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Primordial Germ Cells (PGCs) are the early embryonic precursors of gametes - sperm
and egg cells. PGC-like cells (PGCLCs) can currently be derived in vitro from pluripotent cells
exposed to signalling cocktails and aggregated into large embryonic bodies, but these do not
recapitulate the native embryonic environment during PGC formation. Here we show that
mouse gastruloids, a three-dimensional in vitro model of gastrulation, contain a population of
Gastruloid-derived PGC-like cells (Gld-PGCLCs) that resemble early PGCs in vivo. Importantly,
the conserved organisation of mouse gastruloids leads to coordinated spatial and temporal
localisation of GId-PGCLCs relative to surrounding somatic cells, even in the absence of specific
exogenous PGC-specific signalling or extraembryonic tissues. In gastruloids, self-organised
interactions between cells and tissues, including the endodermal epithelium, enables the
specification and subsequent maturation of a pool of Gld-PGCLCs. As such, mouse gastruloids
represent a new source of PGCLCs in vitro and, due to their inherent co-development, serve as
a novel model to study the dynamics of PGC development within integrated tissue

environments.
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The specification of mouse Primordial Germ Cells (PGCs) occurs at the gastrulation-stage
epiblast at about embryonic day (E)7.25, where competent cells begin to co-express Stella and
Blimp1 and become lineage-restricted to a germ cell fate'* by repression of somatic genes and
the activation of the PGC-specific program>®. This specification occurs at the proximal posterior
of the epiblast, and is thought to be dependent on signals from the Extraembryonic Ectoderm
(EXE) and Visceral Endoderm (VE), including BMP? and Wnt signalling’, since embryos mutant for
Bmp4 or one of its receptors, ALK2, have reduced numbers of PGCs®°. After specification, PGCs
are incorporated into the developing hindgut, and move anteriorly through this tissue before
then migrating through the dorsal mesentery towards the genital ridge!®!?, the precursors of the
gonads. Here, the germ cells colonise the prospective gonadal niche in the form of small cell
clusters'®, and continue to mature in terms of their transcriptional and, particularly, their
epigenetic signature. At approximately E12.5'2'3 sexual determination occurs, and initiates
further sex-specific maturation that ultimately generates spermatozoa in males and oocytes in
females. Their time-course is therefore highly dynamic, and occurs through close association with
several different tissues and cell types of the developing embryo4.

Currently, pluripotent stem cell-based PGC-like cell (PGCLC) in vitro models®>*¢, have
been used to explore the regulatory mechanisms of early specification and maturation (for
example, 8) and even to generate mature germ cells through gametogenesis'>%?4, These
models are typically derived from Epiblast-like cells (EpiLCs) which are subsequently arranged as
embryoid bodies, and they build on earlier work that observed spontaneous PGCLC
differentiation in EBs?>%’, but with the addition of PGC-specific factors to strongly bias towards a

PGCLC fate. Yet, despite being an efficient protocol, these EB-derived PGCLCs are formed within
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largely disorganised aggregates of cells that lack the spatially-organised, supportive neighbouring
cell types found in the embryo, and have limited epigenetic remodelling towards mature germ
cells?®29, |In addition, further maturation of PGCLCs beyond the gonadal colonisation stage in vitro
currently requires complete dissociation of EBs and reaggregation with gonadal cell
populations®2130 which necessarily results in loss of any endogenous spatial colocalization or
organisation and precludes any study of the gradual developmental dynamics of PGCLCs during
this maturation time window. Therefore, while embryoid body-based methods provide a readily
available source of in vitro PGCLCs, these methods are unable to reveal the complexities of PGC
specification or their interaction with the rest of the embryonic body plan in a developmentally
faithful manner.

Recently, mouse gastruloids, three-dimensional mouse embryonic stem (ES) cell-derived
aggregates, have been described and characterised to undergo gastrulation-like gene expression
progression, multilineage differentiation, axial polarisation, and morphological extension3%32,
Single-cell analysis showed that these gastruloids include many cell types found in the early
mouse embryo, including a population of presumptive PGCLCs33. Others have also shown that
small populations of Sox2+/DPPA3+ cells3* and DPPA4+ cells® exist along the anteroposterior
length of gastruloid-like structure. Here, we report the further characterisation of these
gastruloid-derived PGCLCs (Gld-PGCLCs), including their dynamic spatiotemporal localisation and
association within integrated tissue environments. Importantly, we show that Gld-PGCLCs display
characteristics that are akin to in vivo PGCs, and that they recapitulate features of early PGC
migration and maturation, reaching stages equivalent to ~E14.5, while relying mainly on

endogenous inductive signals from within the self-organised gastruloid.
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Results

Identification of mouse gastruloid-derived PGCLCs

The transcriptional expression of Blimp1 (also known as Prdm1) and Stella (Dppa3) are
both associated with PGCs in the mouse embryo*3®. We therefore generated mouse gastruloids
using the Blimp1:eGFP (herein, Blimp1-GFP)? and Blimpl:mVenus Stella:CFP (BVSC)3*’ mouse
embryonic stem cell lines, which have previously been used as markers of PGCLC state in vitro3®.
Aggregates made from BVSC and Blimp1-GFP cells broke symmetry at approximately 96 hours
after aggregation (h), leading to elongated structures with polarised expression of the
mesodermal marker Brachyury (T-BRA) and CDX2 at 120h (Figure 1A-B, Supplementary Figure
1A) comparable to gastruloids generated from E14tg2A cells3%3° routinely cultured in 2iLIF (see
Methods)4%4L,

We therefore examined the dynamic expression of the PGC-associated gene reporters in
these gastruloids. Blimp1 is expressed in the endoderm of the mouse embryo>, and the
coalescence of endodermal domains into a tube structure in mouse gastruloids has been
previously described3?423>, In our gastruloids, Blimp1 expression was observed initially in a salt-
and-pepper manner across spherical gastruloids at 72h, which then tended to coalesce into
domains or clusters of expression in ovoid-shaped gastruloids at 96h (Figure 1B). As mouse
gastruloids underwent elongation, the domain of Blimp1 expression became even more spatially
defined, and routinely formed contiguous tracts of Blimp1 expressing cells running along the
anteroposterior axis at 120h (apparent in 78.3% BVSC (n = 60) and 60.8% Blimp1-GFP (n = 74)

gastruloids; Figure 1B). These Blimp1+ tracts also expressed FOXA2, SOX17, E-Cadherin (CDH1)
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and EpCAM (Supplementary Figure 1B-F), suggesting a definitive endoderm identity. They were

internally located and typically formed closed, tube-like structures (Supplementary Figure 1G).

