

1 Herpes-like viral elements and universal 2 subtelomeric ribosomal RNA genes in a 3 chromosome-scale thraustochytrid genome 4 assembly

5

6 Jackie L. Collier*¹, Joshua S. Rest*², Lucie Gallot-Lavallée³, Erik Lavington², Alan Kuo⁴, Jerry Jenkins^{4,5}, Chris
7 Plott^{4,5}, Jasmyn Pangilinan⁴, Chris Daum⁴, Igor V. Grigoriev^{4,6}, Gina V. Filloromo³, Anna M. G. Novák
8 Vanclová⁷, John M. Archibald³

9

10 *these authors contributed equally

11 ^corresponding author

12

13 ¹ jackie.collier@stonybrook.edu, School of Marine and Atmospheric Sciences, Stony Brook University

14 ² joshua.rest@stonybrook.edu, enlaving@gmail.com, Department of Ecology and Evolution, Stony Brook
15 University

16 ³ Lucie.Gallot-Lavallee@dal.ca, Gina.Filloromo@dal.ca, jmarchib@dal.ca, Department of Biochemistry &
17 Molecular Biology, Dalhousie University

18 ⁴ akuo@lbl.gov, JLPangilinan@lbl.gov, cgdaum@lbl.gov, ivgrigoriev@lbl.gov, U.S. Department of Energy Joint
19 Genome Institute, Lawrence Berkeley National Laboratory

20 ⁵ jenkins@hudsonalpha.org, cplott@hudsonalpha.org, HudsonAlpha Institute for Biotechnology

21 ⁶ Department of Plant and Microbial Biology, University of California Berkeley

22 ⁷ novak@biologie.ens.fr, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia.

23

24 ABSTRACT

25 We used long-read sequencing to produce a telomere-to-telomere genome assembly for the heterotrophic
26 stramenopile protist *Aurantiochytrium limacinum* MYA-1381. Its ~62 Mbp nuclear genome comprises 26 linear
27 chromosomes with a novel configuration: subtelomeric rDNAs are interspersed with long repeated sequence
28 elements denoted as LOng REpeated - TEломere And Rdna Spacers (LORE-TEARS). These repeats may
29 play a role in chromosome end maintenance. A ~300 Kbp circular herpesvirus-like genomic element is present
30 at a high copy number. A 269 Kbp related virus-like element was found to reside between two complete sets of
31 rRNA and LORE-TEAR sequences on one end of chromosome 15, indicating recent recombination between
32 the viral and nuclear genome. Our data reveal new types of giant endogenous viral elements originating from
33 herpes-like viruses and existing as either 'stand-alone' or integrated elements.

34 KEYWORDS

35 subtelomere structure, endogenous viral element, mirusvirus, long tandem repeat

36 MAIN

37 Labyrinthulomycetes are ecologically important osmoheterotrophic marine stramenopiles which
38 possess interesting biochemical and cell biological novelties (Fossier Marchan et al. 2018). For example, the
39 possession of a polyketide synthase-like fatty acid biosynthesis pathway has made some strains workhorses
40 for production of the essential polyunsaturated fatty acid docosahexaenoic acid, and they may also be suitable
41 for large-scale production of isoprenoid compounds like squalene and carotenoids (Rius et al. 2023; X. Xu et
42 al. 2020). Labyrinthulomycetes were the source of pioneering discoveries in molecular biology, with notable
43 examples published in *Science*. In the 1960s, Moens and Perkins (1969) demonstrated that *Labyrinthula* has a
44 sexual cycle, haploid number of 9 chromosomes, and that the chromosome ends are associated with the
45 nuclear membrane by tracing the synaptonemal complexes of prophase nuclei in serial sections by electron
46 microscopy. In the 1970s, the first herpes-like virus detected outside of vertebrates was reported by Kazama
47 and Schornstein (1972). Notably, neither of these important observations were followed up in the phylum in
48 which they were discovered. The advent of long-read DNA sequencing (Rhoads and Au 2015; Branton et al.
49 2008) can rapidly advance the connection of old observations like these to the omic era by enabling the
50 assembly of highly contiguous genomes. Chromosome-scale genomic sequences can reveal the abundance
51 and distribution of repeat elements and ribosomal RNA (rRNA) gene clusters, the number and location of
52 centromeres, the presence of endogenized viral genes and genomes, and the structure of telomeres and
53 subtelomeric regions (Filloromo et al. 2021; Guérin et al. 2021; Fang et al. 2020; Fletcher et al. 2019;
54 Moniruzzaman et al. 2020). Genome-scale leaps in biological insight can be particularly valuable for non-model
55 organisms like the labyrinthulomycetes (Collier and Rest 2019), analysis of which can expand perspectives on
56 eukaryotic biology. Here we present genome-wide discoveries in the labyrinthulomycete protist
57 *Aurantiochytrium limacinum* ATCC MYA-1381 (a thraustochytrid) that corroborate and extend early reports
58 about the genome structure and viral associates of labyrinthulomycetes.

59 RESULTS AND DISCUSSION

60 Chromosome Architecture and Subtelomere-Associated Elements in the *A. limacinum* Genome

61 We performed short-read 454 (454 Life Sciences) and long-read Nanopore (Oxford Nanopore
62 Technologies (Jain et al. 2016)) sequencing of the *A. limacinum* nuclear genome, which independently yielded
63 assemblies of 60.93 Mbp (Newbler) and 63.71 Mbp (Canu; (Koren et al. 2017)), respectively (Additional File 1:
64 **Text S1, Fig. S1; Additional File 2: Table S1, Table S2, Additional File 3**). Neither assembly was rich in
65 repetitive sequence, with ~4% of the assemblies containing repetitive sequence (mostly simple repeats (Chen
66 2004) (Additional File 1: **Table S3**). Multiple metrics suggested that both assemblies were highly complete:
67 99.66% of RNA-seq reads mapped to the 454 assembly and 96% to the Nanopore assembly (Additional File 1:
68 **Text S1**), and we detected 91.4% and 87.9% of Eukaryota BUSCO genes in the 454 and Nanopore
69 assemblies, respectively (Simão et al. 2015) (8.6% and 12.1% missing BUSCOs, respectively; Additional File
70 1: **Table S4**).

71 We found that the 26 largest Nanopore contigs likely represent complete or nearly complete *A.*
72 *limacinum* physical chromosomes. These contigs range in size from ~1.02 Mbp to ~4 Mbp (**Fig. 1**) and total
73 61.41 Mbp (96.4% of the complete Nanopore assembly); they align with 37 of the longest 454 scaffolds
74 (referred to here as the primary 454 assembly) containing 59.93 Mbp (98.4%) of the total 454 assembly;
75 Additional File 1: **Fig. S1B, Fig. S2; Additional File 2: Table S1, S2**). The Nanopore contig sizes are consistent
76 with our examination of the genome by pulsed-field gel electrophoresis, which detected chromosome-sized
77 bands ranging from ~1.05 Mbp to >3 Mbp (Additional File 1: **Fig. S3**). This genome structure is similar to other
78 stramenopiles for which both chromosome number and genome size are known: three diatoms and a
79 eustigmatophyte have smaller genomes (31-36.5 Mbp) with similar numbers of chromosomes (24 to 33), while

80 the oomycete *Phytophthora sojae* has an 82.6 Mbp genome with ~12-14 chromosomes (Filloromo et al. 2021;
81 Diner et al. 2017; Guérin et al. 2021).

82 Most *A. limacinum* chromosomes were sequenced telomere-to-telomere. Among the 52 predicted
83 chromosome ends, 39 terminate with telomeric repeats of sequence TTAGG ~500 bp in length (mean 480 bp,
84 median 499 bp) (**Fig. 2**). The telomeric repeats identified in the Nanopore assembly are slightly shorter than
85 the TTAGGG repeats of vertebrates and other eukaryotes, including some fungi, plants, and protists such as
86 the photosynthetic stramenopile *Pelagomonas calceolata* (Guérin et al. 2021), but identical to TTAGG repeats
87 reported from diverse insects and a few other eukaryotes
88 (http://telomerase.asu.edu/sequences_telomere.html). Telomeric repeats are missing from 13 of the
89 chromosome ends; this likely reflects assembly issues (Additional File 1: **Text S1**).

