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Abstract

Dynamic (2D) magnetic resonance spectroscopy is a collection of techniques where
acquisitions of spectra are repeated under varying experimental or physiological conditions.
Dynamic MRS comprises a rich set of contrasts, including diffusion-weighted, relaxation-
weighted, functional, edited, or hyperpolarized spectroscopy, leading to quantitative
insights into multiple physiological or microstructural processes. Conventional approaches
to dynamic MRS analysis ignore the shared information between spectra, and instead
proceed by independently fitting noisy individual spectra before modelling temporal
changes in the parameters. Here we propose a universal dynamic MRS toolbox which allows
simultaneous fitting of dynamic spectra of arbitrary type. A simple interface allows
information to be shared and precisely modelled across spectra to make inferences on both
spectral and dynamic processes. We demonstrate and thoroughly evaluate our approach in
three types of dynamic MRS techniques. Simulations of functional and edited MRS are used
to demonstrate the advantages of dynamic fitting. Analysis of synthetic functional 1H-MRS
data shows a marked decrease in parameter uncertainty as predicted by prior work. Analysis
with our tool replicates the results of two previously published studies using the original in
vivo functional and diffusion-weighted data. Finally, joint spectral fitting with diffusion
orientation models is demonstrated in synthetic data. The toolbox is shared as a fully open-
source software with comprehensive documentation, example data, and tutorials.
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Introduction

During dynamic, or 2D, magnetic resonance spectroscopy (MRS), multiple spectra are
acquired whilst experimental conditions change. Dynamic changes can be induced
deliberately, to sensitise acquisitions to different signal mechanisms. Conditions can also
change due to uncontrollable physiological processes, such as structured noise from
cardiorespiratory motion or voluntary movement?, or due to hardware drift.? In all types of
dynamic MRS, the classical processing pipelines start by fitting a spectral model to each
transient,3* or to averages of repeated measurements.>® They then extract parameters of
interest from these fits, usually metabolite concentrations, and analyse or model their
changes across experimental conditions. However, MRS is an inherently low signal-to-noise
technique compared to proton-MRI, as metabolites occur with concentrations thousands of
times lower than water. This means repeated measurements are required, at the detriment
of more interesting and informative changes induced experimentally. Simultaneous fitting of
all spectra, i.e., dynamic fitting, can mitigate this trade-off, by modelling the effect of
changing the experimental conditions and by explicitly sharing relevant information across
dynamic spectra.

For example, in spectral editing’, two or more spectra are acquired with appropriate
changes in the pulse sequence aimed at suppressing the signal around targeted spectral
peaks. While these spectra may be affected by different factors that require separate
modelling, such as phase shifts,® they share the fact that the underlying metabolite
concentrations are unaffected by the pulse sequence. A straightforward dynamic fit can
estimate the shared concentrations while independently fitting nuisance factors. A similar
logic applies for non-edited spectroscopy, where noisy transients are affected by separate
artefacts whilst metabolite concentrations remain constant.? In diffusion-weighted MRS, the
apparent concentrations are reduced as a function of the diffusion encoding due to the
random motion of metabolites.® Models linking metabolite diffusion to the underlying tissue
microstructure can be used to link across dynamic spectra,'® thereby imposing a precise
structure to help the fitting, particularly when strong diffusion-encoding drastically
decreases signal-to-noise. A similar approach can be used in functional MRS, where the
experimental manipulation is usually an exogenous stimulus,'! which effect on the
concentrations and potentially on other parameters such as the linewidth can be explicitly
modelled.!?
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Independent fit, then model Nparam = Nspectra X (NMmetab + NNuisance) + NModel
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Figure 1. Typical current independent fitting of dynamic data vs. proposed dynamic fitting.
The typically used approach in fitting a model to dynamic MRS data (top) is to model the
changing parameters after an independent spectral fitting stage (where each spectrum is
treated independently). The proposed approach (and as examined by Tal*3) is to
simultaneously fit a spectral and dynamic model. This is known as dynamic, “2D”, or
spectral-temporal fitting. This approach reduces the number of parameters to fit by allowing
estimation of shared model parameters at once. This shared estimation increases the
amount of data used to estimate parameters that are expected to be static (or functionally
linked) across transients, mitigating the effect of noise which would otherwise result in
multiple, low precision estimates of the parameter. This results in a decrease in parameter
uncertainty. Nparam: Total number of fitted parameters, Nyetab: number of metabolite
concentration parameters, Nnuisance: Number of spectral fitting parameters not of direct
interest (e.qg., line broadening), Nuodel: number of dynamic model parameters.

In this work we introduce an extension to FSL-MRS* that allows direct fitting of an arbitrary
dynamic signal model to multiple spectra simultaneously. FSL-MRS is an end-to-end
spectroscopy analysis toolbox embedded in the widely-used FSL neuroimaging analysis
environment.® Incorporation of a dynamic model with spectral fitting of multiple signal
transients reduces the number of parameters to be estimated from noisy data, and, as
demonstrated by Tal*® and in this work, reduces fitting uncertainty. These enhancements
also establish a framework for model selection, as well as robust statistical testing at the
group-level, when data are combined across subjects or sessions. These new tools are
embedded into a wider spectroscopy analysis (and even wider neuroimaging package) to
enable integrated pre-processing of dynamic MRS data. Whilst some similar tools are
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beginning to emerge,'® the toolbox described here is open source, freely available, and
importantly, allows arbitrary model flexibility for arbitrary types of dynamic MRS
experiments.

