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Abstract

Despite the huge potential of magnetic resonance imaging (MRI) in mapping and exploring
the brain, MRI measures can often be limited in their consistency, reproducibility and
accuracy which subsequently restricts their quantifiability. Nuisance nonbiological factors,
such as hardware, software, calibration differences between scanners, and post-processing
options can contribute to, or drive trends in, neuroimaging features to an extent that
interferes with biological variability. Such lack of consistency, known as lack of
harmonisation, across neuroimaging datasets poses a great challenge for our capabilities in
quantitative MRI. Here, we build a new resource for comprehensively mapping the extent of
the problem and objectively evaluating neuroimaging harmonisation approaches. We use a
travelling-heads paradigm consisting of multimodal MRI data of 10 travelling subjects, each
scanned at 5 different sites on 6 different 3T scanners from all the 3 major vendors and
using 5 neuroimaging modalities, providing more comprehensive coverage than before. We
also acquire multiple within-scanner repeats for a subset of subjects, setting baselines for
multi-modal scan-rescan variability. Having extracted hundreds of image-derived features,
we compare three forms of variability: (i) between-scanner, (ii) within-scanner (within-
subject), and (iii) biological (between-subject). We characterise the reliability of features
across scanners and use our resource as a testbed to enable new investigations that until
now have been relatively unexplored. Specifically, we identify optimal pipeline processing
steps that minimise between-scanner variability in extracted features (implicit
harmonisation). We also test the performance of post-processing harmonisation tools
(explicit harmonisation) and specifically check their efficiency in reducing between-scanner
variability against baseline standards provided by our data. Our explorations allow us to
come up with good practice suggestions on processing steps and sets of features where
results are more consistent, while our publicly-released datasets establish references for
future studies in this field.
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1. Introduction

A key challenge in extracting robust quantitative information from magnetic resonance
imaging (MRI) data of the brain is the dependence of imaging-derived phenotypes (IDPs) on
nuisance non-biological factors. These factors range from hardware and software
differences, and scanning protocol parameters and implementation, which are different
between vendors and can vary with site (Han et al., 2006; Zhu et al., 2011) and following
scanner upgrades (Jovicich et al., 2009; Potvin et al., 2019). Additionally, image processing
options (for IDP extraction for example) vary across research groups, thus introducing
additional non-biological sources of variability. Such factors can affect IDPs in non-trivial
ways (Takao et al., 2011; Zhu et al., 2011), leading to biases and increased variability in
measurements obtained from different settings (Chen et al., 2014; Jovicich et al., 2006;
Vollmar et al., 2010). This is true, even in cases where scans have been acquired with a rigid
acquisition protocol or calibrated with phantoms; quantitative measurements can still show
variance reflecting non-biological causes (Cheng and Halchenko, 2020; Lee et al., 2021).

This lack of consistency or “harmonisation” across sites and scanners impedes and reduces
the potential for quantitative applications of MRI. At the extreme, variability of measures
obtained from the same subject but on different scanners can be as large as biological
between-subject variability (Mirzaalian et al., 2016), creating obvious interpretation issues
and questions on usefulness of some of these metrics in real-world scenarios (Rao et al.,
2017). Reduced quantifiability can have downstream effects on the reproducibility and
generalisability of findings and direct consequence in two key scenarios: (i) the pooling of
multi-site neuroimaging datasets (Zhu et al., 2011), potentially acquired at also different
times, and (ii) relating new IDPs acquired under different scanning conditions to an existing
set of normative data (Bayer et al., 2022). The pooling of multi-site neuroimaging datasets is
arguably the most sustainable way for having studies of larger scale and for increasing the
diversity of cohort demographics, a key factor in ensuring robust and generalisable science
(Oh et al., 2015). Non-biological sources of variation have a direct negative effect on this
pooling, and thus on reproducibility and representation of diverse populations. The
construction of normative models, i.e. models that capture healthy biological variation of a
phenotype {Marquand et al., 2016), is vital in the uptake of quantitative MRI in the clinical
setting. Non-biological sources of variation hinder comparisons of newly acquired data with
normative models, reducing the confidence in whether deviations are due to biological or
non-biological effects. Hence, visual (and therefore subjective) inspection by radiologists is
still the preferred way forward in clinical settings . Finally, non-biological variability may
mask true effects, or lead to the false conclusion of group differences, thereby not only
affecting reproducibility, but also the sensitivity and specificity of a study. Such challenges
also underlie the relatively limited, albeit growing, uptake/success of modern MRI
technologies in clinical trials (Ellingson et al., 2015; Sadraee et al., 2021; Nigri et al., 2022).

A good preliminary step for minimising these issues is to ensure the standardisation of
scanning protocols across scanners/sites (Chalavi et al., 2012). However, this is a non-trivial
task that is not always scalable or practical and does not resolve the problem fully. Firstly,
vendor-specific proprietary implementations can often lead to only nominal matching of
parameter acquisitions rather than true matching, causing signal/contrast/distortion
differences. Secondly, expert knowledge of these implementation differences by local
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physicists are needed, which is not always available. Thirdly, even using the same raw
datasets acquired using the same protocols, variability in processing and filtering options
can lead to significantly different IDPs and results (Griffanti et al., 2016; Botvinik-Nezer et
al., 2020; Schilling et al., 2021). Harmonisation therefore needs to be considered at all
points of a study, from design and data acquisition, to data processing and IDP extraction.
Attempts to standardise acquisition alone will most likely lead to aligned protocols, but with
inevitable differences across platforms.

For that reason, post-acquisition harmonisation approaches of neuroimaging data have
been developed (Fortin et al., 2018; Cetin Karayumak et al., 2019) that aim to remove non-
biological variability while still preserving variance in IDPs associated with biological factors.
Such approaches are likely to have higher success rates when some effort is first made to
align acquisition protocols. In general, harmonisation methods fall into two main categories,
depending on whether they harmonise IDPs directly (Fortin et al., 2018; Yamashita et al.,
2019; Garcia-Dias et al.,, 2020) or indirectly, by standardising the raw scans (Cetin
Karayumak et al.,, 2019; Mirzaalian et al., 2016; Tax et al.,, 2019). Nevertheless, what is
generally missing are objective ways and datasets to evaluate and compare such
approaches. Different studies have relied so far on a range of indirect metrics, from using
population distributions as a reference {Garcia-Dias et al., 2020), to subject group matching
by attributes such as age, sex, gender, race and handedness (Fortin et al., 2017). An
alternative and more direct approach for assessing the quality of harmonisation is to use
within-scanner repeats. For example, in (Vollmar et al., 2010), two within-scanner repeats
were used as a baseline within-subject variability reference towards which harmonisation
success was assessed. In (Kurokawa et al., 2021), two within-scanner repeat scans from four
subjects, and scan-rescan Human Connectome Project (HCP) (Van Essen et al., 2013), data
were used as a baseline. Despite these previous efforts, there is still limited understanding
of which brain MRI modalities and which IDPs within each modality are less sensitive to
between-scanner effects and hence will benefit less/more from harmonisation methods.

