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Abstract

This study focuses on key methodological challenges in genome-
wide association studies (GWAS) of biobank data with time-to-event
outcomes, analyzed using the Cox proportional hazards (CPH) model.
We address four primary issues: left-truncation of the data, com-
putational inefficiency of standard model-fitting algorithms, related-
ness among individuals, and model misspecification. To manage left-
truncation, the common practice is to use age as the timescale, with
individuals entering the risk set at their age of recruitment. We as-
sess how this choice of timescale influences bias and statistical power,
under realistic GWAS conditions of varying effect sizes and censoring
rates. In addition, to alleviate the computational burden typical in
large-scale data, we propose and evaluate a two-step martingale resid-
ual (MR) approach for high-dimensional CPH modeling. Our results
show that the timescale choice has minimal effect on accuracy for small
hazard ratios, though using birth age as the timescale-ignoring recruit-
ment age-yields the highest power for association detection. We find
that relatedness, when ignored, does not substantially bias effect size
estimates, while omitting key covariates introduces significant bias.
The two-step MR approach proves to be computationally efficient, re-
taining power for detecting small effect sizes, making it suitable for
large-scale association studies. However, when precise effect size esti-
mates are critical, particularly for moderate or larger effect sizes, we
recommend recalculating these estimates using the conventional CPH
model, with careful attention to left-truncation and relatedness. These
conclusions are drawn from simulations and illustrated with data from
the Estonian Biobank cohort.

Keywords: survival analysis, genome-wide association study, population-
based biobank data
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1 Introduction

As time goes on, the data volume in large-scale population-based biobanks is
increasing exponentially. Although the recent decades have seen tremendous
increases in sample size, a similarly valuable data expansion results from
prolonged follow-up time and the ability to link the -omics databases with
incident disease data from electronic health records. Therefore, a large pro-
portion of Genome-Wide Association Studies (GWAS) are mainly focused on
discovery of genetic variants associated with the risk of incident diseases. For
that purpose, one needs to apply regression modelling methodology that is
designated for censored time to event data, rather than using simple methods
like linear or logistic regression models [1, 2, 3]. Here, the Cox Proportional
Hazards (CPH) modelling [4] has become a standard in biomedical fields due
to its robustness to distributional assumptions and interpretation of param-
eter estimates in terms of Hazard Ratios (HR-s).

Despite its robustness, CPH modelling is not assumption-free. Therefore
there is a need for a review of applicability of this method in the context of
large population-based biobanks. Our aim is to identify sources of possible
biases as well as realistic magnitudes of them in typical GWAS settings.

The most discussed assumption in the context of CPH model is the pro-
portional hazards assumption, stating that the multiplicative effect of a risk
factor on the hazard of the outcome event is staying the same throughout
the scale of the follow-up time. Recently it has been pointed out that this is
rarely true in practice — on the contrary, the hazard ratios are almost always
time-varying. Therefore the HR from a CPH model should be interpreted
as a weighted average of the true HRs over the follow-up period [5, 6]. This
could be easily acceptable in GWAS, unless there is a reason to believe that
some genetic variants have a drastically different effect on the risk during
different segments of the follow-up time.

Some other, often ignored assumptions are related to the special features
of the biobank data. First, we note that the time of recruitment is usually not
a relevant baseline timepoint regarding the outcome event (unlike in clinical
trials, where follow-up often starts at diagnosis). As the genomic data stays
largely constant throughout the lifetime of an individual, date of birth may
seem as a logical time origin for a GWAS. Using age at the outcome event
as the outcome variable can, however, lead to another problem called left-
truncation or immortal time bias [7, 8], as the analysis is still conducted
conditionally on the fact
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that the individual was alive at the time of recruitment and free of dis-
eases (sometimes including the outcome event) that would have prevented
the recruitment. To properly account for left-truncation, one should use
methods that use age as timescale, but consider the individual as being at
risk only during the time from recruitment until the outcome event (or end
of follow-up)[7].

A common feature of biobank cohorts is genetic relatedness of the partic-
ipants, violating the assumption of independent observations in the sample.
For continuous trait GWAS, the use of mixed linear models has been recom-
mended in such cases [9, 10, 11, 12, 13]. Similar approach could be used in
survival analysis (mixed effects Cox regression, frailty models) [14].