Although the majority of Blimp1 expressing cells in gastruloids therefore likely represent
a definitive endodermal population, we observed several Blimp1 and Stella co-expressing cells
that were interspersed within or adjacent to the endoderm tubes in BVSC gastruloids (Figure 1C,
Supplementary Figure 1F-G). We reasoned that these were likely to be PGCLCs. Indeed, the PGC
marker, AP2y, was found to be co-expressed with the pluripotency factor OCT4 (also known as
POUS5F1) and NANOG in a high proportion of these cells (Figure 1D-E, Supplementary Figure 1H)
and they did not express endodermal markers, FOXA2 or SOX17 (Figure 1F-G). While Stella
expression was consistently observed in mouse gastruloids, not all Stella+ cells were positive for
both OCT4 and AP2y, and often co-expressed only one of these markers (Supplementary Figure
1H-J) suggesting that there might be heterogeneity of Stella-expressing cells in Gld-PGCLCs,
perhaps related to the temporal range of states observed. Therefore, we also utilised Platelet
and Endothelial Cell Adhesion Molecule 1 (PECAM1) expression, which is known to be expressed
in PGCs in the mouse embryo (as well as pluripotent and endothelial cells)*3-%6. In 120h
gastruloids, PECAM1 was co-expressed in the vast majority of AP2y (96.65%), OCT4 (95.83%) and
Stella positive cells (98.3%) in BVSC gastruloids, and when we examined AP2y expression
alongside PECAM1, we observed double positive cells as early as 24h, that were then co-
expressed with Stella from 72h (Supplementary Figure 2A-C), suggesting that PECAM1 marked
the broadest population of GId-PGCLCs across the time-course. We therefore decided to use both
AP2y and PECAM1, in combination with the endogenous reporters of BVSC or Blimp1-GFP cell

lines, as general markers of Gld-PGCLCs.
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88 Gastruloids displayed a consistent and progressive increase in the number of Gld-PGCLCs
89  through the gastruloid timeline from 24h to 120h (Figure 1H). This began as an average 2.42 cells
90 per gastruloid (+/- 2.15 s.d.; 8.3% of gastruloids had no AP2y expressing cells), which increased
91 to4.07 +/-4.16 s.d. at 48h (20% of gastruloids without AP2y+ cells) and continued to increase to
92  reach a mean average of 90.72 cells per gastruloid by 120h (+/- 49.11 s.d.; 0% of gastruloids had
93  no AP2y expression, n=57). At 144h the average number of Gld-PGCLCs slightly decreased (71.93
94  GId-PGCLCs +/- 37.91 sd; Figure 1H) which mirrored a general decrease in average size of 144h
95 gastruloids (Supplementary Table 1). Likewise, by flow cytometric analysis, a population that was
96 double positive for Stella-eCFP and PECAM1 was observed to increase in frequency during BVSC
97  gastruloid development (Supplementary Figure 2C). These estimates of absolute GId-PGCLC cell
98 numbers are roughly consistent with the equivalent in vivo PGC numbers, with approximately
99  ~100 PGCs found in the E8.5 mouse embryo*”*® which represents an equivalent stage to 120h

100  gastruloids®?33, and an average doubling time approximating 16.12 hours (Figure 1H), matching

101  the 16 hours estimated for mouse PGCs in the embryo®.

102

103  Dynamic localisation of Gld-PGCLCs

104  We were particularly interested to note the spatial localisation of the Gld-PGCLCs relative to the

105 endodermal tract, given the role of PGC migration along the endoderm in vivo>®>'. We noted that

106  at 120h, the GId-PGCLC were often interspersed throughout the endodermal tract along the

107  anteroposterior axis, but by 144h the majority were localised within small clusters of cells at the

108 anterior edge of gastruloids (Figure 2A-B). These each contained an average of 9 cells expressing

109 two or more PGC-associated proteins, and each gastruloid had on average 3.3 clusters (n = 7)
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110  (Figure 2C; Supplementary Table 2), similar to PGCs colonising mouse gonads at E10.5°2. Since
111  GId-PGCLCs seemed to shift towards the anterior end of the gastruloids relative to the length of
112  the gastruloid (average location at 75.9% +/- 9.95 sd of the gastruloid length starting from the
113  posterior at 144h, n = 15; Figure 2D) we reasoned that they might be moving relative to the axis
114  of maximal elongation of the gastruloid from posterior to anterior (Figure 1E).

115 Indeed, we observed evidence of GId-PGCLCs cell movement throughout their
116  development in gastruloids. Some of this appears to be due to overall morphological changes
117  associated with gastruloid elongation and might therefore represent a passive relative
118 movement of the Gld-PGCLCs. For instance, Gld-PGCLCs (Stella-eCFP expressing) were often
119  already intermingled with endodermal cells (Blimp1-Venus expressing) prior to elongation at 96h
120 (n=29/39 gastruloids) and later became distributed throughout the endodermal tracts
121  concurrent with gastruloid elongation (Figure 2F; Supplementary Movie 1). Since E-cadherin and
122 EpCAM were expressed in both GId-PGCLCs and the endodermal cells at 96h (Supplementary
123 Figure 3A-B) it is possible that this could potentially mediate the observed close association
124  between the tissues, as has been suggested in the mouse embryo®3*>4, although further
125  experiments would be required to test this hypothesis.

126 In addition, it is likely that Gld-PGCLCs are also capable of active movement as well as
127  passive relative movement. Using multiphoton microscopy, we observed several instances of
128  Stella-positive cells displaying seemingly motile behaviour relative to the gastruloid structure,
129  morphological changes associated with migration including cellular protrusions that appear

130 filopodia-like, and interactions with other Stella+ cells (Figure 2G, Supplementary Movie 2).
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131  However, such movement was not always strictly posterior-to-anterior, and so the observed shift
132  inrelative location of Gld-PGCLCs is likely to be due to both active and passive movement of cells.
133 Given the apparent role of the endodermal epithelium to coordinate the relative
134  localisation of GId-PGCLCs to the anterior end of gastruloids, we wanted to investigate the
135 necessity of this endodermal population for Gld-PGCLC localisation. In mouse, Sox17-null
136  embryos specify PGCs, but they cannot enter the gut endoderm and are stalled at the hindgut
137  entrance®®. We therefore generated mouse gastruloids from mESCs that were Sox177- (see
138  Methods) or FoxA27-5¢ (Figure 3A-L). In both cases, the mutant gastruloids still contained
139 mesoderm and ectoderm, and underwent axial elongation, but the endodermal population was
140 absent, and no epithelial tract was observed. The Gld-PGCLC population was observed at
141  absolute cell numbers equivalent to wildtype gastruloids (Figure 3A), but importantly, they were
142  localised in large clusters at 120h rather than dispersed throughout the length of the gastruloid
143  (Figure 3B, H). This observation strongly supports the notion that the presence of the endodermal
144  tract in gastruloids facilitates the spatially organised movement of GId-PGCLCs, closely
145  resembling observations in the mouse embryo®>.

146

147  Maturation of Gld-PGCLCs

148 The morphological clustering of GId-PGCLCs in the anterior of 144h gastruloids was highly
149  reminiscent of gonadal germ cell clusters found in the mouse embryo at E11.5'%°2, We therefore
150 wondered whether these anterior-localised Gld-PGCLCs were undergoing further maturation,
151  particularly in the form of epigenetic remodelling. Indeed, we observed that the histone

152  modification, H3K27me3, which has been shown to be associated with PGC maturation to a germ
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153  cell fate®”*%, was co-localised with AP2y at 144h (35% co-expression; Figure 4A-B). Similarly, the
154  DNA modification mark, 5hmC, was also co-localised with Gld-PGCLCs in anterior clusters of cells
155  in 144h gastruloids (45% co-expression; Figure 4C-D), another hallmark of PGC maturation>¢°,
156  Since DNA demethylation is required to de-repress the promoter of the germ cell gene Dazl,
157  which itself is required to facilitate the maturation of germ cells towards sex-specific stages in a
158  process called ‘licensing’'?, we examined the expression of DAZL in gastruloids. Surprisingly, we
159  observed clear DAZL protein expression in Gld-PGCLCs at 120h (mean = 28 +/- 15.46 s.d. cells per
160  gastruloid, n = 8) which stayed consistent in 144h gastruloids (mean of 46.6 +/- 47.93 s.d. cells
161  per gastruloid, n = 15; Figure 4E) and were localised particularly in anterior clusters (Figure 4F).
162  Furthermore, the DAZL was co-expressed with AP2y (21% co-expression; Figure 4G) and we
163  generally found DAZL expression in cells that had lower levels of NANOG expression (Figure 4H),
164  potentially relating to its role in downregulating pluripotency factors during germ cell
165  maturation®’. As such, it seems that the Gld-PGCLCs begin to undergo a maturation process that,
166 to some extent, mirrors the post-migratory/gonadal stage development of PGCs in vivo, and
167  which might be directly mediated by their local environment.

