

1                   **Influence of colour vision on attention to, and impression of, complex**  
2                   **aesthetic images**

3

4    Chihiro Hiramatsu<sup>1\*</sup>, Tatsuhiko Takashima<sup>1</sup>, Hiroaki Sakaguchi<sup>1</sup>, Xu Chen<sup>1</sup>, Satohiro Tajima<sup>2,3</sup>, Takeharu Seno<sup>1</sup>,  
5    and Shoji Kawamura<sup>4</sup>

6

7    <sup>1</sup>Department of Design, Kyushu University, Fukuoka 810-8540, Japan

8    <sup>2</sup>Department of Basic Neuroscience, University of Geneva, Geneva 1211, Switzerland

9    <sup>3</sup>JST Sakigake/PRESTO, Tokyo 102-0076, Japan

10   <sup>4</sup>Department of Integrated Biosciences, The University of Tokyo, Chiba 277-8562, Japan

11

12   **\*Corresponding author:**

13   Chihiro Hiramatsu

14   Department of Design, Kyushu University, Fukuoka 810-8540, Japan

15   Tel: +81 92-553-4456

16   **E-mail:** chihiro@design.kyushu-u.ac.jp

17 **Abstract**

18 Humans exhibit colour vision variations due to genetic polymorphisms, with trichromacy being the most  
19 common, while some people are classified as dichromats. Whether genetic differences in colour vision affect the  
20 way of viewing complex images remains unknown. Here, we investigated how people with different colour  
21 vision focused their gaze on aesthetic paintings by eye-tracking while freely viewing digital rendering of  
22 paintings and assessed individual impressions through a decomposition analysis of adjective ratings for the  
23 images. Gaze concentrated areas among trichromats were more highly correlated than those among dichromats.  
24 However, compared to the brief dichromatic experience with the simulated images, there was little effect of  
25 innate colour vision differences. These results indicate that chromatic information is instructive as a cue for  
26 guiding attention, whereas the impression of each person is unaffected by colour-vision genetics and would be  
27 normalised to their own sensory experience through one's own colour space.

28

29 **Keywords:** colour vision, dichromatic, trichromatic, attention, impression

30

31 **1. Introduction**

32 Visual impressions are not mere representations of the external world captured by the retina.; they are subjective  
33 experiences produced by the workings of the entire visual system. The visual system, involving an active  
34 coordination between the eye and the brain, selects and concentrates on a limited portion of the image according  
35 to the viewer's interests. The visual awareness gained through this active process results in subjective  
36 impressions unique to the individual, accompanied by emotional and aesthetic sensations [1–4]. Colour is one of  
37 the important factors influencing the formation of visual impressions [5–10]. Since colour perception is  
38 subjective, there is no guarantee that one person's impression will be the same as another's when viewing the  
39 same scene. Both inborn and acquired factors, such as culture, sex, and age, affect colour impression and  
40 preference [11–13].

41 Humans exhibit marked diversity in colour vision owing to differences in genetic background [14–16].  
42 Although most humans have trichromatic colour vision, which is associated with three types of cones (S, M, and  
43 L), more than 200 million individuals have other colour vision types. Owing to polymorphisms in the L/M opsin  
44 genes encoded on the X chromosome, approximately 8% and 0.4% of European Caucasian men and women,  
45 respectively, and 4–5% and 0.2% of Asian (and presumably African) men and women, respectively, have these  
46 colour vision types [17–19]. These variations in colour vision mainly consist of trichromatic vision with closer  
47 spectral sensitivity between M and L cones (anomalous trichromacy) and dichromatic vision with only S and M  
48 (protanopia) or S and L cones (deutanopia) [18].

49 Differences in colour discrimination ability among individuals with different types of colour vision have  
50 been well studied in the past [20–22]. Computer simulations have made it possible to create images that  
51 simulate the perception of dichromacy, and trichromats can now experience the expected perception of  
52 dichromats [23,24]. People with dichromatic vision who have S cones along with either M or L cones are  
53 generally thought to have difficulty discriminating colours on the red–green colour axis [25]. However, people  
54 with dichromatic vision responded similarly to people with trichromacy in colour-naming or categorical tasks if  
55 they experience a stimulus with sufficient magnitude and duration [26–29].

56 The impression of a scene viewed by a person who has experienced dichromatic or anomalous  
57 trichromatic vision for an extended duration may differ from that of a simulated image of those colours viewed  
58 by a person with trichromatic vision. People with dichromatic vision have sometimes similar semantic

59 impressions of simple colours with people with trichromatic vision [30], despite differences in colour preference  
60 [31]. However, it is unclear whether this is also true for complex images that are rich in visual features. The  
61 human visual system has evolved to process various local visual features in the early visual cortex and integrate  
62 them into a unified perception in the higher visual cortex, which is influenced by experience during the course  
63 of development [32–34]. Therefore, individuals with different experiences may pay attention to complex images  
64 differently and have different impressions of them. In addition, it remains unknown how differences in colour  
65 vision affect the way people view complex visual scenes. Differences in colour vision may lead to differences in  
66 the saliency of complex images [35] and affect bottom-up visual attention. Attention to different parts of a  
67 complex image may subsequently lead to different impressions of the image (figure 1).

68        Although previous studies have extensively focused on how differences in colour vision affect abilities  
69 to discriminate, detect, name, or categorise colours [36–39], the diversity and commonality during the active  
70 process of viewing complex images remain largely unknown. Herein, we investigated the effect of congenital  
71 differences in colour vision on visual attention and viewers' impressions of complex images. Using artistic  
72 paintings, in which a range of visual features (from low to high levels) have been shown to explain impressions,  
73 we extracted a variety of impressions, including colour and aesthetic sensations [7–10]. We devised an  
74 experiment wherein trichromatic observers were shown images that simulated dichromatic perception (hereafter,  
75 'simulated dichromats') to compare the experience of congenital dichromacy with the short-term experience of  
76 simulated dichromacy.

77

## 78        **2. Methods**

### 79        **(a) Participants**

80        Participants with diverse colour vision types were recruited through announcements on the website and in  
81 lectures. Written informed consent or assent (for underage participants) was obtained prior to the experiments.  
82 Participants were paid approximately \$10 per hour. The participation criteria were as follows: sound mental  
83 health and uncorrected or corrected visual acuity sufficient to read the text on the screen. Fifty-eight participants  
84 (38 male, Mage = 30.3 ± 13.3 [SD]) from the community surrounding Kyushu University participated in the  
85 experiment. After predicting whether the participants had trichromacy, protan, or deutan on the Ishihara colour  
86 vision test plate, detailed colour vision type was determined via Rayleigh matching using an anomaloscope

87 (Neitz OT-II, Neitz Co. Ltd., Tokyo, Japan). The Farnsworth–Munsell 100 Hue test (X-Rite, Grand Rapids, MI,  
88 USA) [40] was also conducted to resolve any discrepant findings. These colour vision tests are often used in  
89 colour vision research and clinical practice, and a battery of tests with the anomaloscope test increases reliability  
90 [21,41].

91 The L/M opsin genes of each participant were genotyped using long-range polymerase chain reaction  
92 (PCR) of *OPN1LW* and *OPN1MW*, and subsequent sequence analysis of three amino acid sites, 180, 277, and  
93 285, which are important for the maximum absorption wavelength of M/L cone photoreceptor cells [42,43] (see  
94 details of genetic analysis below and table S2 for details regarding the participants' colour vision).

95 One participant who reported a mental disorder was excluded from the analysis. Two underage  
96 participants and one participant whose first language was not Japanese were excluded from the impression  
97 analysis due to difficulty in interpreting adjectives. The gaze data of the two underage participants were  
98 excluded from the analysis to limit all data to adults. The number of participants and age range included in the  
99 gaze analysis for each colour vision group are as follows: those with dichromatic vision included 10 male  
100 participants (three with protanopic vision, seven with deutanopic vision);  $M_{age} = 35.2 \pm 16.5$  (SD) ( $M_{age} =$   
101  $37.6 \pm 16.3$  [SD] when four anomalous trichromats were included). Those with trichromatic vision included 10  
102 male and 10 female participants:  $M_{age} = 30.5 \pm 13.5$  (SD). Trichromats who viewed dichromatic simulation  
103 images (simulated dichromats) included 11 male and 10 female participants:  $M_{age} = 26.1 \pm 7.3$  (SD). The  
104 trichromats and simulated dichromats did not overlap. All individuals participated in the experiment once.

