

1 **Notch signalling influences cell fate decisions and HOX gene induction in axial
2 progenitors**

3 Fay Cooper^{1,2*}, Celine Souilhol^{1,2,5}, Scott Haston^{3,4}, Shona Gray⁴, Katy Boswell^{1,2}, Antigoni
4 Gogolou^{1,2}, Thomas Frith^{1,2}, Dylan Stavish^{1,2}, Bethany M James^{1,2}, Dan Bose^{1,2}, Jacqueline
5 Kim Dale⁴, Anestis Tsakiridis^{1,2*}

6

7 ¹School of Biosciences, The University of Sheffield, Sheffield, UK.

8 ²Neuroscience Institute, The University of Sheffield, Sheffield, UK.

9 ³Developmental Biology and Cancer, Birth Defects Research Centre, UCL GOS Institute of Child Health,
10 London, UK

11 ⁴Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee,
12 UK.

13 ⁵Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam
14 University, Sheffield, UK

15 *Authors for correspondence (f.cooper@sheffield.ac.uk and a.tsakiridis@sheffield.ac.uk)

16

17 **SUMMARY STATEMENT**

18 Notch signalling is a critical regulator of the induction and differentiation of posteriorly-located
19 neuromesodermal axial progenitors, the precursors of the neural and mesodermal
20 components of the amniote embryonic body trunk.

21

22 **ABSTRACT**

23 The generation of the post-cranial embryonic body relies on the coordinated production of
24 spinal cord neurectoderm and presomitic mesoderm cells from neuromesodermal progenitors
25 (NMPs). This process is orchestrated by pro-neural and pro-mesodermal transcription factors

26 that are co-expressed in NMPs together with Hox genes, which are critical for axial allocation
27 of NMP derivatives. NMPs reside in a posterior growth region, which is marked by the
28 expression of Wnt, FGF and Notch signalling components. While the importance of Wnt and
29 FGF in influencing the induction and differentiation of NMPs is well established, the precise
30 role of Notch remains unclear. Here, we show that the Wnt/FGF-driven induction of NMPs
31 from human embryonic stem cells (hESCs) relies on Notch signalling. Using hESC-derived
32 NMPs and chick embryo grafting, we demonstrate that Notch directs a pro-mesodermal
33 character at the expense of neural fate. We show that Notch also contributes to activation of
34 *HOX* gene expression in human NMPs, partly in a non cell-autonomous manner. Finally, we
35 provide evidence that Notch exerts its effects via the establishment of a negative feedback
36 loop with FGF signalling.

37

38 INTRODUCTION

39 The formation of the amniote embryonic body takes place in a head-to-tail (anterior-posterior)
40 direction and it is driven by developmentally plastic axial progenitors, which can generate both
41 spinal cord neurectoderm and presomitic/paraxial mesoderm, the precursor of the vertebral
42 column/trunk musculature (thus termed NMPs; reviewed in (Wymeersch et al., 2021)). NMPs
43 arise around the end of gastrulation/early somitogenesis, within a posterior growth region that
44 encompasses the node-anterior primitive streak border (NSB) and the caudal lateral epiblast
45 (Brown & Storey, 2000; Cambray & Wilson, 2002, 2007; Guillot et al., 2021; Mugele et al.,
46 2018; Wymeersch et al., 2016). They are marked by the co-expression of pro-neural and pro-
47 mesodermal transcription factors, such as *Sox2*, *T/Brachyury* (*TBX6* in humans), *Tbx6* and
48 *Cdx2* (Gouti et al., 2017; Guillot et al., 2021; Javali et al., 2017; Koch et al., 2017; Martin &
49 Kimelman, 2012; Olivera-Martinez et al., 2012; Tsakiridis et al., 2014; Wymeersch et al., 2016).
50 The antagonistic interaction between these lineage-specific transcription factors determines
51 the balanced production of neural vs mesodermal cell types from NMPs (Gouti et al., 2017;
52 Koch et al., 2017). NMPs are also marked by the expression of *Hox* gene family members
53 (arranged as paralogous groups [PG] in four distinct chromosomal clusters: A, B, C, and D),

54 which are activated within the posterior growth region in a sequential manner reflecting their
55 3'-to-5' genomic order (Gouti et al., 2017; Guillot et al., 2021; Neijts et al., 2017; Wymeersch
56 et al., 2019). The latter process is tightly linked to the assignment of a positional identity in the
57 nascent axial progenitor derivatives before their allocation along the developing embryonic
58 anteroposterior axis (reviewed by (Deschamps & Duboule, 2017)).

59 The NMP niche relies on the activity of key posteriorizing signalling pathways, such as
60 Wnt and FGF. These trigger the transcription factor networks operating within NMPs, which in
61 turn, potentiate, via positive feedback, Wnt/FGF activity within the posterior growth region
62 during axis elongation (Amin et al., 2016; Blassberg et al., 2022; Martin & Kimelman, 2012;
63 Mukherjee et al., 2022; Young et al., 2009). The balance between these two signalling
64 pathways appears to orchestrate NMP cell fate decisions as Wnt/FGF have been shown to be
65 linked to both progenitor maintenance and differentiation toward early neural and presomitic
66 mesoderm cells (Amin et al., 2016; Anand et al., 2023; Cooper et al., 2022; Delfino-Machín et
67 al., 2005; Diez del Corral et al., 2002; Gouti et al., 2017; Martin & Kimelman, 2012; Semprich
68 et al., 2022; Wind et al., 2021; Young et al., 2009). In line with these findings, Wnt and FGF
69 signalling agonists are the two main components of protocols for the generation of NMP-like
70 cells and their earliest mesodermal and neural derivatives from mouse and human pluripotent
71 stem cells *in vitro* (Chal et al., 2015; Cooper et al., 2022; Frith et al., 2018; Lippmann et al.,
72 2015; Turner et al., 2014; Verrier et al., 2018; Wind et al., 2021). Moreover, *Hox* gene
73 expression in the posterior growth region/NMPs is also driven largely by Wnt and FGF activity
74 via crosstalk with the two key posteriorizing transcription factors *CDX2* and *TBX3* (Amin et al.,
75 2016; Chawengsaksophak et al., 2004; Gogolou et al., 2022; Metzis et al., 2018; Neijts et al.,
76 2017; Neijts et al., 2016).

77 The other key developmental signalling pathway that has been found to be active in
78 the posterior growth region/NMP niches is Notch. Notch signalling is activated through the
79 interaction of receptors and ligands expressed by neighbouring cells. In mammals, there are
80 four transmembrane receptors (NOTCH 1-4), which bind to five NOTCH transmembrane
81 ligands (DLL1, DLL3, DLL4, JAG1 and JAG2). Once bound, the NOTCH receptor undergoes

82 two successive proteolytic cleavage events mediated by ADAM10 and γ -SECRETASE which
83 releases the intracellular NOTCH domain (NICD) into the cell nucleus and allowing it to bind
84 to the NOTCH signalling transcription factor RBPJk/CSL (Carrieri & Dale, 2016; Shen et al.,
85 2021). Several Notch signalling components are expressed in NMPs and their immediate
86 neural and mesodermal derivatives, from late gastrulation and throughout embryonic axis
87 elongation (Akai et al., 2005; Bettenhausen et al., 1995; Dunwoodie et al., 1997; Williams et
88 al., 1995; Wymeersch et al., 2019; Zhang & Gridley, 1998). Moreover, the attenuation or
89 overexpression of many of these components leads to severe posterior patterning defects
90 (Akai et al., 2005; Dale et al., 2003; de la Pompa et al., 1997; Donoviel et al., 1999; Nowotschin
91 et al., 2012; Oka et al., 1995; Souilhol et al., 2015). Notch signalling has also been found to
92 crosstalk with the principal posteriorizing Wnt and FGF signalling pathways during axis
93 elongation (Akai et al., 2005; Galceran et al., 2004; Gibb et al., 2009; Nakaya et al., 2005).
94 and the expression of Notch signalling components in the posterior growth region is driven by
95 key NMP regulators-Wnt/FGF targets such as *T/TBXT* and *Cdx2* (Amin et al., 2016; Gogolou
96 et al., 2022; Guibentif et al., 2021; Koch et al., 2017). Collectively, these data suggest that
97 Notch signalling may be a critical component of the NMP niche and interlinked with the well-
98 established signalling pathways regulating NMP specification and maintenance. However, it
99 is still unclear how exactly Notch influences NMP ontogeny.

100 Here, we investigated the role of Notch signalling in axial progenitors using the
101 differentiation of human embryonic stem cells (hESCs) toward NMPs as a model. We show
102 that Notch attenuation during NMP induction impairs the activation of pro-mesodermal
103 transcription factors and global *HOX* activation whilst promoting an early neural character. Our
104 results indicate that Notch-driven pro-mesodermal/*HOX* gene expression control is mediated
105 via the establishment of a feedback loop with FGF signalling. We provide evidence that the
106 induction of certain *HOX* genes in hESC-derived NMPs may be mediated by Notch in a non-
107 cell autonomous fashion. Finally, Notch signalling inhibition in chick embryonic NMPs
108 dramatically alters their engraftment behaviour and impairs their capacity to generate paraxial
109 mesoderm cells biasing them instead toward a ventral neural/floor plate cell fate. Together,

110 these findings suggest that Notch contributes, together with Wnt and FGF, to the primary
111 signalling axis within the posterior growth region that orchestrates NMP cell fate decisions and
112 positional identity acquisition.

113

114 RESULTS AND DISCUSSION

115 Notch signalling mediates the induction of pro-mesodermal and *HOX* genes in NMPs

116 We have previously shown that the *in vitro* generation of NMPs following treatment of hPSCs
117 with the Wnt agonist CHIR99021 (CHIR) and recombinant FGF2 for three days is
118 accompanied by an upregulation of Notch signalling-associated transcripts (Frith et al., 2018;
119 Wind et al., 2021), in line with findings demonstrating high Notch activity in the early posterior
120 growth region and NMPs around the end of gastrulation/early somitogenesis *in vivo*
121 (Bettenhausen et al., 1995; Dunwoodie et al., 1997; Williams et al., 1995; Wymeersch et al.,
122 2019). To interrogate the role of this increase in Notch signalling activity during the transition
123 of pluripotent cells toward a neuromesodermal-potent state, we generated NMPs from WA09
124 (H9) hESCs in the presence of the Notch/γ-secretase inhibitor DAPT or DMSO (control) (**Fig.**
125 **1A**). Quantitative PCR (qPCR)-based analysis of DAPT-treated NMP cultures (NOTCHi)
126 revealed that they expressed significantly reduced levels of Notch target genes/components,
127 particularly *HES5*, compared to controls, indicating effective attenuation of Notch signalling
128 (**Fig. S1A**). Moreover, NOTCHi NMPs were marked by a considerable reduction in the
129 expression of pro-mesodermal/NMP markers such as *TBX7*, *TBX6* and *CDX1* and a
130 concomitant increase in the transcription of the pro-neural NMP marker *SOX2* (**Fig. 1B**).
131 Similar changes in *TBX7* and *SOX2* were detected at the protein level (**Fig. 1C, D**), while we
132 found no increase in the expression of pluripotency-associated (OCT4 and NANOG) or later
133 spinal cord neurectodermal (PAX6 and SOX1) markers, which remained low/undetected (**Fig.**
134 **S1B** and data not shown). Together, these results suggest that NOTCH signalling mediates
135 the pro-mesodermal character of NMPs during their specification from pluripotent cells at the
136 expense of a spinal cord pre-neural SOX2+ identity.

