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ABSTRACT

Animal psychophysics can generate rich behavioral datasets, often comprised of many 1000s of trials for
an individual subject. Gradient-boosted models are a promising machine learning approach for analyzing
such data, partly due to the tools that allow users to gain insight into how the model makes predictions. We
trained ferrets to report a target word’s presence, timing, and lateralization within a stream of consecutively
presented non-target words. To assess the animals’ ability to generalize across pitch, we manipulated
the fundamental frequency (FO) of the speech stimuli across trials, and to assess the contribution of
pitch to streaming, we roved the FO from word token-to-token. We then implemented gradient-boosted
regression and decision trees on the trial outcome and reaction time data to understand the behavioral
factors behind the ferrets’ decision-making. We visualized model contributions by implementing SHAPs
feature importance and partial dependency plots. While ferrets could accurately perform the task across
all pitch-shifted conditions, our models reveal subtle effects of shifting FO on performance, with within-trial
pitch shifting elevating false alarms and extending reaction times. Our models identified a subset of
non-target words that animals commonly false alarmed to. Follow-up analysis demonstrated that the
spectrotemporal similarity of target and non-target words rather than similarity in duration or amplitude
waveform was the strongest predictor of the likelihood of false alarming. Finally, we compared the results
with those obtained with traditional mixed effects models, revealing equivalent or better performance for
the gradient-boosted models over these approaches.

Keywords:  Shapley Additive Explanations; auditory scene analysis; pitch; ferret, behavioral data
analysis in neuroscience;

AUTHOR SUMMARY

The sorts of listening challenges faced by real-world listeners are rarely captured by most laboratory-based
auditory paradigms, particularly those testing animal models. However, many labs are attempting to
utilize more realistic experiments, and more complicated behavioral paradigms require more sophisticated
approaches to analyzing the resulting data. Here, we used a new behavioral paradigm to test the ability of
ferret listeners to identify target speech sounds and assess their ability to generalize across changes in pitch.
To make sense of the resulting dataset, we used machine learning algorithms to understand how trained
ferrets perform this task. Gradient-boosted regression and decision trees are well-established machine
learning methods that do not require users to predetermine interaction effects and are accompanied by
visualization methods that allow insights to be gained into how multiple factors ultimately shape behavior.
We compare the use of gradient-boosted models to more standard regression approaches and, by applying
these methods, we demonstrate key features of ferrets’ performance on this task. Our results suggest that
this machine learning approach is ideal for analyzing behavioral data in animal models.

INTRODUCTION

Psychophysics paradigms in non-human animals are often designed to yield tractable datasets for relating
brain and behavior. Most common laboratory-based paradigms rely on artificial stimuli presented within
the confines of simple tasks — such as two-alternative forced choice paradigms in which animals must
discriminate a single sound token, or go/no-go tasks in which animals detect a change in a repeating
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sequence of sounds. Such paradigms offer tight experimental control, and can be successfully analyzed
using standard statistical approaches such as mixed effect models and more sophisticated approaches that
allow, for example, the identification of how and when non-sensory factors shape performance (Ashwood
et al. Roy et al. ). Yet animals can be trained to perform more complex tasks, generating rich
behavioral datasets that potentially can require new approaches for their interpretation. One promising
approach for modeling both categorical and continuous data is gradient-boosted decision trees (Grinsztajn,
Opyallon, and Varoquaux ). Not only are such models powerful, but they are also interpretable through
the use of tools that allow visualisation of the contributions of variables and combinations of variables to
prediction outcomes.

The general approach of the gradient-boosted decision tree model is a form of ensemble learning in
which we use an initial weak decision tree to predict an outcome of a trial and then iteratively build upon
the error of the first tree (after calculating the loss) by further splitting the data in a way that improves the
model prediction. Once our loss plateaus or we reach the maximum number of training epochs, we stop
training the model and calculate our test accuracy, or how well the model could predict our target variable
on a held-out test set of data. We chose this method as our data is inherently dense (from long periods of
behavioral training and testing) and tabular, which makes gradient-boosted regression and decision trees an
excellent candidate for the prediction of binary data (such as was the trial a hit or a miss) and continuous
data (such as reaction times) compared to a nonlinear neural-network-based classifier (Grinsztajn, Oyallon,
and Varoquaux ). Here, we highlight the utility of both the model itself and the visualization tools
available to understand what features the model finds informative and compare this approach to more
traditional mixed effects models.