In this study, we provide a resource aimed at better understanding the nature of the
challenge and for setting the foundations to address it. Firstly, we present a unique
comprehensive dataset for multi-modal brain MRI harmonisation acquired using a
travelling-heads paradigm; ten healthy individuals scanned multiple times across multiple
sites and scanners using T1l-weighted (T1w), T2-weighted (T2w), susceptibility-weighted
(SWI), diffusion MRI (dMRI) and resting-state functional MRI (rfMRI) sequences. We extend
previous similar approaches (Pohl et al., 2016; Tax et al., 2019; Yamashita et al., 2019; Tong
et al., 2020; Maikusa et al., 2021; Kurokawa et al., 2021; Tanaka et al., 2021; Duff et al.,
2022; Tian et al., 2022) in a number of ways: (i) by considering scanners from all three major
vendors, (ii) by considering multiple generations of scanners within each vendor, (iii) by
having multiple within-scanner repeats for the same subjects, (iv) by acquiring multiple
neuroimaging modalities and (v) by collecting data at five imaging sites in total. We use the
UK Biobank imaging protocol (Miller et al., 2016) as a rough guide to align protocols, but
within that scope we intentionally avoid nominal matching of acquisition parameters and
allow for reasonable variation. This approach enables us to reflect more realistic scenarios
and leverage the strengths of each considered system by preserving best practices at each
imaging site.
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Subsequently, we use this data resource to map the extent of the problem in hundreds of
IDPs. For each of these IDPs, we compare between-scanner variability against within-
scanner variability, as well as biological variability, and also explore the consistency of cross-
subject ranking across scanners. We further demonstrate how we can evaluate existing
harmonisation approaches, such as ComBat and CovBat (Fortin et al., 2017, 2018; Chen et
al., 2022) (explicit harmonisation), as well as comparing the robustness and precision of
image processing pipeline alternatives in extracting specific IDPs when handling data from
multiple scanners (implicit harmonisation). We find that implicit harmonisation can offer
complementary benefits to explicit harmonisation in the explored examples; and that
between-scanner reliability of very commonly-used IDPs, such as cortical or subcortical
volumes, can be significantly affected by how data is handled and processed. We also
showcase how the acquired within-subject, within-scanner repeats can highlight challenges
for existing filtering algorithms (such as diffusion MRI denocising (Veraart et al., 2016)),
stemming from non-linear effects that appear to be common across different scanners,
contrary to expectation. The data is publicly released in BIDS format via OpenNeuro and will
be further augmented with more scanners and subjects in the near future. In addition, we
make the processing pipeline and resultant IDPs available.

2. Methods

2.1 Data Acquisition

We used a travelling-heads paradigm to acquire multimodal brain MRI data of 10 healthy
travelling subjects (two females, eight males, age range: 24-48), each scanned on six
different 3T scanners covering all three major vendors (Siemens/Philips/GE), from five
different sites, and covering a range of hardware features (for instance bore size, gradient
strength, number of head coil channels, acceleration capabilities). For a subset of four
subjects we acquired five additional within-scanner repeats using a different scanner for
each subject (i.e. for each subject we had six within-scanner sessions for one scanner and
one session on the remaining five scanners), resulting in 80 sessions in total. In each session,
five imaging modalities were acquired: Tlw, T2w, SWI, dMRI, and rfMRI. Scanner details are
summarised in Figure 1 and subject demographics are summarised in Supplementary Table
1. The within-scanner repeats were acquired using the Philips Achieva, Siemens Prisma
(32ch), Siemens Trio and Siemens Prisma (64ch) systems.

Data acquisition was performed under two ethics protocols for healthy volunteers at
Nottingham (PI: Sotiropoulos, Ethics: FMHS-36-1220-03, H14082014/47). The Oxford data
acquisition was performed under an agreed technical development protocol approved by
the Oxford University Clinical Trials and Research Governance office, in accordance with
International Electrotechnical Commission and United Kingdom Health Protection Agency
guidelines. Informed consent was obtained from all participants.

Scanning protocols were guided by the UK Biobank (UKBB) neuroimaging study (Miller et al.,
2016), which is a relatively short multi-modal protocol {about 35 minutes in total), that does
not rely heavily to specialised hardware/software and hence it is anticipated to be relatively
generalisable across scanners. We did not aim to perfectly match every single parameter in
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this protocol, but instead respected best practice for each scanner/site and remained within
the limitations of scanner hardware/software. Perfectly matching protocols is not always
possible, nor realistic; and it can lead to nominal-only matching of acquisition parameters,
rather than matching of image quality and features across scanners. We show in the
Supplementary Material (Supplementary Figure 1, and discussion below) an example case
for resting-state functional MRI. Protocol summaries are provided in Figure 1, highlighting
differences between scanners. Shimming was performed at the beginning of each session
and auto-reshimming was disabled. To correct for susceptibility-induced distortions for
dMRI and rfMRI, we acquired a blip-reversed spin-echo fieldmap (Andersson et al., 2003)
with the phase-encoding (PE) direction switching along the anterior-posterior orientation.
The same PE direction was used for dMRI and rfMRI in each session.

T1-weighted: We used T1w gradient echo (3D MPRAGE (Mugler Il and Brookeman, 1990)
for Siemens and Philips scanners, 3D BRAVO for the GE MR750) scans with an isotropic
spatial resolution of (Imm)3. As in the original UKBB protocols, gradient non-linearity
distortion correction (GDC) was turned off for the Siemens scanners because the Siemens
on-scanner corrections have been found to provide inconsistent results, particularly for 2D
EPI acquisitions (scanner-corrected 3D and 2D acquisitions of the same subject cannot be
successfully aligned with a rigid body transformation). Instead, these corrections were
performed offline using vendor-supplied gradient non-linearity descriptor files (Alfaro-
Almagro et al., 2018). For the non-Siemens scanners, GDC correction was performed on the
scanner. This applies to all other modalities we acquired. Vendor-provided pre-scan
normalise was used for all scanners. Scan time was on the order of five minutes.

T2-weighted FLAIR: With the exception of the GE MR750, all the T2w scans were performed
using a 3D T2w FLAIR sequence that allowed high-resolution data (almost (1mm)? isotropic)
in four minutes. The software version on the MR750 did not have 3D T2w FLAIR
functionality (i.e., it could either provide a 3D FLAIR with no T2-weighting or a 2D T2w
FLAIR). Therefore, we obtained a 3D FLAIR without T2w and also acquired a 2D T2w FLAIR,
which is inherently slower than 3D and compromised with spatial resolution. We acquired
three versions: (i) 1mm isotropic 3D FLAIR, (ii) 1.5mm isotropic 2D T2w FLAIR, and (iii)
1x1x2mm 2D T2w FLAIR. The same GDC and pre-scan normalise options were followed as
before. For analysis we used the 1.5mm isotropic 2D FLAIR for the GE scans, but we provide
the others as well in the public release.

Susceptibility-weighted imaging (SWI): The SWIs were acquired using anisotropic, complex
data for two echoes, roughly matching around TE;~9s and TE,~20s. For the GE scanner we
used the SWAN sequence, which acquired seven echoes, and the two echoes closer to TE;
and TE, were extracted during processing. This resulted in a higher bandwidth for the GE
data (~350 Hz/pixel for GE vs ~140 Hz/pixel for Philips and Siemens). Accurate
reconstruction of phase images required the complex sensitivity of the individual coil data
as anomalous phase transitions in regions of focal dropout have been reported (Alfaro-
Almagro et al., 2018; Robinson et al., 2017). For the Siemens scanners, as in the original
UKBB protocol, data from individual coils were saved separately, and phase images were
subsequently high-pass filtered and combined during post processing. For the non-Siemens
scanners, such anomalous phase transitions are less common and hence individual coil data
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were combined on the scanner. Magnitude and phase images were saved for all the
scanners. Scan times were on the order of 2.5 minutes for all scanners.