105

### 106 **(b) Stimuli**

107 To elicit diverse impressions, we used 24 digital images of abstract and figurative paintings with various colour  
108 and spacial configurations created by historically important deceased painters of the late 18th to early 20th  
109 centuries. These images were selected from among 684 paintings introduced in visual art sources such as  
110 WikiArt.org and omitted paintings that were realistic depictions of people, such as portraits of people. For the  
111 image selection, we used MDS analysis [44] with 16 parameters in images (maximum, minimum, mean, and  
112 variance for each value of CIExyY and those for predicted differences in saliency between trichromacy and  
113 dichromacy calculated based on the model proposed by Tajima and Komine [35]). By obtaining the position of  
114 each image in the two-dimensional MDS space analysed using the 16 parameters, dividing the MDS space into  
115  $4 \times 6$ , and selecting 24 images from each region, we were able to select paintings with various colour and

116 spacial information, free from preconceived notions and hypotheses. Dichromatic (deutanopia) simulation  
117 images were created using the simulation software, Vischeck ([www.vischeck.com](http://www.vischeck.com)), as a plugin for ImageJ [45].  
118 The chromaticity and luminance of the display RGB primaries were measured using a spectroradiometer (SR-  
119 LEDW-5N, Topcon Technohouse, Tokyo, Japan) to calculate the CIExY values of the stimuli.  
120

### 121 (c) Procedure

122 The experiment was conducted in a dark room. Images were presented on an OLED display (SONY PVM-  
123 2541A, 24.5 inches,  $1920 \times 1080$  pixels, native mode, maximum luminance =  $116 \text{ cd}^2$ ), and participants were  
124 positioned with their faces approximately 70 cm from the display and freely viewed each image for 30 s. The  
125 viewing angle was approximately  $42.3 \times 24.4^\circ$ . A Tobii Pro X2-60 (Tobii Technology AB, Danderyd, Sweden)  
126 system was used for gaze measurement at a sampling rate of 60 Hz. After a valid 5-point calibration was  
127 performed, gaze measurements were obtained while participants viewed the paintings. The presentation of the  
128 images, control of the gaze measurement device, and data acquisition were performed using a custom program  
129 in Psychtoolbox3, run in MATLAB (Mathworks, Natick, MA, USA). After viewing each painting, participants  
130 rated their impression of the painting using the semantic differential method [46]. Twenty-three adjective pairs  
131 were selected based on previous studies: ‘ugly – beautiful’, ‘dark – bright’, ‘blurry – clear’, ‘disharmonious –  
132 harmonious’, ‘pale – thick’, ‘blunt – sharp’, ‘simple – complex’, ‘light – heavy’, ‘shallow – deep’, ‘loose –  
133 tense’, ‘calm – intense’, ‘soft – hard’, ‘gentle – flashy’, ‘dull – vivid’, ‘cold – warm’, ‘gloomy – cheerful’,  
134 ‘delicate – bold’, ‘unstable – stable’, ‘low contrast – high contrast’, ‘static – dynamic’, ‘monotone – colourful’,  
135 ‘weak – powerful’, and ‘dislike – like’ [47–49]. The adjectives were presented in Japanese. Participants rated  
136 each adjective pair between 1 (complete agreement with the adjective on the left) and 7 (complete agreement  
137 with the adjective on the right) by pressing a numeric key. The order of the images was randomly changed for  
138 each participant. The order of the adjective pairs was always the same. Each image remained visible during the  
139 impression rating. Half of the randomly selected participants with trichromatic vision observed dichromatic  
140 simulation images. The remaining trichromats observed the original images.

141

142 **(d) Analysis**

143 *Genetic analysis*

144 DNA samples were extracted from participants' buccal cells using the Buccal-Prep Plus DNA Isolation Kit  
145 (Isohelix, UK) and were anonymised at the Kyushu University Medical Information Center.

146 The first and second opsin genes (*OPN1LW* and *OPN1MW1* in the case of trichromacy) consisting of six  
147 exons spanning approximately 15 kbp on the X chromosome were amplified by polymerase chain reaction using  
148 long-range PCR [50,51]. Two primer sets were used for the first and second genes, respectively, as described  
149 below. The forward primers locate upstream of exon 1, and the reverse primer common for the first and second  
150 genes locate 3' untranslated region of exon 6.

151

152 Primers for the first gene:

153 OPN1-P1-forward-1: 5'-GAGGCGAGGCTACGGAGT-3'

154 OPN1-E6-reverse-1: 5'-GCAGTGAAAGCCTCTGTGACT-3'

155 or

156 OPN1-P1-forward-2: 5'-AAGCCAACAGCAGGATGTGCG-3'

157 OPN1-E6-reverse-2: 5'-GCAGTGAAAGCCTCTGTGACTT-3'

158

159 Primers for the second gene:

160 OPN1-P2-forward-1: 5'-TTAGTCAGGCTGGTCGGAACT-3'

161 OPN1-E6-reverse-1: 5'-GCAGTGAAAGCCTCTGTGACT-3'

162 or

163 OPN1-P2-forward-2: 5'-AAAGCCTAACAAATGTCCAGGG-3'

164 OPN1-E6-reverse-2: 5'-GCAGTGAAAGCCTCTGTGACTT-3'

165

166 PCR was performed using 1.25 U PrimeSTAR GXL DNA Polymerase (Takara, Japan) with 0.2  $\mu$ M of  
167 forward and reverse primers, 200  $\mu$ M each of dNTP mix, 2  $\mu$ L of genomic DNA, and an appropriate amount of  
168 buffer and purified water. The two-step PCR cycle was carried out as follows: 30 times repetition of 10 s at  
169 98°C and 5 min 20 s at 68°C after 5 min denaturation process at 98°C.

170        The better amplified PCR product of the two primer sets was used for sequencing. First, PCR products  
171        were electrophoresed on a 0.8% agarose gel, and the amplified target region was cut out and purified utilising  
172        the illustra GFX PCR DNA and Gel Band Purification Kit (Cytiva, UK). PCR for direct sequencing was then  
173        performed using the following M13 tail primer pairs to sequence exons 3 and 5, which have three important  
174        amino acid loci (180 for exon 3 and 277 and 285 for exon 5) that contribute to different absorption wavelengths  
175        in L/M cone photoreceptors [42,43].

176

177        Primers for exon 3

178        OPN1-E3-M13-Forward: 5'-TGTAAAACGACGCCAGTCCTTGCTTGCTCAAAGC-3'

179        OPN1-E3-M13-Reverse: 5'-CAGGAAACAGCTATGACCGACCCTGCCACTCCATCTTGC-3'

180

181        Primers for exon 5

182        OPN1-E5-M13-Forward: 5'-TGTAAAACGACGCCAGTTCCAACCCCCGACTCACTATC-3'

183        OPN1-E5-M13-Reverse: 5'-CAGGAAACAGCTATGACCACGGTATTTGAGTGGATCTGCT-3'

184

185        Sequences were then determined directly by the Sanger method on an ABI 3730 genetic analyser using  
186        the BigDye direct cycle sequencing kit (ThermoFisher Scientific, USA). Presence or absence, and genotype of  
187        the first and second genes were determined based on the combination of three amino acids.

188

189        *Gaze analysis*

190        Attention maps were created from raw eye movement data. The raw data were considered valid if the output  
191        value of the eye-tracker reliability, ranging from 0 (most reliable) to 4 (least reliable), was less than 2 in either  
192        the left or right eye. For the x-y coordinates of the eyes, the average value of both eyes was used if both eyes  
193        were valid, and the value of one eye was used if only one eye was valid. We first created individual attention  
194        maps by calculating probability density functions for each image [52]. The time window was set to 5 s, during  
195        which the probability density of gaze at each image location was calculated. To reduce the effects of individual  
196        differences in noise in eye movement measurements, a two-dimensional Gaussian filter with a full-width at half-  
197        maximum of 3° was applied. The probability densities across the entire image were standardised such that the

198 sum of the entire probability densities was 1 and the size of the attention map was reduced to 1/10 of the pixel  
199 size of the image. The time window was then shifted every second to obtain attention maps for the entire time-  
200 course. In addition, attention maps were created for cumulative time windows from the start of viewing, in 1-s  
201 steps after 5 s from the start of viewing.

202 Group attention maps for trichromats, dichromats, and simulated dichromats were created by summing  
203 and standardising individual attention maps weighted by the proportion of data validity during a time window  
204 (figure 2a).

205 Pearson correlation coefficients between two individual attention maps for a given image were  
206 calculated for each time window for all participant combinations (pairwise correlation). For each image, the  
207 median of the correlation coefficients for the same colour vision combination was used as the representative  
208 value. The 24 medians from all images were used to illustrate the smooth mean line and 95 % CI for each colour  
209 vision combination (figure 2b, c) using the t-based approximation method called ‘loess’ in the ggplot2 library of  
210 R.

211 Saliency maps for each colour vision type were calculated based on Tajima and Komine’s model [35]. In  
212 the model, the local features in the luminance, chromatic, and orientation maps were extracted with centre-  
213 surround antagonism filters. Four spacial frequency scales and four orientation filters (vertical, horizontal, and  
214 two diagonal orientations) were used to extract orientation maps derived from the luminance signal. We  
215 assumed that L-M colour opponency was absent in the saliency map for deutanopia. The weight on orientation  
216 maps relative to intensity/colour maps was set to 0.1. Saliency maps were obtained by normalising combined  
217 maps of orientation maps and intensity/colour maps. Saliency maps for simulated dichromats were obtained by  
218 using a deutanopic simulation of the original image and estimating the saliency of a trichromatic viewer.

