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Abstract 
Dynamic (2D) magnetic resonance spectroscopy is a collection of techniques where 
acquisitions of spectra are repeated under varying experimental or physiological conditions. 
Dynamic MRS comprises a rich set of contrasts, including diffusion-weighted, relaxation-
weighted, functional, edited, or hyperpolarized spectroscopy, leading to quantitative 
insights into multiple physiological or microstructural processes. Conventional approaches 
to dynamic MRS analysis ignore the shared information between spectra, and instead 
proceed by independently fitting noisy individual spectra before modelling temporal 
changes in the parameters. Here we propose a universal dynamic MRS toolbox which allows 
simultaneous fitting of dynamic spectra of arbitrary type. A simple interface allows 
information to be shared and precisely modelled across spectra to make inferences on both 
spectral and dynamic processes. We demonstrate and thoroughly evaluate our approach in 
three types of dynamic MRS techniques. Simulations of functional and edited MRS are used 
to demonstrate the advantages of dynamic fitting. Analysis of synthetic functional 1H-MRS 
data shows a marked decrease in parameter uncertainty as predicted by prior work. Analysis 
with our tool replicates the results of two previously published studies using the original in 
vivo functional and diffusion-weighted data. Finally, joint spectral fitting with diffusion 
orientation models is demonstrated in synthetic data. The toolbox is shared as a fully open-
source software with comprehensive documentation, example data, and tutorials.  
 
Keywords 
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Introduction 
During dynamic, or 2D, magnetic resonance spectroscopy (MRS), multiple spectra are 
acquired whilst experimental conditions change. Dynamic changes can be induced 
deliberately, to sensitise acquisitions to different signal mechanisms. Conditions can also 
change due to uncontrollable physiological processes, such as structured noise from 
cardiorespiratory motion or voluntary movement1, or due to hardware drift.2 In all types of 
dynamic MRS, the classical processing pipelines start by fitting a spectral model to each 
transient,3,4 or to averages of repeated measurements.5,6 They then extract parameters of 
interest from these fits, usually metabolite concentrations, and analyse or model their 
changes across experimental conditions. However, MRS is an inherently low signal-to-noise 
technique compared to proton-MRI, as metabolites occur with concentrations thousands of 
times lower than water. This means repeated measurements are required, at the detriment 
of more interesting and informative changes induced experimentally. Simultaneous fitting of 
all spectra, i.e., dynamic fitting, can mitigate this trade-off, by modelling the effect of 
changing the experimental conditions and by explicitly sharing relevant information across 
dynamic spectra. 
 
For example, in spectral editing7, two or more spectra are acquired with appropriate 
changes in the pulse sequence aimed at suppressing the signal around targeted spectral 
peaks. While these spectra may be affected by different factors that require separate 
modelling, such as phase shifts,8 they share the fact that the underlying metabolite 
concentrations are unaffected by the pulse sequence. A straightforward dynamic fit can 
estimate the shared concentrations while independently fitting nuisance factors. A similar 
logic applies for non-edited spectroscopy, where noisy transients are affected by separate 
artefacts whilst metabolite concentrations remain constant.2 In diffusion-weighted MRS, the 
apparent concentrations are reduced as a function of the diffusion encoding due to the 
random motion of metabolites.9 Models linking metabolite diffusion to the underlying tissue 
microstructure can be used to link across dynamic spectra,10 thereby imposing a precise 
structure to help the fitting, particularly when strong diffusion-encoding drastically 
decreases signal-to-noise. A similar approach can be used in functional MRS, where the 
experimental manipulation is usually an exogenous stimulus,11 which effect on the 
concentrations and potentially on other parameters such as the linewidth can be explicitly 
modelled.12 
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Figure 1. Typical current independent fitting of dynamic data vs. proposed dynamic fitting. 
The typically used approach in fitting a model to dynamic MRS data (top) is to model the 
changing parameters after an independent spectral fitting stage (where each spectrum is 
treated independently). The proposed approach (and as examined by Tal13) is to 
simultaneously fit a spectral and dynamic model. This is known as dynamic, “2D”, or 
spectral-temporal fitting. This approach reduces the number of parameters to fit by allowing 
estimation of shared model parameters at once. This shared estimation increases the 
amount of data used to estimate parameters that are expected to be static (or functionally 
linked) across transients, mitigating the effect of noise which would otherwise result in 
multiple, low precision estimates of the parameter. This results in a decrease in parameter 
uncertainty. NParam: Total number of fitted parameters, NMetab: number of metabolite 
concentration parameters, NNuisance: number of spectral fitting parameters not of direct 
interest (e.g., line broadening), NModel: number of dynamic model parameters. 
 
In this work we introduce an extension to FSL-MRS14 that allows direct fitting of an arbitrary 
dynamic signal model to multiple spectra simultaneously. FSL-MRS is an end-to-end 
spectroscopy analysis toolbox embedded in the widely-used FSL neuroimaging analysis 
environment.15 Incorporation of a dynamic model with spectral fitting of multiple signal 
transients reduces the number of parameters to be estimated from noisy data, and, as 
demonstrated by Tal13 and in this work, reduces fitting uncertainty. These enhancements 
also establish a framework for model selection, as well as robust statistical testing at the 
group-level, when data are combined across subjects or sessions. These new tools are 
embedded into a wider spectroscopy analysis (and even wider neuroimaging package) to 
enable integrated pre-processing of dynamic MRS data. Whilst some similar tools are 
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beginning to emerge,16 the toolbox described here is open source, freely available, and 
importantly, allows arbitrary model flexibility for arbitrary types of dynamic MRS 
experiments. 
 