90 Almost all of the sub-telomeric regions of the *A. limacinum* chromosomes unexpectedly contain 18S,
91 5.8S, and 28S rRNA gene clusters interspersed with long repeated sequences (**Fig. 1, 2**). These elements are
92 evident as extensive sequence matches between the ends of all contigs (**Fig. 1**, inset; in contrast to the 454
93 assembly; Additional File 1: **Fig. S4**). Specifically, in 37 of the 39 Nanopore contig ends with telomeres, an
94 18S-28S rRNA gene cluster (small subunit or 18S rRNA, ITS1, 5.8S rRNA, ITS2, large subunit or 28S rRNA;
95 average length = 5551bp) transcribed toward the telomere is found ~9.4 Kbp (median) from the telomeric
96 repeat (**Fig. 2**). In 30 of these 37 contig ends, a 5S rRNA gene transcribed away from the telomeric repeat is
97 found ~10 Kbp (median) further from the telomere. In 17 of these 30 cases, no other rRNA genes were
98 identified, and the 454 assembly scaffold mapped to the approximate location of the 5S gene. The remaining
99 contig ends vary from this pattern. In some cases both ends of a contig have the same organization (Chr17,
100 Chr15, Chr6), but more commonly the two ends are different. Only one rRNA gene (a 5S on Chr3) was found
101 in the opposite orientation, and only three 5S genes (on Chr21, Chr22, Chr15) and one 18S-28S rRNA gene
102 cluster (on Chr15) were identified in the more central regions of Nanopore assembly contigs (**Fig. 1**).

103 Between each of these telomeric and subtelomeric elements are characteristic long repeated
104 sequences (**Fig. 2**; Additional File 1: **Table S5**; identified with Tandem Repeats Finder (Benson 1999)). We
105 call these LOng REpeated - TEломere And RDna Spacers (LORE-TEARS), which are built from 366 - 529 bp
106 units repeated between 1.8 and 22.6 times and lacking similarity to sequences in GenBank. Several distinct
107 LORE-TEARS families occur in regular positions with respect to the chromosome ends. Just downstream of
108 the 28S rRNA genes, there is usually one 'Group 1' element containing ~4 repeated units, each ~406 bp long.
109 Closer to the telomere, there is usually at least one 'Group 2' element with ~6 repeated units, each ~366 bp
110 long. Usually upstream from the 18S gene nearest the telomere and between it and the nearest 5S gene is a
111 'Group 0' element, containing ~9 repeated units of ~385 bp. Where two consecutive 5S rRNA genes are
112 detected, there is often a 'Group 5' element between them (~5 repeats of a ~421 bp unit). Among the 15
113 putative chromosomes with telomeric repeats assembled at both ends, seven have a 'Group 3' element (~3
114 repeats of a ~529 bp unit) between the 'Group 1' and 'Group 2' elements at only one end, while one has a
115 'Group 3' element between the 'Group 1' and 'Group 2' elements at both ends and seven have no 'Group 3'
116 elements. We detected G-quadruplexes associated with rRNA genes and some LORE-TEARS, which is
117 consistent with a regulatory function for these elements at the chromosome ends (Juranek and Paeschke
118 2012; Paeschke et al. 2008; Biffi, Tannahill, and Balasubramanian 2012; Wang et al. 2012) (**Fig. 2**, Additional
119 File 2: **Table S6**).

120 The organization of rRNA genes in the subtelomeres of the *A. limacinum* chromosomes suggests a
121 consistent and specific relationship with telomeric processes. This arrangement is highly unusual, both in the
122 nature of the repeats and their location. Eukaryotic rRNA genes are most commonly organized in a few large
123 tandem arrays (e.g., one in yeast, five in humans) often associated with sites of genomic fragility, and 5S
124 genes and 18S-28S gene clusters are typically not associated with one another (Kobayashi 2011; Torres-
125 Machorro et al. 2009). Subtelomeric rRNA tandem repeats have been found in plants (Dvořáčková, Fojtová,
126 and Fajkus 2015; Roa and Guerra 2012) and in some metazoans (in aphids at one telomere of the X
127 chromosome (Criniti et al. 2009)), and in the protist parasite *Giardia* (Tůmová et al. 2015; F. Xu, Jex, and

128 Svärd 2020). The multicellular stramenopile *Saccharina japonica* (the kelp kombu) has a typical tandem 45S
129 array in the middle of one chromosome, and a tandem 5S array at the subtelomere of another (L. Liu et al.
130 2017). In all these cases, rRNA gene arrays reside on the ends of only one or a few chromosomes. Unlinked
131 18S-28S rRNA gene clusters (i.e., not in tandem arrays) are found in the red alga *Cyanidioschyzon merolae*
132 (Maruyama et al. 2004; Matsuzaki et al. 2004) and in several apicomplexan parasites (Torres-Machorro et al.
133 2010) including *Plasmodium falciparum* (Gardner et al. 2002). The 5S and 18S-28S coding regions in the
134 Nanopore assembly of *A. limacinum* are more closely spaced than is usual for organisms where this linkage
135 occurs, but not as tightly linked as in the brown alga (stramenopile) *Scytoniphon lomentaria* and some other
136 protists, where the 5S is just downstream of the 18S-28S (Kawai et al. 1997, 1995).

137 The most similar sub-telomeric chromosome architecture to that of *A. limacinum* is found in the
138 microsporidian parasites *Encephalitozoon cuniculi* and *E. intestinalis*, which have one subtelomeric, divergently
139 transcribed 18S-28S rRNA gene cluster near the end of each of their 11 chromosomes separated from the
140 telomeric repeats by two types of telomere-associated repeat elements (TAREs) with ~30 to 70 bp repeat units
141 (Mascarenhas Dos Santos et al. 2023). However, the 5S rRNA genes are not subtelomeric in *Encephalitozoon*
142 spp. Subtelomeric 18S-28S rRNA gene clusters are also a chromosomal feature of the endosymbiotically-
143 derived 'nucleomorph' genomes of cryptomonads (Douglas et al. 2001; Kim et al. 2022) and
144 chlorarachniophytes (Suzuki et al. 2015). Brugère et al. (2000) suggested that the subtelomeric location of
145 rDNA might be related to selective pressure associated with genome reduction, but the ~62 Mbp genome of *A.*
146 *limacinum* is not notably small among free-living stramenopiles, suggesting that genomic streamlining is not a
147 factor here. The ends of chromosomes tend to be different from internal portions in exhibiting a higher
148 frequency of recombination (Jensen-Seaman et al. 2004; McKim, Howell, and Rose 1988), lower level of gene
149 expression (T. Liu et al. 2011), and higher rate of sequence evolution (Perry and Ashworth 1999). The
150 selective forces and molecular mechanisms (e.g., convergent evolution by frequent inter- and intra-
151 chromosomal homogenization) acting to maintain the consistent structure and homogeneous rDNA and LORE-
152 TEARS sequences at the chromosome ends of *A. limacinum* offer novel avenues for future research,
153 particularly if similar arrangements are found broadly in labyrinthulomycetes or other unexplored corners of
154 protist diversity. The rRNA genes, LORE-TEARS, and/or associated subtelomeric sequences in *A. limacinum*
155 may be involved in chromosome end maintenance and replication, including the maintenance of rDNA stability
156 and/or nucleolar structure (Torres-Machorro et al. 2009), comparable to the repetitive subtelomeric sequences
157 that are functionally important in other species (Tashiro et al. 2017; Scherf, Figueiredo, and Freitas-Junior
158 2001).