Here, we demonstrate uses across in vivo and simulated data to evidence the suitability of
the tool for a three MRS contrasts which represent potential common use cases for dynamic
fitting. These contrasts are:
1. spectral editing of the metabolite GABA (MEGA-PRESS?®), using synthetic data,
2. functional MRS (fMRS) measured during visual stimulation, using synthetic and in
vivo data, and,
3. diffusion-weighted MRS (dMRS), using synthetic and in vivo data.

We replicate the results of Tal'® showing the value of dynamic fitting in improving
parameter estimation and uncertainty in a general framework, before extending the
analysis to simulation of real-world fMRS data. We further show improvements in errors
with spectral editing, validate the accuracy of the implementation in fMRS, and
demonstrate how the toolset can be used to mitigate confounds and unlock new
measurement approaches. As a further validation, we replicate the results of two in vivo
studies (fMRS and dMRS respectively) using their original data. The proposed toolset is
released as part of an open-source software package (FSL-MRS), free for academic use. All
code and data used in this work is available openly, online.

Methods

Model

We describe the evolution of model parameters as a ‘time dependence’, irrespective of how
experimental conditions change. We use the linear combination spectral fitting model of
FSL-MRS,**1” modified to allow time dependence for all model parameters:

s(,t) = B, t) + e/ (PoO+v®:1(0) Z ¢ (®) F[my (z, )T @+ie®)]. [1]
k

Where the time dependence of the concentration ¢y, lineshape y, shift €, phase ®, and
baseline B parameters are specified in an editable, Python language, configuration file. Each
of the parameters can have their own time dependent behaviour. Parameters may be fixed
across all time-points, estimated per timepoint, or constrained to an analytical or numerical
model across time. When combined with the ability to specify a linear combination basis set
of spectra per time-point, the configuration file approach enables the description of many
different types of dynamic MRS. Arbitrary dynamic models may be specified for each of the
time-dependent variables in Equation [1]. Each dynamic model can come with its own set of
dynamic parameters, which are estimated alongside the spectral parameters using all the
data at once. More details on model initialisation and fitting can be found in the
Supplementary Material.

Dynamic Model Specification
The joint spectral-dynamic model is specified through a user-defined configuration file
which details the choices of dynamic fitting and the associated dynamic parameters. The
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user can also specify a time variable input, which contains information about the
experimental design leading to dynamic changes. For example, the b-values and gradient
directions for dMRS, or a stimulus design matrix for fMRS. The core spectral fitting model is
then specified in the same way as a normal linear combination model, as in non-dynamic
FSL-MRS fitting.

The Configuration File is simply a Python language text file containing three sections:
1. the time-dependent behaviour of each spectral parameter: fixed, fully variable,
or model-constrained,
2. fitting bounds for each free parameter (optional),
3. arbitrary dynamic-model definitions as Python-language functions.

Time-dependence may be defined for a sub-group of parameters, e.g., metabolite
concentrations or FSL-MRS “metabolite-groups” (which link frequency shift and line
broadening parameters). Dynamic model functions must also provide analytical or
numerical gradient definitions in the configuration file. Example configuration files are
included in Supporting Figure S1.

Higher-level / Group Analysis

FSL-MRS implements python scripting (fs1 mrs.utils.fmrs tools)and command
line (fmrs stats) interfaces to carry out higher-level or group-level analysis of the results
of the dynamic fitting. These tools constitute a Python wrapper around the FSL tool
FLAMEO, which implements multilevel linear modelling for group analysis using Bayesian
inference.® The tools allow the formation of both first level linear contrasts and high level
(group) contrasts, and includes the ability to combine metabolites when the underlying first-
level dynamic model is linear.

Software

Our universal dynamic fitting toolbox is implemented as part of the FSL-MRS spectroscopic
analysis package (part of the FMRIB Software Library, FSL'®), available free of charge for
academic use, and published as open-source. Dynamic fitting may be run using interactive
or scripted Python coding environments (using the sub-package fs|_mrs.dynamic) or by
using the command-line scripts fs|_mrs_dynamic, and fmrs_stats. Documentation is
provided alongside that of FSL-MRS, in the source-code repository and at fs/-mrs.com.

FSL-MRS is open-source, with code available online at git.fmrib.ox.ac.uk/fsl/fs|_mrs. Version
2.1.0 of FSL-MRS was used, permanently available at Reference 19. All code and data used
in generating this manuscript are available online at git.fmrib.ox.ac.uk/wclarke/fsl-mrs-
dynamic-fitting (#c52d6021f3bb64dc89daa80344dcc76c3fa74c2c), and permanently
available at References 20 and 21.