219 Using the median correlations between individual cumulative attention maps for the 24 images, the  
220 difference in correlation by colour vision combination was calculated as the Wilcoxon effect size and shown  
221 over time (figure 2d). The lower and upper bounds of the 95 % CIs of the effect sizes were estimated by  
222 bootstrapping with 1,000 replications. The Wilcoxon effect size was calculated using the correlation coefficients  
223 between the individual 0–5,000-ms attention maps for the differences in correlation between colour vision  
224 combinations in each image, and the magnitude of the differences in gaze between colour vision combinations  
225 was expressed as a scatter plot (figure 2e).

226

227 *Impression analysis*

228 To determine the effect of colour vision on individual impressions, the rating data for the 24 images based on 23  
229 adjective pairs from 54 individuals were analysed using the Tucker decomposition method as described in the  
230 following equation [53,54].

231 
$$x_{ijk} = \sum_{p=1}^P \sum_{q=1}^Q \sum_{r=1}^R a_{ip} b_{jq} c_{kr} g_{pqr} + e_{ijk},$$

232 where  $x_{ijk}$  is the three-phase data of the image  $i \times$  adjective  $j \times$  individual  $k$ . As in the above equation, the  
233 Tucker decomposition method represents  $a_{ip}$  as the weighting of image  $i$  and latent factor  $p$ ,  $b_{jq}$  as the weighting  
234 of adjective  $j$  and latent factor  $q$ , and  $c_{kr}$  as the weighting of individual  $k$  and latent factor  $r$ .  $g_{pqr}$  is called the core  
235 tensor and reflects the importance of the interaction between factors.  $e_{ijk}$  is the residual error. Each of the image  
236 phase, adjective phase, and individual phase was decomposed into three factors with orthogonality constraints.  
237 Therefore,  $p$ ,  $q$  and  $r$  ranged from 1 to 3.

238 Differences in the weights of the three factors of individual phase among colour vision types were  
239 analysed using the Kruskal–Wallis test and the post-hoc Dunn test for multiple comparisons.

240 Gaze and impression data were analysed in MATLAB (version R2021b), whereas statistical analyses  
241 were performed in the R statistical environment (version 4-1.2, R Foundation, Vienna, Austria).

242

243 **3. Results**

244 **(a) Effect of colour vision on attention**

245 The gaze analyses of genetically confirmed 10 dichromats, 20 trichromats, and 21 simulated dichromats during  
246 the 30-s free viewing of 24 painted images selected for having different image features revealed the diversity  
247 and commonality of attention to complex images and their time-course derived from differences in colour  
248 vision. Hereafter, ‘trichromats’ refer to individuals with normal cone absorption functions and exclude  
249 anomalous trichromats. In the main results section, we compared dichromats and trichromats, whereas the  
250 results, including four anomalous trichromats, are presented in the Supplementary Information.

251        *Attention to example images*

252        We investigated how participants with different colour vision types differed in terms of the areas to which they  
253        directed their attention when viewing complex images freely. figure 2a shows examples of the attention maps  
254        for the different colour vision groups created from individual attention maps that were calculated by applying  
255        the Gaussian function with a variance of 3° to the raw gaze data during the first 5 s of viewing. The saliency  
256        maps below the attention maps demonstrated the prediction of attention, which reflect the early bottom-up  
257        processes, including local spacial information for each colour vision type.

258        *Differences in attention across colour vision types and images*

259        Overall analysis of 24 images showed that the mean pairwise correlation coefficient reached a plateau at  
260        approximately  $r = 0.1$  in attention maps, with 5-s time window at approximately 10 s (figure 2b), whereas it  
261        gradually increased until after 30 s in cumulative attention maps (figure 2c), regardless colour vision  
262        combinations.

263        The correlations between trichromats were consistently higher than those for other combinations, with  
264        the correlations between dichromats as the lowest; the correlations between dichromat and trichromat and those  
265        between dichromat and simulated dichromat were in between. Notably, the essential results did not change when  
266        anomalous trichromats were added to dichromats for analysis (figure S1) or when the analysis was limited to  
267        men to balance the number of participants.

268        The mean correlation coefficient between cumulative group attention maps and saliency maps for 24  
269        images ranged around 0.1 for all colour vision types throughout the viewing period, although a slight  
270        improvement was observed for trichromat after 10 s (figure S2). Changing parameters, such as the number of  
271        spacial frequency scales or orientation filters and the weight of the orientation map in the saliency model, did  
272        not improve the overall correlation for the 24 images.

273        The time-course of the comparison of the individual cumulative attention map pairwise correlations  
274        between various colour vision combinations is shown in figure 2d as Wilcoxon effect sizes ( $r$ ). The median  
275        values of the correlation coefficients between individual cumulative attention maps for the 24 images, which  
276        were used for the plots in figure 2c, were used to calculate the effect sizes and their 95 % CIs for the comparison  
277        of correlations. The Wilcoxon effect size for the comparison of correlations between dichromat and trichromat  
278        with correlations between trichromats (red bold line), and the comparison of correlations between dichromats

279 with correlations between trichromats (light blue line) were greater than 0.5 throughout the time-course.  
280 Conversely, when correlations between dichromat and trichromat were compared with correlations between  
281 dichromat and a simulated dichromat (dashed grey line), effect sizes were lower than 0.5 for the first half of the  
282 viewing period.

283 To examine in which images the differences in colour vision affect the differences in attention map  
284 correlations, we obtained the effect size of the correlation comparison using the correlation coefficients between  
285 all individual attention maps during the first time window (0–5,000 ms) and represented the comparison  
286 between correlations in scatter plots (figure 2e). In the comparison of dichromat and trichromat correlations, and  
287 between trichromats, effect sizes were larger for images 5, 12, and 13 than for other images, while effect sizes  
288 were small for most images in the comparison of dichromat and trichromat correlations, and those between  
289 dichromat and simulated dichromat (figure 2e left). The colour of the symbols indicates the position in the  
290 multidimensional scaling (MDS) analysis [44] for the image selection process. The images indicated by red  
291 circles, which have extremely small values in the second dimension of the MDS with tendency of having red–  
292 green or lightness spacial contrast, are plotted below the diagonal line in the left plot of figure 2e except for  
293 image 21, indicating that those images garnered different attention from dichromats and trichromats. In the  
294 comparison of correlations between dichromats and between trichromats, effect sizes were also larger for the  
295 specific images, therefore each image is plotted near the diagonal line in figure 2e right. These results indicate  
296 that the attention maps were more similar among trichromats than among other colour vision combinations for  
297 particular images.

298 When anomalous trichromats were added to dichromats for these analyses, the results showed the same  
299 tendency, although gaze differences with trichromats were mitigated (figure S1).

300

### 301 **(b) Effect of colour vision on impression**

302 To evaluate the effect of colour vision on the impressions of individuals with different colour vision types, the  
303 impression rating data (24 images × 23 adjective pairs × 54 individuals) were decomposed into three factors for  
304 each of the image, adjective, and individual phases using the Tucker method [53]. The decomposed model  
305 explained 90.8% of variation.

306

307        *Individual factors*

308        For factor 3 of the individual phase, the distributions of trichromats (open circles) and simulated dichromats  
309        (black circles) differed markedly, and the distribution of dichromats (triangles: protanopia, and inverted  
310        triangles: deutanopia) and anomalous trichromats (diamonds) appeared to overlap with the distribution of  
311        trichromats. No differences were observed among the two types of dichromats (deutanopia and protanopia)  
312        and anomalous trichromats in terms of factor 3 ( $\chi^2 = 1.14, p = 0.57$ , Kruskal–Wallis test). Therefore, dichromats  
313        with protanopic or deutanopic vision were combined into a single group for analysis. There were differences  
314        among trichromats, dichromats, and simulated dichromats for factor 3 ( $\chi^2 = 23.34, p < 0.0001$ , Kruskal–Wallis  
315        test). A post-hoc Dunn test for multiple comparisons indicated that simulated dichromats differed significantly  
316        from dichromats ( $p.adj < 0.001$ ) and trichromats ( $p.adj < 0.001$ ), as shown in the lower panel of figure 3b. For  
317        factors 1 and 2, there were no significant differences among the colour vision groups (top and middle panels of  
318        figure 3b (factor 1:  $\chi^2 = 3.31, p = 0.19$ ; factor 2:  $\chi^2 = 1.32, p = 0.52$ , Kruskal–Wallis test). The results were  
319        almost identical when dichromats and anomalous trichromats were analysed as a single group.

320

321        *Relationship among factors in the image, adjective, and individual phases*

322        The core tensor G of the Tucker decomposition (table 1) reflects the interactions among the three-phase factors.  
323        Factor 3 in the individual phase exhibited a large positive interaction with image factor 1 and adjective factor 3,  
324        as well as a large negative interaction with image factor 3 and adjective factor 1.

