

Gastruloid-derived Primordial Germ Cell-like Cells (Gld-PGCLCs) develop dynamically within integrated tissues

Christopher B. Cooke^{1,2,3}, Christopher Barrington¹, Peter Baillie-Benson^{1,4-6}, Jennifer Nichols⁴⁻⁷, Naomi Moris^{1*}

1. The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
2. Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
3. Abcam, Discovery Drive, Cambridge Biomedical Campus, Cambridge, CB2 0AX, UK
4. Wellcome Trust – MRC Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
5. Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
6. Centre for Trophoblast Research, University of Cambridge, UK
7. Current address: MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK

* To whom correspondence should be addressed. Email: naomi.moris@crick.ac.uk

Primordial Germ Cells (PGCs) are the early embryonic precursors of gametes - sperm and egg cells. PGC-like cells (PGCLCs) can currently be derived *in vitro* from pluripotent cells exposed to signalling cocktails and aggregated into large embryonic bodies, but these do not recapitulate the native embryonic environment during PGC formation. Here we show that mouse gastruloids, a three-dimensional *in vitro* model of gastrulation, contain a population of Gastruloid-derived PGC-like cells (Gld-PGCLCs) that resemble early PGCs *in vivo*. Importantly, the conserved organisation of mouse gastruloids leads to coordinated spatial and temporal localisation of Gld-PGCLCs relative to surrounding somatic cells, even in the absence of specific exogenous PGC-specific signalling or extraembryonic tissues. In gastruloids, self-organised interactions between cells and tissues, including the endodermal epithelium, enables the specification and subsequent maturation of a pool of Gld-PGCLCs. As such, mouse gastruloids represent a new source of PGCLCs *in vitro* and, due to their inherent co-development, serve as a novel model to study the dynamics of PGC development within integrated tissue environments.

Keywords: Primordial Germ Cell, Gastruloid, Embryo, Stem Cell, Cell Interactions

1 The specification of mouse Primordial Germ Cells (PGCs) occurs at the gastrulation-stage
2 epiblast at about embryonic day (E)7.25, where competent cells begin to co-express *Stella* and
3 *Blimp1* and become lineage-restricted to a germ cell fate¹⁻⁴ by repression of somatic genes and
4 the activation of the PGC-specific program^{5,6}. This specification occurs at the proximal posterior
5 of the epiblast, and is thought to be dependent on signals from the Extraembryonic Ectoderm
6 (ExE) and Visceral Endoderm (VE), including BMP² and Wnt signalling⁷, since embryos mutant for
7 *Bmp4* or one of its receptors, *ALK2*, have reduced numbers of PGCs^{8,9}. After specification, PGCs
8 are incorporated into the developing hindgut, and move anteriorly through this tissue before
9 then migrating through the dorsal mesentery towards the genital ridge^{10,11}, the precursors of the
10 gonads. Here, the germ cells colonise the prospective gonadal niche in the form of small cell
11 clusters¹⁰, and continue to mature in terms of their transcriptional and, particularly, their
12 epigenetic signature. At approximately E12.5^{12,13} sexual determination occurs, and initiates
13 further sex-specific maturation that ultimately generates spermatozoa in males and oocytes in
14 females. Their time-course is therefore highly dynamic, and occurs through close association with
15 several different tissues and cell types of the developing embryo¹⁴.

16 Currently, pluripotent stem cell-based PGC-like cell (PGCLC) *in vitro* models^{15,16}, have
17 been used to explore the regulatory mechanisms of early specification and maturation (for
18 example, ^{17,18}) and even to generate mature germ cells through gametogenesis^{15,19-24}. These
19 models are typically derived from Epiblast-like cells (EpiLCs) which are subsequently arranged as
20 embryoid bodies, and they build on earlier work that observed spontaneous PGCLC
21 differentiation in EBs²⁵⁻²⁷, but with the addition of PGC-specific factors to strongly bias towards a
22 PGCLC fate. Yet, despite being an efficient protocol, these EB-derived PGCLCs are formed within

23 largely disorganised aggregates of cells that lack the spatially-organised, supportive neighbouring
24 cell types found in the embryo, and have limited epigenetic remodelling towards mature germ
25 cells^{28,29}. In addition, further maturation of PGCLCs beyond the gonadal colonisation stage *in vitro*
26 currently requires complete dissociation of EBs and reaggregation with gonadal cell
27 populations^{19-21,30}, which necessarily results in loss of any endogenous spatial colocalization or
28 organisation and precludes any study of the gradual developmental dynamics of PGCLCs during
29 this maturation time window. Therefore, while embryoid body-based methods provide a readily
30 available source of *in vitro* PGCLCs, these methods are unable to reveal the complexities of PGC
31 specification or their interaction with the rest of the embryonic body plan in a developmentally
32 faithful manner.

33 Recently, mouse gastruloids, three-dimensional mouse embryonic stem (ES) cell-derived
34 aggregates, have been described and characterised to undergo gastrulation-like gene expression
35 progression, multilineage differentiation, axial polarisation, and morphological extension^{31,32}.
36 Single-cell analysis showed that these gastruloids include many cell types found in the early
37 mouse embryo, including a population of presumptive PGCLCs³³. Others have also shown that
38 small populations of *Sox2+*/DPPA3+ cells³⁴ and DPPA4+ cells³⁵ exist along the anteroposterior
39 length of gastruloid-like structure. Here, we report the further characterisation of these
40 gastruloid-derived PGCLCs (Gld-PGCLCs), including their dynamic spatiotemporal localisation and
41 association within integrated tissue environments. Importantly, we show that Gld-PGCLCs display
42 characteristics that are akin to *in vivo* PGCs, and that they recapitulate features of early PGC
43 migration and maturation, reaching stages equivalent to ~E14.5, while relying mainly on
44 endogenous inductive signals from within the self-organised gastruloid.

45 **Results**

46 ***Identification of mouse gastruloid-derived PGCLCs***

47 The transcriptional expression of *Blimp1* (also known as *Prdm1*) and *Stella* (*Dppa3*) are
48 both associated with PGCs in the mouse embryo^{4,36}. We therefore generated mouse gastruloids
49 using the *Blimp1*:eGFP (herein, *Blimp1*-GFP)⁴ and *Blimp1*:mVenus *Stella*:CFP (BVSC)³⁷ mouse
50 embryonic stem cell lines, which have previously been used as markers of PGCLC state *in vitro*³⁸.
51 Aggregates made from BVSC and *Blimp1*-GFP cells broke symmetry at approximately 96 hours
52 after aggregation (h), leading to elongated structures with polarised expression of the
53 mesodermal marker *Brachyury* (T-BRA) and CDX2 at 120h (Figure 1A-B, Supplementary Figure
54 1A) comparable to gastruloids generated from E14tg2A cells^{31,39} routinely cultured in 2iLIF (see
55 Methods)^{40,41}.

56 We therefore examined the dynamic expression of the PGC-associated gene reporters in
57 these gastruloids. *Blimp1* is expressed in the endoderm of the mouse embryo⁵, and the
58 coalescence of endodermal domains into a tube structure in mouse gastruloids has been
59 previously described^{32,42,35}. In our gastruloids, *Blimp1* expression was observed initially in a salt-
60 and-pepper manner across spherical gastruloids at 72h, which then tended to coalesce into
61 domains or clusters of expression in ovoid-shaped gastruloids at 96h (Figure 1B). As mouse
62 gastruloids underwent elongation, the domain of *Blimp1* expression became even more spatially
63 defined, and routinely formed contiguous tracts of *Blimp1* expressing cells running along the
64 anteroposterior axis at 120h (apparent in 78.3% BVSC (n = 60) and 60.8% *Blimp1*-GFP (n = 74)
65 gastruloids; Figure 1B). These *Blimp1*+ tracts also expressed FOXA2, SOX17, E-Cadherin (CDH1)

66 and EpCAM (Supplementary Figure 1B-F), suggesting a definitive endoderm identity. They were
67 internally located and typically formed closed, tube-like structures (Supplementary Figure 1G).

68 Although the majority of *Blimp1* expressing cells in gastruloids therefore likely represent
69 a definitive endodermal population, we observed several *Blimp1* and *Stella* co-expressing cells
70 that were interspersed within or adjacent to the endoderm tubes in BVSC gastruloids (Figure 1C,
71 Supplementary Figure 1F-G). We reasoned that these were likely to be PGCLCs. Indeed, the PGC
72 marker, AP2 γ , was found to be co-expressed with the pluripotency factor OCT4 (also known as
73 POU5F1) and NANOG in a high proportion of these cells (Figure 1D-E, Supplementary Figure 1H)
74 and they did not express endodermal markers, FOXA2 or SOX17 (Figure 1F-G). While *Stella*
75 expression was consistently observed in mouse gastruloids, not all *Stella*+ cells were positive for
76 both OCT4 and AP2 γ , and often co-expressed only one of these markers (Supplementary Figure
77 1H-J) suggesting that there might be heterogeneity of *Stella*-expressing cells in Gld-PGCLCs,
78 perhaps related to the temporal range of states observed. Therefore, we also utilised Platelet
79 and Endothelial Cell Adhesion Molecule 1 (PECAM1) expression, which is known to be expressed
80 in PGCs in the mouse embryo (as well as pluripotent and endothelial cells)⁴³⁻⁴⁶. In 120h
81 gastruloids, PECAM1 was co-expressed in the vast majority of AP2 γ (96.65%), OCT4 (95.83%) and
82 *Stella* positive cells (98.3%) in BVSC gastruloids, and when we examined AP2 γ expression
83 alongside PECAM1, we observed double positive cells as early as 24h, that were then co-
84 expressed with *Stella* from 72h (Supplementary Figure 2A-C), suggesting that PECAM1 marked
85 the broadest population of Gld-PGCLCs across the time-course. We therefore decided to use both
86 AP2 γ and PECAM1, in combination with the endogenous reporters of BVSC or *Blimp1*-GFP cell
87 lines, as general markers of Gld-PGCLCs.

88 Gastruloids displayed a consistent and progressive increase in the number of Gld-PGCLCs
89 through the gastruloid timeline from 24h to 120h (Figure 1H). This began as an average 2.42 cells
90 per gastruloid (+/- 2.15 s.d.; 8.3% of gastruloids had no AP2 γ expressing cells), which increased
91 to 4.07 +/- 4.16 s.d. at 48h (20% of gastruloids without AP2 γ + cells) and continued to increase to
92 reach a mean average of 90.72 cells per gastruloid by 120h (+/- 49.11 s.d.; 0% of gastruloids had
93 no AP2 γ expression, n=57). At 144h the average number of Gld-PGCLCs slightly decreased (71.93
94 Gld-PGCLCs +/- 37.91 sd; Figure 1H) which mirrored a general decrease in average size of 144h
95 gastruloids (Supplementary Table 1). Likewise, by flow cytometric analysis, a population that was
96 double positive for *Stella*-eCFP and PECAM1 was observed to increase in frequency during BVSC
97 gastruloid development (Supplementary Figure 2C). These estimates of absolute Gld-PGCLC cell
98 numbers are roughly consistent with the equivalent *in vivo* PGC numbers, with approximately
99 ~100 PGCs found in the E8.5 mouse embryo^{47,48} which represents an equivalent stage to 120h
100 gastruloids^{32,33}, and an average doubling time approximating 16.12 hours (Figure 1H), matching
101 the 16 hours estimated for mouse PGCs in the embryo⁴⁹.

102
103 *Dynamic localisation of Gld-PGCLCs*
104 We were particularly interested to note the spatial localisation of the Gld-PGCLCs relative to the
105 endodermal tract, given the role of PGC migration along the endoderm *in vivo*^{50,51}. We noted that
106 at 120h, the Gld-PGCLC were often interspersed throughout the endodermal tract along the
107 anteroposterior axis, but by 144h the majority were localised within small clusters of cells at the
108 anterior edge of gastruloids (Figure 2A-B). These each contained an average of 9 cells expressing
109 two or more PGC-associated proteins, and each gastruloid had on average 3.3 clusters (n = 7)

Cooke et al.

110 (Figure 2C; Supplementary Table 2), similar to PGCs colonising mouse gonads at E10.5⁵². Since
111 Gld-PGCLCs seemed to shift towards the anterior end of the gastruloids relative to the length of
112 the gastruloid (average location at 75.9% +/- 9.95 sd of the gastruloid length starting from the
113 posterior at 144h, n = 15; Figure 2D) we reasoned that they might be moving relative to the axis
114 of maximal elongation of the gastruloid from posterior to anterior (Figure 1E).

115 Indeed, we observed evidence of Gld-PGCLCs cell movement throughout their
116 development in gastruloids. Some of this appears to be due to overall morphological changes
117 associated with gastruloid elongation and might therefore represent a passive relative
118 movement of the Gld-PGCLCs. For instance, Gld-PGCLCs (*Stella*-eCFP expressing) were often
119 already intermingled with endodermal cells (Blimp1-Venus expressing) prior to elongation at 96h
120 (n=29/39 gastruloids) and later became distributed throughout the endodermal tracts
121 concurrent with gastruloid elongation (Figure 2F; Supplementary Movie 1). Since E-cadherin and
122 EpCAM were expressed in both Gld-PGCLCs and the endodermal cells at 96h (Supplementary
123 Figure 3A-B) it is possible that this could potentially mediate the observed close association
124 between the tissues, as has been suggested in the mouse embryo^{53,54}, although further
125 experiments would be required to test this hypothesis.

126 In addition, it is likely that Gld-PGCLCs are also capable of active movement as well as
127 passive relative movement. Using multiphoton microscopy, we observed several instances of
128 *Stella*-positive cells displaying seemingly motile behaviour relative to the gastruloid structure,
129 morphological changes associated with migration including cellular protrusions that appear
130 filopodia-like, and interactions with other *Stella*+ cells (Figure 2G, Supplementary Movie 2).

131 However, such movement was not always strictly posterior-to-anterior, and so the observed shift
132 in relative location of Gld-PGCLCs is likely to be due to both active and passive movement of cells.

133 Given the apparent role of the endodermal epithelium to coordinate the relative
134 localisation of Gld-PGCLCs to the anterior end of gastruloids, we wanted to investigate the
135 necessity of this endodermal population for Gld-PGCLC localisation. In mouse, *Sox17*-null
136 embryos specify PGCs, but they cannot enter the gut endoderm and are stalled at the hindgut
137 entrance⁵⁵. We therefore generated mouse gastruloids from mESCs that were *Sox17*^{-/-} (see
138 Methods) or *FoxA2*^{-/-}⁵⁶ (Figure 3A-L). In both cases, the mutant gastruloids still contained
139 mesoderm and ectoderm, and underwent axial elongation, but the endodermal population was
140 absent, and no epithelial tract was observed. The Gld-PGCLC population was observed at
141 absolute cell numbers equivalent to wildtype gastruloids (Figure 3A), but importantly, they were
142 localised in large clusters at 120h rather than dispersed throughout the length of the gastruloid
143 (Figure 3B, H). This observation strongly supports the notion that the presence of the endodermal
144 tract in gastruloids facilitates the spatially organised movement of Gld-PGCLCs, closely
145 resembling observations in the mouse embryo⁵⁵.