137 We next examined the global activation of *HOX* genes, a major hallmark of Wnt/FGF-
138 driven acquisition of a posterior axial and NMP identity (Cooper et al., 2022; Gogolou et al.,
139 2022; Gouti et al., 2017; Guillot et al., 2021; Wymeersch et al., 2019), in DAPT-treated
140 cultures. We found that NOTCHi hESC-derived NMPs exhibited a marked reduction in the
141 expression of most *HOX* PG members examined, particularly those belonging to the *HOXC*
142 and *HOXD* clusters, compared to the DMSO controls (**Fig. 1E**). Similarly, immunofluorescence
143 analysis of NOTCHi NMP cultures revealed a decrease in HOXC9, TBXT and SOX2 protein
144 levels relative to their DMSO-treated counterparts (**Fig. 1C, D**). This DAPT-driven perturbation
145 in HOXC9 expression was detected in SOX2-positive/TBXT-positive as well as SOX2-
146 positive/TBXT-negative cell populations (**Fig. 1F**) suggesting that impaired activation of *HOX*
147 gene clusters occurs irrespectively of the expression status of TBXT, a transcription factor that
148 has been found to control directly *HOX* gene transcription in human NMPs (Gogolou et al.,
149 2022). Together, these findings indicate that, Notch signalling modulates the induction of a
150 posterior axial identity and colinear activation of *HOX* PG family members by Wnt and FGF,
151 as pluripotent cells transit toward NMPs.

152

153 **Non-cell autonomous control of *HOX* gene expression in human NMPs is partly Notch-
154 driven**

155 The striking effect of DAPT on the induction of various *HOX* genes in hESC-derived NMPs
156 prompted us to further examine the links between Notch and *HOX* expression control.
157 Heterochronic grafting experiments have indicated that the global *Hox* gene expression profile
158 of axial progenitors is plastic as it can be ‘reset’ in response to extrinsic cues emanating from
159 the NMP niche (McGrew et al., 2008). We have also previously shown that hESC-derived
160 NMPs, in which *TBXT* is knocked down via a Tetracycline (Tet)-inducible, short hairpin RNA
161 (shRNA)-mediated system (Bertero et al., 2016) (TiKD) are marked by reduced Notch activity
162 as well as an inability to induce properly *HOX* PG(1-9) members (Gogolou et al., 2022). Given
163 that Notch signalling is typically encoded via receptor-ligand interaction between neighbouring
164 cells, we tested whether it could influence/rescue *HOX* gene expression in a non-cell

165 autonomous manner. To this end, we mixed TiKD hESCs with isogenic wild type hESCs
166 constitutively expressing an red fluorescent protein reporter (H9-RFP), at a 50:50 ratio. The
167 co-cultures were differentiated toward NMPs and treated with Tet to mediate *TBXT* knockdown
168 specifically in the unlabelled TiKD fraction, in the presence or absence of DAPT (**Fig. 2A**).
169 Following NMP differentiation, *TBXT* knockdown/RFP-negative cells were FACS-sorted from
170 the co-cultures and the levels of *HOX* transcripts were assayed by qPCR and compared to +/-
171 Tet NMPs derived from TiKD hESCs without co-culture (**Fig. 2A, S2**). We found that Tet-
172 induced *TBXT* knockdown was efficient in TiKD cells cultured either alone or together with
173 their wild type counterparts (**Fig. 2B**). Tet-induced *TBXT* knockdown triggered a significant
174 decrease in the expression of most *HOX* genes and the Notch target *HES5* (**Fig. 2C-F**,
175 compare black vs light blue bars) as previously reported (Gogolou et al., 2022). Strikingly, this
176 trend was partially reversed in TiKD cells upon co-culture with H9-RFP cells: the expression
177 of some *HOX* genes, particularly those belonging to the *HOXB* PG (5-9), was restored back
178 to levels similar to the -Tet controls (**Fig. 2C-F**, compare black vs light blue vs purple bars).
179 Moreover, upon co-culture with H9-RFPs, TiKD cells exhibited a large increase in the levels of
180 *HES5* (above the -Tet control levels) suggesting that Notch overactivation takes place
181 specifically under these conditions (**Fig. 2B**, compare black vs light blue vs purple bars). As
182 expected, this was counteracted by DAPT treatment (**Fig. 2B**, compare purple vs pink bars),
183 which simultaneously appeared to prevent, mainly in *HOXB* cluster members, the gene
184 expression compensatory effect of the co-culture on TiKD NMPs (**Fig. 2C-F**, compare purple
185 vs pink bars). Co-culture/DAPT treatment did not alter the expression of *TBXT* relative to the
186 Tet-treated TiKD cells cultured alone (**Fig. 2B**, compare black vs light blue vs purple vs pink
187 bars). Collectively, these results suggest that Notch signalling can control the expression of at
188 least a fraction of the *HOX* genes expressed by NMPs in a non-cell autonomous manner and
189 *TBXT*-independent manner.

190

191 **Notch amplifies FGF activity in NMPs**

192 To further understand how Notch signalling influences NMP specification/*HOX* gene
193 expression, we assessed its crosstalk with the two key posteriorising signalling pathways
194 driving embryonic axis elongation, Wnt and FGF. Thus, we generated NMPs from hESCs in
195 the presence of either DAPT or DMSO as described above (**Fig. 1A, 3A**) and assessed the
196 expression of Wnt/FGF signalling pathway components by qPCR. The transcript levels of Wnt
197 target genes such as *AXIN2*, *LEF1* and *TCF1* remained unchanged in NOTCHi conditions,
198 whereas expression of *SPRY4*, a FGF signalling target gene, was diminished (**Fig. 3B**),
199 indicating that Notch inhibition results in a reduction of FGF signalling activity. To further
200 confirm this, we examined the levels of the phosphorylated FGF effector kinase ERK1/2
201 (MAPK) by Western blot (**Fig. 3C**). Both phosphorylated p44 and p42 versions were reduced
202 in NOTCHi NMPs compared to the DMSO-treated controls (**Fig. 3C, D**) further supporting the
203 notion that Notch positively regulates FGF signalling in hESC derived NMPs. We further tested
204 this, by examining whether the NOTCHi NMP phenotype can be rescued by boosting FGF
205 signalling levels via an increase in FGF2 levels. We found that doubling the dosage of FGF2
206 from 20 to 40 ng/ml, in the presence of DAPT, during NMP induction from hESCs, blunted the
207 impact of Notch inhibition and led to an increase in the expression of *TBX7* and all *HOX* genes
208 examined back to levels comparable to those in the DMSO controls (**Fig. 3E**). Conversely,
209 differentiation of hESCs toward NMPs in the absence of FGF2 and presence of the FGF
210 pathway-MEK1/2 inhibitor PD0325901 (PD03) and CHIR alone (FGFi) appeared to
211 phenocopy the effects of NOTCHi: qPCR analysis of the resulting cultures revealed the
212 downregulation of pro-mesodermal (e.g. *TBX6*) and upregulation of pro-neural transcript
213 (*SOX2*) (**Fig. 3F**). Unlike NOTCHi, definitive neuroectoderm genes PAX6 and SOX1 were
214 found to be significantly upregulated in FGFi conditions (**Fig. 3F**). The expression of the FGF
215 targets *SPRY2* and *SPRY4*, was robustly reduced confirming efficient FGF signalling inhibition
216 under these conditions (**Fig. 3G**). FGF inhibition also resulted in a reduction of Wnt signalling
217 components in line with findings from analysis of the embryonic NMP niches (Oginuma et al.,
218 2017; Olivera-Martinez et al., 2012). Collectively, our data, combined with our previous
219 observations showing that CHIR-PD03-treated hESC-derived NMPs are marked by global

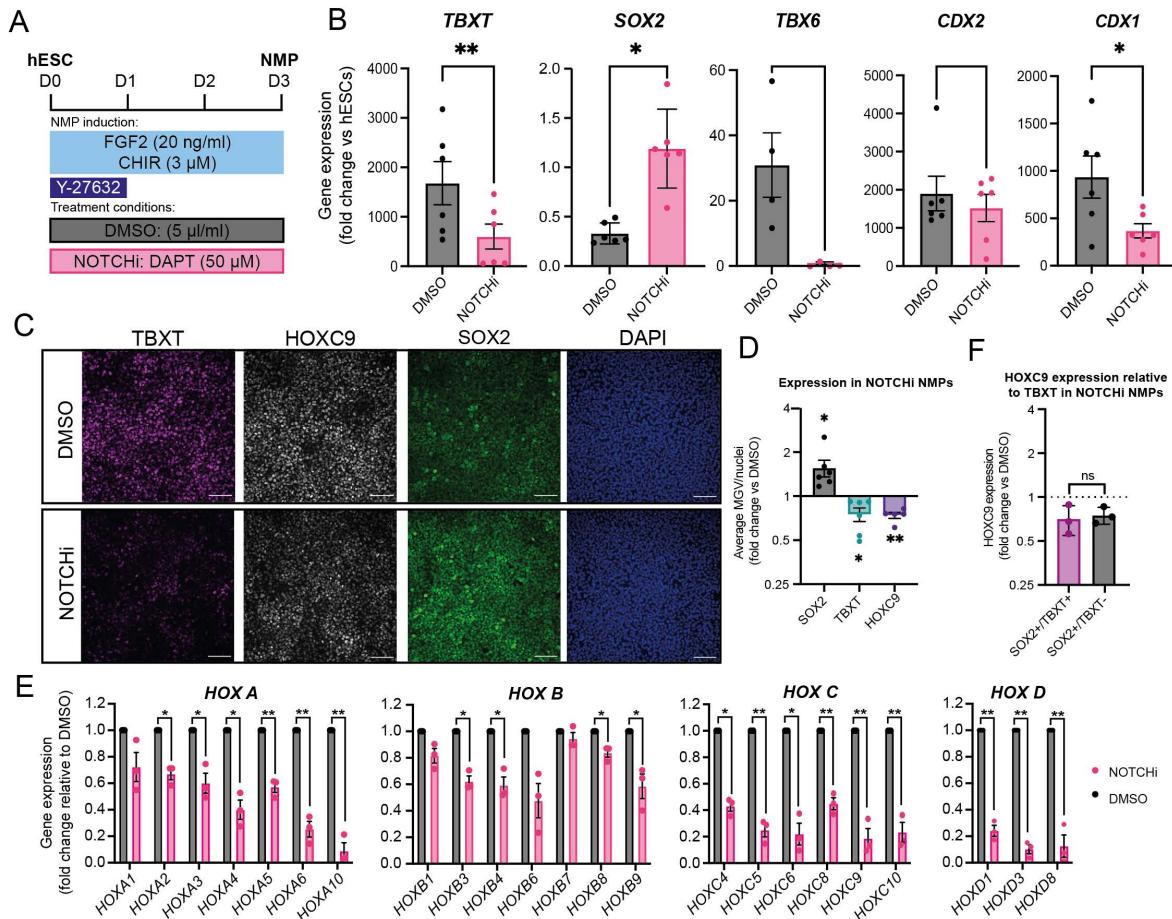
220 reduction of *HOX* gene expression as well as *TBXT* (Gogolou et al., 2022), strongly suggest
221 that Notch signalling promotes the induction of these genes via its, direct or indirect, crosstalk
222 with FGF signalling. Interestingly, FGF inhibition also led to a dramatic increase in the levels
223 of the Notch target *HES5* (**Fig. 3G**), consistent with a possible feedback loop between Notch
224 and FGF signalling (**Fig. 3H**).