Here, we demonstrate uses across in vivo and simulated data to evidence the suitability of 
the tool for a three MRS contrasts which represent potential common use cases for dynamic 
fitting. These contrasts are: 

1. spectral editing of the metabolite GABA (MEGA-PRESS8), using synthetic data, 
2. functional MRS (fMRS) measured during visual stimulation, using synthetic and in 

vivo data, and, 
3. diffusion-weighted MRS (dMRS), using synthetic and in vivo data. 

We replicate the results of Tal13 showing the value of dynamic fitting in improving 
parameter estimation and uncertainty in a general framework, before extending the 
analysis to simulation of real-world fMRS data. We further show improvements in errors 
with spectral editing, validate the accuracy of the implementation in fMRS, and 
demonstrate how the toolset can be used to mitigate confounds and unlock new 
measurement approaches. As a further validation, we replicate the results of two in vivo 
studies (fMRS and dMRS respectively) using their original data. The proposed toolset is 
released as part of an open-source software package (FSL-MRS), free for academic use. All 
code and data used in this work is available openly, online. 

Methods 
Model 
We describe the evolution of model parameters as a ‘time dependence’, irrespective of how 
experimental conditions change. We use the linear combination spectral fitting model of 
FSL-MRS,14,17 modified to allow time dependence for all model parameters: 
 

𝑠(𝜈, 𝑡) = 𝐵(𝜈, 𝑡) + 𝑒!"#$!(&)()$"(&)*+𝑐+(𝑡)
+

ℱ.𝑚+(𝜏, 𝑡)𝑒!,#-(&)(".(&)*1.			[1] 

 
Where the time dependence of the concentration 𝑐!, lineshape 𝛾, shift 𝜖, phase Φ, and 
baseline	𝐵 parameters are specified in an editable, Python language, configuration file. Each 
of the parameters can have their own time dependent behaviour. Parameters may be fixed 
across all time-points, estimated per timepoint, or constrained to an analytical or numerical 
model across time. When combined with the ability to specify a linear combination basis set 
of spectra per time-point, the configuration file approach enables the description of many 
different types of dynamic MRS. Arbitrary dynamic models may be specified for each of the 
time-dependent variables in Equation [1]. Each dynamic model can come with its own set of 
dynamic parameters, which are estimated alongside the spectral parameters using all the 
data at once. More details on model initialisation and fitting can be found in the 
Supplementary Material. 
 
Dynamic Model Specification 
The joint spectral-dynamic model is specified through a user-defined configuration file 
which details the choices of dynamic fitting and the associated dynamic parameters. The 
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user can also specify a time variable input, which contains information about the 
experimental design leading to dynamic changes. For example, the b-values and gradient 
directions for dMRS, or a stimulus design matrix for fMRS. The core spectral fitting model is 
then specified in the same way as a normal linear combination model, as in non-dynamic 
FSL-MRS fitting.  
 
The Configuration File is simply a Python language text file containing three sections: 

1. the time-dependent behaviour of each spectral parameter: fixed, fully variable, 
or model-constrained, 

2. fitting bounds for each free parameter (optional), 
3. arbitrary dynamic-model definitions as Python-language functions. 

Time-dependence may be defined for a sub-group of parameters, e.g., metabolite 
concentrations or FSL-MRS “metabolite-groups” (which link frequency shift and line 
broadening parameters). Dynamic model functions must also provide analytical or 
numerical gradient definitions in the configuration file. Example configuration files are 
included in Supporting Figure S1. 
 
Higher-level / Group Analysis 
FSL-MRS implements python scripting (fsl_mrs.utils.fmrs_tools) and command 
line (fmrs_stats) interfaces to carry out higher-level or group-level analysis of the results 
of the dynamic fitting. These tools constitute a Python wrapper around the FSL tool 
FLAMEO, which implements multilevel linear modelling for group analysis using Bayesian 
inference.18 The tools allow the formation of both first level linear contrasts and high level 
(group) contrasts, and includes the ability to combine metabolites when the underlying first-
level dynamic model is linear. 
 
Software 
Our universal dynamic fitting toolbox is implemented as part of the FSL-MRS spectroscopic 
analysis package (part of the FMRIB Software Library, FSL15), available free of charge for 
academic use, and published as open-source. Dynamic fitting may be run using interactive 
or scripted Python coding environments (using the sub-package fsl_mrs.dynamic) or by 
using the command-line scripts fsl_mrs_dynamic, and fmrs_stats. Documentation is 
provided alongside that of FSL-MRS, in the source-code repository and at fsl-mrs.com.  
 
FSL-MRS is open-source, with code available online at git.fmrib.ox.ac.uk/fsl/fsl_mrs. Version 
2.1.0 of FSL-MRS was used, permanently available at Reference 19. All code and data used 
in generating this manuscript are available online at git.fmrib.ox.ac.uk/wclarke/fsl-mrs-
dynamic-fitting (#c52d6021f3bb64dc89daa80344dcc76c3fa74c2c), and permanently 
available at References 20 and 21. 
 