325        The adjective ‘colourful’ had the largest positive value for adjective factor 3 (figure 3c). Multiplication  
326        of the weights of adjective factor 3 for colourful (0.3937), image factor 1 (all negative, figure 3d), individual  
327        factor 3, and the core tensor value (25.8936, table 1) that connects three-phase factors contributes the  
328        reconstructed rating value. Therefore, the more negative the weights of individual factor 3, the higher the  
329        reconstructed rating of ‘colourful’. The interaction among individual factor 3, image factor 3, and adjective  
330        factor 1 was negative (-16.8498, table 1). Since all weights of adjective factor 1 were negative, more negative  
331        image factor 3 and individual factor 3 values yielded a higher impression.

332        Thus, among simulated dichromats, a high weight of individual factor 3 indicated a reduced colour  
333        impression. This was consistent with the distribution of raw rating data for simulated dichromats (figure S3).

334        figure S4a shows the average impression ratings for the colour vision groups, ordered by the lowest  
335        weight of image factor 3 and highest weight of adjective factor 3. Evaluating the difference between groups

336 highlights which images and adjectives are more affected by colour vision conditions (figure S4b). When  
337 dichromats and simulated dichromats were compared, we observed large differences in images with low image  
338 factor 3 weights, particularly for adjectives with high adjective factor 3 weights such as ‘colourful’ and ‘flashy’.  
339 This phenomenon was also observed for comparisons between trichromats and simulated dichromats. However,  
340 no systematic differences were observed between dichromats and trichromats.

341

#### 342 *Impression analysis with restricted images*

343 Finally, we examined whether the impression analysis used in this study is a valid method for detecting innate  
344 colour vision differences. *A posteriori*, we restricted impression data to images in which differences between  
345 dichromats and trichromats were prominent for some adjectives, as shown in figure S4b. For example, we  
346 performed Tucker decomposition using impression data from images 1 and 12 and found that innate colour  
347 vision differences appeared in individual factors 1 and 3 (figure S5). In this case, the decomposed model  
348 explained 92.5% of the variability. The values of the image factor were all negative. The values of individual  
349 and adjective factors in figure S5, and core tensor G in table S1 indicate that the images were seen more  
350 colourful or complex as smaller the individual factor 1 was, or more bold, dynamic, and cheerful as larger the  
351 individual factor 3 was. Although we cannot deduce the conclusion from this result alone because of the limited  
352 number of images, it indicates that the methods we used in this study were valid to reveal the factors such as  
353 differences in colour vision that influence impression formation.

354

#### 355 *Other factors influencing impression*

356 Additional multiple regression analyses using colour vision type (trichromats, simulated dichromats,  
357 dichromats, and anomalous trichromats), age, sex, and the 100 Hue Test error score, as explanatory variables,  
358 showed that none of these factors, except the colour vision type ( $F = 8.03, p < 0.001$ ), influenced individual  
359 factor 3. Age had a significant effect on individual factor 2 ( $F = 4.24, p < 0.05$ ), which exhibited a large  
360 negative interaction (-31.0129, table 1) with adjective factor 2 and image factor 2 (figure 3c, d).

361

362 **4. Discussion**

363 Gaze analyses revealed that trichromats have higher attentional similarity than dichromats. In contrast,  
364 impression analyses indicated an overall similarity between dichromats and trichromats for paintings with  
365 varying visual features, at least in subjective evaluation. Overall, the attention map correlations for the various  
366 images revealed that correlations between trichromats were always higher than those of the other combinations,  
367 whereas correlations between dichromats were always lower. Although the data were not shown (to avoid  
368 complexity), the correlation between simulated dichromats during 0–5,000 ms was nearly identical to that  
369 between dichromats and trichromats. These results suggest that images with no red–green colour information  
370 may result to large gaze variability, likely reflecting the differences in the bottom-up information that  
371 individuals place weight on. The individual differences among trichromats became smaller as the amount of  
372 chromatic information increased. This may indicate one of the significances of the red–green axis in  
373 trichromatic vision.

374 We found that the correlation between dichromats and simulated dichromats was not as high as those  
375 between trichromats and that the effect size of differences from the correlation between dichromat and  
376 trichromat was low. This may be attributed to the large individual differences between the attention maps of  
377 dichromats and simulated dichromats, where some dichromats were more similar to trichromats, while some  
378 dichromats were more similar to simulated dichromats.

379 In several images, colour vision affected the attention directed toward the images within the first 5,000  
380 ms of viewing with larger effect size. One example of an obvious difference between colour vision types is that  
381 for image 13, in which both red–green and lightness contrast occupy space, trichromats directed their attention  
382 to the dark red locations at the bottom of the image, whereas dichromats directed their attention to the light area  
383 in the upper left corner of the image. The distribution of the pixels with high gaze probability density in the  
384 CIExyY plots clearly shows this tendency.

385 The tendency of colour and spacial composition of the images that engendered large differences in gaze  
386 between colour vision types can be estimated from the MDS values that were used for experimental image  
387 selection and classification. In images with high red–green or lightness contrasts and extremely small values in  
388 the second dimension of the MDS, attention maps differed between dichromats and trichromats, whereas in  
389 images with high blue–yellow or unsaturated colours, red–green colour vision had little effect. For these images,

390 the correlations of the attention maps were low owing to high individual variation, even among participants with  
391 the same colour vision type, or the correlations were high, regardless of colour vision type. However, image 12  
392 was an exception, as it demonstrated higher attention map correlations among trichromats than other colour  
393 vision combinations despite having high blue–yellow contrast. This was presumably due to the red floral objects  
394 near the centre of the image. Overall, these results suggest that colour vision influences attention to an image in  
395 the early stages of viewing (approximately within 5,000 ms), depending on the spacial colour distribution of the  
396 image.

397 The difference in dichromatic and trichromatic saliency was used as one of the parameters of the MDS  
398 analysis for image selection. These facts indicate that differences in saliency, including spacial information, are  
399 useful in predicting the impact of innate differences in colour vision on bottom-up attention to complex images.  
400 However, overall low correlations between saliency maps and attention maps, even in trichromats, suggest that  
401 the saliency model based solely on bottom-up processes is insufficient to predict viewer attention, which  
402 involves top-down attention to visual contents and gaze centre bias [55,56]. The low correlation of the attention  
403 maps among dichromats may suggest that dichromats' weighting of bottom-up information varies. Therefore, it  
404 is important to recognise that having a univocal interpretation is challenging, especially when estimating how  
405 people with dichromatic vision view the world.

406 The difference in impression among the participants is essentially driven by the fact that trichromats  
407 viewing images made to simulate the experience of a dichromat do not find those images colourful. Meanwhile,  
408 no obvious differences were observed between the impressions of congenital dichromats and trichromats when  
409 24 images containing various visual features were analysed. These results indicate that short-term experiences of  
410 dichromatic vision using simulation images have very different effects on visual impressions than innate colour  
411 vision.

412 The results of the impression analysis may reflect the relative assessments of the observers, where  
413 participants rated adjectives relative to the range of stimuli they have experienced. According to this  
414 interpretation, simulated dichromats may differ from dichromats because the colour losses in the simulated  
415 images were apparent to them, although most simulated dichromats were unaware that they were observing  
416 simulated images until after the experiment. Nonetheless, congenital dichromats experienced a rich impression,  
417 although it was relative to each observer. A previous study that examined the influence of lens-brunescence on

418 colour naming found that the results from elderly colour vision simulations was not consistent with those from  
419 intrinsic colour vision of older observers, suggesting the influence of lifelong chromatic adaptation [57].

420 These observations are consistent with the recent view that the plasticity of post-receptoral processes  
421 calibrates variations between individuals during experience-dependent development to discount congenital  
422 variations of receptors [58], although plasticity sometimes brings about striking individual differences in colour  
423 perception, as revealed by the image #thedress [59]. The possibility of compensating for red–green contrast loss  
424 in anomalous trichromats at post-receptoral stages has been investigated by performing psychophysical  
425 experiments [60,61]. Physiological studies using simple colour stimuli have shown that signals are amplified in  
426 the brains of people with anomalous trichromatic vision [62,63]. These compensations may occur when they  
427 view complex images. It is also plausible that dichromats compensate similarly by using additional information  
428 obtained from rod or melanopsin mechanisms and variations in the optical density of cones, macular pigment,  
429 lens, among others [22,64–66].

430 Although the colour space that an individual can experience is limited by genetic factors, our findings  
431 suggest that individuals with different colour vision can optimise the information available in the intrinsic colour  
432 space and construct impressions, including colour impressions, for various complex scenes. The colour  
433 impressions constructed in this way may yield impression strength of the same level when viewed in relation  
434 with other impressions, even if the colour space is different.