Approach

In this work we use a series of case studies to explore analysis of common dynamic MRS
contrasts that benefit from a dynamic fitting approach. There are six case studies, each
explores dynamic fitting with a particular contrast, whilst either validating the approach and
toolset, or highlighting an advantage over current processing approaches. Each case study is
presented with methods and results in the same subsection. The six case studies are:
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1. fMRS: replication and extension of Tal’s monograph. — shows improved accuracy
and precision of correlated parameters in fMRS,

2. Edited-MRS: improved estimation of [GABA] — further reveals improved fitting error
in metabolite concentrations when dynamic fitting is used,

3. fMRS: simulated analysis and group statistics — demonstrates how an analysis of
visual stimulation fMRS can be performed, through to group-level statistics,

4. fMRS: in vivo confound mitigation — explores the ability to dynamically model
blood-oxygen-level-dependent signal as a confound in the fMRS model in real data,

5. dMRS: multi-direction diffusion encoding — shows how dynamic fitting allows higher
dynamic encoding resolution than would otherwise be restricted by SNR,

6. dMRS: in vivo validation — demonstrates a full study analysis using analytical
diffusion signal representations, with different models applied to different
metabolites.

Our approach is to show that dynamic fitting reduces error when model parameters are
correlated, as predicted by Tal (and shown in CS1 & CS2). We also show that FSL-MRS
dynamic fitting advances the analysis approach by either: providing a robust statistical
framework (CS3), mitigating confounds (CS4 & CS6), or extending the available acquisition
approaches (CS5). CS3 can also be used as a fully featured toolset demonstration, and the
results as an implementation validation of the tool.

Case studies

CS1. Functional MRS: replication, and extension of Tal (Reference 13).

Recently the advantages of dynamic fitting of 2D data (also called spectral-temporal fitting)
were demonstrated theoretically and numerically.'? In this work we replicated these results
using the software framework of FSL-MRS and extended the simulations from toy (two
resonance) examples to realistic 1H-fMRS data, containing many overlapping spectral
resonances. Functional MRS temporally resolves MRS to detect changes in neurochemical
concentrations (or metabolite visibility), induced by external sensory stimulus or otherwise
evoked neural activity.!? It is analogous to functional MRI (fMRI).

The first simulation implements Reference 13’s toy example. It uses 64 repetitions of a
spectrum containing two Lorentzian peaks at defined, but variable separation (Supporting
Figure S3). For the central half (32 repetitions) one peak increased in amplitude by 20%, the
other peak remained constant throughout (Supporting Figure S2). This toy simulation of
fMRS was fitted using the FSL-MRS dynamic approach implementing a general linear model
(GLM) to model the temporal dynamics. A design matrix with two regressors (baseline and
rectangular-function stimulation period) was used. For comparison, the data was also fitted
using FSL-MRS’s independent spectral fitting routine, and the GLM then fitted to the
concentration parameters extracted from the independent spectral fits (as in Figure 1). Each
simulation was generated and fit 100 times for each of ten peak separations and three
different SNR levels. Fitting was carried out as in the original publication of Tal, with two
unlinked peaks, ‘Free’, and using the normal FSL-MRS fitting approach, with fixed frequency
offsets and linked linewidths, ‘Linked’.

For each separation, the estimated amplitude increase was extracted (specified in the GLM
as the beta for the rectangular-function stimulation regressor). The RMSE across all
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repetitions was calculated for the independent and dynamic fits, and the ratio of the
uncertainties was calculated (ratio of standard deviations, for both free and linked
conditions, Figure 2a&b).

The code used to generate and analyse these simulations is contained in the online
repository under . /fmrs/1 two peak simulation (git.fmrib.ox.ac.uk/wclarke/fsl-
mrs-dynamic-fitting/-/tree/master/fmrs/1_two_peak_simulation).

The second simulation extended the above approach to realistic spectral profiles. In
addition, noting that peak separation is a key driver of parameter correlation, and therefore
improvement is predicted for the proposed method, the simulation was carried out at two
different linewidths (6 Hz and 10 Hz). As such, the same overall approach was taken as the
first simulation but implemented with simulated three tesla 1H-MRS spectrum from the
brain. For each of 20 metabolites in the spectrum (see supporting information), and for each
of the two linewidths, 500 Monte Carlo repetitions were made where one specified
metabolite in each simulation increased in amplitude by 20% (example for NAA in Figure 2c)
for the central 30 repetitions of 60 total repetitions. All other metabolites were held
constant for that case, with the specified metabolite changed for each subsequent case.

Fitting was carried out as for the previous simulation with dynamic fitting implementing a
GLM dynamic model using a design matrix with two regressors. No BOLD-like effects on
linewidths were simulated.!?

For each metabolite (and linewidth case) the ratio of independent/dynamic fitting
uncertainties (calculated as the standard deviation cross the 500 Monte Carlo repetitions)
was calculated for the baseline and stimulation regressor beta. The average concentration
parameter correlation was calculated as shown in Supporting Figure S4.

The code used to generate and analyse these simulations is contained in the online
repository under . /fmrs/2 fmrs spectrum simulation
(git.fmrib.ox.ac.uk/wclarke/fsl-mrs-dynamic-fitting/-
/tree/master/fmrs/2_fmrs_spectrum_simulation).
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Figure 2. Results of the functional MRS validation. A Ratio of Monte Carlo measured
standard deviations (independent fitting / dynamic fitting) for the concentration increase as
a function of peak separation in the toy two-peak simulation (see Supporting Figure S3).
Results for a model with all parameters unlinked “Free” and the standard FSL-MRS fitting
model “linked” are given (see §Functional MRS — Simulation). B RMSEs for the same
simulation. As shown in A&B Dynamic fitting reduces uncertainty and overall error. C
Extension of fMRS validation to realistic 1H-MRS data. Paired data with 20% increases in
concentration were simulated for each metabolite (NAA shown) at two linewidths. D The
uncertainty ratio (ratio of standard deviations, independent fitting / dynamic fitting) for each
metabolite’s baseline concentration and increase (delta) is shown as a function of the
parameter’s mean correlation with other parameters. A value > 1 indicates that dynamic
fitting is decreasing the uncertainty compared to independent fitting.