159

160 Discovery of herpes-like viral elements in *A. limacinum*: Characterization of CE1 and LE-Chr15

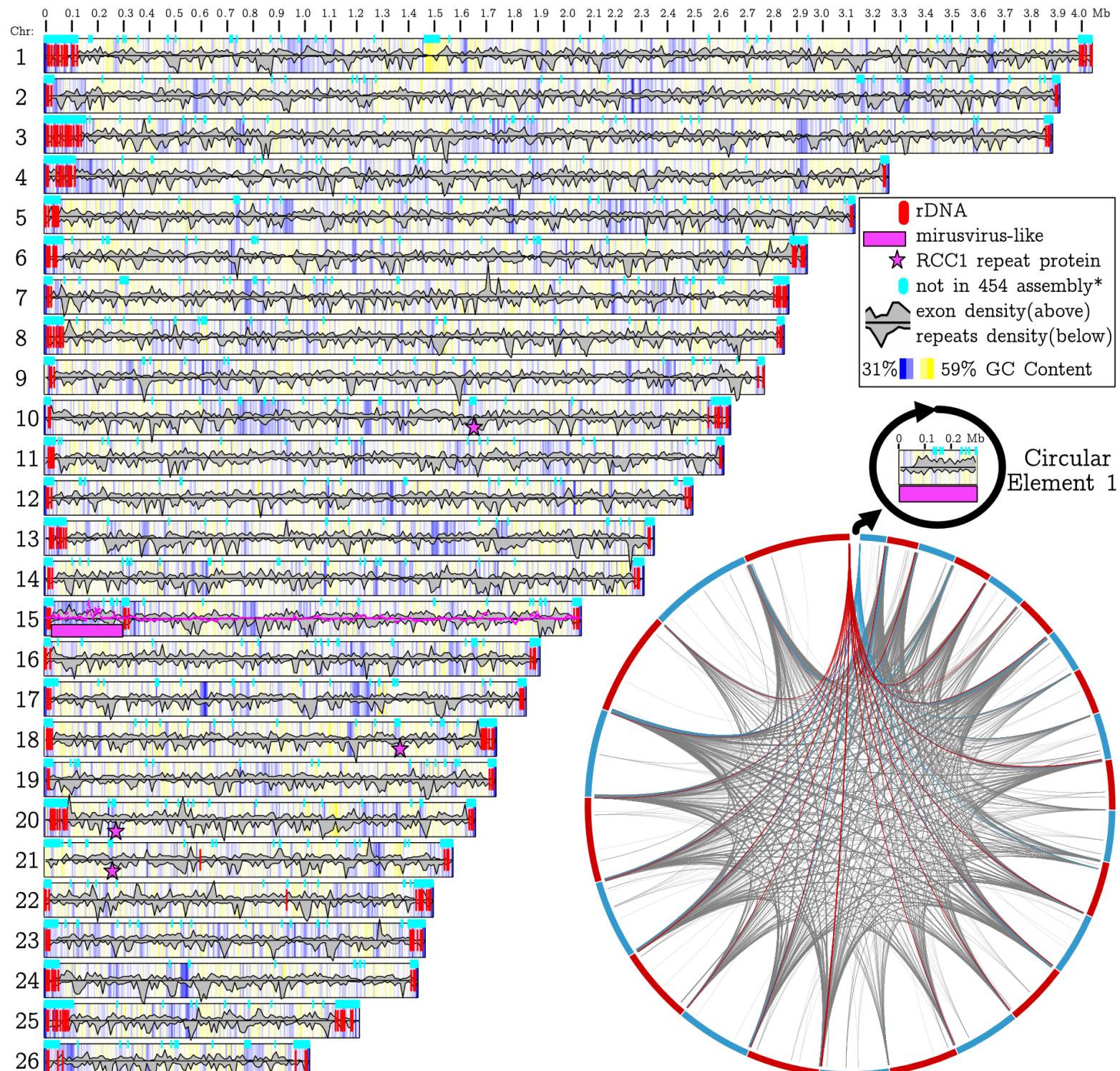
161 We also detected a 298 Kbp chromosome of probable viral ancestry in *A. limacinum*, dubbed CE1
162 (circular element 1) (Fig. 1), with several remarkable features. This 27th genomic element is present in both
163 genome assemblies (Additional File 2: **Table S1, S2**) and is consistent with a ~0.35 Mbp band in the pulsed-
164 field gel electrophoresis (Additional File 1: **Fig. S3**). CE1 is predicted to be circular (Additional File 1: **Fig. S5**),
165 and has read coverage (reads/bp) ~9X higher than the other chromosomes, suggesting that it is present at a
166 much higher copy number (Additional File 2: **Table S1**). CE1 lacks the predicted rRNA genes, LORE-TEARS,
167 and telomeric repeats found on the other chromosomes (Fig. 1). GC content and mapped transcript
168 abundance are similar to other chromosomes (Additional File 2: **Table S1**), but a smaller proportion of
169 predicted genes have functional annotations, orthologous gene assignments, and predicted introns, and CE1
170 contains no BUSCO proteins (Additional File 1: **Fig. S6**). Of the 177 predicted genes on CE1, 128 are ORFans
171 (i.e., do not hit any known proteins), 21 have best BLAST hits to bacteria, 22 to eukaryotes, four to archaea
172 and one to viruses (when excluding the thraustochytrid *Hondaea fermentalgiana*; see below) (Additional File 2:
173 **Table S7**).

174 VirSorter2 (Guo et al. 2021) and ViralRecall (Aylward and Moniruzzaman 2021) were initially used to
175 identify both CE1 and the left end of Chr15 (LE-Chr15) as possible nucleocytoplasmic large DNA viruses

176 (NCLDV) of the *Nucleocytoviricota* (Additional File 1: **Text S2**, **Table S8**, **Table S9**). Subsequent detailed
177 sequence similarity searches using specific virion proteins of various groups of viruses as queries (via blastp
178 and HMMsearch) against the *A. limacinum* genome revealed more genes on CE1 and LE-Chr15 related to key
179 genes of herpes-like viruses recently identified as '*Mirusviricota*' (Gaïa et al. 2023) than to core genes of
180 *Nucleocytoviricota* (**Fig. 3A**; Additional File 2: **Table S7**; Additional File 1: **Text S2**). For example, we detected
181 *Mirusviricota*-like major capsid protein (MCP) coding regions on CE1 and LE-Chr15 but no *Nucleocytoviricota*-
182 like MCPs. A terminase-like homolog was also found to be shared between mirusviruses, CE1, and LE-Chr15
183 (the terminase protein packs the freshly synthesized genome into newly formed capsids). Divergent mirusvirus-
184 like homologs were detected on both CE1 and LE-Chr15 for the remaining virion proteins as well (i.e., capsid
185 maturation protease, portal protein, triplex 1 and triplex 2), as were other core mirusvirus genes, including a
186 heliorhodopsin (on CE1), a histone H3 (CE1), TATA-binding protein (CE1 and LE-Chr15), subunits alpha and
187 beta of ribonucleotide reductase (LE-Chr15), and additional proteins of unknown function (**Fig 3A**; Additional
188 File 2: **Table S7**; Additional File 1: **Text S2**). We also detected core informational viral genes such as PolB
189 (identified previously by Gallot-Lavallée and Blanc (2017), RNAPolB large subunit (RNAPL), and superfamily II
190 helicase proteins (**Fig. 3A**; Additional File 1: **Table S7**). We found no sequence similarity between CE1 or LE-
191 Chr15 and the lytic large DNA virus previously reported to infect the thraustochytrid *Sicyoidochytrium minutum*
192 (SmDNAV) (Takao et al. 2007; Murakoshi et al. 2021) (Additional File 1: **Text S2**).

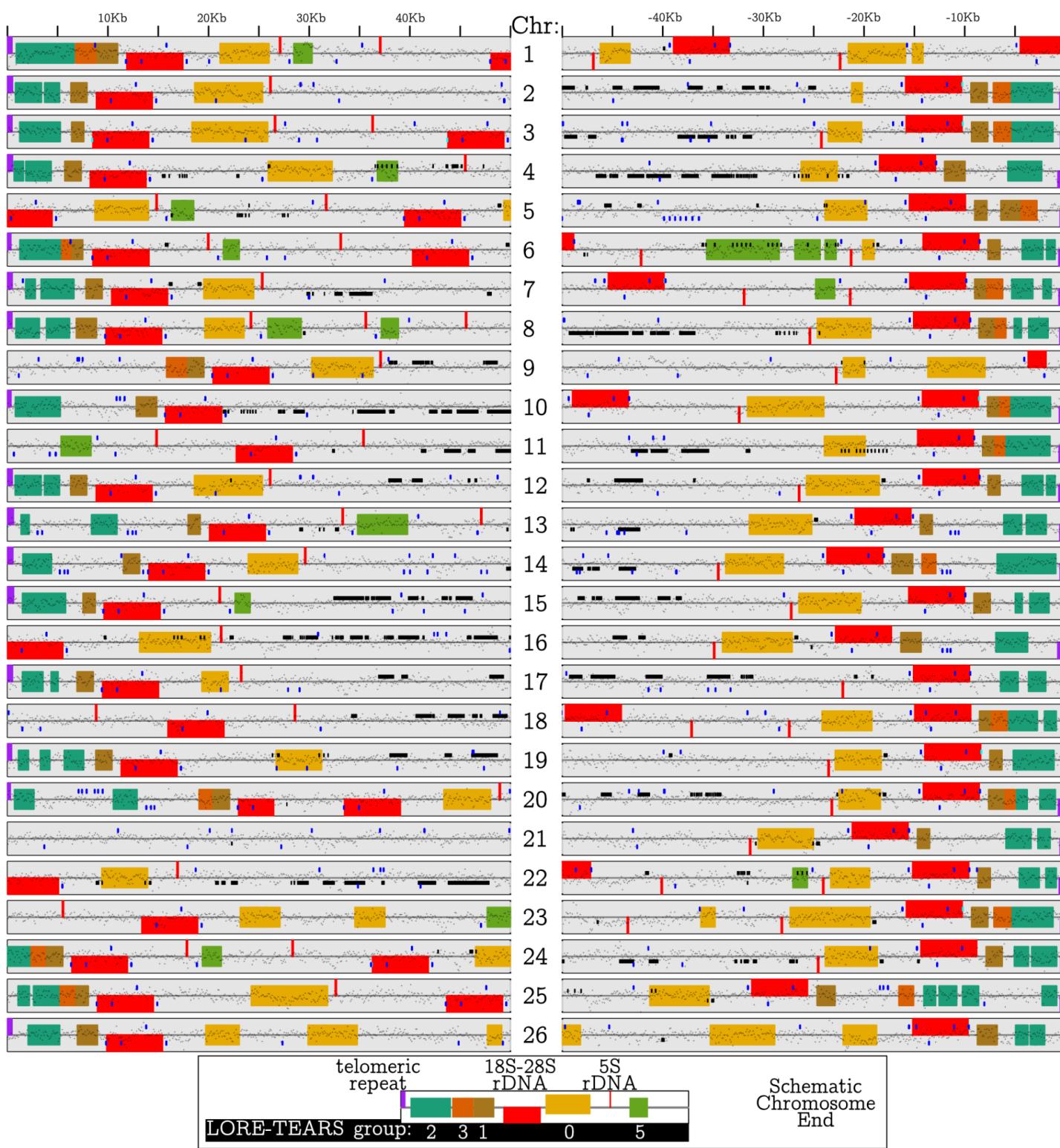
193 Some virus-like genes on CE1 and LE-Chr15 are found only in mirusviruses or herpesviruses (MCP,
194 **Fig. 3D**, terminases, **Fig. S7A**). For genes with broader distribution, phylogenetic analyses also support
195 relationships of several CE1 and LE-Chr15 viral genes to mirusviruses, as well as to nucleocytoviruses, which
196 share several informational genes with miruviruses. The resolvase, helicase, and DNAP trees show *A.*
197 *limacinum* viral sequences branching specifically with mirusviruses (**Fig. 3B**; Additional File 1: **Fig. S7B and**
198 **Fig. S7C**), while the topoisomerase and nuclease trees show relatedness of our *A. limacinum* viral sequences
199 to nucleocytoviruses (**Fig. 3C**; **Fig. S7D**). In contrast, the *A. limacinum* viral TATA-binding proteins group with
200 archaeal sequences, rather than mirusviruses (**Fig. S7E**). Homologs of thraustochytrid viral and cellular
201 arylsulfatase genes are detected only in various bacteria (**Fig. S7F**). The RNAPL genes of CE1 and LE-Chr15
202 are particularly unusual. As seen in some other viruses (e.g., *P. sibericum* (YP_009001268.1 and
203 YP_009001052.1) and other pithoviruses, and cells (e.g., many archaea, (Langer et al. 1995)), the RNAPL
204 coding region is split: the N- and C-terminal domains are encoded by separate ORFs located far apart from
205 one another on both CE1 and LE-Chr15, and in *H. fermentalgiana*. The CE1, LE-Chr15, and *H. fermentalgiana*
206 homologs branch robustly together in independent phylogenies of both RNAPL domains (**Fig. S7G and S7H**)
207 but the precise evolutionary origin(s) of RNAPL in *A. limacinum* is unclear from the data in hand. On balance,
208 these data suggest that CE1 and the viral-like element of Chr15 are most closely related to mirusviruses
209 described in (Gaïa et al. 2023), but with genes derived from other sources as well .