When the outcome event is an incident disease, mortality due to other
causes will always be a competing event — censoring the individuals where
the follow-up ended due to death, ignores the assumption of independent
censoring. In this case, one may consider using a proper model for compet-
ing risks (Fine and Gray model). However, when the focus is not on risk
prediction, but on parameter estimation, censoring the competing outcomes
is still acceptable [15, 16].

As the biobank cohorts are mostly not random samples from the popula-
tion, also other sources of selection bias are likely [17], that could sometimes
be addressed by proper use of sampling weights.

In addition to the biases resulting from sample design, also some com-
putational approaches used in GWAS may become sources of bias. Due to
the significant increase in the size of genotyped samples over the past few
decades, both in terms of the number of genotyped subjects and the number
of genetic variants genotyped or imputed, most of proposed tools for running
CPH modeling in GWAS setting have become computationally prohibitive
and not easily scalable[18, 19, 20, 21]. In some studies, a two-stage approach
involving martingale residuals that dramatically reduces the computing time,
has been used [22, 23]. Although it has shown to perform well in some sim-
ulations, it is still unclear, whether it results biases in parameter estimates
in some realistic cases.

In classical linear regression with independent covariates, consistent and
unbiased estimates for the remaining coefficients can be obtained even if some
covariates are omitted. However, this property does not extend to non-linear
models, including logistic regression and CPH model neither in randomized
or observational setting [24, 25, 26, 27, 28, 29].

In a CPH model, omitting an important risk factor for the outcome leads
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to violation of the proportionality assumption with respect to other variables
in the model, leading to omitted variable bias, which can significantly distort
estimates and conclusions.

In GWAS context one still needs to keep in mind the main task of iden-
tifying the potential disease-associated variants in the set of a large number
(often more than 20 millions) of genotyped variants. As the focus is on hy-
pothesis testing rather than precise effect estimation, small biases are not a
cause of concern, if the nominal alpha-level is still retained after accounting
for multiple testing. Therefore, if there is a trade-off between bias and power,
a biased estimator may be preferable if it leads to greater power.

The main aim of the present study is to assess the magnitude of bias
and power in realistic GWAS settings, where the “naive” CPH model is
used, while ignoring left-truncation and/or relatedness of individuals, possi-
bly using the martingale residual approach to speed up the computation. We
explore these questions analytically and also by a simulation study, clarifying
the need for various bias-reduction measures in GWAS settings.

Finally we also address the option to combine participant genotypes and
parental outcome data, when the biobank cohort is relatively recent and the
number of events still low (especially for mortality outcomes). Clearly, the
estimated HRs in this case will not be unbiased. We derive the expression
for the bias analytically and demonstrate the performace of this approach in
a small-scale simulation.

2 Sources of bias

2.1 Timescale choice
Bias due to left-truncation

Here and hereafter we are considering the Cox proportional hazards (CPH)
model defined as

h(t|X) = ho(t)e*?,

where ho(t) is the baseline hazard function at time ¢, X is the matrix of
covariates and 3 is the vector of the parameters.
To estimate the parameter 9 = ¢® using the CPH model, one needs to
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find the value of B that maximizes the partial likelihood function:

T

r exp(z ()
LC = L] = ’
) J[[l # 31:[1 ZZGR(%)) exp(z./3)

where ;) is the value of X for an individual who died at the jth observed
death time £(;), 2; are the values of X for the individuals in the risk set at
t(;) and r is the number of events. Note that the risk set R(t(;)) consists of
individuals observed to survive up to t(;). Obviously, for unbiased estimation
the risk set in the cohort should be a random sample from the corresponding
risk set in the population. However, when time of birth is used as the time
origin rather than the time of recruitment, individuals who were recruited
at age t + 0 would be included in the risk set for an event at age t for
any 0 > 0. Thus the risk set at t is partly selected conditionally on events
(recruitments) that occur after ¢ and thus also conditionally on the fact that
the individuals survive (and have no outcome events) before ¢t + . As a
result, low-risk individuals will be over-represented in that risk set (as they
have more chance survive up to time ¢ + ¢), leading to overestimation of the
hazard ratio.

