNA methyltransferase 3b is dispensable for
mouse neural crest development. *PLoS One* **7**, e47794.

1102 **Jeong, J., Mao, J., Tenzen, T., Kottmann, A. H. and McMahon, A. P.** (2004). Hedgehog signaling in the neural crest
cells regulates the patterning and growth of facial primordia. *Genes Dev* **18**, 937-951.

1104 **Kennedy, A. E. and Dickinson, A. J.** (2012). Median facial clefts in *Xenopus laevis*: roles of retinoic acid signaling and
homeobox genes. *Dev Biol* **365**, 229-240.

1106 **Kenny, C., Dilshat, R., Seberg, H. E., Van Otterloo, E., Bonde, G., Helverson, A., Franke, C. M., Steingrimsson, E.**
and Cornell, R. A. (2022). TFAP2 paralogs facilitate chromatin access for MITF at pigmentation and cell
proliferation genes. *PLoS Genet* **18**, e1010207.

1108 **Kessler, S., Minoux, M., Joshi, O., Ben Zouari, Y., Ducret, S., Ross, F., Vilain, N., Salvi, A., Wolff, J., Kohler, H., et al.**
(2023). A multiple super-enhancer region establishes inter-TAD interactions and controls Hoxa function in
cranial neural crest. *Nat Commun* **14**, 3242.

1112 **Khor, J. M. and Ettensohn, C. A.** (2020). Transcription Factors of the Alx Family: Evolutionarily Conserved Regulators
of Deuterostome Skeletogenesis. *Front Genet* **11**, 569314.

1114 **Knight, R. D., Javidan, Y., Nelson, S., Zhang, T. and Schilling, T.** (2004). Skeletal and pigment cell defects in the
lockjaw mutant reveal multiple roles for zebrafish tfap2a in neural crest development. *Dev Dyn* **229**, 87-98.

1116 **Knight, R. D., Javidan, Y., Zhang, T., Nelson, S. and Schilling, T. F.** (2005). AP2-dependent signals from the ectoderm
regulate craniofacial development in the zebrafish embryo. *Development* **132**, 3127-3138.

1118 **Knight, R. D., Nair, S., Nelson, S. S., Afshar, A., Javidan, Y., Geisler, R., Rauch, G. J. and Schilling, T. F.** (2003). lockjaw
encodes a zebrafish tfap2a required for early neural crest development. *Development* **130**, 5755-5768.

1120 **Kowalczyk, M. S., Tirosh, I., Heckl, D., Rao, T. N., Dixit, A., Haas, B. J., Schneider, R. K., Wagers, A. J., Ebert, B. L.**
and Regev, A. (2015). Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon
aging of hematopoietic stem cells. *Genome Res* **25**, 1860-1872.

1122 **Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S. L.,**
Jagodnik, K. M., Lachmann, A., et al. (2016). Enrichr: a comprehensive gene set enrichment analysis web
server 2016 update. *Nucleic Acids Res* **44**, W90-97.

1124 **Lakhwani, S., Garcia-Sanz, P. and Vallejo, M.** (2010). Alx3-deficient mice exhibit folic acid-resistant craniofacial
midline and neural tube closure defects. *Dev Biol* **344**, 869-880.

1126 **Lamichhaney, S., Berglund, J., Almen, M. S., Maqbool, K., Grabherr, M., Martinez-Barrio, A., Promerova, M.,**
Rubin, C. J., Wang, C., Zamani, N., et al. (2015). Evolution of Darwin's finches and their beaks revealed by
genome sequencing. *Nature* **518**, 371-375.

1128 **Laugsch, M., Bartusel, M., Rehimi, R., Alirzayeva, H., Karaolidou, A., Crispatzu, G., Zentis, P., Nikolic, M.,**
Bleckwehl, T., Kolovos, P., et al. (2019). Modeling the Pathological Long-Range Regulatory Effects of Human
Structural Variation with Patient-Specific hiPSCs. *Cell Stem Cell* **24**, 736-752 e712.

1130 **Lawson, N. D. and Weinstein, B. M.** (2002). In vivo imaging of embryonic vascular development using transgenic
zebrafish. *Dev Biol* **248**, 307-318.

1132 **Li, H. and Durbin, R.** (2009). Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics **25**, 1754-1760.

1134 **Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R. and Genome**
Project Data Processing, S. (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
2078-2079.

1136 **Li, H., Sheridan, R. and Williams, T.** (2013). Analysis of TFAP2A mutations in Branchio-Oculo-Facial Syndrome
indicates functional complexity within the AP-2alpha DNA-binding domain. *Hum Mol Genet* **22**, 3195-3206.

1144 **Li, W. and Cornell, R. A.** (2007). Redundant activities of Tfap2a and Tfap2c are required for neural crest induction
1144 and development of other non-neural ectoderm derivatives in zebrafish embryos. *Dev Biol* **304**, 338-354.

1146 **Lim, K. C., Lakshmanan, G., Crawford, S. E., Gu, Y., Grosveld, F. and Engel, J. D.** (2000). Gata3 loss leads to
1146 embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. *Nat Genet* **25**, 209-
212.

1148 **Liu, Z., Li, C., Xu, J., Lan, Y., Liu, H., Li, X., Maire, P., Wang, X. and Jiang, R.** (2019). Crucial and Overlapping Roles of
1148 Six1 and Six2 in Craniofacial Development. *J Dent Res* **98**, 572-579.

1150 **Lohnes, D., Mark, M., Mendelsohn, C., Dolle, P., Dierich, A., Gorry, P., Gansmuller, A. and Chambon, P.** (1994).
1150 Function of the retinoic acid receptors (RARs) during development (I). Craniofacial and skeletal
1152 abnormalities in RAR double mutants. *Development* **120**, 2723-2748.

1154 **Love, M. I., Huber, W. and Anders, S.** (2014). Moderated estimation of fold change and dispersion for RNA-seq data
1154 with DESeq2. *Genome Biol* **15**, 550.

1156 **Luscher, B., Mitchell, P. J., Williams, T. and Tjian, R.** (1989). Regulation of transcription factor AP-2 by the
1156 morphogen retinoic acid and by second messengers. *Genes Dev* **3**, 1507-1517.

1158 **Mai, C. T., Isenburg, J. L., Canfield, M. A., Meyer, R. E., Correa, A., Alverson, C. J., Lupo, P. J., Riehle-Colarusso, T.,**

1158 Cho, S. J., Aggarwal, D., et al.

1158 (2019). National population-based estimates for major birth defects, 2010-
2014. *Birth Defects Res* **111**, 1420-1435.

1160 **Martik, M. L. and Bronner, M. E.** (2021). Riding the crest to get a head: neural crest evolution in vertebrates. *Nat*
1160 *Rev Neurosci*.

1162 **Martino, V. B., Sabljic, T., Deschamps, P., Green, R. M., Akula, M., Peacock, E., Ball, A., Williams, T. and West-**

1164 Mays, J. A.

1164 (2016). Conditional deletion of AP-2beta in mouse cranial neural crest results in anterior
1164 segment dysgenesis and early-onset glaucoma. *Dis Model Mech* **9**, 849-861.

1166 **Matsuoka, T., Ahlberg, P. E., Kessaris, N., Iannarelli, P., Dennehy, U., Richardson, W. D., McMahon, A. P. and**

1166 Koentges, G.

1166 (2005). Neural crest origins of the neck and shoulder. *Nature* **436**, 347-355.

1168 **McGonnell, I. M., Graham, A., Richardson, J., Fish, J. L., Depew, M. J., Dee, C. T., Holland, P. W. and Takahashi, T.**
1168 (2011). Evolution of the Alx homeobox gene family: parallel retention and independent loss of the
1168 vertebrate Alx3 gene. *Evol Dev* **13**, 343-351.

1170 **McLean, C. Y., Bristor, D., Hiller, M., Clarke, S. L., Schaar, B. T., Lowe, C. B., Wenger, A. M. and Bejerano, G.** (2010).
1170 GREAT improves functional interpretation of cis-regulatory regions. *Nat Biotechnol* **28**, 495-501.

1172 **Meulemans, D. and Bronner-Fraser, M.** (2002). Amphioxus and lamprey AP-2 genes: implications for neural crest
1172 evolution and migration patterns. *Development* **129**, 4953-4962.

1174 **Milunsky, J. M., Maher, T. A., Zhao, G., Roberts, A. E., Stalker, H. J., Zori, R. T., Burch, M. N., Clemens, M., Mulliken,**

1176 J. B., Smith, R., et al.

1176 (2008). TFAP2A mutations result in branchio-oculo-facial syndrome. *Am J Hum Genet* **82**, 1171-1177.

1178 **Minoux, M., Holwerda, S., Vitobello, A., Kitazawa, T., Kohler, H., Stadler, M. B. and Rijli, F. M.** (2017). Gene
1178 bivalency at Polycomb domains regulates cranial neural crest positional identity. *Science* **355**.

1180 **Mitchell, J. M., Sucharov, J., Puvlino, A. T., Brooks, E. P., Gillen, A. E. and Nichols, J. T.** (2021). The alx3 gene shapes
1180 the zebrafish neurocranium by regulating frontonasal neural crest cell differentiation timing. *Development* **148**.

1182 **Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. and Luo, L.** (2007). A global double-fluorescent Cre reporter mouse.
1182 *Genesis* **45**, 593-605.

1184 **Naqvi, S., Hoskens, H., Wilke, F., Weinberg, S. M., Shaffer, J. R., Walsh, S., Shriver, M. D., Wysocka, J. and Claes,**

1186 P.

1186 (2022). Decoding the Human Face: Progress and Challenges in Understanding the Genetics of Craniofacial
1186 Morphology. *Annu Rev Genomics Hum Genet* **23**, 383-412.

1188 **Neuhauß, S. C., Solnica-Krezel, L., Schier, A. F., Zwartkruis, F., Stemple, D. L., Malicki, J., Abdelilah, S., Stainier, D.**
1188 Y. and Driever, W.

1188 (1996). Mutations affecting craniofacial development in zebrafish. *Development* **123**, 357-367.

1190 **Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. and Salzberg, S. L.** (2016). Transcript-level expression analysis of RNA-
1190 seq experiments with HISAT, StringTie and Ballgown. *Nat Protoc* **11**, 1650-1667.

