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ABSTRACT9

Animal psychophysics can generate rich behavioral datasets, often comprised of many 1000s of trials for
an individual subject. Gradient-boosted models are a promising machine learning approach for analyzing
such data, partly due to the tools that allow users to gain insight into how the model makes predictions. We
trained ferrets to report a target word’s presence, timing, and lateralization within a stream of consecutively
presented non-target words. To assess the animals’ ability to generalize across pitch, we manipulated
the fundamental frequency (F0) of the speech stimuli across trials, and to assess the contribution of
pitch to streaming, we roved the F0 from word token-to-token. We then implemented gradient-boosted
regression and decision trees on the trial outcome and reaction time data to understand the behavioral
factors behind the ferrets’ decision-making. We visualized model contributions by implementing SHAPs
feature importance and partial dependency plots. While ferrets could accurately perform the task across
all pitch-shifted conditions, our models reveal subtle effects of shifting F0 on performance, with within-trial
pitch shifting elevating false alarms and extending reaction times. Our models identified a subset of
non-target words that animals commonly false alarmed to. Follow-up analysis demonstrated that the
spectrotemporal similarity of target and non-target words rather than similarity in duration or amplitude
waveform was the strongest predictor of the likelihood of false alarming. Finally, we compared the results
with those obtained with traditional mixed effects models, revealing equivalent or better performance for
the gradient-boosted models over these approaches.

Keywords: Shapley Additive Explanations; auditory scene analysis; pitch; ferret, behavioral data
analysis in neuroscience;

AUTHOR SUMMARY10

The sorts of listening challenges faced by real-world listeners are rarely captured by most laboratory-based11

auditory paradigms, particularly those testing animal models. However, many labs are attempting to12

utilize more realistic experiments, and more complicated behavioral paradigms require more sophisticated13

approaches to analyzing the resulting data. Here, we used a new behavioral paradigm to test the ability of14

ferret listeners to identify target speech sounds and assess their ability to generalize across changes in pitch.15

To make sense of the resulting dataset, we used machine learning algorithms to understand how trained16

ferrets perform this task. Gradient-boosted regression and decision trees are well-established machine17

learning methods that do not require users to predetermine interaction effects and are accompanied by18

visualization methods that allow insights to be gained into how multiple factors ultimately shape behavior.19

We compare the use of gradient-boosted models to more standard regression approaches and, by applying20

these methods, we demonstrate key features of ferrets’ performance on this task. Our results suggest that21

this machine learning approach is ideal for analyzing behavioral data in animal models.22

INTRODUCTION23

Psychophysics paradigms in non-human animals are often designed to yield tractable datasets for relating24

brain and behavior. Most common laboratory-based paradigms rely on artificial stimuli presented within25

the confines of simple tasks – such as two-alternative forced choice paradigms in which animals must26

discriminate a single sound token, or go/no-go tasks in which animals detect a change in a repeating27
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sequence of sounds. Such paradigms offer tight experimental control, and can be successfully analyzed28

using standard statistical approaches such as mixed effect models and more sophisticated approaches that29

allow, for example, the identification of how and when non-sensory factors shape performance (Ashwood30

et al. 2022 Roy et al. 2021). Yet animals can be trained to perform more complex tasks, generating rich31

behavioral datasets that potentially can require new approaches for their interpretation. One promising32

approach for modeling both categorical and continuous data is gradient-boosted decision trees (Grinsztajn,33

Oyallon, and Varoquaux 2022). Not only are such models powerful, but they are also interpretable through34

the use of tools that allow visualisation of the contributions of variables and combinations of variables to35

prediction outcomes.36

37

The general approach of the gradient-boosted decision tree model is a form of ensemble learning in38

which we use an initial weak decision tree to predict an outcome of a trial and then iteratively build upon39

the error of the first tree (after calculating the loss) by further splitting the data in a way that improves the40

model prediction. Once our loss plateaus or we reach the maximum number of training epochs, we stop41

training the model and calculate our test accuracy, or how well the model could predict our target variable42

on a held-out test set of data. We chose this method as our data is inherently dense (from long periods of43

behavioral training and testing) and tabular, which makes gradient-boosted regression and decision trees an44

excellent candidate for the prediction of binary data (such as was the trial a hit or a miss) and continuous45

data (such as reaction times) compared to a nonlinear neural-network-based classifier (Grinsztajn, Oyallon,46

and Varoquaux 2022). Here, we highlight the utility of both the model itself and the visualization tools47

available to understand what features the model finds informative and compare this approach to more48

traditional mixed effects models.49

50

We applied gradient-boosted models to animal psychoacoustics data designed to probe the role of pitch51

in perceptual invariance and auditory scene analysis. Pitch is a fundamental feature of a person’s voice,52

and a hallmark of human voice processing is recognizing a word regardless of voice pitch. Differences in53

pitch allow us to separate competing voices, while sounds are grouped together over time into ‘streams’54

if they share a common pitch (Darwin 2005). However, it is not clear whether the ability to use pitch55

continuity to link sounds into streams is uniquely human or whether it can be considered a more general56

feature of the mammalian auditory system. To address such issues, we trained ferrets to detect the word57

“instruments” within a stream of other randomly drawn non-target words (Sollini and Bizley, in prep.).58

Within a trial, all word tokens were drawn from a single female or male voice, and the whole stream could59

be shifted upwards or downwards in fundamental frequency (F0, which determines pitch). The F0 of each60

word within a stream could also be randomly shifted to assess whether pitch contributes to streaming.61

We collected 20487 trials of data from 5 animals. We analyzed these using gradient-boosted models to62

address two research questions: firstly, can trained ferrets generalize their learned discrimination across63

variations in pitch, and secondly, whether, like humans, animals use the pitch as a streaming cue to link64

sounds together over time.65

66

Through the application of gradient-boosted models, we were able to demonstrate that while perfor-67

mance was robust to changes in pitch, shifting the F0 of words within a trial significantly slowed reaction68

times and elevated the likelihood of a false alarm, providing evidence that ferrets, like humans, use pitch to69

form perceptual streams. Moreover, this approach allowed us to identify words that ferrets consistently70

confused with the target word, suggesting that errors were not simply random lapses in attention. Analysis71

of acoustic features of non-target words identified spectro-temporal similarity but not duration or waveform72

similarity as a predictor of the likelihood of a false alarm.73
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RESULTS74

Figure 1. Task design and basic behavioral data. A, Schematic of the experimental booth. To trigger a
trial, ferrets had to nose-poke a center port that contained an IR sensor and water port. This triggered the
presentation of a stream of words from either the left or right speaker. B, Ferrets were trained to remain at
the center until the presentation of the target word (‘instruments’) and received a water reward at a lateral
port if they correctly released within 2s of target presentation and responded to the lateral port whose side
matched that of the speech stream. C, Catch trials did not contain the target word, and the ferret was
rewarded if she remained at the central port for the duration of the trial. D, Behavioral metrics across
animals distributed by talker type. Bars indicate the across-animal average; symbols show the individual
animals. Trials are separated according to the identity of the talker and the pitch roving condition (control
= no pitch shifting, inter = F0 shifting of the whole trial, intra = F0 shifting of the tokens within a trial).
(D) % correct over all trials, E, hits; F, false alarms; G, sensitivity (d’). H, impact of F0 on hit rate (top)
and false alarm rate (bottom). False alarm rates are plotted separately for intra-trial pitch roving because
the F0 changed from token to token, making it impossible to assign a false alarm to a distractor of a given
F0. I, Violin plot of reaction times during correct responses on trials in which the target was correctly
identified for all animals, separated by talker type.
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Supplementary Figure 1. A, bias across trial conditions and talker types; B, reaction times of each
animal for correct responses color-coded by F0 of the target word.

Ferrets can discriminate speech sounds, and their performance is robust to pitch shifting75

Ferrets were trained to detect the target word “instruments” within a stream of randomly drawn non-target76

word tokens. Subjects initiated a trial by nose-poking in a central port that contained an infrared sensor77

and water delivery spout and were required to remain at the center port until the presentation of the target78

word. On each trial, all tokens came from the same talker and position in space, and ferrets were rewarded79

for responding at the lateral port adjacent to the speaker within 2s of the target word (Fig. 1A, B). On80

catch trials, in which only non-target words were presented, ferrets were rewarded for remaining at the81

central port (Fig.1C). Ferrets were trained with a single male and single female voice. Once performance82

was stable, trials were introduced in which the F0 of the whole trial was shifted (’inter-trial roving’) or83

individual word tokens within the trial were shifted (’intra-trial roving’). We will first provide an overview84

of the data before using Gradient Boosted decision trees to understand and quantify the factors that shape85

the animals’ performance in this task.86

Ferrets’ were able to learn and perform the task across control and F0-shifted conditions; performance87

ranged from 57% -85% correct for all animals and conditions, where 33% would be considered chance88

performance (Fig.1D). Hit rates were generally high (Fig.1E) and false alarms low (Fig. 1F) for both89

talkers and both types of pitch-shifted trials. Overall, performance was higher for the female voice, with a90

small decrease in d’ evident for pitch-roved trials compared to natural F0 ones (Fig.1G). Nonetheless, all d’91

values were well above 1, indicating the animals were well able to perform the task.92