Diffusion MRI (dMRI): The diffusion images were acquired with a monopolar pulsed
gradient spin echo (PGSE) EPI sequence at (2mm)® isotropic spatial resolution. We used an
anterior-posterior phase encoding direction and acquired reversed spin-echo EPI b=0 s/mm?
scans on all scanners. Differences in gradient strength and simultaneous-multi-slice
{(multiband) acceleration capabilities affected the achievable minimum TE and TR across
scanners. Both the Philips Achieva and GE MR750 did not have multiband capabilities,
therefore the resulting TR was above 10 seconds. For the MR750, we opted for only
relatively low b-value data (up to b=1000 s/mm?), because of the low gradient strength and
excessively long TR. TR was also long for the Philips Achieva, but the much stronger
gradients allowed usable data in a reasonable scan time. In the absence of multi-slice
acceleration for the Achieva and MR750, in-plane parallel imaging with an acceleration of
two was used to minimise TE. We were able to approximately match angular resolution
across b-shells for all scanners. In summary, total scan times were on the order of 6.5
minutes for the Siemens scanners, 7.5 minutes for the Philips Ingenia, 18 minutes for the
Philips Achieva and 12 minutes for the GE MR750.

Resting-state functional MRI (rfMRI): The rfMRI images were acquired with 2D gradient
echo planar imaging (GE EPI). All subjects were asked to keep their eyes open during
scanning. As in dMRI, deviations from the UK Biobank protocols were required due to the
differences in the acceleration capabilities of each scanner. We acquired two sets of rfMRI
data for the GE MR750 and Philips Ingenia using a) protocols that were as nominally-
matched as possible and b) protocols that were more in-line with scanner-specific best
practices. We compared image quality across scanners in each case. For the Philips Ingenia
scanner, pushing the multiband acceleration factor beyond four caused excessive artefacts
and data had reduced temporal signal to noise ratio (tSNR). In comparison, we were able to
achieve a multiband acceleration factor of eight on Siemens scanners without problematic
artefacts. We therefore opted for acquisitions that had the same spatial resolution as the
Siemens scanners and roughly the same number of timepoints (400 in Philips vs 490 in
Siemens) but differed in the temporal resolution. For GE (no multiband available), we
accepted a reduced spatial resolution (3.3mm isotropic compared to 2.4mm isotropic with
Siemens) in order to keep tSNR more consistent with Siemens’ data. In total the scan times
were 6 minutes for Siemens scanners, 7.5 minutes for the Philips Achieva, 9.5 minutes for
the Philips Ingenia and 7.5 minutes for the GE MR750. In each case, the flip angle was set to
the Ernst angle for the corresponding TR, assuming T1=1.5 s for grey matter at 3T. A
summary of fMRI data image quality metrics is provided in Supplementary Figure 1,
comparing all the alternatives.
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a) Multi-modal harmonisation database

16 subjects 6 3T scanners
e @ 2 9 A . -
M S
e pre-processing

BIDS conversion

4 subjects with 6 within-scanner sessions

b) Scanner details

Bore size Max grad strength Grad slew Coil
(em) (mT/m) rate (T/m/s) | channels
32

Siemens Prisma FMRIB, Oxf 80 200
Siemens Prisma WIN-OHBA, Oxf 60 80 200 64
Siemens Trio OCMR, Oxf 60 45 200 32
GE MR750 QMmCc, Nott 60 50 200 32
Philips Achieva SPMIC, Nott 60 Dual: 40 (80) 200 (100) 32
Philips Ingenia SPMIC, Nott 70 45 200 32
¢) Acquisition Siemens Siemens Siemens Philips Philips
sequence 3D MPRAGE 3D MPRAGE 3D MPRAGE 3D BRAVO 3D MPRAGE 3D MPRAGE
Tiw
iso res (mm) 1 1 1 1 1 1
sequence 3D FLAIR 3D FLAIR 3D FLAIR 2D FLAIR 3D FLAIR 3D FLAIR
2w res (mm) 1.05x1x1 1.05x1x1 0.99x1x1.05 1.5x1.5x1.5 1.05x1x1 1.05x1x1
TE (ms) 1/2 9.42/19.7 9.42/19.7 9.42/16.7 9.13/21 9.4/20 9.4/20
n res (mm) 0.8x0.8x3 0.8x0.8x3 0.72x0.72x3  0.8x0.8x3 0.8x0.8x3 0.8x0.8x3
iso res (mm) 2 2 2 2 2 2
b-values 0,1000,2000  0,1000,2000  0,1000,2000 0,1000 0,1000,2000  0,1000,2000
#vols 105 105 105 54 105 105
TE (ms)/TR(s)  92/3.6 92/3.6 96.4/3.6 72/11 70/10 92/3.9
iso res (mm) 2.4 2.4 2.4 33 2.4 2.4
TR (ms) 735 735 735 2200 1150 1450
rfMRI
I #vols 490 490 490 200 400 400

Figure 1 — The multi-modal harmonisation database. a) Ten subjects were scanned on six 3T scanners covering
the three main vendors (GE, Siemens, Philips) at five different sites. On four scanners, one of the subjects was
chosen to complete five within-scanner repeats. In each session five modalities are acquired: T1-weighted, T2-
weighted, susceptibility-weighted imaging, diffusion MRI, and resting-state rfMRI. Data were pre-processed
and converted to BIDS format, which are publicly available. b) A summary of key scanner details and
specifications. Oxf = University of Oxford; Nott = University of Nottingham. c) A summary of key acquisition
parameters for the five modalities, for all six scanners, highlighting parameters that vary across scanners. A
blip-reversed spin-echo fieldmap was also acquired for correcting susceptibility-induced distortions with the
phase encoding direction switching along the anterior-posterior orientation.
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2.2 Data Processing

Imaging-Derived Phenotype Extraction

Hundreds of multi-modal IDPs were extracted from each session. First, raw data were
converted to NIFTI format using dcm2niix (v1.0.20211006) (Li et al., 2016) and subsequently
converted to the BIDS data structure (Gorgolewski et al., 2016), before applying an adapted
version of the UKBB pipeline (Alfaro-Almagro et al., 2018). All data have been anonymised,
while the high-resolution anatomical images have been “defaced”. Anonymised and defaced
BIDS format data are publicly available via OpenNeuro (made available on publication). This
database will be further augmented in the coming years with more subjects and scanners (in
particular two GE Premier Signa wide-bore 3T scanners at two different sites).

For dMRI and rfMRI data, we obtained the effective echo spacing and total readout time
required for susceptibility-induced distortion correction using spin-echo fieldmaps
(Andersson et al., 2003). These were extracted from dcm2niix, which takes into account
nominal echo-spacing, in-plane acceleration, as well as bandwidth and matrix dimensions.
The Supplementary Information summarises the equations used by dcm2niix to calculate
the total readout times and Supplementary Tables 2-3 provide a summary of acceleration
factors and the associated effective echo spacings and total readout times across the
scanners.

We obtained image quality metrics (IQMs) in order to characterise each of the scanning
sessions. We used MRIQC (v22.0.6) (Esteban et al., 2017) for Tlw (e.g. smoothing extent,
SNR, tissue-specific SNR and regional CNR) and rfMRI (e.g. smoothing, tSNR, motion artefact
measures) data, while for dMRI we used eddyQC (Bastiani et al., 2019) to quantify SNR,
angular CNR, motion and outliers. A summary of IQMs is provided in Supplementary Table 4.