146

147 *Maturation of Gld-PGCLCs*

148 The morphological clustering of Gld-PGCLCs in the anterior of 144h gastruloids was highly
149 reminiscent of gonadal germ cell clusters found in the mouse embryo at E11.5^{10,52}. We therefore
150 wondered whether these anterior-localised Gld-PGCLCs were undergoing further maturation,
151 particularly in the form of epigenetic remodelling. Indeed, we observed that the histone
152 modification, H3K27me3, which has been shown to be associated with PGC maturation to a germ

153 cell fate^{57,58}, was co-localised with AP2γ at 144h (35% co-expression; Figure 4A-B). Similarly, the
154 DNA modification mark, 5hmC, was also co-localised with Gld-PGCLCs in anterior clusters of cells
155 in 144h gastruloids (45% co-expression; Figure 4C-D), another hallmark of PGC maturation^{59,60}.
156 Since DNA demethylation is required to de-repress the promoter of the germ cell gene *Dazl*,
157 which itself is required to facilitate the maturation of germ cells towards sex-specific stages in a
158 process called 'licensing'¹², we examined the expression of DAZL in gastruloids. Surprisingly, we
159 observed clear DAZL protein expression in Gld-PGCLCs at 120h (mean = 28 +/- 15.46 s.d. cells per
160 gastruloid, n = 8) which stayed consistent in 144h gastruloids (mean of 46.6 +/- 47.93 s.d. cells
161 per gastruloid, n = 15; Figure 4E) and were localised particularly in anterior clusters (Figure 4F).
162 Furthermore, the DAZL was co-expressed with AP2γ (21% co-expression; Figure 4G) and we
163 generally found DAZL expression in cells that had lower levels of NANOG expression (Figure 4H),
164 potentially relating to its role in downregulating pluripotency factors during germ cell
165 maturation⁶¹. As such, it seems that the Gld-PGCLCs begin to undergo a maturation process that,
166 to some extent, mirrors the post-migratory/gonadal stage development of PGCs *in vivo*, and
167 which might be directly mediated by their local environment.

168 We hypothesised that local signalling or niche properties of surrounding cells in the
169 anterior region of the gastruloid could be supporting these cell clusters. Indeed, we frequently
170 observed high-level expression of GATA4 in several cells near the Gld-PGCLC clusters
171 (Supplementary Figure 4A-C). In support of this observation, closer examination of extant spatial
172 transcriptomics datasets from 120h mouse gastruloids³³ showed an anterior localisation of
173 *Gata4*, an early marker of the developing bipotent gonad⁶² and *Cxcl12* (also known as *Sdf1*), a
174 chemokine thought to be responsible for directional migration in the mouse embryo^{63,64}

175 (Supplementary Figure 4D). It is possible that these spatially-localised supporting cells enable the
176 maturation of Gld-PGCLCs to post-migratory stages of development, as they begin to express not
177 only DAZL but also GCNA1, a marker of post-migratory PGCs *in vivo*⁶⁵ (Supplementary Figure 4E).

178

179 ***Transcriptomic Gld-PGCLC characterisation***

180 Given the general signature of PGC-identity observed in Gld-PGCLCs, including the surprisingly
181 mature status of DAZL- and GCNA1-expression, we wanted to compare our Gld-PGCLCs to known
182 populations of PGCs, both *in vivo* and *in vitro*, at the transcriptomic level. To do this, we sorted
183 Blimp1:mVenus+, SSEA1+ cells, PECAM1+ cells and Stella:eCFP+ cells from 120h gastruloids and
184 performed 10x single-cell RNA-sequencing (Methods; Supplementary Figure 5A). Once
185 integrated into a single 120h dataset, we identified 8 distinct clusters of cell identities (clusters 0
186 to 7), including 5 that we denoted to be putative PGCLCs due to expression of genes including
187 *Dppa3/4/5A*, *Nanog*, *Oct4* (*Pou5f1*), *Sox2*, *Blimp1* (*Prdm1*) and *Ap2γ* (*Tfap2c*; Supplementary
188 Figure 5B). In addition, some cells within these clusters also expressed genes including *Dazl*, *Ddx4*
189 and *Tex14* which are known markers of later stage PGCs in the mouse embryo. While each sorted
190 population contributed to these PGC-like clusters, we also noted additional populations including
191 a putative endoderm-like population (Cluster 6), endothelium (Cluster 7) and mesoderm,
192 including somitic cell types (Cluster 5) that were apparent in our data (Supplementary Figure 5B,
193 C). To further confirm that our sorting strategies were indeed capturing the population of Gld-
194 PGCLCs we compared our data to extant mouse gastruloid scRNA-seq data³³, and confirmed a
195 high degree of concordance between both PGCLC populations (Supplementary Figure 5D-E). We

196 therefore filtered our cells using the previously defined PGCLC population from mouse gastruloid
197 scRNA-sequencing data³³ for all downstream analysis.

198 One of our major questions was whether these cells were equivalent to *in vivo* PGC cell
199 types, and if so, which developmental timepoint was best matched by the *in vitro* Gld-PGCLCs.
200 To assess this, we projected our Gld-PGCLCs onto a well-characterised and extensive map of *in*
201 *vivo* germ cell development between E6.5 and adulthood (8-10 weeks) at 28 sampled timepoints
202 from Zhao and colleagues⁶⁶. Surprisingly, we found a very close match between our Gld-PGCLC
203 cells and *in vivo* PGCs at the mitotic and mitotic arrest PGC stage of development which were
204 found in E13.5-15.5 stage embryos (Figure 5A-D). This is particularly remarkable given that
205 traditional embryoid body-derived PGCLCs are thought to stall at E9.5-E10.5 stages¹⁵. We
206 therefore directly compared our Gld-PGCLC dataset to a published single cell dataset from EB-
207 derived PGCLCs at day 6²⁹ with the *in vivo* PGC dataset. We found that the EB-PGCLCs were
208 relatively heterogenous, and their projection spanned cell types from specification PGCs, to
209 migrating PGCs and as late as mitotic PGCs (E8.5 to E13.5) while our Gld-PGCLCs were more
210 homogeneous and clearly more advanced on the projection, and approximated particularly
211 mitotic arrest PGCs (E13.5 to E15.5; Figure 5E-G).

212 Together, this transcriptomic analysis of Gld-PGCLCs alongside the observation of protein
213 level DAZL expression, epigenetic remodelling and cell morphological behaviours suggests that
214 gastruloids might enable the development of more mature PGC-like states *in vitro*, without the
215 need for additional gonadal co-culture.

216

217

218 ***Endogenous signalling control of Gld-PGCLC specification***

219 Since no exogenous manipulation of the gastruloids was performed that might
220 particularly bias towards a germ cell-like fate, we hypothesised that Gld-PGCLC specification and
221 maturation must be coordinated by local, self-organised signalling feedback mechanisms
222 between populations of cells present in the gastruloid. We therefore sought to manipulate the
223 endogenous signalling environment of gastruloids and examine the resultant effect on the Gld-
224 PGCLC population to better understand how these endogenous signals were acting.

225 We initially focussed on BMP signalling pathway, since it has been reported to be required
226 for PGC specification *in vivo*^{8,67-70} and *in vitro*^{71,7}, although this has been brought into question by
227 recent reports^{72,73}. Surprisingly, we found that addition of BMP4 ligand did not lead to any
228 significant increase in Gld-PGCLC numbers compared to control gastruloids (Figure 6A-B,
229 Supplementary Figure 6A-B). Likewise, no co-localisation of phosphorylated SMAD1/5/8
230 (pSMAD1/5/8) was found in Ap2 γ cells at 24h in BVSC or 48h in Blimp1-GFP gastruloids
231 (Supplementary Figure 6C-D) and in general, very little pSMAD1/5/8 was detected in the
232 gastruloids until 96h, where the distribution was polarised towards the anterior pole but was
233 never observed to co-localise with AP2 γ (Supplementary Figure 6C-D). This is consistent with
234 spatial transcriptomics data that reported an anterior bias of BMP signalling in gastruloids from
235 late stages^{39,74} but implies that downstream BMP signalling might not be active in the Gld-PGCLCs
236 themselves. Indeed, addition of the BMP inhibitor, Dorsomorphin homolog 1 (herein, DMH1; a
237 selective inhibitor of ALK2), to gastruloids from 24 to 48h did not produce discernible
238 morphological differences in axial elongation when compared to the DMSO control, and both
239 contained AP2 γ /Stella positive cells (Figure 6C). However, a significant increase was found in

240 absolute AP2 γ cell count ($p=0.0003$; 43 +/- 22.52 sd mean cells per gastruloid) and proportion
241 relative to gastruloid volume ($p=0.0191$, 5.78 +/- 4.2 sd mean cells per gastruloid) in gastruloids
242 exposed to DMH1 (Figure 6C-D). Consistent with this, higher concentrations of DMH1 resulted in
243 further significant increases in AP2 γ + cell count (Figure 6C, Supplementary Figure 7A-C), and LDN
244 193189 (herein, LDN; an ALK3 inhibitor) treatment likewise did not inhibit Gld-PGCLC formation
245 (Supplementary Figure 7A).

246 To further explore this surprising relationship between BMP signalling and Gld-PGCLC
247 specification, we generated gastruloids from BMPR1a null mESCs⁷⁵. These gastruloids did not
248 elongate (Figure 6E-F), perhaps consistent with the reported reduced Nodal/Activin signalling
249 found in *Bmpr1a* null embryos⁷⁵ and the requirement for Nodal signalling in symmetry breaking
250 and elongation in gastruloids³⁹. However, they did show evidence of differentiation towards
251 endoderm, mesoderm, and ectodermal populations (Supplementary Figure 7D-I). Surprisingly,
252 they also contained AP2 γ expressing cells (Figure 6E, Supplementary Figure 7D) in significantly
253 higher proportions than observed in non-mutant Blimp1-GFP/BVSC gastruloids (Supplementary
254 Figure 7D). Together, these results suggest that BMP signalling is not strictly required for PGCLC
255 specification in the gastruloid model, and indeed may even have a repressive effect on the Gld-
256 PGCLC fate, at least at the timepoints assessed here.

257 We then turned our attention to the Wnt signalling pathway, which has also been
258 proposed to support PGC specification *in vivo*^{7,17}. Since the standard gastruloid protocol includes
259 a 24h pulse of CHIR-99021 (herein, Chi; an inhibitor of GSK3 β), between 48-72h post aggregation,
260 we decided to modulate the time interval of addition of Chi to examine the effect on Gld-PGCLCs.
261 Moving the Chi addition 24h earlier altered gastruloid morphology but did not inhibit the

262 presence of AP2 γ cells (Figure 6G). However, extending the Chi exposure to between 24-72h post-
263 aggregation resulted in significant ($p < 0.0001$) increase in AP2 γ positive cells in both absolute
264 (mean 285.4 +/- 138.1 sd cells) and relative (mean 59.13 +/- 34.39 sd) cell numbers, although we
265 noted a line specific difference between the Blimp1-GFP and BVSC lines (Figure 6G-H). The
266 increase in AP2 γ cells was specific to this time window, as Chi treatment for an equivalently
267 prolonged period of 48h between 0-48h post-aggregation in the BVSC gastruloids did not
268 significantly alter the AP2 γ cell number ($p = 0.43$) even though it did result in clear morphological
269 changes (Supplementary Figure 8A) and later addition of Chi (72-96h) led to a significant decrease
270 in Gld-PGCLCs (Supplementary Figure 8B-C). However, although changing the timing of Chi
271 exposure had an obvious effect on Gld-PGCLC numbers, altering the concentration of Chi
272 between 48-72h did not change the number of AP2 γ cells relative to the total gastruloid
273 (Supplementary Figure 8D-G). Together, these results suggest that gastruloid PGCLCs are
274 sensitive to Wnt signalling modulation, but that this occurs within a specific temporal window, in
275 a time-dependent but not concentration-dependent manner.

276 In addition, it is likely that endogenous as well as exogenous Wnt signalling may be
277 driving PGCLC formation in gastruloids. Gastruloids without a Chi pulse still contained AP2 γ
278 expressing cells (Supplementary Figure 8H-I) but BVSC gastruloids exposed to Wnt inhibition by
279 addition of XAV393 (XAV) resulted in loss of Gld-PGCLCs ($p = 0.033$, Figure 6I, Supplementary
280 Figure 8I). Additionally, the supplementation of 500ng/ml WNT3A led to a significant ($p = 0.0023$)
281 increase in Gld-PGCLCs in the BVSC gastruloids (Supplementary Figure 8H,I) although addition of
282 100ng/ml WNT3a on Blimp1-GFP gastruloids did not lead to significant changes (Figure 6J). Taken
283 together, these observations suggest that Wnt signalling is indeed necessary for the specification

Cooke et al.

284 of Gld-PGCLCs, and that gastruloids are particularly sensitive to the effect of this pathway
285 between 24-72h post-aggregation.

286 Finally, we turned our attention to the FGF signalling pathway, as an *in vitro* study found
287 that FGF inhibition during mesodermal induction resulted in the formation of mouse PGCLCs⁷⁶.
288 Phosphorylated ERK (pERK) was observed sporadically with no discernible spatial polarisation in
289 24/48h gastruloids, and neither was it specifically associated with AP2 γ positive cells
290 (Supplementary Figure 9A). Perturbation of the FGF pathway by addition of the FGF signalling
291 inhibitor, PD0325901 (herein, PD03), between 24-48h resulted in a marked increase in AP2 γ
292 expressing cells accompanied by loss of gastruloid elongation and disruption of FOXC1, a marker
293 of anterior mesoderm (Figure 7A). The AP2 γ -expressing total cell count was significantly ($p <$
294 0.0001) higher than the DMSO control (mean average of 290.3 cells +/- 95.45 sd) and increased
295 in a concentration-dependent manner when adjusted for gastruloid volume (Figure 7A-B,
296 Supplementary Figure 9B-C). This observation was independent of Chi, as an increase in AP2 γ
297 expression was also observed when PD03 was added to gastruloids in the absence of the Chi
298 pulse (Supplementary Figure 9B-C). The FGF inhibition-induced increase in AP2 γ was also
299 timeframe specific, with the largest change in AP2 γ number following PD03 addition between 24-
300 48h (Supplementary Figure 9D).