1192 **Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T. and Salzberg, S. L.** (2015). StringTie enables
1192 improved reconstruction of a transcriptome from RNA-seq reads. *Nat Biotechnol* **33**, 290-295.

1194 Pimentel, H., Bray, N. L., Puente, S., Melsted, P. and Pachter, L. (2017). Differential analysis of RNA-seq
incorporating quantification uncertainty. *Nat Methods* **14**, 687-690.

1196 Pini, J., Kueper, J., Hu, Y. D., Kawasaki, K., Yeung, P., Tsimbal, C., Yoon, B., Carmichael, N., Maas, R. L., Cotney, J.,
et al. (2020). ALX1-related frontonasal dysplasia results from defective neural crest cell development and
migration. *EMBO Mol Med* **12**, e12013.

1198 Prescott, S. L., Srinivasan, R., Marchetto, M. C., Grishina, I., Narvaiza, I., Selleri, L., Gage, F. H., Swigut, T. and
Wysocka, J. (2015). Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest.
Cell **163**, 68-83.

1200 Qu, S., Tucker, S. C., Zhao, Q., deCrombrugghe, B. and Wisdom, R. (1999). Physical and genetic interactions
between Alx4 and Cart1. *Development* **126**, 359-369.

1202 Rada-Iglesias, A., Bajpai, R., Prescott, S., Brugmann, S. A., Swigut, T. and Wysocka, J. (2012). Epigenomic
annotation of enhancers predicts transcriptional regulators of human neural crest. *Cell Stem Cell* **11**, 633-
648.

1204 Ramirez, F., Ryan, D. P., Gruning, B., Bhardwaj, V., Kilpert, F., Richter, A. S., Heyne, S., Dundar, F. and Manke, T.
(2016). deepTools2: a next generation web server for deep-sequencing data analysis. *Nucleic Acids Res* **44**,
W160-165.

1206 Robinson, J. T., Thorvaldsdottir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G. and Mesirov, J. P. (2011).
Integrative genomics viewer. *Nat Biotechnol* **29**, 24-26.

1208 Rothstein, M. and Simoes-Costa, M. (2020). Heterodimerization of TFAP2 pioneer factors drives epigenomic
remodeling during neural crest specification. *Genome Res* **30**, 35-48.

1210 Roybal, P. G., Wu, N. L., Sun, J., Ting, M. C., Schafer, C. A. and Maxson, R. E. (2010). Inactivation of Msx1 and Msx2
in neural crest reveals an unexpected role in suppressing heterotopic bone formation in the head. *Dev Biol*
343, 28-39.

1212 Santagati, F. and Rijli, F. M. (2003). Cranial neural crest and the building of the vertebrate head. *Nat Rev Neurosci*
4, 806-818.

1214 Satoda, M., Zhao, F., Diaz, G. A., Burn, J., Goodship, J., Davidson, H. R., Pierpont, M. E. and Gelb, B. D. (2000).
Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. *Nat Genet* **25**, 42-
46.

1216 Scerbo, P. and Monsoro-Burq, A. H. (2020). The vertebrate-specific VENTX/NANOG gene empowers neural crest
with ectomesenchyme potential. *Sci Adv* **6**, eaaz1469.

1218 Schilling, T. F., Piotrowski, T., Grandel, H., Brand, M., Heisenberg, C. P., Jiang, Y. J., Beuchle, D., Hammerschmidt,
M., Kane, D. A., Mullins, M. C., et al. (1996). Jaw and branchial arch mutants in zebrafish I: branchial arches.
Development **123**, 329-344.

1220 Schmidt, M., Huber, L., Majdazari, A., Schutz, G., Williams, T. and Rohrer, H. (2011). The transcription factors AP-
2beta and AP-2alpha are required for survival of sympathetic progenitors and differentiated sympathetic
neurons. *Dev Biol* **355**, 89-100.

1222 Schorle, H., Meier, P., Buchert, M., Jaenisch, R. and Mitchell, P. J. (1996). Transcription factor AP-2 essential for
cranial closure and craniofacial development. *Nature* **381**, 235-238.

1224 Seberg, H. E., Van Otterloo, E., Loftus, S. K., Liu, H., Bonde, G., Sompallae, R., Gildea, D. E., Santana, J. F., Manak,
J. R., Pavan, W. J., et al. (2017). TFAP2 paralogs regulate melanocyte differentiation in parallel with MITF.
PLoS Genet **13**, e1006636.

1226 Sekiguchi, R. and Hauser, B. (2019). Preparation of Cells from Embryonic Organs for Single-Cell RNA Sequencing.
Curr Protoc Cell Biol **83**, e86.

1228 Selleri, L. and Rijli, F. M. (2023). Shaping faces: genetic and epigenetic control of craniofacial morphogenesis. *Nat
Rev Genet*.

1230 Simoes-Costa, M. and Bronner, M. E. (2016). Reprogramming of avian neural crest axial identity and cell fate.
Science **352**, 1570-1573.

1232 Soldatov, R., Kaucka, M., Kastriti, M. E., Petersen, J., Chontorotzea, T., Englmaier, L., Akkuratova, N., Yang, Y.,
Haring, M., Dyachuk, V., et al. (2019). Spatiotemporal structure of cell fate decisions in murine neural crest.
Science **364**.

1234 Soriano, P. (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. *Nat Genet* **21**, 70-71.

1246 **Square, T., Jandzik, D., Romasek, M., Cerny, R. and Medeiros, D. M.** (2017). The origin and diversification of the
developmental mechanisms that pattern the vertebrate head skeleton. *Dev Biol* **427**, 219-229.

1248 **Stenzel, A., Mumme-Monheit, A., Sucharov, J., Walker, M., Mitchell, J. M., Appel, B. and Nichols, J. T.** (2022).
Distinct and redundant roles for zebrafish her genes during mineralization and craniofacial patterning. *Front Endocrinol (Lausanne)* **13**, 1033843.

1250 **Sucharov, J., Ray, K., Brooks, E. P. and Nichols, J. T.** (2019). Selective breeding modifies *mef2ca* mutant incomplete
penetrance by tuning the opposing Notch pathway. *PLoS Genet* **15**, e1008507.

1252 **Tessier, P.** (1976). Anatomical classification facial, cranio-facial and latero-facial clefts. *J Maxillofac Surg* **4**, 69-92.

1254 **Tolarova, M. M. and Cervenka, J.** (1998). Classification and birth prevalence of orofacial clefts. *Am J Med Genet* **75**,
126-137.

1256 **van Dijk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P., Carr, A. J., Burdziak, C., Moon, K. R., Chaffer, C. L.,
Pattabiraman, D., et al.** (2018). Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. *Cell* **174**, 716-729 e727.

1258 **Van Otterloo, E., Feng, W., Jones, K. L., Hynes, N. E., Clouthier, D. E., Niswander, L. and Williams, T.** (2016). MEMO1
drives cranial endochondral ossification and palatogenesis. *Dev Biol* **415**, 278-295.

1260 **Van Otterloo, E., Li, H., Jones, K. L. and Williams, T.** (2018). AP-2 α and AP-2 β cooperatively orchestrate homeobox
gene expression during branchial arch patterning. *Development* **145**.

1262 **Van Otterloo, E., Li, W., Bonde, G., Day, K. M., Hsu, M. Y. and Cornell, R. A.** (2010). Differentiation of zebrafish
melanophores depends on transcription factors AP2 alpha and AP2 epsilon. *PLoS Genet* **6**, e1001122.

1264 **Van Otterloo, E., Li, W., Garnett, A., Cattell, M., Medeiros, D. M. and Cornell, R. A.** (2012). Novel Tfap2-mediated
control of *soxE* expression facilitated the evolutionary emergence of the neural crest. *Development* **139**,
720-730.

1266 **Van Otterloo, E., Milanda, I., Pike, H., Thompson, J. A., Li, H., Jones, K. L. and Williams, T.** (2022). AP-2alpha and
AP-2beta cooperatively function in the craniofacial surface ectoderm to regulate chromatin and gene
expression dynamics during facial development. *Elife* **11**.

1270 **Vargel, I., Canter, H. I., Kucukguven, A., Aydin, A. and Ozgur, F.** (2021). ALX-Related Frontonasal Dysplasias: Clinical
Characteristics and Surgical Management. *Cleft Palate Craniofac J*, 10556656211019621.

1272 **Walker, M. B. and Kimmel, C. B.** (2007). A two-color acid-free cartilage and bone stain for zebrafish larvae. *Biotech Histochem* **82**, 23-28.

1274 **Wang, W. D., Melville, D. B., Montero-Balaguer, M., Hatzopoulos, A. K. and Knapik, E. W.** (2011). Tfap2a and Foxd3
regulate early steps in the development of the neural crest progenitor population. *Dev Biol* **360**, 173-185.

1276 **Wickham, H.** (2016). *ggplot2 : Elegant Graphics for Data Analysis*. In *Use R!*, pp. 1 online resource (XVI, 260 pages
232 illustrations, 140 illustrations in color. Cham: Springer International Publishing : Imprint: Springer.,

1278 **Williams, A. L. and Bohnsack, B. L.** (2019). What's retinoic acid got to do with it? Retinoic acid regulation of the
neural crest in craniofacial and ocular development. *Genesis* **57**, e23308.

1280 **Williams, T., Admon, A., Luscher, B. and Tjian, R.** (1988). Cloning and expression of AP-2, a cell-type-specific
transcription factor that activates inducible enhancer elements. *Genes Dev* **2**, 1557-1569.

1282 **Williams, T. and Tjian, R.** (1991). Characterization of a dimerization motif in AP-2 and its function in heterologous
DNA-binding proteins. *Science* **251**, 1067-1071.

1284 **Woodruff, E. D., Gutierrez, G. C., Van Otterloo, E., Williams, T. and Cohn, M. J.** (2021). Anomalous incisor
morphology indicates tissue-specific roles for Tfap2a and Tfap2b in tooth development. *Dev Biol* **472**, 67-
74.

1286 **Wu, Y., Kurosaka, H., Wang, Q., Inubushi, T., Nakatsugawa, K., Kikuchi, M., Ohara, H., Tsujimoto, T., Natsuyama,
S., Shida, Y., et al.** (2022). Retinoic Acid Deficiency Underlies the Etiology of Midfacial Defects. *J Dent Res* **101**, 686-694.