93

To understand whether ferrets form a pitch-tolerant representation of the target word, we considered94

the impact of F0 changes on performance (Fig 1D-F). Two-way repeated measures ANOVAs with factors95

talker (male/female) and rove type (control / inter / intra) showed that for hit rates, there was a significant96

effect of talker and significant talker x rove interaction but no significant pairwise comparisons across97

pitch roved conditions (supplementary tables 1 and 2). For false alarms, there was again a significant98

effect of talker, rove, and talker x rove interaction, with posthoc comparison showing that for the female99

talker control, F0s elicited significantly lower false alarm levels than either rove type but that the rove100

types were not significantly different from each other (supplementary tables 3 and 4). For sensitivity (d’)101

measures, there were again significant effects of talker and rove type, but post hoc comparisons showed no102

rove conditions to be significantly different from each other (supplementary tables 5 and 6). Therefore,103

overall, while subjects were better on female talker trials than on male talker trials, the performance on104

inter and intra-trial roved trials was largely equivalent (Fig.1D-F). When the performance was broken down105

according to the actual F0 value, we observed there was a modest influence of F0 on hit rates, such that106

the highest hit rates were observed for the female talker’s up-shifted F0 trials (Fig.1H). False alarms, in107

contrast, were lower for the control F0 values for both the male and female talkers.108

Reaction times varied by ferret and according to the talker (Figure S1B). The trend for lower hit rates109

at lower F0 and for the female voice to elicit faster reaction times may be a consequence of training, as 3/5110
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subjects were initially trained on only the female talker. However, while the hearing range of ferrets fully111

encompasses that of humans, their frequency resolution is poorer and most notably so at the lowest audible112

frequencies (Sumner et al. 2018), and this too may limit performance at the lowest F0s.113

These basic behavioral metrics are designed only to show that ferrets can successfully discriminate114

a target word from non-target words despite variation in F0. We now turn to gradient-boosted models115

(GBMs) to further consider how acoustic and non-acoustic factors influence individual trial outcomes.116

Introduction to gradient boosted models117

Gradient boosting is a supervised machine learning algorithm used for classification and regression118

problems and is particularly advantageous due to the tools available to visualize how a model exploits119

information to perform the task. The basic principle is that decision trees are built by splitting observations120

based on feature values, with the algorithm seeking and selecting a split that results in the highest gain in121

information by comparing predicted outcomes to observed ones. We chose this machine learning approach122

as our data is abundant in sample size and tabular. While its application to animal behavioral work is to our123

knowledge novel, this scenario of structured, dense data is ideal for gradient-boosted decision trees, as124

this type of method has often been used in recommender systems (Luo et al. 2022) as well as economic125

predictive modeling for human behavior in customer loyalty (Machado, Karray, and Sousa 2019). A126

machine learning approach is ideal because it can uncover non-linear dependencies in the data without127

users being required to predetermine interaction effects in their model. Moreover, we can consider multiple128

stimulus features, such as the talker and pitch of the word, as well as the trial history parameters (was the129

previous trial correct, was the previous trial a catch trial) and non-stimulus features (such as the timing130

of the trial within the session, the time of the target word within the trial, and the side that the animal131

was required to respond) that may influence performance but do not necessarily inform our experimental132

hypothesis.133

134

We used lightGBM (Ke et al. 2017) to implement a gradient-boosted machine (GBM) approach. We135

considered two types of models – decision-tree models that performed categorical discriminations, for136

considering whether responses to targets were misses or hits and whether responses to catch trials were137

false alarms or correct rejections, and decision-tree regression models to predict continuous reaction time138

data. In each case, we trained models using 5-fold cross-validation and used held-out data to report both the139

accuracy and balanced accuracy (which is particularly helpful for data in which observations are unequal in140

number between categories and where accuracy may, therefore, be overinflated). To assess which variables141

were utilized by the model, we used two metrics; feature importance and permutation importance. The142

GBM decision and regression tree method consists of many decision trees, and features will potentially be143

used many times to split the data; to understand the contribution of a feature, the gain provided must be144

aggregated across trees. Therefore, the feature importance metric assesses how a given feature improves the145

model’s accuracy by summing the gain provided by that feature across all of the times that it’s used in the146

model. A higher gain implies that the feature is more important for generating predictions. In lightGBM,147

the loss functions (from which gain is computed) are the mean squared error (MSE) for regression tasks and148

the log loss for classification tasks. Its units are the same as the target variable, seconds, and its upper and149

lower bounds are minus to positive infinity. Permutation importance provides a complementary measure150

of the importance that any given feature provides to the model. The permutation feature importance is151

the decrease in a model score when a single feature is randomly permuted. The higher the permutation152

importance, the larger the contribution a variable makes to the model; a score of 0.1 for a model with 70%153

accuracy reflects a drop to 60% accuracy for a classification problem. One caveat with the permutation154

importance is that it assumes that all variables are independent, so it can underestimate the contribution of155

a given variable in some circumstances (Molnar 2023).156

157

To visualise the way in which variables impacted model predictions, and how variables interact with158

one another we used SHapely Additive exPlanations (SHAPs) which are a common way of understanding159

machine learning models based on Shapely values. Shapely values were derived from cooperative game160

theory and represent the average contribution of each feature to all possible combinations of features161

(Lundberg and Lee 2017). SHAPs extend this to machine learning models; for every feature and every162

observation in the training set, we obtain a SHAP value, and therefore, there are as many SHAP values163

as there are observations. For a classification task the SHAP values are expressed as the log(odds) so164

can be directly interpreted as the impact of a given feature on the probability e.g. of making a miss. For165

our regression models, the SHAP scores are the impact on reaction times, expressed in seconds. Here166

we use SHAP summary plots to provide intuitive and interpretable visualizations of the effects of all167

variables in a model and partial dependency plots to visualize combinations of features of interest. The168
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partial dependency plots are particularly helpful for understanding how, for example, behavior varies across169

individual subjects and for examining the potentially non-linear interactions between features that the170

model has learned to exploit.171

Talker identity drives miss responses172

We used lightGBM (Ke et al. 2017) to model the likelihood of a miss vs hit response using only trials in173

which the target sound was presented(i.e., excluding false alarms and catch trials). The variables provided174

to the model were: the talker (male/female), the side (left/right) of the audio presentation, the trial number175

(in the session), the subject identity (ID), target presentation time (within the trial), the target F0, whether176

the previous trial was a catch trial, whether the previous response was correct, and whether the F0 of177

the non-target word preceding the target matched that of the target (non-target F0=target F0, this selects178

intra-trial roved trials eliminating those trials where by chance the word before the target matched the179

target F0).180

Figure 2. Factors that drive the miss/hit model; A, the elbow plot of cumulative feature importance
over trial features; B, permutation importance bar plot of the features in the correct hit/miss model; C
SHAP feature importances of the miss/hit model; D, SHAP partial dependency plot depicting the SHAP
impact over each ferret ID color-coded by target F0. E, SHAP partial dependency plot showing the SHAP
impact over each talker type color-coded by target F0. Gray bars indicate the distribution of the number of
observations across variables
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Supplementary Figure 2. Partial dependency plots for the correct hit response/miss response model.
A; SHAP values over the ferret ID color-coded by target presentation time; B, SHAP values over ferret ID
color-coded by the side of audio presentation; C, same as B but color-coded by talker type; D, SHAP
values over trial number color-coded by whether the trial had the precursor word F0 equal to the target F0.

The performance of the miss/hit model was reasonable despite the sparsity of miss responses in the181

behavioral data, with an average balanced accuracy on our a training set of 62.17% and an average test182

balanced accuracy of 62.09%. We eliminated factors that either did not significantly increase the cumulative183

feature importance plot (Fig.2A) or if a permutation test that randomized the variable in question did184

not impact model fit (Fig.2B). Thus, trial history factors (the past trial was correct or a catch trial) and185

the prior non-target F0=target F0 parameter were eliminated. For the remaining features, the feature186

importance metrics, permutation tests, and SHAP feature values were all in concordance with each other,187

with only minor differences in the ranking of features. The top three features were the talker (the male talker188

increased the probability of a miss, Fig.2C), the side of the audio presentation (which was idiosyncratic189

across animals, likely reflecting their own individual biases, see Fig.S2B). The trial number (with trials190

earlier in the session reducing the likelihood of a miss, and later trials being associated with higher miss191

rates). While significant, the target presentation time within the trial (Fig.S2A) did not show a strong192

relationship across all animals, as shown by the lack of consistent stratification in the SHAPs plot examining193

the target presentation time for each ferret. The F0 of the target sound also had a small but significant194

effect, which varied by ferret (Fig. 2E). Only 3/5 animals had stratified miss probabilities which suggested195

higher F0s were more likely to elicit false alarms. In contrast, one animal (F1702) showed the opposite196

pattern the final animal (F2002) showed no consistent pattern. Whether the non-target word that preceded197

the target word was matched in F0 did not significantly influence the likelihood of missing. We conclude198

that the talker’s identity was the single biggest stimulus factor that altered the likelihood of missing, with199

the F0 of the target word having a modest effect in some animals. Changing the F0 from word token to200

word token did not change the likelihood of correctly detecting the target.201
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False alarms are influenced by talker identity and F0202