Still, while using time of birth as time origin and ignoring left truncation,
no bias is anticipated under the null hypothesis (¢» = 1 or 3 = 0). Therefore
the question remains, whether the approach of using age as timescale and
time of birth as time origin could still be valid or even preferred for hypothesis
testing due to potentially better power.

Potential bias with time since recruitment as timescale

A standard “textbook” approach would be to use time since recruitment
as timescale, while the effect of age is accounted for by proper adjustment.
Korn at al [8] have determined two sufficient conditions — when either one
is satisfied, the age-adjusted CPH models with time since recruitment as
timescale and CPH models with age as timescale give the same results:

1. The baseline hazard function hy(t) can be presented as an exponential
function: ho(t) = ¢ - exp(yt) for some ¢ > 0 and ~.

2. The covariate of interest and age at recruitment are statistically inde-
pendent.
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If neither of the two conditions is fulfilled, Korn et al. suggest using CPH
models with age as timescale, as they believe the outcomes to change more
as a function of age rather than a function of time since recruitment.

The first condition holds when hazard of the outcome is expected to increase
rapidly as a function of age, following a Gompertz distribution (often appro-
priate for human mortality data).

Korn et al. did not provide a formal proof for the second condition,
whereas Thiebaut et al. [7] found that mismodeling of age as an adjustment
factor in a follow-up-dependent CPH model rather than as a timescale could
also result in bias, on the contrary to the reasoning by Korn et al. Other
authors have shown that bias can be detected even when a variable inde-
pendent from the variable of interest has been omitted from the CPH model
24, 25, 26, 27]. One can argue that while modelling all-cause mortality, the
second condition basically states that the covariate of interest cannot affect
mortality as the distribution of this covariate would otherwise change with
age, making them dependant. The distribution stays invariable, when the
covariate does not affect mortality.

Thiebaut et al. also suggest using age as timescale rather than time since

recruitment, as the underlying mechanisms of these models are different.
They point out that usually the time when subject comes under observation
does not coincide with the time when the subject becomes at risk for the
outcome of interest. This is especially true in the biobank context.
Again, our question is related to the practical implementation of these find-
ings in the context of GWAS — what is the effect of timescale choice in a
range of realistic settings on bias in parameter estimates as well as on power
to detect an association. We will try to shed some light on these questions
using a simulation study.

2.2 Dependent observations

Independence of observations is a central assumption in most modeling ap-
proaches, including the CPH model. However, in population-based biobanks
it is common to encounter genetically related individuals, which violates this
assumption and can introduce biases. A general approach to address popula-
tion structure in GWAS is to add principal components (PCs) as covariates
(30, 31]. While PCs primarily address population stratification, they also
might help in identifying and accounting for cryptic relatedness within the
sample. However, specialized methods are preferable for explicitly adjusting
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for related individuals alongside population stratification. These methods
include using a kinship matrix [9], linear mixed models [10, 11, 12, 13], or
frailty models [14], which are more effective than PCs alone, but are compu-
tationally prohibiting.

2.3 Omitting covariates

The CPH model relies on the fundamental assumption that the effect of
each covariate is proportional over time and relative to other covariates in
the model. Although covariate effects can be approximately proportional
in reality, apparent non-proportionality often results from model misspecifi-
cation [24]. Even in randomized trials where all known and unknown con-
founders are balanced between study arms, omitting a covariate can lead
to bias in treatment effect estimates. This bias is particularly problematic
in observational studies, where neither the observed covariates nor unmea-
sured confounders are balanced across groups with different exposure levels
(or genotypes). Consequently, the risk of omitted variable bias is signifi-
cant, potentially leading to asymptotic biases. This results in systematically
incorrect estimates, which can mislead conclusions about the relationships
between variables. The severity of bias depends on the distribution of the
omitted covariate, strength of its effect and censoring. Although one can-
not directly adjust for unmeasured covariates, their potential impact can be
assessed by sensitivity analyses [29], but that is hardly ever done in GWAS
setting.