1290 **Xie, Z., Bailey, A., Kuleshov, M. V., Clarke, D. J. B., Evangelista, J. E., Jenkins, S. L., Lachmann, A., Wojciechowicz,
M. L., Kropiwnicki, E., Jagodnik, K. M., et al.** (2021). Gene Set Knowledge Discovery with Enrichr. *Curr Protoc*
1, e90.

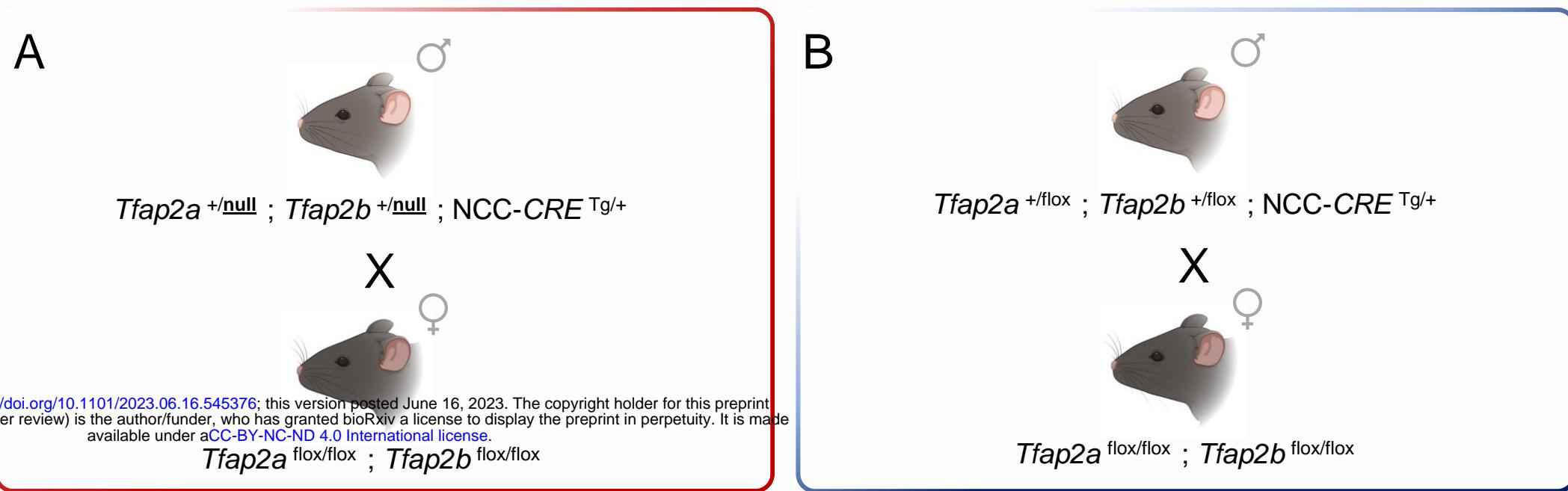
1292 **Xiong, Z., Dankova, G., Howe, L. J., Lee, M. K., Hysi, P. G., de Jong, M. A., Zhu, G., Adhikari, K., Li, D., Li, Y., et al.**
(2019). Novel genetic loci affecting facial shape variation in humans. *Elife* **8**.

1296 **Xu, J., Liu, H., Lan, Y. and Jiang, R.** (2022). The transcription factors Foxf1 and Foxf2 integrate the SHH, HGF and
TGFbeta signaling pathways to drive tongue organogenesis. *Development* **149**.

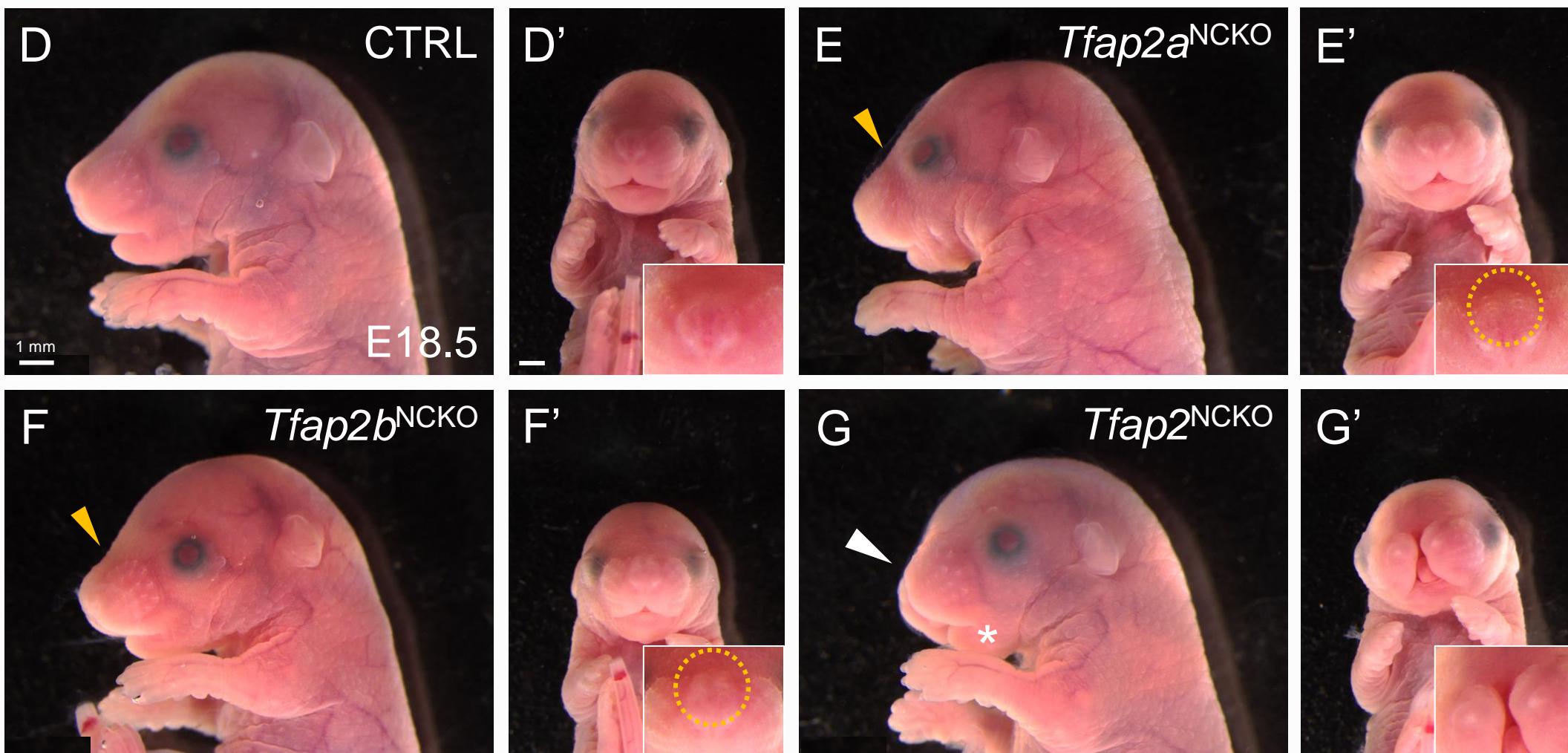
1298 **Xu, P., Balcerski, B., Ciozda, A., Louie, K., Oralova, V., Huysseune, A. and Crump, J. G.** (2018). Fox proteins are
modular competency factors for facial cartilage and tooth specification. *Development* **145**.