Next, we modeled whether a subject would false alarm based on all trial types, using the following features:203

the talker, the pitch (F0) of the trial or for intra-trial roved trials the F0 of the last non-target word in the204

trial, the side of audio presentation, the trial duration, the time elapsed since the start of the trial, the trial205

number within the experimental session, the ferret ID, whether the past response was correct, whether206

the past trial was a catch trial, and whether there was intra-trial F0 roving. The false alarm model had207

above-chance accuracy (mean test accuracy of 61.54% over 5-fold cross-validation; balanced accuracy208

61.46%) and returned the following as the most significant contributors: the time elapsed since the trial209

started, the trial number, the ferret ID, the non-target F0, the audio side, and whether the trial was intra-trial210

F0 roved (Fig. 3A, B, D).211

Figure 3. Precursor F0 determines the probability of a false alarm A, elbow plot depicting the
cumulative feature importance of each factor used in the false alarm decision tree model; B, Permutation
importance plot. C, SHAP feature importance values; D, partial dependency plot depicting the SHAP
value over whether the trial was intra-trial roved color-coded by F0. E, partial dependency plot showing
the SHAP value (representing the impact on the probability the trial would be predicted as a false alarm)
over ferret ID color-coded by whether the trial was intra-trial roved; Gray bars illustrate the relative
proportion of trials across categories.
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Supplementary Figure 3. Partial dependency plots for the correct reject/false alarm model. A,
partial dependency plot depicting the mean SHAP impact over the ferret ID color-coded by time within the
trial; B, violin plot of the SHAP value over the ferret ID color-coded by the side of audio presentation; C,
violin plot of the SHAP values over the F0 of the trial color-coded by talker type; D; SHAP partial
dependency plots of false alarm likelihood by F0, color-coded by ferret ID; E, SHAP values over the F0 of
the stream color-coded by trial number; F, same as E but color-coded by time since the start of the trial;
Note that while the 191Hz F0 is associated with a higher false alarm rate, this should be interpreted in the
context of the much lower FA rate associated with the female talker. G, violin plot of the SHAP value over
ferret ID color-coded by talker type; H, SHAP value over ferret ID color-coded by trial number; I, SHAP
value over trial duration color-coded by F0.

In contrast to the miss model, the strongest determinants of whether an animal was likely to false212

alarm were timing parameters (time in the trial and trial number within the session) and the individual213

ferrets. Partial dependency plots (Fig S3) showed that two ferrets were more likely to false alarm early214

in the trial, one late in the trial, and two animals showed unstratified responses, implying they were not215

systematically influenced by this parameter (FigS3A). Trial number, although significant, did also not show216

clear stratification when considered by animal (FigS3H).217

218

The speech sound F0 and talker both impacted the likelihood of FA, with the partial dependency plot219

showing that low F0 words spoken by the female talker were most likely to elicit a FA. In contrast, the220

control F0 for the female talker was least likely to elicit a FA (Fig.3D, Fig S3C). The audio side and221

intra-trial roving also contributed to the model: the audio side was again idiosyncratic across animals222

(Fig.S3B). Whether or not word tokens within a trial varied in F0 (i.e., intra-trial roving) contributed a223

significant effect in the predicted direction (i.e., intra, intra-trial roving was more likely to elicit an FA), but224

only 3 / 5 ferrets showed this, and overall, it was a small effect(Fig.3E).225

226

In summary, the FA model suggests that non-acoustic factors are the key drivers in whether animals227

false alarm with only a small contribution of acoustic factors. Pitch-shifting generally and particularly228
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within trials, both had small but measurable effects on false alarm rate.229

Gradient boosted regression of reaction time data reveals the impact of pitch on target230

detection and streaming231

Given our performance measures were generally quite high with, in particular, a very limited number of232

miss trials with which to explore whether F0 changes impacted performance, we focused next on reaction233

time (RT) measures. To explore whether RTs provided a more sensitive measure of how acoustic and234

task parameters influenced performance, we used gradient-boosted regression (Ke et al. 2017). In our235

RT model, derived from responses from correct non-catch trials, we considered the following factors:236

ferret ID, talker (male or female), time to target presentation (within a trial), the trial number (within a237

session), the side of audio presentation, the target F0, whether the F0 changed from the preceding non-target238

word to the target word (preceding F0 = target word F0), whether the past trial was a catch trial, and239

whether the past trial was correct. Our test-set mean squared error (mse) using 5-fold cross-validation was240

0.102s compared to a noise floor (calculated by randomizing the relationship between trials and reaction241

times) test mse of 0.133s (train mean-squared error = 0.092s, compared to a noise floor train mse of 0.105s ).242

243

From our permutation test, the ferret ID, the talker, the side of the audio presentation, the time to target244

presentation, the target F0, and trial number were significant factors (Fig. 4B), whereas SHAP values245

additionally considered whether the F0 of the previous word equaled the target word as a significant factor246

in this reaction time model (Fig. 4A). This difference in traditional permutation importance versus SHAP247

feature importance is not necessarily surprising, as target F0 is highly correlated with the precursor = target248

F0 feature (i.e., if the target F0 is not a control F0, the likelihood of precursor not equalling target F0249

increases), something which the permutation importance method struggles to account for (Molnar 2023).250

Interestingly, a traditional mixed effects model (see below and Fig. 7C) also returned whether the percursor251

was the same F0 as the target word as a significant variable, with trials in which both shared the same F0252

having faster reaction times than those that did not. Similar to the miss/hit and false alarm/correct reject253

performance models, the model heavily weighted both ferret ID and talker ID; reaction times were longer254

for the male talker (in 4/5 ferrets, see Supplemental S4D, female faster in F2105) and varied systematically255

across ferrets (Fig.4C). Overall, later targets had faster responses, Figure 4B, 3/5 ferrets showed this effect,256

1/5 had faster reaction times for earlier targets, and 1 showed no difference, Fig.S4A).257
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Figure 4. Reaction time models establish a contribution of F0 to target detection. A, feature
importances of the hit model; B, permutation feature importance of each factor in the model; C, SHAP
summary plot of ranked feature SHAP values of each factor in the reaction time model; D, partial
dependency plot of SHAP impact versus ferret ID color-coded by target F0; E, partial dependency plot of
SHAP impact over talker identity color-coded by the target F0.
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Supplementary Figure 4. Correct hit response reaction time model partial dependency plots. A, SHAP
values over the ferret ID color-coded by the time to target presentation; B, violin plot of the SHAP value
over ferret ID color-coded by the side of audio presentation; C, same as B but color-coded by whether the
precursor word’s F0 was the same as the target word’s F0; D, same as C but color-coded by the talker type
for the trial.

Other factors that significantly predicted reaction times were the side of the audio (left responses258

were slightly faster than right responses in 2/5 ferrets, right faster than left in 2/5 ferrets, 1/5 did not259

differ, FigS4B. The model dissociated the effects of talker and F0, with the effect of F0 being somewhat260

variable across ferrets, with three ferrets showing slower reaction times for the lowest male talker F0, one261

showing slower reaction times for the pitch-shifted F0 values, and one not showing any F0 effects (Fig262

4C). Reaction times were faster when the preceding non-target word had the same F0 as the target in 4/5263

animals (Fig. S4C). Factors that did not influence reaction times - as assessed by the permutation test and264

feature importance values were the trial number and trial history factors (the previous trial was a catch265

trial / correct). Therefore, despite equivalent performance in inter and intra-trial roving trials by applying266

gradient-boosted regression to the reaction time data, we observe that ferrets’ reaction times are faster267

when pitch provides a consistent streaming cue (Fig.4B, E).268
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Gradient boosted decision tree models reveal systematic false alarms to some non-target269

words270

Our false alarm model implied that false alarms were potentially lapses in concentration related more to271

timing than acoustic parameters. However, an alternative possibility is that particular words drive false272

alarms independently of the characteristics of the talker. To investigate this, we used gradient-boosted273

regression to ask whether subjects consistently false alarmed to particular non-target words by modeling274

the animals’ response time within a trial based on the word token. We modeled data from the female talker275

and the male talker separately using only the timing of each word token in a trial, relative to the onset276

of the trial, to predict the animals’ eventual response time (again relative to the onset of the trial rather277

than the onset of the target word as in the previous reaction time analysis). The prediction accuracy of this278

model was excellent for both talker types, with a test mse of 0.0193s for the female talker compared to a279

noise-floor test mse of 1.804s (see methods) and a train mse of 0.0189s compared to a noise-floor train mse280

of 1.792s. The test mse for the male talker was 0.0499s compared to a noise-floor test mse of 1.959s, with281

a train mse of 0.0493s compared to a noise-floor mse of 1.949s (5-fold cross-validation for both train and282

test metrics).283
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Figure 5. Gradient boosted models identify words that animals consistently false alarm to A, elbow
plot of cumulative feature importance in the female talker model; B, same as A but for the male talker; C
permutation importance of features included in the female talker model; D, same as C but for the male
talker; E, top 5 permutation importances for each individual animal model for the female talker model; F,
same as E but for the male talker.
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Figure 6. Spectrotemporal similarity predicts false alarm likelihood A, top to bottom: waveform,
spectrogram, and cochleagram of instruments for the female talker stimulus. The black line in the
waveform plot indicates the extracted envelope. B, top to bottom: waveform, spectrogram, and
cochleagram of ‘more stable’, one of the words associated with a high chance of response in our absolute
reaction time model for the female talker. C, same as A but for the male talker stimulus. D, same as B but
for the word ‘exposure’, which was associated with a high rate of response in our male talker absolute
reaction time model. E, the Pearson’s correlation between the envelopes of the non-target words relative to
the target over each non-target word’s respective permutation importance. F, the maximum
cross-correlation coefficient between each non-target word and the target word over each non-target word’s
respective permutation importance. G, same as E but using the cochleagram representations of the target
and non-target words rather than the envelopes. H, same as F but for the cochleagram of each non-target
word relative to the target word rather than the envelope. I, the absolute difference in duration (length)
between each non-target and target word over its respective permutation importance.