435 The influence of congenital colour vision on impressions cannot be completely ruled out, although it was  
436 not pronounced across the various images used in this study. The raw rating data for ‘sharp’ was greater in  
437 dichromats and anomalous trichromats than in trichromats. Furthermore, when impression data were restricted  
438 on certain images *a posteriori*, individual factors 1 and 3 of Tucker decomposition differed between trichromats  
439 and other congenital colour vision types. People with dichromatic or anomalous trichromatic vision may have a  
440 spectacular impression of an image that has a clear colour-luminance contrast for them. Image 12 used in this  
441 additional analysis obtained a higher rating for ‘colourful’ among dichromats than among trichromats (figure  
442 S4b); attention analysis showed that this image had a higher similarity in attention maps among trichromats than  
443 among dichromats. Since differences in attentional positions were mainly reflection of the attention in the early  
444 stage of viewing, differences in impressions may be more pronounced for shorter viewing times. Further studies  
445 are required to investigate these possibilities. In addition, the comparison between dichromats and simulated

446 dichromats demonstrated differences in a relatively large number of adjective pairs (figure S3), further  
447 indicating that it is difficult to infer the impression of dichromats by using simulation images alone.

448 Overall, our results indicate that even when people with trichromatic vision receive the attenuated colour  
449 impression for dichromacy-simulating images, their subjective experience differs from that of someone who has  
450 experienced dichromatic vision throughout life. This may be of relevance because there is a lot of cerebral  
451 cortex within so-called ‘high-level’ visual areas involved in colour, and these areas do not mature until years  
452 after birth [34]. Colour vision is an active process that connects sensory signals with meaning; considering the  
453 vast cortical areas processing colour information, it is plausible that the brain is not only capable but has also  
454 evolved to collect sufficient information from the retina (even in dichromats) to extract meaning from retinal  
455 images.

456 Additional multiple regression analysis showed that age also affected the individual difference in  
457 impression. As age increased, individual factor 2 decreased, suggesting fewer extreme evaluations of  
458 impressions, such as ‘beautiful’, ‘harmonious’, and ‘bright’. Studies with larger sample sizes from various ages  
459 should further clarify this. Since the error score on the 100 Hue Test did not affect the impression, our findings  
460 suggest that differences in colour discrimination have little effect on impression.

461 This study has a few limitations. First, owing to the limited number of dichromats and anomalous  
462 trichromats, they participated only in the experimental condition wherein they viewed original images. Some  
463 dichromats viewed the dichromatic simulation images after the experiment and reported that they appeared  
464 similar to the original images. Pioneering simulation studies on dichromacy also reported that dichromats were  
465 satisfied with the agreement between the simulated image and the original image [23,24]. Therefore, if  
466 dichromats had evaluated their impressions upon viewing the dichromatic simulation images during the  
467 experiment, the results would likely have been similar. As we used deutanopic simulation as a representation  
468 of dichromatic simulation, three protanopic dichromats might be able to discriminate between original and  
469 simulated images if compared. Nevertheless, the threshold for red–green contrast was diverse and continuous in  
470 dichromats and anomalous trichromats [67]; therefore, a single transformation cannot precisely simulate the  
471 perception of dichromats or anomalous trichromats. Whether subtle differences affect the attention to and  
472 impression of complex images requires further investigation. Second, although we used paintings of high artistic  
473 qualities, which are suitable for obtaining low- to high-order semantic evaluations, it would be important to

474 examine how differences in colour vision are affected when observing natural images. Third, this study did not  
475 explain how differences in lower-order visual features are integrated to produce a similar level of higher-order  
476 impressions. These limitations should be addressed in future studies. Examining brain activity reflecting visual,  
477 emotional, and cognitive processes and personal preferences may improve our understanding of the mechanisms  
478 underlying the formation of impressions observed here.

479

## 480 **5. Conclusion**

481 We investigated how differences in colour vision types affected attention to and impressions of complex  
482 images, which encompassed paintings consisting of various colour configurations. Innate colour vision was  
483 found to influence attention in the early stages of image viewing. Meanwhile, the colour impressions of those  
484 who had a temporary dichromatic experience generated using dichromatic simulation images decreased,  
485 whereas there were no systematic differences in impressions between individuals with congenital dichromatic  
486 vision and those with trichromatic vision. Thus, dichromatic simulation images, which are theoretically  
487 generated based on the colour discrimination ability of dichromacy, can be a predictor of behaviours influenced  
488 by bottom-up attention to some extent but cannot infer the impression experienced by dichromats. Human  
489 colour vision exhibits significant diversities beyond the classifications used in this study, including variations in  
490 genetic factors [16,18,66,68,69,67,70]. Little is known regarding the plasticity and compensation mechanisms  
491 involved in post-receptoral processes [22,58,71]. Exploring these unknowns and examining how the diversity of  
492 colour vision affects attention, impressions, and emotions will provide a better understanding of the actual  
493 effects of diversity on behaviour and subjectivity.

494

## 495 **Ethics**

496 This study was approved by the Ethics Committee for Human Experiments (Approval No. 241) and the Ethics  
497 Review Committee for Human Genome and Genetic Analysis Research (Approval No. 651) of Kyushu  
498 University, Japan.

499

500 **Data accessibility**

501 The gaze and impression data and codes for the main analyses have been deposited in the DRYAD repository  
502 created for this project (doi:10.5061/dryad.w6m905qs5).

503

504 **Authors' contributions**

505 C.H. and S.T. designed the study; C.H., T.T., H.S., and X.C. performed the research; C.H., T.T., and H.S.  
506 analysed the data; S.T. provided codes for saliency analysis; T.S. and S. K. provided experimental equipment;  
507 and C.H., T.S., and S.K. discussed the results and wrote the paper.

508

509 **Conflict of interest declaration**

510 The authors declare no conflicts of interest.

511

512 **Funding**

513 This work was supported by JSPS KAKENHI Grant Numbers JP15K16169 and JP17H05952 (to C.H.) and the  
514 NTT-Kyushu University Collaborative Research Program for Fundamental Sciences (to C.H.).

515

516 **Acknowledgements**

517 We thank Hidenori Tachida and Etsuko Moritsuka for providing the genetic analysis environment, Ryuichi  
518 Ashino and Yuka Matsuhashita for supporting the genetic analysis, Hisao Ueyama for providing the latest protocol  
519 for long-range PCR, Hiroaki Oie for helping to recruit the participants. We dedicate this paper as a tribute to the  
520 memory of our collaborator, Satohiro Tajima, who passed away in 2017.

521

522

523

524 **References**

- 525 1. Gibson JJ. 1950 *The perception of the visual world*. Houghton Mifflin.
- 526 2. Zeki S. 1993 The visual association cortex. *Curr. Opin. Neurobiol.* **3**, 155–159. (doi:10.1016/0959-4388(93)90203-B)
- 527 3. Maunsell JHR. 1995 The brain's visual world: representation of visual targets in cerebral cortex. *Science* **270**, 764–769. (doi:10.1126/science.270.5237.764)
- 528 4. Palmer SE, Schloss KB, Sammartino J. 2013 Visual aesthetics and human preference. *Annu. Rev. Psychol.* **64**, 77–107. (doi:10.1146/annurev-psych-120710-100504)
- 529 5. Ou L-C, Luo MR, Woodcock A, Wright A. 2004 A study of colour emotion and colour preference. Part I: Colour emotions for single colours. *Color Res. Appl.* **29**, 232–240. (doi:10.1002/col.20010)
- 530 6. Palmer SE, Schloss KB. 2010 An ecological valence theory of human color preference. *Proc. Natl. Acad. Sci. U.S.A.* **107**, 8877–8882. (doi:10.1073/pnas.0906172107)
- 531 7. Nascimento SMC, Linhares JMM, Montagner C, João CAR, Amano K, Alfaro C, Bailão A. 2017 The colors of paintings and viewers' preferences. *Vision Res.* **130**, 76–84. (doi:10.1016/j.visres.2016.11.006)
- 532 8. Iigaya K, Yi S, Wahle IA, Tanwisuth K, O'Doherty JP. 2021 Aesthetic preference for art can be predicted from a mixture of low- and high-level visual features. *Nat. Hum. Behav.* **5**, 743–755. (doi:10.1038/s41562-021-01124-6)
- 533 9. Nakauchi S *et al.* 2022 Universality and superiority in preference for chromatic composition of art paintings. *Sci. Rep.* **12**, 4294. (doi:10.1038/s41598-022-08365-z)
- 534 10. Iigaya K, Yi S, Wahle IA, Tanwisuth S, Cross L, O'Doherty JP. 2023 Neural mechanisms underlying the hierarchical construction of perceived aesthetic value. *Nat Commun* **14**, 127. (doi:10.1038/s41467-022-35654-y)
- 535 11. Hurlbert AC, Ling Y. 2007 Biological components of sex differences in color preference. *Curr. Biol.* **17**, R623–R625. (doi:10.1016/j.cub.2007.06.022)
- 536 12. Hurlbert A, Owen A. 2015 Biological, cultural, and developmental influences on color preferences. In *Handbook of color psychology*, pp. 454–477. Cambridge University Press.
- 537 13. Jonauskaitė D *et al.* 2020 Universal patterns in color-emotion associations are further shaped by linguistic and geographic proximity. *Psychol. Sci.* **31**, 1245–1260. (doi:10.1177/0956797620948810)
- 538 14. Nathans J, Piantanida TP, Eddy RL, Shows TB, Hogness DS. 1986 Molecular genetics of inherited variation in human color vision. *Science* **232**, 203–210. (doi:10.1126/science.3485310)
- 539 15. Neitz J, Neitz M. 2011 The genetics of normal and defective color vision. *Vision Res.* **51**, 633–651. (doi:10.1016/j.visres.2010.12.002)
- 540 16. Neitz M, Patterson SS, Neitz J. 2019 Photopigment genes, cones, and color update: disrupting the splicing code causes a diverse array of vision disorders. *Curr. Opin. Behav. Sci.* **30**, 60–66. (doi:10.1016/j.cobeha.2019.05.004)
- 541 17. Swanson W, Cohen J. 2003 Color vision. *Ophthalmol. Clin. North Am.* **16**, 179–203. (doi:10.1016/S0896-1549(03)00004-X)
- 542 18. Deeb S. 2005 The molecular basis of variation in human color vision: Variation in human color vision. *Clin. Genet.* **67**, 369–377. (doi:10.1111/j.1399-0004.2004.00343.x)