Approach 
In this work we use a series of case studies to explore analysis of common dynamic MRS 
contrasts that benefit from a dynamic fitting approach. There are six case studies, each 
explores dynamic fitting with a particular contrast, whilst either validating the approach and 
toolset, or highlighting an advantage over current processing approaches. Each case study is 
presented with methods and results in the same subsection. The six case studies are: 
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1. fMRS: replication and extension of Tal’s monograph. – shows improved accuracy 
and precision of correlated parameters in fMRS, 

2. Edited-MRS: improved estimation of [GABA] – further reveals improved fitting error 
in metabolite concentrations when dynamic fitting is used, 

3. fMRS: simulated analysis and group statistics – demonstrates how an analysis of 
visual stimulation fMRS can be performed, through to group-level statistics, 

4. fMRS: in vivo confound mitigation – explores the ability to dynamically model 
blood-oxygen-level-dependent signal as a confound in the fMRS model in real data, 

5. dMRS: multi-direction diffusion encoding – shows how dynamic fitting allows higher 
dynamic encoding resolution than would otherwise be restricted by SNR, 

6. dMRS: in vivo validation – demonstrates a full study analysis using analytical 
diffusion signal representations, with different models applied to different 
metabolites. 

Our approach is to show that dynamic fitting reduces error when model parameters are 
correlated, as predicted by Tal (and shown in CS1 & CS2). We also show that FSL-MRS 
dynamic fitting advances the analysis approach by either: providing a robust statistical 
framework (CS3), mitigating confounds (CS4 & CS6), or extending the available acquisition 
approaches (CS5). CS3 can also be used as a fully featured toolset demonstration, and the 
results as an implementation validation of the tool. 

Case studies 
CS1. Functional MRS: replication, and extension of Tal (Reference 13).  
Recently the advantages of dynamic fitting of 2D data (also called spectral-temporal fitting) 
were demonstrated theoretically and numerically.13 In this work we replicated these results 
using the software framework of FSL-MRS and extended the simulations from toy (two 
resonance) examples to realistic 1H-fMRS data, containing many overlapping spectral 
resonances. Functional MRS temporally resolves MRS to detect changes in neurochemical 
concentrations (or metabolite visibility), induced by external sensory stimulus or otherwise 
evoked neural activity.11 It is analogous to functional MRI (fMRI). 
 
The first simulation implements Reference 13’s toy example. It uses 64 repetitions of a 
spectrum containing two Lorentzian peaks at defined, but variable separation (Supporting 
Figure S3). For the central half (32 repetitions) one peak increased in amplitude by 20%, the 
other peak remained constant throughout (Supporting Figure S2). This toy simulation of 
fMRS was fitted using the FSL-MRS dynamic approach implementing a general linear model 
(GLM) to model the temporal dynamics. A design matrix with two regressors (baseline and 
rectangular-function stimulation period) was used. For comparison, the data was also fitted 
using FSL-MRS’s independent spectral fitting routine, and the GLM then fitted to the 
concentration parameters extracted from the independent spectral fits (as in Figure 1). Each 
simulation was generated and fit 100 times for each of ten peak separations and three 
different SNR levels. Fitting was carried out as in the original publication of Tal, with two 
unlinked peaks, ‘Free’, and using the normal FSL-MRS fitting approach, with fixed frequency 
offsets and linked linewidths, ‘Linked’. 
 
For each separation, the estimated amplitude increase was extracted (specified in the GLM 
as the beta for the rectangular-function stimulation regressor). The RMSE across all 
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repetitions was calculated for the independent and dynamic fits, and the ratio of the 
uncertainties was calculated (ratio of standard deviations, for both free and linked 
conditions, Figure 2a&b). 
 
The code used to generate and analyse these simulations is contained in the online 
repository under ./fmrs/1_two_peak_simulation (git.fmrib.ox.ac.uk/wclarke/fsl-
mrs-dynamic-fitting/-/tree/master/fmrs/1_two_peak_simulation). 
 
The second simulation extended the above approach to realistic spectral profiles. In 
addition, noting that peak separation is a key driver of parameter correlation, and therefore 
improvement is predicted for the proposed method, the simulation was carried out at two 
different linewidths (6 Hz and 10 Hz). As such, the same overall approach was taken as the 
first simulation but implemented with simulated three tesla 1H-MRS spectrum from the 
brain. For each of 20 metabolites in the spectrum (see supporting information), and for each 
of the two linewidths, 500 Monte Carlo repetitions were made where one specified 
metabolite in each simulation increased in amplitude by 20% (example for NAA in Figure 2c) 
for the central 30 repetitions of 60 total repetitions. All other metabolites were held 
constant for that case, with the specified metabolite changed for each subsequent case. 
 
Fitting was carried out as for the previous simulation with dynamic fitting implementing a 
GLM dynamic model using a design matrix with two regressors. No BOLD-like effects on 
linewidths were simulated.12  
 
For each metabolite (and linewidth case) the ratio of independent/dynamic fitting 
uncertainties (calculated as the standard deviation cross the 500 Monte Carlo repetitions) 
was calculated for the baseline and stimulation regressor beta. The average concentration 
parameter correlation was calculated as shown in Supporting Figure S4. 
 