Reassuringly, in both male and female talker models, the presence and timing of the target word284

had the strongest predictive power about when animals would release from the center port (Fig.5A-D).285

Nonetheless, some words consistently elicited behavioral responses as shown by both feature importance286

and permutation importance metrics, suggesting that false alarms are not simply temporary lapses in287

attention but rather that some words are perceived as more similar to the target. Running models on each288

animal separately (Fig. 5E, F) confirmed that these were repeatable errors across ferrets and talkers. To289

better understand the model output, we asked whether any particular acoustic features predicted the errors290

the animals made.291

Words tokens that elicit false alarms share spectrotemporal similarity with the target292

To explore the acoustic features that might underlie the animals’ false alarm pattern, we considered three293

types of measures; first, we used a cochleagram model to estimate the representation of each token at the294

auditory periphery (Fig.6A-D), with the caveat that this is a human model, and therefore likely overesti-295

mates the frequency resolution available to the ferrets) (mcdermottLab/pycochleagram 2023). Second, we296

extracted the envelope of the amplitude waveform in order to explore the role of the temporal envelope.297

Third, we considered the difference in the duration of each word token and the target word. For the first298

and second measures, we compared the target and each word token (for all tokens from the same talker)299

using firstly a point-by-point Pearson’s correlation, aligning the tokens at their onset. We also calculated300

the maximum of the cross-correlation to acknowledge that we don’t a priori know which elements of a301

given token animals might confuse (e.g. we might imagine the “idence” of “confidence” might be more302
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readily confused with “instr” of ”instruments” than ”con” might be).303

304

To relate acoustic and behavioral measures, we calculated Spearman’s correlation coefficient between305

the permutation importance derived from the GBMs and each measure of acoustic similarity. The maximum306

cross-correlation between the cochleagram provided the strongest relationship (Fig.6G spearman’s r =307

0.529), explaining 28% of the variance in the animals’ behavior. Differences in word duration also had a308

significant relationship with permutation importance (r = 0.424). Still, this relationship is in the opposite309

direction of that that would be predicted (greater duration differences predict a greater likelihood of310

false alarms). Words with the highest permutation importance can be seen to span a range of duration311

differences, further confirming the observation that, in all likelihood, similar duration is not a cue that312

the ferrets are relying upon to solve the task. Neither of the amplitude waveform measures produced313

statistically significant relationships. From this, we therefore conclude that animals rely most heavily on314

spectrotemporal features of the world to perform the task.315
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Supplementary Figure 5. A, distribution of the probability of occurrence in the resampled dataset used
for the response time model in Figure 5; B, same as A but for the male talker absolute reaction time model;
C, scatter plot of the permutation importance of each word with subsampling to equalize the frequency to
the distribution plotted in A and B, versus the corresponding permutation importance scores obtained from
a model with the uncorrected word distributions.

Comparison to traditional linear mixed-effects models316

To compare the average performance of our gradient-boosted tree models with traditional linear-mixed317

effects models, we ran linear mixed-effects models on the variables used in our corresponding gradient-318

boosted regression tree models with ferret as a random (group) effect using the statsmodels package in319

Python. Like our gradient-boosted trees, we implemented five-fold cross-validation for a fair comparison.320

In most cases, our gradient-boosted decision and regression tree models were better or comparable to321

the linear mixed effects models. Reassuringly, many of the same statistical main effects were found with322

both approaches. However, there were some specific instances in which the GBM approach was superior323

(described below), and the available tools for the visualization of partial dependencies offered the advantage324

that the non-linear interactions between features could be meaningfully explored and quantified using325

SHAP values.326

327

A mixed effects GLM (binomial, logit link) predicting hit vs. misses had an accuracy of 62.47% for the328

train split, 62.12% for the test split (this was comparable to the gradient-boosted regression trees, where the329

model had an average train balanced accuracy of 62.17% and an average test balanced accuracy of 62.09%).330

Mirroring the GBM, significant coefficients were returned for a talker, audio side, and target pitch (for 191331

Hz vs reference of 109 Hz, Fig.7A). Neither the ferret ID, trial number nor target time parameters returned332

by the GBM were returned as significant by the mixed effects model (Tables S7, S8).333
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334

A mixed effects model predicting false alarms during catch trials had lower accuracy than the corre-335

sponding GMB model (balanced accuracy was 54.90% on the train data set vs. 61.5% and 54.70% on336

the test dataset compared to 61.46%). The mixed effects GLM returned significant coefficients for F0337

(all values vs reference 109Hz), the previous response being correct, and the trial number (Fig.7B, Tables338

S9, S10). The GBM additionally assigned feature importance to the time within the trial, ferret ID, and339

whether the trial was intra-trial roving (Fig.3).340

341

A mixed effects model predicting the reaction time for correct hit responses from behavioural variables342

had a mse of 0.091s for the train dataset, 0.092s for the test dataset, which was comparable to the mse of the343

gradient-boosted regression tree model (train mse = 0.092s, train mse =0.102s). Given the restriction that344

reaction times are between 0-2 s (meaning there are few outliers and a relatively normal distribution), this345

is perhaps not surprising. The model recapitulated the effects of the GBM, returning significant coefficients346

for talker (faster to female voice), F0 (124 Hz faster than 109 Hz), trials in which the precursor and target347

had the same F0 were faster than those in which they differed, reaction times were faster for targets later in348

the trial and for later trials in the session (Fig.7C, Supplemental Tables S11 S12). While the key results349

were the same across analysis approaches, the ability to visualize SHAP scores for all observations from350

each animal across multiple variables still provides additional clarity, which could be advantageous when351

trying to relate brain and behavior. For example, Figure 4D shows how target F0 impacts reaction time352

for each individual ferret, showing opposite patterns in F1702 and F2105, something that would not be353

apparent with the mixed effects model coefficients.354

355

Where the linear model failed was in predicting the absolute release time solely based on which words356

were in a trial. To match the GBM approach, we used ordinary least squares, which, like the GBM, did357

not consider ferret as a factor, and again separated male talker and female talker trials to generate two358

models. The mse for the OLS model was nearly an order of magnitude larger than the GBM model, 0.15359

and 0.19s, respectively for the male and female talker models, compared to errors of 0.0193s and 0.049s for360

the female and male talker for the GBM (Fig.S5C, Supplemental Tables S13, S13). Critically, the size of361

the coefficient for ’instruments’ was barely greater than for the first-ranked non-target word in either model.362

Although there was some similarity in the ranking of non-target words between the linear regression and363

the GBM, the low overall model accuracy would make it hard to confidently make conclusions about364

false alarm behavior based on the linear regression alone. This analysis highlights that the GMB model365

has an advantage when predicting outlier behavior; false alarms to individual non-target word tokens are366

inherently rare in trained animals, and there is not a fixed response latency (as shown in the reaction time367

analysis) even if we can assume that animals trigger responses to the onset of word tokens (which the368

strong relationship between false alarms and cochleagram cross-correlation but not between correlation369

coefficients suggests is not the case). When performing the response time analysis with the GBM, we370

subsampled data to ensure that word frequency could not erroneously bias the resulting models; however371

we repeated the modeling with the original (non-uniform) distribution of word frequencies and the resulting372

permutation importance scores for non-target words were highly correlated (Fig.5C, Spearman’s R = 0.72373

and 0.87 for female and male talker models respectively) suggesting that this subsampling was unnecessary.374
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Figure 7. Mixed effects models show equivalent or worse performance Average coefficient values for
the mixed effects model predicting A, a miss response for a target trial, B, a false alarm for a catch trial,
and C, the reaction time during a correct target trial. Reference talker: male talker, reference F0: 109 Hz,
reference side of audio: left side. Asterisks represent mean p-values < 0.05. Error bars represent the mean
standard deviation.