We applied gradient-boosted models to animal psychoacoustics data designed to probe the role of pitch
in perceptual invariance and auditory scene analysis. Pitch is a fundamental feature of a person’s voice,
and a hallmark of human voice processing is recognizing a word regardless of voice pitch. Differences in
pitch allow us to separate competing voices, while sounds are grouped together over time into ‘streams’
if they share a common pitch (Darwin ). However, it is not clear whether the ability to use pitch
continuity to link sounds into streams is uniquely human or whether it can be considered a more general
feature of the mammalian auditory system. To address such issues, we trained ferrets to detect the word
“instruments” within a stream of other randomly drawn non-target words (Sollini and Bizley, in prep.).
Within a trial, all word tokens were drawn from a single female or male voice, and the whole stream could
be shifted upwards or downwards in fundamental frequency (FO, which determines pitch). The FO of each
word within a stream could also be randomly shifted to assess whether pitch contributes to streaming.
We collected 20487 trials of data from 5 animals. We analyzed these using gradient-boosted models to
address two research questions: firstly, can trained ferrets generalize their learned discrimination across
variations in pitch, and secondly, whether, like humans, animals use the pitch as a streaming cue to link
sounds together over time.

Through the application of gradient-boosted models, we were able to demonstrate that while perfor-
mance was robust to changes in pitch, shifting the FO of words within a trial significantly slowed reaction
times and elevated the likelihood of a false alarm, providing evidence that ferrets, like humans, use pitch to
form perceptual streams. Moreover, this approach allowed us to identify words that ferrets consistently
confused with the target word, suggesting that errors were not simply random lapses in attention. Analysis
of acoustic features of non-target words identified spectro-temporal similarity but not duration or waveform
similarity as a predictor of the likelihood of a false alarm.
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Figure 1. Task design and basic behavioral data. A, Schematic of the experimental booth. To trigger a
trial, ferrets had to nose-poke a center port that contained an IR sensor and water port. This triggered the
presentation of a stream of words from either the left or right speaker. B, Ferrets were trained to remain at
the center until the presentation of the target word (‘instruments’) and received a water reward at a lateral
port if they correctly released within 2s of target presentation and responded to the lateral port whose side
matched that of the speech stream. C, Catch trials did not contain the target word, and the ferret was
rewarded if she remained at the central port for the duration of the trial. D, Behavioral metrics across
animals distributed by talker type. Bars indicate the across-animal average; symbols show the individual
animals. Trials are separated according to the identity of the talker and the pitch roving condition (control
= no pitch shifting, inter = FO shifting of the whole trial, intra = FO shifting of the tokens within a trial).
(D) % correct over all trials, E, hits; F, false alarms; G, sensitivity (d”). H, impact of FO on hit rate (top)
and false alarm rate (bottom). False alarm rates are plotted separately for intra-trial pitch roving because
the FO changed from token to token, making it impossible to assign a false alarm to a distractor of a given
FO. 1, Violin plot of reaction times during correct responses on trials in which the target was correctly
identified for all animals, separated by talker type.
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Supplementary Figure 1. A, bias across trial conditions and talker types; B, reaction times of each
animal for correct responses color-coded by FO of the target word.

Ferrets can discriminate speech sounds, and their performance is robust to pitch shifting
Ferrets were trained to detect the target word “instruments” within a stream of randomly drawn non-target
word tokens. Subjects initiated a trial by nose-poking in a central port that contained an infrared sensor
and water delivery spout and were required to remain at the center port until the presentation of the target
word. On each trial, all tokens came from the same talker and position in space, and ferrets were rewarded
for responding at the lateral port adjacent to the speaker within 2s of the target word (Fig. 1A, B). On
catch trials, in which only non-target words were presented, ferrets were rewarded for remaining at the
central port (Fig.1C). Ferrets were trained with a single male and single female voice. Once performance
was stable, trials were introduced in which the FO of the whole trial was shifted (’inter-trial roving’) or
individual word tokens within the trial were shifted ('intra-trial roving’). We will first provide an overview
of the data before using Gradient Boosted decision trees to understand and quantify the factors that shape
the animals’ performance in this task.