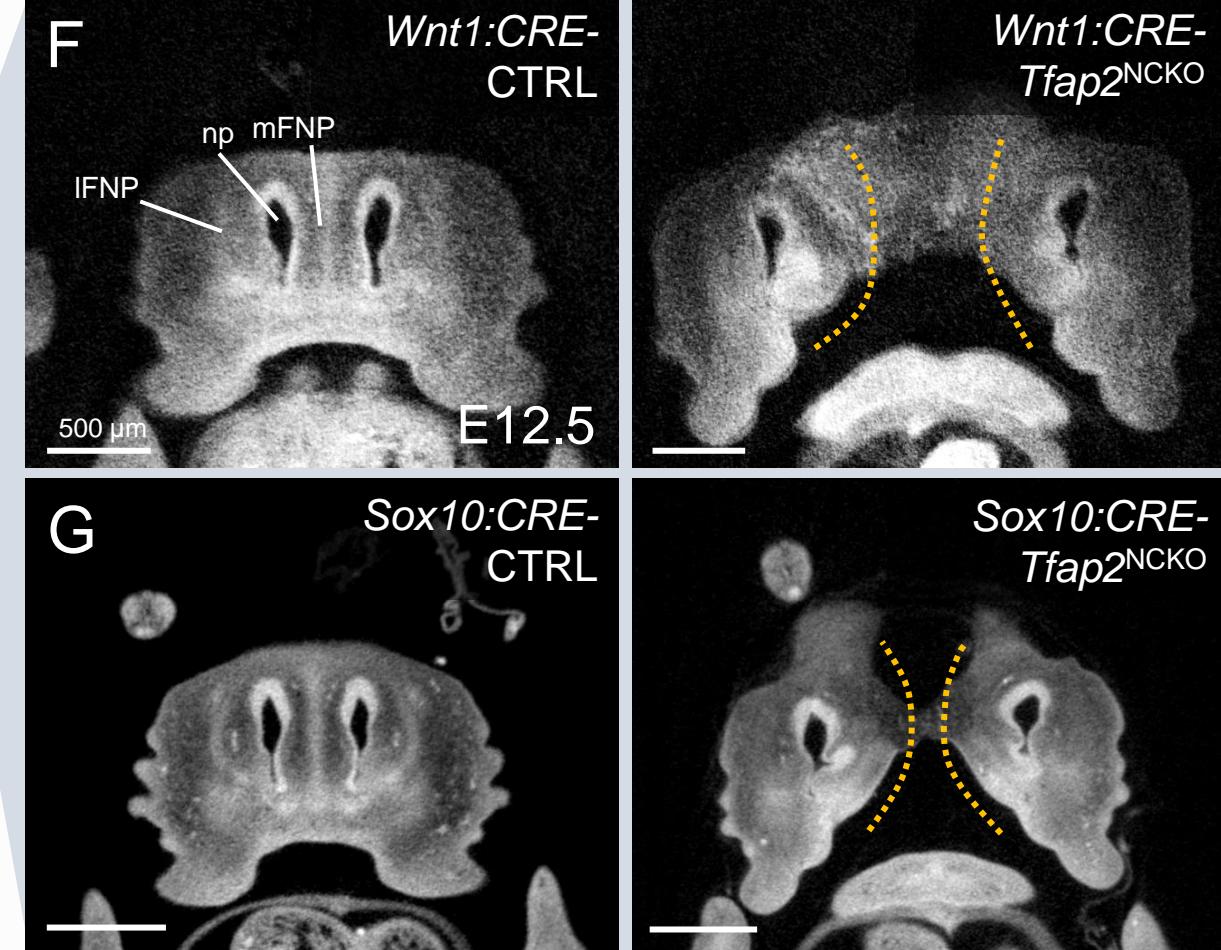
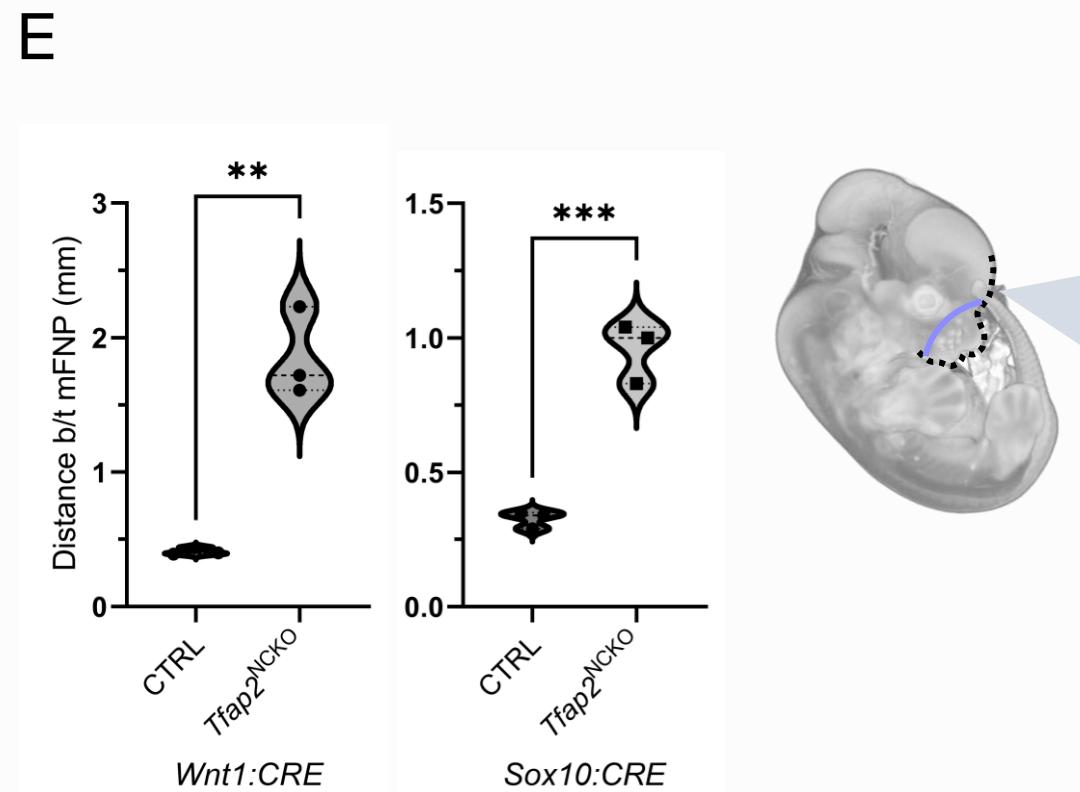
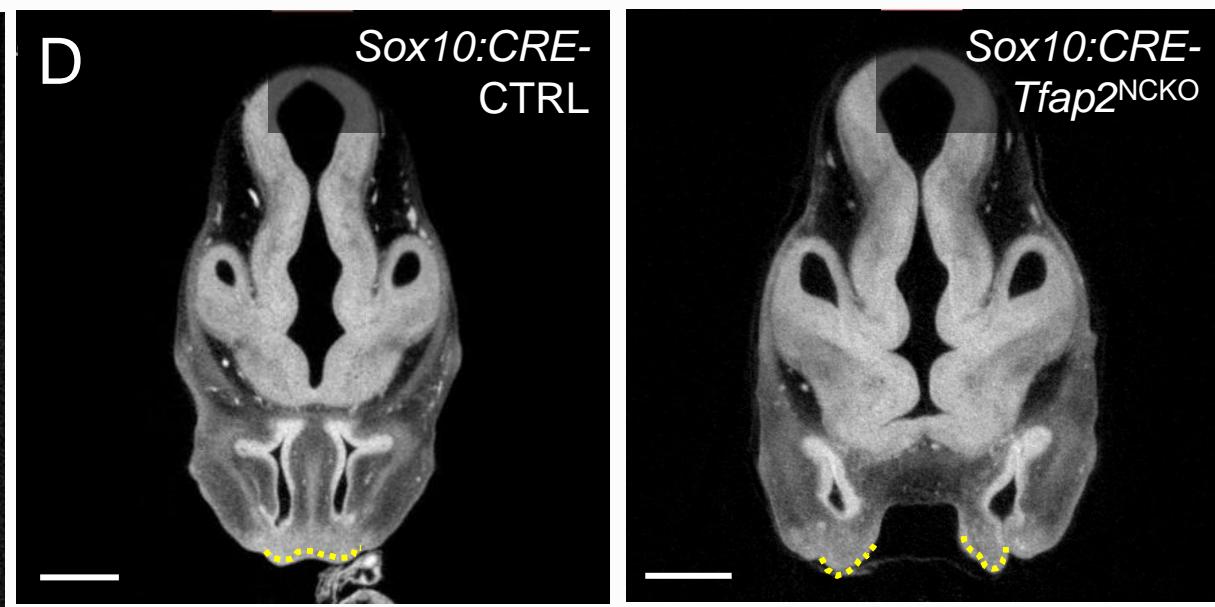
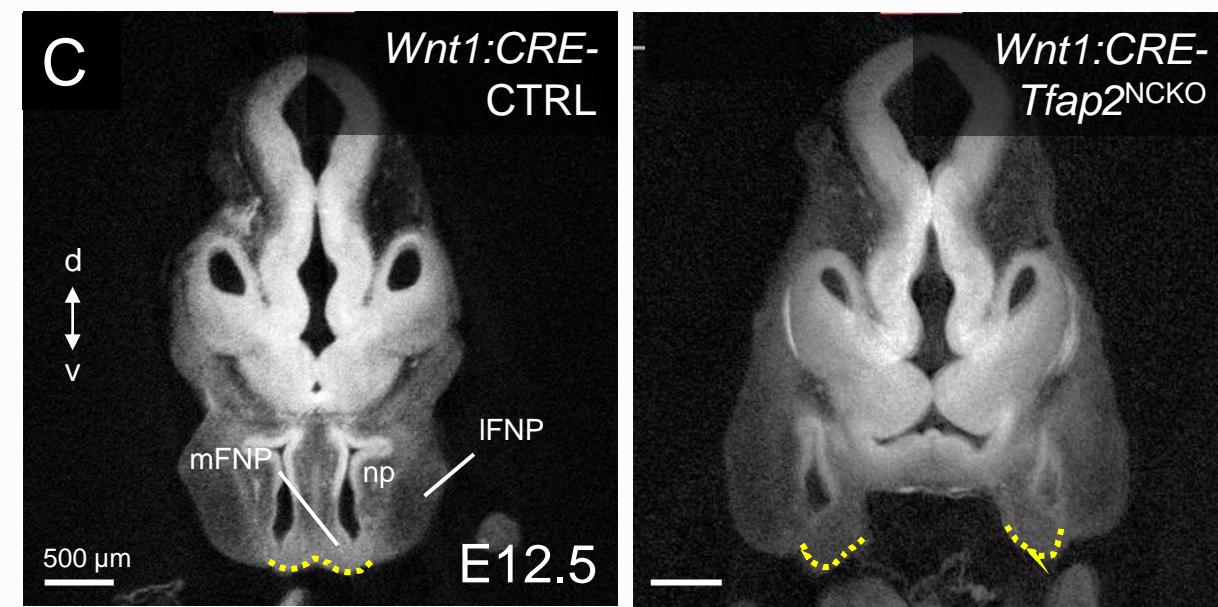
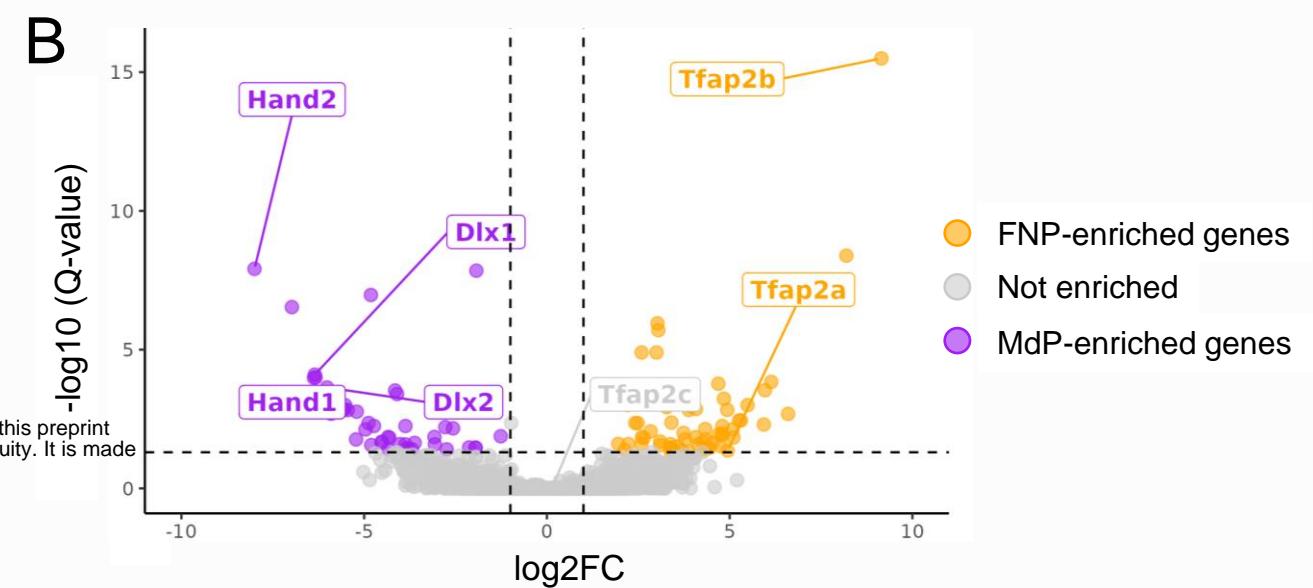
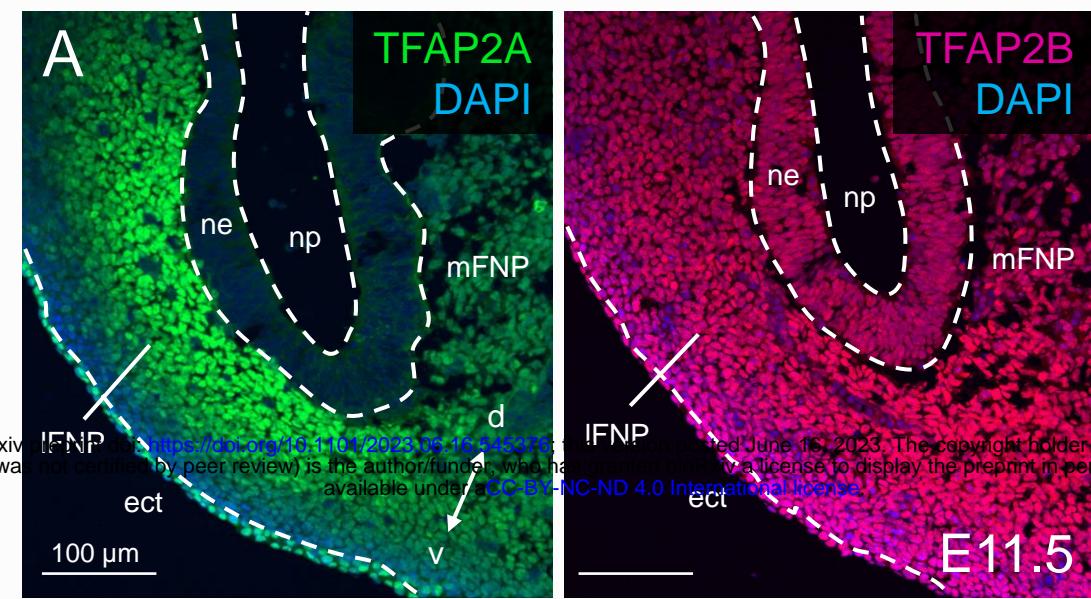
1300 **Xu, P., Yu, H. V., Tseng, K. C., Flath, M., Fabian, P., Segil, N. and Crump, J. G.** (2021). Foxc1 establishes enhancer
accessibility for craniofacial cartilage differentiation. *Elife* **10**.