225

226 **Notch controls axial progenitor cell fate decisions *in vivo***

227 We next examined the role of Notch signalling in NMP differentiation *in vivo*. To this end,
228 wildtype and transgenic chicken embryos ubiquitously expressing green fluorescent protein
229 (GFP) were incubated until Hamburger Hamilton (HH) (Hamburger & Hamilton, 1951) stage
230 4 and then dissected from the egg and cultured *in vitro* until HH8, i.e. the time window that
231 coincides with the emergence of NMPs in the posterior growth region (Guillot et al., 2021) (**Fig.**
232 **4A**). Embryos were cultured on media plates containing either the γ -secretase Notch inhibitor
233 LY411575 (LY) (Wong et al., 2004) or DMSO (control). Following *in vitro* culture, the NSB
234 region from DMSO or LY-treated HH8 GFP transgenic donor chicks was isolated and grafted
235 to a homotopic location on stage matched, DMSO or LY-treated wild type host embryos
236 respectively (**Fig. 4A**). The host embryos were returned to their respective *in vitro* culture
237 plates (LY or DMSO) and allowed to develop for a further 27 to 29 hours to allow for progenitor
238 cells within the NSB to contribute to axial and paraxial tissues (**Fig. 4B**). The contribution of
239 GFP+ donor cells along the axis was then scored according to their final anteroposterior
240 location and subdivided into four domains: rostral, middle, caudal and pre-progenitor (see a-e
241 in **Fig. 4B**).

242 Fluorescence microscopy analysis of grafted host embryos revealed that in both
243 DMSO (n=9) and LY treatment (n=13) conditions the extent of donor cell contribution along
244 the anteroposterior axis was similar (**Fig. S3A**). We found that in the case of DMSO-treated
245 embryos, GFP labelled donor axial progenitors contributed almost exclusively to paraxial
246 mesoderm (PXM, >99%) in the rostral domain whereas in the more posterior domains (middle,
247 caudal and pre-progenitor), GFP+ cells were detected in both PXM and the ventral/floor plate

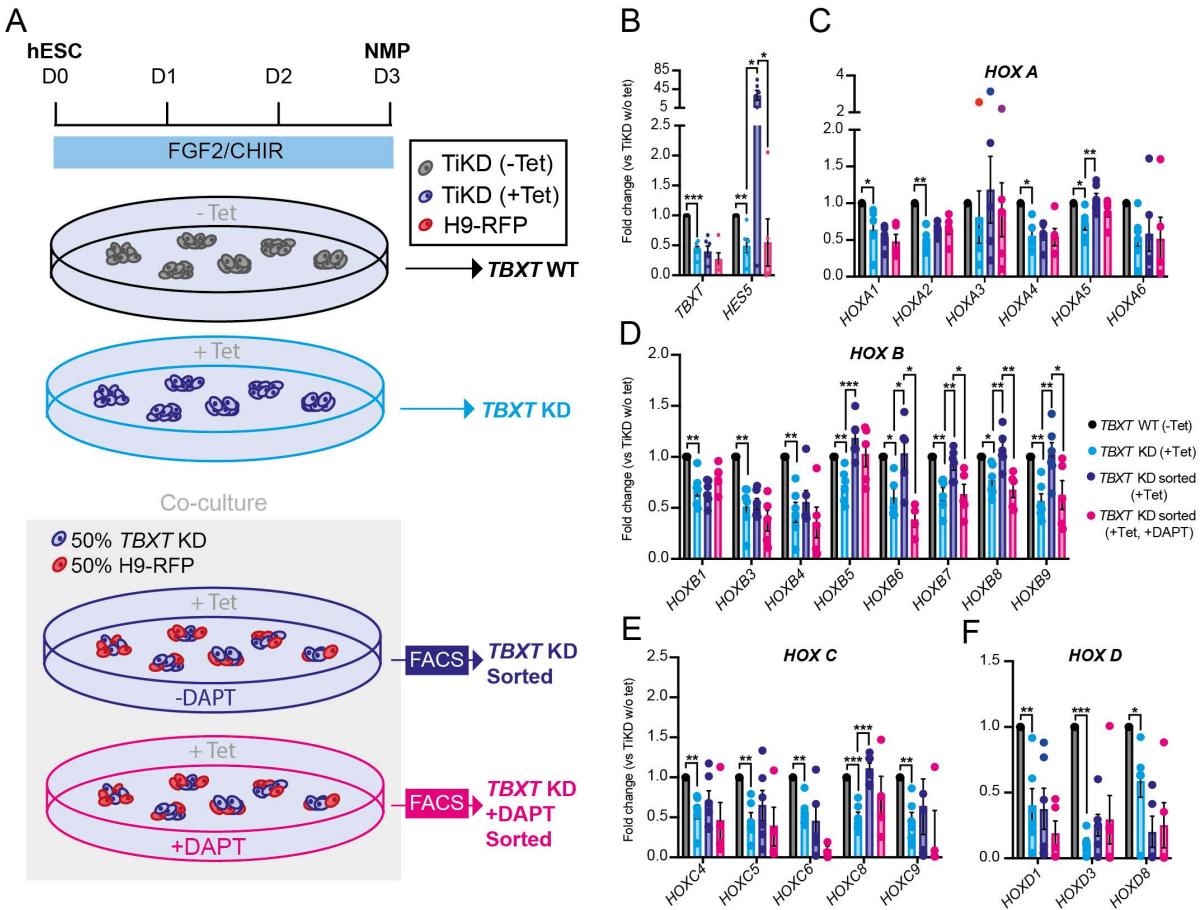

248 segments of the neural tube (ventral NT and FP respectively; **Fig. 4B, C, S3B**) denoting the
249 NM bipotency of the grafted donor NSB fragments. The contribution of the donor cells to the
250 dorsal neural tube in the middle, caudal and pre-progenitor domains was minimal while the
251 number of donor cells in the notochord (No) increased in an anterior-posterior direction (**Fig.**
252 **4B, C, S3B**; n=9). These findings are in line with previous studies demonstrating the presence
253 of ventral NT/FP/notochord-biased axial progenitors located in the early somite-stage
254 NSB/node in amniote embryos (Cambray & Wilson, 2007; Catala et al., 1996; Mugele et al.,
255 2018; Selleck & Stern, 1991; Wilson & Beddington, 1996; Wyneersch et al., 2016). We also
256 detected a few GFP+ cells in the gut within the caudal/pre-progenitor (anterior streak)
257 domains, likely reflecting the inclusion of early node or anterior primitive streak-located
258 endoderm progenitors (“Endo”, **Fig. 4B, C, S3B**) (Selleck & Stern, 1991; Wilson & Beddington,
259 1996). In contrast, the most severely affected LY-treated embryos (“severe”; n=4/9) exhibited
260 very little/no PXM contribution of GFP+ donor cells, whose presence was mainly confined to
261 the FP and to a lesser extent the ventral NT as well as the notochord in the caudal/pre-
262 progenitor domains (**Fig. 4B, C, S3B**). A second class of LY-associated “moderate” (n=5/9)
263 phenotype embryos displaying intermediate features between the DMSO and severe LY
264 treatments was also identified (**Fig. 4B, C, S3B**). Collectively, these findings suggest that
265 Notch signalling preferentially biases NSB-located NMPs to contribute to the paraxial
266 mesodermal lineage at the expense of a ventral neural tube/floor plate fate.

267 In summary, here we demonstrate that Notch is a central component of the signalling
268 environment within the NMP niche. We show that Notch signalling influences early
269 specification/differentiation of NMPs by steering them toward a presomitic/paraxial mesoderm
270 fate at the expense of neurectoderm. *In vitro*, this appears to be mediated via a negative
271 feedback loop between Notch and FGF signalling that is possibly critical for the proper
272 calibration of the balanced production of neural and mesodermal cells from NMPs. Similar
273 functional interactions between the two pathways have also been reported during the transition
274 of axial progenitor-derived pre-neural and presomitic mesoderm cells toward spinal cord
275 neurectoderm and somitic mesoderm respectively (Akai et al., 2005; Anderson et al., 2020;

276 Diaz-Cuadros et al., 2020). Moreover, Notch signalling activity in the NSB/node embryonic
277 regions at earlier stages of development was found to regulate progenitor cell contribution to
278 the floor plate at the expense of notochord (Gray & Dale, 2010). Finally, we show that Notch
279 signalling is also crucial for *HOX* gene activation in nascent NMPs during their induction from
280 pluripotent cells, a cardinal hallmark of early posteriorisation of embryonic cells. This finding
281 extends previous work linking control of *Hoxd* transcription and Notch signalling (Zákány et
282 al., 2001). Our data suggest that Notch possibly exerts this role in NMPs through regulation of
283 FGF signalling, a well-established driver of *HOX* gene transcription in the posterior growth
284 region/axial progenitors (Delfino-Machín et al., 2005; Gogolou et al., 2022; Hackland et al.,
285 2019; Mouilleau et al., 2021; van Rooijen et al., 2012). Moreover, Notch-mediated control of
286 expression of some *HOX* genes appears to take place in a non-cell autonomous manner as
287 indicated by their DAPT-sensitive transcriptional rescue in Notch-deficient/*TBX7* depleted
288 hESC-derived NMPs upon co-culture with their wild-type counterparts. The role of the extrinsic
289 environment in influencing cellular *Hox* codes has been pointed out previously with the
290 demonstration that chick tail bud NMPs can switch from a Hox PG10+ to an “earlier” Hox PG8+
291 identity following transplantation into the NSB of younger host embryos (McGrew et al., 2008).
292 We propose that Notch signalling is an integral part of the signalling environment within the
293 NMP niche and a critical regulator of posterior body patterning.