301 To further explore the role of FGF signalling on Gld-PGCLC specification, we made
302 gastruloids from cells containing a fluorescent reporter of the downstream target of the FGF
303 pathway, *Spry4* (*Spry4*-Venus), as well as this same reporter line with FGF4 knock-out (*Spry4*-
304 Venus; FGF4^{-/-})⁷⁷. *Spry4*-Venus expression was found to be biased towards the more posterior
305 end of the gastruloids, consistent with a posterior FGF signalling gradient in gastruloids³⁹ and in

306 the gastrulation-stage embryo^{78,79} and, like our pERK stainings, *Spry4* reporter expression did not
307 overlap specifically with the AP2 γ population (Figure 7C). However, gastruloids generated from
308 the FGF4 mutant cells had a significant increase in AP2 γ positive cells ($p = 0.0398$; Figure 7D-E)
309 akin to our results with small molecule inhibition of this pathway. While we cannot rule out that
310 these FGF-modulated AP2 γ positive cells show differences to Gld-PGCLCs in the absence of
311 exogenous FGF signalling, these results are suggestive of potential Gld-PGCLC sensitivity to FGF
312 signalling levels that should be investigated in future studies. Together, these signalling
313 modulation experiments suggest that there are specific time-windows that are sensitive to
314 signalling pathway perturbation in mouse gastruloids, that might correspond to times at which
315 cellular populations undergo cell fate decisions or emerge as new cell types, and particularly
316 implicate the Wnt and FGF pathways as key modulators of Gld-PGCLCs in gastruloids.

317

318 **Discussion**

319 We have shown that gastruloids generated from established PGC reporter lines contain a
320 population of cells that display key features of PGCs, including co-expression of pluripotency and
321 PGC-associated markers, that we call Gld-PGCLCs. Our findings, combined with those by
322 others^{42,33-35,41}, demonstrate that Gld-PGCLCs appear to be general feature present in mouse
323 gastruloids, despite the fact that gastruloids self-organise in the absence of extraembryonic
324 tissues³⁹. Our results have shown that gastruloids are able to specify a population of PGC-like
325 cells and support the continued maturation of this population towards late-PGC identities,
326 dynamically recapitulating many aspects of their *in vivo* counterparts in gene/protein expression,
327 epigenetic changes, and cell behaviour.

328 In addition, the Gld-PGCLCs generated here show advanced maturation equivalent to
329 ~E14.5 stage *in vivo* PGC development, that far surpasses traditional EB-PGCLC approaches that
330 are believed to stall at approximately E9.5-10.5 stages¹⁵. One example of this is in the expression
331 of DAZL, a late germ cell marker that is required for germ cell determination^{12,13}, which Gld-
332 PGCLCs express at 120h but is not typically reached in EB-PGCLCs¹⁵, except in the presence of
333 additional expansion factors such as forskolin and rolipram⁸⁰. It is likely that the close association
334 of Gld-PGCLCs with neighbouring tissues in gastruloids, including the early primitive streak-like
335 domain, the epithelial endodermal tract and the GATA4+ anterior niche cells, strongly support
336 the notion that mouse gastruloids benefit from organised co-development of Gld-PGCLCs
337 alongside somatic populations. Potentially, this could explain their apparent maturation, as local
338 endogenous signalling alongside dynamic cell movements might be optimising the
339 developmental time-course of these cells towards developmentally-faithful fates¹⁴. However, it
340 is indeed surprising that Gld-PGCLCs are able to reach states equivalent to embryonic E14.5 PGCs
341 by 144h, given that previous studies have suggested that gastruloids at this experimental
342 timepoint are overall most similar to ~E9.5 stages³². It is possible that this observation therefore
343 reveals potential intrinsic properties of PGC(LC)s that, in the embryo, need to traverse long
344 distances to reach the incipient gonads, but may already be competent to reach mitotic arrest
345 stages given the right environment in a simplified *in vitro* system. However, further studies would
346 be required to test this hypothesis.

347 Our perturbation experiments likewise challenge the role of different signalling pathways
348 in mouse PGC specification. While BMP signalling has been proposed to principally mediate initial
349 specification of the PGC lineage^{8,7}, we find little evidence that BMP is required for Gld-PGCLC

350 specification. These results are directly comparable to those performed by Morgani and
351 colleagues⁷³ who similarly showed that PGCLCs can be induced in BMPR1A-/- embryoid bodies,
352 and indeed that the proportion of AP2 γ + PGCLCs increases in this case. Together, such results are
353 challenging the notion that BMP signalling is directly required for PGC(LC) induction. Instead, Wnt
354 and FGF signalling appear to be playing a greater role in determining the germline-to-soma
355 balance of cell type proportions in gastruloids. It is possible that BMP signalling is a required
356 feature of mouse embryonic PGC specification primarily because of its role in the
357 extraembryonic-to-embryonic signalling cascades that are necessary to localise the site of
358 presumptive PGC specification to the Proximal Posterior Epiblast^{1,81-83}. In gastruloids lacking
359 extraembryonic tissues, the competence of the cells to form PGCLCs is likely to be global rather
360 than localised, similar to experiments isolating epiblast from visceral endoderm and
361 extraembryonic ectodermal tissues^{82,7}. However, unlike those early epiblast isolation assays, in
362 this case the time-window of competence appears to have shifted beyond the BMP-receptive
363 stage to a Wnt-receptive stage, particularly between 24-72h of the gastruloid protocol,
364 consistent with similar timepoints in the mouse embryo, at about E5.75 to E6.75^{7,84,17}. After this,
365 FGF may well act to ‘fine-tune’ the number and balance proportions of PGCLCs, as has been
366 shown across early cell fate decisions⁸⁵, and similar to its function in separating PGCs from the
367 soma in the Axolotl⁸⁶. Whether this observation is partly specific to the *in vitro* gastruloid context
368 or reflects a more general feature of mouse PGC specification and regulatory control remains to
369 be seen.

370 Future research may help to unravel further the signalling mechanisms at play within such
371 systems, including the cross-talk between signalling pathways, and the relationship between

372 tissue types and signalling dependencies, potentially leading to answers to longstanding
373 questions that still exist such as how PGCs form in the PPE along with multiple other cell types
374 exposed to the same signalling environment and what exactly determines the cell proportions¹⁴.
375 In addition, gastruloids have been more recently been generated from human PSCs⁷⁴, so it would
376 be very interesting to see whether these findings translate into human gastruloids, particularly
377 given the current debate about the epiblast or amniotic origin of PGCs in the human embryo⁸⁷.

378 Overall, our observations highlight the experimental tractability of *in vitro* embryo-like
379 models to generate rare cell types within a native embryo-like context that opens a new route
380 towards exploring exactly how tissue and cell interactions might mediate cell fate specification
381 in embryogenesis. In addition, the Gld-PGCLCs generated here represent an advanced
382 maturation state that has not previously been achieved *in vitro* without the exogenous
383 application of PGC-specific maturation factors or gonadal co-culture. Both of these features; their
384 maturity and their inherent co-development; represent a unique advantage of using embryo-like
385 model systems over traditional directed differentiation or disorganised EB systems, since cell
386 types are specified in a manner that harnesses the mechanisms that are used by the embryo
387 itself.

388

389 **Material and Methods**

390 *Cell culture and maintenance*

391 The following mESC lines were used: Blimp1-GFP⁴ (kindly provided by A. Surani),
392 Blimp1:mVenus Stella:eCFP (BVSC)⁸⁸ (kindly provided by M. Saitou), Sox17 -/- (as described
393 below), FoxA2 -/-⁵⁶ (kindly provided by H. Likert), BMPR1a -/-⁷⁵ (kindly provided by T. Rodriguez),

394 Spry4:Venus and Spry4:Venus FGF4 $-/-^{77}$ (kindly provided by C Schroeter). All mESC lines were
395 cultured in 2iLif in N2B27 (NDiff227 Takara Bio, Y40002, supplemented with 3 μ M CHIR99021
396 (Chi), 1 μ M PD0325901 (PD03) and 11ng/ml mLIF) on gelatinised (0.1% gelatin) tissue culture
397 flasks or 6-well plates kept in humidified incubators at 37°C, 5% CO₂. Cells were passaged into
398 new flasks or plates every two days with media exchanged daily.

399

400 *Generation of Sox17 $-/-$ cell line*

401 Cells were grown for at least two passages prior to transfection. Cas9/gRNA targeting was used
402 to generate strand breaks alongside homologous recombination with a targeting vector⁸⁹. An
403 eGFP sequence was knocked-in to both alleles of the *Sox17* gene by plasmid transfection. Guide
404 RNAs (gRNAs) were designed to target PAM sequences at the start and end of the protein coding
405 sequence (Table 1). gRNAs were ligated into the PX459-Cas9 plasmid⁹⁰ after cleavage with BbsI.
406 The correct integration of the gRNAs was confirmed after cloning by Sanger sequencing using the
407 hU6-F oligonucleotide (see Table 1). Cells were transfected with three plasmids (*Sox17 GFP*,
408 *PX459-gRNA1*, *PX459-gRNA2*) by incubation with FuGene HD (Promega, E2311) following a
409 previously described protocol⁹¹. Transfected cells were grown under selection with puromycin
410 (Thermo Fisher, A1113803) and clones were picked for expansion. Genomic DNA was prepared
411 from the primary clones for genotyping by PCR, with the primers as described in Table 1.

412 *Table 1: Guide RNA sequences for CRISPR/Cas9 targeting and validation.*

Name	Sequence (5'-3')
gRNA1	aaacTCAAATGTCGGGGTAGTTGC
gRNA2	aaacGATGCGGGATACGCCAGTGAc
hU6-F	GAGGGCCTATTCCCATGATT

P1 (Fwd; wt Sox17)	GCTTTACGAGTTCCCTCTGGGC
P2 (Rev; 3' UTR Exon 5)	GGCAAATTTGTGGGAAGTGGG
P3 (Rev; eGFP)	CGTTGGGTCTTGCTCAGG
P4 (Rev; wt Sox17)	CCATGTGCGGAGACATCAGC

413

414 *Gastruloid generation*

415 Gastruloids were prepared following the previously reported protocol⁹². Briefly, mESCs
416 were trypsinized and pelleted, with the cell pellet washed in PBS before repeating the process
417 then resuspending in N2B27. The cells were counted and diluted to provide 300 cells per well,
418 before pipetting into U-bottom suspension 96-well plates (Greiner), except in the case of BVSC
419 which were pipetted into cell-repellent, ultra-low attachment 96-well plates (Greiner).
420 Aggregates were incubated at 37°C, 5% CO₂ in a humidified incubator. After 48 hours, N2B27
421 supplemented with 3μM Chi was added, and every subsequent 24 hours the media was aspirated
422 and replaced with fresh N2B27. Signalling modulation in gastruloids was performed through
423 addition of small molecule ligands or activators/inhibitors as indicated in the text and figure
424 legends (Table 2).

425

426

427 Table 2: Signalling modulators

Name	Supplier
Bone morphogenetic protein 4 (BMP4)	R&D Systems, 314-BP
CHIR99021 (Chiron or CHI)	Cambridge Stem Cell Institute
Dorsomorphin Homologue 1 (DMH1)	MedChem Express, HY-12273
LDN 193189 dihydrochloride (LDN)	Tocris Biosciences, 6053
PD0325901 (PD03)	Cambridge Stem Cell Institute
Wnt3a (Wnt family Member 3a) protein	Abcam, ab81484
XAV939 (XAV)	Selleck Chemicals, S1180

428

429 *Immunofluorescence staining*

430 Immunostaining was performed based on a previously published protocol⁹³. Gastruloids
431 were collected and washed twice in PBS before fixing in 4% PFA in PBS at 4°C (2h to overnight on
432 an orbital shaker). Three PBS washes to remove the PFA before three washes with blocking buffer
433 PBSFT (10% FBS, 0.2% Triton X-100 in PBS) and blocking in PBSFT for 1-2hr at 4°C on an orbital
434 shaker. Primary antibodies (see Table 3) were added in PBSFT and incubated overnight at 4°C on
435 an orbital shaker. A total of 10 washes with PBSFT were performed before secondary antibodies
436 (diluted 1 in 500) (see Table 4) and Hoechst (Hoechst 33342 trihydrochloride trihydrate,
437 Invitrogen Mol Probes H3570, 10mg/ml solution in water, 16.2mM) at 1 in 800 dilution were
438 added and incubated overnight at 4°C on an orbital shaker. Three PBSFT washes followed by five
439 PBT (0/2% FBS, 0.2% Triton X-100 in PBS) washes were performed before the gastruloids were
440 transferred to ScaleS4 tissue clearing solution (40% D-(-)-sorbitol, 10% Glycerol, 4M Urea, 0.2%
441 Triton X-100, 20% DMSO) in a glass bottom dish and incubated overnight at 4°C on an orbital
442 shaker or mounted on coverslips before imaging.
443 For the 5hmC immunostaining the gastruloids were treated with 1N HCl for 1 hour at room
444 temperature to expose the DNA prior to primary antibody addition. For the phosphorylation
445 antibodies, PBS in the solution buffers was replaced with TBS.