DISCUSSION375

We describe a novel behavioral task in which animals are trained to recognize a target word embedded in376

a series of non-target words and employed gradient-boosted models to analyze the subsequent behavior.377

The results of these models allowed us to understand that, like humans, ferrets are able to form F0-tolerant378

representations of auditory objects and use F0 to link sounds together into auditory streams. (Aulanko et al.379

1993, Haykin and Chen 2005). The ability to identify and discriminate sounds across pitch is likely to be a380

fundamental property of mammalian audition, as the pitch of a vocal call conveys information about an381

individual’s size, age, and emotional state (Hauser 1993, Charlton, Zhihe, and Snyder 2009).382

383

We used gradient-boosted models to analyze the rich behavioral dataset we acquired comprising384

many 1000s of trials from 5 individual animals. We visualized the features that the models used to make385

predictions using SHAPs feature importance measures and partial dependency plots. This allowed us386

to understand not only what independent contributions specific variables made to behavior but also how387

combinations of variables interacted. We compared the output of the GBM models with traditional mixed388
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effects models, which, in most cases, were similar or slightly worse in overall model accuracy and returned389

very similar main effects. The GBM approach offered two advantages; firstly, the visualization tools390

are beneficial for understanding how different animals differentially weigh variables when performing391

the task (which in turn will be helpful for later relating brain and behavior). In a mixed-effects design,392

this is possible by fitting random slopes in addition to random intercepts. However, understanding and393

interpreting interaction effects - particularly between multiple categorical variables - quickly becomes394

intractable. Secondly, for some datasets, where the underlying relationships are inherently non-linear, and395

the samples are unbalanced, the GBM approach was much more effective, with eventual mean square error396

substantially lower than corresponding linear regression models. This, in turn, allowed us to relate false397

alarm behavior to acoustic features, revealing that spectrotemporal similarity was the strongest predictor of398

an increased likelihood of a false alarm.399

400

The data presented here, in which pitch made only a minor contribution to overall performance, supports401

previous behavioral work in animals, showing that non-human listeners can generalize across variations in402

F0 for relatively simple sounds. For example, ferrets trained to discriminate artificial vowel sounds with an403

F0 of 200 Hz maintain their performance at F0s from 150 to 500Hz (Bizley et al. 2013, Town et al. 2015).404

Both rats (Engineer et al. 2013) and zebra finches (Ohms et al. 2010) trained to discriminate human speech405

sounds can generalize across different talkers who naturally vary in their voice pitch, and marmosets can406

discriminate pitch-shifted vocalizations ((Osmanski and Wang 2023)). However, not all species show pitch407

constancy; guinea pigs trained to categorize calls (e.g., chut vs. purr) in a Go/No-Go task struggled to408

perform the task with F0 shifts of +/- half an octave (Kar et al. 2022). In our models, F0 had only a very409

small effect on the ability of animals to correctly identify a target word (Fig.2) or on their likelihood of410

making a false alarm (Fig.3) and only modest differences in their reaction times (Fig.4). Together, these411

results suggest that performance is robust across variations in pitch. Our reaction time models suggest that412

variation in F0 impacts individual animals differently. One benefit of the models developed in this study is413

that such individual differences can be explored and potentially taken into account when interpreting and414

analyzing brain signals.415

416

Our analysis of response time data on false alarm trials identified words that animals consistently417

false alarmed to. Analysis of the underlying acoustic cues highlighted spectrotemporal similarity as the418

strongest predictor of the likelihood of a word eliciting a false alarm. Previous work in songbirds has419

found that songbirds do not require spectral cues to distinguish between ascending or descending tones and420

only need the temporal features of the sound to identify the tones (Bregman, Patel, and Gentner 2016).421

Other work in mice has shown that mice could discriminate ultrasonic vocalizations but that vocalizations422

that were similar to one another were correlated with poorer performance, suggesting that mice also use423

spectrotemporal properties to categorize vocalizations (Neilans et al. 2014). Recent behavioral work by424

Osanki and Wang found that marmosets could also categorize intra-species vocalizations through a similar425

Go/No-Go task paradigm, in which marmosets had to recognize a target vocalization in the presence of an426

alternate reference vocalization by licking a metal feeding tube, and could successfully discriminate the427

same calls when the mean fundamental frequency was shifted upwards from the original F0 (Osmanski and428

Wang 2023); the authors concluded that the marmosets were using multiple acoustic properties to make429

their categorization choices.430

431

While speech recognition is robust to variation in voice pitch for non-tonal languages, humans use the432

pitch of complex sounds to separate simultaneous competing sounds and to link sounds together over time433

to form auditory ‘streams.’ Auditory streaming has been studied in many species, including frogs (Bee434

and Riemersma 2008), starlings (Bee and Klump 2004, Hulse, MacDougall-Shackleton, and Wisniewski435

1997) and gerbils (Dolležal et al. 2020). Evidence from birds suggests that avians use similar strategies436

to humans, with differences in intensity and spatial location used to segregate sounds into streams but a437

greater tolerance to changes in frequency or timing (Dent et al. 2016). Ferrets can also detect the presence438

of ‘mistuning’ when a single component of a harmonic complex is shifted in frequency, suggesting that,439

like humans, harmonicity is a strong grouping in animals (Homma et al. 2016). However, to our knowledge,440

no one has assessed whether non-human listeners use the pitch of a complex sound in the formation of441

auditory streams. The impact of pitch roving in increasing the likelihood of false alarms and slowing442

reaction times is consistent with ferrets using common pitch to link together sounds over time, offering443

an advantage for subsequent word recognition. Nonetheless, in the absence of a competing stream of444

information, we cannot be sure that it is streaming per se or simply that greater changes from word token445

to token make it a more difficult task. One feature of streaming is that it builds up over time (Moore and446

Gockel 2012), and consistent with streaming occurring, the likelihood of missing a target was higher, and447
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reaction times were significantly longer for trials in which the target was early in the stream compared448

to those in which it was in the middle or late in the stream. We predict that the impact of removing pitch449

constancy might be more strongly evident in tasks that require separating competing streams.450

451

Here, we demonstrate that gradient-boosted decision trees have high predictive power even when452

incorporating highly correlated or very sparsely sampled variables and are ideally suited for unpicking453

multiple contributing factors to behavior. Moreover, this gradient-boosted regression tree method allows454

us to be agnostic to how factors in our metadata are related to each other and thus presents an excellent455

way to conduct both hypothesis-driven and exploratory data analysis to uncover otherwise hidden trends in456

behavioral data and drive analysis. Overall, these findings from these sensitive and powerful models could457

inform later behavioral and neural data studies by giving us an idea of which behavioral factors impact458

decision-making in individual animals.459

MATERIALS AND METHODS460

Animals461

Subjects were five pigmented ferrets (Mustela putorius, female) who started training from 6 months of age462

and were tested between 18 months and 4 years of age. Animals were maintained in groups of 2 or more463

ferrets in enriched housing conditions, with regular otoscopic examinations to ensure the cleanliness and464

health of ears. All animals were trained in the behavioral task, using water as a reward. During testing465

periods, animals were water-regulated. Animals were tested twice daily from Monday to Friday, with free466

access to water from Friday afternoon to Sunday afternoon. Each ferret received a minimum of 60 ml/kg467

of water per day through a combination of task performance and supplementation with a wet mash made468

from water and ground high-protein pellets. Each ferret’s weight and water consumption were logged469

daily throughout the experiment. All experimental procedures were approved by local ethical review470

committees (Animal Welfare and Ethical Review Board, at University College London and the Royal471

Veterinary College, University of London, and performed under license from the UK Home Office (Project472

Licenses PP1253968, 70/7267)473

Equipment474

We controlled the task and stimulus presentation through an RZ6 controller (Tucker Davis Technology,475

Florida, USA) using OpenEx with custom-written ”GoFerret” software (Town et al. 2015) on a Windows476

PC. The right and left-hand speakers were calibrated to match the sound levels using a Bruel & Kjaer477

measuring amplifier (Type 2610). We presented each trial at a mean sound level of 65 dB SPL; stimuli478

were scaled to be constant in sound level across trials and talker types.479

Stimuli480

Stimuli were composed of a sequence (or ’stream’) of consecutively presented words, all of which came481

from the same talker. Continuous speech from two talkers (1 male, 1 female) reading the same passage482

from the SCRIBE database was manually segmented into words and linked together with a minimum483

gap of 0.08s between words. The audio files were recorded at 20000 Hz but upsampled to 24,414 Hz for484

presentation.485

Task486

In a sound discrimination task, we trained five ferrets to recognize the target stimulus (the word ‘instru-487

ments’) against 54 other non-target stimuli (which were also English words) in a stream. Each stream (or488

string of words) consisted of a series of non-target words and one occurrence of the target word, which489

could occur anytime from 500 ms to 6.5 s after the onset of the trial (with the target timing drawn from490

a uniform distribution). As well as being preceded by non-target words, the target was followed by a491

sequence of non-target words that exceeded the duration of the response time (2s, see below). Streams were492

constructed de novo at the start of each trial with non-target words drawn randomly (with replacement)493

from the pool of 54. Non-target words were chosen at random (from a set of 54 words per talker).494

The whole trial was comprised of word tokens from the same talker and presented from either the left495

or right speaker. Once trained, animals were required to initiate a trial by nose-poking at a center port that496

contained an infrared sensory and water delivery system. They were required to maintain contact until the497

target was presented. Once the target sound was presented, they were required to move to the response port498

on the same side as the stimulus presentation. A correct response required the animal to release the center499

port within 2s of the target word onset and correctly lateralize the sound stream (although, in practice,500
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animals rarely made localization errors). Catch trials (25% of all trials) contained only non-target words501

and were constructed to be equal in duration to the non-catch trials. On catch trials, the animal was required502

to remain at the center port and received a water reward from the central port at the end of the trial if they503

did so.504

Training505

Initially, ferrets were trained to move between the 3 lick ports (left, center, and right side) by alternating506

water reward at each port. Once this was accomplished (usually within 1 to 2 sessions), they were trained507

to lateralize the target sounds (‘instruments’). This was achieved by rewarding the initiation of a trial508