The first (toy two-peak) MRS simulation shows that in all cases the dynamic fitting
approach reduces the uncertainty of the amplitude increase parameters, also showing a
lower RMSE. The functional form of the uncertainty ratio as a function of peak separation ‘d’
replicates that found by Tal (Figure 4 in Reference 13). Linking the linewidth and shift
parameters, as is done in the default FSL-MRS model, reduces the advantage of dynamic
fitting, but retains the same functional form.
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The second simulated fMRS data, designed to explore data similar to real-world use cases,
also demonstrates the advantage of using dynamic fitting over independent fitting for
estimating both fMRS amplitude changes and also underlying baseline concentrations. A
clear relationship between mean parameter correlation and uncertainty reduction was
observed, with wider linewidths giving higher correlations and larger improvements (Figure
2d).

CS2. Edited-MRS: improved estimation of [GABA]

The second case study uses synthetic single voxel MEGA-PRESS data.? This example is
representative of a study that acquires data using the MEGA-PRESS sequence, in absence of
an external stimulation paradigm, to measure the concentration of metabolites (e.g. GABA)
that are obscured by, or highly correlated with, other metabolite signals. Normally MEGA-
PRESS acquires two encoding conditions (ON and OFF), the difference of which (DIFF)
contains a simplified spectrum enabling unobscured estimation of GABA. Here, the accuracy
and precision on measurements of metabolites (specifically: NAA, creatine, GABA and Glx
[glutamate and glutamine]) are compared across three fitting strategies:

1. ‘OFF - Control-only acquisition — Taking only the control saturation condition,
without a subtraction stage, like an unedited spectrum. All metabolites are visible
but many overlap. The spectrum is fitted with a single (unmodified) set of basis
spectra.

2. ‘DIFF’ - Forming a difference spectrum — This approach matches the current gold-
standard approach. An on-resonance saturation condition is subtracted from a
control saturation condition to leave a spectrum containing the differences arising
from j-coupling (and direct saturation effects). The difference spectrum is fitted
using a modified set of basis spectra.

3. ‘DYN’ - Dynamic fitting of control and on-resonance acquisitions — The proposed
approach, control and on-resonance saturation conditions are used in analysis, but
no subtraction is performed, and they are analysed together using the proposed
simultaneous fitting approach. In this case each spectrum is fit with a relevant set of
basis spectra (simulated with control and on-resonance saturation) with additional
dynamic constraints. These constraints are equal metabolite concentrations and
nuisance parameters (lineshape, shift, phase, baseline, etc.).

In each case the total acquisition time was kept constant, i.e., case one (control-only) data
was simulated with half the noise variance. Basis sets were simulated using FSL-MRS's
simulator (fs1 mrs_sim), simulations incorporated spatial resolution and fully described
RF pulse shapes. The difference basis set was constructed from the subtraction of the OFF
from the ON basis set, which respectively simulated editing pulses at 7.5 and 1.9 ppm.
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Figure 3. Approach to edited MRS analysis simulation. Simulation is carried out by
generating pairs of synthetic MEGA-edited spectra (both the control [OFF] and on-resonance
[ON] saturation case), and the corresponding difference spectrum (by subtraction, [DIFF]).
The DIFF and OFF spectra are fit using single spectrum fitting, and the ON + OFF spectra are
fit using the dynamic approach. The statically fitted OFF spectrum is constructed with half
the noise variance to simulate matched time acquisitions. This is repeated 500 times in a
Monte Carlo approach for each noise level and line broadening. Spectra are shown with
static fitting and have the lowest linewidth (5 Hz) and intermediate noise (noise SD = 144).

Data was simulated for standard in vivo concentrations for 19 metabolites (specified, with
concentrations, in the supporting information), no macromolecules were simulated. Data
was simulated with Lorentzian linewidths (FWHM) in four steps from 5 Hz to 9 Hz
(representing “excellent” to "Acceptable’ linewidths as defined in Reference 22), and eight
SNR levels (NAA match-filter SNR of 30 — 330 in 8 steps) that span (and extend beyond) the
range observed in vivo. Each condition was simulated 500 times to carry out Monte Carlo
sampling of the fitting process. Data was fit using FSL-MRS'’s core fitting routine

fit FSLModel (parameters specified in supporting information) or the dynamic fitting
approach as detailed for fitting case #3. Simulation code for this section is contained in the
online repository under /editing (git.fmrib.ox.ac.uk/wclarke/fsl-mrs-dynamic-fitting/-
/tree/master/editing).

For each metabolite and each fitting condition (#1-3) the root-mean-squared-error (RMSE)
was calculated across all Monte Carlo repetitions. RMSE was expressed in both metabolite
units (equivalent to mM) or normalised to the time-matched control-only (#1) condition.
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The three fitting strategies were simulated and results from four representative metabolites
are shown (Figure 4): the frequent targets of MEGA editing, GABA and Glx (glutamate and
glutamine combined), a metabolite that appears in all conditions, tNAA (NAA + NAAG), and
one which is removed in the differencing process, tCr (creatine + phosphocreatine).
Additionally, results are shown for four different linewidths for GABA and Glx (Figure 4:
C&D).