294 **FIGURES**

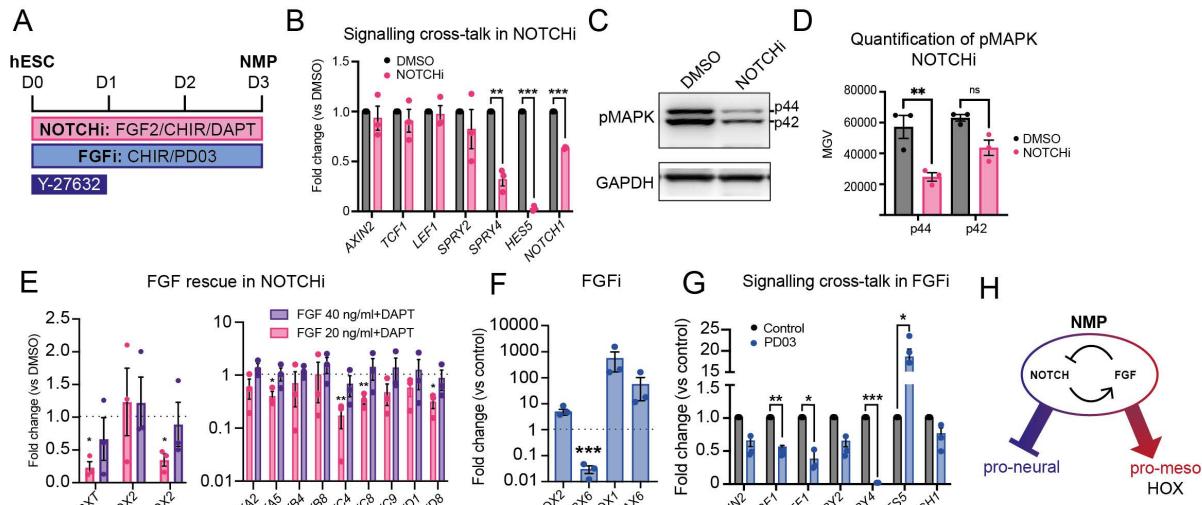
FIGURE 1



295

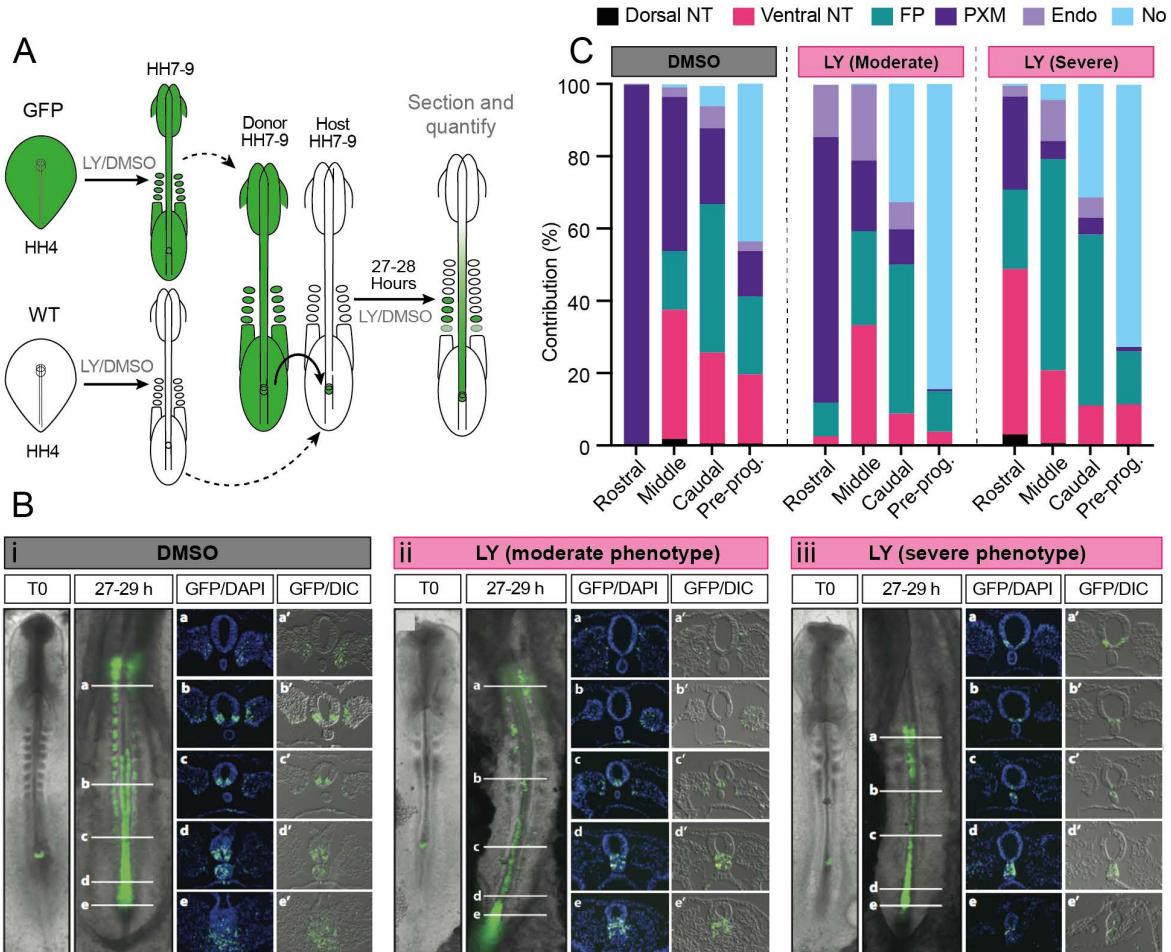
296 **Figure 1. Notch inhibition impairs the induction of pro-mesodermal/HOX genes during**
297 **NMP specification *in vitro*.** (A) Schematic representation of the treatment conditions used to
298 generate NOTCHi or DMSO control NMPs from hESCs. (B) qPCR expression analysis of key
299 NMP markers in hESC-derived NOTCHi/control NMPs. Error bars represent s.e.m. (n=3-4).
300 SOX2*P=0.01; TBXT**P=0.0024 and CDX1*P=0.0148 (paired t-test). (C)
301 Immunofluorescence analysis of the expression of HOXC9, TBXT and SOX2 in NMPs treated
302 with DMSO or DAPT. Scale bars = 100μm. (D) Image analysis of average mean gray value
303 (MGV) per nuclei (displayed as fold change over DMSO control) of TBXT, SOX2 and HOXC9
304 protein expression in DAPT treated NMPs. Error bars represent s.e.m. (n=5-6). SOX2
305 *P=0.0413, HOXC9 **P=0.0017, TBXT *P=0.0263 (one sample t and Wilcoxon test). (E) qPCR
306 expression analysis of indicated HOX genes in hESC-derived NOTCHi/control NMPs. Error
307 bars represent s.e.m. (n=3). *P≤0.05, **P≤0.01 ***P≤0.001 (one sample t and Wilcoxon test).

308 (F) Immunofluorescence analysis of MGV of HOXC9 and SOX2 protein expression relative to
309 TBXT positivity (TBXT+ or TBXT-) in DAPT-treated NMPs. Error bars represent s.e.m. (n=3)
310 (paired t-test). ns, not significant.


FIGURE 2

311

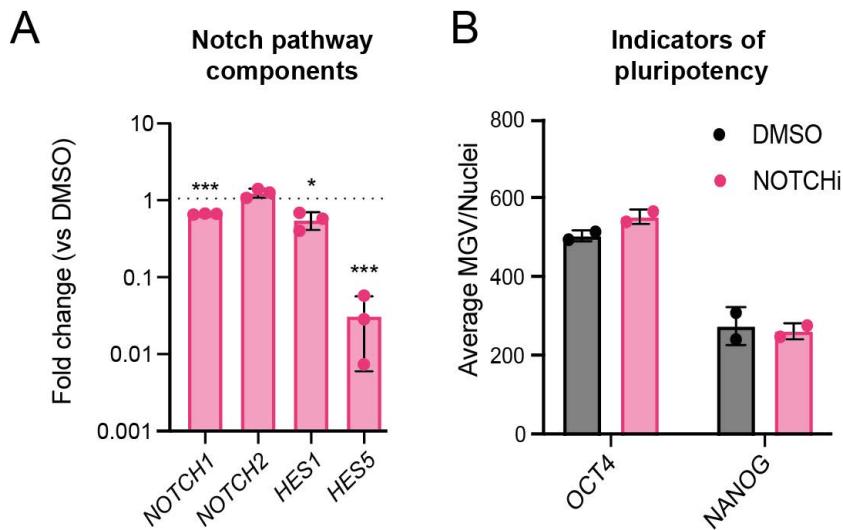
312 **Figure 2. Notch signalling-dependent rescue of HOX gene expression in TBXT-depleted**
313 **NMPs.** (A) Scheme depicting the experimental design of the *TBXT* shRNA-wild type NMP co-
314 culture experiment. (B-F) qPCR expression analysis of *TBXT* and *HES5* (B) and *HOX* genes
315 belonging to different paralogous groups (C-F) under the different experimental conditions
316 depicted in A. Error bars represent s.e.m (n=3-6) *P≤0.05, **P≤0.01 ***P≤0.001 (one sample
317 t and Wilcoxon test (TiKD w/o Tet vs TiKD (+Tet)) or an unpaired t.test (TiKD (+Tet) vs TiKD
318 sorted (+tet) vs TiKD (+DAPT +Tet)).


FIGURE 3

319

320 **Figure 3. Notch-FGF signalling crosstalk in hESC-derived NMPs.** (A) Scheme of
 321 treatments during the differentiation of hESCs toward NMPs. (B) qPCR expression analysis
 322 of indicated Wnt, FGF and Notch signalling pathway components in DAPT/DMSO-treated
 323 hESC-derived NMP cultures. Error bars represent s.e.m. (n=3) *SPRY4* **P=0.009, *HES5*
 324 ***P=0.0002, *NOTCH1* ***P=0.001 (one sample t and Wilcoxon test). (C) Representative
 325 western blot analysis of phospho-MAPK (p42/p44) in NOTCHi/DMSO-treated NMPs and
 326 corresponding quantification (D). Error bars represent s.e.m. (n=3) p42 *P=0.036 and p44
 327 *P=0.031 (paired t-test). (E) qPCR expression analysis of NMP markers and indicated *HOX*
 328 genes in NOTCHi NMPs generated using the standard (20ng/ml) or high (40ng/ml) FGF2
 329 concentration from hESCs. Error bars represent s.e.m. (n=3) *P≤0.05, **P≤0.01 ***P≤0.001
 330 (one sample t and Wilcoxon test). (F) qPCR expression analysis of indicated pro-
 331 neural/mesodermal NMP and spinal cord neurectoderm markers in PD03-treated (FGFi)
 332 hESC-derived NMPs vs controls. Error bars represent s.e.m. (n=3) *TBX6* ***P=0.001 (one
 333 sample t and Wilcoxon test). (G) qPCR expression analysis of indicated Wnt, FGF and Notch
 334 signalling pathway components in PD03-treated/control hESC-derived NMP cultures. Error
 335 bars represent s.e.m. (n=3). *TCF* **P=0.0027, *LEF1* *P=0.0346, *SPRY4* ***P<0.0001, *HES5*
 336 *P=0.01 (one sample t and Wilcoxon test).