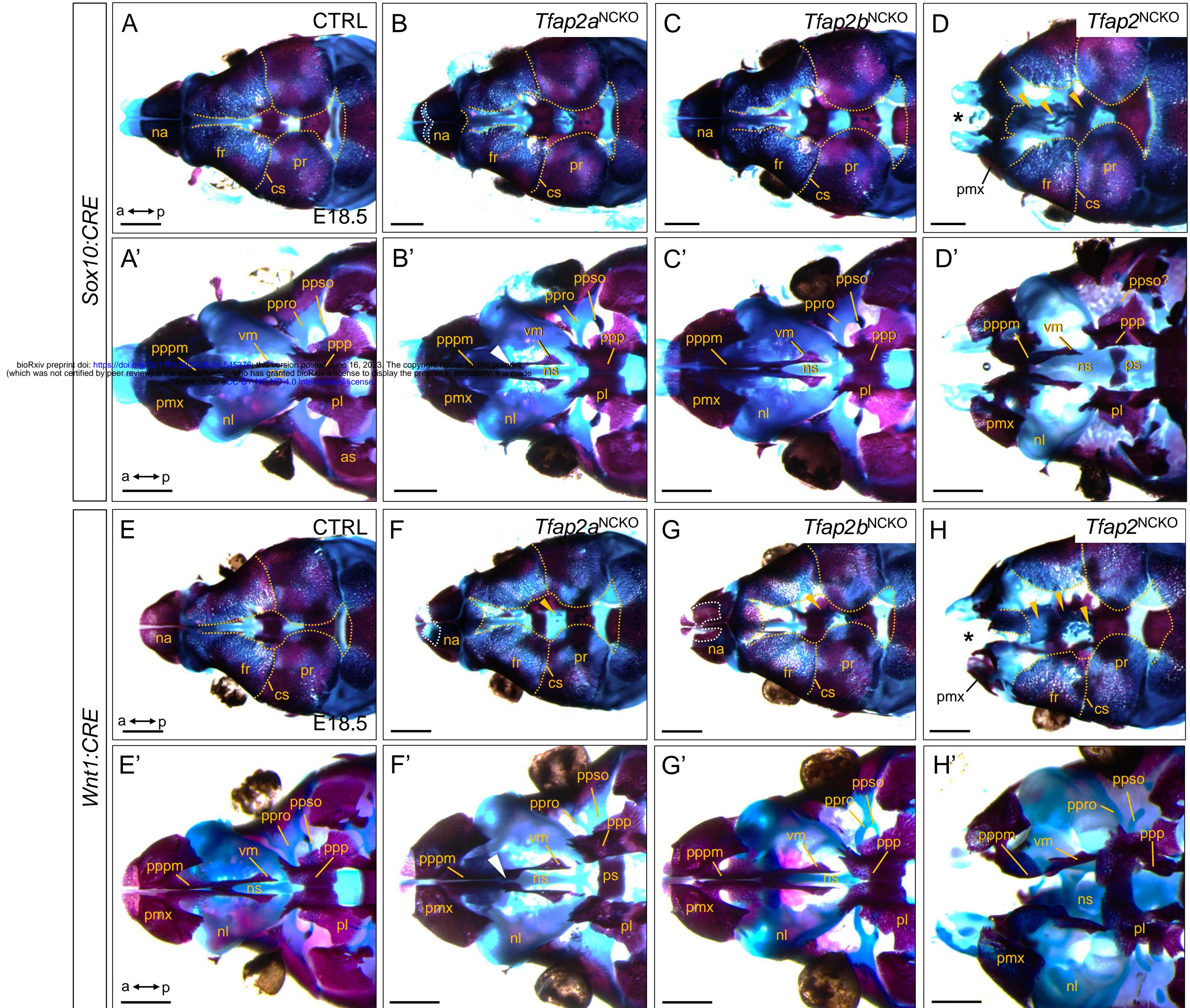
1302 **Yoon, B., Yeung, P., Santistevan, N., Bluhm, L. E., Kawasaki, K., Kueper, J., Dubielzig, R., VanOudenhove, J., Cotney,
J., Liao, E. C., et al.** (2022). Zebrafish models of alx-linked frontonasal dysplasia reveal a role for Alx1 and
Alx3 in the anterior segment and vasculature of the developing eye. *Biol Open* **11**.

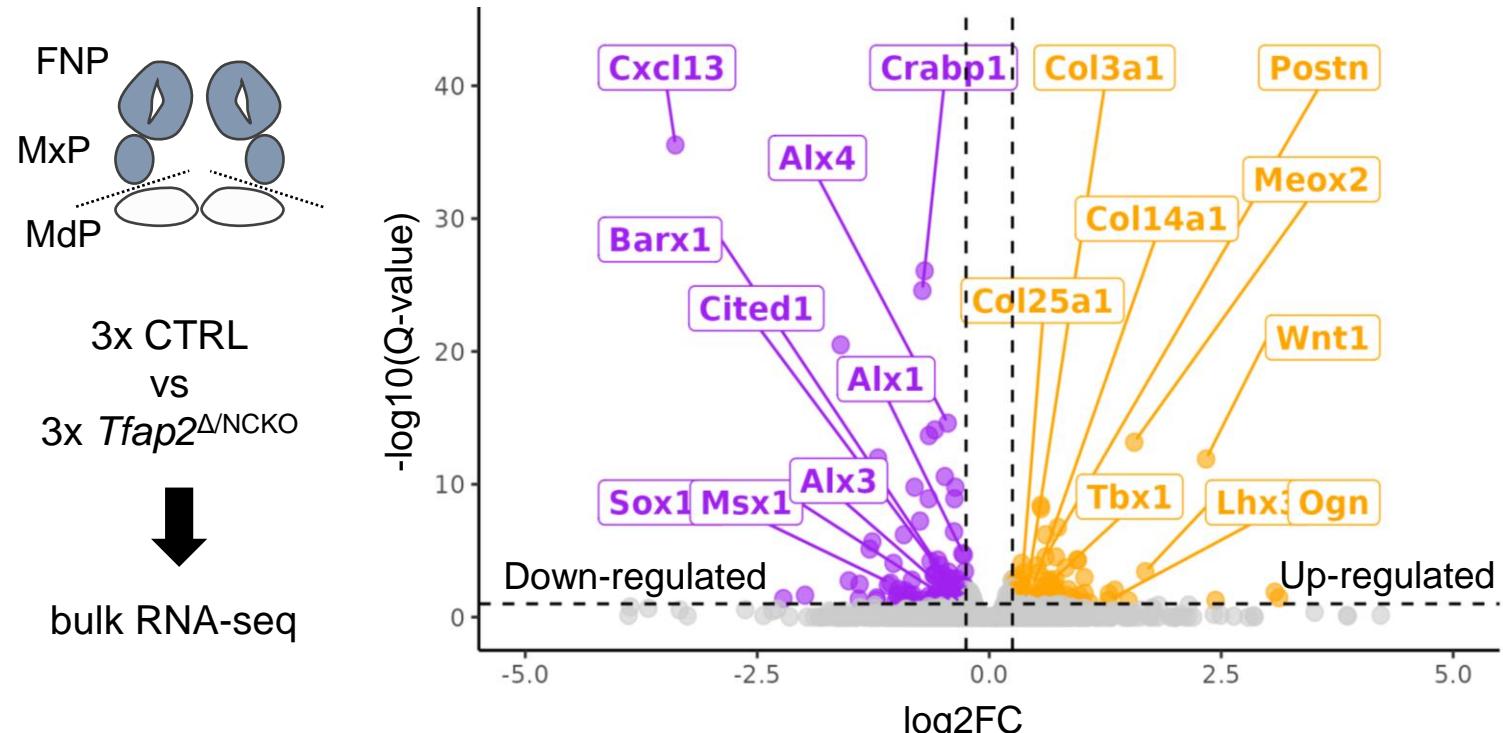

1304 **York, J. R. and McCauley, D. W.** (2020). The origin and evolution of vertebrate neural crest cells. *Open Biol* **10**,
190285.