168 We hypothesised that local signalling or niche properties of surrounding cells in the
169  anterior region of the gastruloid could be supporting these cell clusters. Indeed, we frequently
170 observed high-level expression of GATA4 in several cells near the GId-PGCLC clusters
171  (Supplementary Figure 4A-C). In support of this observation, closer examination of extant spatial
172  transcriptomics datasets from 120h mouse gastruloids3® showed an anterior localisation of
173  Gata4, an early marker of the developing bipotent gonad® and Cxcl12 (also known as Sdf1), a

174  chemokine thought to be responsible for directional migration in the mouse embryo®364
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175  (Supplementary Figure 4D). It is possible that these spatially-localised supporting cells enable the
176  maturation of GId-PGCLCs to post-migratory stages of development, as they begin to express not
177  only DAZL but also GCNA1, a marker of post-migratory PGCs in vivo® (Supplementary Figure 4E).
178

179  Transcriptomic GId-PGCLC characterisation

180 Given the general signature of PGC-identity observed in GId-PGCLCs, including the surprisingly
181  mature status of DAZL- and GCNA1-expression, we wanted to compare our Gld-PGCLCs to known
182  populations of PGCs, both in vivo and in vitro, at the transcriptomic level. To do this, we sorted
183  Blimpl:mVenus+, SSEA1+ cells, PECAM1+ cells and Stella:eCFP+ cells from 120h gastruloids and
184  performed 10x single-cell RNA-sequencing (Methods; Supplementary Figure 5A). Once
185 integrated into a single 120h dataset, we identified 8 distinct clusters of cell identities (clusters O
186 to 7), including 5 that we denoted to be putative PGCLCs due to expression of genes including
187  Dppa3/4/5A, Nanog, Oct4 (Pou5f1), Sox2, Blimpl (Prdm1) and Ap2y (Tfap2c; Supplementary
188  Figure 5B). In addition, some cells within these clusters also expressed genes including Dazl, Ddx4
189  and Tex14 which are known markers of later stage PGCs in the mouse embryo. While each sorted
190 population contributed to these PGC-like clusters, we also noted additional populations including
191 a putative endoderm-like population (Cluster 6), endothelium (Cluster 7) and mesoderm,
192  including somitic cell types (Cluster 5) that were apparent in our data (Supplementary Figure 5B,
193 (). To further confirm that our sorting strategies were indeed capturing the population of Gld-
194 PGCLCs we compared our data to extant mouse gastruloid scRNA-seq data3, and confirmed a

195  high degree of concordance between both PGCLC populations (Supplementary Figure 5D-E). We
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196 therefore filtered our cells using the previously defined PGCLC population from mouse gastruloid
197  scRNA-sequencing data33 for all downstream analysis.

198 One of our major questions was whether these cells were equivalent to in vivo PGC cell
199 types, and if so, which developmental timepoint was best matched by the in vitro Gld-PGCLCs.
200 To assess this, we projected our Gld-PGCLCs onto a well-characterised and extensive map of in
201  vivo germ cell development between E6.5 and adulthood (8-10 weeks) at 28 sampled timepoints
202  from Zhao and colleagues®®. Surprisingly, we found a very close match between our Gld-PGCLC
203  cells and in vivo PGCs at the mitotic and mitotic arrest PGC stage of development which were
204  found in E13.5-15.5 stage embryos (Figure 5A-D). This is particularly remarkable given that
205 traditional embryoid body-derived PGCLCs are thought to stall at E9.5-E10.5 stages®. We
206 therefore directly compared our Gld-PGCLC dataset to a published single cell dataset from EB-
207 derived PGCLCs at day 6?° with the in vivo PGC dataset. We found that the EB-PGCLCs were
208 relatively heterogenous, and their projection spanned cell types from specification PGCs, to
209  migrating PGCs and as late as mitotic PGCs (E8.5 to E13.5) while our Gld-PGCLCs were more
210 homogeneous and clearly more advanced on the projection, and approximated particularly
211  mitotic arrest PGCs (E13.5 to E15.5; Figure 5E-G).

212 Together, this transcriptomic analysis of Gld-PGCLCs alongside the observation of protein
213  level DAZL expression, epigenetic remodelling and cell morphological behaviours suggests that
214  gastruloids might enable the development of more mature PGC-like states in vitro, without the
215 need for additional gonadal co-culture.

216

217
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218 Endogenous signalling control of GId-PGCLC specification

219 Since no exogeneous manipulation of the gastruloids was performed that might
220  particularly bias towards a germ cell-like fate, we hypothesised that Gld-PGCLC specification and
221  maturation must be coordinated by local, self-organised signalling feedback mechanisms
222  between populations of cells present in the gastruloid. We therefore sought to manipulate the
223 endogenous signalling environment of gastruloids and examine the resultant effect on the Gld-
224  PGCLC population to better understand how these endogenous signals were acting.

225 We initially focussed on BMP signalling pathway, since it has been reported to be required
226  for PGC specification in vivo®®77° and in vitro’"’, although this has been brought into question by
227  recent reports’?>73. Surprisingly, we found that addition of BMP4 ligand did not lead to any
228  significant increase in Gld-PGCLC numbers compared to control gastruloids (Figure 6A-B,
229  Supplementary Figure 6A-B). Likewise, no co-localisation of phosphorylated SMAD1/5/8
230 (pSMAD1/5/8) was found in Ap2y cells at 24h in BVSC or 48h in Blimpl-GFP gastruloids
231  (Supplementary Figure 6C-D) and in general, very little pSMAD1/5/8 was detected in the
232 gastruloids until 96h, where the distribution was polarised towards the anterior pole but was
233 never observed to co-localise with AP2y (Supplementary Figure 6C-D). This is consistent with
234  spatial transcriptomics data that reported an anterior bias of BMP signalling in gastruloids from
235  late stages®>’# but implies that downstream BMP signalling might not be active in the Gld-PGCLCs
236  themselves. Indeed, addition of the BMP inhibitor, Dorsomorphin homolog 1 (herein, DMH1; a
237  selective inhibitor of ALK2), to gastruloids from 24 to 48h did not produce discernible
238 morphological differences in axial elongation when compared to the DMSO control, and both

239  contained AP2y/Stella positive cells (Figure 6C). However, a significant increase was found in
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240  absolute AP2y cell count (p=0.0003; 43 +/- 22.52 sd mean cells per gastruloid) and proportion
241  relative to gastruloid volume (p=0.0191, 5.78 +/- 4.2 sd mean cells per gastruloid) in gastruloids
242 exposed to DMH1 (Figure 6C-D). Consistent with this, higher concentrations of DMH1 resulted in
243 further significant increases in AP2y+ cell count (Figure 6C, Supplementary Figure 7A-C), and LDN
244 193189 (herein, LDN; an ALK3 inhibitor) treatment likewise did not inhibit GId-PGCLC formation
245  (Supplementary Figure 7A).