(a response at the center port) and presenting several repetitions of the target sound from one of the509

lateral locations (either left or right). The ferret would receive a second reward only if they responded510

at the corresponding location. Once ferrets could perform this target lateralization task at a high rate of511

performance (>90% correct) over =>2 sessions, the delay between initiating the trial and presenting the512

target word was systematically increased (from 0 to 5 seconds) between sessions (but only if performance513

remained above 80% correct for the last two sessions). Once the ferret was capable of waiting 5 seconds514

at the center port for target presentation and accurately lateralizing the stimulus, we reduced the target515

presentation to a single-word token. We then gradually introduced non-target words before and after the516

target. Non-target words were initially presented with a 60 dB attenuation cue that was gradually reduced517

until animals were performing with the target and non-target at an equivalent sound level. 3/5 animals518

were trained first on the female and then the male, whereas F2105 and F2002 were trained with both from519

the beginning of training. All word tokens within a trial were drawn from the same talker, but the talker520

identity was randomly drawn across trials. Even once trained, we included a proportion of trials (25-50 %)521

that included a 10 -20 dB attenuation cue. These trials were excluded from the analysis but helped maintain522

the animals’ motivation to perform the task. 25% of trials were catch trials in which the target word was523

not presented (the same port where ferrets initiated each trial). Baseline training varied in duration from 3524

months to 8 months.525

Pitch Roving526

Animals were considered fully trained once they consistently performed above 70% correct on trials527

without an attenuation cue (chance performance is approximately 33% given the 6s trial duration and a 2s528

response window, i.e., 2s / 6s = 1/3). Once trained on the natural (’Control’) F0 trials, we introduced F0529

(pitch) roving. For each talker, we used STRAIGHT (which separates source and resonator information,530

therefore allowing manipulation of F0) (Kawahara 2006) to shift the F0 up or down by 0.4 octaves. This531

resulted in F0 values of 109 and 144 for the male voice, where the natural F0 was 124 Hz, and 144 and 251532

Hz for the female voice, where the natural F0 was 191 Hz.533

In inter-trial roving, the pitch of the entire trial shifted up or down, whereas, in intra-trial roving, the F0534

value of each word was randomized. As in training, all word tokens within a trial came from the same535

talker.536

Data Analysis537

Any trial has four possible outcomes: hit, correct response, miss, and false alarm. A hit was defined as538

moving away from the center port (‘release’) and responding at the target location within 2s of the target539

word presentation. A correct rejection was defined as remaining at the central port for the entire duration of540

the trial (on a catch trial), a miss as failing to leave the central port within 2s of the target word presentation,541

and a false alarm as releasing from the center port before target word presentation or the end of a catch542

trial. False alarms immediately terminated the sound presentation and elicited a time-out (signaled by a543

modulated noise burst). Time outs lasted 2 seconds, during which the ferret could not reinitiate a trial.544

545

We define p(hit) = n hits/(n hits+ n misses), and the proportion of false alarms (FA) as p(FA) =546

n f alse alarms/[n hits+ n misses+ n correct re jections+ n FA]. We consider correct responses (C.R.)547

as either a hit or a correct reject, where p(correct) = [n hits+n correct re jections]/[n hits+n misses+548

correct re jections+n FA]. We also calculated a sensitivity metric (d’) (Green and Swets 1966), where549

d′ = z(p(hits))− z(p(FA)), where z represents the normal distribution function. We define reaction time550

as the central port release time rather than the lateral response time relative to the timing of the target word.551

To analyze whether word tokens systematically elicited behavioral responses, we defined the response time552

as the exit time from the central port relative to trial onset. All data analysis, from behavioral metrics to553

computational models, was programmed using Python 3.9.554
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Computational Models555

The general approach of the gradient-boosted decision tree model is a form of ensemble learning in which556

we use an initial weak decision tree of a depth larger than 1 to predict an outcome of a trial based on557

our behavioral data and then iteratively build upon the error of the first tree (after calculating the loss) by558

constructing the next tree based on the residuals of the previous tree. Once our loss plateaus or we reach559

the maximum number of training epochs, we stop training the model and calculate our test accuracy, or560

how well the model could predict our target variable on a held-out test set of data. We chose this method as561

our data is inherently dense (from long periods of behavioral training and testing) and tabular, which makes562

gradient-boosted regression and decision trees an excellent candidate for the prediction of categorical563

and continuous data compared to a nonlinear neural-network-based classifier (Grinsztajn, Oyallon, and564

Varoquaux 2022).565

566

Linear mixed effect and generalized linear models are commonly used alternatives that allow trial-based567

analysis of categorical or continuous behavioral data. While powerful, such models can fail to capture568

non-linear or non-monotonic relationships that might be present in behavioral data. Machine learning569

approaches offer an alternative model-free approach to uncovering statistical structure in rich behavioral570

data sets such as those typical of animal behavioral work. Models were generated using LightGBM (Ke571

et al. 2017). Gradient-boosted regression trees were used to model reaction time data. Gradient-boosted572

decision trees were used to make classification models for binary trial outcomes (hit vs. miss and false573

alarm vs. correct rejection). To optimize hyperparameters for this model, we implemented a grid search574

using optuna (Akiba et al. 2019).575

576

We generated 5 models to address our research questions. Two classification models were developed;577

one considered determining whether a ferret missed a target word (miss vs. hit model), and the second578

considered the factors that influenced the likelihood of a false alarm/correct rejection of a non-target word579

(false alarm/correct reject model). Our reaction time model used gradient-boosted regression to determine580

the parameters influencing the animals’ reaction time to the target word. Our response time models581

(one each for male and female talker trials) predicted the release time within a trial based on the timing582

of the words. They were used to assess whether animals made systematic false alarms with particular words.583

584

We determined which features were significant using cumulative feature importance, which sums the585

contributions of each variable across all of the trees in which it is utilized, and permutation testing, which586

shuffles a feature of our data (e.g., the target F0) and then selects the drop in performance the model has due587

to that feature being shuffled. We generated permutation importance plots from the sci-kit learn (sklearn)588

package to quantify the extent to which shuffling any given feature decreased teh quality fo the model,589

thereby establishing which features contributed significantly to model performance. The classification590

models were tuned using binary log loss with an evaluation metric of binary log loss across 10,000 epochs591

and implemented early stopping of 100 epochs. The regression models implemented the l2 loss function592

over 1000 epochs with an early stopping of 100 epochs. For the classification models, all hyperparameter593

optimization minimized binary log loss, whereas, for the regression (reaction time) model, hyperparameter594

optimization minimized the mean-squared error (l2 loss function).595

596

The regression models’ test and train mean-squared error was calculated using 5-fold cross-validation.597

The train and test accuracy and balanced accuracy were calculated using 5-fold cross-validation for the598

classification models. Noise floors were calculated for the regression models by calculating model per-599

formance when utilizing trials in which the relationship between reaction / response times was randomly600

shuffled. and the trial variables 1000 times while keeping the hyperparameters constant. We then used601

Shapley Additive values to assess parameter influence on the trial outcome. For the classification models,602

this was the likelihood of a miss/hit or false alarm; for the regression models, this was the reaction time. To603

visualise the contributions of model features (i.e., feature importance and cumulative feature importance),604

we used the SHAP package (Lundberg and Lee 2017), an implementation of Shapely Additive Importance605

features to elucidate explainability from the typically ‘black-box’ regression and classification tree models.606

The SHAP package allowed us to plot partial dependency plots to see how the impact of the model would607

vary as inter-related features changed (such as talker gender and trial number). For the categorization608

models, we applied subsampling of the data to equalize trial counts; to force the model to weight trial609

types with equal importance, we sub-sampled control F0 trials to match intra and inter-F0 roved trials. To610

weigh the trial outcomes with equal importance, we sub-sampled hit responses to match the number of611

miss responses for the miss/hit classification model and sub-sampled non-false alarm responses to match612

the number of false alarm responses in the false alarm model.613
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614

For the regression model that calculated the absolute response time within the trial (rather than relative615

to the target), we used sub-sampling to create a uniform distribution of words. This sub-sampling, or616

bootstrapping, was done so our gradient-boosted regression tree model wouldn’t associate higher-frequency617

words with a higher likelihood of a false alarm or response just because of its higher frequency. However,618

this is mathematically impossible to do precisely, as the words were not presented independently. In other619

words, each trial consisted of multiple word tokens analogous to a sentence, pooling each word from a word620

bank sampled with replacement. Moreover, in F1702, some of the words were programmed to occur 80%621

more frequently than other words for neural recordings. Thus, to achieve something close computationally622

to a mathematically perfect bootstrapping procedure, we created a loop for each of the 54 non-target623

words, found the trials that contained that non-target word, and placed them into a data frame. We then624

sub-sampled this resulting data frame to 700 samples (the minimum number of counts across all words625

in the original data frame) unless the non-target was a naturally high-frequency occurring word, where626

it was sub-sampled to 50 samples or skipped entirely. After all 54 words were iterated through in order,627

the resulting sub-sampled data frame was appended to an array. Next, we repeated the same process but628

went through the non-target words in reverse order to ensure some words wouldn’t be over-sampled in the629

resulting distribution. This whole process of iterating through all the non-target words and flipping the order630

of iteration was repeated 18 more times (Supplementary Figure 5A,B, the results obtained implementing631

this subsampling were very similar to those obtained using the natural distribution of word occurrences).632

The results reported (Figure 5) are from this subsampled data frame. However, we repeated the analysis633

using the natural (biased) frequencies of word occurrences and obtained very similar results (Supplemental634

Figure 5C), illustrating that the GBM does not require balanced data to yield sensible results.635
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SUPPLEMENTARY MATERIAL772

Repeated-Measures ANOVA with posthoc testing773

Within-group
factor SS Degrees of freedom

(numerator)
Degrees of freedom

(denominator) MS F-value Uncorrected
p-value

GG corrected
p-value

Generalized
eta-squared

GG epsilon
factor

roving type 0.0002851 2 8 0.00014255 0.1673 0.8488 0.8339 0.0037 0.9247
talker 0.050970082 1 4 0.050970082 12.0173 0.0257 0.0257 0.3979 1
roving type * talker 0.0215 2 8 0.0108 16.3772 0.0015 0.0099 0.2181 0.5936

Supplementary Table S1. Repeated-measures ANOVA for the hit statistic with roving type and talker
as factors.