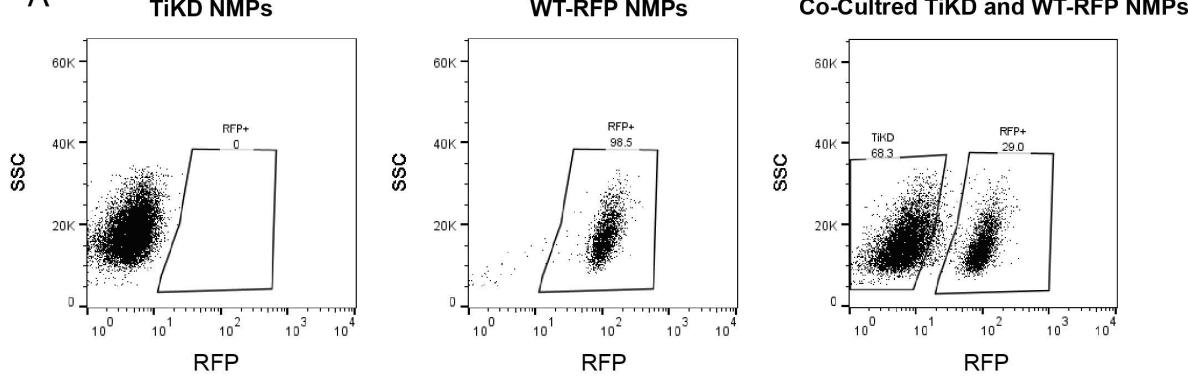
FIGURE 4



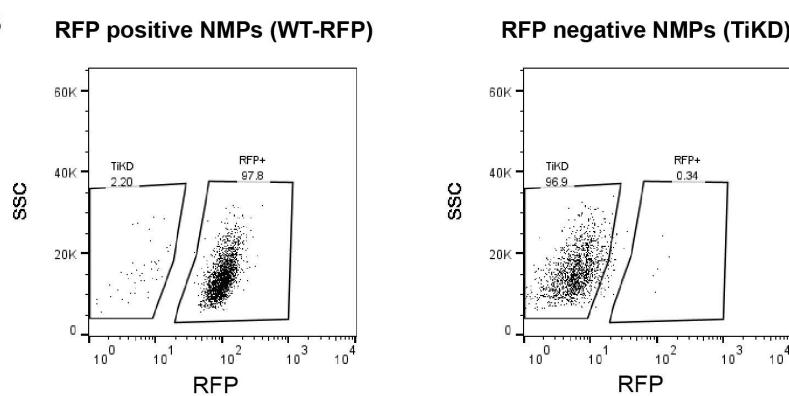
337

338 **Figure 4. Notch signalling influences the contribution profile of axial progenitor cells *in***
339 ***vivo*. (A) Scheme depicting the experimental design/treatment regimens of chick embryo**
340 **grafting experiments. (B) Wholemount embryo at the time of receiving a NSB graft (T0) and**
341 **the GFP contribution pattern following culture in the presence of the (i) DMSO or the Notch**
342 **inhibitor LY in both the moderate (ii) and severe (iii) embryos after 27-29 hours following the**
343 **graft. Transverse sections at the level of the white indicator lines (a, b, c, d, e) show the nuclear**
344 **stain DAPI and GFP or DIC with GFP (a', b', c', d', e'). Images are representative of**
345 **independent experiments (analysed sectioned embryos: DMSO n=9, LY severe n=4/9 and**
346 **moderate n=5/9). (C) Quantification of the proportion (%) of GFP cells contributing to axial and**
347 **paraxial structures (dorsal neural tube (dorsal NT), ventral neural tube (ventral NT), floor plate**
348 **(FP), paraxial mesoderm (somites rostrally and PSM caudally, PXM), endoderm (Endo) and**
349 **the notochord (No)) in (i) DMSO and (ii) LY-treated embryos.**

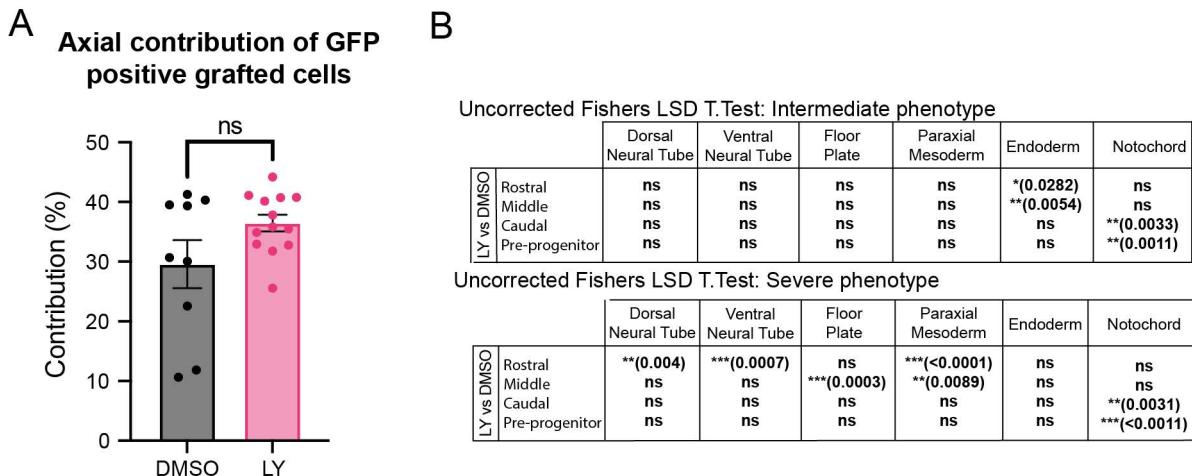
350 **SUPPLEMENTARY FIGURES**


FIGURE S1

351 **Figure S1.** (A) qPCR expression analysis of indicated Notch signalling pathway
352 components/targets in NOTCHi hESC-derived NMPs compared to DMSO controls. Error bars
353 represent s.e.m n=3. *NOTCH1* ***P<0.001, *HES1* *P=0.03, *HES5* ***P<0.001 (one sample t
354 and Wilcoxon test). (B) Pluripotency associated marker expression in NOTCHi hESC-derived
355 NMPs compared to DMSO controls. Error bars represent s.d. (n=2).


FIGURE S2

A


Purity of fraction post-sorting:

B

356 **Figure S2.** (A) FACS dot plots showing the fractions of RFP fluorescent reporter-positive cells
357 in unlabelled TBXT knockdown (TiKD), wild type RFP (WT-RFP) hESC-derived NMPs and co-
358 cultured (TiKD and WT-RFP) NMPs. (B) FACS dot plots showing the purity assessment
359 following FACS of co-cultured NMPS into RFP negative (TiKD) and RFP positive (WT-RFP)
360 fractions.

FIGURE S3

361 **Figure S3.** (A) Percentage anterior-posterior embryonic axis colonised by cells from the NSB
 362 following DMSO and LY treatment. Error bars indicate s.e.m (DMSO n=9 and LY n=13). ns
 363 P=0.07 (unpaired t.test). (B) Table showing the statistical P-value results for the severe and
 364 moderate LY phenotype using a one-way ANOVA (Fisher's LSD test) (analysed sectioned
 365 embryos: DMSO n=9, LY severe n=4/9 and moderate n=5/9).

366 **MATERIALS AND METHODS**

367 **Cell culture and differentiation**

368 Use of hESCs has been approved by the Human Embryonic Stem Cell UK Steering
369 Committee (SCSC15-23). The following hESC lines were employed: WA09 (H9), H9-RFP and
370 *TBXT* shRNA sOPTiKD hESC lines (H9 background) (Bertero et al., 2016; Thomson et al.,
371 1998). All cell lines were cultured routinely in feeder-free conditions in either Essential 8
372 (Thermo Fisher or made in-house) or mTeSR1 (Stem Cell Technologies) medium on Geltrex
373 LDEV-Free reduced growth factor basement membrane matrix (Thermo Fisher). Cells were
374 passaged twice a week after reaching approximately 80% confluence using PBS/EDTA or
375 ReLeSR™ (Stem Cell Technologies) as a dissociation reagent. *TBTX* inducible knockdown in
376 the *TBXT* shRNA sOPTiKD hESC line was achieved using Tetracycline (Tet) hydrochloride
377 (Merck Life Science) at 1 µg/ml as described previously (Bertero et al., 2016; Gogolou et al.,
378 2022). hESCs were cultured in the presence/absence of Tet for 2 days prior to the initiation of
379 differentiation and the Tet treatment was continued throughout the differentiation for the
380 periods indicated in the results section/schemes. The RFP hESC line was generated following
381 introduction of a pCAG-H2B-RFP plasmid (Price et al., 2021) into H9 hESCs using a 4D-
382 Nucleofector (Lonza). After puromycin selection (1µg/ml), single cell deposition onto feeder
383 cells was carried out followed by culture in 50% mTESR1:50% KnockOut™ Serum
384 Replacement (Thermo Fisher) media, 20µM Cholesterol (Synthechol, Sigma), 10µM ROCK
385 inhibitor. (Adooq Biosciences). The resulting clones were expanded, manually picked and
386 cultured subsequently in mTeSR1. Cells were screened for mycoplasma using Lookout
387 Mycoplasma PCR detection kit (Sigma-Aldrich) or Mycostrip detection kit (Invivogen). Cells
388 were routinely screened for indicators of pluripotency OCT4, NANOG (Table S1) and SSEA4
389 (Adewumi et al., 2007; Draper et al., 2002).

390 For NMP differentiation, hESCs (70–80% confluent) were dissociated using Accutase
391 solution (Merck Life Science) or TrypLE Select (Gibco) and plated at a density of 60,000
392 cells/cm² on Vitronectin (Thermo Fisher) coated culture plates in N2B27 basal medium
393 containing 50:50 Dulbecco's Modified Eagle's Medium (DMEM) F12 (Merck Life Science) /

394 Neurobasal medium (Gibco) and 1 × N2 supplement (Gibco), 1 × B27 (Gibco), 1 × GlutaMAX
395 (Gibco), 1 × Minimum Essential Medium Non-Essential Amino Acids (MEM NEAA) (Gibco), 2-
396 Mercaptoethanol (50 μ M, Gibco). The N2B27 medium was supplemented with CHIR (3 μ M,
397 Tocris), FGF2 (20 ng/ml, R&D Systems), and Rho-associated coil kinase (ROCK) inhibitor Y-
398 27632 2HCl (10 μ M, Adooq Biosciences) with the latter being withdrawn from the
399 differentiation medium after the first day of NMP induction. DAPT (Tocris) was added at a
400 concentration of 50 μ M and DMSO was used at 5 μ l/ml as control. PD032590 (Merck) was
401 used at 1 μ M. For *TBX7* inducible knockdown, NMP medium was supplemented with 1 μ g/ml
402 Tet hydrochloride and replenished every other day.

403

404 **Flow cytometry**

405 After co-culture of 50% unlabelled TiKD and 50% RFP+ wild type hESCs and differentiation
406 towards NMP, unlabelled NMPs were sorted at day 3 of differentiation using a FACS Jazz cell
407 sorter (BD). Gates were set using unlabelled and RFP+ cells independently. Purity checks
408 were done post sort. Data were analysed with FlowJo software (BD) (See Figure S2).