The code used to generate and analyse these simulations is contained in the online 
repository under ./fmrs/2_fmrs_spectrum_simulation 
(git.fmrib.ox.ac.uk/wclarke/fsl-mrs-dynamic-fitting/-
/tree/master/fmrs/2_fmrs_spectrum_simulation). 
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Figure 2. Results of the functional MRS validation. A Ratio of Monte Carlo measured 
standard deviations (independent fitting / dynamic fitting) for the concentration increase as 
a function of peak separation in the toy two-peak simulation (see Supporting Figure S3). 
Results for a model with all parameters unlinked “Free” and the standard FSL-MRS fitting 
model “linked” are given (see §Functional MRS – Simulation).  B RMSEs for the same 
simulation. As shown in A&B Dynamic fitting reduces uncertainty and overall error. C 
Extension of fMRS validation to realistic 1H-MRS data. Paired data with 20% increases in 
concentration were simulated for each metabolite (NAA shown) at two linewidths. D The 
uncertainty ratio (ratio of standard deviations, independent fitting / dynamic fitting) for each 
metabolite’s baseline concentration and increase (delta) is shown as a function of the 
parameter’s mean correlation with other parameters. A value > 1 indicates that dynamic 
fitting is decreasing the uncertainty compared to independent fitting. 
 
The first (toy two-peak) fMRS simulation shows that in all cases the dynamic fitting 
approach reduces the uncertainty of the amplitude increase parameters, also showing a 
lower RMSE. The functional form of the uncertainty ratio as a function of peak separation ‘d’ 
replicates that found by Tal (Figure 4 in Reference 13). Linking the linewidth and shift 
parameters, as is done in the default FSL-MRS model, reduces the advantage of dynamic 
fitting, but retains the same functional form. 
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The second simulated fMRS data, designed to explore data similar to real-world use cases, 
also demonstrates the advantage of using dynamic fitting over independent fitting for 
estimating both fMRS amplitude changes and also underlying baseline concentrations. A 
clear relationship between mean parameter correlation and uncertainty reduction was 
observed, with wider linewidths giving higher correlations and larger improvements (Figure 
2d). 
 
CS2. Edited-MRS: improved estimation of [GABA] 
The second case study uses synthetic single voxel MEGA-PRESS data.8 This example is 
representative of a study that acquires data using the MEGA-PRESS sequence, in absence of 
an external stimulation paradigm, to measure the concentration of metabolites (e.g. GABA) 
that are obscured by, or highly correlated with, other metabolite signals. Normally MEGA-
PRESS acquires two encoding conditions (ON and OFF), the difference of which (DIFF) 
contains a simplified spectrum enabling unobscured estimation of GABA. Here, the accuracy 
and precision on measurements of metabolites (specifically: NAA, creatine, GABA and Glx 
[glutamate and glutamine]) are compared across three fitting strategies: 

1. ‘OFF’ - Control-only acquisition – Taking only the control saturation condition, 
without a subtraction stage, like an unedited spectrum. All metabolites are visible 
but many overlap. The spectrum is fitted with a single (unmodified) set of basis 
spectra.  

2. ‘DIFF’ - Forming a difference spectrum – This approach matches the current gold-
standard approach. An on-resonance saturation condition is subtracted from a 
control saturation condition to leave a spectrum containing the differences arising 
from j-coupling (and direct saturation effects). The difference spectrum is fitted 
using a modified set of basis spectra. 

3. ‘DYN’ - Dynamic fitting of control and on-resonance acquisitions – The proposed 
approach, control and on-resonance saturation conditions are used in analysis, but 
no subtraction is performed, and they are analysed together using the proposed 
simultaneous fitting approach. In this case each spectrum is fit with a relevant set of 
basis spectra (simulated with control and on-resonance saturation) with additional 
dynamic constraints. These constraints are equal metabolite concentrations and 
nuisance parameters (lineshape, shift, phase, baseline, etc.). 

In each case the total acquisition time was kept constant, i.e., case one (control-only) data 
was simulated with half the noise variance. Basis sets were simulated using FSL-MRS’s 
simulator (fsl_mrs_sim), simulations incorporated spatial resolution and fully described 
RF pulse shapes. The difference basis set was constructed from the subtraction of the OFF 
from the ON basis set, which respectively simulated editing pulses at 7.5 and 1.9 ppm. 
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Figure 3. Approach to edited MRS analysis simulation. Simulation is carried out by 
generating pairs of synthetic MEGA-edited spectra (both the control [OFF] and on-resonance 
[ON] saturation case), and the corresponding difference spectrum (by subtraction, [DIFF]). 
The DIFF and OFF spectra are fit using single spectrum fitting, and the ON + OFF spectra are 
fit using the dynamic approach. The statically fitted OFF spectrum is constructed with half 
the noise variance to simulate matched time acquisitions. This is repeated 500 times in a 
Monte Carlo approach for each noise level and line broadening. Spectra are shown with 
static fitting and have the lowest linewidth (5 Hz) and intermediate noise (noise SD = 144).  
 
Data was simulated for standard in vivo concentrations for 19 metabolites (specified, with 
concentrations, in the supporting information), no macromolecules were simulated. Data 
was simulated with Lorentzian linewidths (FWHM) in four steps from 5 Hz to 9 Hz 
(representing `excellent` to `Acceptable` linewidths as defined in Reference 22), and eight 
SNR levels (NAA match-filter SNR of 30 – 330 in 8 steps) that span (and extend beyond) the 
range observed in vivo. Each condition was simulated 500 times to carry out Monte Carlo 
sampling of the fitting process. Data was fit using FSL-MRS’s core fitting routine 
fit_FSLModel (parameters specified in supporting information) or the dynamic fitting 
approach as detailed for fitting case #3. Simulation code for this section is contained in the 
online repository under /editing (git.fmrib.ox.ac.uk/wclarke/fsl-mrs-dynamic-fitting/-
/tree/master/editing). 
 