210 The putative viral region at the left end of Chr15 (LE-Chr15) provides a nexus between the striking
211 subtelomere structure and viral content of the *A. limacinum* genome. LE-Chr15 has rRNAs, LORE-TEARS, and
212 telomeric repeats on one end and rRNAs and LORE-TEARs on the other (**Fig. 1**, **Fig. 2**); this is the only place
213 in the assembly with internal (non-telomeric) arrays of rRNA genes and LORE-TEARs. The GC content of the
214 putative viral integrant is 41.6%, slightly lower than the rest of the chromosome (45.0%), consistent with a
215 foreign origin. The putative virus-like elements detected on CE1 and LE-Chr15 are related but distinct from one
216 another (Additional File 1: **Fig. S8**). Comparing CE1's 177 predicted proteins to the 152 proteins encoded by
217 the virus-like region of Chr15, only 48 are each other's reciprocal best BLAST hits (Additional File 2: **Table S7**),
218 but many of their shared homologs branch together in phylogenetic trees (**Fig. 3B and D**; Additional File 1:
219 **Fig. S7**; **Text S2**).

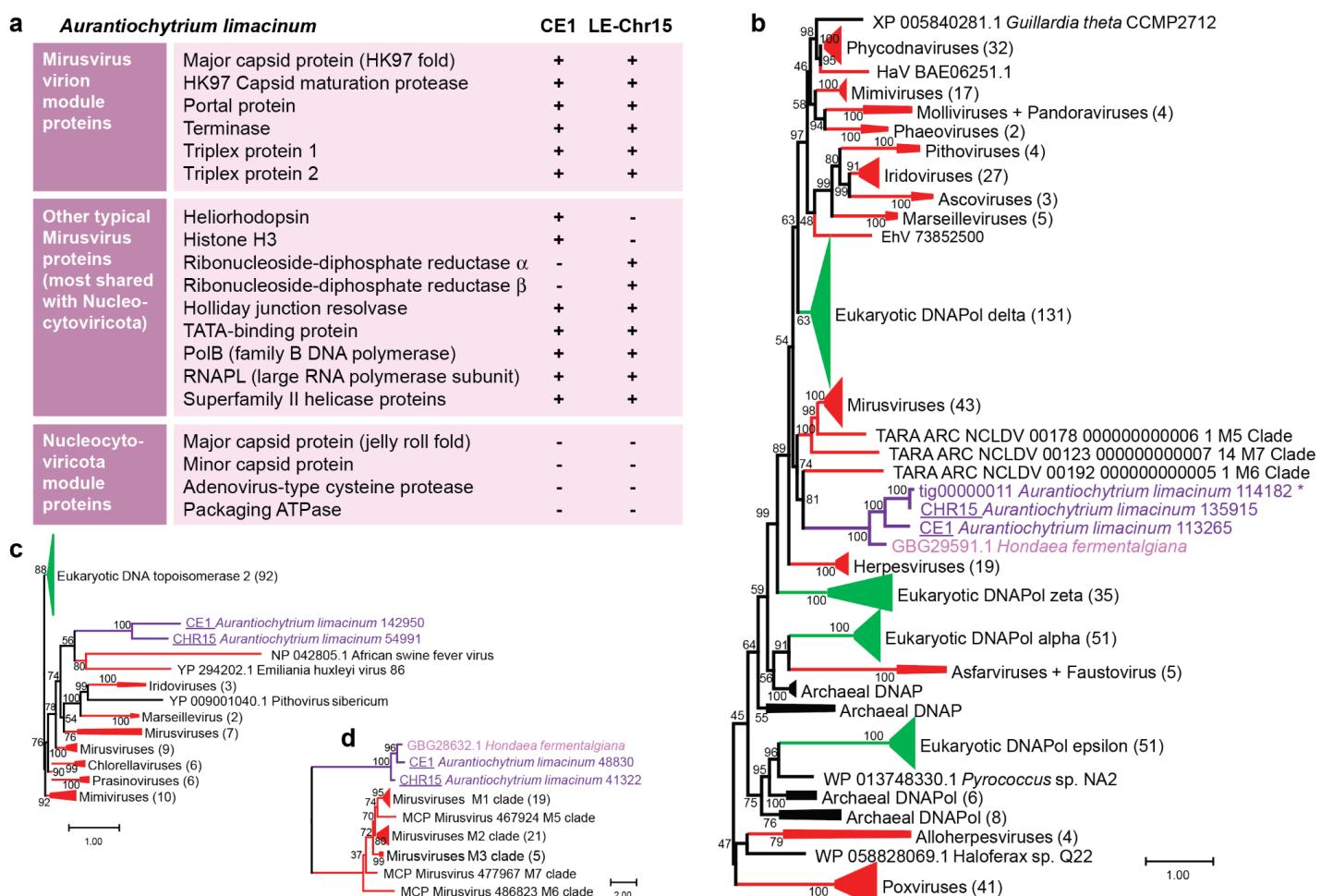

220 Mirusvirus virion particles have yet to be isolated. Our data show that *A. limacinum* is a probable
221 natural host. CE1 could be an active viral genome capable of yielding viral particles: CE1 is circular and has an
222 apparently complete virion module and full-length DNA polymerase, and viral particles consistent with the

223 presence of an endogenous herpes-like virus have previously been identified in thraustochytrids (Kazama and
224 Schornstein 1972, 1973). It is noteworthy that CE1 encodes proteins with ParA (Aurli_135839) and Fic
225 (Aurli_13050) domains, which have been associated with plasmid segregation (Łobocka and Gała 2020):
226 this may speak to how CE1 is maintained as an episomal element in *A. limacinum*. Endogenization of LE-
227 Chr15 appears to have occurred via sub-telomeric recombination. The pace of discovery of endogenous viral
228 elements is accelerating thanks to growth of genome-scale resources in diverse organisms (Feschotte and
229 Gilbert 2012; Schulz, Abergel, and Woyke 2022); to our knowledge, the differences between CE1 and LE-
230 Chr15 make this the first example of related ‘stand-alone’ and integrated virus-like elements recovered
231 through routine eukaryotic genome sequencing. Interestingly, we found several close homologs of the *A.*
232 *limacinum* virus-like sequences in the fragmented genome assembly of another thraustochytrid, *Hondaea*
233 *fermentalgiania* (Dellero et al. 2018) (Fig. 3, Additional File 1: Fig. S7). This suggests that mirusvirus-like
234 viruses have been associated with this protist lineage for some time.