246 To further explore this surprising relationship between BMP signalling and Gld-PGCLC
247  specification, we generated gastruloids from BMPR1a null mESCs’>. These gastruloids did not
248  elongate (Figure 6E-F), perhaps consistent with the reported reduced Nodal/Activin signalling
249  found in Bmprla null embryos’ and the requirement for Nodal signalling in symmetry breaking
250 and elongation in gastruloids3®. However, they did show evidence of differentiation towards
251 endoderm, mesoderm, and ectodermal populations (Supplementary Figure 7D-I). Surprisingly,
252  they also contained AP2y expressing cells (Figure 6E, Supplementary Figure 7D) in significantly
253  higher proportions than observed in non-mutant Blimp1-GFP/BVSC gastruloids (Supplementary
254  Figure 7D). Together, these results suggest that BMP signalling is not strictly required for PGCLC
255  specification in the gastruloid model, and indeed may even have a repressive effect on the Gld-
256  PGCLC fate, at least at the timepoints assessed here.

257 We then turned our attention to the Wnt signalling pathway, which has also been
258  proposed to support PGC specification in vivo”?’. Since the standard gastruloid protocol includes
259  a24h pulse of CHIR-99021 (herein, Chi; an inhibitor of GSK33), between 48-72h post aggregation,
260 we decided to modulate the time interval of addition of Chi to examine the effect on GId-PGCLCs.

261 Moving the Chi addition 24h earlier altered gastruloid morphology but did not inhibit the
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262  presence of AP2y cells (Figure 6G). However, extending the Chi exposure to between 24-72h post-
263  aggregation resulted in significant (p < 0.0001) increase in AP2y positive cells in both absolute
264  (mean 285.4 +/- 138.1 sd cells) and relative (mean 59.13 +/- 34.39 sd) cell numbers, although we
265 noted a line specific difference between the Blimp1l-GFP and BVSC lines (Figure 6G-H). The
266 increase in AP2y cells was specific to this time window, as Chi treatment for an equivalently
267  prolonged period of 48h between 0-48h post-aggregation in the BVSC gastruloids did not
268  significantly alter the AP2y cell number (p = 0.43) even though it did result in clear morphological
269 changes (Supplementary Figure 8A) and later addition of Chi (72-96h) led to a significant decrease
270 in GId-PGCLCs (Supplementary Figure 8B-C). However, although changing the timing of Chi
271  exposure had an obvious effect on GId-PGCLC numbers, altering the concentration of Chi
272  between 48-72h did not change the number of AP2y+ cells relative to the total gastruloid
273  (Supplementary Figure 8D-G). Together, these results suggest that gastruloid PGCLCs are
274  sensitive to Wnt signalling modulation, but that this occurs within a specific temporal window, in
275 atime-dependent but not concentration-dependent manner.

276 In addition, it is likely that endogenous as well as exogeneous Wnt signalling may be
277  driving PGCLC formation in gastruloids. Gastruloids without a Chi pulse still contained AP2y
278  expressing cells (Supplementary Figure 8H-1) but BVSC gastruloids exposed to Wnt inhibition by
279  addition of XAV393 (XAV) resulted in loss of Gld-PGCLCs (p = 0.033, Figure 6l, Supplementary
280  Figure 8l). Additionally, the supplementation of 500ng/ml WNT3A led to a significant (p = 0.0023)
281 increase in GId-PGCLCs in the BVSC gastruloids (Supplementary Figure 8H,1) although addition of
282  100ng/ml WNT3a on Blimp1-GFP gastruloids did not lead to significant changes (Figure 6J). Taken

283  together, these observations suggest that Wnt signalling is indeed necessary for the specification
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284  of GId-PGCLCs, and that gastruloids are particularly sensitive to the effect of this pathway
285  between 24-72h post-aggregation.

286 Finally, we turned our attention to the FGF signalling pathway, as an in vitro study found
287  that FGF inhibition during mesodermal induction resulted in the formation of mouse PGCLCs’®.
288  Phosphorylated ERK (pERK) was observed sporadically with no discernible spatial polarisation in
289  24/48h gastruloids, and neither was it specifically associated with AP2y positive cells
290 (Supplementary Figure 9A). Perturbation of the FGF pathway by addition of the FGF signalling
291  inhibitor, PD0325901 (herein, PD03), between 24-48h resulted in a marked increase in AP2y
292  expressing cells accompanied by loss of gastruloid elongation and disruption of FOXC1, a marker
293  of anterior mesoderm (Figure 7A). The AP2y-expressing total cell count was significantly (p <
294  0.0001) higher than the DMSO control (mean average of 290.3 cells +/- 95.45 sd) and increased
295 in a concentration-dependent manner when adjusted for gastruloid volume (Figure 7A-B,
296  Supplementary Figure 9B-C). This observation was independent of Chi, as an increase in AP2y
297  expression was also observed when PD0O3 was added to gastruloids in the absence of the Chi
298 pulse (Supplementary Figure 9B-C). The FGF inhibition-induced increase in AP2y was also
299 timeframe specific, with the largest change in AP2y number following PDO3 addition between 24-
300 48h (Supplementary Figure 9D).

301 To further explore the role of FGF signalling on GId-PGCLC specification, we made
302 gastruloids from cells containing a fluorescent reporter of the downstream target of the FGF
303 pathway, Spry4 (Spry4-Venus), as well as this same reporter line with FGF4 knock-out (Spry4-
304 Venus; FGF47)77. Spry4-Venus expression was found to be biased towards the more posterior

305 end of the gastruloids, consistent with a posterior FGF signalling gradient in gastruloids®® and in
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306 the gastrulation-stage embryo’®7° and, like our pERK stainings, Spry4 reporter expression did not
307 overlap specifically with the AP2y population (Figure 7C). However, gastruloids generated from
308 the FGF4 mutant cells had a significant increase in AP2y positive cells (p = 0.0398; Figure 7D-E)
309  akin to our results with small molecule inhibition of this pathway. While we cannot rule out that
310 these FGF-modulated AP2y positive cells show differences to Gld-PGCLCs in the absence of
311  exogenous FGF signalling, these results are suggestive of potential Gld-PGCLC sensitivity to FGF
312 signalling levels that should be investigated in future studies. Together, these signalling
313 modulation experiments suggest that there are specific time-windows that are sensitive to
314  signalling pathway perturbation in mouse gastruloids, that might correspond to times at which
315 cellular populations undergo cell fate decisions or emerge as new cell types, and particularly
316 implicate the Wnt and FGF pathways as key modulators of Gld-PGCLCs in gastruloids.