For GABA, RMSE was always worst (highest) for OFF (#1), then DIFF (#2) and the lowest was
the proposed method DYN (#3). The greatest improvement for DIFF or DYN was seen for
widest (worse) linewidths, with DYN achieving an RMSE of 0.39 of the OFF condition with a
linewidth of 9 Hz compared to 0.6 for 5 Hz. Across all linewidths DYN achieved a 33%
reduction in GABA RMSE compared to DIFF. A similar relationship was seen for Glx, except
DIFF was the worst performing fit strategy with narrow linewidths, DYN was always the best.

For tCr and tNAA, DYN produced highly similar results to OFF, both of which substantially
outperformed DIFF. No significant variation was observed as a function of SNR or of
linewidth for tCr or tNAA (Supporting Figures S5 and S6).
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Figure 4. Results of the editing simulation. A RMSE (+SD) across all noise levels and
linewidths for each examined metabolite, expressed as percentage of the true metabolite
concentration. B As A, but with the results normalised to OFF for each metabolite. C&D The
effect of linewidth on the relative performance for GABA and Glx (glutamate + glutamine). In
all cases, except the measurement of NAA+NAAG, the RMSE is lowest for the dynamic
approach.


https://doi.org/10.1101/2023.06.15.544935
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.15.544935; this version posted June 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

CS3. fMRS: simulated analysis and group statistics

A full set of simulated visual-stimulation data and analysis scripts has been created for the
purpose of demonstrating fMRS analysis using the proposed dynamic fitting approach. The
data simulates single-voxel data acquired using block (flashing checkerboard) visual
stimulation at 7T, in ten subjects, with a separate stimulation and control condition for each
subject. Metabolite concentration changes, inter-subject variance in concentration changes
and spectral quality is matched to reported values.!? As such, glutamate and lactate were
set to increase during stimulation and glucose and aspartate to decrease, on average all
other metabolites should be constant. Line narrowing due to the positive BOLD effect was
simulated. The input dynamic model uses the canonical BOLD haemodynamic response
function to model all changes (metabolite concentrations and line narrowing) during the
stimulation period, and is implemented in a design matrix for GLM with four regressors (two
stimulation conditions, linear drift, and a constant for modelling baseline concentration,
Figure 5B). The simulation implementation is detailed in the supporting information. Group
level analysis was conducted using the fmrs_stats function from FSL-MRS, implementing
a paired t-test design across the stimulation and (no stimulation) control datasets of each
subject.

This documented demonstration dataset and analysis is hosted separately at
github.com/wtclarke/fsl_mrs_fmrs_demo, with a permanent record at Reference 23. In
addition to demonstration, this dataset was used to assess the implementation accuracy of
the proposed dynamic fitting for fMRS combined with the packaged MRS group-level
statistics tool (fmrs_stats). To assess the implementation accuracy, the betas for each
concentration related regressor was compared to the true simulation input value, per
subject and as a group average. In addition to the demonstration code repository (see
above), code for this section’s analysis and figure generation is contained in the online
repository under ./ fmrs/3 fmrs demo (git.fmrib.ox.ac.uk/wclarke/fsl-mrs-dynamic-
fitting/-/tree/master/fmrs/3_fmrs_demo).


https://doi.org/10.1101/2023.06.15.544935
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.15.544935; this version posted June 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

A. First-level (single-subject) fits B. First-level design matrix
0
X X Independent Fit
% —— Fit of windowed-average
+10% A X —— Dynamic fit 10
T 45% - 20
2 P 5
g £
5 5 30
g\i 0% A c
5 g
) v 40
_5% 4
50
-10% A
X 60
0 10 20 30 40 50 60 STIM 1 STIM 2 Drift Baseline
Scan Number First-level regressor

C. Higher-level design matrix
1 D. Group (higher-level) results
R Statistics  z p
7 Contrast  STIM>CTRL CTRL>STIM STIM>CTRL CTRL>STIM
1
: Asp -2.43 +2.43 0.993 0.007
R Gle -3.37 +3.37 1.000 0.000
1
1 Lac +3.17 -3.17 0.001 0.999
1
: Glu +3.25 -3.25 0.001 0.999
L NAA+NAAG -0.67 +0.67 0.749 0.251
1
1 Cr+PCr +0.10 -0.10 0.462 0.538
1

A>B a1 2 3 4 55 6 7 8 9 510 PCh+GPC +0.98 -0.98 0.164 0.836
€l STIM>CTRL 1 0 0 0 0 0 0 0 0 0 0
C2 CTRL>STIN -1 0 o 0 0 0 0 0 0 0 0

Figure 5. Demonstration of analysis of functional MRS using a GLM at the subject (first-
level) and group-level. A single subject fit of glutamate. A single subject’s stimulation data is
shown for relative glutamate changes. Independent, moving-window temporally smoothed,
and GLM/dynamically modelled results are shown. Note that no formal comparison is made
to the moving-window averaging method, a formal comparison of dynamic fitting to
independent fitting + GLM is made in CS1. B Design matrix used to both generate and fit the
fMRS data at the first level. There are two stimulation blocks separated by rest blocks, a
linear drift regressor, and a constant regressor. C The simulated data contained paired
stimulation and control (no effect) datasets for ten subjects. The group level analysis used
this design matrix (created and displayed using FSL tools) to run a paired t-test. D The results
as output by FSL-MRS’s fmrs_stats tool. FSL flameo is used to calculate z and p statistics for
each first-level contrast at the group level. The tool accurately identifies the metabolites
changing in the simulation as significant.