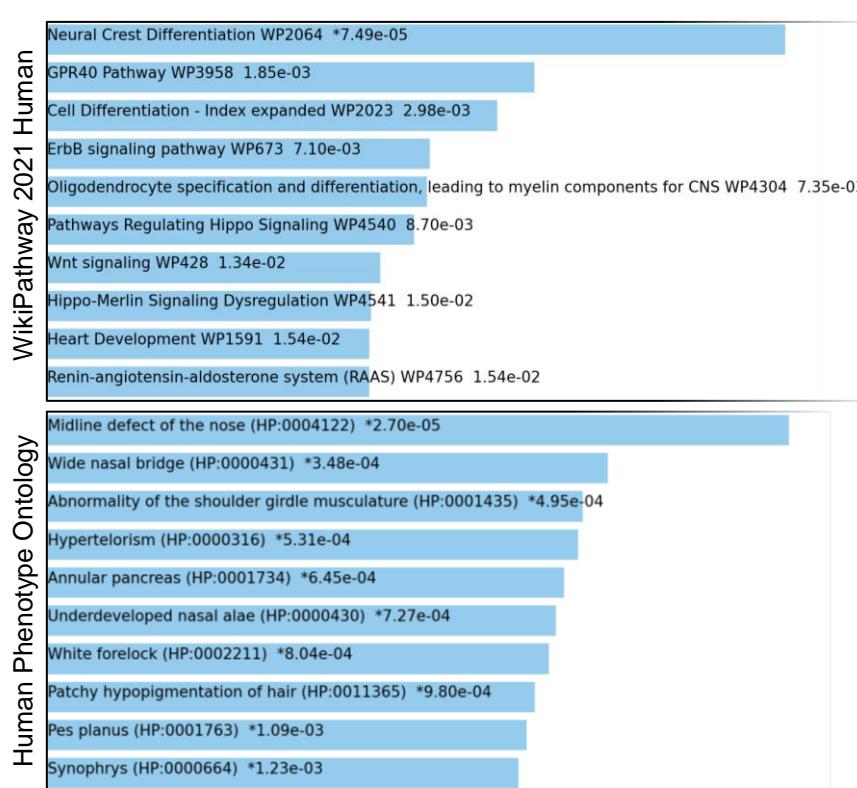
1306 **Zalc, A., Rattenbach, R., Aurade, F., Cadot, B. and Relaix, F.** (2015). Pax3 and Pax7 play essential safeguard functions
against environmental stress-induced birth defects. *Dev Cell* **33**, 56-66.


1308 **Zhang, J., Hagopian-Donaldson, S., Serbedzija, G., Elsemore, J., Plehn-Dujowich, D., McMahon, A. P., Flavell, R. A.
and Williams, T.** (1996). Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-
2. *Nature* **381**, 238-241.

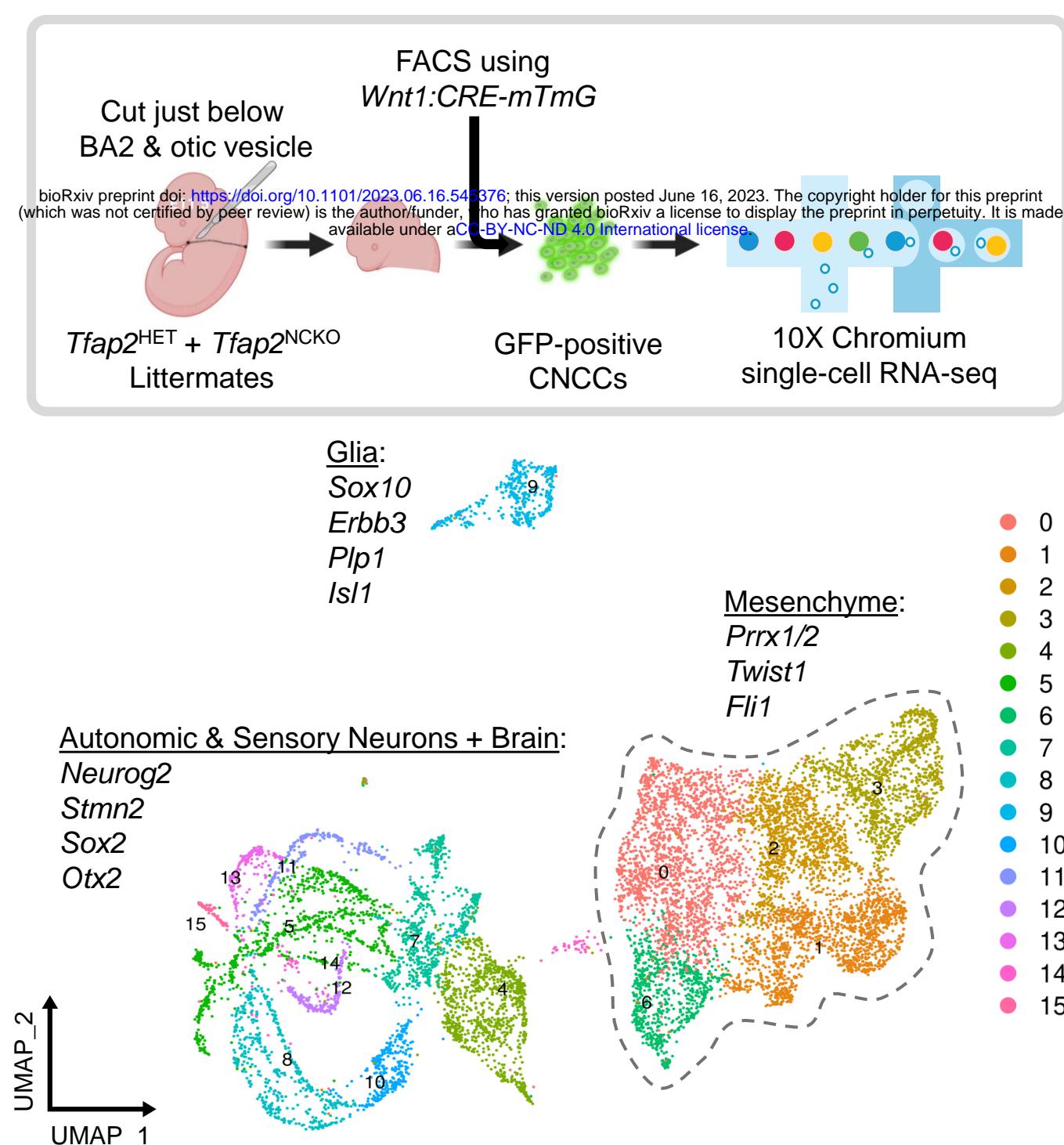






1310 **Zhao, Q., Behringer, R. R. and de Crombrugge, B.** (1996). Prenatal folic acid treatment suppresses acrania and
meroanencephaly in mice mutant for the Cart1 homeobox gene. *Nat Genet* **13**, 275-283.


1312

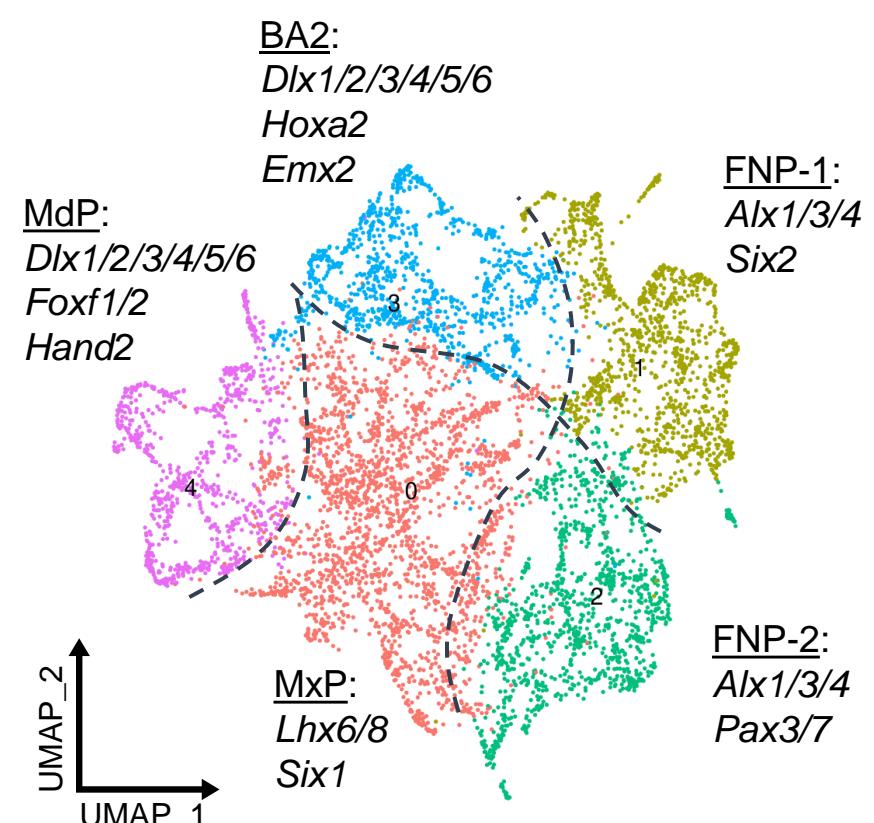

Nomenclature in this Study		<i>Tfap2a</i>	<i>Tfap2b</i>	NCC-CRE	Previous Nomenclature (Van Otterloo et al., 2018)	
Null/ Conditional	CTRL	any combination		negative	CTRL	
	<i>Tfap2</i> ^{Δ/HET}	+ / flox	+ / flox	positive		
	<i>Tfap2a</i> ^{Δ/NCKO}	<u>null</u> / flox	+ / flox	SCM-A		
	<i>Tfap2b</i> ^{Δ/NCKO}	+ / flox	<u>null</u> / flox	SCM-B		
Conditional/ Conditional	<i>Tfap2</i> ^{Δ/NCKO}	<u>null</u> / flox	<u>null</u> / flox		DCM	
	CTRL	any combination		negative	not applicable	
	<i>Tfap2</i> ^{HET}	+ / flox	+ / flox	positive		
	<i>Tfap2a</i> ^{NCKO}	flox / flox	+ / flox			
	<i>Tfap2b</i> ^{NCKO}	+ / flox	flox / flox			
	<i>Tfap2</i> ^{NCKO}	flox / flox	flox / flox			