2.4 Other issues

In addition to the problems mentioned above, there are various other po-
tential sources of bias that may affect the final conclusions, depending on
the research question — we list them here for completeness, but ignore in
subsequent analysis.

When the outcome of interest is not death, but an incident condition, one
should be aware of competing risks, such as death due to another cause.
While treating competing events as censoring, however, the hazard ratios
are still unbiased in general [16], but care should be taken in absolute risk
estimation tasks.

The assumption of proportionality of hazards has been discussed
above in the context of omitted covariates, but the risk factors (including
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genetic variables) themselves may also have a time- or age-varying effect on
hazard. However, this is again an issue that becomes important in absolute
risk prediction, while for variant discovery one may accept that an average
effect over time is estimated.[5].

Recently it has been pointed out by several authors, that population-
based biobanks are mostly non-random samples and therefore subject to
selection bias [17, 32, 33, 34]. We agree that it is an important issue that
should be taken into consideration in biobank-based studies, regardless of
the type of variable (time to event or other) or method of analysis.

3 Ways to increase power and computational
efficiency

3.1 Parent-offspring data

Joshi et al. [22] have combined parent-offspring data to increase power of
discovery. Biobank cohorts with short average follow-up time are underpow-
ered for the analysis of participant lifespan data, due to the low number of
outcome events (deaths). However, if family history at recruitment is col-
lected and parental ages at death are known, they can be combined with
subjects’ genotype information.

If the age span of recruited subjects is sufficiently wide, a large proportion
of them is likely to have parents who are either relatively old or already
deceased. Therefore the use of parental data leads to lower censoring rates
and higher power for genotype effect detection. As each allele in a SNP is
inherited by offspring with the probability of 50%, one can assume that using
parental lifespan along with offspring genotype will result in estimates with
magnitude of about half of the true effect size.

However, we have shown that the proportionality assumption in this case
does not hold. We have derived equations for bias and show that the bias
will increase, if the minor allele frequency and/or the effect size 5 increases.
The derivation is explained in detail in the Supplement Section 1.

The approach of combining parental and offspring data has mainly been
used for power gain, but our simulations showed that it is justified only when
the parental event rate is at least 4 times higher than the event rate of the
recruited subjects.
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3.2 Two-stage modeling via martingale residuals

To overcome computational challenges and leverage GWAS tools tailored for
continuous phenotypes [35, 36, 37, 38], we will examine performance of a
two-step modelling approach proposed by Joshi et al. [22] for a biobank set-
ting. The idea of the method is fairly simple — instead of running a CPH
model for every SNP, a single CPH model encompassing all the non-genetic
and technical covariates is fitted in the first step. For that model, martingale
residuals (MR) are obtained (Supplement, Section 2.3.2). As pointed out by
Therneau et al. [39], the association between MR and a covariate omitted
from the linear predictor of the initial model yields estimates that align with
the coefficients in the CPH model. Thus a test of a linear association be-
tween the MR and a genetic variant could potentially be used to detect an
association between the variant and the outcome phenotype, reducing the
association testing to a simple linear regression task.

4 Results of the simulation study

We will simulate different scenarios similar to real life biobank data in order
to determine if and how the above mentioned methodological choices in the
CPH model affect the results. We will study the bias and power under various
minor allele frequencies (MAF), effect sizes and censoring rates. Timescales
used:

e timescale TB — time since birth;
e timescale TR+ A — time since recruitment, age-adjusted;

e timescale TA — age as timescale (accounting for left-truncation).

More detailed simulation strategy is given in Supplement Section 2.1.

Our main aim is to compare effect size and significance of a SNP using
the conventional CPH model and two-step MR approach. The impact on the
working range of the approach is examined. The study aims to determine
the effects of censoring and MAF on the performance of the two-step MR
approach.

We will compare the models performances by:
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e bias - difference between real effect size and the estimated effect size;
e power - probability of detecting a significant effect, when it is present;

e coverage - probability that the true effect size lies in the confidence
interval of the estimated effect size.

4.1 Effect of timescale choice on bias and power in
CPH model

CPH with TA (Figure 1) is the only one that results in unbiased estimates for
B1. In addition, this model exhibits the best coverage of the 95% confidence
interval for true effect size.