A B mean(A) mean(B) diff se T p-tukey hedges talker

control inter 0.8280 0.8823 -0.0542 0.0390 -1.3916 0.3756 -0.7149 Female
control intra 0.8280 0.8738 -0.0458 0.0390 -1.1752 0.4893 -0.6126 Female

inter intra 0.8823 0.8738 0.0084 0.0390 0.2164 0.9746 0.1648 Female
control inter 0.8201 0.7508 0.0693 0.0324 2.1367 0.1239 1.0451 Male
control intra 0.8201 0.7659 0.0542 0.0324 1.6725 0.2551 1.3949 Male

inter intra 0.7508 0.7659 -0.0151 0.0324 -0.4642 0.8891 -0.2455 Male

Supplementary Table S2. Pairwise Tukey HSD posthoc test statistics for the hit statistic comparing the
roving types for each talker type.

Within-group
factor SS Degrees of freedom

(numerator)
Degrees of freedom

(denominator) MS F-value Uncorrected
p-value

GG corrected
p-value

Generalized
eta-squared

GG epsilon
factor

roving type 0.0347 2 8 0.0174 32.541 0.0001436 0.0011539 0.3932 0.6985
talker 0.0057 1 4 0.0057 7.7165 0.04993 0.04993 0.0961 1
roving type * talker 0.0087 2 8 0.0043 16.3283 0.0014991 0.0082412 0.1391 0.6338

Supplementary Table S3. Repeated-measures ANOVA for the false alarm statistic with roving type
and talker as factors

A B mean(A) mean(B) diff se T p-tukey hedges talker

control inter 0.1213 0.2395 -0.1181 0.0288 -4.0986 0.0039 -2.2667 Female
control intra 0.1213 0.2069 -0.0855 0.0288 -2.9677 0.0294 -2.2529 Female

inter intra 0.2395 0.2069 0.0326 0.0288 1.1310 0.5143 0.5526 Female
control inter 0.1969 0.2445 -0.0476 0.0309 -1.5418 0.3072 -0.8621 Male
control intra 0.1969 0.2089 -0.0120 0.0309 -0.3884 0.9207 -0.2324 Male

inter intra 0.2445 0.2089 0.0356 0.0309 1.1533 0.5016 0.6446 Male

Supplementary Table S4. Pairwise Tukey HSD posthoc test statistics for the false alarm statistic
comparing the roving types for each talker type.

Within-group
factor SS Degrees of freedom

(numerator)
Degrees of freedom

(denominator) MS F-value Uncorrected
p-value

GG corrected
p-value

Generalized
eta-squared

GG epsilon
factor

roving type 0.4941 2 8 0.2470 19.0512 0.0009067 0.0016395 0.2171 0.8836
talker 1.5566 1 4 1.5566 13.3321 0.0217 0.0217 0.4662 1
roving type * talker 0.0379 2 8 0.0190 1.4193 0.2968 0.3006 0.0208 0.5931

Supplementary Table S5. Repeated-measures ANOVA for the d’ statistic with roving type and talker
as factors
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A B mean(A) mean(B) diff se T p-tukey hedges

control inter 1.9759 1.6675 0.3084 0.1582 1.9500 0.1443 0.8036
control intra 1.9759 1.7690 0.2070 0.1582 1.3086 0.4028 0.5891
inter intra 1.6675 1.7690 -0.1014 0.1582 -0.6414 0.7987 -0.2727

Supplementary Table S6. Pairwise Tukey HSD posthoc test statistics for the d’ statistic comparing the
roving type.

Supplementary Figure 6. Average coefficients for the mixed effects model predicting the absolute
reaction time of A, the female talker and B, the male talker. Asterisks represent mean p-values < 0.05.
Error bars represent standard deviation.

Mean Coefficients for Correct Response/Miss Mixed Effects Model774

Coefficients p-values Std Error Reference Var.

Intercept 0.520854461 1.52×10−10 0.080041795 NA
talker[T.Female] -0.317642927 1.51×10−10 0.045732239 Male
side[T.Right] 0.193710621 9.11×10−16 0.022978412 Left
precur and targ same[T.1.0] -0.019565026 0.553336664 0.028361248 0
pastcorrectresp[T.1] 0.025192459 0.650363275 0.047565918 0
pastcatchtrial[T.1] 0.021765334 0.442912553 0.026426389 109 Hz
pitchoftarg[T.124 Hz] -0.076117184 0.067420509 0.036043322 109 Hz
pitchoftarg[T.144 Hz] -0.023891631 0.502165928 0.039155263 109 Hz
pitchoftarg[T.191 Hz] 0.137419137 0.027073213 0.058698022 109 Hz
pitchoftarg[T.251 Hz] -0.031619663 0.530787218 0.063248187 NA
targTimes -0.007073769 0.437703962 0.009010698 NA
Group Var 0.059673346 0.191171661 0.045549129 NA

Supplementary Table S7. Average coefficients of the main fixed effects of the miss/correct response
model.
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Variable Value

F1702 0.083706212
F1815 -0.103531798
F1803 -0.106645577
F2002 -0.010695264
F2105 0.137166427

Supplementary Table S8. Average coefficients of the random effects for the miss/correct response
model.

Mean Coefficients for False Alarm during Catch Trials Mixed Effects Model775

Coefficients p-values Std Error Reference Var.

Intercept 0.732556885 3.38×10−40 0.054497305 NA
talker[T.Female] -0.015609053 0.579346879 0.023068625 Male
audio side[T.Right] -0.024267944 0.087824018 0.013355741 Left
intra trial F0 roving[T.1] -0.012606819 0.413351419 0.013948378 0
past response correct[T.1] -0.145910528 2.59×10−8 0.025252469 0
past trial was catch[T.1] 0.015704358 0.34159084 0.015312778 0
F0[T.124 Hz] -0.054385786 0.015409873 0.021301452 109 Hz
F0[T.144 Hz] -0.046151527 0.033597362 0.020785748 109 Hz
F0[T.191 Hz] -0.188231442 9.74×10−8 0.033246797 109 Hz
F0[T.251 Hz] -0.078706493 0.023296467 0.032719323 109 Hz
time since trial start 0.006276126 0.235041603 0.004998005 NA
trial number -0.001258391 2.45×10−6 0.000240217 NA
Group Var 0.0242515 0.256106446 0.021387303 NA

Supplementary Table S9. Average fixed effect coefficients for the false alarm linear mixed effects
model. 1 indicates yes, 0 indicates no.

Variable Value

F1702 -0.021814873
F1815 0.034607429
F1803 0.06438864
F2002 0.025084628
F2105 -0.102265824

Supplementary Table S10. Average random effect coefficients for the false alarm linear mixed effects
model.
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Mean Coefficients for Correct Reaction Time Mixed Effects Model776

coefficients p values std dev. reference var.

Intercept 0.7082 1.43E-41 0.0507 NA
target F0[T.124 Hz] -0.0936 4.40E-05 0.0214 109 Hz
target F0[T.144 Hz] 0.0231 0.3965 0.0251 109 Hz
target F0[T.191 Hz] 0.0271 0.4630 0.0333 109 Hz
target F0[T.251 Hz] -0.0241 0.4955 0.0345 109 Hz
past trial catch[T.1] -0.0061 0.6117 0.0140 0
talker[T.Female] -0.1509 5.63E-08 0.0250 Male
side of audio[T.Right] 0.0555 1.13E-05 0.0120 Left
precursor equals target F0[T.1.0] -0.0369 0.0063 0.0129 0
past resp correct[T.1] 0.0024 0.7772 0.0260 0
trial no 0.0004 0.0385 0.0002 NA
target time -0.0248 6.39E-07 0.0049 NA
Group Var 0.0841 0.1713 0.0615 NA

Supplementary Table S11. Average fixed effect coefficients for the reaction time linear mixed effects
model for correct hit responses. 1 indicates yes, 0 indicates no.