Implementation accuracy was assessed by comparing GLM betas related to metabolite
concentrations (constant and stimulation terms) per subject and at the group level. Figure 6
shows the graphical outputs of group level traces for major metabolites. Lac, Glu, Asp, and
Glc were simulated with stimulation-associated concentration changes.

Correlation and Bland-Altman analysis of individual concentration betas is presented in the
supporting information (Supporting Figures S7 and S8) and summarised here. Measured
betas showed a very high level of correlation at both individual subject level (Pearson’s r =
0.98, bias = 0.4 mM) and group (Pearson’s r = 0.91, bias = 0.02 %).
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Figure 6. Visual representation of the group-level results from the fMRS demonstration.
Stimulation and control (no stimulation) cases are plotted as a function of temporal
transient showing group mean and standard deviation. The true values (calculated as mean
across subjects) are shown as dashed/dotted lines. All metabolites that had simulated
changes (Lac & Glu — positive, Asp & Glc — negative) are shown alongside two with no
changes (NAA — high SNR, GABA — low SNR).

CS4. fMRS: In Vivo Confound Mitigation

The proposed dynamic fitting approach was assessed by reanalysing previously published
visual stimulation fMRS data.?* The original study implements commonly applied analysis
approach of carrying out independent spectral fitting on temporally averaged data, and
then correlating metabolite time courses (which are themselves further smoothed). The
dataset comprises 13 subjects scanned for 8.5 minutes per condition. Two conditions were
acquired: a stimulation condition, ‘eyes-open’, with four blocks of flashing checkerboard
visual stimulation presented for 64 seconds interleaved with 64 s rest (no stimulation)
blocks, and a control condition with ‘eyes-closed’ (no stimulation presented, i.e. constant
for 8.5 minutes). Signal was acquired using a sLASER sequence interleaved with 3D EPI, full
details are available in the original publication?* and are summarised in the supporting
information. Note that the interleaved EPI data of the original dataset was not used in this
reanalysis. Human data included in this work was collected with informed, written consent,
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approved by the University of Oxford Research Ethics Committee (MSD-IDREC-C1-2014-
146).

Spectral pre-processing was carried out using FSL-MRS’s pre-processing routine,

fsl mrs_ preproc. The data was analysed using a dynamic fitting approach
implementing a GLM model for dynamic analysis. The design matrix was implemented with
four stimulation regressors, a linear drift and constant term, generated using the Glover HRF
in the Nilearn package.?>2® The spectral fitting component used the original study’s basis
spectra set (further parameters are listed in the supporting information). Two different
approaches to BOLD-induced line narrowing were tested, one where the linewidths were
kept fixed across time, and one where the Lorentzian line-broadening was modelled as a
GLM (using the same design matrix as metabolite concentrations). This aims to remove the
step of applying line broadening to spectra during stimulation events, as carried out in the
original study (and others)'22* by multiplying the time-domain data by an exponential filter.
Applying line broadening will result in autocorrelation of spectral points and modify noise
properties in only the stimulation case.

Group level analysis was carried out using FSL-MRS’s fmrs_stats routine implementing a
paired t-test design across stimulation and control conditions for each subject (as in CS3).
Group results were compared with the original study’s findings.

Code for this section is contained in the online repository under
./fmrs/4 fmrs invivo example (git.fmrib.ox.ac.uk/wclarke/fsl-mrs-dynamic-
fitting/-/tree/master/fmrs/3_fmrs_invivo_example).

The original study found significant increases in glutamate, rising approximately 2% over
baseline, no other assessed metabolite was found to change during stimulation. In this
reanalysis, when BOLD-induced line narrowing was modelled in the GLM the same result
was found, with only glutamate showing a statistically significant (at p < 0.05) increase
(Supporting Table 1). Glutamate was found to increase 3.1+5.8% on average across all
subjects and blocks (p=0.04). A significant decrease in linewidth during the stimulation
blocks was found for the eyes-open case (-0.1810.5 Hz), but not for the eyes-closed case
(see Supporting Figure S9). This shows that the line narrowing was successfully modelled
without introducing autocorrelation across the signal.

When the BOLD induced narrowing was not modelled in the fixed linewidth model, and nor
was it accounted for in processing by line broadening as in the original study (i.e. expected
BOLD line narrowing was not accounted for), an increase in glutamate upon stimulation was
also found (with increased magnitude, 4.445.9%, and significance, p=0.01), but also
significant increases in tNAA (0.411.0%), tCho (1.9+2.2%), and tCr (1.9+1.1%) were detected.
Full statistics are reported in Supporting Table 2.
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Figure 7. Results of the fMRS in vivo validation for two metabolites: glutamate, which is
expected to increase with stimulation (Glu, left) and total creatine which is not expected to
change (tCr, right). A&B Group-level mean and 95% Cl (coloured), and single-subject
concentrations expressed as a percentage change relative to the middle time point. C&D
Comparison of the group level means and 95% Cls for the stimulation (eyes-open) and
control (eyes-closed) case. E&F Comparison of the results when using a model that
incorporates the effect of BOLD on metabolite linewidths, to one with linewidths that are
fixed across all timepoints (see supporting information). When fixed spuriously large changes
are observed during stimulation, including for non-modulating metabolites. There are much

smaller and more variable differences for the control case (where no BOLD effect is
expected).