CPH with TB results in the greatest bias, whereas the bias for TR+A case
is very small. The bias for both TB and TR+A increases as effect sizes and
censoring rates grow. Coverage of the true effect size for TB drops to zero for
common variants (M AF = 0.4) already at 5; = 0.2. The coverage for TR+A
is not as good as for TA, although the differences are minor. Coverage can
be seen to be better consistently when MAF is low.
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Figure 1: Performance metrics of CPH with different timescales: age, account
for left-truncation (TA), time since birth (TB) and time since recruitment
with age adjustment (TR+A) under different censoring rates (CR) and minor
allele frequencies (MAF), encompassing the Bias and Coverage.
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For power we only present the plot, where MAF=0.05 and CR=90 (Figure
2) as the differences in the results are greatest here, other plots can be found
in the Supplement Figure 1.

CPH with TB results in the highest power to detect a significant associa-
tion, whereas the power for TA is lowest no matter what the effect size. The
differences in power for TB and TR+A can be up to 25%. CPH with TR+A
and TA have very similar power regardless of the effect size.

As a conclusion we see that although the TB approach leads to potentially
biased estimates of the true effect, it may be the preferred approach if the
aim is to maximize power in a discovery study.
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Figure 2: Power analysis for censoring rate (CR) 90% and minor allele fre-
quency (MAF) 0.05 across three different timescale choices (TA, TB, TR+A).
Additional power figures for varying censoring rates and MAFs are available
in the Supplementary Figure 1.
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4.2 Utility of martingale residuals based approach in
approximating CPH model estimates

As shown before, CPH with TB could be preferable in GWAS settings due
to highest power to detect relatively small effect sizes. Therefore, the sim-
ulation results on the performance of the MR approach are here presented
only for TB (Figure 3), whereas the results for CPH with TR+A and TA are
presented in the Supplementary Figures 3 and 4.

A comparison of MR estimates with those from the standard CPH model-
fitting algorithm and the actual effect sizes reveals that the two-step approach
approximates CPH estimates quite well within typical GWAS working range.
Compared to CPH estimates, the effect size estimates based on MR approach
demonstrate less bias and higher relative accuracy in capturing the true pa-
rameter estimates. However,the relationship between bias and the true effect
size exhibits a non-linear pattern, and the same nonlinearity holds for the
coverage of the 95% CI. The observed nonlinearity requires further theoret-
ical investigation. Similarly to the effect sizes, p-values obtained from the
MR approach were more conservative than the ones obtained from the CPH
model within typical GWAS setting. We observed in our simulation that
when censoring rates were low, MR p-values approximated CPH p-values
better, compared to settings with high censoring rates. Nevertheless, the
power is rather similar to the CPH across different censoring rates and MAF
for effect sizes within GWAS working range (see Supplementary Figure 2).
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Bias and Coverage: models with age since birth as timescale
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Figure 3: Bias and coverage of 95% CI for models using age since birth as
the timescale (TB), evaluated across different censoring rates and MAFs.
Three different scenarios are compared: 3 estimate using MR approach vs
true 8 (MR vs ), B estimate using MR approach vs CPH estimate (MR vs
CPH model estimate) and CPH model estimate vs true 8 (CPH model vs (3).
Results for other timescales are presented in Supplementary Figures 3 and 4.
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4.3 Relatedness and model misspecifation