For each metabolite and each fitting condition (#1-3) the root-mean-squared-error (RMSE) 
was calculated across all Monte Carlo repetitions. RMSE was expressed in both metabolite 
units (equivalent to mM) or normalised to the time-matched control-only (#1) condition. 
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The three fitting strategies were simulated and results from four representative metabolites 
are shown (Figure 4): the frequent targets of MEGA editing, GABA and Glx (glutamate and 
glutamine combined), a metabolite that appears in all conditions, tNAA (NAA + NAAG), and 
one which is removed in the differencing process, tCr (creatine + phosphocreatine). 
Additionally, results are shown for four different linewidths for GABA and Glx (Figure 4: 
C&D). 
 
For GABA, RMSE was always worst (highest) for OFF (#1), then DIFF (#2) and the lowest was 
the proposed method DYN (#3). The greatest improvement for DIFF or DYN was seen for 
widest (worse) linewidths, with DYN achieving an RMSE of 0.39 of the OFF condition with a 
linewidth of 9 Hz compared to 0.6 for 5 Hz. Across all linewidths DYN achieved a 33% 
reduction in GABA RMSE compared to DIFF. A similar relationship was seen for Glx, except 
DIFF was the worst performing fit strategy with narrow linewidths, DYN was always the best. 
 
For tCr and tNAA, DYN produced highly similar results to OFF, both of which substantially 
outperformed DIFF. No significant variation was observed as a function of SNR or of 
linewidth for tCr or tNAA (Supporting Figures S5 and S6). 
 

 
Figure 4. Results of the editing simulation. A RMSE (±SD) across all noise levels and 
linewidths for each examined metabolite, expressed as percentage of the true metabolite 
concentration. B As A, but with the results normalised to OFF for each metabolite. C&D The 
effect of linewidth on the relative performance for GABA and Glx (glutamate + glutamine). In 
all cases, except the measurement of NAA+NAAG, the RMSE is lowest for the dynamic 
approach. 
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CS3. fMRS: simulated analysis and group statistics 
A full set of simulated visual-stimulation data and analysis scripts has been created for the 
purpose of demonstrating fMRS analysis using the proposed dynamic fitting approach. The 
data simulates single-voxel data acquired using block (flashing checkerboard) visual 
stimulation at 7T, in ten subjects, with a separate stimulation and control condition for each 
subject. Metabolite concentration changes, inter-subject variance in concentration changes 
and spectral quality is matched to reported values.12 As such, glutamate and lactate were 
set to increase during stimulation and glucose and aspartate to decrease, on average all 
other metabolites should be constant. Line narrowing due to the positive BOLD effect was 
simulated. The input dynamic model uses the canonical BOLD haemodynamic response 
function to model all changes (metabolite concentrations and line narrowing) during the 
stimulation period, and is implemented in a design matrix for GLM with four regressors (two 
stimulation conditions, linear drift, and a constant for modelling baseline concentration, 
Figure 5B). The simulation implementation is detailed in the supporting information. Group 
level analysis was conducted using the fmrs_stats function from FSL-MRS, implementing 
a paired t-test design across the stimulation and (no stimulation) control datasets of each 
subject. 
 
This documented demonstration dataset and analysis is hosted separately at 
github.com/wtclarke/fsl_mrs_fmrs_demo, with a permanent record at Reference 23. In 
addition to demonstration, this dataset was used to assess the implementation accuracy of 
the proposed dynamic fitting for fMRS combined with the packaged MRS group-level 
statistics tool (fmrs_stats). To assess the implementation accuracy, the betas for each 
concentration related regressor was compared to the true simulation input value, per 
subject and as a group average. In addition to the demonstration code repository (see 
above), code for this section’s analysis and figure generation is contained in the online 
repository under ./ fmrs/3_fmrs_demo (git.fmrib.ox.ac.uk/wclarke/fsl-mrs-dynamic-
fitting/-/tree/master/fmrs/3_fmrs_demo). 
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Figure 5. Demonstration of analysis of functional MRS using a GLM at the subject (first-
level) and group-level. A single subject fit of glutamate. A single subject’s stimulation data is 
shown for relative glutamate changes. Independent, moving-window temporally smoothed, 
and GLM/dynamically modelled results are shown. Note that no formal comparison is made 
to the moving-window averaging method, a formal comparison of dynamic fitting to 
independent fitting + GLM is made in CS1.  B Design matrix used to both generate and fit the 
fMRS data at the first level. There are two stimulation blocks separated by rest blocks, a 
linear drift regressor, and a constant regressor. C The simulated data contained paired 
stimulation and control (no effect) datasets for ten subjects. The group level analysis used 
this design matrix (created and displayed using FSL tools) to run a paired t-test. D The results 
as output by FSL-MRS’s fmrs_stats tool. FSL flameo is used to calculate z and p statistics for 
each first-level contrast at the group level. The tool accurately identifies the metabolites 
changing in the simulation as significant. 
 
Implementation accuracy was assessed by comparing GLM betas related to metabolite 
concentrations (constant and stimulation terms) per subject and at the group level. Figure 6 
shows the graphical outputs of group level traces for major metabolites. Lac, Glu, Asp, and 
Glc were simulated with stimulation-associated concentration changes. 
 