317
318 Discussion

319 We have shown that gastruloids generated from established PGC reporter lines contain a
320 population of cells that display key features of PGCs, including co-expression of pluripotency and
321 PGC-associated markers, that we call GId-PGCLCs. Our findings, combined with those by
322  others#333541 demonstrate that Gld-PGCLCs appear to be general feature present in mouse
323  gastruloids, despite the fact that gastruloids self-organise in the absence of extraembryonic
324  tissues®. Our results have shown that gastruloids are able to specify a population of PGC-like
325 cells and support the continued maturation of this population towards late-PGC identities,
326  dynamically recapitulating many aspects of their in vivo counterparts in gene/protein expression,

327  epigenetic changes, and cell behaviour.
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328 In addition, the GId-PGCLCs generated here show advanced maturation equivalent to
329  ~E14.5 stage in vivo PGC development, that far surpasses traditional EB-PGCLC approaches that
330 are believed to stall at approximately E9.5-10.5 stages'>. One example of this is in the expression
331 of DAZL, a late germ call marker that is required for germ cell determination?'3, which Gld-
332  PGCLCs express at 120h but is not typically reached in EB-PGCLCs'>, except in the presence of
333  additional expansion factors such as forskolin and rolipram®. It is likely that the close association
334  of GId-PGCLCs with neighbouring tissues in gastruloids, including the early primitive streak-like
335 domain, the epithelial endodermal tract and the GATA4+ anterior niche cells, strongly support
336 the notion that mouse gastruloids benefit from organised co-development of Gld-PGCLCs
337 alongside somatic populations. Potentially, this could explain their apparent maturation, as local
338 endogenous signalling alongside dynamic cell movements might be optimising the
339  developmental time-course of these cells towards developmentally-faithful fates'. However, it
340 isindeed surprising that GId-PGCLCs are able to reach states equivalent to embryonic E14.5 PGCs
341 by 144h, given that previous studies have suggested that gastruloids at this experimental
342 timepoint are overall most similar to ~E9.5 stages?. It is possible that this observation therefore
343  reveals potential intrinsic properties of PGC(LC)s that, in the embryo, need to traverse long
344  distances to reach the incipient gonads, but may already be competent to reach mitotic arrest
345  stages given the right environment in a simplified in vitro system. However, further studies would
346  be required to test this hypothesis.

347 Our perturbation experiments likewise challenge the role of different signalling pathways
348 in mouse PGC specification. While BMP signalling has been proposed to principally mediate initial

349  specification of the PGC lineage®’, we find little evidence that BMP is required for Gld-PGCLC
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350 specification. These results are directly comparable to those performed by Morgani and
351  colleagues’® who similarly showed that PGCLCs can be induced in BMPR1A-/- embryoid bodies,
352 andindeed that the proportion of AP2y+ PGCLCs increases in this case. Together, such results are
353 challenging the notion that BMP signalling is directly required for PGC(LC) induction. Instead, Wnt
354 and FGF signalling appear to be playing a greater role in determining the germline-to-soma
355 balance of cell type proportions in gastruloids. It is possible that BMP signalling is a required
356 feature of mouse embryonic PGC specification primarily because of its role in the
357 extraembryonic-to-embryonic signalling cascades that are necessary to localise the site of
358 presumptive PGC specification to the Proximal Posterior Epiblast183, In gastruloids lacking
359 extraembryonic tissues, the competence of the cells to form PGCLCs is likely to be global rather
360 than localised, similar to experiments isolating epiblast from visceral endoderm and
361 extraembryonic ectodermal tissues®?’. However, unlike those early epiblast isolation assays, in
362 this case the time-window of competence appears to have shifted beyond the BMP-receptive
363 stage to a Wnt-receptive stage, particularly between 24-72h of the gastruloid protocol,
364  consistent with similar timepoints in the mouse embryo, at about E5.75 to E6.7578%7, After this,
365 FGF may well act to ‘fine-tune’ the number and balance proportions of PGCLCs, as has been
366  shown across early cell fate decisions®®, and similar to its function in separating PGCs from the
367 soma in the Axolotl®. Whether this observation is partly specific to the in vitro gastruloid context
368 or reflects a more general feature of mouse PGC specification and regulatory control remains to
369 beseen.

370 Future research may help to unravel further the signalling mechanisms at play within such

371  systems, including the cross-talk between signalling pathways, and the relationship between
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372  tissue types and signalling dependencies, potentially leading to answers to longstanding
373  questions that still exist such as how PGCs form in the PPE along with multiple other cell types
374  exposed to the same signalling environment and what exactly determines the cell proportions!4.
375 Inaddition, gastruloids have been more recently been generated from human PSCs’4, so it would
376  be very interesting to see whether these findings translate into human gastruloids, particularly
377 given the current debate about the epiblast or amniotic origin of PGCs in the human embryo®’.
378 Overall, our observations highlight the experimental tractability of in vitro embryo-like
379 models to generate rare cell types within a native embryo-like context that opens a new route
380 towards exploring exactly how tissue and cell interactions might mediate cell fate specification
381 in embryogenesis. In addition, the GId-PGCLCs generated here represent an advanced
382 maturation state that has not previously been achieved in vitro without the exogeneous
383  application of PGC-specific maturation factors or gonadal co-culture. Both of these features; their
384  maturity and their inherent co-development; represent a unique advantage of using embryo-like
385 model systems over traditional directed differentiation or disorganised EB systems, since cell
386 types are specified in a manner that harnesses the mechanisms that are used by the embryo
387 itself.

388

389  Material and Methods

390 Cell culture and maintenance

391 The following mESC lines were used: Blimp1-GFP* (kindly provided by A. Surani),
392  Blimpl:mVenus Stella:eCFP (BVSC)®® (kindly provided by M. Saitou), Sox17 -/- (as described

393  below), FoxA2 -/->% (kindly provided by H. Likert), BMPR1a -/-7> (kindly provided by T. Rodriguez),
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394  Spry4:Venus and Spry4:Venus FGF4 -/-77 (kindly provided by C Schroeter). All mESC lines were
395  cultured in 2iLif in N2B27 (NDiff227 Takara Bio, Y40002, supplemented with 3uM CHIR99021
396  (Chi), 1uM PD0325901 (PD03) and 11ng/ml mLIF) on gelatinised (0.1% gelatin) tissue culture
397 flasks or 6-well plates kept in humidified incubators at 37°C, 5% CO.. Cells were passaged into
398 new flasks or plates every two days with media exchanged daily.

399

400 Generation of Sox17 -/- cell line

401  Cells were grown for at least two passages prior to transfection. Cas9/gRNA targeting was used
402  to generate strand breaks alongside homologous recombination with a targeting vector®. An
403  eGFP sequence was knocked-in to both alleles of the Sox17 gene by plasmid transfection. Guide
404  RNAs (gRNAs) were designed to target PAM sequences at the start and end of the protein coding
405 sequence (Table 1). gRNAs were ligated into the PX459-Cas9 plasmid®® after cleavage with Bbsl.
406 The correct integration of the gRNAs was confirmed after cloning by Sanger sequencing using the
407 hUG6-F oligonucleotide (see Table 1). Cells were transfected with three plasmids (Sox17 GFP,
408 PX459-gRNA1, PX459-gRNAZ2) by incubation with FuGene HD (Promega, E2311) following a
409 previously described protocol®l. Transfected cells were grown under selection with puromycin
410 (Thermo Fisher, A1113803) and clones were picked for expansion. Genomic DNA was prepared

411 from the primary clones for genotyping by PCR, with the primers as described in Table 1.

412 Table 1: Guide RNA sequences for CRISPR/Cas9 targeting and validation.

Name Sequence (5’-3')

gRNA1 2aacTCAAATGTCGGGGTAGTTGC
gRNA2 23acGATGCGGGATACGCCAGTGAC
hU6-F GAGGGCCTATTTCCCATGATT
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P1 (Fwd; wt Sox17) GCTTTACGAGTTCCTCTGGGC
P2 (Rev; 3’ UTR Exon 5) GGCAAATTTTGTGGGAAGTGGG
P3 (Rev; eGFP) CGTTGGGGTCTTTGCTCAGG

P4 (Rev; wt Sox17) CCATGTGCGGAGACATCAGC

Gastruloid generation

Gastruloids were prepared following the previously reported protocol®2. Briefly, mESCs
were trypsinized and pelleted, with the cell pellet washed in PBS before repeating the process
then resuspending in N2B27. The cells were counted and diluted to provide 300 cells per well,
before pipetting into U-bottom suspension 96-well plates (Greiner), except in the case of BVSC
which were pipetted into cell-repellent, ultra-low attachment 96-well plates (Greiner).