563 19. Birch J. 2012 Worldwide prevalence of red-green color deficiency. *J. Opt. Soc. Am. A.* **29**, 313–320.  
564 (doi:10.1364/JOSAA.29.000313)

565 20. Le Grand Y. 1968 Anomalies of Colour Vision. In *Light, Colour and Vision*, pp. 336–354. London:  
566 Chapman and Hall.

567 21. Parry NRA. 2015 Color vision deficiencies. In *Handbook of color psychology* (eds AJ Elliot, MD Fairchild,  
568 A Franklin), pp. 216–242. Cambridge: Cambridge University Press.

569 22. Boston JM. 2022 Do you see what I see? Diversity in human color perception. *Annu. Rev. Vis. Sci.* **8**, 101–  
570 133. (doi:10.1146/annurev-vision-093020-112820)

571 23. Viénot F, Brettel H, Ott L, M'Barek AB, Mollon JD. 1995 What do colour-blind people see? *Nature* **376**,  
572 127–128. (doi:10.1038/376127a0)

573 24. Brettel H, Viénot F, Mollon JD. 1997 Computerized simulation of color appearance for dichromats. *J. Opt.*  
574 *Soc. Am. A.* **14**, 2647–2655. (doi:10.1364/JOSAA.14.002647)

575 25. Wong B. 2011 Points of view: color blindness. *Nat. Methods.* **8**, 441–441. (doi:10.1038/nmeth.1618)

576 26. Montag ED. 1994 Surface color naming in dichromats. *Vision Res.* **34**, 2137–2151. (doi:10.1016/0042-  
577 6989(94)90323-9)

578 27. Cole BL, Lian K-Y, Sharpe K, Lakkis C. 2006 Categorical color naming of surface color codes by people  
579 with abnormal color vision. *Optom. Vision Sci.* **83**, 879–886. (doi:10.1097/01.opx.0000249974.22205.2a)

580 28. Lillo J, Moreira H, Davies R. 2011 Red-green dichromats' use of basic colour terms. In *New Directions in*  
581 *Colour Studies*, pp. 293–308. John Benjamins Amsterdam.

582 29. Uchikawa K. 2014 Categorical color perception of color normal and deficient observers. *Opt. Rev.* **21**, 911–  
583 918. (doi:10.1007/s10043-014-0144-4)

584 30. Shinomori K, Komatsu H, Negishi I. 2020 Bidirectional relationships between semantic words and hues in  
585 color vision normal and deutanopic observers. *J. Opt. Soc. Am. A* **37**, A181.  
586 (doi:10.1364/JOSAA.382518)

587 31. Álvaro L, Moreira H, Lillo J, Franklin A. 2015 Color preference in red–green dichromats. *Proc. Natl.*  
588 *Acad. Sci. U.S.A.* **112**, 9316–9321. (doi:10.1073/pnas.1502104112)

589 32. Bullier J. 2001 Integrated model of visual processing. *Brain Res. Rev.* **36**, 96–107. (doi:10.1016/S0165-  
590 0173(01)00085-6)

591 33. Grill-Spector K, Malach R. 2004 The human visual cortex. *Annu. Rev. Neurosci.* **27**, 649–677.  
592 (doi:10.1146/annurev.neuro.27.070203.144220)

593 34. Conway BR. 2018 The organization and operation of inferior temporal cortex. *Annu. Rev. Vis. Sci.* **4**, 381–  
594 402. (doi:10.1146/annurev-vision-091517-034202)

595 35. Tajima S, Komine K. 2015 Saliency-based color accessibility. *IEEE Trans. Image Process.* **24**, 1115–1126.

596 36. Morgan MJ, Adam A, Mollon JD. 1992 Dichromats detect colour-camouflaged objects that are not detected  
597 by trichromats. *Proc. R. Soc. Lond. B* **248**, 291–295. (doi:10.1098/rspb.1992.0074)

598 37. Simunovic MP. 2010 Colour vision deficiency. *Eye* **24**, 747–755. (doi:10.1038/eye.2009.251)

599 38. Werner JS, Marsh-Armstrong B, Knoblauch K. 2020 Adaptive changes in color vision from long-term filter  
600 usage in anomalous but not normal trichromacy. *Curr. Biol.* **30**, 3011-3015.e4.  
601 (doi:10.1016/j.cub.2020.05.054)

602 39. Rezeanu D, Barborek R, Neitz M, Neitz J. 2022 Potential value of color vision aids for varying degrees of  
603 color vision deficiency. *Opt. Express* **30**, 8857. (doi:10.1364/OE.451331)

604 40. Smith VC, Pokorny J, Pass AS. 1985 Color-axis determination on the Farnsworth-Munsell 100-hue test.  
605 *Am. J. Ophthalmol.* **100**, 176–182.

606 41. Carroll J, Conway BR. 2021 Color vision. In *Handbook of Clinical Neurology*, pp. 131–153. Elsevier.  
607 (doi:10.1016/B978-0-12-821377-3.00005-2)

608 42. Yokoyama S, Radlwimmer FB. 1999 The molecular genetics of red and green color vision in mammals.  
609 *Genetics* **153**, 919–932. (doi:10.1093/genetics/153.2.919)

610 43. Hiramatsu C, Radlwimmer FB, Yokoyama S, Kawamura S. 2004 Mutagenesis and reconstitution of  
611 middle-to-long-wave-sensitive visual pigments of New World monkeys for testing the tuning effect of  
612 residues at sites 229 and 233. *Vision Res.* **44**, 2225–2231. (doi:10.1016/j.visres.2004.04.008)

613 44. Cox MAA, Cox TF. 2008 Multidimensional Scaling. In *Handbook of Data Visualization*, pp. 315–347.  
614 Berlin, Heidelberg: Springer Berlin Heidelberg. (doi:10.1007/978-3-540-33037-0\_14)

615 45. Rasband WS. 2011 Imagej, Image Processing and Analysis in Java. <http://imagej.nih.gov/ij/>

616 46. Osgood CE. 1952 The nature and measurement of meaning. *Psychol. Bull.* **49**, 197–237.  
617 (doi:10.1037/h0055737)

618 47. Otsubo H, Kamei K. 1997 Construction of image retrieval system by Kansei information queries. *Trans.*  
619 *Inst. Syst. Control Inf. Eng.* **10**, 455–462. (doi:10.5687/iscie.10.455)

620 48. Suzuki M, Gyoba J. 2003 Analyzing the factor structure and the sensory-relevance of impressions produced  
621 by words and drawings. *Jpn. J. Psychol.* **73**, 518–523. (doi:10.4992/jjpsy.73.518)

622 49. Marković S, Radonjić A. 2008 Implicit and explicit features of paintings. *Spatial Vis.* **21**, 229–259.  
623 (doi:10.1163/156856808784532563)

624 50. Oda S, Ueyama H, Nishida Y, Tanabe S, Yamade S. 2003 Analysis of L-cone/M-cone visual pigment gene  
625 arrays in females by long-range PCR. *Vision Res.* **43**, 489–495. (doi:10.1016/S0042-6989(02)00679-X)

626 51. Ueyama H, Tanabe S, Muraki-Oda S, Yamade S, Ohji M, Ohkubo I. 2009 Analysis of introns and  
627 promoters of L/M visual pigment genes in relation to deutan color-vision deficiency with an array of  
628 normal gene orders. *Journal of human genetics* **54**, 525–530.

629 52. Holmqvist K, editor. 2011 *Eye tracking: a comprehensive guide to methods and measures*. Oxford ; New  
630 York: Oxford University Press.