Ferrets’ were able to learn and perform the task across control and FO-shifted conditions; performance
ranged from 57% -85% correct for all animals and conditions, where 33% would be considered chance
performance (Fig.1D). Hit rates were generally high (Fig.1E) and false alarms low (Fig. 1F) for both
talkers and both types of pitch-shifted trials. Overall, performance was higher for the female voice, with a
small decrease in d’ evident for pitch-roved trials compared to natural FO ones (Fig.1G). Nonetheless, all d’
values were well above 1, indicating the animals were well able to perform the task.

To understand whether ferrets form a pitch-tolerant representation of the target word, we considered
the impact of FO changes on performance (Fig 1D-F). Two-way repeated measures ANOVAs with factors
talker (male/female) and rove type (control / inter / intra) showed that for hit rates, there was a significant
effect of talker and significant talker x rove interaction but no significant pairwise comparisons across
pitch roved conditions (supplementary tables 1 and 2). For false alarms, there was again a significant
effect of talker, rove, and talker x rove interaction, with posthoc comparison showing that for the female
talker control, FOs elicited significantly lower false alarm levels than either rove type but that the rove
types were not significantly different from each other (supplementary tables 3 and 4). For sensitivity (d”)
measures, there were again significant effects of talker and rove type, but post hoc comparisons showed no
rove conditions to be significantly different from each other (supplementary tables 5 and 6). Therefore,
overall, while subjects were better on female talker trials than on male talker trials, the performance on
inter and intra-trial roved trials was largely equivalent (Fig.1D-F). When the performance was broken down
according to the actual FO value, we observed there was a modest influence of FO on hit rates, such that
the highest hit rates were observed for the female talker’s up-shifted FO trials (Fig.1H). False alarms, in
contrast, were lower for the control FO values for both the male and female talkers.

Reaction times varied by ferret and according to the talker (Figure S1B). The trend for lower hit rates
at lower FO and for the female voice to elicit faster reaction times may be a consequence of training, as 3/5
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subjects were initially trained on only the female talker. However, while the hearing range of ferrets fully
encompasses that of humans, their frequency resolution is poorer and most notably so at the lowest audible
frequencies (Sumner et al. ), and this too may limit performance at the lowest FOs.

These basic behavioral metrics are designed only to show that ferrets can successfully discriminate
a target word from non-target words despite variation in FO. We now turn to gradient-boosted models
(GBMs) to further consider how acoustic and non-acoustic factors influence individual trial outcomes.

Introduction to gradient boosted models

Gradient boosting is a supervised machine learning algorithm used for classification and regression
problems and is particularly advantageous due to the tools available to visualize how a model exploits
information to perform the task. The basic principle is that decision trees are built by splitting observations
based on feature values, with the algorithm seeking and selecting a split that results in the highest gain in
information by comparing predicted outcomes to observed ones. We chose this machine learning approach
as our data is abundant in sample size and tabular. While its application to animal behavioral work is to our
knowledge novel, this scenario of structured, dense data is ideal for gradient-boosted decision trees, as
this type of method has often been used in recommender systems (Luo et al. ) as well as economic
predictive modeling for human behavior in customer loyalty (Machado, Karray, and Sousa ). A
machine learning approach is ideal because it can uncover non-linear dependencies in the data without
users being required to predetermine interaction effects in their model. Moreover, we can consider multiple
stimulus features, such as the talker and pitch of the word, as well as the trial history parameters (was the
previous trial correct, was the previous trial a catch trial) and non-stimulus features (such as the timing
of the trial within the session, the time of the target word within the trial, and the side that the animal
was required to respond) that may influence performance but do not necessarily inform our experimental
hypothesis.

We used lightGBM (Ke et al. ) to implement a gradient-boosted machine (GBM) approach. We
considered two types of models — decision-tree models that performed categorical discriminations, for
considering whether responses to targets were misses or hits and whether responses to catch trials were
false alarms or correct rejections, and decision-tree regression models to predict continuous reaction time
data. In each case, we trained models using 5-fold cross-validation and used held-out data to report both the
accuracy and balanced accuracy (which is particularly helpful for data in which observations are unequal in
number between categories and where accuracy may, therefore, be overinflated). To assess which variables
were utilized by the model, we used two metrics; feature importance and permutation importance. The
GBM decision and regression tree method consists of many decision trees, and features will potentially be
used many times to split the data; to understand the contribution of a feature, the gain provided must be
aggregated across trees. Therefore, the feature importance metric assesses how a given feature improves the
model’s accuracy by summing the gain provided by that feature across all of the times that it’s used in the
model. A higher gain implies that the feature is more important for generating predictions. In lightGBM,
the loss functions (from which gain is computed) are the mean squared error (MSE) for regression tasks and
the log loss for classification tasks. Its units are the same as the target variable, seconds, and its upper and
lower bounds are minus to positive infinity. Permutation importance provides a complementary measure
of the importance that any given feature provides to the model. The permutation feature importance is
the decrease in a model score when a single feature is randomly permuted. The higher the permutation
importance, the larger the contribution a variable makes to the model; a score of 0.1 for a model with 70%
accuracy reflects a drop to 60% accuracy for a classification problem. One caveat with the permutation
importance is that it assumes that all variables are independent, so it can underestimate the contribution of
a given variable in some circumstances (Molnar ).