446 Table 3: Primary antibodies

Antibody target	Host species	Supplier	Catalogue number	Dilution
5hmC	Rabbit	Abcam	ab214728	1 in 100
AP2-gamma	Mouse	Santa Cruz	sc-53162	1 in 100
Brachyury	Rabbit	Abcam	ab209665	1 in 100
DAZL	Rabbit	Abcam	ab215718	1 in 200
E-cadherin	Mouse	Abcam	ab76055	1 in 100
E-cadherin	Rat	Takara	M108	1 in 100
EpCAM	Rabbit	Abcam	ab221552	1 in 100

FoxA2	Rabbit	Abcam	ab108422	1 in 100
FoxC1	Rabbit	Abcam	ab223850	1 in 200
GATA4	Rabbit	Abcam	ab84593	1 in 200
GCNA1 (Tra98)	Rat	Abcam	ab82527	1 in 200
GFP	Chicken	Abcam	ab13970	1 in 2000
Histone H3K27me3	Rabbit	Abcam	ab192985	1 in 100
Nanog	Rat	ThermoFisher Scientific	14-5761-80	1 in 250
Nanog	Rabbit	Abcam	ab214549	1 in 100
N-cadherin	Mouse	BD Biosciences	610921	1 in 200
Oct4	Rabbit	Abcam	ab200834	1 in 200
PECAM1 (CD31)	Rat	BD Biosciences	557355	1 in 200
PhosphoERK	Rabbit	Cell Signalling Technology	4370	1 in 100
PhosphoSMAD1/5/8	Rabbit	Cell Signalling Technology	13820	1 in 100
Stella (DPPA3)	Goat	R&D Systems	AF2566	1 in 50
Sox2	Rabbit	Abcam	ab92494	1 in 200
Sox17	Rabbit	Abcam	ab224637	1 in 100
CDX2	Rabbit	Abcam	ab76541	1 in 200

447

448

Table 4: Secondary antibodies and primary conjugate

Antibody target	Antibody species/type	Supplier	Catalogue number	Dye
Chicken IgY	Goat	Abcam	ab150173	Alexa 488
Mouse IgG	Donkey	ThermoFisher	A10037	Alexa 568
Mouse IgG	Goat	ThermoFisher	A21236	Alexa 647
Rabbit IgG	Donkey	ThermoFisher	A21206	Alexa 488
Rabbit IgG	Donkey	ThermoFisher	A10042	Alexa 568
Rabbit IgG	Donkey	ThermoFisher	A31573	Alexa 647
Rat IgG	Donkey	ThermoFisher	A21208	Alexa 488
Rat IgG	Donkey	Abcam	ab150153	Alexa 647
PECAM1(CD31)	Rat	BD Biosciences	553373	Phycoerythrin (PE)

449

450

451 *Imaging*

452 Confocal imaging was performed with either a Zeiss LSM770 or LSM880 Inverted confocal
453 microscopes, using a Plan-Apochromat 20x/0.8 DICII air objective, imaging 6µm Z sections. Data
454 was captured using the Zen software (Carl Zeiss Microscopy Ltd) and images were processed

455 using ImageJ (FIJI)⁹⁴ to generate Z slice section images or Z max projections. Hoechst channel
456 when not shown was used to trace gastruloid outlines to show morphology.
457 Live imaging was carried out in environmental control units (humidified, 5% CO₂, 37°C) using
458 either widefield Nikon Inverted Eclipse Ti2 microscopes (15x or 20x ELWD objectives,
459 GFP/YFP/mCherry triple filter) operated by open-source Micro manager software (Vale lab, UCSF,
460 USA) or a Zeiss LSM880 NLO Invert multi-photon microscope (20x objective) operated by Zen
461 software. The Chameleon laser in the multi-photon microscope was tuned to 880nm, with filter
462 515/30 and 450/80 to detect GFP and CFP and CFP only respectively. Images were captured in
463 single plane every 20 minutes for over 14 hours on the Nikon and Z stacks taken every 30 minutes
464 for over 18 hours on the multi-photon.

465

466 *Image analysis*

467 Expression profiles were generated in ImageJ by drawing a segmented line (120 width for
468 whole gastruloid profiles or 20 width for DAZL/NANOG cells) from posterior to anterior of Z max
469 projections of the gastruloids (also used to determine length of gastruloids with 'measure'
470 function), plotting the fluorescence profile using the 'Plot Profile' function then normalising both
471 the length and signal (against Hoechst) before plotting in Prism (GraphPad) software.
472 Cell counting (Parameter option: cell size = 8) and gastruloid volume calculations were performed
473 using the IMARIS software (Oxford Instruments), with gastruloid volumes calculated by creating
474 a surface (surface smoothing 1.5, threshold 800-2000) on the Hoechst channel. Cell tracking and
475 co-expression was also performed using IMARIS software. Gastruloid tissue features and PGCLC

476 clusters were assessed by eye in ImageJ. Means, standard deviations and significance (unpaired
477 t-test with Welch's correction) were calculated in Prism.

478

479 *Doubling time calculations*

480 The doubling time of the PGCLCs was calculated based upon the mean cell numbers at each time
481 point, using the following equations to first calculate the growth rate, then the doubling time
482 between time points:

483 Growth rate (Gr) (%) = ((current cell no. – previous cell no./previous cell no.) x 100

484 Doubling time (per 24 hours) = (log(2)/log(1 + Gr/100)) x 24

485

486 *Flow cytometry and cell sorting*

487 Gastruloids were collected and washed twice in PBS before incubating at room
488 temperature for 8 mins in Trypsin-EDTA before quenching with 10% FBS in PBS. Cells were
489 pelleted at 230xg for 5mins before resuspending in filtered 1% FBS in PBS. Cell solution was
490 passed through tube filter (35μm) then counted and divided into tubes before antibody addition.

491 Incubated at 4°C on rotator for 1 hour then centrifuged at 800 rpm for 5 mins at 4°C. Supernatants
492 were aspirated and sample washed with filtered 1% FBS in PBS before repeating wash and
493 transferring to chilled flow tubes. Cells were applied to a BD FACSaria™ Fusion III (BD Biosciences)
494 performed by the Francis Crick Flow Cytometry Science and Technology Platform (STP) staff. Data
495 analysis was performed using FlowJo (BD Biosciences) software.

496 Cells were sorted on a BD FACSaria™ Fusion III (BD Biosciences) performed by the Francis
497 Crick Flow Cytometry Science and Technology Platform (STP) staff. Sorting was based on the

498 reporters Stella:eCFP, Blimp1:mVenus or PECAM1-PE and SSEA1-A647 antibodies. Sorted cells
499 were transferred to DNA low-bind tubes and centrifuged at 300 rcf for 5 mins at 4°C. The
500 supernatant was aspirated and, using cut tips, 1ml of chilled PBS pipetted up and down 10 times.
501 This was repeated twice more, and after the final centrifugation step the cells were resuspended
502 in 200µl chilled PBS then 800µl of chilled 100% methanol added dropwise and with stirring. Fixed
503 cells were stored at -80°C until ready for 10x preparation for scRNAseq.

504

505 *Single-cell 10x sequencing*

506 The sorted, fixed and frozen cells were thawed on ice for 5 minutes before centrifugation at 1,000
507 xg for 5 minutes (at 4°C). Supernatant was carefully aspirated without disturbing the pellet before
508 resuspending the pellet in the appropriate volume of Wash-Resuspension buffer; 3x SSC Buffer
509 (Invitrogen, 15557-044) supplemented with 0.04% Bovine Serum Albumin (BSA) (Invitrogen,
510 AM2616), 1mM DL-Dithiothreitol solution (DTT) (Sigma-Aldrich, 646563) and 0.2U/µl Protector
511 RNase inhibitor (Roche, 3335399001) to give 1000 cells/µl in 50µl or minimum volume of 50µl if
512 not possible to obtain that concentration.

513 Quality control on the cells and counts were performed on a Luna FX7 cell counter (Logos
514 biosystems) prior to applying to 10x Chromium library preparation performed according to
515 manufacturer's instructions by the Advanced Sequencing Facility staff at the Francis Crick
516 Institute. Single cell libraries of 100 bp paired-end reads were pooled and sequenced using
517 Illumina NovaSeq 6000, carried out by the Advanced Sequencing facility at the Francis Crick
518 Institute.

519

520 *scRNA-seq Analysis*

521 FastQ files were quantified into expression matrices using Cell Ranger (6.1.2) using the 10x-
522 provided refdata-gex-mm10-2020-A index. Seurat (4.0.3) objects were created using the filtered
523 matrix for each sorted population in R 4.1.1. Each population was filtered according to the
524 number of reads, features and proportion of mitochondrial expression to remove low-quality
525 cells. Quality-controlled datasets were integrated into a single “120h” dataset with Seurat⁹⁵.
526 Datasets were scaled, projected and clustered using the first 10 principal components for each
527 sorted population or 15 for the integrated dataset.

528

529 Published datasets were reprocessed using Seurat 4.0.3 from either the counts matrix of a Seurat
530 object or output of Cell Ranger. The Zhao et al. data was subset to retain only cells whose author-
531 determined cell type included “PGC”. Where possible, the same cell barcodes, variable features
532 and dimensionality were used when reprocessing the published datasets and any published cell
533 metadata was included. Qualitative comparison between the published and recalculated UMAPs
534 reassured us that the structure in the reference data was preserved in our reprocessed objects.
535 For visualisation, UMAP coordinates were reflected to preserve left-to-right time progression,
536 where possible.

537

538 Reference and query datasets were subsequently analysed using Seurat⁹⁶ to transfer labels of
539 published data onto the query data and embed the query data into the reference UMAP. We first
540 used the van den Brink dataset as a query and transferred the cell type label onto the 120h
541 dataset which was subsequently filtered for cells that were most-likely PGC-like. The Zhao et al.

542 dataset⁶⁶ was used as a reference for the 120h PGC-like and Ramakrishna et al.²⁹ PGC cells
543 identified in the publication as “cluster 5 excluding E10.5”. From this comparison, both cell type
544 labels (“cell type 1” and “cell type 2”) as well as time point were transferred.

545

546 **Data Availability**

547 Raw and processed scRNA-seq data for each sorted population are deposited and publicly
548 available in the Gene Expression Omnibus (GEO) at NCBI under accession [GSE228406](https://www.ncbi.nlm.nih.gov/geo/record/GSE228406). Processed
549 data includes both filtered and raw expression matrices output by Cell Ranger.

550

551 **Acknowledgements**

552 We would like to thank A. Surani, M. Saitou, C. Schroeter and T. Rodriguez for kindly providing
553 cell lines used in this manuscript. We also thank A. Martinez Arias for his support, advice and
554 feedback throughout this project, as well as F. Cermola for feedback on preliminary experiments,
555 C. Mulas and K. Jones for their advice and expertise in CRISPR/Cas9 gene editing and I. Rodriguez
556 Polo for feedback on the manuscript. In addition, the authors gratefully acknowledge the Francis
557 Crick Light Microscopy, Flow Cytometry, Advanced Sequencing and Bioinformatics and
558 Biostatistics Science and Technology Platforms (STPs) for their support and assistance in this
559 work. C.B.C. is an employee of Abcam Ltd. C.B.C., C.B., P.B-B. and N.M. are funded by the Francis
560 Crick Institute which receives its core funding from Cancer Research UK (CC2186), the UK Medical
561 Research Council (CC2186), and the Wellcome Trust (CC2186). P.B-B. and J.N. were funded by a
562 Wellcome Trust Strategic Award (105031/D/14/Z).

563

564 **Competing Interests**

565 C.B.C. is an employee of Abcam Ltd. N.M. is an inventor on patent #PCT/GB2019/052668 to
566 University of Cambridge. The authors declare no other competing interests.

567

568 **Figure Legends**

569 **Figure 1: Characterising gastruloid-derived PGCLCs.** **(A)** Schematic of gastruloid protocol and
570 morphological changes from 24 to 144h. **(B)** Maximum projection of gastruloids from BVSC and
571 Blimp1-GFP reporter lines. In BVSC gastruloids, Blimp1:mVenus is membrane-targeted while
572 Stella:eCFP is found throughout the cell. **(C)** Z section images of Blimp1-mVenus+ endodermal
573 tracts. **(D)** Expression of AP2γ and OCT4 in gastruloids. **(E)** Expression of AP2γ and OCT4 in
574 gastruloids. **(F-G)** AP2γ-expressing cells do not co-express FOXA2 **(F)** or SOX17 **(G)**. **(H)** Cell counts
575 of AP2γ-expressing cells from both Blimp1-GFP and BVSC gastruloids. Black bars represent the
576 mean value at each time point. Cyan arrowheads, *Stella*+ cells; Yellow arrowheads, AP2γ+ cells;
577 Insets, higher magnification images; Dashed line, morphological gastruloid outline from Hoechst
578 staining; Dotted line, magnification region. Scale bars, 100 μm.

579

580 **Figure 2: Anterior localisation and movement of Gld-PGCLCs.** **(A)** Anterior-localised clusters of
581 AP2γ+ cells at 144h. White arrows, location of discrete clusters. Scale bars, 100 μm. **(B)** High
582 magnification Z slice of an OCT4+ and PECAM1+ cluster at 144h. Scale bars, 100 μm. **(C)**
583 Quantification of the number of cells in each cluster at 144h, as determined by co-expression of
584 at least two of *Blimp1*, AP2γ, PECAM1 or DAZL. Samples from n = 7 gastruloids. Black bar indicates
585 the median average. **(D)** Anteroposterior localisation of AP2γ+ cells along the gastruloid length

586 (see Methods). Gld, Individual gastruloid replicates. Inset, representation of a 120 width line
587 spanning anteroposterior axis of Z max projection gastruloid. **(E)** Schematic representation of
588 Gld-PGCLC localisation within gastruloids across their time-course. **(F)** Widefield time-lapse
589 imaging of a BVSC gastruloid from 98-106h. Top, whole gastruloid image; Bottom, zoom-in of
590 fluorescent reporter domain. Yellow arrowheads, *Stella*⁺ cells. Scale bars, 100 μ m. **(G)**
591 Multiphoton time-lapse images of a BVSC gastruloid from 129.5-135.5h with cell tracking (plotted
592 line). Red arrowheads, cell morphological features associated with active migration. Scale bars,
593 10 μ m.

594

595 **Figure 3: Knockout of Gastruloid Endodermal tissue leads to aberrant Gld-PGCLC localisation**
596 **but maintains mesoderm and ectodermal populations.** **(A)** Quantification of AP2 γ ⁺ cell counts
597 in Blimp1-GFP and BVSC gastruloids (Wildtype), alongside FoxA2^{-/-} and Sox17^{-/-} gastruloids.
598 Black bars indicate the median average; n.s., no significant difference. **(B)** AP2 γ ⁺ cells localise into
599 large clusters in FoxA2^{-/-} gastruloids and show no E-Cadherin (E-CAD positive) endodermal tracts
600 (AP2 γ negative). **(C)** Confirmation of lack of FOXA2 expression detected in FoxA2^{-/-} gastruloids.
601 **(D)** Maintenance of FOXC1 mesoderm in FOXA2^{-/-} gastruloids at 120h. **(E)** Neural ectodermal cell
602 types present in FoxA2^{-/-} gastruloids as evidenced by N-Cadherin (N-CAD) and SOX2 expression.
603 **(F)** Mesodermal T-BRA expression in FoxA2^{-/-} gastruloids at 102h but not 120h. **(G)** Later stage
604 putative Gld-PGCLC in 138h FoxA2^{-/-} gastruloids. **(H)** AP2 γ ⁺ cells localise into large clusters in
605 Sox17^{-/-} gastruloids and show no E-Cadherin (E-Cad positive) endodermal tracts (AP2 γ negative).
606 **(I)** Confirmation of lack of SOX17 expression detected in SOX17^{-/-} gastruloids. **(J)** Presence of
607 several scattered FOXA2⁺ cells (purple arrowheads) in SOX17^{-/-} gastruloids. **(K)** Maintenance of

608 FOXC1 mesoderm in SOX17-/- gastruloids at 120h. **(L)** Neural ectodermal cell types present in
609 SOX17-/- gastruloids as evidenced by N-Cadherin (N-Cad) and SOX2 expression. Blue arrowheads,
610 SOX2+, N-Cad- cells likely to be Gld-PGCLCs. **(A-L)** Insets, higher magnification images; Dashed
611 line, morphological gastruloid outline from Hoechst staining; Dotted line, magnification region.
612 Scale bars, 100 μ m.