235 **Conclusions**


236 Long-read sequencing has revealed that the genome of *A. limacinum* is dynamic and structurally
237 innovative, an epic advance in light of their role as subjects first detailing chromosome counts in protists
238 (Moens and Perkins 1969). We observed arrays of sub-telomeric rRNA and position-specific classes of long
239 repeated elements (LORE-TEARS) on all chromosome ends, suggesting their role in chromosome
240 maintenance. We also caught the ‘superposition’ of two complete sets of these elements surrounding an
241 endogenized viral genome-like element at the end of Chr15. Our comparative genomic investigation reveals
242 that CE1 and LE-Chr15 are specifically related to the recently discovered mirusviruses that are predicted to be
243 “...among the most abundant and active eukaryotic viruses characterized in the sunlit oceans” (Gaia et al.
244 2023). Mirusviruses have not, however, been linked to specific microbial eukaryotic hosts: Labyrinthulomycetes
245 such as *A. limacinum* appear to be one such host. The functionality of both this integrated mirusvirus-like entity
246 and of the circular, high-copy mirusvirus-like genome we identified are unclear, but both appear to correspond
247 to (or be derived from) novel giant endogenous viral genomes, and one appears to maintain itself
248 independently as a plasmid-like entity. It is noteworthy that Kazama and Schornstein described their
249 thraustochytrid culture as ‘virogenic’ because they were never able to isolate strains free of the virus - even
250 when establishing cultures from single zoospores - and because viral particles were only produced under
251 permissive growth conditions (Kazama and Schornstein 1972, 1973). The combination of the union of highly
252 conserved cellular elements (rRNAs), novel classes of repetitive elements (LORE-TEARs), and viral integration
253 events at chromosome ends suggests new opportunities for future investigation of mechanisms of
254 chromosome maintenance and nucleolus formation. There is still much eukaryotic diversity to be surveyed with
255 long-read technology, and we will soon learn whether these features are unique to *A. limacinum* or a general
256 feature of labyrinthulomycetes or broadly distributed among eukaryotic diversity.

257


259 **Fig. 1.** Size and select features of the 26 putative linear chromosomes and a Circular Element in
260 *Aurantiochytrium limacinum* ATCC MYA-1381. Circular Element 1 is predicted to be circular, but is displayed
261 as linear. A scale in megabases is provided along the top of the plot (Gel and Serra 2017). Vertical red lines
262 represent locations of predicted (Lagesen et al. 2007) rRNA gene regions, and are found almost exclusively at
263 the ends of the linear chromosomes. Cyan boxes represent regions that did not align (Darling et al. 2004)
264 with the primary 454 assembly (*some regions may be present in short 454 scaffolds; see Supplemental Fig. S2).
265 GC content (5 Kbp windows) is indicated by background color, with darker shades of blue indicating regions of
266 lower GC content and darker shades of yellow indicating regions with higher GC content; low GC content at
267 the linear chromosome ends reflect telomere content. The gray density plot above the midline of each

268 chromosome indicates the relative density of exons, based on mapping of predicted exons from the JGI
269 assembly to each Nanopore chromosome. The gray density plot below the midline (reflected so that higher
270 values form valleys) indicates the relative density of repetitive sequences identified by RepeatMasker (Chen
271 2004). The magenta line (shown only for Chromosome 15) is a plot of the VirusRecall rolling score of NCLDV
272 content (original range -17.6 to 3.9; negative and positive scores rescaled linearly above and below the axis,
273 respectively). **Inset:** Chord plot showing matching sequence regions of at least 1 Kbp between contigs
274 (Delehelle et al. 2018). An arbitrary set of chords are colored (arbitrarily red and blue) to highlight the
275 directional nature of the repeats at the scaffold ends. A blank space in the chord plot represents the shortest
276 scaffold, which has no matching sequence regions on other scaffolds.

277

278 **Fig. 2.** Focused view of the 50 Kbp of both ends of the *Aurantiochytrium limacinum* chromosomes (Chr) from
279 Figure 1. Locations of predicted rRNA genes (red) as in Fig. 1, with a large 18S-5.8S-28S rDNA cluster
280 transcribed toward the telomere, and a small 5S rDNA transcribed away from the telomere. Purple boxes on
281 ends of contigs indicate the presence of telomeric repeats in our assembly. Five classes of LORE-TEARS
282 (0,1,2,3,5) are shown (see inset for key). G-quadruplexes are plotted as blue lines; note the regular positioning
283 of G-quadruplexes within and around the rRNAs. Black lines are exons mapped using BLAST. GC content is
284 plotted along the centerline. **Bottom Inset:** Schematic view of a typical arrangement of elements at the ends of
285 a chromosome. LORE-TEARS elements are colored and labeled by their sequence similarity group.

288 **Fig. 3:** Viral content detected in *Aurantiochytrium limacinum* predicted proteins. **A)** Presence (+) and absence
 289 (-) of select viral proteins on CE1 and LE-Chr15 relative to key *Mirusviricota* and *Nucleocytoviricota* (NCLDV)
 290 proteins. Note that the RNAPL coding region is split into two discrete ORFs, as in pithoviruses and many
 291 archaea. **B)** Maximum likelihood phylogenetic tree of virus-like family B DNA polymerases (DNAPol) proteins
 292 encoded on CE1 and LE-Chr15 of *A. limacinum* (purple) and homologs in *Hondaea fermentalgiana* (pink). The
 293 sequences were aligned with MAFFT, and sites with less than 20% gaps were retained for phylogenetic
 294 reconstruction. Note that in addition to the homologs found in CE1 and LE-Chr15, a viral-like DNAPol is also
 295 found in *A. limacinum* tig00000011; it shows signs of pseudogenization. **C)** Phylogeny of viral DNA
 296 topoisomerases rooted with eukaryotic homologs. Sequences were aligned with MAFFT-linsi prior to
 297 phylogenetic reconstruction. **D)** Phylogenetic tree of Mirusvirus major capsid proteins and their homologs in *A.*
 298 *limacinum* and *H. fermentalgiana*. The sequences were aligned with MAFFT-linsi and sites with less than 30%
 299 gaps were retained for phylogenetic reconstruction. Viral sequences are in red, eukaryotic homologs are in
 300 green, and bacterial/archaeal sequences are in black. Scale bars indicate inferred number of amino acid
 301 substitutions per site.

304 ONLINE METHODS

305 Strain cultivation and nucleic acid preparation

306 *Aurantiochytrium* (formerly *Schizochytrium*) *limacinum* Honda et Yokochi ATCC MYA-1381 (also
307 designated NIBH SR21 or IFO 32693, GenBank Accession AB022107; (Honda et al. 1998; Yokoyama and
308 Honda 2007) was isolated from seawater in a mangrove area of the Yap Islands, Micronesia. For sequencing
309 at JGI, *Aurantiochytrium* ATCC MYA-1381 cultures were grown in 2 liters of ATCC 790 By+ medium (5 g
310 glucose, 1 g yeast extract, 1 g peptone, 30 g Instant ocean per liter) distributed in four large tissue culture
311 flasks (500 ml each) at room temperature without shaking. Cultures were harvested after 7 days, producing 2.4
312 g wet weight. Genomic DNA was extracted from 0.507 g wet biomass and RNA from 1.057 g wet biomass
313 following the protocols of (Lippmeier et al. 2009) and subject to JGI QA/QC protocols. For Nanopore
314 sequencing, *Aurantiochytrium* ATCC MYA-1381 was cultured for three days in 50 ml ATCC 790 By+ medium.
315 Genomic DNA was extracted based on a previously published protocol
<https://dx.doi.org/10.17504/protocols.io.n83dhyn>). The precipitated DNA was left to dissolve in water by
316 spontaneous diffusion for 48+ hours at room temperature to avoid shearing and subsequently purified using
317 QIAGEN Genomic-tip 20/G. Agarose gel electrophoresis (1%) was used to visually assess and confirm the
318 integrity of high molecular weight (20+ Kb) DNA. DNA quality was evaluated using a NanoPhotometer P360
319 (Implen) to measure A260/280 (~1.8) and A260/230 (2.0-2.2) ratios. The quantity of DNA was calculated using
320 a Qubit 2.0 Fluorometer (ThermoFisher Scientific) with the dsDNA broad range assay kit.
321

322 Sequencing and assembly

323 Short-read sequencing was performed by the Joint Genome Institute on the 454 sequencing platform,
324 and assembly was accomplished with Newbler followed by annotation with the JGI Annotation Pipeline; details
325 are provided in Additional File 1: **Text S1**. Draft genome sequence for *Aurantiochytrium limacinum* ATCC
326 MYA-1381 is available via the PhycoCosm Genome Portal,
<https://mycocosm.jgi.doe.gov/Aurli1/Aurli1.info.html>.