409

410 **Immunofluorescence and imaging**

411 Cells were fixed in 4% Paraformaldehyde (PFA) for 10 min at room temperature, rinsed twice
412 with PBS and permeabilised/blocked with blocking buffer containing 0.1% Triton X-100 in PBS
413 containing 1% bovine serum albumin (BSA) for 1-2hr at room temperature (RT). Primary
414 antibodies were diluted in the blocking buffer and cells were incubated with primary antibodies
415 overnight at 4°C. Following three washes with PBS, cells were incubated with secondary
416 antibodies conjugated to Alexa fluorophores (Invitrogen) diluted in blocking buffer for 2-4 hr at
417 RT, in the dark. Cell nuclei were counterstained with DAPI:PBS (Thermo Fisher, 1:12000) and
418 fluorescent images were acquired using the InCell Analyser 2200 system (GE Healthcare).
419 Images then were processed in Fiji (Schindelin et al., 2012) using identical brightness/contrast
420 settings to allow comparison between different treatments. The positive/negative threshold

421 (75th percentile) was set using a sample incubated with secondary antibody only. Antibodies
422 and corresponding dilutions are shown in Table S1.

423

424 **Western blotting**

425 Pelleted cells lysed in RIPA lysis buffer (50 mM Tris-HCl pH8.0, 100 mM NaCl, 2 mM MgCl₂,
426 1 % Triton X-100, 0.1 % sodium deoxycholate, 0.1 % SDS supplemented with 1 mM DTT, 1x
427 Complete protease inhibitor cocktail (Roche) and 250 U Benzonase nuclease immediately
428 before use) for 10 mins at 37°C followed by centrifugation to remove insoluble debris. 50 µg
429 of protein lysate per lane was then run on a NuPage 4-12% Bis-Tris gel (Thermo Fisher) at
430 120 V. Proteins were then transferred to a nitrocellulose membrane (Trans-Blot Turbo Mini 0.2
431 µm Nitrocellulose Transfer) using Trans-Blot Turbo Transfer System (Bio-Rad) following
432 manufacturers guidelines. Membranes were then wash in TBS-T and blocked in 5% BSA:
433 TBS-T for 1hr at RT. Membrane was incubated with primary antibodies (Table S1) overnight
434 at 4°C followed by HRP-conjugated secondary antibodies for 1hr at RT. ECL detection was
435 enhanced using SuperSignal West Pico PLUS (Thermo Fisher) as per the manufacturers
436 guidelines and imaged using a G:BOX Chemi XX98 imager (Syngene). Images then were
437 processed in Fiji (Schindelin et al., 2012).

438

439 **Quantitative real time PCR**

440 Total RNA was extracted using the total RNA purification kit (Norgen Biotek) following the
441 manufacturer's instructions. The cDNA sysnthesis was completed using the High-Capacity
442 cDNA Reverse Transcription kit (Thermo Fisher). Quantitative real-time PCR was carried out
443 using the QuantStudio 12 K Flex (Applied Biosystems) thermocycler in combination with the
444 Roche UPL system and the TaqMan Fast Universal PCR Master Mix (Applied Biosystems) or
445 with PowerUp SYBR master mix (Thermo Fisher). Primer sequences and corresponding
446 probes (where applicable) are shown in Supplementary Table S2. Graphs were generated
447 using GraphPad Prism (GraphPad Software), which was also employed for statistical analysis.

448

449 **Chick embryo grafting experiments**

450 White Leghorn *Gallus gallus* (eggs obtained from Henry Stewart & Co., Lincolnshire and
451 Winter Farm, Royston) or GFP-expressing chick embryos [Roslin Institute, Midlothian
452 (McGrew et al., 2004) were incubated until Hamburger Hamilton (HH) stage 4 and then
453 dissected from the egg and cultured in vitro until HH8. Embryos were cultured on media plates
454 containing either a γ -secretase inhibitor dissolved in the solvent dimethyl sulfoxide (DMSO) or
455 on media plates containing DMSO alone. The concentration of LY411575 γ -secretase inhibitor
456 (made in-house, University of Dundee) used was 150nM. Embryos were transferred to fresh
457 culture plates every 12 hours to maintain optimal inhibitor activity. Following in vitro culturing
458 the NSB region from HH8 GFP transgenic donor chicks was isolated and grafted to a
459 homotopic location on stage matched wild-type donor embryos. Embryos were then returned
460 to in vitro culture plates for a further 27 to 29 hours to allow for progenitor cells within the NSB
461 to contribute to axial and paraxial tissues. Subsequently, embryos were fixed, cryosectioned
462 and analysed by cell count for tissues that were colonised by GFP-positive cells across the
463 rostral, middle, caudal and pre-progenitor domains. Each embryo had 5 sections from each
464 axial domain analysed by cell count analysis in each domain. The proportion of counted cells
465 in a particular tissue from one section was scored as a proportion of the total GFP-positive
466 cells in that section. The proportion of cells in a particular section was used for analysis as
467 opposed to the raw values obtained so as to exclude variation in cell number between sections
468 and embryos from biasing the analysis. The proportion data on GFP-positive cells in axial and
469 paraxial tissues were pooled between embryos of the same treatment group and axial domain
470 to obtain a mean value. These values therefore represented the mean proportion of cell
471 contribution to specific tissues at specific anterior-posterior axial locations. Pairwise
472 comparisons were made between the GFP cell counts of LY and DMSO treated embryos in
473 each cell type at each of the rostral, middle, caudal and pre-progenitor domains and were
474 subjected to statistical tests to determine where significant differences occurred.

475

476 **ACKNOWLEDGEMENTS**

477 We would like to thank Prof. Ivana Barbaric (University of Sheffield) for providing the H2B-RFP
478 expression vector. We are grateful to Matt French, Sally Lowell, Matt Towers and Val Wilson
479 for critical reading of the manuscript.

480

481 **COMPETING INTERESTS**

482 The authors declare no competing or financial interests.

483

484 **AUTHOR CONTRIBUTIONS**

485 **Conceptualization:** AT, FC, JKD; **Formal analysis:** FC, CS, SH, SG; **Investigation:** FC, CS,
486 SH, AG, SG, TF, DS, KB, BMJ; **Resources:** AG, TF, DS; **Writing – original draft preparation:**
487 FC, AT; **Writing – review and editing:** FC, CS, SH, AG, TF, DS, BMJ, KB, DB, JKD, AT;
488 **Visualization:** FC, CS, AT, SH, JKD; **Supervision:** AT; **Project administration:** AT; **Funding**
489 **acquisition:** JKD, DB, AT.

490

491 **FUNDING**

492 This work was supported by funding from the Biotechnology and Biological Sciences Research
493 Council (BB/P000444/1), the European Union Horizon 2020 Framework Programme (H2020-
494 EU.1.2.2; grant agreement ID 824070) and the Medical Research Council (MR/V002163/1) to
495 AT. KB was supported by a White Rose BBSRC Doctoral Training Partnership (DTP) in
496 Mechanistic Biology studentship (BB/T007222/1). SG was supported by an MRC New
497 Investigator award to JKD (G0400349: Analysis of primitive streak stem cells and the role of
498 Notch in their axial mesoderm derivatives).

499 **REFERENCES**

500 Adewumi, O., Aflatoonian, B., Ahrlund-Richter, L., Amit, M., Andrews, P. W., Beighton, G., Bello, P. A.,
501 Benvenisty, N., Berry, L. S., Bevan, S., Blum, B., Brooking, J., Chen, K. G., Choo, A. B., Churchill,
502 G. A., Corbel, M., Damjanov, I., Draper, J. S., Dvorak, P., . . . Zhang, W. (2007). Characterization
503 of human embryonic stem cell lines by the International Stem Cell Initiative. *Nat Biotechnol*,
504 25(7), 803-816. <https://doi.org/10.1038/nbt1318>

505 Akai, J., Halley, P. A., & Storey, K. G. (2005). FGF-dependent Notch signaling maintains the spinal cord
506 stem zone. *Genes & Development*, 19(23), 2877-2887. <https://doi.org/10.1101/gad.357705>

507 Amin, S., Neijts, R., Simmini, S., van Rooijen, C., Tan, S. C., Kester, L., van Oudenaarden, A., Creyghton,
508 M. P., & Deschamps, J. (2016). Cdx and T Brachyury Co-activate Growth Signaling in the
509 Embryonic Axial Progenitor Niche. *Cell Rep*, 17(12), 3165-3177.
510 <https://doi.org/10.1016/j.celrep.2016.11.069>

511 Anand, G. M., Megale, H. C., Murphy, S. H., Weis, T., Lin, Z., He, Y., Wang, X., Liu, J., & Ramanathan, S.
512 (2023). Controlling organoid symmetry breaking uncovers an excitable system underlying
513 human axial elongation. *Cell*, 186(3), 497-512.e423.
514 <https://doi.org/10.1016/j.cell.2022.12.043>

515 Anderson, M. J., Magidson, V., Kageyama, R., & Lewandoski, M. (2020). Fgf4 maintains Hes7 levels
516 critical for normal somite segmentation clock function. *eLife*, 9, e55608.
517 <https://doi.org/10.7554/eLife.55608>

518 Bertero, A., Pawlowski, M., Ortmann, D., Snijders, K., Yiangou, L., Cardoso de Brito, M., Brown, S.,
519 Bernard, W. G., Cooper, J. D., Giacomelli, E., Gambardella, L., Hannan, N. R., Iyer, D.,
520 Sampaziotis, F., Serrano, F., Zonneveld, M. C., Sinha, S., Kotter, M., & Vallier, L. (2016). Optimized inducible shRNA and CRISPR/Cas9 platforms for in vitro studies of human
521 development using hPSCs. *Development*, 143(23), 4405-4418.
522 <https://doi.org/10.1242/dev.138081>

523 Bettenhausen, B., Hrabe de Angelis, M., Simon, D., Guenet, J. L., & Gossler, A. (1995). Transient and
524 restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to
525 Drosophila Delta. *Development*, 121(8), 2407-2418. <https://doi.org/10.1242/dev.121.8.2407>

526 Blassberg, R., Patel, H., Watson, T., Gouti, M., Metzis, V., Delás, M. J., & Briscoe, J. (2022). Sox2 levels
527 regulate the chromatin occupancy of WNT mediators in epiblast progenitors responsible for
528 vertebrate body formation. *Nature Cell Biology*, 24(5), 633-644.
529 <https://doi.org/10.1038/s41556-022-00910-2>

530 Brown, J. M., & Storey, K. G. (2000). A region of the vertebrate neural plate in which neighbouring cells
531 can adopt neural or epidermal fates. *Curr Biol*, 10(14), 869-872.
532 [https://doi.org/10.1016/s0960-9822\(00\)00601-1](https://doi.org/10.1016/s0960-9822(00)00601-1)

533 Cambray, N., & Wilson, V. (2002). Axial progenitors with extensive potency are localised to the mouse
534 chordoneural hinge. *Development*, 129(20), 4855-4866.
535 <https://doi.org/10.1242/dev.129.20.4855>

536 Cambray, N., & Wilson, V. (2007). Two distinct sources for a population of maturing axial progenitors.
537 *Development*, 134(15), 2829-2840. <https://doi.org/10.1242/dev.02877>