Correlation and Bland-Altman analysis of individual concentration betas is presented in the 
supporting information (Supporting Figures S7 and S8) and summarised here. Measured 
betas showed a very high level of correlation at both individual subject level (Pearson’s r = 
0.98, bias = 0.4 mM) and group (Pearson’s r = 0.91, bias = 0.02 %).  
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Figure 6. Visual representation of the group-level results from the fMRS demonstration. 
Stimulation and control (no stimulation) cases are plotted as a function of temporal 
transient showing group mean and standard deviation. The true values (calculated as mean 
across subjects) are shown as dashed/dotted lines. All metabolites that had simulated 
changes (Lac & Glu – positive, Asp & Glc – negative) are shown alongside two with no 
changes (NAA – high SNR, GABA – low SNR). 
 
CS4. fMRS: In Vivo Confound Mitigation 
The proposed dynamic fitting approach was assessed by reanalysing previously published 
visual stimulation fMRS data.24 The original study implements commonly applied analysis 
approach of carrying out independent spectral fitting on temporally averaged data, and 
then correlating metabolite time courses (which are themselves further smoothed).  The 
dataset comprises 13 subjects scanned for 8.5 minutes per condition. Two conditions were 
acquired: a stimulation condition, ‘eyes-open’, with four blocks of flashing checkerboard 
visual stimulation presented for 64 seconds interleaved with 64 s rest (no stimulation) 
blocks, and a control condition with ‘eyes-closed’ (no stimulation presented, i.e. constant 
for 8.5 minutes). Signal was acquired using a sLASER sequence interleaved with 3D EPI, full 
details are available in the original publication24 and are summarised in the supporting 
information. Note that the interleaved EPI data of the original dataset was not used in this 
reanalysis. Human data included in this work was collected with informed, written consent, 
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approved by the University of Oxford Research Ethics Committee (MSD-IDREC-C1-2014-
146). 
 
Spectral pre-processing was carried out using FSL-MRS’s pre-processing routine, 
fsl_mrs_preproc. The data was analysed using a dynamic fitting approach 
implementing a GLM model for dynamic analysis. The design matrix was implemented with 
four stimulation regressors, a linear drift and constant term, generated using the Glover HRF 
in the Nilearn package.25,26 The spectral fitting component used the original study’s basis 
spectra set (further parameters are listed in the supporting information). Two different 
approaches to BOLD-induced line narrowing were tested, one where the linewidths were 
kept fixed across time, and one where the Lorentzian line-broadening was modelled as a 
GLM (using the same design matrix as metabolite concentrations). This aims to remove the 
step of applying line broadening to spectra during stimulation events, as carried out in the 
original study (and others)12,24 by multiplying the time-domain data by an exponential filter. 
Applying line broadening will result in autocorrelation of spectral points and modify noise 
properties in only the stimulation case. 
 
Group level analysis was carried out using FSL-MRS’s fmrs_stats routine implementing a 
paired t-test design across stimulation and control conditions for each subject (as in CS3). 
Group results were compared with the original study’s findings. 
 
Code for this section is contained in the online repository under 
./fmrs/4_fmrs_invivo_example (git.fmrib.ox.ac.uk/wclarke/fsl-mrs-dynamic-
fitting/-/tree/master/fmrs/3_fmrs_invivo_example). 
 
The original study found significant increases in glutamate, rising approximately 2% over 
baseline, no other assessed metabolite was found to change during stimulation. In this 
reanalysis, when BOLD-induced line narrowing was modelled in the GLM the same result 
was found, with only glutamate showing a statistically significant (at p < 0.05) increase 
(Supporting Table 1). Glutamate was found to increase 3.1±5.8% on average across all 
subjects and blocks (p=0.04). A significant decrease in linewidth during the stimulation 
blocks was found for the eyes-open case (-0.18±0.5 Hz), but not for the eyes-closed case 
(see Supporting Figure S9). This shows that the line narrowing was successfully modelled 
without introducing autocorrelation across the signal. 
 
When the BOLD induced narrowing was not modelled in the fixed linewidth model, and nor 
was it accounted for in processing by line broadening as in the original study (i.e. expected  
BOLD line narrowing was not accounted for), an increase in glutamate upon stimulation was 
also found (with increased magnitude, 4.4±5.9%, and significance, p=0.01), but also 
significant increases in tNAA (0.4±1.0%), tCho (1.9±2.2%), and tCr (1.9±1.1%) were detected. 
Full statistics are reported in Supporting Table 2.  
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2023. ; https://doi.org/10.1101/2023.06.15.544935doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.15.544935
http://creativecommons.org/licenses/by/4.0/


 
Figure 7. Results of the fMRS in vivo validation for two metabolites: glutamate, which is 
expected to increase with stimulation (Glu, left) and total creatine which is not expected to 
change (tCr, right). A&B Group-level mean and 95% CI (coloured), and single-subject 
concentrations expressed as a percentage change relative to the middle time point. C&D 
Comparison of the group level means and 95% CIs for the stimulation (eyes-open) and 
control (eyes-closed) case. E&F Comparison of the results when using a model that 
incorporates the effect of BOLD on metabolite linewidths, to one with linewidths that are 
fixed across all timepoints (see supporting information). When fixed spuriously large changes 
are observed during stimulation, including for non-modulating metabolites. There are much 
smaller and more variable differences for the control case (where no BOLD effect is 
expected). 
 