327 Long-read sequencing was performed using the Oxford Nanopore Technology (ONT) MinION
328 sequencing platform and assembly was accomplished with Canu; details are provided in Additional File 1: **Text**
329 **S1**. The raw fast5 MinION data has been deposited in the NCBI SRA database BioProject PRJNA680238 (WT
330 accession: SRR13108467; KO32 accession: SRR13108466; KO33 accession: SRR13108465).

332 rRNA, G-quadruplex, and repetitive element predictions

333 rRNA gene locations were predicted using RNAmmer 1.2 (Lagesen et al. 2007). Tandem Repeat Finder
334 4.09 (Benson 1999) was used to identify tandem repeats (TR) with maximum repeat unit set as large as
335 possible (2000 bp). The vast majority of the 29640 identified TRs were a few bp in length, and the number of
336 TRs declined with TR length until ~350 bp, where a peak appeared. The sequences of the 673 TR elements
337 longer than 299 bp were dereplicated by removing overlapping TRs, keeping the shorter repeat unit and
338 clustering with cd-hit. Telomeric repeats in the Nanopore assembly were identified in this output as repeats
339 with unit 5, 10, or 15 matching the motif TTAGG (or CCTAA). More than 98% of TR elements were shorter
340 than 200bp. 490 Tandem repeat (TR) units longer than 200bp were dereplicated (retaining one TR to represent
341 each locus) and 398 subjected to clustering by cd-hit-est (Huang et al. 2010) with default parameters except
342 sequence identity cutoff 0.8 and -r yes. Manual examination and alignment of the resulting 25 clusters (which
343 excluded 34 singletons) revealed 4 types of TRs grouped by location relative to rRNA genes and telomeric
344 repeats. Additional repetitive content was identified with RepeatMasker (Chen 2004). G-quadruplexes were

345 predicted with G4-iM Grinder (Belmonte-Reche and Morales 2020) using Methods 2 and 3 and filtering for
346 scores greater than 20. Genomic features were visualized using karyoplotR (Gel and Serra 2017).

347 Viral gene predictions and phylogenetics

348 Virion proteins from various groups of dsDNA viruses, including mirusviruses and nucleocytoviruses,
349 were used to screen the *A. limacinum* assembly using blastp and HMMsearches. HMMs were generated from
350 alignments in Gaïa *et al.* (2023) (Additional File 3). Following the detection of mirusvirus-like structural proteins
351 in CE1 and LE-Chr15, all mirusvirus ORFs (>=90 amino acids; predicted from the mirusvirus contigs from
352 (Gaïa *et al.* 2023)) were used as blastp queries to detect additional mirusvirus homologs. In parallel,
353 ViralRecall (Aylward and Moniruzzaman 2021) and VirSorter2 (Guo *et al.* 2021) were used to evaluate viral
354 gene content in both the 454 and Nanopore *A. limacinum* assemblies. The results of similarity searches
355 against nr were then used to characterize additional CE1 and LE-Chr15 proteins.

356 Unless specified otherwise, *A. limacinum* virus-like proteins were aligned with homologs in diverse
357 viruses, prokaryotes and eukaryotes using MAFFT, with BMGE (default parameters) used to perform site
358 selection. Maximum likelihood phylogenetic trees were constructed with IQTree (Nguyen *et al.* 2015) v1.6.3
359 model C60+G4 with 1000 ultrafast bootstraps replicates.

360 Availability of data and materials

361 The short-read (454) data, assembly, and annotation are publicly available via the JGI genome portal in
362 PhyCoCosm (<https://phycocosm.jgi.doe.gov/>). The raw fast5 MinION data has been deposited in the NCBI SRA
363 database BioProject PRJNA680238 (WT accession: SRR13108467; KO32 accession: SRR13108466; KO33
364 accession: SRR13108465).

365
366 Additional File 1 contains supplemental text, tables, and figures.
367 Additional File 2 contains supplemental tables S1, S2, S6 and S7.

368 Additional File 3: The Canu nanopore assembly, annotations, HMM files, alignments, and trees, are at
369 doi:10.5061/dryad.2fqz612t6: <https://datadryad.org/stash/share/QYfnoRY6ZF9b-xA1ICXvm7xfAjmeqY-A5b-nSv15YNI>

371 Competing interests

372 The authors declare that they have no competing interests.

373 Funding

374 The work (proposal:10.46936/10.25585/60007256) conducted by the U.S. Department of Energy Joint
375 Genome Institute (<https://ror.org/04xm1d337>), a DOE Office of Science User Facility, is supported by the Office
376 of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231. The
377 construction and analysis of the *crtI*BY mutants in the Collier and Rest labs was supported by grant from the
378 Gordon and Betty Moore Foundation (GBMF4982). Research in the Archibald Lab, including Oxford Nanopore
379 long-read sequencing, was supported by a grant from the Gordon and Betty Moore Foundation (GBMF5782)
380 and a Discovery Grant (RGPIN-2019-05058) from the Natural Sciences and Engineering Research Council of
381 Canada.

382 Authors' contributions

383 JC and JR conceived the study, performed the analyses and drafted the manuscript. EL built the combined
384 Canu assembly and performed initial comparative analyses. CD, JJ, JP, CP, AK, IVG performed the short-read
385 sequencing, assembly, and annotation. GF and AMGNV carried out Nanopore long-read sequencing and
386 performed the PFGE. JC, JR and LG-L performed detailed comparative genomic analyses of virus-like
387 sequences, and LG-L and JMA performed and interpreted phylogenetic reconstructions. All authors read and
388 approved the final manuscript.

389 Acknowledgements

390 Thanks to Bruce A. Curtis for technical support with Nanopore sequencing and feedback on the final
391 manuscript.

392 References

393 Aylward, Frank O., and Mohammad Moniruzzaman. 2021. "ViralRecall-A Flexible Command-Line Tool for the
394 Detection of Giant Virus Signatures in 'Omic Data." *Viruses* 13 (2): 150.

395 Belmonte-Reche, Efres, and Juan Carlos Morales. 2020. "G4-iM Grinder: When Size and Frequency Matter.
396 G-Quadruplex, I-Motif and Higher Order Structure Search and Analysis Tool." *NAR Genomics and
397 Bioinformatics* 2 (1): lqz005.

398 Benson, G. 1999. "Tandem Repeats Finder: A Program to Analyze DNA Sequences." *Nucleic Acids Research*
399 27 (2): 573–80.

400 Biffi, Giulia, David Tannahill, and Shankar Balasubramanian. 2012. "An Intramolecular G-Quadruplex Structure
401 Is Required for Binding of Telomeric Repeat-Containing RNA to the Telomeric Protein TRF2." *Journal of
402 the American Chemical Society* 134 (29): 11974–76.

403 Branton, Daniel, David W. Deamer, Andre Marziali, Hagan Bayley, Steven A. Benner, Thomas Butler,
404 Massimiliano Di Ventra, et al. 2008. "The Potential and Challenges of Nanopore Sequencing." *Nature
405 Biotechnology* 26 (10): 1146–53.

406 Brugère, J. F., E. Cornillot, G. Méténier, A. Bensimon, and C. P. Vivarès. 2000. "Encephalitozoon Cuniculi
407 (Microspora) Genome: Physical Map and Evidence for Telomere-Associated rDNA Units on All
408 Chromosomes." *Nucleic Acids Research* 28 (10): 2026–33.

409 Chen, Nansheng. 2004. "Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences."
410 *Current Protocols in Bioinformatics / Editorial Board, Andreas D. Baxevanis ... [et Al.] Chapter 4 (1): Unit
411 4.10.*

412 Collier, Jackie L., and Joshua S. Rest. 2019. "Swimming, Gliding, and Rolling toward the Mainstream: Cell
413 Biology of Marine Protists." *Molecular Biology of the Cell* 30 (11): 1245–48.

414 Criniti, Angela, Gabriele Simonazzi, Stefano Cassanelli, Mario Ferrari, Davide Bizzaro, and Gian Carlo
415 Manicardi. 2009. "Distribution of Heterochromatin and rDNA on the Holocentric Chromosomes of the
416 Aphids Dysaphis Plantaginea and Melanaphis Pyraria (Hemiptera: Aphididae)." *European Journal of
417 Entomology* 106 (2): 153–57.

418 Darling, Aaron C. E., Bob Mau, Frederick R. Blattner, and Nicole T. Perna. 2004. "Mauve: Multiple Alignment of
419 Conserved Genomic Sequence with Rearrangements." *Genome Research* 14 (7): 1394–1403.

420 Delehelle, Franklin, Sylvain Cussat-Blanc, Jean-Marc Alliot, Hervé Luga, and Patricia Balaresque. 2018.
421 "ASGART: Fast and Parallel Genome Scale Segmental Duplications Mapping." *Bioinformatics* 34 (16):
422 2708–14.

423 Dellero, Younès, Olivier Cagnac, Suzanne Rose, Khawla Seddiki, Mathilde Cussac, Christian Morabito,
424 Josselin Lupette, et al. 2018. "Proposal of a New Thraustochytrid Genus *Hondaea* Gen. Nov. and
425 Comparison of Its Lipid Dynamics with the Closely Related Pseudo-Cryptic Genus *Aurantiochytrium*."
426 *Algal Research* 35 (November): 125–41.