538 Carrieri, F. A., & Dale, J. K. (2016). Turn It Down a Notch. *Front Cell Dev Biol*, 4, 151.
539 <https://doi.org/10.3389/fcell.2016.00151>

540 Catala, M., Teillet, M.-A., Robertis, E. M. D., & Douarin, N. M. L. (1996). A spinal cord fate map in the
541 avian embryo: while regressing, Hensen's node lays down the notochord and floor plate thus
542 joining the spinal cord lateral walls. *Development*, 122(9), 2599-2610.
543 <https://doi.org/10.1242/dev.122.9.2599>

544 Chal, J., Oginuma, M., Al Tanoury, Z., Gobert, B., Sumara, O., Hick, A., Bousson, F., Zidouni, Y., Mursch,
545 C., Moncuquet, P., Tassy, O., Vincent, S., Miyanari, A., Bera, A., Garnier, J.-M., Guevara, G.,
546 Hestin, M., Kennedy, L., Hayashi, S., . . . Pourquié, O. (2015). Differentiation of pluripotent stem
547

548 cells to muscle fiber to model Duchenne muscular dystrophy. *Nature Biotechnology*, 33(9),
549 962-969. <https://doi.org/10.1038/nbt.3297>

550 Chawengsaksophak, K., de Graaff, W., Rossant, J., Deschamps, J., & Beck, F. (2004). *< i>Cdx2</i> is*

551 essential for axial elongation in mouse development. *Proceedings of the National Academy of*
552 *Sciences*, 101(20), 7641-7645. <https://doi.org/doi:10.1073/pnas.0401654101>

553 Cooper, F., Gentsch, G. E., Mitter, R., Bouissou, C., Healy, L. E., Rodriguez, A. H., Smith, J. C., & Bernardo,
554 A. S. (2022). Rostrocaudal patterning and neural crest differentiation of human pre-neuronal
555 spinal cord progenitors in vitro. *Stem Cell Reports*, 17(4), 894-910.
<https://doi.org/10.1016/j.stemcr.2022.02.018>

556 Dale, J. K., Maroto, M., Dequeant, M. L., Malapert, P., McGrew, M., & Pourquie, O. (2003). Periodic
557 notch inhibition by lunatic fringe underlies the chick segmentation clock. *Nature*, 421(6920),
558 275-278. <https://doi.org/10.1038/nature01244>

559 de la Pompa, J. L., Wakeham, A., Correia, K. M., Samper, E., Brown, S., Aguilera, R. J., Nakano, T., Honjo,
560 T., Mak, T. W., Rossant, J., & Conlon, R. A. (1997). Conservation of the Notch signalling pathway
561 in mammalian neurogenesis. *Development*, 124(6), 1139-1148.
<https://doi.org/10.1242/dev.124.6.1139>

562 Delfino-Machín, M., Lunn, J. S., Breitkreuz, D. N., Akai, J., & Storey, K. G. (2005). Specification and
563 maintenance of the spinal cord stem zone. *Development*, 132(19), 4273-4283.
<https://doi.org/10.1242/dev.02009>

564 Deschamps, J., & Duboule, D. (2017). Embryonic timing, axial stem cells, chromatin dynamics, and the
565 Hox clock. *Genes Dev*, 31(14), 1406-1416. <https://doi.org/10.1101/gad.303123.117>

566 Diaz-Cuadros, M., Wagner, D. E., Budjan, C., Hubaud, A., Tarazona, O. A., Donelly, S., Michaut, A., Al
567 Tanoury, Z., Yoshioka-Kobayashi, K., Niino, Y., Kageyama, R., Miyawaki, A., Touboul, J., &
568 Pourquié, O. (2020). In vitro characterization of the human segmentation clock. *Nature*,
569 580(7801), 113-118. <https://doi.org/10.1038/s41586-019-1885-9>

570 Diez del Corral, R., Breitkreuz, D. N., & Storey, K. G. (2002). Onset of neuronal differentiation is
571 regulated by paraxial mesoderm and requires attenuation of FGF signalling. *Development*,
572 129(7), 1681-1691. <https://doi.org/10.1242/dev.129.7.1681>

573 Donoviel, D. B., Hadjantonakis, A. K., Ikeda, M., Zheng, H., Hyslop, P. S., & Bernstein, A. (1999). Mice
574 lacking both presenilin genes exhibit early embryonic patterning defects. *Genes Dev*, 13(21),
575 2801-2810. <https://doi.org/10.1101/gad.13.21.2801>

576 Draper, J. S., Pigott, C., Thomson, J. A., & Andrews, P. W. (2002). Surface antigens of human embryonic
577 stem cells: changes upon differentiation in culture. *J Anat*, 200(Pt 3), 249-258.
<https://doi.org/10.1046/j.1469-7580.2002.00030.x>

578 Dunwoodie, S. L., Henrique, D., Harrison, S. M., & Beddington, R. S. (1997). Mouse Dll3: a novel
579 divergent Delta gene which may complement the function of other Delta homologues during
580 early pattern formation in the mouse embryo. *Development*, 124(16), 3065-3076.
<https://doi.org/10.1242/dev.124.16.3065>

581 Frith, T. J. R., Granata, I., Wind, M., Stout, E., Thompson, O., Neumann, K., Stavish, D., Heath, P. R.,
582 Ortmann, D., Hackland, J. O. S., Anastassiadis, K., Gouti, M., Briscoe, J., Wilson, V., Johnson, S.
583 L., Placzek, M., Guerracino, M. R., Andrews, P. W., & Tsakiridis, A. (2018). Human axial
584 progenitors generate trunk neural crest cells in vitro. *Elife*, 7, e35786.
<https://doi.org/10.7554/elife.35786>

585 Galceran, J., Sustmann, C., Hsu, S. C., Folberth, S., & Grosschedl, R. (2004). LEF1-mediated regulation
586 of Delta-like1 links Wnt and Notch signaling in somitogenesis. *Genes Dev*, 18(22), 2718-2723.
<https://doi.org/10.1101/gad.1249504>

587 Gibb, S., Zagorska, A., Melton, K., Tenin, G., Vacca, I., Trainor, P., Maroto, M., & Dale, J. K. (2009).
588 Interfering with Wnt signalling alters the periodicity of the segmentation clock. *Dev Biol*,
589 330(1), 21-31. <https://doi.org/10.1016/j.ydbio.2009.02.035>

590 Gogolou, A., Souilhol, C., Granata, I., Wymeersch, F. J., Manipur, I., Wind, M., Frith, T. J. R., Guarini, M.,
591 Bertero, A., Bock, C., Halbritter, F., Takasato, M., Guerracino, M. R., & Tsakiridis, A. (2022). Early

592

599 anteroposterior regionalisation of human neural crest is shaped by a pro-mesodermal factor.
600 *Elife*, 11. <https://doi.org/10.7554/eLife.74263>

601 Gouti, M., Delile, J., Stamatakis, D., Wymeersch, F. J., Huang, Y., Kleinjung, J., Wilson, V., & Briscoe, J.
602 (2017). A Gene Regulatory Network Balances Neural and Mesoderm Specification during
603 Vertebrate Trunk Development. *Dev Cell*, 41(3), 243-261.e247.
604 <https://doi.org/10.1016/j.devcel.2017.04.002>

605 Gray, S. D., & Dale, J. K. (2010). Notch signalling regulates the contribution of progenitor cells from the
606 chick Hensen's node to the floor plate and notochord. *Development*, 137(4), 561-568.
607 <https://doi.org/10.1242/dev.041608>

608 Guibentif, C., Griffiths, J. A., Imaz-Rosshandler, I., Ghazanfar, S., Nichols, J., Wilson, V., Göttgens, B., &
609 Marioni, J. C. (2021). Diverse Routes toward Early Somites in the Mouse Embryo. *Dev Cell*,
610 56(1), 141-153.e146. <https://doi.org/10.1016/j.devcel.2020.11.013>

611 Guillot, C., Djeffal, Y., Michaut, A., Rabe, B., & Pourquié, O. (2021). Dynamics of primitive streak
612 regression controls the fate of neuromesodermal progenitors in the chicken embryo. *Elife*, 10,
613 e64819. <https://doi.org/10.7554/eLife.64819>

614 Hackland, J. O. S., Frith, T. J. R., & Andrews, P. W. (2019). Fully Defined and Xeno-Free Induction of
615 hPSCs into Neural Crest Using Top-Down Inhibition of BMP Signaling. *Methods Mol Biol*, 1976,
616 49-54. https://doi.org/10.1007/978-1-4939-9412-0_4

617 Hamburger, V., & Hamilton, H. L. (1951). A series of normal stages in the development of the chick
618 embryo. *Journal of Morphology*, 88(1), 49-92.
619 <https://doi.org/https://doi.org/10.1002/jmor.1050880104>

620 Javali, A., Misra, A., Leonavicius, K., Acharyya, D., Vyas, B., & Sambasivan, R. (2017). Co-expression of
621 Tbx6 and Sox2 identifies a novel transient neuromesoderm progenitor cell state. *Development*,
622 144(24), 4522-4529. <https://doi.org/10.1242/dev.153262>

623 Koch, F., Scholze, M., Wittler, L., Schifferl, D., Sudheer, S., Grote, P., Timmermann, B., Macura, K., &
624 Herrmann, B. G. (2017). Antagonistic Activities of Sox2 and Brachyury Control the Fate Choice
625 of Neuro-Mesodermal Progenitors. *Dev Cell*, 42(5), 514-526.e517.
626 <https://doi.org/10.1016/j.devcel.2017.07.021>

627 Lippmann, E. S., Williams, C. E., Ruhl, D. A., Estevez-Silva, M. C., Chapman, E. R., Coon, J. J., & Ashton,
628 R. S. (2015). Deterministic HOX patterning in human pluripotent stem cell-derived
629 neuroectoderm. *Stem Cell Reports*, 4(4), 632-644.
630 <https://doi.org/10.1016/j.stemcr.2015.02.018>

631 Martin, Benjamin L., & Kimelman, D. (2012). Canonical Wnt Signaling Dynamically Controls Multiple
632 Stem Cell Fate Decisions during Vertebrate Body Formation. *Developmental Cell*, 22(1), 223-
633 232. <https://doi.org/10.1016/j.devcel.2011.11.001>

634 McGrew, M. J., Sherman, A., Ellard, F. M., Lillico, S. G., Gilhooley, H. J., Kingsman, A. J., Mitrophanous,
635 K. A., & Sang, H. (2004). Efficient production of germline transgenic chickens using lentiviral
636 vectors. *EMBO Rep*, 5(7), 728-733. <https://doi.org/10.1038/sj.embo.7400171>

637 McGrew, M. J., Sherman, A., Lillico, S. G., Ellard, F. M., Radcliffe, P. A., Gilhooley, H. J., Mitrophanous,
638 K. A., Cambray, N., Wilson, V., & Sang, H. (2008). Localised axial progenitor cell populations in
639 the avian tail bud are not committed to a posterior Hox identity. *Development*, 135(13), 2289-
640 2299. <https://doi.org/10.1242/dev.022020>