A modified version of the UKBB pipeline (Alfaro-Almagro et al., 2018) was applied to extract
IDPs, providing a full processing stream for all acquired modalities, from allowing data in
different formats from different vendors, distortion correction and template alignment, to
generating a set of IDPs for each session and subject. The pipeline was originally designed
for Siemens-acquired UKBB data. We adjusted the pipeline in various ways to allow the
processing of data obtained from other vendors and modified acquisition protocols. We also
augmented the pipeline to allow additional processing steps/tools. For instance, we
replaced the original tractography processing with the XTRACT toolbox (Warrington et al.,
2020), we replaced the approximate NODDI-AMICO fit (Daducci et al., 2015) with a GPU-
accelerated NODDI model (Zhang et al., 2012) fitting routine (Hernandez-Fernandez et al.,
2019), we added the option for performing dMRI denoising (Veraart et al., 2016), and added
the option of gradient non-linearity distortion correction. We derived multi-modal IDPs
including a range of structural, microstructural, connectional and functional IDPs,
specifically: volumes of tissue types; cortical surfaces and their metrics (volumes, curvature,
thickness, area); subcortical region-wise volumes; measures of white matter microstructure
within various white matter tracts; iron deposition proxies in grey matter; and measures of
regional functional connectivity. An overview of the IDPs extracted from each modality is
shown in Supplementary Figure 2.
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Mapping Between-Scanner Effects

The extracted IDPs and IQMs may be used to assess between-scanner effects and assess
variability in data quality and IDP values across scanners. We first used the IQMs to explore
the presence of any outliers either across scanners or subjects in terms of overall data
quality. To do so, IQMs reflecting the image quality of the anatomical (T1w), microstructural
(dMRI) and functional (rfMRI) data were (i) z-scored across scanners and averaged across
subjects, providing a measure of scanner data quality relative to other scanners, and {ii) z-
scored across subjects and averaged across scanners, providing a measure of subject data
guality relative to other subjects. In each case, to avoid bias towards any given scanner, we
excluded within-scanner repeats. We also excluded 1QMs describing the b=2,000 s/mm?
dMRI data as these were not available for all scanners.

Next, we assessed the between-session IDP similarity P;; to reflect how similar IDPs from
sessions i and j are on average (i,j = 1: N, where N, = 80 in our data, spanning all
subjects and scanners). IDPs were grouped into m = 1:M_,, categories, including
subcortical volumes, brain tissue volumes, subcortical T2*, cortical parcel volumes, dMRI
regional and tract-wise microstructure (FA, MD, MO, L1, L2, L3) and rfMRI functional
connectivity node amplitudes and edges. For each of the M_,, IDP categories, the
Spearman’s rank correlation was calculated between pairs of sessions i and j, giving in total
M, correlation values Ri’;-l, one for each IDP category. The median correlation across all IDP
categories was used to reflect the between-session similarity for sessions i and j:

Pij =<Rjj >=<rcorr(f{",fi") >, ,j=1,..,Nyesandm = 1: My, (2.1)

where rcorr is the Spearman’s rank correlation, < > is the median across m and ;" is a
vector containing the IDPs for session i and category m. Note that for functional
connectivity we used the IDPs extracted from a 25-dimensional group ICA with partial
correlation as a connectivity measure (giving 210 edges and 21 node amplitudes). To reduce
the dimensionality, we kept only the top 5% (31) strongest edges. We identified the top 5%
strongest edges by calculating the mean edge weight across within-scanner repeats for each
of the subjects with within-scanner repeats. The top 5% strongest edges were used
throughout these analyses.

Subsequently, for each of the extracted IDPs, we calculated the coefficient of variation (CoV)
across the between-scanner repeats of a subject (i.e., between-scanner, within-subject) and
we compared it with two baselines: (i) the CoV of within-scanner, within-subject repeats, (ii)
the CoV of within-scanner, between-subject repeats. The former provides a measure of
within-scanner variability to compare against and the latter a measure of between-subject
(biological) variability. We also compared IDP bias by exploring the agreement of the mean
across between-scanner measurements against the mean across within-scanner
measurements.

Finally, we explored how the ranking of subjects varied across scanners for each IDP d, i.e.
quantifying the consistency Qﬁc in the rank ordering of subject IDPs between scanners
L,k = 1: Ny, (where N;.,,, = 6is the number of scanners and d = 1: D the list of all IDPs).
To do so, for each IDP d, we calculated the Spearman’s rank rcorr across the ten subjects
between all scanner pairs. We compared ranking consistency after grouping IDPs into sub-
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categories and in the case where all scanners are included (Ny.,, = 6) and in the case
where the pool of scanners is restricted to those from a single vendor (Ng.,,, = 3 Siemens
scanners). We assessed ranking consistency against an indicative “null” baseline; this was
obtained by simulating random rankings, calculating the Spearman’s rank correlation, and
taking the interquartile range of the distribution of correlation values.

Q& =rcorr(w,vd), Lk=1,.. Nygnandd = 1: D (2.2)

where vld is a vector containing the IDPs for all subjects for scanner [ and IDP d.

2.3 Evaluating Harmonisation Approaches

We utilised our data resource as a testbed for existing harmonisation approaches. Having
within-scanner repeats, as well as scans of the same brain across multiple scanners, allows
for multiple explicit and quantitative comparisons. As an exemplar for this study, we used
the within-scanner variability as a baseline and we assessed how closely harmonisation
approaches can bring between-scanner variability to this baseline for different IDPs. We also
explored how stability of between-subject ranking can be affected by harmonisation
approaches. We explored two groups of methods: a) implicit harmonisation: given the
plethora of processing approaches for extracting the same IDPs from neuroimaging data, we
evaluated how robust and consistent different approaches are in extracting the same IDPs
across scanners in the same subject. We postulate that an optimal processing pipeline is as
immune as possible to site/scanner effects and returns similar values for the same IDPs in
the same subject scanned in various systems. We demonstrate how our database can be
used for pipeline optimisation to maximise reproducibility and robustness. b) Explicit
harmonisation: we used our resource to directly evaluate approaches that have been
explicitly designed to remove nuisance scanner (i.e. “batch”) effects; and characterise their
efficacy across different modalities and IDPs.

Implicit Harmonisation

First, we compared approaches for extracting subcortical volumes from anatomical images
using both unimodal and multimodal subcortical segmentation. Specifically, we compared a
unimodal subcortical segmentation approach (FSL's FIRST (Patenaude et al., 2011)) to the
more recently developed unimodal/multimodal FSL's MIST (Visser et al., 2016). MIST was
run in three ways: (i) using only Tlw data, providing a direct comparison with FIRST, (ii)
using two modalities, Tlw and T2w data, and (iii) using three modalities, Tlw, T2w and
dMRI data. For the multimodal runs, we registered to the T2w and dMRI data to the Tlw
data. For the T2w registration, we used linear registration and for the dMRI data we used a
boundary-based registration (Greve and Fischl, 2009). In each case MIST was trained using
all sessions excluding the within-scanner repeats (60 sessions in total) and the trained model
was subsequently applied to all sessions to extract subcortical segmentations. The set of
subcortical structures were restricted to those available from both approaches, which
includes left/right thalamus, pallidum, putamen, hippocampus, amygdala, and caudate
nucleus combined with nucleus accumbens. We then compared subcortical volume
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variability for within- and between-scanner repeats and preservation of subject ranking
across the three approaches, and against segmentations derived from FSL’s FIRST.

As a second example of pipeline optimisation, we compared approaches for deriving cortical
region volumes. Specifically, we compared (i) the atlas-based approach used in the UK
Biobank pipeline, where atlas-based registered ROIls are constrained by the subject-specific
grey matter mask, (ii) FreeSurfer (v7.1.0) (Dale et al., 1999) and (iii) the recently developed
FastSurfer (v2.0.0) (Henschel et al., 2022, 2020), a deep learning alternative to FreeSurfer.
These steps provided coarse and fine resolution cortical parcellations for each subject, that
were then compared.

Finally, we used a further example to demonstrate the richness of our resource in using
within-scanner repeats to evaluate pre-processing steps. We assessed the effect of dMRI
denoising on variability of microstructural IDPs, such as tract-wise FA and MD. As we expect
thermal noise to be a large contributing factor to within-scanner, within-subject variability,
we assessed whether dMRI denoising approaches reduce within-scanner variability across a
range of IDPs. To do so, we denoised the raw dMRI data using MP-PCA (Veraart et al., 2016)
(as implemented in MRtrix3 v3.0.2 (Tournier et al., 2019)), prior to any other processing.
The denoised data were then processed using the UKBB pipeline to generate the standard
dMRI IDPs. We then compared the variability of IDPs across within-scanner repeats from our
pipelines run with and without denoising. In addition, we repeated the above processing but
applied the denoising step after distortion corrections.