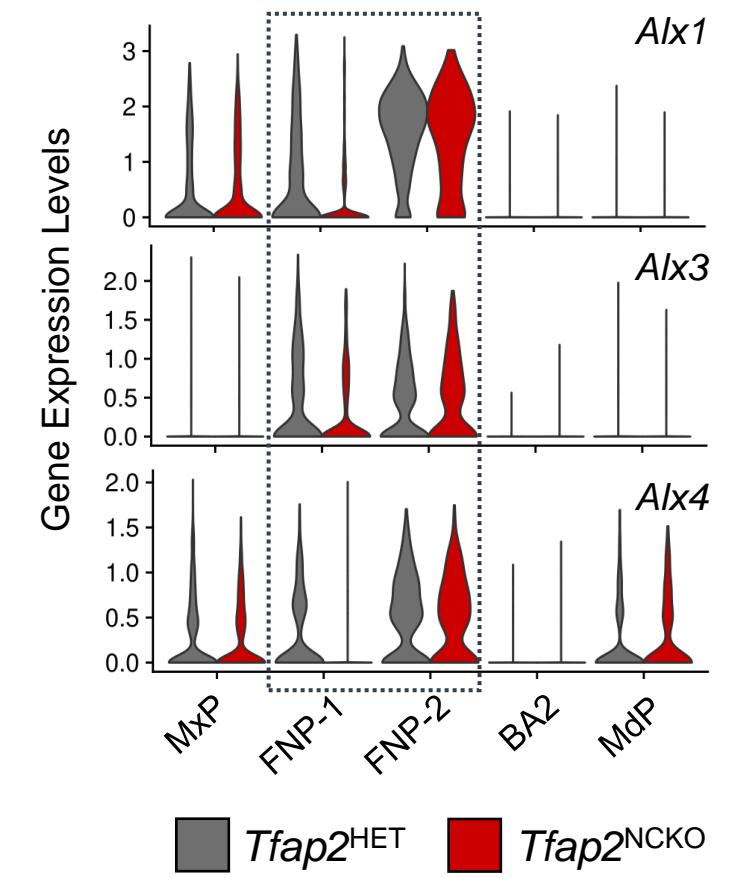
A

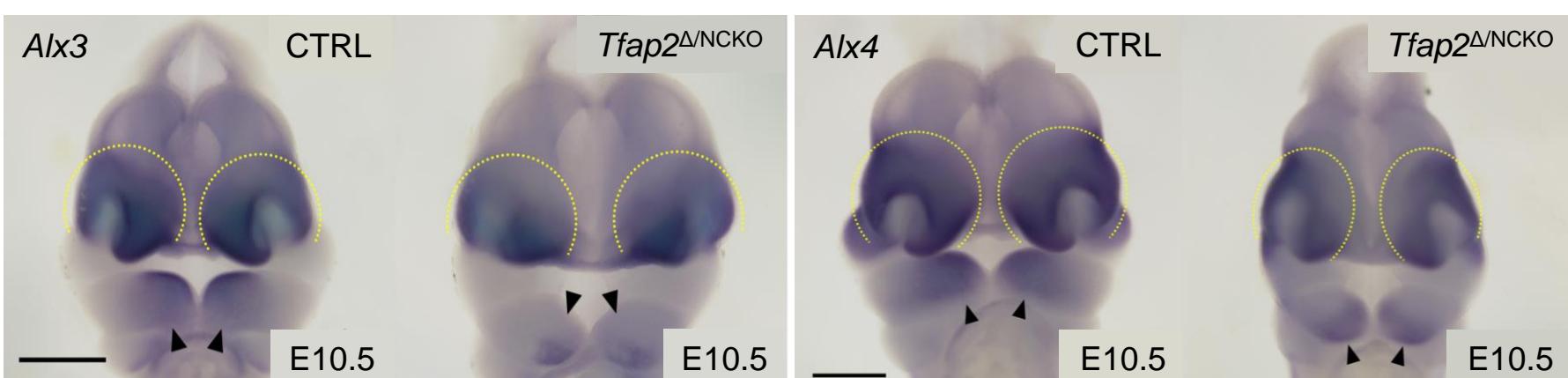


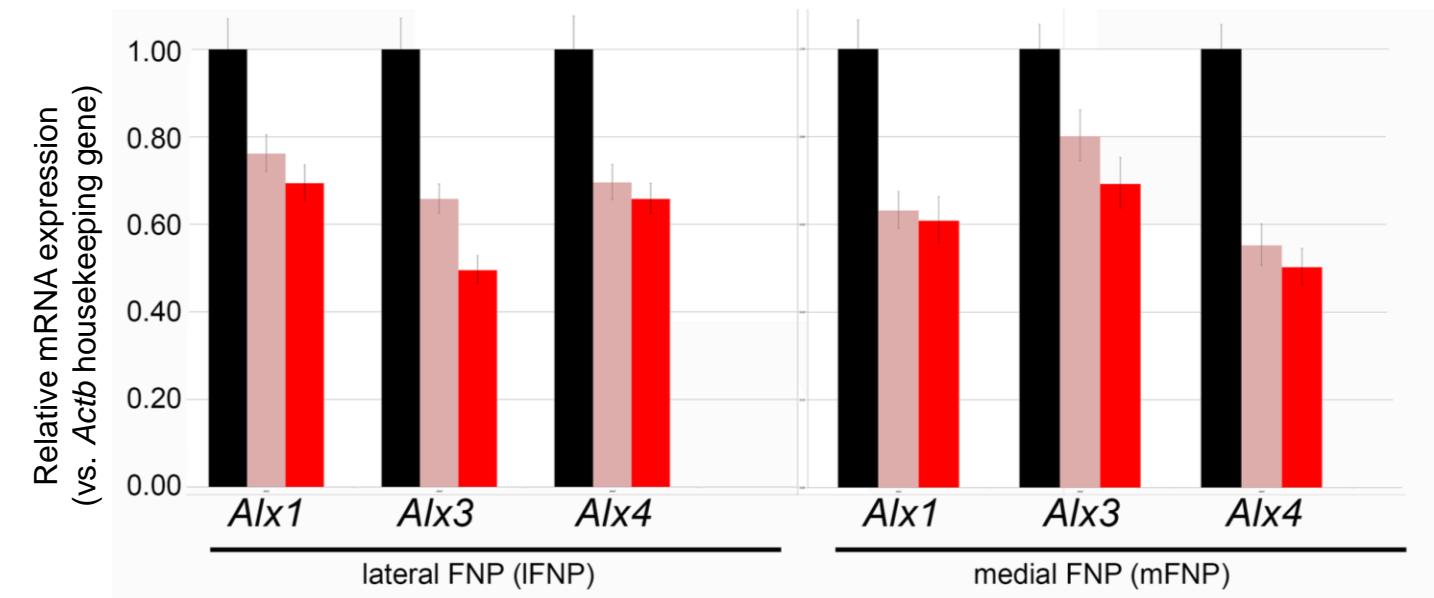
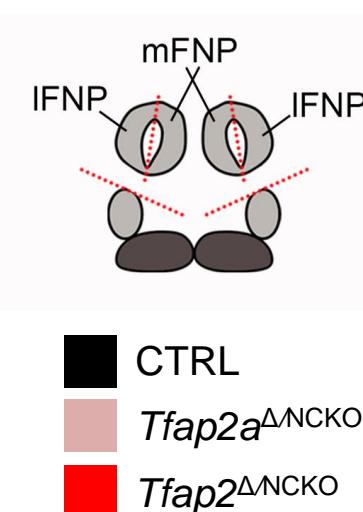
B