To visualise the way in which variables impacted model predictions, and how variables interact with
one another we used SHapely Additive exPlanations (SHAPs) which are a common way of understanding
machine learning models based on Shapely values. Shapely values were derived from cooperative game
theory and represent the average contribution of each feature to all possible combinations of features
(Lundberg and Lee ). SHAPs extend this to machine learning models; for every feature and every
observation in the training set, we obtain a SHAP value, and therefore, there are as many SHAP values
as there are observations. For a classification task the SHAP values are expressed as the log(odds) so
can be directly interpreted as the impact of a given feature on the probability e.g. of making a miss. For
our regression models, the SHAP scores are the impact on reaction times, expressed in seconds. Here
we use SHAP summary plots to provide intuitive and interpretable visualizations of the effects of all
variables in a model and partial dependency plots to visualize combinations of features of interest. The
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partial dependency plots are particularly helpful for understanding how, for example, behavior varies across
individual subjects and for examining the potentially non-linear interactions between features that the
model has learned to exploit.

Talker identity drives miss responses

We used lightGBM (Ke et al. ) to model the likelihood of a miss vs hit response using only trials in
which the target sound was presented(i.e., excluding false alarms and catch trials). The variables provided
to the model were: the talker (male/female), the side (left/right) of the audio presentation, the trial number
(in the session), the subject identity (ID), target presentation time (within the trial), the target FO, whether
the previous trial was a catch trial, whether the previous response was correct, and whether the FO of
the non-target word preceding the target matched that of the target (non-target FO=target FO0, this selects
intra-trial roved trials eliminating those trials where by chance the word before the target matched the
target FO).
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Figure 2. Factors that drive the miss/hit model; A, the elbow plot of cumulative feature importance
over trial features; B, permutation importance bar plot of the features in the correct hit/miss model; C
SHAP feature importances of the miss/hit model; D, SHAP partial dependency plot depicting the SHAP
impact over each ferret ID color-coded by target FO. E, SHAP partial dependency plot showing the SHAP
impact over each talker type color-coded by target FO. Gray bars indicate the distribution of the number of
observations across variables
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Supplementary Figure 2. Partial dependency plots for the correct hit response/miss response model.
A; SHAP values over the ferret ID color-coded by target presentation time; B, SHAP values over ferret ID
color-coded by the side of audio presentation; C, same as B but color-coded by talker type; D, SHAP
values over trial number color-coded by whether the trial had the precursor word FO equal to the target FO.

The performance of the miss/hit model was reasonable despite the sparsity of miss responses in the
behavioral data, with an average balanced accuracy on our a training set of 62.17% and an average test
balanced accuracy of 62.09%. We eliminated factors that either did not significantly increase the cumulative
feature importance plot (Fig.2A) or if a permutation test that randomized the variable in question did
not impact model fit (Fig.2B). Thus, trial history factors (the past trial was correct or a catch trial) and
the prior non-target FO=target FO parameter were eliminated. For the remaining features, the feature
importance metrics, permutation tests, and SHAP feature values were all in concordance with each other,
with only minor differences in the ranking of features. The top three features were the talker (the male talker
increased the probability of a miss, Fig.2C), the side of the audio presentation (which was idiosyncratic
across animals, likely reflecting their own individual biases, see Fig.S2B). The trial number (with trials
earlier in the session reducing the likelihood of a miss, and later trials being associated with higher miss
rates). While significant, the target presentation time within the trial (Fig.S2A) did not show a strong
relationship across all animals, as shown by the lack of consistent stratification in the SHAPS plot examining
the target presentation time for each ferret. The FO of the target sound also had a small but significant
effect, which varied by ferret (Fig. 2E). Only 3/5 animals had stratified miss probabilities which suggested
higher FOs were more likely to elicit false alarms. In contrast, one animal (F1702) showed the opposite
pattern the final animal (F2002) showed no consistent pattern. Whether the non-target word that preceded
the target word was matched in FO did not significantly influence the likelihood of missing. We conclude
that the talker’s identity was the single biggest stimulus factor that altered the likelihood of missing, with
the FO of the target word having a modest effect in some animals. Changing the FO from word token to
word token did not change the likelihood of correctly detecting the target.
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False alarms are influenced by talker identity and FO