Explicit Harmonisation

We explored explicit harmonisation methods using our dataset. Specifically, we applied
ComBat (Fortin et al., 2017) and CovBat (Chen et al., 2022) to a representative set of IDPs:
atlas-based cortical grey mater volumes and subcortical volumes derived from Tilw,
subcortical T2* derived from SWI, and tract-wise microstructural measures (mean fractional
anisotropy) derived from dMRI. We applied each harmonisation approach to the whole
cohort and compared how between-scanner CoVs before and after harmonisation compares
against within-scanner repeat CoVs. We also explored how harmonisation approaches affect
between-scanner stability of subject ranking. For both ComBat and CovBat, subject
demographics (age, sex) were used as covariates.

3. Results
3.1 A Comprehensive Multi-Modal Harmonisation Resource

In total, 80 sessions were acquired from 10 subjects (60 between-scanner and 20 within-
scanner repeats). Qualitative demonstrations of the multi-modal data for a single subject
across the 6 scanners are shown in Figure 2. Consistency in quality and contrast can be
observed in general for all modalities/scanners, although, as expected, there are
appreciable differences between scanners. Supplementary Figure 3 examples modalities
where between-scanner differences are more/less appreciable. For example, dMRI-derived
FA maps show greater between-scanner differences compared to within-scanner repeats.
On the other hand, between-scanner variability in Tlw scans are, qualitatively, comparable
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to within-scanner variability. These results provide an early demonstration that inter-site
effects and the need for harmonisation are not equivalent across imaging modalities and
IDPs.

To perform a more quantitative comparison across scan sessions, quality control was
performed, as described in Methods. The scanner/subject averaged z-scored IQMs are
shown in Figure 3 for each of the considered IQMs. In the case of scanner performance
(Figure 3a), since three out of six scanners were Siemens, we expect the mean IQM values
to be significantly determined by the systems of this vendor. Indeed, IQMs for the Siemens
scanners are closer overall to the means (i.e. z-scores closer to zero), with some modality-
specific differences. Nevertheless, we observe that all metrics for all other scanners are
within two standard deviations of their respective means, i.e. there are no major outliers in
terms of raw image quality and/or artefacts (74% of the IQMs are within one standard
deviation from their respective means). The Philips Achieva Tlw and dMRI data are also
closer to the mean scanner quality, while the GE rfMRI is closer to the respective rfMRI IQM
mean. Similarly, at the subject-level, we find that the vast majority of IQMs (99%) are within
two standard deviations from their respective means. In summary, there were no
scanners/subjects in our cohort that were different enough to be considered outliers with
respect to the other observations.
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Philips Achieva Philips Ingenia GE MR750 Siemens Prisma 32 Siemens Prisma 64 Siemens Trio

Figure 2 — lllustration of acquired multi-modal data for a single subject across all 6 scanners and 5 imaging
modalities. For dMRI, a single b=1000 s/mm?’ is shown corresponding to the same diffusion-sensitising
orientation (left-right orientation).
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Figure 3 — Heatmaps of Image quality metrics (IQM) variability. Top: IQM variability across scanners. Each
quality metric for each subject was z-scored across the six scanners. The Z-scores were then averaged across
the 10 subjects. Bottom: IQM variability across subjects. Each quality metric was z-scored across subjects and
then averaged across the six scanners. In each case, we exclude within-scanner repeats. Higher positive or
negative values represent large deviations from the mean z-scored IQM across scanners/subjects. We were
unable to acquire multi-shell data for all scanners, hence we exclude higher b-value IQMs in these comparisons.
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3.2 Mapping Between-Scanner Variability for Multi-Modal IDPs

We subsequently used the data to extract multi-modal IDPs and explore their between-
scanner variability. First, we used the IDPs to assess between-session similarity. To do so, we
initially looked at individual IDP categories and calculated the Spearman’s rank correlation
Rg-l (see Eq. 2.1) for each IDP category between all session pairs {Supplementary Figure 4).
Between-session similarity matrices based on Tlw-derived IDPs had larger correlation
values and tended to be more structured overall, but more so for some IDP categories than
others, e.g. within-subject similarity was higher than between-subject for FreeSurfer cortical
features, but less so for subcortical ones. This pattern was also present for correlation
matrices derived from dMRI IDPs, although the magnitude of correlation values was
typically reduced. Correlation matrices derived from fMRI IDPs were less structured and had
considerably lower correlation values.

Subsequently, we took the median across IDP categories (Eq. 2.1) to obtain an overall
between-session similarity metric considering all IDP categories for each session
(Supplementary Figure 5). The pattern previously described was apparent. In addition, we
also observed how within-scanner repeats of the same subject were more similar than
between-scanner repeats of the same subject, highlighting the harmonisation challenge. To
better visualise these differences, we focused on the sessions of the four subjects that had
both between and within-scanner repeats (Figure 4, left). This qualitatively demonstrates
greater similarity for within-scanner repeats (blue outline) compared to between-scanner
repeats (green outline). This is confirmed when comparing the distribution of between-
session correlation values (Figure 4, right), illustrating a greater consistency in values of IDPs
derived from within-scanner measurements compared to those derived from between-
scanner data. Importantly, we also observe an overlap in correlation distributions for
between-subject-within-scanner sessions and within-subject-between-scanner repeats. This
indicates that IDP similarity for the same subject scanned on different scanners may be as
low as the IDP similarity for different subjects scanned on the same scanner.

We subsequently explored, for each IDP, the presence of scanner-related bias, by checking
how the mean values for that IDP across between-scanner repeats agreed against the mean
across within-scanner repeats (Figure 5) ([between-scanner mean — within-scanner
mean]/within-scanner mean, expressed as percentage). Even if the differences were larger
for some dMRI-extracted IDPs and considerably higher for fMRI-extracted IDPs, bias was
consistent and relatively low across the group-level and subject-level and mostly in the
range of +10%.

We then explored how within-subject between-scanner variability for all considered IDPs
compares against two baselines: a) within-scanner variability, b) between-subject
(biological) variability. Figure 6 shows the CoVs for each IDP for within-scanner repeats and
for between-scanner repeats. Plotted together (third row), and by comparing IDP-group
means (fourth row), it becomes apparent that the between-scanner variability can be on
average as large as ~5 times the within-scanner variability, as confirmed by the relative
difference (fifth row). We also compared between-scanner repeat variability to “biological”
variability (between-subject-within-scanner: orange in rows three and four), and we found
that the between-scanner variability is not always smaller than the biological variability
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(bottom row) for several of the IDP groups. IDP-group-wise medians in the relative
difference {rows five and six) are reported in Supplementary Table 5. Certain IDPs (e.g. T1w-
extracted atlas-based parcellation IDPs) showed between-scanner variability exceeding 5
times that of the within-scanner variability and over twice that of biological variability. At
the IDP-group level, the median between-scanner CoV exceeds a relative difference of 200%
in 6 of 23 IDP groups when comparing against within-scanner repeat variability (Figure 6,
fourth row). Comparing to biological variability, median between-scanner CoV exceeds that
of biological variability in 5 of 23 IDP groups (Figure 6, fifth row).