Aggregates were incubated at 37°C, 5% CO;in a humidified incubator. After 48 hours, N2B27

supplemented with 3uM Chi was added, and every subsequent 24 hours the media was aspirated
and replaced with fresh N2B27. Signalling modulation in gastruloids was performed through
addition of small molecule ligands or activators/inhibitors as indicated in the text and figure
legends (Table 2).
Table 2: Signalling modulators

Name Supplier

Bone morphogenetic protein 4 (BMP4) R&D Systems, 314-BP

CHIR99021 (Chiron or CHI) Cambridge Stem Cell Institute

Dorsomorphin Homologue 1 (DMH1) MedChem Express, HY-12273

LDN 193189 dihydrochloride (LDN) Tocris Biosciences, 6053

PD0325901 (PD03) Cambridge Stem Cell Institute

Whnt3a (Wnt family Member 3a) protein Abcam, ab81484

XAV939 (XAV) Selleck Chemicals, $1180
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429  Immunofluorescence staining

430 Immunostaining was performed based on a previously published protocol®®. Gastruloids
431  were collected and washed twice in PBS before fixing in 4% PFA in PBS at 4°C (2h to overnight on
432  anorbital shaker). Three PBS washes to remove the PFA before three washes with blocking buffer
433  PBSFT (10% FBS, 0.2% Triton X-100 in PBS) and blocking in PBSFT for 1-2hr at 4°C on an orbital
434  shaker. Primary antibodies (see Table 3) were added in PBSFT and incubated overnight at 4°C on
435  an orbital shaker. A total of 10 washes with PBSFT were performed before secondary antibodies
436  (diluted 1 in 500) (see Table 4) and Hoechst (Hoechst 33342 trihydrochloride trihydrate,
437  Invitrogen Mol Probes H3570, 10mg/ml solution in water, 16.2mM) at 1 in 800 dilution were
438 added and incubated overnight at 4°C on an orbital shaker. Three PBSFT washes followed by five
439  PBT (0/2% FBS, 0.2% Triton X-100 in PBS) washes were performed before the gastruloids were
440 transferred to ScaleS4 tissue clearing solution (40% D-(-)-sorbitol, 10% Glycerol, 4M Urea, 0.2%
441  Triton X-100, 20% DMSO) in a glass bottom dish and incubated overnight at 4°C on an orbital
442  shaker or mounted on coverslips before imaging.

443  For the 5hmC immunostaining the gastruloids were treated with 1N HCI for 1 hour at room
444  temperature to expose the DNA prior to primary antibody addition. For the phosphorylation
445  antibodies, PBS in the solution buffers was replaced with TBS.

446  Table 3: Primary antibodies

Antibody target Host Supplier Catalogue Dilution
species number
5hmC Rabbit Abcam ab214728 1in 100
AP2-gamma Mouse Santa Cruz sc-53162 1in 100
Brachyury Rabbit Abcam ab209665 1in 100
DAZL Rabbit Abcam ab215718 1in 200
E-cadherin Mouse Abcam ab76055 1in 100
E-cadherin Rat Takara M108 1in 100
EpCAM Rabbit Abcam ab221552 1in 100
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FoxA2 Rabbit Abcam ab108422 1in 100
FoxC1 Rabbit Abcam ab223850 1in 200
GATA4 Rabbit Abcam ab84593 1in 200
GCNAZ1 (Tra98) Rat Abcam ab82527 1in 200
GFP Chicken Abcam ab13970 1in 2000
Histone H3K27me3 | Rabbit Abcam ab192985 1in 100
Nanog Rat ThermoFisher Scientific 14-5761-80 1in 250
Nanog Rabbit Abcam ab214549 1lin 100
N-cadherin Mouse BD Biosciences 610921 1in 200
Oct4 Rabbit Abcam ab200834 1in 200
PECAM1 (CD31) Rat BD Biosciences 557355 1in 200
PhosphoERK Rabbit Cell Signalling Technology 4370 1in 100
PhosphoSMAD1/5/8 | Rabbit Cell Signalling Technology 13820 1in 100
Stella (DPPA3) Goat R&D Systems AF2566 1in50
Sox2 Rabbit Abcam ab92494 1in 200
Sox17 Rabbit Abcam ab224637 1in 100
CDX2 Rabbit Abcam ab76541 1in 200
447
448  Table 4: Secondary antibodies and primary conjugate
Antibody target Antibody Supplier Catalogue Dye
species/type number
Chicken IgY Goat Abcam ab150173 Alexa 488
Mouse IgG Donkey ThermoFisher A10037 Alexa 568
Mouse IgG Goat ThermoFisher A21236 Alexa 647
Rabbit IgG Donkey ThermoFisher A21206 Alexa 488
Rabbit IgG Donkey ThermoFisher A10042 Alexa 568
Rabbit IgG Donkey ThermoFisher A31573 Alexa 647
Rat IgG Donkey ThermoFisher A21208 Alexa 488
Rat IgG Donkey Abcam ab150153 Alexa 647
PECAM1(CD31) Rat BD Biosciences 553373 Phycoerythrin (PE)
449
450
451  Imaging
452 Confocal imaging was performed with either a Zeiss LSM770 or LSM880 Inverted confocal

453  microscopes, using a Plan-Apochromat 20x/0.8 DICII air objective, imaging 6um Z sections. Data

454  was captured using the Zen software (Carl Zeiss Microscopy Ltd) and images were processed
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455  using Imagel (FIJI)** to generate Z slice section images or Z max projections. Hoechst channel
456  when not shown was used to trace gastruloid outlines to show morphology.

457  Live imaging was carried out in environmental control units (humidified, 5% CO,, 37°C) using
458  either widefield Nikon Inverted Eclipse Ti2 microscopes (15x or 20x ELWD objectives,
459  GFP/YFP/mCherry triple filter) operated by open-source Micro manager software (Vale lab, UCSF,
460 USA) or a Zeiss LSM880 NLO Invert multi-photon microscope (20x objective) operated by Zen
461  software. The Chameleon laser in the multi-photon microscope was tuned to 880nm, with filter
462  515/30 and 450/80 to detect GFP and CFP and CFP only respectively. Images were captured in
463  single plane every 20 minutes for over 14 hours on the Nikon and Z stacks taken every 30 minutes
464  for over 18 hours on the multi-photon.

465

466  Image analysis

467 Expression profiles were generated in Image) by drawing a segmented line (120 width for
468  whole gastruloid profiles or 20 width for DAZL/NANOG cells) from posterior to anterior of Z max
469  projections of the gastruloids (also used to determine length of gastruloids with ‘measure’
470  function), plotting the fluorescence profile using the ‘Plot Profile’ function then normalising both
471  the length and signal (against Hoechst) before plotting in Prism (GraphPad) software.

472  Cell counting (Parameter option: cell size = 8) and gastruloid volume calculations were performed
473  using the IMARIS software (Oxford Instruments), with gastruloid volumes calculated by creating
474  asurface (surface smoothing 1.5, threshold 800-2000) on the Hoechst channel. Cell tracking and

475  co-expression was also performed using IMARIS software. Gastruloid tissue features and PGCLC
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476  clusters were assessed by eye in Imagel. Means, standard deviations and significance (unpaired
477  t-test with Welch’s correction) were calculated in Prism.