Next, we modeled whether a subject would false alarm based on all trial types, using the following features:
the talker, the pitch (FO) of the trial or for intra-trial roved trials the FO of the last non-target word in the
trial, the side of audio presentation, the trial duration, the time elapsed since the start of the trial, the trial
number within the experimental session, the ferret ID, whether the past response was correct, whether
the past trial was a catch trial, and whether there was intra-trial FO roving. The false alarm model had
above-chance accuracy (mean test accuracy of 61.54% over 5-fold cross-validation; balanced accuracy
61.46%) and returned the following as the most significant contributors: the time elapsed since the trial
started, the trial number, the ferret ID, the non-target FO, the audio side, and whether the trial was intra-trial
FO roved (Fig. 3A, B, D).
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Figure 3. Precursor F0 determines the probability of a false alarm A, elbow plot depicting the
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proportion of trials across categories.
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Supplementary Figure 3. Partial dependency plots for the correct reject/false alarm model. A,
partial dependency plot depicting the mean SHAP impact over the ferret ID color-coded by time within the
trial; B, violin plot of the SHAP value over the ferret ID color-coded by the side of audio presentation; C,
violin plot of the SHAP values over the FO of the trial color-coded by talker type; D; SHAP partial
dependency plots of false alarm likelihood by FO, color-coded by ferret ID; E, SHAP values over the FO of
the stream color-coded by trial number; F, same as E but color-coded by time since the start of the trial;
Note that while the 191Hz FO is associated with a higher false alarm rate, this should be interpreted in the
context of the much lower FA rate associated with the female talker. G, violin plot of the SHAP value over
ferret ID color-coded by talker type; H, SHAP value over ferret ID color-coded by trial number; I, SHAP
value over trial duration color-coded by FO.

In contrast to the miss model, the strongest determinants of whether an animal was likely to false
alarm were timing parameters (time in the trial and trial number within the session) and the individual
ferrets. Partial dependency plots (Fig S3) showed that two ferrets were more likely to false alarm early
in the trial, one late in the trial, and two animals showed unstratified responses, implying they were not
systematically influenced by this parameter (FigS3A). Trial number, although significant, did also not show
clear stratification when considered by animal (FigS3H).

The speech sound FO and talker both impacted the likelihood of FA, with the partial dependency plot
showing that low FO words spoken by the female talker were most likely to elicit a FA. In contrast, the
control FO for the female talker was least likely to elicit a FA (Fig.3D, Fig S3C). The audio side and
intra-trial roving also contributed to the model: the audio side was again idiosyncratic across animals
(Fig.S3B). Whether or not word tokens within a trial varied in FO (i.e., intra-trial roving) contributed a
significant effect in the predicted direction (i.e., intra, intra-trial roving was more likely to elicit an FA), but
only 3 /5 ferrets showed this, and overall, it was a small effect(Fig.3E).

In summary, the FA model suggests that non-acoustic factors are the key drivers in whether animals
false alarm with only a small contribution of acoustic factors. Pitch-shifting generally and particularly
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within trials, both had small but measurable effects on false alarm rate.

Gradient boosted regression of reaction time data reveals the impact of pitch on target
detection and streaming

Given our performance measures were generally quite high with, in particular, a very limited number of
miss trials with which to explore whether FO changes impacted performance, we focused next on reaction
time (RT) measures. To explore whether RTs provided a more sensitive measure of how acoustic and
task parameters influenced performance, we used gradient-boosted regression (Ke et al. ). In our
RT model, derived from responses from correct non-catch trials, we considered the following factors:
ferret ID, talker (male or female), time to target presentation (within a trial), the trial number (within a
session), the side of audio presentation, the target FO, whether the FO changed from the preceding non-target
word to the target word (preceding FO = target word FO), whether the past trial was a catch trial, and
whether the past trial was correct. Our test-set mean squared error (mse) using 5-fold cross-validation was
0.102s compared to a noise floor (calculated by randomizing the relationship between trials and reaction
times) test mse of 0.133s (train mean-squared error = 0.092s, compared to a noise floor train mse of 0.105s ).