F1702 0.0803
F1815 0.0319
F1803 0.0536
F2002 -0.0414
F2105 -0.1244

Supplementary Table S12. Average random effect coefficients mixed effects model predicting reaction
time for correct target trial responses.
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Mean Coefficients for OLS Absolute Reaction Time Model, Female Talker777

coefficients p values std dev

Intercept 1.6652 0 0.0008
instruments 0.2501 0 0.0003
when a 0.0933 0 0.0006
sailor 0.1327 0 0.0006
in a small 0.1194 0 0.0006
craft 0.1299 0 0.0006
faces 0.1296 0 0.0006
of the might 0.1227 0 0.0006
of the vast 0.1487 0 0.0006
atlantic 0.1278 0 0.0006
ocean 0.1085 0 0.0006
today 0.1052 0 0.0006
he takes 0.1193 0 0.0006
the same 0.1033 0 0.0006
risks 0.1250 0 0.0006
that generations 0.1839 0 0.0006
took 0.0777 0 0.0006
before[0] 0.1184 0 0.0006
before[1] 0.1364 0 0.0005
him 0.0964 0 0.0006
but 0.1025 0 0.0006
in contrast 0.1799 0 0.0006
them 0.1236 0 0.0006
he can meet 0.1377 0 0.0006
any 0.0855 0 0.0005
emergency 0.1552 0 0.0006
that comes 0.1152 0 0.0006
his way 0.1441 0 0.0006
confidence 0.1563 0 0.0006
that stems 0.1326 0 0.0006
profound 0.1490 0 0.0006
trust 0.1159 0 0.0006
advance 0.1330 0 0.0006
of science 0.1869 0 0.0006
boats 0.0887 0 0.0006
stronger 0.1242 0 0.0006
more stable 0.1907 0 0.0006
protecting 0.1472 0 0.0006
against 0.1069 0 0.0006
and du 0.1076 0 0.0006
exposure 0.1836 0 0.0006
tools and 0.1371 0 0.0006
more ah 0.0867 0 0.0006
accurate 0.1480 0 0.0006
the more 0.0883 0 0.0005
reliable 0.1556 0 0.0006
helping in 0.1260 0 0.0006
normal weather 0.1227 0 0.0006
and conditions 0.1737 0 0.0005
food 0.1154 0 0.0006
and drink 0.1274 0 0.0006
of better 0.1157 0 0.0006
researched 0.1577 0 0.0006
than easier 0.1363 0 0.0006
to cook 0.1101 0 0.0006
than ever 0.1103 0 0.0006

Supplementary Table S13. Coefficients for the ordinary least squares (OLS) model predicting absolute
reaction time based on word identity in a trial, female talker model.
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Mean Coefficients for OLS Absolute Reaction Time Model, Male Talker778

coefficients p values std dev.

Intercept 1.6723 0 0.0008
instruments 0.1992 0 0.0003
when a 0.0930 0 0.0005
sailor 0.1298 0 0.0005
in a 0.0734 0 0.0005
small 0.1004 0 0.0005
craft 0.1115 0 0.0005
faces 0.1260 0 0.0005
the might 0.1180 0 0.0005
of the 0.0833 0 0.0005
vast 0.0957 0 0.0005
atlantic 0.1501 0 0.0005
ocean 0.1030 0 0.0005
today 0.1174 0 0.0005
he[0] 0.0484 0 0.0005
he[1] 0.0562 0 0.0005
takes 0.0942 0 0.0005
the same 0.1188 0 0.0005
risks 0.1026 0 0.0005
that generations 0.1774 0 0.0005
took 0.0531 0 0.0005
before him 0.1408 0 0.0005
but 0.0788 0 0.0005
in contrast 0.1495 0 0.0005
to them 0.1053 0 0.0005
can meet 0.0754 0 0.0005
any 0.0685 0 0.0005
emergency 0.1460 0 0.0005
that comes 0.1233 0 0.0005
his way 0.1336 0 0.0005
with a 0.0620 0 0.0005
confidence 0.1287 0 0.0005
that stems 0.1485 0 0.0005
from 0.0839 0 0.0005

profound 0.1561 0 0.0005
trust 0.1045 0 0.0005
in the 0.1107 0 0.0005
advances 0.1157 0 0.0005
of science 0.1557 0 0.0005
boats 0.1129 0 0.0005
as stronger 0.1488 0 0.0005
and more[0] 0.1000 0 0.0005
and more[1] 0.0863 0 0.0005
stable 0.1317 0 0.0005
protecting 0.1312 0 0.0005
against 0.1197 0 0.0005
undue 0.1309 0 0.0005
exposure 0.1753 0 0.0005
tools 0.1033 0 0.0005
accurate 0.1218 0 0.0005
reliable 0.1269 0 0.0005
helping 0.1206 0 0.0005
in all 0.1209 0 0.0005
weather 0.0971 0 0.0005
a n d[0] 0.0586 0 0.0005
a n d[1] 0.0676 0 0.0005

Supplementary Table S14. Coefficients for the ordinary least squares (OLS) model predicting absolute
reaction time based on word identity in a trial, male talker model.
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Trial information779

Ferret ID F1702 F1815 F1803 F2002 F2105
Talker M F M F M F M F M F
All trials 2834 2773 1758 1684 3060 3001 6381 3611 2026 2055
Catch trials 717 694 454 439 781 756 1583 918 504 519

Supplementary Table S15. Table of trial type numbers distributed by ferret ID and talker type (M =
male talker, F= female talker)

Model Parameters780

False alarm categorical model781

Parameter Value
colsample bytree 0.19088470325102014
subsample 0.9304141034109051
learning rate 0.477510574908984
num leaves 115
max depth 18
min child samples 53
reg alpha 0.2609865674187428
reg lambda 1.3303484138905937
min split gain 0.0007545705453046434
bagging freq 17
feature fraction 0.8423132245598192
scale pos weight 1.113987259898614
min child weight 7.651492399061174
max bin 786
min data in leaf 52
min sum hessian in leaf 2.9989911144951256

Supplementary Table S16. Hyperparameter values for the false alarm categorical model

Miss/hit model782

Parameter Value
colsample bytree 0.5826037749242697
subsample 0.9632104755468021
learning rate 0.22727575447213846
num leaves 45
max depth 15
min child samples 61
reg alpha 4.265341824464033
reg lambda 2.3404053166956853
min split gain 0.004157693187481298
bagging freq 6
feature fraction 0.9019287831358274
scale pos weight 1.0694853574196075
min child weight 6.892115531076795
max bin 224
min data in leaf 79
min sum hessian in leaf 11.443671701974884

Supplementary Table S17. Hyperparameters for the miss/hit gradient-boosted decision tree model
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Reaction time model783

Parameter Value
colsample bytree 0.46168728494506456
alpha 8.758272905706946
n estimators 82
learning rate 0.2165288044507529
max depth 18
bagging fraction 0.7000000000000001
bagging freq 0

Supplementary Table S18. Hyperparameters for the reaction time gradient-boosted regression tree
model predicting the reaction time from the onset of the target word from the subset of correct hit
responses.

Absolute reaction time model - female talker784

Hyperparameter Value
colsample bytree 0.9984483617911889

alpha 10.545892165925359
n estimators 120
learning rate 0.2585298848712121
max depth 20

bagging fraction 1.0
bagging freq 23

lambda 0.19538105338084405
subsample 0.8958044434304789

min child samples 20
min child weight 9.474782393947127

gamma 0.1571174215092159
subsample for bin6200

Supplementary Table S19. Hyperparameters for the absolute reaction time gradient-boosted
regression tree model that predicts the reaction time relative to the female talker type trial start time.

Absolute reaction time model - male talker785

Parameter Value
colsample bytree 0.5870762820095368
alpha 10.840482953967314
n estimators 70
learning rate 0.18038495501541654
max depth 20
bagging fraction 0.9
bagging freq 30

Supplementary Table S20. Hyperparameters for the absolute reaction time gradient-boosted
regression tree model that predicts the reaction time relative to the male talker type trial start time.
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Absolute reaction time models - ferret ID specific786

Ferret ID Talker Type Alpha Bagging Fraction Bagging Freq Colsample bytree Learning Rate Max Depth N Estimators
F1702 Female 14.223322406 0.9 15 0.4376317124943425 0.2950728851506002 17 72
F1702 Male 13.683546599 0.9 27 0.274885701704623 0.29969397257415414 8 92
F1815 Female 7.971900722 0.8 3 0.3400445377182091 0.27676813001474104 18 94
F1815 Male 8.423806867 0.9 17 0.20729967592658163 0.156195214112881 18 70
F1803 Female 12.715761382 0.9 3 0.3900419851696171 0.2999743040074189 17 86
F1803 Male 9.372039068 0.9 26 0.33678897601201463 0.2305005540632021 10 94
F2002 Female 14.643599551 0.8 7 0.5003266555294205 0.24935282553721447 12 96
F2002 Male 7.975250677 0.9 1 0.4229110961290357 0.2617874794508851 20 70
F2105 Female 13.306184442 0.9 16 0.24494884931507196 0.29526660334827737 15 100
F2105 Male 5.599860028 0.1 0 0.1294417170969843 0.24111783056503241 20 42

Supplementary Table S21. Hyperparameters for the absolute reaction time models for each ferret ID
broken down by Female/Male talker type.
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