641 Metzis, V., Steinhauser, S., Pakanavicius, E., Gouti, M., Stamatakis, D., Ivanovitch, K., Watson, T., Rayon,
642 T., Mousavy Gharavy, S. N., Lovell-Badge, R., Luscombe, N. M., & Briscoe, J. (2018). Nervous
643 System Regionalization Entails Axial Allocation before Neural Differentiation. *Cell*, 175(4),
644 1105-1118.e1117. <https://doi.org/10.1016/j.cell.2018.09.040>

645 Mouilleau, V., Vaslin, C., Robert, R., Gribaudo, S., Nicolas, N., Jarrige, M., Terray, A., Lesueur, L., Mathis,
646 M. W., Croft, G., Daynac, M., Rouiller-Fabre, V., Wichterle, H., Ribes, V., Martinat, C., & Nedelec,
647 S. (2021). Dynamic extrinsic pacing of the HOX clock in human axial progenitors controls motor
648 neuron subtype specification. *Development*, 148(6). <https://doi.org/10.1242/dev.194514>

649 Mugele, H., Plummer, A., Baritello, O., Towe, M., Brecht, P., & Mayer, F. (2018). Accuracy of training
650 recommendations based on a treadmill multistage incremental exercise test. *PLOS ONE*,
651 13(10), e0204696. <https://doi.org/10.1371/journal.pone.0204696>

652 Mukherjee, S., Luedeke, D. M., McCoy, L., Iwafuchi, M., & Zorn, A. M. (2022). SOX transcription factors
653 direct TCF-independent WNT/β-catenin responsive transcription to govern cell fate in human
654 pluripotent stem cells. *Cell Reports*, 40(8), 111247.
655 <https://doi.org/https://doi.org/10.1016/j.celrep.2022.111247>

656 Nakaya, M. A., Biris, K., Tsukiyama, T., Jaime, S., Rawls, J. A., & Yamaguchi, T. P. (2005). Wnt3a links left-
657 right determination with segmentation and anteroposterior axis elongation. *Development*,
658 132(24), 5425-5436. <https://doi.org/10.1242/dev.02149>

659 Neijts, R., Amin, S., van Rooijen, C., & Deschamps, J. (2017). Cdx is crucial for the timing mechanism
660 driving colinear Hox activation and defines a trunk segment in the Hox cluster topology. *Dev
661 Biol*, 422(2), 146-154. <https://doi.org/10.1016/j.ydbio.2016.12.024>

662 Neijts, R., Amin, S., van Rooijen, C., Tan, S., Creyghton, M. P., de Laat, W., & Deschamps, J. (2016).
663 Polarized regulatory landscape and Wnt responsiveness underlie Hox activation in embryos.
664 *Genes Dev*, 30(17), 1937-1942. <https://doi.org/10.1101/gad.285767.116>

665 Nowotschin, S., Ferrer-Vaquer, A., Concepcion, D., Papaioannou, V. E., & Hadjantonakis, A.-K. (2012).
666 Interaction of Wnt3a, Msgn1 and Tbx6 in neural versus paraxial mesoderm lineage
667 commitment and paraxial mesoderm differentiation in the mouse embryo. *Developmental
668 Biology*, 367(1), 1-14. <https://doi.org/https://doi.org/10.1016/j.ydbio.2012.04.012>

669 Oginuma, M., Moncuquet, P., Xiong, F., Karoly, E., Chal, J., Guevorkian, K., & Pourquié, O. (2017). A
670 Gradient of Glycolytic Activity Coordinates FGF and Wnt Signaling during Elongation of the
671 Body Axis in Amniote Embryos. *Dev Cell*, 40(4), 342-353.e310.
672 <https://doi.org/10.1016/j.devcel.2017.02.001>

673 Oka, C., Nakano, T., Wakeham, A., de la Pompa, J. L., Mori, C., Sakai, T., Okazaki, S., Kawaichi, M., Shiota,
674 K., Mak, T. W., & Honjo, T. (1995). Disruption of the mouse RBP-J kappa gene results in early
675 embryonic death. *Development*, 121(10), 3291-3301.
676 <https://doi.org/10.1242/dev.121.10.3291>

677 Olivera-Martinez, I., Harada, H., Halley, P. A., & Storey, K. G. (2012). Loss of FGF-dependent mesoderm
678 identity and rise of endogenous retinoid signalling determine cessation of body axis
679 elongation. *PLoS Biol*, 10(10), e1001415. <https://doi.org/10.1371/journal.pbio.1001415>

680 Price, C. J., Stavish, D., Gokhale, P. J., Stevenson, B. A., Sargeant, S., Lacey, J., Rodriguez, T. A., & Barbaric,
681 I. (2021). Genetically variant human pluripotent stem cells selectively eliminate wild-type
682 counterparts through YAP-mediated cell competition. *Developmental Cell*, 56(17), 2455-
683 2470.e2410. <https://doi.org/10.1016/j.devcel.2021.07.019>

684 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden,
685 C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P.,
686 & Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. *Nat Methods*,
687 9(7), 676-682. <https://doi.org/10.1038/nmeth.2019>

688 Selleck, M. A., & Stern, C. D. (1991). Fate mapping and cell lineage analysis of Hensen's node in the
689 chick embryo. *Development*, 112(2), 615-626. <https://doi.org/10.1242/dev.112.2.615>

690 Semprich, C. I., Davidson, L., Amorim Torres, A., Patel, H., Briscoe, J., Metzis, V., & Storey, K. G. (2022).
691 ERK1/2 signalling dynamics promote neural differentiation by regulating chromatin
692 accessibility and the polycomb repressive complex. *PLOS Biology*, 20(12), e3000221.
693 <https://doi.org/10.1371/journal.pbio.3000221>

694 Shen, W., Huang, J., & Wang, Y. (2021). Biological Significance of NOTCH Signaling Strength [Review].
695 *Frontiers in Cell and Developmental Biology*, 9. <https://doi.org/10.3389/fcell.2021.652273>

696 Souilhol, C., Perea-Gomez, A., Camus, A., Beck-Cormier, S., Vandormael-Pourrin, S., Escande, M.,
697 Collignon, J., & Cohen-Tannoudji, M. (2015). NOTCH activation interferes with cell fate
698 specification in the gastrulating mouse embryo. *Development*, 142(21), 3649-3660.
699 <https://doi.org/10.1242/dev.121145>

700 Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. *Science*, 282(5391), 1145-1147. <https://doi.org/10.1126/science.282.5391.1145>

701

702

703 Tsakiridis, A., Huang, Y., Blin, G., Skylaki, S., Wymeersch, F., Osorno, R., Economou, C., Karagianni, E., Zhao, S., Lowell, S., & Wilson, V. (2014). Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors. *Development*, 141(6), 1209-1221. <https://doi.org/10.1242/dev.101014>

704

705

706

707 Turner, D. A., Hayward, P. C., Baillie-Johnson, P., Rué, P., Broome, R., Faunes, F., & Martinez Arias, A. (2014). Wnt/β-catenin and FGF signalling direct the specification and maintenance of a neuromesodermal axial progenitor in ensembles of mouse embryonic stem cells. *Development*, 141(22), 4243-4253. <https://doi.org/10.1242/dev.112979>

708

709

710

711 van Rooijen, C., Simmini, S., Bialecka, M., Neijts, R., van de Ven, C., Beck, F., & Deschamps, J. (2012). Evolutionarily conserved requirement of Cdx for post-occipital tissue emergence. *Development*, 139(14), 2576-2583. <https://doi.org/10.1242/dev.079848>

712

713

714 Verrier, L., Davidson, L., Gierliński, M., Dady, A., & Storey, K. G. (2018). Neural differentiation, selection and transcriptomic profiling of human neuromesodermal progenitor-like cells in vitro. *Development*, 145(16). <https://doi.org/10.1242/dev.166215>

715

716

717 Williams, R., Lendahl, U., & Lardelli, M. (1995). Complementary and combinatorial patterns of Notch gene family expression during early mouse development. *Mech Dev*, 53(3), 357-368. [https://doi.org/10.1016/0925-4773\(95\)00451-3](https://doi.org/10.1016/0925-4773(95)00451-3)

718

719

720 Wilson, V., & Beddington, R. S. (1996). Cell fate and morphogenetic movement in the late mouse primitive streak. *Mech Dev*, 55(1), 79-89. [https://doi.org/10.1016/0925-4773\(95\)00493-9](https://doi.org/10.1016/0925-4773(95)00493-9)

721

722 Wind, M., Gogolou, A., Manipur, I., Granata, I., Butler, L., Andrews, P. W., Barbaric, I., Ning, K., Guerracino, M. R., Placzek, M., & Tsakiridis, A. (2021). Defining the signalling determinants of a posterior ventral spinal cord identity in human neuromesodermal progenitor derivatives. *Development*, 148(6). <https://doi.org/10.1242/dev.194415>

723

724

725

726 Wong, G. T., Manfra, D., Poulet, F. M., Zhang, Q., Josien, H., Bara, T., Engstrom, L., Pinzon-Ortiz, M., Fine, J. S., Lee, H. J., Zhang, L., Higgins, G. A., & Parker, E. M. (2004). Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. *J Biol Chem*, 279(13), 12876-12882. <https://doi.org/10.1074/jbc.M311652200>

727

728

729

730

731 Wymeersch, F. J., Huang, Y., Blin, G., Cambray, N., Wilkie, R., Wong, F. C. K., & Wilson, V. (2016). Position-dependent plasticity of distinct progenitor types in the primitive streak. *eLife*, 5, e10042. <https://doi.org/10.7554/eLife.10042>

732

733

734 Wymeersch, F. J., Skylaki, S., Huang, Y., Watson, J. A., Economou, C., Marek-Johnston, C., Tomlinson, S. R., & Wilson, V. (2019). Transcriptionally dynamic progenitor populations organised around a stable niche drive axial patterning. *Development*, 146(1). <https://doi.org/10.1242/dev.168161>

735

736

737 Wymeersch, F. J., Wilson, V., & Tsakiridis, A. (2021). Understanding axial progenitor biology in vivo and in vitro. *Development*, 148(4). <https://doi.org/10.1242/dev.180612>

738

739 Young, T., Rowland, J. E., van de Ven, C., Bialecka, M., Novoa, A., Carapuco, M., van Nes, J., de Graaff, W., Duluc, I., Freund, J. N., Beck, F., Mallo, M., & Deschamps, J. (2009). Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos. *Dev Cell*, 17(4), 516-526. <https://doi.org/10.1016/j.devcel.2009.08.010>

740

741

742

743 Zákány, J., Kmita, M., Alarcon, P., de la Pompa, J.-L., & Duboule, D. (2001). Localized and Transient Transcription of *Hox* Genes Suggests a Link between Patterning and the Segmentation Clock. *Cell*, 106(2), 207-217. [https://doi.org/10.1016/S0092-8674\(01\)00436-6](https://doi.org/10.1016/S0092-8674(01)00436-6)

744

745

746 Zhang, N., & Gridley, T. (1998). Defects in somite formation in lunatic fringe-deficient mice. *Nature*, 394(6691), 374-377. <https://doi.org/10.1038/28625>

747

748