CS5. dMRS: Multi-direction Diffusion Encoding  
Simulated multi-direction diffusion weighted MRS data was used to demonstrate dynamic 
fitting enabling new data acquisition approaches for dMRS. By implementing dynamic fitting 
using a parameterised functional model of direction-dependent diffusion properties, 
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acquisitions that have higher dynamic encoding resolution may be possible, when without 
dynamic fitting repeated sampling of each encoding would be needed for sufficient SNR. 
This case study also demonstrates the requirement for adequate fitting initialisation, and 
how this can be provided using existing tools and the implemented API interface. 
 
Data was simulated (Figure 8a) for three metabolites: NAA, predominantly located 
neuronally, myo-inositol predominantly located in glia, and creatine, a mix; the simulation 
was performed for a voxel with two crossing neuronal fibre populations, which is not 
present for glia. Thus, different simulated metabolites had different orientational diffusion 
dependence, i.e. different "fibre" orientation distribution function, fODF (simulations values 
in Supporting Information). NAA parameters were designed to mimic two crossing fibre 
populations, Ins as a predominantly spherical compartment (mimicking glia), and Cr was 
implemented as a mixture of the two. Synthetic data was simulated for a diffusion weighted 
sLASER sequence implementing two diffusion weighting approaches: 

1. Six diffusion directions at two b values (b = 1 and 3 ms/μm2 ), plus b=0, and, 
2. Sixty diffusion directions at two b values (b = 1 and 3 ms/μm2), plus b=0. 

Simulated noise variance was set ten times higher for condition #2, to simulate equal 
acquisition times. Dataset #2 is what is commonly acquired for water diffusion for modelling 
crossing fibres (e.g. for tractography), whilst dataset #1 is closer to a dMRS design when 
repeated measurements are typically needed to increase SNR.  
 
Dynamic fitting was implemented with a two-sticks and a ball diffusion model, which was 
also used to generate the synthetic data.27 The fitting was initialised with one of three 
approaches: 

1. Inversion of the dynamic model using the independently fitted spectra (default in 
fsl_dynmrs), 

2. With the ground truth parameters, 
3. Using results from the independently fitted spectra passed to FSL’s xfibres 

routine (which uses a more robust initialisation of the nonlinear fitting tailored to 
the ball and sticks model).27 

Quantitative assessment of fitting performance was made using Euclidian distance between 
‘stick’ vectors (scaled by ‘fibre’ fraction) estimated to those generated from ground truth 
parameters. Vector direction was rectified before error calculation.  
 
Code for this section is contained in the online repository 
under./dwmrs/1_simulation_dti (git.fmrib.ox.ac.uk/wclarke/fsl-mrs-dynamic-
fitting/-/tree/master/dwmrs/1_simulation_dti). 
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Figure 8. dMRS. A Schematic of the simulated analysis of multi-direction data using FSL-
MRS’s dynamic approach. Time-matched data with different numbers of diffusion directions 
was analysed implementing a ball-and-two-sticks model into the spectral-dynamic fitting. 
Different fitting initialisation approaches were trialled for each case. B Previously published 
multi-b-value dMRS data was reanalysed using spectral-dynamic fitting, implementing a 
biexponential model (exponential for macromolecules). The group-level analysis using 
fmrs_stats was qualitatively compared to the published results. 
 
Estimation of the simulated diffusion parameters (ball and two sticks model in three 
metabolites) was carried out in four cases, with 6 directions and 60 directions per diffusion 
shell and using a perfect initialisation strategy (using the ground truth) and using that 
obtained from the initial independent fit plus FSL’s xfibres routine. Xfibres is the core 
component of FSL’s Bayesian Estimation of Diffusion Parameters Obtained using Sampling 
Techniques for crossing fibres (BEDPOSTX), so is designed to estimate the equivalent 
problem for imaging data of water.27 For all metabolites the 60 directions outperformed the 
6 directions, and the perfect initialisation outperformed the xfibres approach (Figure 9). The 
reduction in error between 6 directions to 60 directions (error measured as Euclidian 
distance between predicted and true fibre vectors) was 23% for the perfect initialisation and 
82% for xfibres. Fitting using the default initialisation strategy (inversion of the model in FSL-
MRS) failed in all cases due to a complex loss landscape resulting in multiple local minima, 
and the results are not shown. 
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Figure 9. Results of fitting the ball and two-sticks model to simulated multi-direction 
diffusion data. This is a demonstration of the ability of the tool to simultaneously fit more 
complex diffusion models and spectral information. However, a good initialisation point 
(provided by FSL’s xfibres tool) is required. Here simulated data with more diffusion 
directions (but correspondingly lower spectral SNR) provides a better estimate of fibre 
directions than lower numbers of directions, which is required for stable spectral fits when 
no information is shared. The xfibres initialised fit, achievable on real data, is compared with 
an artificial perfect initialisation approach (which requires the ground truth) and the ground 
truth. Each metabolite simulates a different cellular compartmentalisation and therefore has 
a different ground truth. 
 
CS6. dMRS: in vivo validation 
Dynamic fitting of diffusion-weighted MRS was demonstrated on a previously published 
dataset of a mouse model of “pure” astrocyte reactivity induced by injecting cytokine ciliary 
neurotrophic factor (CNTF).28 Two groups of ten mice (control and CNTF), were scanned 
using a diffusion-weighted STE-LASER sequence,29 acquiring data at seven b-values ranging 
from 0.02 to 50 ms/μm2. Acquisition details are summarised in the supporting information. 
 