To investigate issues concering relatedness and model misspecification, we
simulate datasets of siblings with three covariates to mimic realistic geno-
type, phenotype, and a shared family frailty, which is often unmeasured.
The simulation details are provided in the Supplement Section 2.2. We run
analyses using three different timescales (TB, TR+A, TA), both ignoring
relatedness (ie including relatives) and using only unrelated individuals. For
each scenario, we compare models including all covariates to those omitting
the frailty term. Additionally, we evaluate a CPH model with a frailty term
for data including relatives, but ignoring frailty term as it would be in a real-
istic setting. Results indicate that ignoring relatedness does not significantly
increase bias in effect size compared to the choice of timescale, regardless of
censoring rate or MAF. However, omitting a covariate creates substantial bias
and, in our setting, even changes the direction of the bias. The frailty CPH
model shows the smallest bias when using an age-adjusted timescale, with
sensitivity to censoring rate and MAF—the smaller these two, the smaller
the bias. Power analyses reveals the highest power for large censoring and
small MAF occurres with a birth-based timescale. Power is sensitive to cen-
soring rate, MAF, ignoring relatedness, and omitting covariates, with the
greatest decrease observed when both relatedness were ignored and covari-
ates omitted. Notably, the coverage of the 95% CI decreases sharply when
a covariate is omitted and relatives are included in the analysis, particularly
when left-truncation is accounted for. This effect is more pronounced if the
censoring rate decreases and MAF increases, due to the underestimation of
variance (see Supplementary Figure 5).
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Figure 4: Bias and power of various models across three timescales (TB,
TR+A, TA), different censoring rates (CR), and MAFs fitted on a cofort with
related individuals. The models include full covariate models with all subjects
(CPHp) and only independent subjects (CPHpng), models omitting the
frailty term for all subjects (CPH) and only independent subjects (CPHyg),
and a CPH frailty model for all subjects (Frailty).
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Martingale residuals in relatedness and model misspecification

We investigate how the two-step martingale residual approach would work
in a realistic setting by using a simulation in which we intentionally omit
a covariate representing frailty. We are interested in whether the two-step
martingale residual approach could approximate CPH estimates, specifically
using age since birth as the timescale and under high censoring conditions.
This investigation is conducted for both related and unrelated subjects. For
this setup, the martingale residual approach leads to the smallest bias and
highest coverage, although it has slightly less power than the standard CPH
models (Figure 5). Therefore, for explanatory GWAS using age since birth as
the timescale, the martingale residual-based approach appears to be a robust
method for estimating hazard ratios, effectively handling related subjects and
being computationally efficient.
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Performance metrics for different models when using age since birth as a timescale
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Figure 5: Bias, coverage of 95%CI and power, resulting from fitted models
that use age since birth as a timescale, across different censoring rates (CR),
and MAFSs in a cohort including related individuals. Four different scenarios
are compared: CPH model and MR-based model fitted on the complete
dataset (CPH wvs 3, MR vs (), and respective models fitted on the subset
with independent subjects (CPHyg vs 3, MRyg vs 3 ).
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4.4 Application to the Estonian Biobank data

The Estonian Biobank maintains a volunteer-based cohort of the Estonian
adult population (aged > 18 years) [40]. The sample size used in this analysis
is 51 463, which represents approximately 5% of the Estonian adult popu-
lation (participants recruited during the first period of recruitment in 2003-
2011). In this sample, 65.6% of participants were female and the median age
at recruitment was 43 (min = 18, max = 103) years. Median follow-up time
with IQR was 13.1 (11.7;13.9) years. The lifespan data of the participants
is obtained via record linkages with the Estonian Causes of Death Register
(latest linkage for the data used here was in the beginning of 2022). The
mortality rate in the analysed sample was 13.2%.

Testing the top three SNPs and the polygenic risk score (GRS) for lifespan
based on Timmers et al. [23], we fit models with three choices for timescale:
time since birth (TB), time since recruitment with age-adjustment (TR+A)
and age as timescale (TA, accounting for left-truncation). For each timescale
choice, we fit the model for the entire sample (ignoring the relatedness) and
also for the sample where relatives are excluded (the remaining sample size:
n = 38 223). Thus as a result, 6 different models are fitted in total.

Out of the 3 top SNPs tested, only one (APOE) shows significant result in
the Estonian Biobank (Figure 6). As expected the GRS shows the greatest
effect on mortality, whereas its effect size is almost identical regardless of
whether the relatives are included or excluded. Largest effect size estimate
is obtained when TB was used as the timescale — as pointed out before, the
bias due to left-truncation is a likely cause for this difference. The other two
timescale choices do not lead to visible differences in the effect sizes. The
estimates of the effects of the LPA, APOE and CHRNA3/5 variants do not
differ much, but excluding relatives has generally reduced the estimated ef-
fect sizes for APOE and CHRNA3/5, whereas the timescale choice does not
really have any clear impact.
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Figure 6: Comparison of hazard ratios for survival-associated SNPs and lifes-
pan GRS using CPH with different timescales and related vs unrelated par-
ticipants in the Estonian Biobank data. The figure shows HR estimates with
95% confidence intervals x-axis, and the timescale choice or eLife article ref-
erence on the y-axis. Gene names, rather than SNP names, are indicated
by color and relatedness by shape. TB, TR+A and TA correspond to CPH
using time since birth as timescale, time since recruitment + age adjustment
as timescale and age as timescale with all EstBB participants.
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5 Discussion