478

479  Doubling time calculations

480 The doubling time of the PGCLCs was calculated based upon the mean cell numbers at each time
481 point, using the following equations to first calculate the growth rate, then the doubling time

482  between time points:

483 Growth rate (Gr) (%) = ((current cell no. — previous cell no./previous cell no.) x 100
484 Doubling time (per 24 hours) = (log(2)/log(1 + Gr/100)) x 24
485

486  Flow cytometry and cell sorting

487 Gastruloids were collected and washed twice in PBS before incubating at room
488  temperature for 8 mins in Trypsin-EDTA before quenching with 10% FBS in PBS. Cells were
489  pelleted at 230xg for 5mins before resuspending in filtered 1% FBS in PBS. Cell solution was
490 passed through tube filter (35um) then counted and divided into tubes before antibody addition.
491  Incubated at 4°C on rotator for 1 hour then centrifuged at 800 rpm for 5 mins at 4°C. Supernatants
492  were aspirated and sample washed with filtered 1% FBS in PBS before repeating wash and
493  transferringto chilled flow tubes. Cells were applied to a BD FACSAria™ Fusion Il (BD Biosciences)
494  performed by the Francis Crick Flow Cytometry Science and Technology Platform (STP) staff. Data
495  analysis was performed using FlowJo (BD Biosciences) software.

496 Cells were sorted on a BD FACSAria™ Fusion Ill (BD Biosciences) performed by the Francis

497  Crick Flow Cytometry Science and Technology Platform (STP) staff. Sorting was based on the
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498  reporters Stella:eCFP, Blimpl:mVenus or PECAM1-PE and SSEA1-A647 antibodies. Sorted cells
499  were transferred to DNA low-bind tubes and centrifuged at 300 rcf for 5 mins at 4°C. The
500 supernatant was aspirated and, using cut tips, 1ml of chilled PBS pipetted up and down 10 times.
501 This was repeated twice more, and after the final centrifugation step the cells were resuspended
502  in 200pl chilled PBS then 800ul of chilled 100% methanol added dropwise and with stirring. Fixed
503 cells were stored at -80°C until ready for 10x preparation for scRNAseq.

504

505  Single-cell 10x sequencing

506 The sorted, fixed and frozen cells were thawed on ice for 5 minutes before centrifugation at 1,000
507 xgfor 5 minutes (at 4°C). Supernatant was carefully aspirated without disturbing the pellet before
508 resuspending the pellet in the appropriate volume of Wash-Resuspension buffer; 3x SSC Buffer
509 (Invitrogen, 15557-044) supplemented with 0.04% Bovine Serum Albumin (BSA) (Invitrogen,
510 AMZ2616), ImM DL-Dithiothreitol solution (DTT) (Sigma-Aldrich, 646563) and 0.2U/ul Protector
511 RNase inhibitor (Roche, 3335399001) to give 1000 cells/pl in 50l or minimum volume of 50ul if
512  not possible to obtain that concentration.

513 Quality control on the cells and counts were performed on a Luna FX7 cell counter (Logos
514  biosystems) prior to applying to 10x Chromium library preparation performed according to
515 manufacturer’s instructions by the Advanced Sequencing Facility staff at the Francis Crick
516 Institute. Single cell libraries of 100 bp paired-end reads were pooled and sequenced using
517 Illumina NovaSeq 6000, carried out by the Advanced Sequencing facility at the Francis Crick
518 Institute.

519
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SCRNA-seq Analysis

FastQ files were quantified into expression matrices using Cell Ranger (6.1.2) using the 10x-
provided refdata-gex-mm10-2020-A index. Seurat (4.0.3) objects were created using the filtered
matrix for each sorted population in R 4.1.1. Each population was filtered according to the
number of reads, features and proportion of mitochondrial expression to remove low-quality
cells. Quality-controlled datasets were integrated into a single “120h” dataset with Seurat®>.
Datasets were scaled, projected and clustered using the first 10 principal components for each

sorted population or 15 for the integrated dataset.

Published datasets were reprocessed using Seurat 4.0.3 from either the counts matrix of a Seurat
object or output of Cell Ranger. The Zhao et al. data was subset to retain only cells whose author-
determined cell type included “PGC”. Where possible, the same cell barcodes, variable features
and dimensionality were used when reprocessing the published datasets and any published cell
metadata was included. Qualitative comparison between the published and recalculated UMAPs
reassured us that the structure in the reference data was preserved in our reprocessed objects.
For visualisation, UMAP coordinates were reflected to preserve left-to-right time progression,

where possible.

Reference and query datasets were subsequently analysed using Seurat®® to transfer labels of
published data onto the query data and embed the query data into the reference UMAP. We first
used the van den Brink dataset as a query and transferred the cell type label onto the 120h

dataset which was subsequently filtered for cells that were most-likely PGC-like. The Zhao et al.
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542  dataset®® was used as a reference for the 120h PGC-like and Ramakrishna et al.?® PGC cells
543  identified in the publication as “cluster 5 excluding E10.5”. From this comparison, both cell type
544  labels (“cell type 1” and “cell type 2”) as well as time point were transferred.

545

546  Data Availability

547 Raw and processed scRNA-seq data for each sorted population are deposited and publicly
548 available in the Gene Expression Omnibus (GEO) at NCBI under accession GSE228406. Processed
549  data includes both filtered and raw expression matrices output by Cell Ranger.

550
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568  Figure Legends

569  Figure 1: Characterising gastruloid-derived PGCLCs. (A) Schematic of gastruloid protocol and
570 morphological changes from 24 to 144h. (B) Maximum projection of gastruloids from BVSC and
571  Blimp1-GFP reporter lines. In BVSC gastruloids, Blimpl:mVenus is membrane-targeted while
572  Stella:eCFP is found throughout the cell. (C) Z section images of Blimpl-mVenus+ endodermal
573  tracts. (D) Expression of AP2y and OCT4 in gastruloids. (E) Expression of AP2y and OCT4 in
574  gastruloids. (F-G) AP2y-expressing cells do not co-express FOXA2 (F) or SOX17 (G). (H) Cell counts
575  of AP2y-expressing cells from both Blimp1-GFP and BVSC gastruloids. Black bars represent the
576  mean value at each time point. Cyan arrowheads, Stella+ cells; Yellow arrowheads, AP2y+ cells;
577 Insets, higher magnification images; Dashed line, morphological gastruloid outline from Hoechst
578  staining; Dotted line, magnification region. Scale bars, 100 um.