613

614 **Figure 4: Maturation of Gld-PGCLCs in epigenetic and protein expression changes associated**

615 with germ cell determination. (A-B) Histone H4 trimethylation of K27 (H3K27me3) in Gld-PGCLCs
616 in Blimp1-GFP **(A)** and BVSC **(B)** gastruloids at 144h. In BVSC gastruloids, Blimp1:mVenus is
617 membrane-targeted while Stella:eCFP is found throughout the cell. **(C-D)** 5-
618 Hydroxymethylcytosine (5hmC) in Gld-PGCLCs in Blimp1-GFP **(C)** and BVSC **(D)** gastruloids at
619 144h. **(E)** Quantification of DAZL-expressing cells in BVSC and Blimp1-GFP gastruloids. Black line
620 represents the mean cell count. n.s., no significant differences. **(F)** Quantification of Gld-PGCLC
621 localisation along the anteroposterior axis, using the posterior-most detected expression from
622 each gastruloid as a percentage of total length (see Methods for details). Black line represents
623 the median value. **(G-H)** DAZL expression in 144h BVSC **(G)** and Blimp1-GFP **(H)** gastruloids. Yellow
624 arrowhead, NANOG+, DAZL- cell; Red arrowhead, NANOG-, DAZL+ cells. Insets, higher
625 magnification images; Dashed line, morphological gastruloid outline from Hoechst staining;
626 Dotted line, magnification region. Scale bars, 100 μ m.

627

628 **Figure 5: Single-cell transcriptomic comparison between Gld-PGCLCs and an *in vivo* PGC**
629 **dataset⁶⁶.** **(A, C)** Quantification of label transfer prediction from Gld-PGCLCs (0.6+ max prediction

630 score) in terms of embryonic time **(A)** and cell stage **(C)**. **(B, D)** UMAP of PGC-only cell types from
631 Zhao and colleagues, in terms of time **(B)** and stage **(D)** with Gld-PGCLC embedded. **(E)** UMAP
632 projection of Gld-PGCLC (0.9+ max prediction score) and published EB-PGCLCs²⁹ into the *in vivo*
633 UMAP of the full dataset. **(F)** Comparison of UMAP projection of Gld-PGCLCs and published EB-
634 PGCLCs onto *in vivo* PGC dataset, by origin (left) and cell state (right). **(G)** Frequency of cell
635 transfer labels from EB-PGCLCs or Gld-PGCLCs (0.6+ max prediction score) onto the *in vivo* PGC
636 dataset, by embryonic time point.

637

638 **Figure 6: BMP and Wnt signalling modulation in Gld-PGCLCs.** **(A)** Maximum projection images
639 of BVSC gastruloids following BMP application at timepoint and concentrations indicated. In BVSC
640 gastruloids, Blimp1:mVenus is membrane-targeted while Stella:eCFP is found throughout the
641 cell. **(B)** Quantification of AP2γ+ cells in conditions indicated from BVSC and Blimp1-GFP
642 gastruloids at 120h. n.s., no significant differences. **(C)** Maximum projection images of gastruloids
643 following BMP inhibition by DMH1 application at timepoint and concentrations indicated. **(D)**
644 Quantification of AP2γ+ cells in DMSO or 500nM DMH1, from BVSC and Blimp1-GFP gastruloids
645 at 120h. **(E)** Gastruloids made from BMPR1A -/- cell line, showing aberrant gastruloid morphology
646 with lack of elongation, and significant numbers of AP2γ+ cells. **(F)** Absence of pSMAD1/5/8 in
647 BMPR1A-/- gastruloids at 120h. **(G)** Maximum projection of gastruloids exposed to different
648 timing of Chi application, as indicated. **(H)** Quantification of AP2γ+ cells in conditions indicated,
649 from BVSC and Blimp1-GFP gastruloids at 120h. **(I)** Maximum projection of BVSC gastruloids
650 exposed to Wnt signalling inhibition by application of XAV. **(J)** Maximum projection of Blimp1-
651 GFP gastruloid exposed to WNT3a at timepoint shown. **(B, D, H)** Black bars represent the mean

652 average. **(A-J)** CHI, CHIR99021; XAV, XAV939. Dashed line, morphological gastruloid outline from
653 Hoechst staining; Scale bars, 100 μ m.

Figure 7: FGF signalling modulation in Gld-PGCLCs. **(A)** Maximum projection of gastruloids exposed to FGF signalling inhibition through PD0325901 (PD03). In BVSC gastruloids, Blimp1:mVenus is membrane-targeted while Stella:eCFP is found throughout the cell. **(B)** Quantification of AP2 γ + cells in conditions indicated, from BVSC and Blimp1-GFP gastruloids at 120h. **(C)** Maximum projection of Spry4:mVenus FGF4 -/- gastruloids at 120h. **(D)** Quantification of AP2 γ + cells in non-mutant Spry4:Venus gastruloids and in Spry4:mVenus FGF4 -/- gastruloids at 120h. n.s., no significant differences. Dashed line, morphological gastruloid outline from Hoechst staining; Scale bars, 100 μ m.