We observed trends in variability not only relating to the modality from which the IDPs are
derived, but also to the type of processing used to derive said IDPs. For instance, T1w-
extracted atlas-based parcellation IDPs show greater between-scanner variability compared
to Tlw-extract FreeSurfer IDPs, reflecting sources of variability introduced in the processing
pipeline. Whilst dMRI-extracted IDPs show relatively high between-scanner variability, they
are relatively consistent across processing methods although with reduced variability on
average for the tractography-based IDPs compared to the atlas-based IDPs, and with some
expected trends. For example, between-scanner variability for both atlas-based and
tractography-based IDPs is larger for L3 compared to L2 and compared to L1. IDPs extracted
from the NODDI-modelled dMRI data generally have higher between-scanner variability
compared to those extracted from the DTl model (Supplementary Figure 7). IDPs derived
from SWI showed high between-scanner variability, exceeding biological variability, but a
within-scanner variability comparable with other IDP groups. rfMRI-extracted IDPs were
particularly variable, with connectivity edges showing very high variability for both biological
and scanner related variability and within-scanner variability exceeding biological variability.
A version of Figure 6, but using only the four subjects with within-scanner repeats when
calculating the between-scanner CoVs, is provided in Supplementary Figure 6, revealing very
similar trends.

Subject 13192 Subject 14229 I Between scanner
Ach ] PN mmm Within scanner
7'2% — 1.00
Pri64
Tria 095
Pri32
Pri32 -
Pri3z2 0.80 |
Pri32 . {
Pri32 2085 {
Pri32 2 H
£
) 09 ®o08 |
Subject 14482 £ \
Ach Ing 2
Ing Bl 50 ] 078
750 HERN ris2 0.8 A
Pri32 Pri64 0.70
Prié4 Trio
Trio Ach 0.65 1
Tria Ach 1}
Trio Ach B "
Trio IHIHE Ach [N 050
Tria Ach between subject within subject within subject
Trio lll Ach ll | within scanner between scanner within scanner
Figure 4 — Between-session similarity. Left: Correlation (Spearman’s rank) matrices (see Eq. 2.1) depicting

the similarity of IDPs between scanning sessions for the four subjects with within-scanner repeat scans.
Spearman’s rank correlation is calculated between all session pairs for IDP categories (Supplementary Figure 4)
and the median across categories (Supplementary Figure 5) is presented for the subset of subjects. IDP
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categories include subcortical volumes, brain tissue volumes, subcortical T2*, cortical parcel volumes, dMRI
regional and tract-wise microstructure (FA, MD, MO, L1, L2, L3), rfMRI functional connectivity node amplitude
and edges. Right: the distributions of within/between scanner/subject session similarities.Each data point
represents the median (across IDP categories) correlation between a pair of sessions, i.e. entries of
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For each IDP, we also explored the consistency in subject ranking across scanners {Figure 7).
A value of 1 indicates perfect consistency, i.e. all ten subjects are ranked in the same way
when using the same IDP across the different scanners. As expected, we see that ranking is
preserved more for scanners from the same vendor, with it becoming less consistent when
we include scanners from different vendors. However, there are only a few categories of
IDPs that are close to the ideal consistency described above. Furthermore, the extent to
which ranking is preserved depends on the imaging modality. Between-subject ranking is
preserved the most for IDPs from anatomical imaging modalities, followed by susceptibility
and diffusion, and the least for functional modalities.

To summarise, our database reveals interesting patterns of between-scanner non-biological
effects and demonstrates the important need for harmonisation in hundreds of multi-modal
IDPs. In the following section, we explore how our database can be used as a testbed for
both implicit and explicit harmonisation approaches.
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Figure 7 — Between-scanner consistency of subject ranking (see Eq. 2.2) for all IDPs grouped by IDP
category. The Spearman’s rank correlation is calculated across subjects for each scanner, both for all scanners
and restricted to scanners from the same vendor (Siemens). The red region depicts the null distribution’s
interquartile range.

3.3 A Testbed for Evaluating Harmonisation Approaches

3.3.1 Implicit Harmonisation

Our data can also be used to assess the robustness of processing pipelines when applied to
data from different scanners and compare alternatives for extracting similar IDPs. In this
section we demonstrate three examples of such pipeline optimisation, (i) for extracting
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cortical area volumes from anatomical images, (ii) for extracting subcortical volumes from
anatomical images and (iii) on the effect of dMRI denoising on DTI metrics.

We first explored how different approaches for obtaining cortical area volumes (i.e. atlas-
based vs FreeSurfer vs FastSurfer) affect between-scanner variability of volumetric IDPs,
using the within-scanner variability as a baseline (Figure 8a). To do so, we compared the CoV
and consistency of subject ranking for cortical area volumes derived using an atlas-based
registration approach (with 96 parcels, as done in the UK Biobank pipeline) to those derived
from FreeSurfer (DK coarse with 63 parcels, and Destrieux fine with 148 parcels) and
FastSurfer (coarse DK only). We found comparable within-scanner variability across
approaches, although with greater variability for the fine FreeSurfer (Destrieux) parcellation
scheme. However, between-scanner variability is mostly consistent with the within-scanner
variability for the two FreeSurfer-based approaches {(DK: 0.033 compared to 0.019;
Destrieux: 0.049 compared to 0.037 for median between-scanner and within-scanner
respectively), followed by FastSurfer {0.048 between-scanner and 0.019 within-scanner) and
lowest for the atlas-based approach (0.056 between-scanner and 0.015 within-scanner).
When considering the consistency of subject ranking, a similar trend is observed (though
with numbers inverted as the best rank correlation is high, not low), with the atlas-based
(median correlation 0.91) and fine FreeSurfer (0.88) parcellation IDPs showing worse
ranking consistencies compared to the coarser FreeSurfer/FastSurfer (0.93 and 0.92
respectively) parcellation volumes.

As a second example, we compared the consistency of ROl-wise subcortical volumes derived
using a range of segmentation algorithms, specifically unimodal (using FIRST and single-
modality MIST) and multi-modal (using two/three modalities with MIST) segmentation.
Figure 8b shows that unimodal segmentation with FIRST and MIST are more variable, for
both within-scanner (0.018 and 0.016 respectively) and between-scanner (0.033 and 0.030
respectively) repeats, and show the lowest consistency in subject ranking (median
correlation 0.93 and 0.92 respectively). Multimodal subcortical segmentation with MIST
(using two anatomical modalities) achieves the best consistency when comparing between-
scanner and within-scanner variability (0.025 and 0.015 respectively) and high subject
ranking consistency {(median correlation 0.94).
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a) Atlas-based vs FreeSurfer vs FastSurfer cortical parcellations
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b) Unimedal vs multimodal subcortical segmentation

Bl Unimodal (FIRST: T1) B Unimedal (MIST: T1) I Multimodal (MIST: T1, T2) B Multimodal (MIST: T1, T2, FA)
0.30 4 1.0 e —_— o =
+ . v—‘ B ’—' -
2025 e " 15T L
5 2os 1
2020 E‘ l
= ! - 06
5 0.15 3 .
a— c
c S
@ =
S010 T D04 e
= 4 tsd
3 T T ‘F . 3 3
© 0.05 [ + ©o.2
a1 Bearas
goo — = = *- L L 1TT
: 0.0
within between All scanners Siemens only

scanner scanner

Figure 8 — Reproducibility of cortical and subcortical segmentations using different approaches. a) Comparing
cortical volumes derived through (i) the registration of an atlas-based parcellation scheme (96 parcels), (ii)
FreeSurfer using the Desikan-Killiany parcellation (63 parcels), (iii) FastSurfer with the Desikan-Killiany
parcellation, and (iv) FreeSurfer using the Destrieux parcellation scheme (148 parcels). b) Comparing
subcortical segmentation volumes derived through (i) unimodal (T1w) segmentation with FIRST, (ii) unimodal
(T1w) segmentation with MIST, (iii) multimodal (T1w and T2w) segmentation with MIST, and (iv) multimodal
(T1w, T2w and dMRI-derived FA map) segmentation with MIST. In each case, we compare the within-/between-
scanner coefficients of variation and the consistency of subject ranking across approaches. The red regions
depict the null distribution’s interquartile range.