From our permutation test, the ferret ID, the talker, the side of the audio presentation, the time to target
presentation, the target FO, and trial number were significant factors (Fig. 4B), whereas SHAP values
additionally considered whether the FO of the previous word equaled the target word as a significant factor
in this reaction time model (Fig. 4A). This difference in traditional permutation importance versus SHAP
feature importance is not necessarily surprising, as target FO is highly correlated with the precursor = target
FO feature (i.e., if the target FO is not a control FO, the likelihood of precursor not equalling target FO
increases), something which the permutation importance method struggles to account for (Molnar ).
Interestingly, a traditional mixed effects model (see below and Fig. 7C) also returned whether the percursor
was the same FO as the target word as a significant variable, with trials in which both shared the same FO
having faster reaction times than those that did not. Similar to the miss/hit and false alarm/correct reject
performance models, the model heavily weighted both ferret ID and talker ID; reaction times were longer
for the male talker (in 4/5 ferrets, see Supplemental S4D, female faster in F2105) and varied systematically
across ferrets (Fig.4C). Overall, later targets had faster responses, Figure 4B, 3/5 ferrets showed this effect,
1/5 had faster reaction times for earlier targets, and 1 showed no difference, Fig.S4A).
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Figure 4. Reaction time models establish a contribution of F0 to target detection. A, feature
importances of the hit model; B, permutation feature importance of each factor in the model; C, SHAP
summary plot of ranked feature SHAP values of each factor in the reaction time model; D, partial
dependency plot of SHAP impact versus ferret ID color-coded by target FO; E, partial dependency plot of
SHAP impact over talker identity color-coded by the target FO.

11/35


https://doi.org/10.1101/2023.06.16.545302
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.16.545302; this version posted February 28, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

258

259

260

261

262

263

264

265

266

267

268

A Time to target presentation
° v 45 . Side of audio presentation
IS 02 side of audio
= (s -4.0 i I left
g 01 ‘: & : g 02 . right
35
) [ b=
% F X | 9 S 0.1
© ool F w8 g
s Moy X 252 8 o
] (0] c
© ot b, 20 E 2
© s O 01
2 3
E o2 15 £
- . = -02
: 1.0
Q) 2 > Qv H 03
<\° \:b\’ \/%Q ,190 ,LQ & & & & &
< < < 3 3 <& & < <V <
Ferret ID Ferret ID
Precursor = target FO Talker
° precursor = target FO o2 talker
I false B male
g 02 I true g 02 B female
2w E
S b+t
@ 0.0 @ 0.0
§ §
g o1 g -1
© ©
o o
E, E.
03 -0.3
Q o < Q o < Q »
Q g QO Q g Q Q Q
& & & & & & & &

Ferret ID Ferret ID

Supplementary Figure 4. Correct hit response reaction time model partial dependency plots. A, SHAP
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for the trial.

Other factors that significantly predicted reaction times were the side of the audio (left responses
were slightly faster than right responses in 2/5 ferrets, right faster than left in 2/5 ferrets, 1/5 did not
differ, FigS4B. The model dissociated the effects of talker and FO, with the effect of FO being somewhat
variable across ferrets, with three ferrets showing slower reaction times for the lowest male talker FO, one
showing slower reaction times for the pitch-shifted FO values, and one not showing any FO effects (Fig
4C). Reaction times were faster when the preceding non-target word had the same FO as the target in 4/5
animals (Fig. S4C). Factors that did not influence reaction times - as assessed by the permutation test and
feature importance values were the trial number and trial history factors (the previous trial was a catch
trial / correct). Therefore, despite equivalent performance in inter and intra-trial roving trials by applying
gradient-boosted regression to the reaction time data, we observe that ferrets’ reaction times are faster
when pitch provides a consistent streaming cue (Fig.4B, E).
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Gradient boosted decision tree models reveal systematic false alarms to some non-target
words