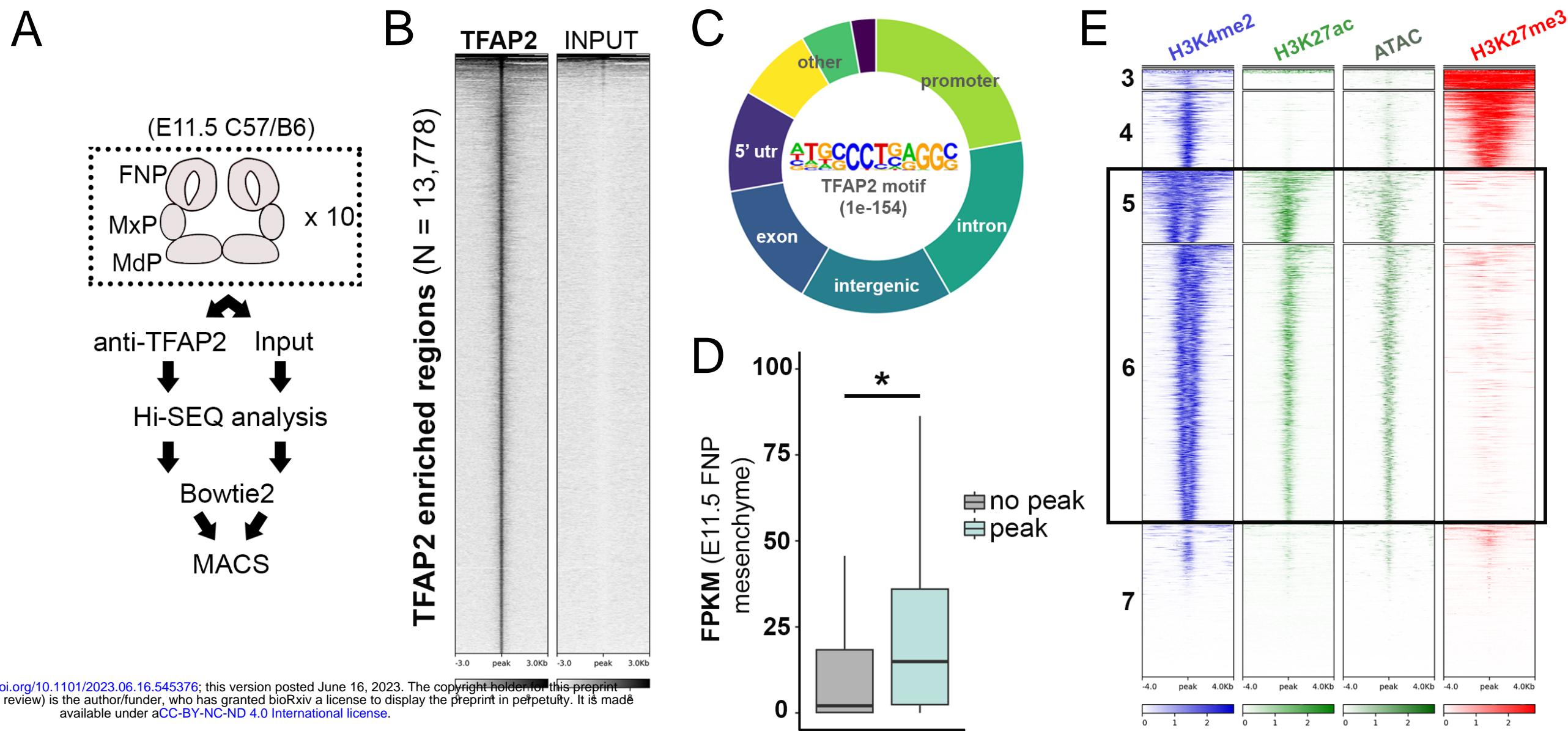


-log10(p-value)

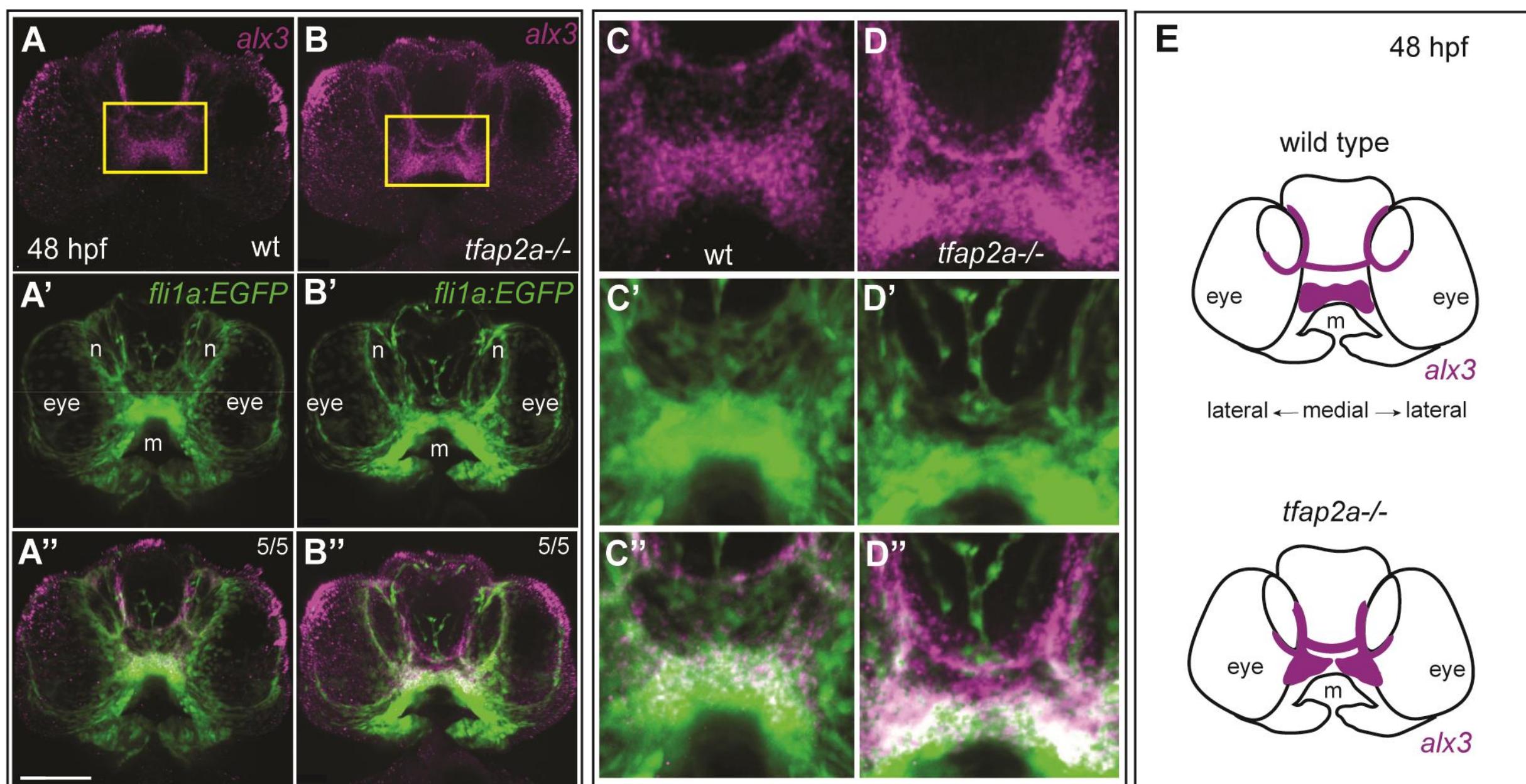

C

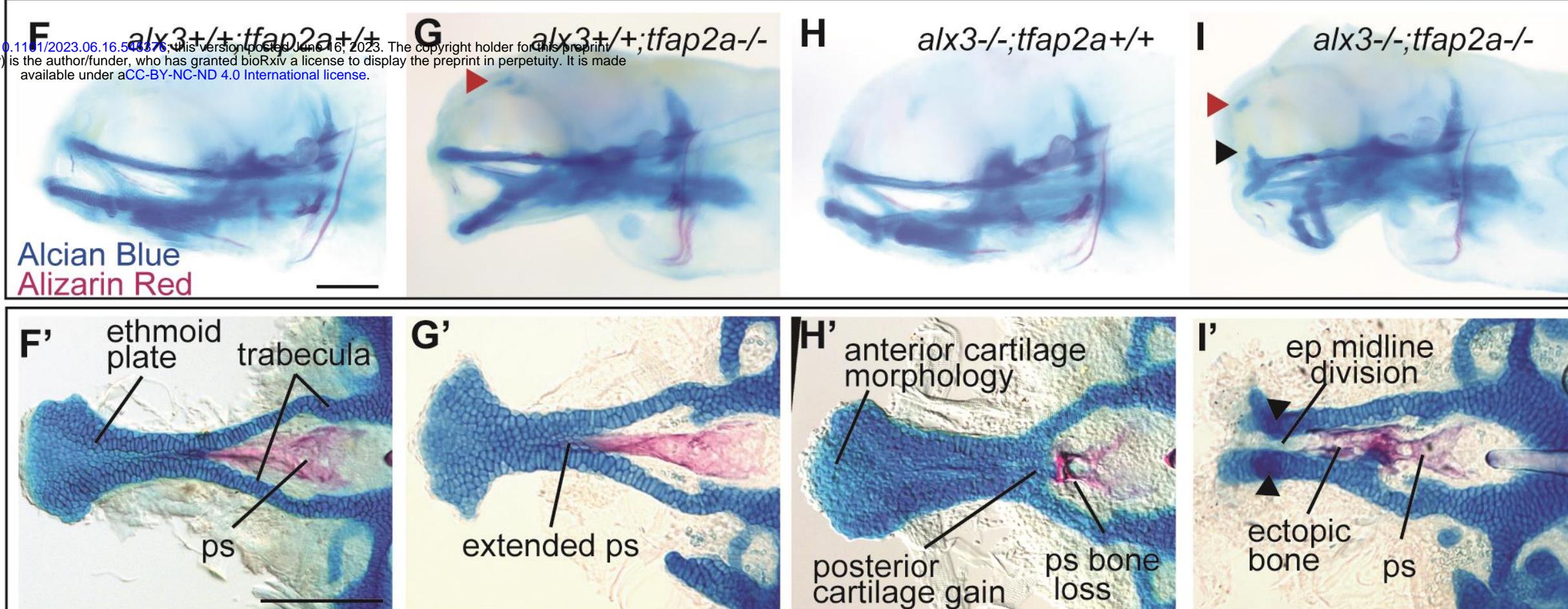

D



E



F


G



bioRxiv preprint doi: <https://doi.org/10.1101/2023.06.16.545376>; this version posted June 16, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

bioRxiv preprint doi: <https://doi.org/10.1101/2023.06.16.546475>; this version posted June 16, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

J

		<i>tfap2a</i> ^{-/-}		
		<i>alx3</i> ^{+/+} (n=11)	<i>alx3</i> ^{+/-} (n=11)	<i>alx3</i> ^{-/-} (n=11)
<i>tfap2a</i> ^{-/-} -associated phenotypes	ethmoid plate divided at midline	9%	27%	91%* [^]
	ethmoid plate anterior dorsal ectopic cartilage	27%	64%	91%*
	eye cartilaginous ectopias	36%	73%	100%*
new phenotype	expanded parasphenoid	0%	18%	64%*
		<i>alx3</i> ^{-/-}		
		<i>tfap2a</i> ^{+/+} (n=14)	<i>tfap2a</i> ^{+/-} (n=19)	<i>tfap2a</i> ^{-/-} (n=15)
<i>alx3</i> ^{-/-} -associated phenotypes	ethmoid plate anterior cartilage morphology	100%	95%	9%* [^]
	ethmoid plate posterior cartilage gain	57%	79%	9%* [^]
	parasphenoid bone loss	90%	74%	36%*
		<i>alx3</i> ^{+/-}		
		<i>tfap2a</i> ^{+/+} (n=13)	<i>tfap2a</i> ^{+/-} (n=30)	<i>tfap2a</i> ^{-/-} (n=11)
<i>alx3</i> ^{+/-} -associated phenotypes	ethmoid plate anterior cartilage morphology	15%	20%	82%* [^]
	ethmoid plate posterior cartilage gain	38%	20%	82%* [^]
	parasphenoid bone loss	0%	7%	64%* [^]