631 53. Tucker LR. 1966 Some mathematical notes on three-mode factor analysis. *Psychometrika* **31**, 279–311.  
632 (doi:10.1007/BF02289464)

633 54. Andersson CA, Bro R. 2000 The N-way Toolbox for MATLAB. *Chemom. Intell. Lab. Syst.* **52**, 1–4.  
634 (doi:10.1016/S0169-7439(00)00071-X)

635 55. Tatler BW. 2007 The central fixation bias in scene viewing: Selecting an optimal viewing position  
636 independently of motor biases and image feature distributions. *J. Vision* **7**, 4. (doi:10.1167/7.14.4)

637 56. Tseng PH, Carmi R, Cameron IGM, Munoz DP, Itti L. 2009 Quantifying center bias of observers in free  
638 viewing of dynamic natural scenes. *J. Vision* **9**, 4–4. (doi:10.1167/9.7.4)

639 57. Hardy JL, Frederick CM, Kay P, Werner JS. 2005 Color naming, lens aging, and grue: what the optics of  
640 the aging eye can teach us about color language. *Psychol. Sci.* **16**, 321–327. (doi:10.1111/j.0956-  
641 7976.2005.01534.x)

642 58. Isherwood ZJ, Joyce DS, Parthasarathy MK, Webster MA. 2020 Plasticity in perception: insights from  
643 color vision deficiencies. *Fac. Rev.* **9**. (doi:10.12703/b/9-8)

644 59. Lafer-Sousa R, Hermann KL, Conway BR. 2015 Striking individual differences in color perception  
645 uncovered by ‘the dress’ photograph. *Current Biology* **25**, R545–R546. (doi:10.1016/j.cub.2015.04.053)

646 60. Boehm AE, MacLeod DIA, Bosten JM. 2014 Compensation for red-green contrast loss in anomalous  
647 trichromats. *J. Vision* **14**, 19–19. (doi:10.1167/14.13.19)

648 61. Boehm AE, Bosten J, MacLeod DIA. 2021 Color discrimination in anomalous trichromacy: Experiment  
649 and theory. *Vision Res.* **188**, 85–95. (doi:10.1016/j.visres.2021.05.011)

650 62. Rabin J, Kryder A, Lam D. 2018 Binocular facilitation of cone-specific visual evoked potentials in colour  
651 deficiency. *Clin. Exp. Optom.* **101**, 69–72. (doi:10.1111/cxo.12567)

652 63. Tregillus KEM, Isherwood ZJ, Vanston JE, Engel SA, MacLeod DIA, Kuriki I, Webster MA. 2021 Color  
653 compensation in anomalous trichromats assessed with fMRI. *Curr. Biol.* **31**, 936-942.e4.  
654 (doi:10.1016/j.cub.2020.11.039)

655 64. Neitz J, Neitz M, He JC, Shewell SK. 1999 Trichromatic color vision with only two spectrally distinct  
656 photopigments. *Nat. Neurosci.* **2**, 884–888. (doi:10.1038/13185)

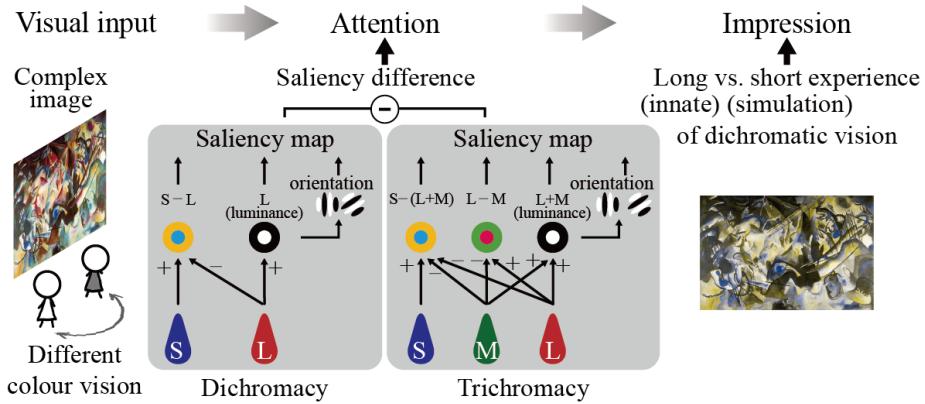
657 65. Horiguchi H, Winawer J, Dougherty RF, Wandell BA. 2013 Human trichromacy revisited. *Proc. Natl.  
658 Acad. Sci. U.S.A.* **110**. (doi:10.1073/pnas.1214240110)

659 66. Emery KJ, Webster MA. 2019 Individual differences and their implications for color perception. *Curr.  
660 Opin. Behav. Sci.* **30**, 28–33. (doi:10.1016/j.cobeha.2019.05.002)

661 67. Barbur JL, Rodriguez-Carmona M, Evans BEW. 2021 Color vision assessment-3. An efficient, two-step,  
662 color assessment protocol. *Color Res. Appl.* **46**, 33–45. (doi:10.1002/col.22599)

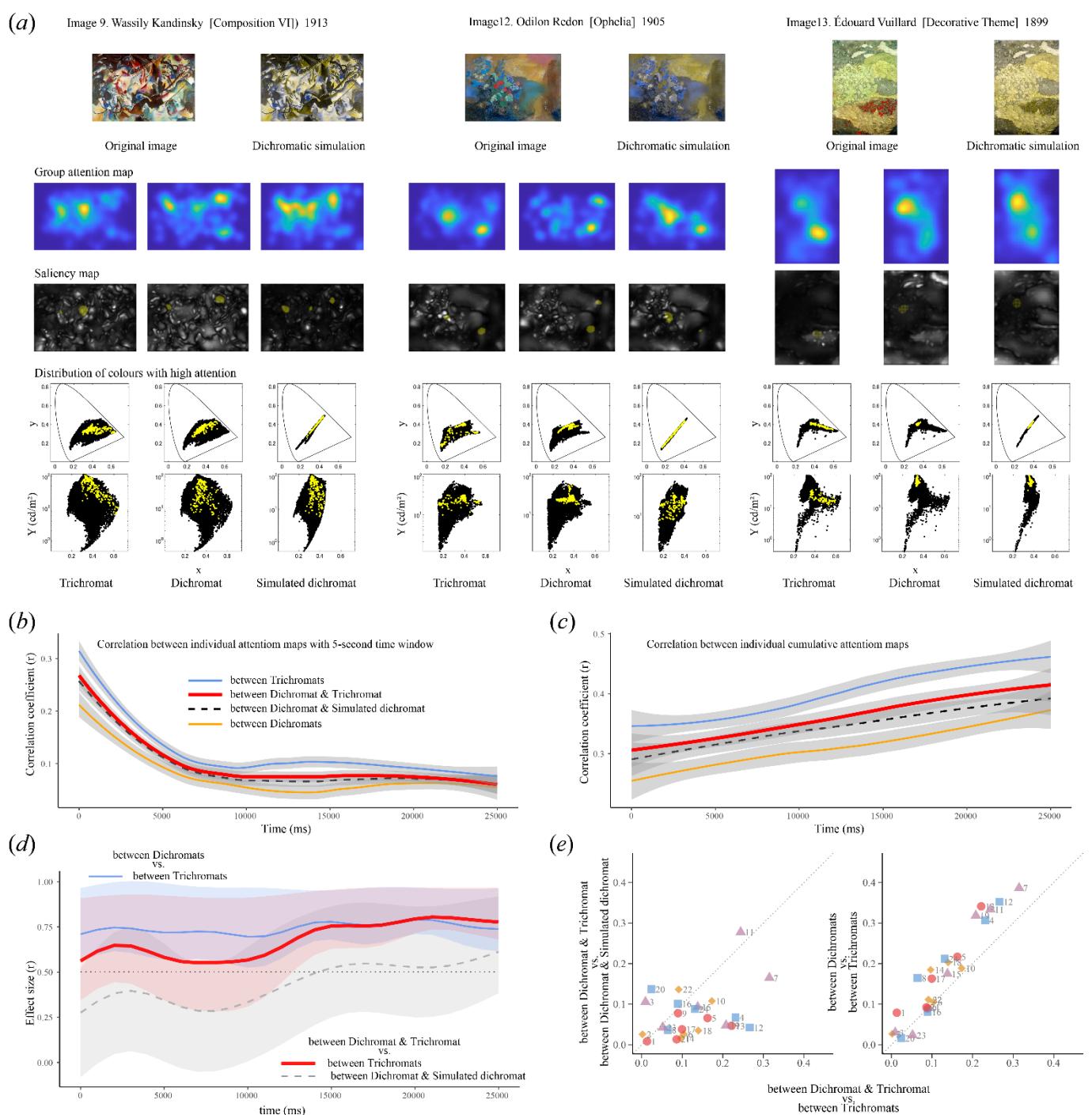
663 68. Winderickx J, Lindsey DT, Sanocki E, Teller DY, Motulsky AG, Deeb SS. 1992 Polymorphism in red  
664 photopigment underlies variation in colour matching. *Nature* **356**, 431–433. (doi:10.1038/356431a0)

665 69. Sharpe LT. 1999 Opsin genes, cone photopigments, color vision, and color blindness. In *Color vision:  
666 From genes to perception*, pp. 3–51. Cambridge University Press Cambridge.