CS5. dMRS: Multi-direction Diffusion Encoding
Simulated multi-direction diffusion weighted MRS data was used to demonstrate dynamic

fitting enabling new data acquisition approaches for dMRS. By implementing dynamic fitting
using a parameterised functional model of direction-dependent diffusion properties,
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acquisitions that have higher dynamic encoding resolution may be possible, when without
dynamic fitting repeated sampling of each encoding would be needed for sufficient SNR.
This case study also demonstrates the requirement for adequate fitting initialisation, and
how this can be provided using existing tools and the implemented API interface.

Data was simulated (Figure 8a) for three metabolites: NAA, predominantly located
neuronally, myo-inositol predominantly located in glia, and creatine, a mix; the simulation
was performed for a voxel with two crossing neuronal fibre populations, which is not
present for glia. Thus, different simulated metabolites had different orientational diffusion
dependence, i.e. different "fibre" orientation distribution function, fODF (simulations values
in Supporting Information). NAA parameters were designed to mimic two crossing fibre
populations, Ins as a predominantly spherical compartment (mimicking glia), and Cr was
implemented as a mixture of the two. Synthetic data was simulated for a diffusion weighted
SLASER sequence implementing two diffusion weighting approaches:

1. Six diffusion directions at two b values (b = 1 and 3 ms/um?), plus b=0, and,

2. Sixty diffusion directions at two b values (b = 1 and 3 ms/um?), plus b=0.

Simulated noise variance was set ten times higher for condition #2, to simulate equal
acquisition times. Dataset #2 is what is commonly acquired for water diffusion for modelling
crossing fibres (e.g. for tractography), whilst dataset #1 is closer to a dMRS design when
repeated measurements are typically needed to increase SNR.

Dynamic fitting was implemented with a two-sticks and a ball diffusion model, which was
also used to generate the synthetic data.?’ The fitting was initialised with one of three
approaches:
1. Inversion of the dynamic model using the independently fitted spectra (default in
fsl dynmrs),
2. With the ground truth parameters,
3. Using results from the independently fitted spectra passed to FSL's xfibres
routine (which uses a more robust initialisation of the nonlinear fitting tailored to
the ball and sticks model).?’

Quantitative assessment of fitting performance was made using Euclidian distance between
‘stick’ vectors (scaled by ‘fibre’ fraction) estimated to those generated from ground truth
parameters. Vector direction was rectified before error calculation.

Code for this section is contained in the online repository
under. /dwmrs/1 simulation dti (git.fmrib.ox.ac.uk/wclarke/fsl-mrs-dynamic-
fitting/-/tree/master/dwmrs/1_simulation_dti).
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Figure 8. dMRS. A Schematic of the simulated analysis of multi-direction data using FSL-
MRS’s dynamic approach. Time-matched data with different numbers of diffusion directions
was analysed implementing a ball-and-two-sticks model into the spectral-dynamic fitting.
Different fitting initialisation approaches were trialled for each case. B Previously published
multi-b-value dMRS data was reanalysed using spectral-dynamic fitting, implementing a
biexponential model (exponential for macromolecules). The group-level analysis using
fmrs_stats was qualitatively compared to the published results.

Estimation of the simulated diffusion parameters (ball and two sticks model in three
metabolites) was carried out in four cases, with 6 directions and 60 directions per diffusion
shell and using a perfect initialisation strategy (using the ground truth) and using that
obtained from the initial independent fit plus FSL’s xfibres routine. Xfibres is the core
component of FSL’s Bayesian Estimation of Diffusion Parameters Obtained using Sampling
Techniques for crossing fibres (BEDPOSTX), so is designed to estimate the equivalent
problem for imaging data of water.?’” For all metabolites the 60 directions outperformed the
6 directions, and the perfect initialisation outperformed the xfibres approach (Figure 9). The
reduction in error between 6 directions to 60 directions (error measured as Euclidian
distance between predicted and true fibre vectors) was 23% for the perfect initialisation and
82% for xfibres. Fitting using the default initialisation strategy (inversion of the model in FSL-
MRS) failed in all cases due to a complex loss landscape resulting in multiple local minima,
and the results are not shown.
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Figure 9. Results of fitting the ball and two-sticks model to simulated multi-direction
diffusion data. This is a demonstration of the ability of the tool to simultaneously fit more
complex diffusion models and spectral information. However, a good initialisation point
(provided by FSL’s xfibres tool) is required. Here simulated data with more diffusion
directions (but correspondingly lower spectral SNR) provides a better estimate of fibre
directions than lower numbers of directions, which is required for stable spectral fits when
no information is shared. The xfibres initialised fit, achievable on real data, is compared with
an artificial perfect initialisation approach (which requires the ground truth) and the ground
truth. Each metabolite simulates a different cellular compartmentalisation and therefore has
a different ground truth.