For accurate estimation of population parameters, unbiasedness is the es-
sential requirement for any statistical estimators. However, the task of es-
timation should be distinguished from the task of hypothesis testing. The
present work has highlighted that in the context of GWAS for time to event
outcomes, the estimators leading to the smallest bias are not necessarily the
ones corresponding to most powerful tests for the hyopthesis of no genotype-
phenotype association.

Time-to-event phenotypes are challenging for GWAS, as the commonly
used analysis tools, such as CPH modeling, require considerably more compu-
tational resources for implementation than algorithms for linear and logistic
regression analysis. In addition, as the power depends not on the total sam-
ple size, but on the number of (disease or mortality) events observed, even
a large biobank cohort may not be sufficiently powered for the discovery of
biologically meaningful outcome-associated variants. Thus approaches that
maximize power are especially welcome for time-to-event GWAS analyses,
even if they come at the cost of some bias in parameter estimates.

The first finding of the present study is, that although careful adjustment
for left-truncation is needed to achieve unbiasedness, it would considerably
reduce power in a discovery GWAS compared to the approach that ignores
it. For instance, a true hazard ratio of 1.05 (typical effect size of a common
variant in GWAS) is likely to be overestimated by 2-3%, whereas the power
to detect an association may be increased by more than 1.5 times, when time
since birth is used as timescale and left-truncation is ignored.

As under the null hypothesis of zero effect size the bias could not occur,
ignoring left-truncation would not increase type I error probability. There
is, however, one exception — the case where a genetic variant has been under
selection. By “enriching” the risk sets with individuals recruited at later time
points, one may in these cases create a situation where the allele frequencies
in subjects with outcome events differ systematically from the allele frequen-
cies in the risk sets. We recommend that this issue should be examined for
variants identified as significant in a GWAS.

To simplify the computational algorithm of model-fitting, the use of a two-
step procedure involving martingale residuals has been explored in the GWAS
context. Martingale residuals were initially proposed as a diagnostic tool for
a CPH model (mainly to identify appropriate covariate transformations), and
to our knowledge, their use in the actual effect estimation has not been ex-
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plored in detail. We have shown that the two-step procedure provides valid
estimates with no (or negligible) bias for the estimation of the relatively
small effect sizes that are typical for GWAS findings. In addition, we have
also shown that using the MR approach the power of the association discov-
ery is not decreased compared to the corresponding CPH model.

Based on our simulations, ignoring relatedness does not significantly increase
bias in effect size, whereas omitting key covariates introduces substantial bias.
Additionally, the two-step martingale residual approach proved to be robust
for estimating hazard ratios, efficiently handling related subjects with high
coverage and slightly reduced power compared to standard CPH models.

In summary, our results support that for a time-to-event phenotype, a proce-
dure where: 1) age is used as a time-scale and left-truncation is ignored and
2) a two-step procedure that obtains martingale residuals at the first step
and runs a linear regression-based GWAS as the second step is implemented,
leads to better computational efficiency and better power for variant discov-
ery than the procedure that fits a CPH model separately for each variant,
whereas adjusting for other covariates.

Once the set of potentially associated variants is identified, we still recom-
mend to validate the findings in both the discovery cohort(s) and also in
a large independent cohort, using the CPH modeling approach that leads
to unbiased estimates (thus, properly accounting for left-truncation). The
latter is especially true, when the effects of polygenic risk scores (GRS) are
estimated, as biases in these estimates are not acceptable when personalized
risk prediction algorithms are derived. Also, to compute a GRS based on
estimated regression coefficients from GWAS, one needs unbiased estimates
for those coefficients.
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