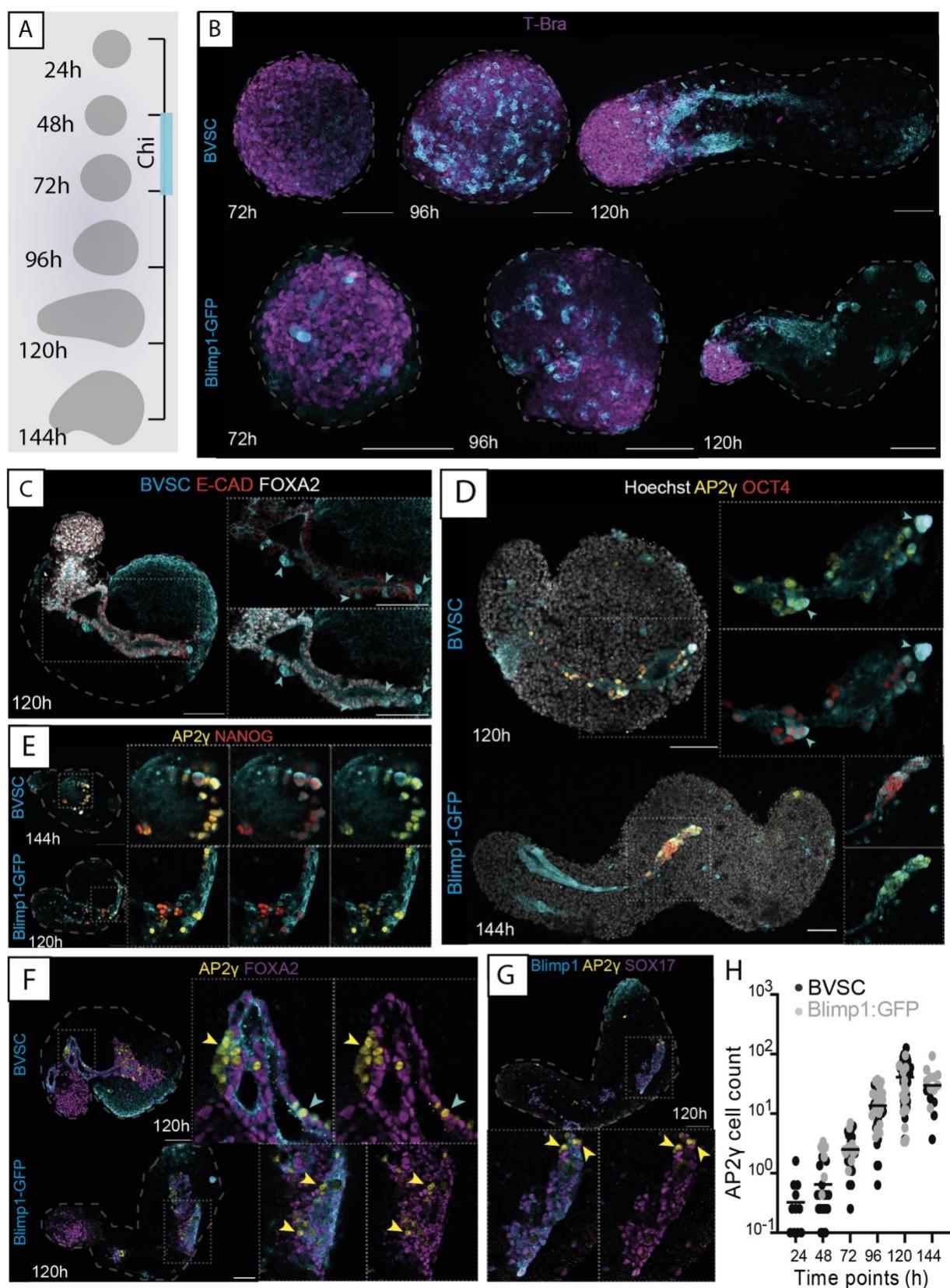


Figure 1

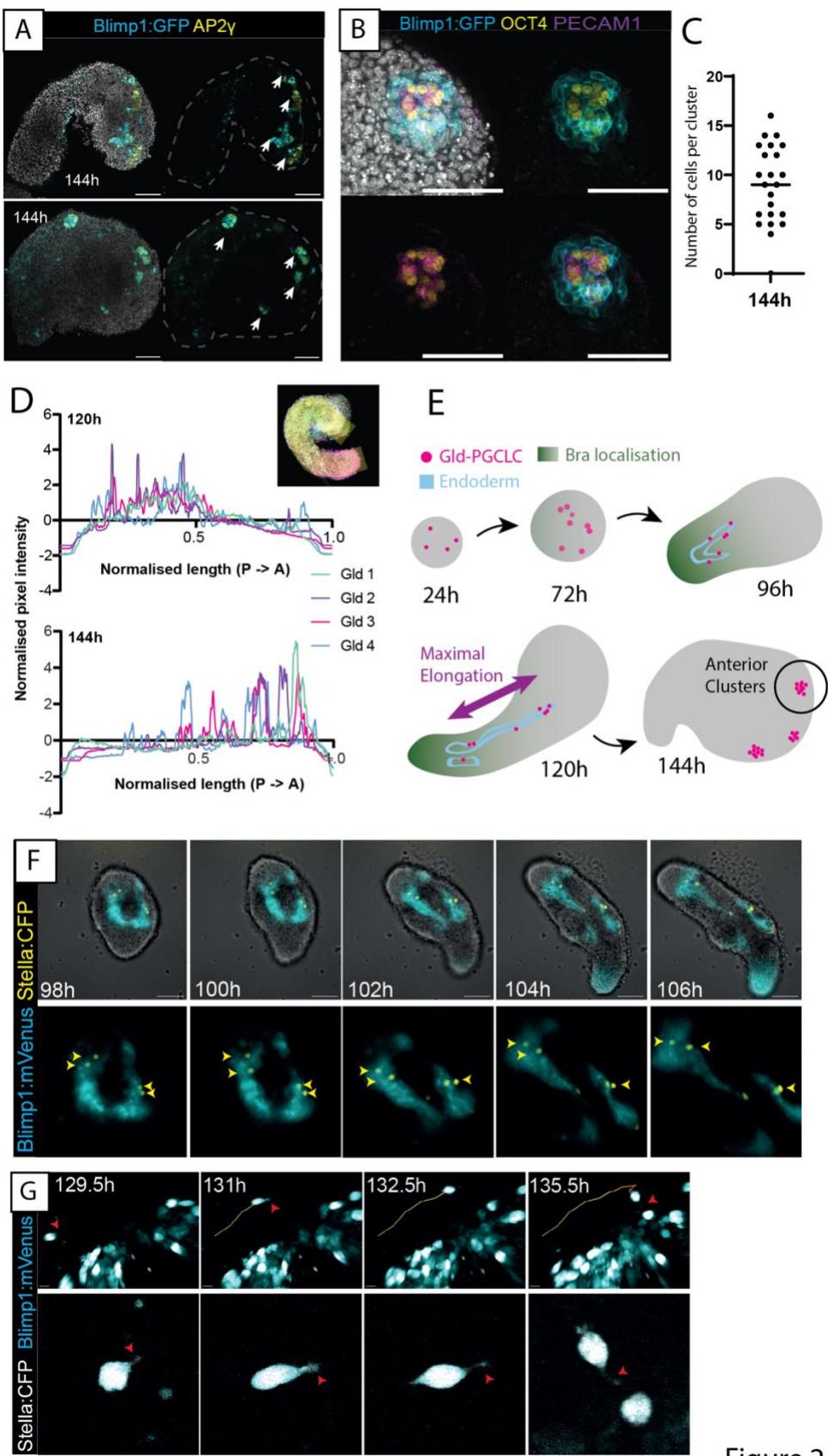


Figure 2

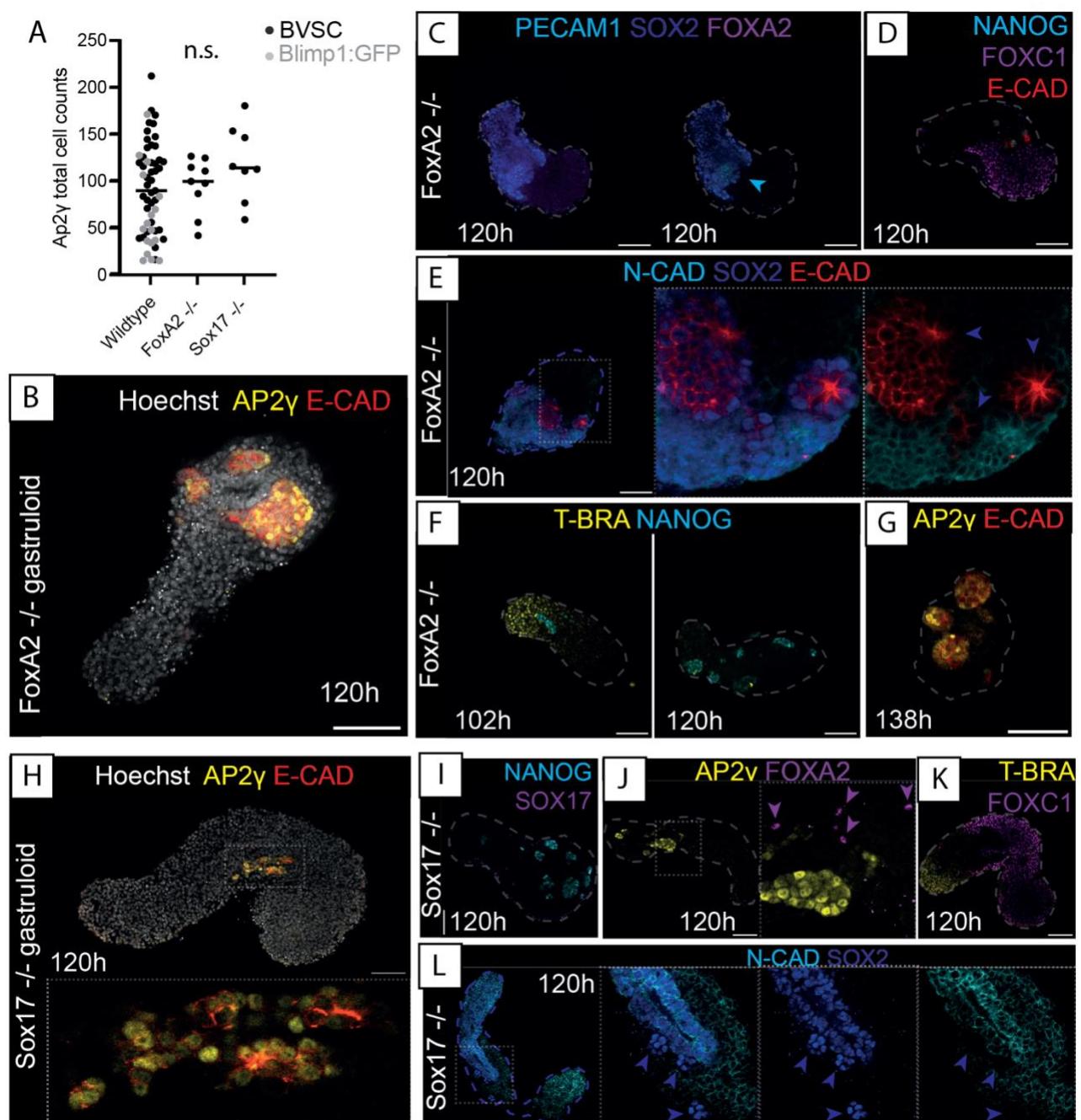


Figure 3

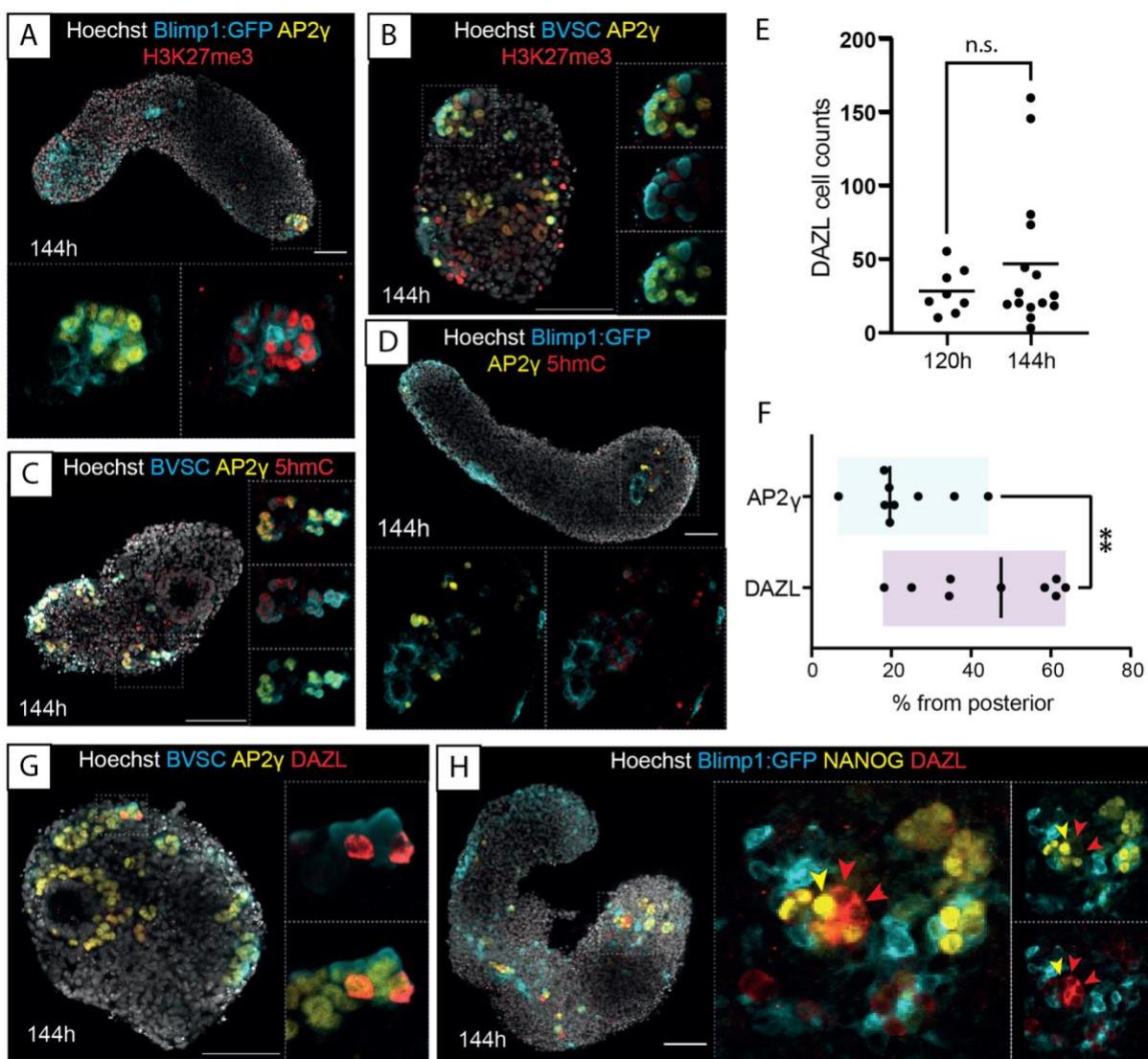


Figure 4

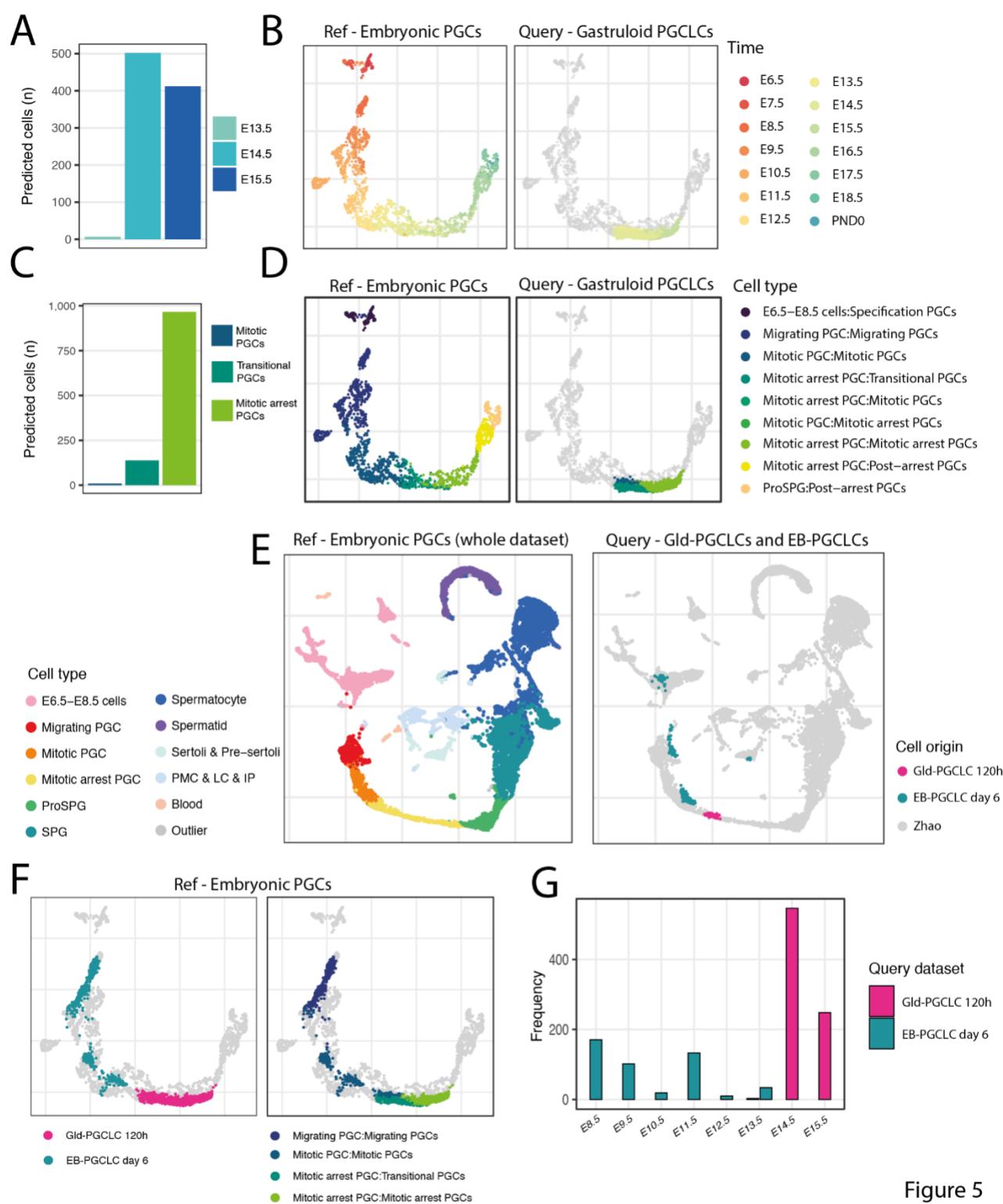


Figure 5

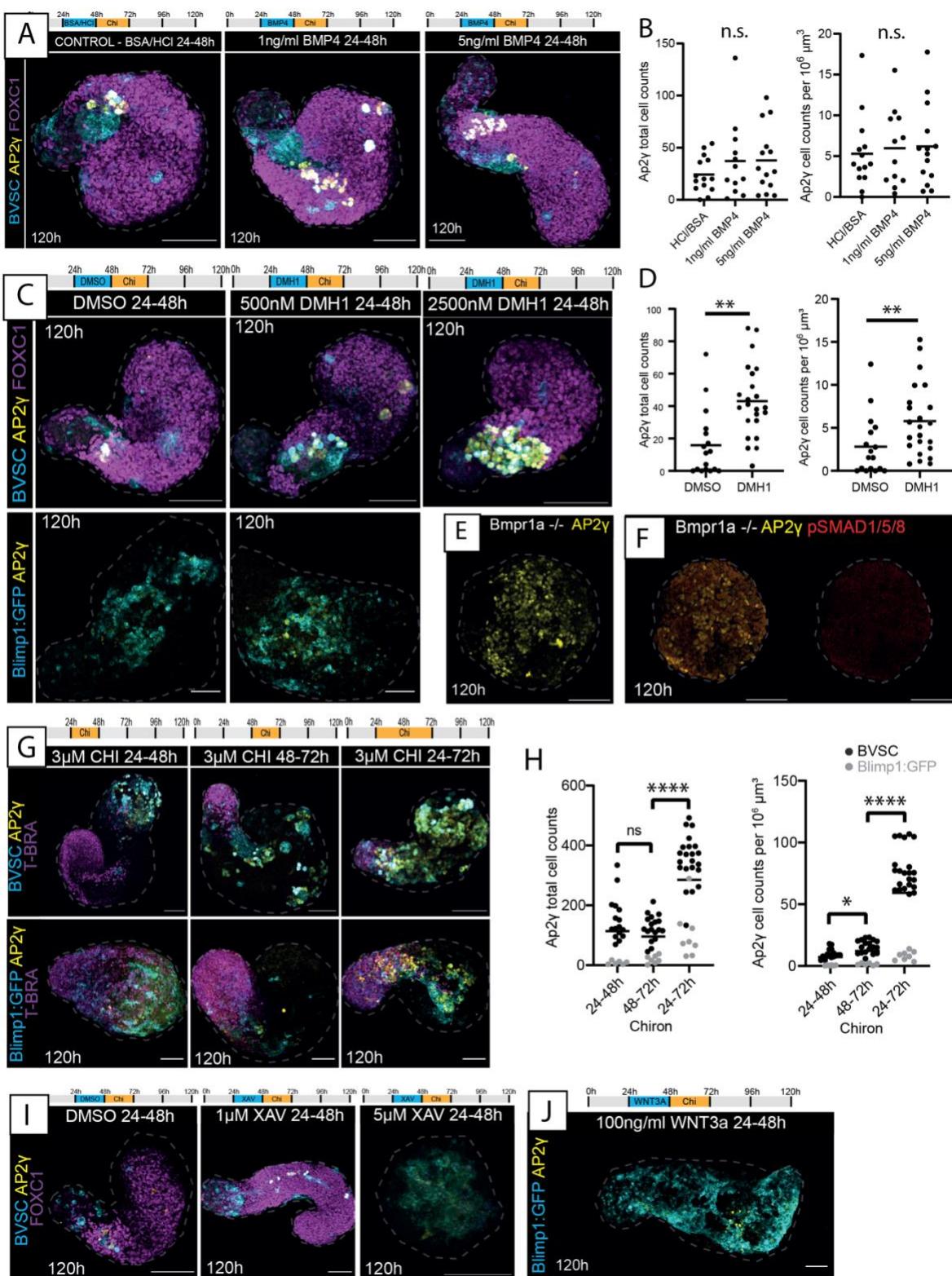


Figure 6

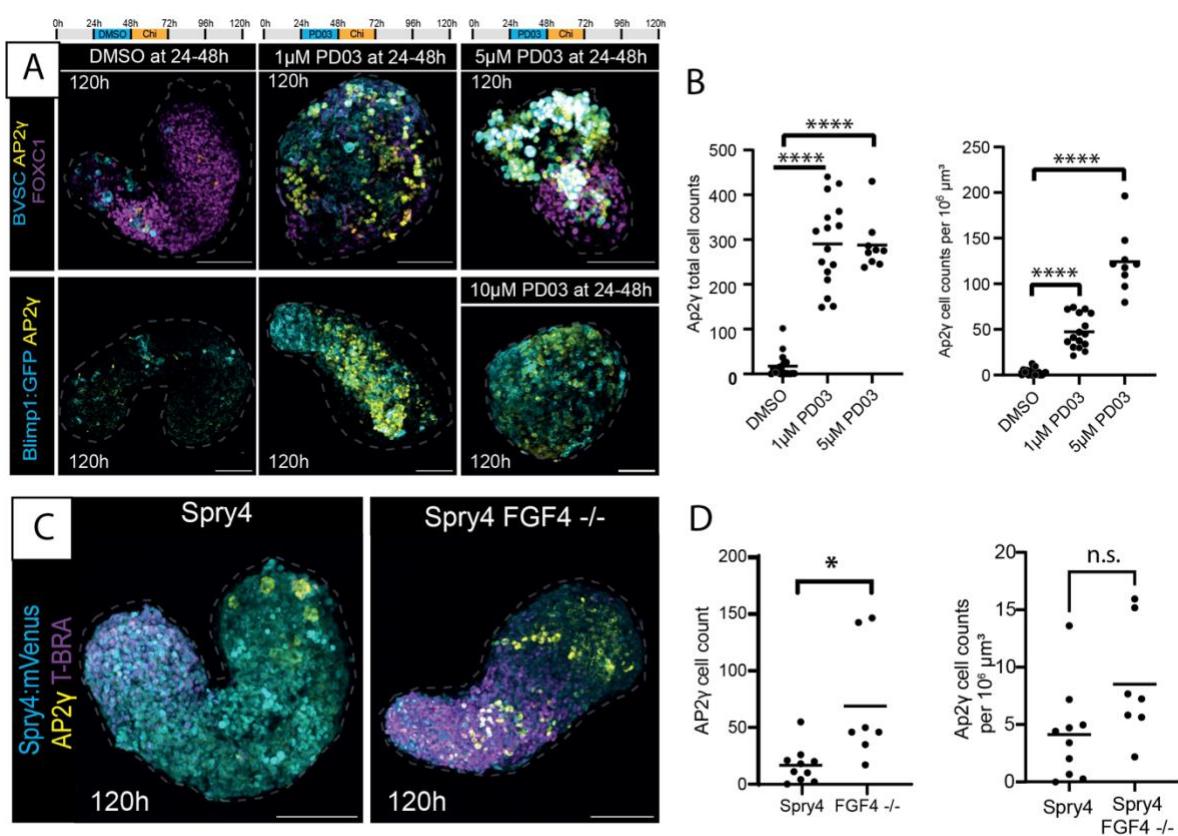


Figure 7

656 **References**

- 657 1. Lawson, K. A. & Hage, W. J. (1994) Clonal analysis of the origin of primordial germ cells in the
658 mouse. *Ciba Found Symp* 182, 68-84; discussion -91
659 <https://doi.org/10.1002/9780470514573.ch5>.
- 660 2. Saitou, M., Barton, S. C. & Surani, M. A. (2002) A molecular programme for the specification
661 of germ cell fate in mice. *Nature* 418, 293-300 <https://doi.org/10.1038/nature00927>.
- 662 3. Sato, M. *et al.* (2002) Identification of pgc7, a new gene expressed specifically in
663 preimplantation embryos and germ cells. *Mechanisms of development* 113, 91-4
664 [https://doi.org/10.1016/S0925-4773\(02\)00002-3](https://doi.org/10.1016/S0925-4773(02)00002-3).
- 665 4. Ohinata, Y. *et al.* (2005) Blimp1 is a critical determinant of the germ cell lineage in mice.
666 *Nature* 436, 207-13 <https://doi.org/10.1038/nature03813>.
- 667 5. Vincent, S. D., Dunn, N. R., Sciammas, R., Shapiro-Shalef, M., Davis, M. M., Calame, K., Bikoff,
668 E. K. & Robertson, E. J. (2005) The zinc finger transcriptional repressor blimp1/prdm1 is
669 dispensable for early axis formation but is required for specification of primordial germ
670 cells in the mouse. *Development* 132, 1315 <https://doi.org/10.1242/dev.01711>.
- 671 6. Yabuta, Y., Kurimoto, K., Ohinata, Y., Seki, Y. & Saitou, M. (2006) Gene expression dynamics
672 during germline specification in mice identified by quantitative single-cell gene
673 expression profiling1. *Biology of reproduction* 75, 705-16
674 <https://doi.org/10.1095/biolreprod.106.053686>.
- 675 7. Ohinata, Y., Ohta, H., Shigeta, M., Yamanaka, K., Wakayama, T. & Saitou, M. (2009) A
676 signaling principle for the specification of the germ cell lineage in mice. *Cell* 137, 571-84
677 <https://doi.org/10.1016/j.cell.2009.03.014>.
- 678 8. Lawson, K. A., Dunn, N. R., Roelen, B. A., Zeinstra, L. M., Davis, A. M., Wright, C. V., Korving, J.
679 P. & Hogan, B. L. (1999) Bmp4 is required for the generation of primordial germ cells in
680 the mouse embryo. *Genes & development* 13, 424-36
681 <https://doi.org/10.1101/gad.13.4.424>.
- 682 9. de Sousa Lopes, S. M. C., Roelen, B. A. J., Monteiro, R. M., Emmens, R., Lin, H. Y., Li, E.,
683 Lawson, K. A. & Mummery, C. L. (2004) Bmp signaling mediated by alk2 in the visceral
684 endoderm is necessary for the generation of primordial germ cells in the mouse
685 embryo. *Genes & development* 18, 1838-49 <https://doi.org/10.1101/gad.294004>.
- 686 10. Gomperts, M., Garcia-Castro, M., Wylie, C. & Heasman, J. (1994) Interactions between
687 primordial germ cells play a role in their migration in mouse embryos. *Development* 120,
688 135-41, <https://doi.org/https://www.ncbi.nlm.nih.gov/pubmed/8119122>
- 689 11. Molyneaux, K. & Wylie, C. (2004) Primordial germ cell migration. *The International journal
690 of developmental biology* 48, 537-44 <https://doi.org/10.1387/ijdb.041833km>.
- 691 12. Gill, M. E., Hu, Y.-C., Lin, Y. & Page, D. C. (2011) Licensing of gametogenesis, dependent on
692 rna binding protein dazl, as a gateway to sexual differentiation of fetal germ cells.
693 *Proceedings of the National Academy of Sciences* 108, 7443
694 <https://doi.org/10.1073/pnas.1104501108>.
- 695 13. Nicholls, P. K. *et al.* (2019) Mammalian germ cells are determined after pgc colonization of
696 the nascent gonad. *Proceedings of the National Academy of Sciences* 116, 25677
697 <https://doi.org/10.1073/pnas.1910733116>.

698 14. Cooke, C. B. & Moris, N. (2021) Tissue and cell interactions in mammalian pgc
699 development. *Development* 148 <https://doi.org/10.1242/dev.200093>.

700 15. Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S. & Saitou, M. (2011) Reconstitution of the
701 mouse germ cell specification pathway in culture by pluripotent stem cells. *Cell* 146,
702 519-32 <https://doi.org/10.1016/j.cell.2011.06.052>.

703 16. Hayashi, M., Kawaguchi, T., Durcova-Hills, G. & Imai, H. (2018) Generation of germ cells
704 from pluripotent stem cells in mammals. *Reprod Med Biol* 17, 107-14
705 <https://doi.org/10.1002/rmb2.12077>.

706 17. Aramaki, S. et al. (2013) A mesodermal factor, t, specifies mouse germ cell fate by directly
707 activating germline determinants. *Developmental cell* 27, 516-29
708 <https://doi.org/10.1016/j.devcel.2013.11.001>.

709 18. Nakaki, F., Hayashi, K., Ohta, H., Kurimoto, K., Yabuta, Y. & Saitou, M. (2013) Induction of
710 mouse germ-cell fate by transcription factors in vitro. *Nature* 501, 222-6
711 <https://doi.org/10.1038/nature12417>.

712 19. Hayashi, K., Ogushi, S., Kurimoto, K., Shimamoto, S., Ohta, H. & Saitou, M. (2012) Offspring
713 from oocytes derived from in vitro primordial germ cell-like cells in mice. *Science* 338,
714 971 <https://doi.org/10.1126/science.1226889>.

715 20. Hayashi, K. & Saitou, M. (2013) Generation of eggs from mouse embryonic stem cells and
716 induced pluripotent stem cells. *Nature Protocols* 8, 1513-24
717 <https://doi.org/10.1038/nprot.2013.090>.

718 21. Hikabe, O. et al. (2016) Reconstitution in vitro of the entire cycle of the mouse female germ
719 line. *Nature* 539, 299-303 <https://doi.org/10.1038/nature20104>.

720 22. Ishikura, Y. et al. (2016) In vitro derivation and propagation of spermatogonial stem cell