667 70. Deeb SS, Bisset D, Fu L. 2010 Epigenetic control of expression of the human L- and M- pigment genes:  
668 Epigenetic control of L- and M-opsin genes. *Ophthalmic Physiol. Opt.* **30**, 446–453. (doi:10.1111/j.1475-  
669 1313.2010.00735.x)

670 71. Bosten J. 2019 The known unknowns of anomalous trichromacy. *Curr. Opin. Behav. Sci.* **30**, 228–237.  
671 (doi:10.1016/j.cobeha.2019.10.015)

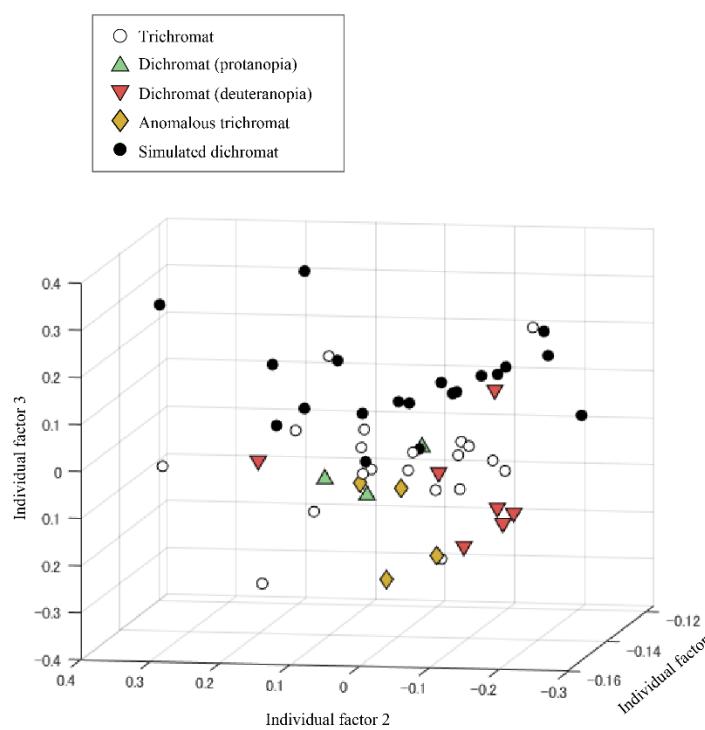
672


673 **Figures and tables**

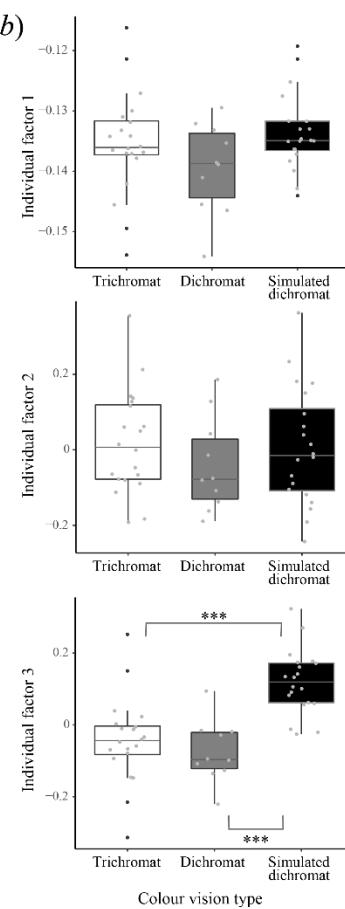
674



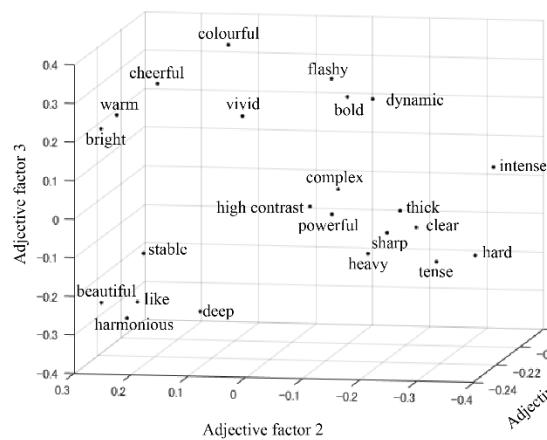
675


676 **Figure 1.** Schematic illustration of our study. The visual input of a complex image processed by the visual  
677 systems of individuals with different types of colour vision would result in differences in image saliency and  
678 attention [35], which may affect the viewer's impressions of the image. The impression of the image may thus  
679 differ between people with a lifelong experience of congenital dichromatic vision and those who have briefly  
680 experienced stimulation-based dichromatic vision.




681 **Figure 2.** Gaze differences among colour vision types. (a) Examples of group attention maps for trichromats,  
682 dichromats, and simulated dichromats during the 0–5,000-ms observation period for images 9, 12, and 13. The  
683 original image viewed by trichromats and dichromats and the dichromatic simulation image viewed by half of  
684 the trichromats are shown above the attention maps. The saliency maps below the group attention maps are  
685 overlaid with the top 1% of pixels with high probability density in the group attention maps. The plots below the  
686 saliency maps show the distribution of image pixels in the CIE1931 xyY chromaticity diagram (top: x vs y,

687 bottom: x vs Y; Y represents luminance). Black dots: distribution of all image pixels. Yellow dots: distribution of  
688 xyY values for the top 1% of the pixels with high attention. (b) Time-course of the pairwise correlations  
689 between individual attention maps with 5-s time window for various colour vision combinations. Each line  
690 indicates the smoothed mean value for medians of 24 images. Light blue line: trichromat and trichromat, bold  
691 red line: dichromat and trichromat, dashed black line: dichromat and simulated dichromat, orange line:  
692 dichromat and dichromat. Grey areas indicate 95% CIs. (c) Time-course of the pairwise correlations between  
693 individual attention maps with cumulative time window for various colour vision combinations. The symbols  
694 are the same as in panel *b*. (d) Time-course of the Wilcoxon effect size for the comparison of correlations  
695 between various colour vision combinations in *c*. Bold red line: dichromat and trichromat vs trichromat and  
696 trichromat; dashed grey line: dichromat and trichromat vs dichromat and simulated dichromat; light blue line:  
697 dichromat and dichromat vs trichromat and trichromat. Lines were smoothed with spline, and 95 % CIs are  
698 shaded. The dotted line represents  $r = 0.5$ . (e) Scatter plots of effect sizes of individual attention map differences  
699 for each image during 0–5,000 ms. Symbols beside image numbers indicate the categorisation of the images  
700 based on the values of the second dimension of the MDS for image selection. Red circle: extremely small;  
701 orange diamond: small; purple triangle: large; and light blue square: extremely large.


(a)



(b)



(c)



(d)



702

703 **Figure 3.** Effects of colour vision on impressions. (a) Distribution of weights for individuals with different  
 704 colour vision types in a three-dimensional space consisting of individual factors 1–3. (b) Box plots and  
 705 distribution of weights for each individual factor in trichromats, dichromats, and simulated dichromats. The  
 706 horizontal line of each box indicates the median value. The box represents the range between the first and third  
 707 quartiles. The upper and lower whiskers refer to the largest and smallest data points in the range from the first  
 708 quartile – 1.5\*the range of box to the third quartile + 1.5\*the range of box, respectively. Each dot represents one

709 data point. \*\*\*adjusted  $p < 0.001$ . (c) Distribution of weights for adjectives in a three-dimensional space  
710 consisting of adjective factors 1–3. (d) Distribution of weights for images in a three-dimensional space  
711 consisting of image factors 1–3. The symbols beside the image numbers indicate the categorisation of the  
712 images based on the values of the second dimension of the MDS for image selection. Red circle: extremely  
713 small; orange diamond: small; purple triangle: large; and light blue square: extremely large.

714

**Table 1.** Core tensor G in the Tucker decomposition

| Individual | Image    | Adjective |          |          |
|------------|----------|-----------|----------|----------|
|            |          | Factor 1  | Factor 2 | Factor 3 |
| Factor 1   | Factor 1 | -714.6921 | 0.1215   | -0.2572  |
|            | Factor 2 | 0.2714    | 96.3313  | 0.9473   |
|            | Factor 3 | -0.0334   | -0.0923  | 54.1160  |
| Factor 2   | Factor 1 | -5.0401   | -5.1168  | 8.5798   |
|            | Factor 2 | -3.7604   | -31.0129 | 0.1383   |
|            | Factor 3 | 6.0097    | -1.2950  | -11.2864 |
| Factor 3   | Factor 1 | 0.6185    | -3.0068  | 25.8936  |
|            | Factor 2 | 4.0170    | 1.7134   | 0.2417   |
|            | Factor 3 | -16.8498  | 4.6614   | 5.2207   |

715

716 The magnitude of the value reflects the importance of the interactions between the factors in the three phases.