We next used our resource in a slightly different way, capitalising on the availability of
multiple within-scanner repeats. We explored the effect of denoising on dMRI data,
anticipating that since thermal noise is a major contributor to within-scanner variability,
denoising the data should lead to a reduction in within-scanner variability of IDPs compared
to raw (not denoised) data. When considering tract-wise averaged DTl metrics (FA/MD)
across within-subject-within-scanner repeats, Figure 9a demonstrates that denoising
induces relatively small differences, most likely reflecting relatively high SNR in the data.
Even if, for a number of IDPs, variability was reduced with denoising, this was not always the
case, contrary to expectation. We observed IDPs, particularly for tracts in inferior regions
(cerebellum, brainstem, uncinate fascicle) where within-scanner variability without
denoising was smaller than the one obtained from denoised data. As the type of denoising
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that we performed is patch-based and the main processing that occurs after denoising and
before the extraction of IDPs is distortion correction (including susceptibility-induced
distortion corrections), we explored whether these counter-intuitive results in the inferior
parts of the brain were related to distortion levels that are higher in these brain regions. We
found that regional off-resonance frequency (which is proportional to the amount of
distortions) explains some of this behaviour (Figure 9b, moderate correlations that are
statistically significant), hinting at interactions between patch-based denoising and
distortion correction. We hence re-processed the data and denoised it only after distortion
correction. This approach is suboptimal as it changes the statistical properties of the signal
and violates assumptions that denoising methods rely on, hence it is not suggested in the
general case. Nevertheless, it was used here as a confirmatory test, since it reduces
potential interactions between the denoising patches and the shape corrections performed
to reverse susceptibility-induced distortions. In doing so, we found reduced associations
between the relative difference in CoVs and regional off-resonance frequency (Figure 8c,
magnitude of correlations dropped and statistical significance was no longer observed).

In summary, these results highlight the importance of carefully considering the different
steps in processing pipelines and how data resources like the one presented here can
provide important testbeds towards better understanding the implications of processing
choices.
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a) ROI-wise relative difference in CoVv before/after denoising
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Figure 9 — The effect of denoising on tract-wise (TBSS) IDPs. a) The relative difference in region-wise CoV before
and after denoising for tract-wise mean FA (top) and MD (bottom). CoV for each IDP is calculated for each
subject across the six within-scanner repeats and plotted for each tract. Grey bars represent the mean and
standard deviation across the four scanners. b) The session-wise tract-wise CoV against tract-wise mean off-
resonance frequency (absolute value in Hz) for regions showing more variability after denoising. c) As in b,
except here, we perform denoising after distortion correction.

3.3.2 Explicit Harmonisation

In addition to the implicit harmonisation examples presented before, we used the data to
evaluate existing harmonisation approaches, using the within-scanner variability as a
baseline. These approaches are meant to explicitly reduce between-scanner variability. We
applied ComBat and CovBat to a number of multi-modal IDPs, including atlas-based cortical
area volumes, subcortical volumes obtained from FIRST, ROl-averaged T2* values extracted
from susceptibility-weighted images and the FA of white matter ROIs obtained from
diffusion MRI. We compared the between-scanner CoV before and after harmonisation
(Figure 9, top), with within-scanner CoV as a baseline, and the consistency of subject ranking
before and after harmonisation (Figure 10, bottom). In all cases, the CoVs were greater for
between-scanner repeats compared to within-scanner repeats. Both harmonisation
approaches reduced the between-scanner variability towards the within-scanner variability
baseline in each set of IDPs. Success in doing so is variable across IDPs. For instance, ComBat
worked better in harmonising SWI T2* values compared to atlas-based cortical area
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volumes. Interestingly, however, and common across all IDPs, between-scanner subject
ranking consistency before and after harmonisation was almost identical. ComBat and
CovBat modify IDP values such that variability is reduced but they are not beneficial for
improving cross-subject ranking between scanners. This is not the case for the pipeline
modifications presented in the previous section, suggesting that blindly performing explicit
harmonisation without carefully considering processing pipelines may be suboptimal, and
that a combination of explicit and implicit methods is desirable.
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Figure 10 — The effect of harmonising IDPs using ComBat and CovBat. Top: the IDP-wise coefficient of variation
(CoV) before and after harmonisation. For each of the four subjects with within-scanner repeats, CoV was
computed for each IDP across the six repeats (either within-scanner or between-scanner), prior to
harmonisation. After harmonisation, the IDP-wise CoV is calculated for the between-scanner repeats. Bottom:
the IDP-wise correlation of subject ranking before and after harmonisation for scanners of the same vendor and
for all scanners. The red regions depict the null distribution’s interquartile range.

4. Discussion

We have presented a comprehensive harmonisation resource for multi-modal neuroimaging
data, based on a travelling-heads paradigm. We have used this to map between-scanner
effects across hundreds of multi-modal IDPs and shown that between-scanner variability is
up to 10 times larger than within-scanner variability of the same modality IDPs for the same
subject. Importantly, for a number of IDPs, between-scanner variability can be of the same
size as between-subject (“biological”) variability. We also found that consistency in subject
ranking across scanners can be compromised relatively easily, particularly for certain
modalities and IDPs. Compared to previous travelling-head studies (Pohl et al., 2016; Tax et
al.,, 2019; Yamashita et al., 2019; Tong et al., 2020; Maikusa et al., 2021; Kurokawa et al.,
2021; Tanaka et al., 2021; Duff et al., 2022; Tian et al., 2022), our study provides a more
comprehensive harmonisation resource in a number of ways: (i) data is acquired from all 3
major vendors and from different generations of scanners from the same vendor, (ii) data is
acquired from different imaging sites where radiographers and practices are different, (iii)
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data is acquired from many neuroimaging modalities, (iv) multiple scan-rescan data is
acquired which allows the assessment of within-scanner, within-subject variability in
addition to between-scanner variability, and (v) hundreds of multi-modal IDPs are
considered using a modified and augmented version of the UK Biobank pipeline. Our
resource is publicly released (made available on publication) and will be augmented with
further subjects and scanners in the coming years, including additional within-scanner
repeats {two new GE MR Premier wide-bore scanners are already installed in two different
sites of our study).

Our resource has been designed to allow for different baselines to compare between-
scanner effects: multiple within-scanner-within-subject repeats to capture within-scanner
variability baselines and multiple subjects to capture between-subject (biological) variability.
We found that IDPs derived from T1w imaging are, in general, the most consistent, but we
also observed that this heavily depends on the processing approach. These were followed
by IDPs derived from dMRI yet, even within these IDPs, there was a spectrum of variabilities
depending on the type of measure (e.g. NODDI more variable than DTI, atlas-based more
variable than subject-specific tractography). The IDPs derived from rfMRI were most
variable. These trends are consistent with findings of other recent multi-modal studies that
considered fewer scanners (Duff et al., 2022). We have also shown that the least between-
scanner variability is observed when using scanners from the same vendor, as anticipated.
Introducing different vendors increases the variability in IDPs and also decreases consistency
in ranking of subjects across scanners.

Previous work has reported similar trends to the ones reported here. For instance,
structural IDPs were the most reproducible of the IDPs we present, and this is consistent
with past findings. High repeatability of these IDPs has been shown across a range of
segmentation approaches (de Boer et al., 2010), across multiple sites (Jovicich et al., 2006)
and across scanners of varying magnetic field strength (Fujimoto et al., 2014). Cortical areas
and volumes derived from FreeSurfer have been shown to even be robust to different
acquisition sequences (Knussmann et al., 2022). It is worth noting that among the various
groups of structural IDPs, a previous study {Duff et al., 2022) has shown that cortical area
and thickness as derived from FreeSurfer are more robust than the grey matter volumes
which were estimated for 139 ROIs and this is in agreement with our findings.