721 activity from mouse pluripotent stem cells. *Cell Rep* 17, 2789-804
722 <https://doi.org/10.1016/j.celrep.2016.11.026>.

723 23. Morohaku, K., Tanimoto, R., Sasaki, K., Kawahara-Miki, R., Kono, T., Hayashi, K., Hirao, Y. &
724 Obata, Y. (2016) Complete in vitro generation of fertile oocytes from mouse primordial
725 germ cells. *Proceedings of the National Academy of Sciences* 113, 9021-6
726 <https://doi.org/10.1073/pnas.1603817113>.

727 24. Yoshino, T. et al. (2021) Generation of ovarian follicles from mouse pluripotent stem cells.
728 *Science* 373, eabe0237 <https://doi.org/10.1126/science.abe0237>.

729 25. Hübner, K. et al. (2003) Derivation of oocytes from mouse embryonic stem cells. *Science*
730 300, 1251-6 <https://doi.org/10.1126/science.1083452>.

731 26. Toyooka, Y., Tsunekawa, N., Akasu, R. & Noce, T. (2003) Embryonic stem cells can form
732 germ cells in vitro. *Proceedings of the National Academy of
733 Sciences* 100, 11457 <https://doi.org/10.1073/pnas.1932826100>.

734 27. Geijsen, N., Horoschak, M., Kim, K., Gribnau, J., Eggan, K. & Daley, G. Q. (2004) Derivation of
735 embryonic germ cells and male gametes from embryonic stem cells. *Nature* 427, 148-54
736 <https://doi.org/10.1038/nature02247>.

737 28. Ge, W., Chen, C., De Felici, M. & Shen, W. (2015) In vitro differentiation of germ cells from
738 stem cells: A comparison between primordial germ cells and in vitro derived primordial
739 germ cell-like cells. *Cell death & disease* 6, e1906-e
740 <https://doi.org/10.1038/cddis.2015.265>.

741 29. Ramakrishna, N. B., Battistoni, G., Surani, M. A., Hannon, G. J. & Miska, E. A. (2022) Mouse
742 primordial germ-cell-like cells lack pirnas. *Developmental cell* 57, 2661-8.e5
743 10.1016/j.devcel.2022.11.004.

744 30. Ishikura, Y. *et al.* (2021) In vitro reconstitution of the whole male germ-cell development
745 from mouse pluripotent stem cells. *Cell stem cell*
746 <https://doi.org/10.1016/j.stem.2021.08.005>.

747 31. van den Brink, S. C., Baillie-Johnson, P., Balayo, T., Hadjantonakis, A.-K., Nowotschin, S.,
748 Turner, D. A. & Martinez Arias, A. (2014) Symmetry breaking, germ layer specification
749 and axial organisation in aggregates of mouse embryonic stem cells. *Development* 141,
750 4231 <https://doi.org/10.1242/dev.113001>.

751 32. Beccari, L., Moris, N., Girgin, M., Turner, D. A., Baillie-Johnson, P., Cossy, A.-C., Lutolf, M. P.,
752 Duboule, D. & Arias, A. M. (2018) Multi-axial self-organization properties of mouse
753 embryonic stem cells into gastruloids. *Nature* 562, 272-6
754 <https://doi.org/10.1038/s41586-018-0578-0>.

755 33. van den Brink, S. C. *et al.* (2020) Single-cell and spatial transcriptomics reveal somitogenesis
756 in gastruloids. *Nature* 582, 405-9 <https://doi.org/10.1038/s41586-020-2024-3>.

757 34. Veenvliet, J. V. *et al.* (2020) Mouse embryonic stem cells self-organize into trunk-like
758 structures with neural tube and somites. *Science* 370, eaba4937
759 <https://doi.org/10.1126/science.aba4937>.

760 35. Vianello, S. & Lutolf, M. P. (2020) In vitro endoderm emergence and self-organisation in the
761 absence of extraembryonic tissues and embryonic architecture. *bioRxiv*,
762 2020.06.07.138883 <https://doi.org/10.1101/2020.06.07.138883>.

763 36. Hayashi, K., de Sousa Lopes, S. M. C. & Surani, M. A. (2007) Germ cell specification in mice.
764 *Science* 316, 394 <https://doi.org/10.1126/science.1137545>.

765 37. Borggrefe, T. & Oswald, F. (2009) The notch signaling pathway: Transcriptional regulation at
766 notch target genes. *Cellular and molecular life sciences : CMLS* 66, 1631-46
767 <https://doi.org/10.1007/s00018-009-8668-7>.

768 38. Hayashi, K. & Surani, M. A. (2009) Self-renewing epiblast stem cells exhibit continual
769 delineation of germ cells with epigenetic reprogramming in vitro. *Development*
770 (Cambridge, England) 136, 3549-56 <https://doi.org/10.1242/dev.037747>.

771 39. Turner, D. A. *et al.* (2017) Anteroposterior polarity and elongation in the absence of extra-
772 embryonic tissues and of spatially localised signalling in gastruloids: Mammalian
773 embryonic organoids. *Development* 144, 3894 <https://doi.org/10.1242/dev.150391>.

774 40. Anlas, K., Baillie-Benson, P., Arató, K., Turner, D. A. & Trivedi, V. in *Programmed
775 morphogenesis: Methods and protocols* (eds Mo R. Ebrahimkhani & Joshua Hislop)
776 131-47 (Springer US, 2021).

777 41. Cermola, F., D'Aniello, C., Tatè, R., De Cesare, D., Martinez-Arias, A., Minchiotti, G. &
778 Patriarca, E. J. (2021) Gastruloid development competence discriminates different states
779 of pluripotency. *Stem Cell Reports* 16, 354-69
780 <https://doi.org/10.1016/j.stemcr.2020.12.013>.

781 42. Hashmi, A., Tlili, S., Perrin, P., Martinez-Arias, A. & Lenne, P.-F. (bioRxiv, 2020).

782 43. Baldwin, H. S. *et al.* (1994) Platelet endothelial cell adhesion molecule-1 (pecam-1/cd31):
783 Alternatively spliced, functionally distinct isoforms expressed during mammalian
784 cardiovascular development. *Development* 120, 2539-53 10.1242/dev.120.9.2539.

785 44. Robson, P., Stein, P., Zhou, B., Schultz, R. M. & Baldwin, H. S. (2001) Inner cell mass-specific
786 expression of a cell adhesion molecule (pecam-1/cd31) in the mouse blastocyst.
787 *Developmental biology* 234, 317-29 10.1006/dbio.2001.0274.

788 45. Wakayama, T., Hamada, K., Yamamoto, M., Suda, T. & Iseki, S. (2003) The expression of
789 platelet endothelial cell adhesion molecule-1 in mouse primordial germ cells during
790 their migration and early gonadal formation. *Histochem Cell Biol* 119, 355-62
791 <https://doi.org/10.1007/s00418-003-0528-1>.