CS6. dMRS: in vivo validation

Dynamic fitting of diffusion-weighted MRS was demonstrated on a previously published
dataset of a mouse model of “pure” astrocyte reactivity induced by injecting cytokine ciliary
neurotrophic factor (CNTF).?8 Two groups of ten mice (control and CNTF), were scanned
using a diffusion-weighted STE-LASER sequence,? acquiring data at seven b-values ranging
from 0.02 to 50 ms/um?. Acquisition details are summarised in the supporting information.

Processed data was provided by the original study’s authors. Dynamic fitting implemented a
bi-exponential model for metabolite concentrations, and a mono-exponential model for
macromolecules. An exponential-plus-offset model was used for polynomial baseline terms,
this accounts for decreasing baseline ‘roll’” arising from unmodelled residual water signal,
which decreases b-values increase. Without this baseline model either the baseline must be
estimated independently for each b-value, increasing variability from a purely data-driven
component of fitting, or a fixed value must be used, increasing bias. The spectral basis
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contained 20 metabolites, including empirically measured macromolecules (see supporting
information).

Comparison was made to the original published results which implemented independent
fitting using LCModel,*” and applied complex models of diffusion in randomly oriented
cylinders.®

Code for this section is contained in the online repository under . /dwmrs/2 invivo
(git.fmrib.ox.ac.uk/wclarke/fsl-mrs-dynamic-fitting/-/tree/master/dwmrs/2_invivo).

The results of the proposed fitting approach accurately recapitulate the results of the
original study,?® both looking at microscopic properties as measured using diffusion
weighting and overall metabolite concentrations (supporting information). Here we find
statistically significant differences in myo-inositol and lactate diffusion, and statistically
significant differences in metabolite concentrations for Lac, Glu, Ins, NAA, Tau. The original
publication found the same changes, apart from lactate concentration differences which did
not reach statistical significance in the original, but we note that Bonferroni correction was

applied in the original.
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Figure 10. Results of the in vivo dMRS validation. The concentrations of key metabolites as
fitted using the proposed dynamic fitting approach. The two cohorts are shown separately.
The results closely match the magnitude and direction of the original publication’s results,
which found significant differences in myo-inositol (Ins) and lactate (Lac) diffusion
properties. Changes in overall metabolite concentrations were also found (see Supporting
Table 3), again matching the original publication. This analysis used a bi-exponential
representation to fit the dynamic process.

Discussion & Conclusion

As demonstrated here, our universal dynamic MRS fitting tool allows simultaneous analysis
of multiple, linked spectra. The tool implements a novel framework capable of handling
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several common types of dynamic MRS and incorporates methods for doing higher level
statistics. We used the tool to replicate published results from fMRS and dMRS studies. We
also numerically replicated theoretical results showing improvements in fitting uncertainty
when using dynamic fitting approaches. This will help mitigate the low SNR inherent in
dynamic spectroscopic approaches, improving target parameter precision. It will also enable
greater dynamic resolution by permitting finer dynamic sampling despite the concurrent
SNR reduction per shot.

In this work we have demonstrated that on in vivo data the tool successfully replicates the
results of published work from the original data, which used independent fitting
approaches. On simulated data, where a ground truth is available, we demonstrated that
the tool accurately estimates dynamic model parameters for diffusion weighted, functional,
and edited spectroscopy experiments. Further, it was used to demonstrate an improvement
in parameter estimation precision over independent fitting of edited spectroscopy. In
addition, this work provides demonstration uses, and practical examples. Documentation
has been developed beside the software tool and is available at fsI-mrs.com.

The tool also integrates into a larger neuroimaging toolbox, FSL, and uses standardised data
formats, compatible with neuroimaging (NIfTI and NIfTI-MRS).3%3! By doing this, the tool will
allow integration with existing neuroimaging methods (as demonstrated by the fmrs_stats
tool) and use of well validated MRI approaches, for example physiological noise regression
in fMRS and mixed-effects group level modelling as shown in our dynamic fMRS results in
this paper. To this point, in the toolbox, and in the examples shown, we have integrated
existing models and software tools developed for analogous MRI techniques (fMRS/fMRI,
dMRS/dMRI).

Although our toolbox is designed to handle any type of dynamic spectroscopy, some
practical limitations remain. Currently the tool does not implement models which require
dynamic parameters linked to more than one metabolite. For example, models where two
or more metabolites interact dynamically. This limits applications to e.g., tracer
experiments, such as used in hyperpolarised carbon-13 spectroscopy, where the dynamic
modelling requires this level of flexibility. This limitation is however only a matter of
implementation and will be addressed in future versions.

Finally, this work does not address an important caveat, which is identifying suitable
dynamic models for linking across spectra. For example, in our fMRS analyses, we have
approximated the response of metabolite concentrations to sensory stimulation using the
canonical BOLD fMRI haemodynamic response function. While the BOLD response is well
characterised in fMRI, it is not yet so in fMRS. Dynamic fitting using a suboptimal model may
bias the results in ways that must be quantified in future studies. Similarly, there are many
possible diffusion models already arising from dMRI, but these require adaptation for
spectroscopy. Furthermore, there are myriad choices for the user to make during pre-
processing, choice of fitting algorithm and model description: where the normal ‘static’
spectral fitting parameters are extended by parameters describing the dynamic model.
Changing many of these parameters can change the results, especially given the low SNR
measurements we are fitting. This work does not start to address these choices, but the tool
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and framework presented provide a rigorous analysis and statistical platform to do model
discovery and selection.
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