Processed data was provided by the original study’s authors. Dynamic fitting implemented a 
bi-exponential model for metabolite concentrations, and a mono-exponential model for 
macromolecules. An exponential-plus-offset model was used for polynomial baseline terms, 
this accounts for decreasing baseline ‘roll’ arising from unmodelled residual water signal, 
which decreases b-values increase. Without this baseline model either the baseline must be 
estimated independently for each b-value, increasing variability from a purely data-driven 
component of fitting, or a fixed value must be used, increasing bias. The spectral basis 
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contained 20 metabolites, including empirically measured macromolecules (see supporting 
information). 
 
Comparison was made to the original published results which implemented independent 
fitting using LCModel,17 and applied complex models of diffusion in randomly oriented 
cylinders.6 
 
Code for this section is contained in the online repository under ./dwmrs/2_invivo 
(git.fmrib.ox.ac.uk/wclarke/fsl-mrs-dynamic-fitting/-/tree/master/dwmrs/2_invivo). 
 
The results of the proposed fitting approach accurately recapitulate the results of the 
original study,28 both looking at microscopic properties as measured using diffusion 
weighting and overall metabolite concentrations (supporting information). Here we find 
statistically significant differences in myo-inositol and lactate diffusion, and statistically 
significant differences in metabolite concentrations for Lac, Glu, Ins, NAA, Tau. The original 
publication found the same changes, apart from lactate concentration differences which did 
not reach statistical significance in the original, but we note that Bonferroni correction was 
applied in the original. 
 

 
Figure 10. Results of the in vivo dMRS validation. The concentrations of key metabolites as 
fitted using the proposed dynamic fitting approach. The two cohorts are shown separately. 
The results closely match the magnitude and direction of the original publication’s results, 
which found significant differences in myo-inositol (Ins) and lactate (Lac) diffusion 
properties. Changes in overall metabolite concentrations were also found (see Supporting 
Table 3), again matching the original publication. This analysis used a bi-exponential 
representation to fit the dynamic process. 

Discussion & Conclusion 
As demonstrated here, our universal dynamic MRS fitting tool allows simultaneous analysis 
of multiple, linked spectra. The tool implements a novel framework capable of handling 
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several common types of dynamic MRS and incorporates methods for doing higher level 
statistics. We used the tool to replicate published results from fMRS and dMRS studies. We 
also numerically replicated theoretical results showing improvements in fitting uncertainty 
when using dynamic fitting approaches. This will help mitigate the low SNR inherent in 
dynamic spectroscopic approaches, improving target parameter precision. It will also enable 
greater dynamic resolution by permitting finer dynamic sampling despite the concurrent 
SNR reduction per shot. 
 
In this work we have demonstrated that on in vivo data the tool successfully replicates the 
results of published work from the original data, which used independent fitting 
approaches. On simulated data, where a ground truth is available, we demonstrated that 
the tool accurately estimates dynamic model parameters for diffusion weighted, functional, 
and edited spectroscopy experiments. Further, it was used to demonstrate an improvement 
in parameter estimation precision over independent fitting of edited spectroscopy. In 
addition, this work provides demonstration uses, and practical examples. Documentation 
has been developed beside the software tool and is available at fsl-mrs.com. 
 
The tool also integrates into a larger neuroimaging toolbox, FSL, and uses standardised data 
formats, compatible with neuroimaging (NIfTI and NIfTI-MRS).30,31 By doing this, the tool will 
allow integration with existing neuroimaging methods (as demonstrated by the fmrs_stats 
tool) and use of well validated MRI approaches, for example physiological noise regression 
in fMRS and mixed-effects group level modelling as shown in our dynamic fMRS results in 
this paper. To this point, in the toolbox, and in the examples shown, we have integrated 
existing models and software tools developed for analogous MRI techniques (fMRS/fMRI, 
dMRS/dMRI). 
 
Although our toolbox is designed to handle any type of dynamic spectroscopy, some 
practical limitations remain. Currently the tool does not implement models which require 
dynamic parameters linked to more than one metabolite. For example, models where two 
or more metabolites interact dynamically. This limits applications to e.g., tracer 
experiments, such as used in hyperpolarised carbon-13 spectroscopy, where the dynamic 
modelling requires this level of flexibility. This limitation is however only a matter of 
implementation and will be addressed in future versions. 
 
Finally, this work does not address an important caveat, which is identifying suitable 
dynamic models for linking across spectra. For example, in our fMRS analyses, we have 
approximated the response of metabolite concentrations to sensory stimulation using the 
canonical BOLD fMRI haemodynamic response function. While the BOLD response is well 
characterised in fMRI, it is not yet so in fMRS. Dynamic fitting using a suboptimal model may 
bias the results in ways that must be quantified in future studies. Similarly, there are many 
possible diffusion models already arising from dMRI, but these require adaptation for 
spectroscopy. Furthermore, there are myriad choices for the user to make during pre-
processing, choice of fitting algorithm and model description: where the normal ‘static’ 
spectral fitting parameters are extended by parameters describing the dynamic model. 
Changing many of these parameters can change the results, especially given the low SNR 
measurements we are fitting. This work does not start to address these choices, but the tool 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2023. ; https://doi.org/10.1101/2023.06.15.544935doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.15.544935
http://creativecommons.org/licenses/by/4.0/


and framework presented provide a rigorous analysis and statistical platform to do model 
discovery and selection. 
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