Our false alarm model implied that false alarms were potentially lapses in concentration related more to
timing than acoustic parameters. However, an alternative possibility is that particular words drive false
alarms independently of the characteristics of the talker. To investigate this, we used gradient-boosted
regression to ask whether subjects consistently false alarmed to particular non-target words by modeling
the animals’ response time within a trial based on the word token. We modeled data from the female talker
and the male talker separately using only the timing of each word token in a trial, relative to the onset
of the trial, to predict the animals’ eventual response time (again relative to the onset of the trial rather
than the onset of the target word as in the previous reaction time analysis). The prediction accuracy of this
model was excellent for both talker types, with a test mse of 0.0193s for the female talker compared to a
noise-floor test mse of 1.804s (see methods) and a train mse of 0.0189s compared to a noise-floor train mse
of 1.792s. The test mse for the male talker was 0.0499s compared to a noise-floor test mse of 1.959s, with
a train mse of 0.0493s compared to a noise-floor mse of 1.949s (5-fold cross-validation for both train and
test metrics).
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Figure 5. Gradient boosted models identify words that animals consistently false alarm to A, elbow
plot of cumulative feature importance in the female talker model; B, same as A but for the male talker; C
permutation importance of features included in the female talker model; D, same as C but for the male
talker; E, top 5 permutation importances for each individual animal model for the female talker model; F,
same as E but for the male talker.
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Figure 6. Spectrotemporal similarity predicts false alarm likelihood A, top to bottom: waveform,
spectrogram, and cochleagram of instruments for the female talker stimulus. The black line in the
waveform plot indicates the extracted envelope. B, top to bottom: waveform, spectrogram, and
cochleagram of ‘more stable’, one of the words associated with a high chance of response in our absolute
reaction time model for the female talker. C, same as A but for the male talker stimulus. D, same as B but
for the word ‘exposure’, which was associated with a high rate of response in our male talker absolute
reaction time model. E, the Pearson’s correlation between the envelopes of the non-target words relative to
the target over each non-target word’s respective permutation importance. F, the maximum
cross-correlation coefficient between each non-target word and the target word over each non-target word’s
respective permutation importance. G, same as E but using the cochleagram representations of the target
and non-target words rather than the envelopes. H, same as F but for the cochleagram of each non-target
word relative to the target word rather than the envelope. I, the absolute difference in duration (length)
between each non-target and target word over its respective permutation importance.

Reassuringly, in both male and female talker models, the presence and timing of the target word
had the strongest predictive power about when animals would release from the center port (Fig.5A-D).
Nonetheless, some words consistently elicited behavioral responses as shown by both feature importance
and permutation importance metrics, suggesting that false alarms are not simply temporary lapses in
attention but rather that some words are perceived as more similar to the target. Running models on each
animal separately (Fig. SE, F) confirmed that these were repeatable errors across ferrets and talkers. To
better understand the model output, we asked whether any particular acoustic features predicted the errors
the animals made.

Words tokens that elicit false alarms share spectrotemporal similarity with the target

To explore the acoustic features that might underlie the animals’ false alarm pattern, we considered three
types of measures; first, we used a cochleagram model to estimate the representation of each token at the
auditory periphery (Fig.6A-D), with the caveat that this is a human model, and therefore likely overesti-
mates the frequency resolution available to the ferrets) (imcdermottLab/pycochleagram 2023). Second, we
extracted the envelope of the amplitude waveform in order to explore the role of the temporal envelope.
Third, we considered the difference in the duration of each word token and the target word. For the first
and second measures, we compared the target and each word token (for all tokens from the same talker)
using firstly a point-by-point Pearson’s correlation, aligning the tokens at their onset. We also calculated
the maximum of the cross-correlation to acknowledge that we don’t a priori know which elements of a
given token animals might confuse (e.g. we might imagine the “idence” of “confidence” might be more
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readily confused with “instr” of “instruments” than “con” might be).

To relate acoustic and behavioral measures, we calculated Spearman’s correlation coefficient between
the permutation importance derived from the GBMs and each measure of acoustic similarity. The maximum
cross-correlation between the cochleagram provided the strongest relationship (Fig.6G spearman’s r =
0.529), explaining 28% of the variance in the animals’ behavior. Differences in word duration also had a
significant relationship with permutation importance (r = 0.424). Still, this relationship is in the opposite
direction of that that would be predicted (greater duration differences predict a greater likelihood of
false alarms). Words with the highest permutation importance can be seen to span a range of duration
differences, fu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>