579

580 Figure 2: Anterior localisation and movement of Gld-PGCLCs. (A) Anterior-localised clusters of
581  AP2y+ cells at 144h. White arrows, location of discrete clusters. Scale bars, 100 um. (B) High
582  magnification Z slice of an OCT4+ and PECAM1+ cluster at 144h. Scale bars, 100 um. (C)
583  Quantification of the number of cells in each cluster at 144h, as determined by co-expression of
584  atleasttwo of Blimp1, AP2y, PECAM1 or DAZL. Samples from n = 7 gastruloids. Black bar indicates

585 the median average. (D) Anteroposterior localisation of AP2y+ cells along the gastruloid length
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586 (see Methods). Gld, Individual gastruloid replicates. Inset, representation of a 120 width line
587  spanning anteroposterior axis of Z max projection gastruloid. (E) Schematic representation of
588  GIld-PGCLC localisation within gastruloids across their time-course. (F) Widefield time-lapse
589 imaging of a BVSC gastruloid from 98-106h. Top, whole gastruloid image; Bottom, zoom-in of
590 fluorescent reporter domain. Yellow arrowheads, Stella+ cells. Scale bars, 100 um. (G)

591  Multiphoton time-lapse images of a BVSC gastruloid from 129.5-135.5h with cell tracking (plotted

592 line). Red arrowheads, cell morphological features associated with active migration. Scale bars,
593 10 um.
594

595  Figure 3: Knockout of Gastruloid Endodermal tissue leads to aberrant Gld-PGCLC localisation
596  but maintains mesoderm and ectodermal populations. (A) Quantification of AP2y+ cell counts
597 in Blimp1-GFP and BVSC gastruloids (Wildtype), alongside FoxA2-/- and Sox17-/- gastruloids.
598  Black bars indicate the median average; n.s., no significant difference. (B) AP2y+ cells localise into
599 large clusters in FoxA2-/- gastruloids and show no E-Cadherin (E-CAD positive) endodermal tracts
600 (AP2y negative). (C) Confirmation of lack of FOXA2 expression detected in FoxA2-/- gastruloids.
601 (D) Maintenance of FOXC1 mesoderm in FOXA2-/- gastruloids at 120h. (E) Neural ectodermal cell
602  types present in FoxA2-/- gastruloids as evidenced by N-Cadherin (N-CAD) and SOX2 expression.
603  (F) Mesodermal T-BRA expression in FoxA2-/- gastruloids at 102h but not 120h. (G) Later stage
604  putative GId-PGCLC in 138h FoxA2-/- gastruloids. (H) AP2y+ cells localise into large clusters in
605  Sox17-/- gastruloids and show no E-Cadherin (E-Cad positive) endodermal tracts (AP2y negative).
606 (1) Confirmation of lack of SOX17 expression detected in SOX17-/- gastruloids. (J) Presence of

607  several scattered FOXA2+ cells (purple arrowheads) in SOX17-/- gastruloids. (K) Maintenance of
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608 FOXC1 mesoderm in SOX17-/- gastruloids at 120h. (L) Neural ectodermal cell types present in
609  SOX17-/- gastruloids as evidenced by N-Cadherin (N-Cad) and SOX2 expression. Blue arrowheads,
610 SOX2+, N-Cad- cells likely to be GId-PGCLCs. (A-L) Insets, higher magnification images; Dashed
611 line, morphological gastruloid outline from Hoechst staining; Dotted line, magnification region.
612  Scale bars, 100 um.

613

614  Figure 4: Maturation of GId-PGCLCs in epigenetic and protein expression changes associated
615  with germ cell determination. (A-B) Histone H4 trimethylation of K27 (H3K27me3) in GId-PGCLCs
616 in Blimp1-GFP (A) and BVSC (B) gastruloids at 144h. In BVSC gastruloids, Blimpl:mVenus is
617 membrane-targeted while Stella:eCFP is found throughout the cell. (C-D) 5-
618  Hydroxymethylcytosine (5hmC) in Gld-PGCLCs in Blimp1-GFP (C) and BVSC (D) gastruloids at
619  144h. (E) Quantification of DAZL-expressing cells in BVSC and Blimp1-GFP gastruloids. Black line
620 represents the mean cell count. n.s., no significant differences. (F) Quantification of Gld-PGCLC
621 localisation along the anteroposterior axis, using the posterior-most detected expression from
622  each gastruloid as a percentage of total length (see Methods for details). Black line represents
623  the median value. (G-H) DAZL expression in 144h BVSC (G) and Blimp1-GFP (H) gastruloids. Yellow
624  arrowhead, NANOG+, DAZL- cell; Red arrowhead, NANOG-, DAZL+ cells. Insets, higher
625 magnification images; Dashed line, morphological gastruloid outline from Hoechst staining;
626  Dotted line, magnification region. Scale bars, 100 um.

627

628  Figure 5: Single-cell transcriptomic comparison between Gld-PGCLCs and an in vivo PGC

629 dataset®®. (A, C) Quantification of label transfer prediction from Gld-PGCLCs (0.6+ max prediction
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630  score) in terms of embryonic time (A) and cell stage (C). (B, D) UMAP of PGC-only cell types from
631 Zhao and colleagues, in terms of time (B) and stage (D) with Gld-PGCLC embedded. (E) UMAP
632  projection of GId-PGCLC (0.9+ max prediction score) and published EB-PGCLCs? into the in vivo
633  UMAP of the full dataset. (F) Comparison of UMAP projection of Gld-PGCLCs and published EB-
634 PGCLCs onto in vivo PGC dataset, by origin (left) and cell state (right). (G) Frequency of cell
635  transfer labels from EB-PGCLCs or Gld-PGCLCs (0.6+ max prediction score) onto the in vivo PGC
636  dataset, by embryonic time point.

637

638  Figure 6: BMP and Whnt signalling modulation in Gld-PGCLCs. (A) Maximum projection images
639  of BVSC gastruloids following BMP application at timepoint and concentrations indicated. In BVSC
640  gastruloids, Blimpl:mVenus is membrane-targeted while Stella:eCFP is found throughout the
641 cell. (B) Quantification of AP2y+ cells in conditions indicated from BVSC and Blimp1-GFP
642  gastruloids at 120h. n.s., no significant differences. (C) Maximum projection images of gastruloids
643  following BMP inhibition by DMH1 application at timepoint and concentrations indicated. (D)
644  Quantification of AP2y+ cells in DMSO or 500nM DMH1, from BVSC and Blimp1-GFP gastruloids
645  at 120h. (E) Gastruloids made from BMPR1A -/- cell line, showing aberrant gastruloid morphology
646  with lack of elongation, and significant numbers of AP2y+ cells. (F) Absence of pSMAD1/5/8 in
647 BMPR1A-/- gastruloids at 120h. (G) Maximum projection of gastruloids exposed to different
648 timing of Chi application, as indicated. (H) Quantification of AP2y+ cells in conditions indicated,
649  from BVSC and Blimp1-GFP gastruloids at 120h. (I) Maximum projection of BVSC gastruloids
650 exposed to Wnt signalling inhibition by application of XAV. (J) Maximum projection of Blimp1-

651  GFP gastruloid exposed to WNT3a at timepoint shown. (B, D, H) Black bars represent the mean
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652  average. (A-J) CHI, CHIR99021; XAV, XAV939. Dashed line, morphological gastruloid outline from

653  Hoechst staining; Scale bars, 100 um.

Figure 7: FGF signalling modulation in GId-PGCLCs. (A) Maximum projection of gastruloids
exposed to FGF signalling inhibition through PD0325901 (PD03). In BVSC gastruloids,
Blimpl:mVenus is membrane-targeted while Stella:eCFP is found throughout the cell. (B)
Quantification of AP2y+ cells in conditions indicated, from BVSC and Blimp1-GFP gastruloids at
120h. (C) Maximum projection of Spry4:mVenus FGF4 -/- gastruloids at 120h. (D) Quantification
of AP2y+ cells in non-mutant Spry4:Venus gastruloids and in Spry4:mVenus FGF4 -/- gastruloids
at 120h. n.s., no significant differences. Dashed line, morphological gastruloid outline from

Hoechst staining; Scale bars, 100 um.
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