For diffusion related IDPs, previous studies have shown that generally, NODDI parameters
have larger between-subject variations than DTI IDPs (Chung et al., 2016, p. 216; De Luca et
al.,, 2022). The CoV for ISOVF has been observed to be consistently the largest among
diffusion IDPs (Chung et al.,, 2016, p. 216), which is in agreement with our results
(Supplementary Figure 7). Of the DTI IDPs, FA has been found to be less robust than MD
(Chung et al., 2016, p. 216; Farrell et al., 2007), as it reflects a higher moment of the tensor
eigenvalues. This in agreement with our results, which also show that L1, which is larger in
magnitude, is less sensitive to between-scanner effects that the smaller L2 and L3. Methods
have recently been developed specifically to harmonise IDPs derived from higher-order
dMRI models {De Luca et al., 2022).

For rfMRI IDPs, it has been reported previously that test-retest reproducibility is a limiting
factor (Castellanos et al., 2013), which also explains the large relative variability values we
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found. The results we have presented demonstrate that the difference in the variability of
between- vs within-scanner repeats in fMRI was low, since within-scanner variability was
already high. Other studies that performed similar analyses (Duff et al., 2022) pointed out
that IDPs reflecting pairwise connectivity (as well as node amplitudes) do not show a high
level of reliability across sites, therefore consistency in summary ICA components was
instead evaluated. Furthermore, in the study performed by (Jovicich et al., 2006), significant
inter-site differences in connectivity scores were found.

We demonstrated how our resource can be used as a testbed to explore and evaluate
harmonisation approaches. The existence of multiple within-scanner repeats allowed us to
define a consistent and interpretable reference to compare harmonisation efficacy against
and avoided the need to use ad-hoc methods, such as group matching based on covariates
(Fortin et al., 2018; Garcia-Dias et al., 2020), for validation. Specifically, we have shown how
our data can be used to optimise processing steps used in IDP extraction pipelines (implicit
harmonisation), such that between-scanner variability in extracted IDPs is minimised
compared to e.g. within-scanner variability. We have also tested the performance of post-
processing harmonisation tools (explicit harmonisation) and specifically checked whether
the harmonised IDPs are indeed less variable between-scanners (and by how much)
compared to no harmonisation. Overall, we found that even though the tested explicit
harmonisation methods tested did remove parts of non-biological variability, they did not
recover inconsistent cross-subject ranking across scanners. This was not the case for implicit
harmonisation methods, suggesting that a consideration of both is needed to achieve
optimal results.

More specifically, for anatomical IDPs, we found that cortical area volumes extracted from
FreeSurfer and subcortical volumes extracted from multi-modal segmentation have
between-scanner variability that is closer to the respective within-scanner variability (and
hence are less sensitive to between-scanner effects) compared to other approaches
explored. Previous studies have shown that cortical volumes derived from FreeSurfer have a
strong degree of robustness against scanner effects. For instance, in (Iscan et al., 2015) it is
shown that for the DK atlas, cortical volume measures showed test-retest correlation scores
(from scans acquired at four different sites) of 0.88. This study also showed higher test-
retest correlation and inter-class correlation scores for volumes from the DK atlas (coarse)
than the Destrieux atlas (fine), which is in agreement with the results we obtained. These
results confirm what we expect since regions defined by the DK atlas are larger than those
in the Destrieux atlas.

For subcortical volumes, we found volumes derived using a multi-modal segmentation
method (MIST) were more reproducible than those derived using a unimodal approach
(FIRST). This is in agreement with the findings in (Visser et al., 2016) who compared the
approach with FIRST and FreeSurfer using a manual segmentation as a benchmark. We also
assessed the advantage of using MIST with data from three modalities (T1w, T2w and dMRI
data) compared to training it using two modalities {T1w and T2w), and in a unimodal fashion
(Tiw only). Intuition would suggest that leveraging imaging information from more
modalities would result in more reproducible results, however, our results show that adding
dMRI data as an input to MIST decreased between-scanner reproducibility. These findings
agree with results in (Visser et al.,, 2016), who found that increasing the number of
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modalities used for MIST segmentation can increase variability. This can happen for regions
where the contrast is very clear from structural images. In this case, segmentations from the
structural images alone are highly reproducible and adding another modality, particularly a
more noisy one like dMRI, introduces new sources of variability.

We found a slightly unexpected trend for dMRI denoising using MP-PCA (Veraart et al.,
2016). Within-scanner variability of extracted dMRI IDPs did not always decrease after
denoising compared to IDPs extracted from “raw” data. It is worth pointing out that raw
SNR and CNR values do increase after denoising in this data (Supplementary Figure 8). The
natural question to ask is why then does the variability of these IDPs does not improve after
denoising? A possible explanation is that we observed highly variable IDPs in the caudal
regions of the brain where denoising appeared to have increased the variability. These are
areas known to be prone to susceptibility artefacts (Andersson et al., 2003) and therefore
distortion correction is more impactful in these areas. The fact that we see these areas
significantly affected after denoising suggests that there is a possible interaction between
denoising and distortion correction (Figure 9b). This could happen because, even prior to
distortion correction, denoising assumes that every voxel is in the correct place yet this is
not true in the presence of distortions. As denoising is patch-based, incorrectly placed
voxels would end up influencing the denoising process meaning a distortion correction like
this could lead to misplaced voxels and in slightly different ways for the different repeats. To
further explore this, we applied denoising after distortion correction and found a reduced
association between differences in variability and off-resonance frequency (Figure 8c).
However, we should note that by applying distortion correction prior to denoising will break
some of the assumptions in the MP-PCA algorithm. These findings suggest that the optimal
way of denoising requires more exploration and suggests that denoising and distortion
correction may ideally have to be considered simultaneously (similar in spirit to the
simultaneous consideration of all distortion fields and their correction in (Andersson and
Sotiropoulos, 2016)).

We also compared explicit harmonisation approaches in ways that have not been evaluated
before. We showed that both ComBat (Fortin et al., 2017) and CovBat (Chen et al., 2022)
reduced the between-scanner variability for a range of IDPs derived from different
modalities towards the level of the respective within-scanner variability. The relatively small
difference in subcortical volumes corrected with ComBat compared to the uncorrected
volumes is in agreement with findings from other studies (Treit et al., 2022). The authors in
this study used ComBat to reduce systematic variations in the brain volumes of 23 travelling
subjects scanned in 3 different scanners and they found minimal changes (of less than 5%)
between corrected and raw volumes for several subcortical regions (caudate, globus
pallidus, putamen, and thalamus). The authors in (Treit et al., 2022) point out that the
degree to which ComBat decreases inter-subject variability likely depends on the magnitude
of site effects in the raw data implying that ComBat has less of an effect on results that are
more robust to site effects. Our findings support this notion as of the three IDPs tested
(subcortical volumes, T2* values and FA values), the subcortical volumes had on average the
least between-scanner variability of the three and were also affected the least by ComBat. It
is important to note that with 10 subjects and six scanning sessions, we were at the lower
end of the recommended sample size for ComBat for independent subjects across different
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scanners (Fortin et al., 2017), however we are above the minimum suggested requirements
for the case of travelling heads (Maikusa et al., 2021).

In summary, we have presented a comprehensive harmonisation resource that we publicly
release and will continue to extend in the future. Capitalising on a travelling-heads paradigm
and the availability of scanners from all three major MR vendors, the data allow assessment
of within/between-subject and within/between-scanner effects. As we have shown, this
enables novel evaluations of efficacy of both implicit and explicit harmonisation methods.
The resource can be used as a testbed for existing harmonisation approaches, as well as for
new ones to be developed in the future.
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