427 Diner, Rachel E., Chari M. Noddings, Nathan C. Lian, Anthony K. Kang, Jeffrey B. McQuaid, Jelena
428 Jablanovic, Josh L. Espinoza, et al. 2017. "Diatom Centromeres Suggest a Mechanism for Nuclear DNA

429 Acquisition." *Proceedings of the National Academy of Sciences of the United States of America* 114 (29):
430 E6015–24.

431 Douglas, S., S. Zauner, M. Fraunholz, M. Beaton, S. Penny, L. T. Deng, X. Wu, M. Reith, T. Cavalier-Smith,
432 and U. G. Maier. 2001. "The Highly Reduced Genome of an Enslaved Algal Nucleus." *Nature* 410 (6832):
433 1091–96.

434 Dvořáčková, Martina, Miloslava Fojtová, and Jiří Fajkus. 2015. "Chromatin Dynamics of Plant Telomeres and
435 Ribosomal Genes." *The Plant Journal: For Cell and Molecular Biology* 83 (1): 18–37.

436 Fang, Yufeng, Marco A. Coelho, Haidong Shu, Klaas Schotanus, Bhagya C. Thimmappa, Vikas Yadav, Han
437 Chen, et al. 2020. "Long Transposon-Rich Centromeres in an Oomycete Reveal Divergence of
438 Centromere Features in Stramenopila-Alveolata-Rhizaria Lineages." *PLoS Genetics* 16 (3): e1008646.

439 Feschotte, Cédric, and Clément Gilbert. 2012. "Endogenous Viruses: Insights into Viral Evolution and Impact
440 on Host Biology." *Nature Reviews. Genetics* 13 (4): 283–96.

441 Filloromo, Gina V., Bruce A. Curtis, Emma Blanche, and John M. Archibald. 2021. "Re-Examination of Two
442 Diatom Reference Genomes Using Long-Read Sequencing." *BMC Genomics* 22 (1): 379.

443 Fletcher, Kyle, Juliana Gil, Lien D. Bertier, Aubrey Kenefick, Kelsey J. Wood, Lin Zhang, Sebastian Reyes-
444 Chin-Wo, et al. 2019. "Genomic Signatures of Heterokaryosis in the Oomycete Pathogen Bremia
445 Lactucae." *Nature Communications* 10 (1): 2645.

446 Fossier Marchan, Loris, Kim J. Lee Chang, Peter D. Nichols, Wilfrid J. Mitchell, Jane L. Polglase, and Tony
447 Gutierrez. 2018. "Taxonomy, Ecology and Biotechnological Applications of Thraustochytrids: A Review." *Biotechnology Advances* 36 (1): 26–46.

449 Gaïa, Morgan, Lingjie Meng, Eric Pelletier, Patrick Forterre, Chiara Vanni, Antonio Fernandez-Guerra, Olivier
450 Jaillon, et al. 2023. "Mirusviruses Link Herpesviruses to Giant Viruses." *Nature*, April.
451 <https://doi.org/10.1038/s41586-023-05962-4>.

452 Gallot-Lavallée, Lucie, and Guillaume Blanc. 2017. "A Glimpse of Nucleo-Cytoplasmic Large DNA Virus
453 Biodiversity through the Eukaryotic Genomics Window." *Viruses* 9 (1). <https://doi.org/10.3390/v9010017>.

454 Gardner, Malcolm J., Neil Hall, Eula Fung, Owen White, Matthew Berriman, Richard W. Hyman, Jane M.
455 Carlton, et al. 2002. "Genome Sequence of the Human Malaria Parasite Plasmodium Falciparum." *Nature*
456 419 (6906): 498–511.

457 Gel, Bernat, and Eduard Serra. 2017. "karyoploteR: An R/Bioconductor Package to Plot Customizable
458 Genomes Displaying Arbitrary Data." *Bioinformatics* 33 (19): 3088–90.

459 Guérin, Nina, Marta Ciccarella, Elisa Flamant, Paul Frémont, Sophie Mangenot, Benjamin Istace, Benjamin
460 Noel, et al. 2021. "Genomic Adaptation of the Picoeukaryote Pelagomonas Calceolata to Iron-Poor
461 Oceans Revealed by a Chromosome-Scale Genome Sequence." *bioRxiv*.
462 <https://doi.org/10.1101/2021.10.25.465678>.

463 Guo, Jiarong, Ben Bolduc, Ahmed A. Zayed, Arvind Varsani, Guillermo Dominguez-Huerta, Tom O. Delmont,
464 Akbar Adjie Pratama, et al. 2021. "VirSorter2: A Multi-Classifier, Expert-Guided Approach to Detect
465 Diverse DNA and RNA Viruses." *Microbiome* 9 (1): 37.

466 Honda, Daisuke, Toshihiro Yokochi, Toro Nakahara, Mayumi Erata, and Takanori Higashihara. 1998.
467 "Schizochytrium Limacinum Sp. Nov., a New Thraustochytrid from a Mangrove Area in the West Pacific
468 Ocean." *Mycological Research* 102 (4): 439–48.

469 Huang, Ying, Beifang Niu, Ying Gao, Limin Fu, and Weizhong Li. 2010. "CD-HIT Suite: A Web Server for
470 Clustering and Comparing Biological Sequences." *Bioinformatics* 26 (5): 680–82.

471 Jain, Miten, Hugh E. Olsen, Benedict Paten, and Mark Akeson. 2016. "Erratum to: The Oxford Nanopore
472 MinION: Delivery of Nanopore Sequencing to the Genomics Community." *Genome Biology* 17 (1): 256.

473 Jensen-Seaman, Michael I., Terrence S. Furey, Bret A. Payseur, Yontao Lu, Krishna M. Roskin, Chin-Fu
474 Chen, Michael A. Thomas, David Haussler, and Howard J. Jacob. 2004. "Comparative Recombination
475 Rates in the Rat, Mouse, and Human Genomes." *Genome Research* 14 (4): 528–38.

476 Juraneck, Stefan A., and Katrin Paeschke. 2012. "Cell Cycle Regulation of G-Quadruplex DNA Structures at
477 Telomeres." *Current Pharmaceutical Design* 18 (14): 1867–72.

478 Kawai, Hiroshi, Hideki Muto, Tetsuya Fujii, and Atsushi Kato. 1995. "A LINKED 5S rRNA GENE IN
479 SCYTOSIPHON LOMENTARIA (SCYTOSIPHONALES, PHAEOPHYCEAE)1." *Journal of Phycology* 31
480 (2): 306–11.

481 Kawai, Hiroshi, Takeshi Nakayama, Isao Inouye, and Atsushi Kato. 1997. "LINKAGE OF 5S RIBOSOMAL
482 DNA TO OTHER rDNAs IN THE CHROMOPHYTIC ALGAE AND RELATED TAXA1." *Journal of
483 Phycology* 33 (3): 505–11.