792 46. Li, Z. J., Wang, Z. Z., Zheng, Y. Z., Xu, B., Yang, R. C., Scadden, D. T. & Han, Z. C. (2005)
793 Kinetic expression of platelet endothelial cell adhesion molecule-1 (pecam-1/cd31)
794 during embryonic stem cell differentiation. *Journal of cellular biochemistry* 95, 559-70
795 10.1002/jcb.20436.

796 47. Ginsburg, M., Snow, M. H. & McLaren, A. (1990) Primordial germ cells in the mouse embryo
797 during gastrulation. *Development* 110, 521-8 10.1242/dev.110.2.521.

798 48. Seki, Y. et al. (2007) Cellular dynamics associated with the genome-wide epigenetic
799 reprogramming in migrating primordial germ cells in mice. *Development* 134, 2627-38
800 <https://doi.org/10.1242/dev.005611>.

801 49. Tam, P. P. & Snow, M. H. (1981) Proliferation and migration of primordial germ cells during
802 compensatory growth in mouse embryos. *J Embryol Exp Morphol* 64, 133-47,
803 <https://doi.org/https://www.ncbi.nlm.nih.gov/pubmed/7310300>

804 50. Anderson, R., Copeland, T. K., Schöler, H., Heasman, J. & Wylie, C. (2000) The onset of germ
805 cell migration in the mouse embryo. *Mechanisms of development* 91, 61-8
806 [https://doi.org/10.1016/S0925-4773\(99\)00271-3](https://doi.org/10.1016/S0925-4773(99)00271-3).

807 51. Molyneaux, K. A., Stallock, J., Schaible, K. & Wylie, C. (2001) Time-lapse analysis of living
808 mouse germ cell migration. *Developmental biology* 240, 488-98
809 <https://doi.org/10.1006/dbio.2001.0436>.

810 52. Pepling, M. E. & Spradling, A. C. (1998) Female mouse germ cells form synchronously
811 dividing cysts. *Development* 125, 3323-8,
812 <https://doi.org/https://www.ncbi.nlm.nih.gov/pubmed/9693136>

813 53. Bendel-Stenzel, M. R., Gomperts, M., Anderson, R., Heasman, J. & Wylie, C. (2000) The role
814 of cadherins during primordial germ cell migration and early gonad formation in the
815 mouse. *Mechanisms of development* 91, 143-52 [https://doi.org/10.1016/S0925-4773\(99\)00287-7](https://doi.org/10.1016/S0925-4773(99)00287-7).

817 54. Di Carlo, A. & De Felici, M. (2000) A role for e-cadherin in mouse primordial germ cell
818 development. *Developmental biology* 226, 209-19
819 <https://doi.org/10.1006/dbio.2000.9861>.

820 55. Hara, K. et al. (2009) Evidence for crucial role of hindgut expansion in directing proper
821 migration of primordial germ cells in mouse early embryogenesis. *Developmental
822 biology* 330, 427-39 <https://doi.org/10.1016/j.ydbio.2009.04.012>.

823 56. Cernilogar, F. M. et al. (2019) Pre-marked chromatin and transcription factor co-binding
824 shape the pioneering activity of foxa2. *Nucleic Acids Research* 47, 9069-86
825 <https://doi.org/10.1093/nar/gkz627>.

826 57. Seki, Y., Hayashi, K., Itoh, K., Mizugaki, M., Saitou, M. & Matsui, Y. (2005) Extensive and
827 orderly reprogramming of genome-wide chromatin modifications associated with

828 specification and early development of germ cells in mice. *Developmental biology* 278,
829 440-58 <https://doi.org/10.1016/j.ydbio.2004.11.025>.

830 58. Hajkova, P. et al. (2008) Chromatin dynamics during epigenetic reprogramming in the
831 mouse germ line. *Nature* 452, 877-81 10.1038/nature06714.

832 59. Hajkova, P., Erhardt, S., Lane, N., Haaf, T., El-Maarri, O., Reik, W., Walter, J. & Surani, M. A.
833 (2002) Epigenetic reprogramming in mouse primordial germ cells. *Mechanisms of
834 development* 117, 15-23 [https://doi.org/10.1016/s0925-4773\(02\)00181-8](https://doi.org/10.1016/s0925-4773(02)00181-8).

835 60. de Nápolés, M. et al. (2004) Polycomb group proteins ring1a/b link ubiquitylation of
836 histone h2a to heritable gene silencing and x inactivation. *Developmental cell* 7, 663-76
837 <https://doi.org/10.1016/j.devcel.2004.10.005>.

838 61. Chen, H. H. et al. (2014) Dazl limits pluripotency, differentiation, and apoptosis in
839 developing primordial germ cells. *Stem Cell Reports* 3, 892-904
840 <https://doi.org/10.1016/j.stemcr.2014.09.003>.

841 62. Hu, Y. C., Okumura, L. M. & Page, D. C. (2013) Gata4 is required for formation of the genital
842 ridge in mice. *PLoS genetics* 9, e1003629 <https://doi.org/10.1371/journal.pgen.1003629>.

843 63. Ara, T., Nakamura, Y., Egawa, T., Sugiyama, T., Abe, K., Kishimoto, T., Matsui, Y. &
844 Nagasawa, T. (2003) Impaired colonization of the gonads by primordial germ cells in
845 mice lacking a chemokine, stromal cell-derived factor-1 (sdf-1). *Proceedings of the
846 National Academy of Sciences of the United States of America* 100, 5319-23
847 <https://doi.org/10.1073/pnas.0730719100>.

848 64. Molyneaux, K. A. et al. (2003) The chemokine sdf1/cxcl12 and its receptor cxcr4 regulate
849 mouse germ cell migration and survival. *Development* 130, 4279-86
850 <https://doi.org/10.1242/dev.00640>.

851 65. Enders, G. C. & May, J. J. (1994) Developmentally regulated expression of a mouse germ
852 cell nuclear antigen examined from embryonic day 11 to adult in male and female mice.
853 *Developmental biology* 163, 331-40 <https://doi.org/10.1006/dbio.1994.1152>.

854 66. Zhao, J. et al. (2021) Cell-fate transition and determination analysis of mouse male germ
855 cells throughout development. *Nature Communications* 12, 6839 10.1038/s41467-021-
856 27172-0.

857 67. Ying, Y., Liu, X. M., Marble, A., Lawson, K. A. & Zhao, G. Q. (2000) Requirement of bmp8b
858 for the generation of primordial germ cells in the mouse. *Molecular endocrinology* 14,
859 1053-63 <https://doi.org/10.1210/mend.14.7.0479>.

860 68. Chang, H. & Matzuk, M. M. (2001) Smad5 is required for mouse primordial germ cell
861 development. *Mechanisms of development* 104, 61-7 [https://doi.org/10.1016/s0925-4773\(01\)00367-7](https://doi.org/10.1016/s0925-4773(01)00367-7).

863 69. Ying, Y., Qi, X. & Zhao, G. Q. (2001) Induction of primordial germ cells from murine epiblasts
864 by synergistic action of bmp4 and bmp8b signaling pathways. *Proceedings of the
865 National Academy of Sciences of the United States of America* 98, 7858-62
866 <https://doi.org/10.1073/pnas.151242798>.

867 70. Ying, Y. & Zhao, G. Q. (2001) Cooperation of endoderm-derived bmp2 and extraembryonic
868 ectoderm-derived bmp4 in primordial germ cell generation in the mouse.
869 *Developmental biology* 232, 484-92 <https://doi.org/10.1006/dbio.2001.0173>.

870 71. Hayashi, K., Kobayashi, T., Umino, T., Goitsuka, R., Matsui, Y. & Kitamura, D. (2002) Smad1
871 signaling is critical for initial commitment of germ cell lineage from mouse epiblast.

872 *Mechanisms of development* 118, 99-109 [https://doi.org/10.1016/S0925-4773\(02\)00237-X](https://doi.org/10.1016/S0925-4773(02)00237-X).

873

874 **72.** Senft, A. D., Bikoff, E. K., Robertson, E. J. & Costello, I. (2019) Genetic dissection of nodal and bmp signalling requirements during primordial germ cell development in mouse. *Nature Communications* 10, 1089 <https://doi.org/10.1038/s41467-019-09052-w>.

875

876 **73.** Morgani, S. M. & Hadjantonakis, A. K. (2021) Quantitative analysis of signaling responses during mouse primordial germ cell specification. *Biology open* 10 10.1242/bio.058741.

877

878 **74.** Moris, N., Anlas, K., van den Brink, S. C., Alemany, A., Schröder, J., Ghimire, S., Balayo, T., van Oudenaarden, A. & Martinez Arias, A. (2020) An in vitro model of early anteroposterior organization during human development. *Nature* 582, 410-5 <https://doi.org/10.1038/s41586-020-2383-9>.

882

883 **75.** Di-Gregorio, A., Sancho, M., Stuckey, D. W., Crompton, L. A., Godwin, J., Mishina, Y. & Rodriguez, T. A. (2007) Bmp signalling inhibits premature neural differentiation in the mouse embryo. *Development* 134, 3359-69 10.1242/dev.005967.

884

885 **76.** Kimura, T. *et al.* (2014) Induction of primordial germ cell-like cells from mouse embryonic stem cells by erk signal inhibition. *Stem cells* 32, 2668-78 10.1002/stem.1781.

886

887 **77.** Morgani, S. M. *et al.* (2018) A sprouty4 reporter to monitor fgf/erk signaling activity in escs and mice. *Developmental biology* 441, 104-26 <https://doi.org/10.1016/j.ydbio.2018.06.017>.

888

889 **78.** Yamaguchi, T. P., Harpal, K., Henkemeyer, M. & Rossant, J. (1994) Fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. *Genes & development* 8, 3032-44 <https://doi.org/10.1101/gad.8.24.3032>.

890

891 **79.** Oki, S., Kitajima, K. & Meno, C. (2010) Dissecting the role of fgf signaling during gastrulation and left-right axis formation in mouse embryos using chemical inhibitors. *Developmental dynamics : an official publication of the American Association of Anatomists* 239, 1768-78 10.1002/dvdy.22282.

892

893 **80.** Ohta, H. *et al.* (2017) In vitro expansion of mouse primordial germ cell-like cells recapitulates an epigenetic blank slate. *The EMBO journal* 36, 1888-907 <https://doi.org/10.15252/embj.201695862>.

894

895 **81.** Tam, P. P. & Zhou, S. X. (1996) The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. *Developmental biology* 178, 124-32 <https://doi.org/10.1006/dbio.1996.0203>.

896

897 **82.** Yoshimizu, T., Obinata, M. & Matsui, Y. (2001) Stage-specific tissue and cell interactions play key roles in mouse germ cell specification. *Development* 128, 481-90, <https://doi.org/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1117133/>

898

899 **83.** de Sousa Lopes, S. M., Hayashi, K. & Surani, M. A. (2007) Proximal visceral endoderm and extraembryonic ectoderm regulate the formation of primordial germ cell precursors. *BMC Dev Biol* 7, 140 <https://doi.org/10.1186/1471-213x-7-140>.

900

901 **84.** Bialecka, M., Young, T., Chuva de Sousa Lopes, S., ten Berge, D., Sanders, A., Beck, F. & Deschamps, J. (2012) Cdx2 contributes to the expansion of the early primordial germ cell population in the mouse. *Developmental biology* 371, 227-34 10.1016/j.ydbio.2012.08.018.

902

903

904

905

906

907

908

909

910

911

912

913

914 85. Krawchuk, D., Honma-Yamanaka, N., Anani, S. & Yamanaka, Y. (2013) Fgf4 is a limiting
915 factor controlling the proportions of primitive endoderm and epiblast in the icm of the
916 mouse blastocyst. *Developmental biology* 384, 65-71 10.1016/j.ydbio.2013.09.023.

917 86. Chatfield, J., Reilly, M.-A., Bachvarova, R. F., Ferjentsik, Z., Redwood, C., Walmsley, M.,
918 Patient, R., Loose, M. & Johnson, A. D. (2014) Stochastic specification of primordial germ
919 cells from mesoderm precursors in axolotl embryos. *Development* 141, 2429
<https://doi.org/10.1242/dev.105346>.

920 87. Kobayashi, T. & Surani, M. A. (2018) On the origin of the human germline. *Development*
921 145, dev150433 <https://doi.org/10.1242/dev.150433>.

922 88. Ohinata, Y., Sano, M., Shigeta, M., Yamanaka, K. & Saitou, M. (2008) A comprehensive, non-
923 invasive visualization of primordial germ cell development in mice by theprdm1-mvenus
924 anddppa3-ecfp double transgenic reporter. *Reproduction* 136, 503-14

925 89. Kim, I., Saunders, T. L. & Morrison, S. J. (2007) Sox17 dependence distinguishes the
926 transcriptional regulation of fetal from adult hematopoietic stem cells. *Cell* 130, 470-83
<https://doi.org/10.1016/j.cell.2007.06.011>.

927 90. Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A. & Zhang, F. (2013) Genome
928 engineering using the crispr-cas9 system. *Nature Protocols* 8, 2281-308
10.1038/nprot.2013.143.

929 91. Mulas, C., Kalkan, T., von Meyenn, F., Leitch, H. G., Nichols, J. & Smith, A. (2019) Defined
930 conditions for propagation and manipulation of mouse embryonic stem cells.
931 *Development* 146, dev173146 <https://doi.org/10.1242/dev.173146>.

932 92. Girgin, M., Turner, D. A., Baillie-Johnson, P., Cossy, A.-C., Beccari, L., Moris, N., Lutolf, M. P.,
933 Duboule, D. & Martinez Arias, A. (2018) Generating gastruloids from mouse embryonic
934 stem cells. *Protocol Exchange* <https://doi.org/10.1038/protex.2018.094>.

935 93. Baillie-Johnson, P., van den Brink, S. C., Balayo, T., Turner, D. A. & Martinez Arias, A. (2015)
936 Generation of aggregates of mouse embryonic stem cells that show symmetry breaking,
937 polarization and emergent collective behaviour in vitro. *J Vis Exp* 10.3791/53252.

938 94. Schindelin, J. et al. (2012) Fiji: An open-source platform for biological-image analysis.
939 *Nature Methods* 9, 676-82 10.1038/nmeth.2019.

940 95. Stuart, T. et al. (2019) Comprehensive integration of single-cell data. *Cell* 177, 1888-902.e21
941 10.1016/j.cell.2019.05.031.

942 96. Hao, Y. et al. (2021) Integrated analysis of multimodal single-cell data. *Cell* 184, 3573-
943 87.e29 10.1016/j.cell.2021.04.048.

944

945

946

947