484 Kazama, F. Y., and K. L. Schornstein. 1972. "Herpes-Type Virus Particles Associated with a Fungus." *Science*
485 177 (4050): 696–97.
486 ———. 1973. "Ultrastructure of a Fungus Herpes-Type Virus." *Virology* 52 (2): 478–87.
487 Kim, Jong Im, Goro Tanifuji, Minseok Jeong, Woongghi Shin, and John M. Archibald. 2022. "Gene Loss,
488 Pseudogenization, and Independent Genome Reduction in Non-Photosynthetic Species of Cryptomonas
489 (Cryptophyceae) Revealed by Comparative Nucleomorph Genomics." *BMC Biology* 20 (1): 227.
490 Kobayashi, Takehiko. 2011. "Regulation of Ribosomal RNA Gene Copy Number and Its Role in Modulating
491 Genome Integrity and Evolutionary Adaptability in Yeast." *Cellular and Molecular Life Sciences: CMLS* 68
492 (8): 1395–1403.
493 Koren, Sergey, Brian P. Walenz, Konstantin Berlin, Jason R. Miller, Nicholas H. Bergman, and Adam M.
494 Phillippy. 2017. "Canu: Scalable and Accurate Long-Read Assembly via Adaptive K-Mer Weighting and
495 Repeat Separation." *Genome Research* 27 (5): 722–36.
496 Lagesen, Karin, Peter Hallin, Einar Andreas Rødland, Hans-Henrik Staerfeldt, Torbjørn Rognes, and David W.
497 Ussery. 2007. "RNAmmer: Consistent and Rapid Annotation of Ribosomal RNA Genes." *Nucleic Acids
498 Research* 35 (9): 3100–3108.
499 Langer, D., J. Hain, P. Thuriaux, and W. Zillig. 1995. "Transcription in Archaea: Similarity to That in Eucarya."
500 *Proceedings of the National Academy of Sciences of the United States of America* 92 (13): 5768–72.
501 Lippmeier, J. Casey, J. Casey Lippmeier, Kristine S. Crawford, Carole B. Owen, Angie A. Rivas, James G.
502 Metz, and Kirk E. Apt. 2009. "Characterization of Both Polyunsaturated Fatty Acid Biosynthetic Pathways
503 in *Schizochytrium* Sp." *Lipids*. <https://doi.org/10.1007/s11745-009-3311-9>.
504 Liu, Li, Qi-Fan Yang, Wu-Shan Dong, Yan-Hui Bi, and Zhi-Gang Zhou. 2017. "Characterization and Physical
505 Mapping of Nuclear Ribosomal RNA (rRNA) Genes in the Haploid Gametophytes of *Saccharina Japonica*
506 (Phaeophyta)." *Journal of Applied Phycology* 29 (5): 2695–2706.
507 Liu, Tao, Andreas Rechtsteiner, Thea A. Egelhofer, Anne Vielle, Isabel Latorre, Ming-Sin Cheung, Sevinc
508 Ercan, et al. 2011. "Broad Chromosomal Domains of Histone Modification Patterns in *C. Elegans*."
509 *Genome Research*. <https://doi.org/10.1101/gr.115519.110>.
510 Łobocka, Małgorzata, and Urszula Gała. 2020. "Prophage P1: An Example of a Prophage That Is
511 Maintained as a Plasmid." In *Bacteriophages: Biology, Technology, Therapy*, edited by David R. Harper,
512 Stephen T. Abedon, Benjamin H. Burrowes, and Malcolm L. McConville, 1–13. Cham: Springer
513 International Publishing.
514 Maruyama, Shinichiro, Osami Misumi, Yasuyuki Ishii, Shuichi Asakawa, Atsushi Shimizu, Takashi Sasaki,
515 Motomichi Matsuzaki, et al. 2004. "The Minimal Eukaryotic Ribosomal DNA Units in the Primitive Red Alga
516 *Cyanidioschyzon Merolae*." *DNA Research: An International Journal for Rapid Publication of Reports on
517 Genes and Genomes* 11 (2): 83–91.
518 Mascarenhas Dos Santos, Anne Caroline, Alexander Thomas Julian, Pingdong Liang, Oscar Juárez, and
519 Jean-François Pombert. 2023. "Telomere-to-Telomere Genome Assemblies of Human-Infecting
520 Encephalitozoon Species." *BMC Genomics* 24 (1): 237.
521 Matsuzaki, Motomichi, Osami Misumi, Tadasu Shin-I, Shinichiro Maruyama, Manabu Takahara, Shin-Ya
522 Miyagishima, Toshiyuki Mori, et al. 2004. "Genome Sequence of the Ultrasmall Unicellular Red Alga
523 *Cyanidioschyzon Merolae* 10D." *Nature* 428 (6983): 653–57.
524 McKim, K. S., A. M. Howell, and A. M. Rose. 1988. "The Effects of Translocations on Recombination
525 Frequency in *Caenorhabditis Elegans*." *Genetics* 120 (4): 987–1001.
526 Moens, P. B., and F. O. Perkins. 1969. "Chromosome Number of a Small Protist: Accurate Determination."
527 *Science* 166 (3910): 1289–91.
528 Moniruzzaman, Mohammad, Alaina R. Weinheimer, Carolina A. Martinez-Gutierrez, and Frank O. Aylward.
529 2020. "Widespread Endogenization of Giant Viruses Shapes Genomes of Green Algae." *Nature* 588
530 (7836): 141–45.
531 Paeschke, Katrin, Stefan Juranek, Tomas Simonsson, Anne Hempel, Daniela Rhodes, and Hans Joachim
532 Lipps. 2008. "Telomerase Recruitment by the Telomere End Binding Protein-β Facilitates G-Quadruplex
533 DNA Unfolding in Ciliates." *Nature Structural & Molecular Biology* 15 (6): 598–604.
534 Perry, J., and A. Ashworth. 1999. "Evolutionary Rate of a Gene Affected by Chromosomal Position." *Current
535 Biology: CB* 9 (17): 987–89.
536 Rhoads, Anthony, and Kin Fai Au. 2015. "PacBio Sequencing and Its Applications." *Genomics, Proteomics &
537 Bioinformatics* 13 (5): 278–89.
538 Rius, Mariana, Joshua S. Rest, Gina V. Filloromo, Anna M. G. Novák Vanclová, John M. Archibald, and Jackie

539 L. Collier. 2023. "Horizontal Gene Transfer and Fusion Spread Carotenogenesis among Diverse
540 Heterotrophic Protists." *Genome Biology and Evolution*, February. <https://doi.org/10.1093/gbe/evad029>.

541 Roa, Fernando, and Marcelo Guerra. 2012. "Distribution of 45S rDNA Sites in Chromosomes of Plants:
542 Structural and Evolutionary Implications." *BMC Evolutionary Biology* 12 (November): 225.

543 Scherf, A., L. M. Figueiredo, and L. H. Freitas-Junior. 2001. "Plasmodium Telomeres: A Pathogen's
544 Perspective." *Current Opinion in Microbiology* 4 (4): 409–14.

545 Schulz, Frederik, Chantal Abergel, and Tanja Woyke. 2022. "Giant Virus Biology and Diversity in the Era of
546 Genome-Resolved Metagenomics." *Nature Reviews Microbiology* 20 (12): 721–36.

547 Simão, Felipe A., Robert M. Waterhouse, Panagiotis Ioannidis, Evgenia V. Kriventseva, and Evgeny M.
548 Zdobnov. 2015. "BUSCO: Assessing Genome Assembly and Annotation Completeness with Single-Copy
549 Orthologs." *Bioinformatics* 31 (19): 3210–12.

550 Suzuki, Shigekatsu, Shu Shirato, Yoshihisa Hirakawa, and Ken-Ichiro Ishida. 2015. "Nucleomorph Genome
551 Sequences of Two Chlorarachniophytes, Amorphochlora Amoebiformis and Lotharella Vacuolata."
552 *Genome Biology and Evolution* 7 (6): 1533–45.

553 Tashiro, Sanki, Yuki Nishihara, Kazuto Kugou, Kunihiro Ohta, and Junko Kanoh. 2017. "Subtelomeres
554 Constitute a Safeguard for Gene Expression and Chromosome Homeostasis." *Nucleic Acids Research* 45
555 (18): 10333–49.

556 Torres-Machorro, Ana Lilia, Roberto Hernández, John F. Alderete, and Imelda López-Villaseñor. 2009.
557 "Comparative Analyses among the Trichomonas Vaginalis, Trichomonas Tenax, and Tritrichomonas
558 Foetus 5S Ribosomal RNA Genes." *Current Genetics* 55 (2): 199–210.

559 Torres-Machorro, Ana Lilia, Roberto Hernández, Ana María Cevallos, and Imelda López-Villaseñor. 2010.
560 "Ribosomal RNA Genes in Eukaryotic Microorganisms: Witnesses of Phylogeny?" *FEMS Microbiology
561 Reviews* 34 (1): 59–86.

562 Tůmová, Pavla, Magdalena Uzlíková, Gerhard Wanner, and Eva Nohýnková. 2015. "Structural Organization of
563 Very Small Chromosomes: Study on a Single-Celled Evolutionary Distant Eukaryote Giardia Intestinalis."
564 *Chromosoma* 124 (1): 81–94.

565 Wang, Feng, Ming-Liang Tang, Zhi-Xiong Zeng, Ren-Yi Wu, Yong Xue, Yu-Hua Hao, Dai-Wen Pang, Yong
566 Zhao, and Zheng Tan. 2012. "Telomere- and Telomerase-Interacting Protein That Unfolds Telomere G-
567 Quadruplex and Promotes Telomere Extension in Mammalian Cells." *Proceedings of the National
568 Academy of Sciences of the United States of America* 109 (50): 20413–18.

569 Xu, Feifei, Aaron Jex, and Staffan G. Svärd. 2020. "A Chromosome-Scale Reference Genome for Giardia
570 Intestinalis WB." *Scientific Data* 7 (1): 38.

571 Xu, Xiaodan, Changyi Huang, Zhixian Xu, Huixia Xu, Zhao Wang, and Xinjun Yu. 2020. "The Strategies to
572 Reduce Cost and Improve Productivity in DHA Production by Aurantiochytrium Sp.: From Biochemical to
573 Genetic Respects." *Applied Microbiology and Biotechnology* 104 (22): 9433–47.

574 Yokoyama, Rinka, and Daisuke Honda. 2007. "Taxonomic Rearrangement of the Genus Schizochytrium Sensu
575 Lato Based on Morphology, Chemotaxonomic Characteristics, and 18S rRNA Gene Phylogeny
576 (Thraustochytriaceae, Labyrinthulomycetes): Emendation for Schizochytrium and Erection of
577 Aurantiochytrium and Oblongichytrium Gen. Nov." *Mycoscience* 48 (4): 199–211.